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Abstract

We consider non-price advertising by retail �rms that are privately informed as to their

respective production costs. We �rst analyze a static model. We construct an advertising equi-

librium, in which informed consumers use an advertising search rule whereby they buy from the

highest-advertising �rm. Consumers are rational in using the advertising search rule, since the

lowest-cost �rm advertises the most and also selects the lowest price. Even though the advertis-

ing equilibrium facilitates productive e¢ ciency, we establish conditions under which �rms enjoy

higher expected pro�t when advertising is banned. Consumer welfare falls in this case, however.

We next analyze a dynamic model in which privately informed �rms interact repeatedly. In

this setting, �rms may achieve a collusive equilibrium in which they limit the use of advertising,

and we establish conditions under which optimal collusion entails pooling at zero advertising.

More generally, full or partial pooling is observed in optimal collusion. In summary, non-price

advertising can promote product e¢ ciency and raise consumer welfare; however, �rms often

have incentive to diminish advertising competition, whether through regulatory restrictions or

collusion.

�Bagwell: Kelvin J. Lancaster Professor of Economic Theory (Economics Department) and

Professor of Finance and Economics (School of Business), Columbia University. Lee: School

of Economics, Singapore Management University. We thank seminar participants at EARIE,

ENPC-CERAS, EUI, the Far Eastern Meeting of the Econometric Society and Singapore Man-

agement University and Yeon-Koo Che, Jeong-Yoo Kim and Massimiliano Landi for helpful

discussions.
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1 Introduction

Modern theoretical analyses of collusion emphasize collusion in prices or quantities. This emphasis

is appropriate for many applications; however, collusion may also occur with respect to instruments

of non-price competition. One possibility of particular interest is that �rms select their advertising

levels in a collusive fashion. This possibility has not received signi�cant theoretical attention.1

One reason may be that the empirical literature on collusion and advertising o¤ers somewhat

mixed �ndings.2 Ferguson (1974) argues that advertising activity is publicly observable and thus

that collusion in advertising is feasible; and Cable (1972), Greer (1971) and Sutton (1974) emphasize

the possibility of collusion in advertising among �rms in highly concentrated markets, in their

interpretations of the empirical relationship between advertising and concentration. Simon (1970)

and Scherer (1980), however, argue that advertising activities are di¢ cult to assess and monitor,

and thus suggest that collusion in advertising may be di¢ cult to achieve. More recently, Gasmi,

La¤ont and Vuong (1992) argue that Coca-Cola and Pepsi-Cola colluded in advertising and possibly

price over a sample period that covers the late 1970s and early 1980s, and Kadiyali (1996) reports

evidence that Kodak and Fuji colluded in price and advertising in the U.S. photographic �lm

industry in the 1980s. But Symeonidis (2000) reports an absence of collusion in non-price variables

like advertising in his study of U.K. manufacturing cartels.

In the speci�c context of retail markets, however, some interesting empirical relationships be-

tween advertising and prices have been identi�ed. The classic study is by Benham (1972). Examin-

ing the retail eyeglass industry in the U.S. in the 1960s, he reports that retail prices were higher in

states that prohibited all advertising than in states that had no restrictions on advertising; more-

over, prices were only slightly higher in states that allowed just non-price advertising than in states

that also allowed price advertising. Evidently, the ability to advertise, even if only in a non-price

form, results in lower prices. Cady (1976) documents similar relationships in the U.S. retail market

for prescription drugs in 1970. At a broad level, this work suggests that retail �rms may gain if they

are able to limit advertising. In the absence of a state law that prohibits advertising, retail �rms

thus have incentive to achieve a collusive agreement in which combative advertising is reduced.

Bagwell and Ramey (1994a) develop a complete-information model of retail competition with

which to interpret Benham�s �ndings. In their model, some consumers can identify the highest-

advertising �rm, while other consumers do not observe advertising levels. The former (latter) con-

sumers are referred to as informed (uninformed) consumers. Each consumer possesses a downward-

sloping demand function and lacks direct information about �rms�prices: a consumer observes a

�rm�s price only after choosing to visit that �rm. Bagwell and Ramey compare two equilibria. In a

random equilibrium, consumers ignore advertising and choose �rms at random. Firms do not ad-

1For exceptions, see Friedman (1983) and Stigler (1968). Friedman characterizes open-loop Nash equilibria in a
repeated game of advertising and quantity competition, while Stigler compares cartels that collude in advertising
and compete in price with those that collude in price and compete in advertising. See also Nocke (2007) for a
recent analysis of collusive equilibria in a dynamic game of investment, where investment may be thought of as
quality-improving R&D or persuasive advertising.

2For a comprehensive survey of the economic analysis of advertising, see Bagwell (2007).
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vertise and enjoy symmetric market shares. By contrast, in an advertising equilibrium, the informed

consumers go to the �rm that advertises the most. Firms then use a symmetric mixed strategy,

in which higher advertising choices are paired with greater investments in cost reduction and thus

lower prices. Informed consumers are then rational in visiting the highest-advertising retailer, since

this retailer also o¤ers the lower price. Bagwell and Ramey include an initial entry stage and show

that, in the advertising equilibrium, the market is more concentrated, prices are lower, and social

welfare is higher. If the random equilibrium is associated with a setting in which advertising is

banned, these �ndings are broadly consistent with the empirical patterns that Benham reports.

In this paper, we modify the Bagwell-Ramey model in two key respects. Our �rst modi�cation

is to �purify� the model and assume that each �rm has private information about its costs of

production. Speci�cally, we consider a model with a continuum of possible cost types, where

cost types are iid across �rms. In the corresponding static model, we characterize an advertising

equilibrium in which �rms use pure strategies and lower-cost �rms advertise strictly more than do

higher-cost �rms. The advertising equilibrium again may be compared with the random equilibrium

in which no �rm advertises. Our second modi�cation is to allow that �rms interact repeatedly over

an in�nite horizon, where each �rm�s cost type is iid over time. With this second modi�cation, we

may consider any self-enforcing collusive agreement among �rms. Thus, in our modi�ed model, the

search for an optimal collusive equilibrium among �rms entails signi�cantly more than a comparison

of the random and advertising equilibria.

In our analysis of the static model, we capture two notions of puri�cation. First, in the special

case in which the support of possible cost types is small, we report that the distribution of ad-

vertising levels in the pure-strategy advertising equilibrium of the incomplete-information game is

approximately the same as the distribution of advertising levels in the mixed-strategy advertising

equilibrium of the complete-information game.3 Correspondingly, we show that the main �ndings

of Bagwell and Ramey directly extend to the private-information setting, if the support of pos-

sible costs is su¢ ciently small. Second, in the general case in which the support of possible cost

types may be large, we establish conditions under which the main �ndings derived in the complete-

information game arise also in the incomplete-information game. This second notion of puri�cation

sometimes requires additional structure on the distribution and demand functions.

We develop our results for the static game while allowing for a general support of possible

cost types. As mentioned, we establish that an advertising equilibrium exists, in which lower-

cost �rms advertise more and price lower than do higher-cost �rms. We then establish three

further results. First, for any given number of �rms, if the distribution of types is log-concave and

demand is su¢ ciently inelastic, then �rms earn higher expected pro�t in the random than in the

advertising equilibrium. The second result follows directly from the �rst: when the number of �rms

is endogenous, if the distribution of types is log-concave and demand is su¢ ciently inelastic, more

�rms enter when the random equilibrium is anticipated. Finally, without making any assumption

3Bagwell and Ramey (1994a) report a similar �nding when the cost of advertising is private information and varies
slightly across �rms.
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on the distribution of types or the elasticity of demand, we show that social surplus is weakly higher

in the advertising than in the random equilibrium, when the number of �rms is endogenous. In

fact, social surplus is strictly higher in the advertising equilibrium if at least two �rms enter in that

equilibrium. We thus establish a general sense in which Bagwell and Ramey�s main �ndings extend

to the private-information setting. We emphasize, however, that the �rst two results mentioned

now employ additional assumptions on the distribution of types and the elasticity of demand.

We also compare the advertising equilibrium with another benchmark. In particular, we follow

Varian (1980) and suppose that informed consumers observe prices and buy from the lowest-priced

�rm while uninformed consumers pick a �rm at random. Following Spulber (1995) and Bagwell

and Wolinsky (2002), we modify Varian�s model and allow that �rms are privately informed about

their production costs.4 Let us refer to the (symmetric) equilibrium of this game as the pricing

equilibrium. For any �xed number of �rms, we show that �rms earn higher expected pro�t in the

pricing equilibrium than in the advertising equilibrium. This is perhaps surprising, since compe-

tition in advertising is sometimes argued to be less aggressive than competition in prices. As we

discuss, the key intuition is that price competition induces greater in-store demand from consumers

and thus elevates the size of expected information rents for �rms.

With an analysis of the benchmark model in place, we are able to o¤er a more complete com-

parison across di¤erent advertising regulatory regimes. Provided that the market always has at

least two �rms, our results indicate that the average transaction price is lowest in the pricing equi-

librium, somewhat higher in the advertising equilibrium, and higher yet in the random equilibrium.

Likewise, when the number of �rms is endogenous, social welfare is highest in the pricing equilib-

rium, somewhat lower in the advertising equilibrium, and lower yet in the random equilibrium. If

we associate the pricing equilibrium with a setting in which price advertising is allowed, the ad-

vertising equilibrium with a setting in which only non-price advertising is allowed, and the random

equilibrium with a setting in which all advertising is banned, then our results are broadly consistent

with Benham�s �ndings.

We next examine the comparative-statics properties of the advertising equilibrium. When

the number of informed consumers is increased, advertising increases for all types other than the

highest type. Intuitively, �rms advertise more heavily when the �prize�from advertising the most

is increased. Interestingly, the e¤ect on advertising of an increase in the number of �rms depends

on a �rm�s cost type: lower-cost �rms compete more aggressively and increase their advertising, but

higher-cost �rms perceive a reduced chance of winning the informed consumers and advertise less.

An implication is that the support of observed advertising levels may be larger in markets with a

greater number of �rms. We also �nd that, for all types other than the lowest type, if the number

of �rms is su¢ ciently large, the equilibrium level of advertising is negligible. Finally, building on

Hopkins and Korneinko�s (2007) analysis of all-pay auctions, we show that, if the cost distribution

shifts to make lower-cost types more likely in the sense of the monotone likelihood ratio order, then

4Bagwell and Wolinsky follow Varian and assume that each consumer possesses an inelastic demand function. We
generalize this analysis slightly and allow for downward-sloping demand functions. Spulber considers a related model
in which all consumers are informed.
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lower-cost �rms advertise more while higher-cost �rms become discouraged and advertise less.5

We then turn to consider advertising in the associated repeated game. Assuming that informed

consumers go to the highest-advertising �rm within any given period and that advertising selections

are publicly observed by �rms, we focus on the symmetric perfect public equilibria (SPPE) of our

repeated game with private information. For this class of equilibria, our goal is to characterize the

optimal form of collusion in advertising among a �xed number of �rms.6 We note that SPPE include

a wide range of equilibrium behaviors. Firms may repeatedly play the (non-cooperative) advertising

equilibrium of the static game, and patient �rms may also enforce zero advertising in all periods.

In the latter case, collusion among �rms is used to implement repeatedly the random equilibrium.

The random equilibrium is then achieved as a self-enforcing ban on advertising rather than as

a consequence of a legal ban on advertising. Patient �rms may also implement other stationary

advertising strategies, including advertising schedules that take the form of step functions. A

further possibility is that �rms implement an SPPE that entails non-stationary play, with �rms

moving between cooperative and war phases in their advertising conduct.

When �rms collude in private-information settings, two kinds of incentive constraints arise.7

First, each �rm must not gain by undertaking an �on-schedule deviation,� whereby a �rm with

one cost type deviates and mimics the behavior that is prescribed for this �rm when it has a

di¤erent cost type. The on-schedule incentive constraint is analogous to the standard truth-telling

constraint encountered in mechanism-design problems. An important feature of an on-schedule

deviation is that no other �rm would be aware that a deviation actually occurred, since other

�rms would infer that the �rm drew the cost type for which the observed behavior is prescribed

in equilibrium. The second kind of deviation is called an �o¤-schedule deviation.�An o¤-schedule

deviation occurs when a �rm takes an action that is not speci�ed in equilibrium for any of its

possible cost types. Importantly, an o¤-schedule deviation is publicly observed as a deviation. As

in standard repeated games, an o¤-schedule deviation is punished harshly; thus, su¢ ciently patient

�rms will not undertake o¤-schedule deviations.

Colluding �rms face interesting trade-o¤s when selecting an optimal collusive scheme. Suppose

�rms contemplate the repeated use of the advertising equilibrium of the static game. An advantage

of this scheme is that it maximizes productive e¢ ciency: in each period, lower-cost �rms advertise

at strictly higher levels, and so the informed consumers are allocated to the lowest-cost �rm. A

disadvantage of this scheme, however, is that �rms�pro�ts are reduced by high advertising expendi-

tures. Firms may thus look for some way to keep the productive-e¢ ciency advantage while reducing

advertising expenditures. They might thus consider a strictly decreasing advertising schedule that

is ��atter�and involves lower levels of advertising. Such a schedule, however, will induce higher-

cost types to raise their advertising and mimic lower-cost types, unless higher advertising selections

5This �nding contrasts interestingly with the standard monotone comparative statics result for �rst-price auctions.
See, for example, Athey (2002) and Lebrun (1998).

6 In the stage game, sequential search is not allowed, and �rms are thus able to select their respective monopoly
prices. We therefore embed monopoly pricing into the pro�t functions and focus on collusion in advertising.

7The discussion here follows Athey, Bagwell and Sanchirico (2004) and Athey and Bagwell (2001).
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result in some future cost. Given our focus on SPPE, any future cost must be experienced symmet-

rically by all �rms. The future cost may thus take the form of a future advertising �war�in which

higher and less pro�table advertising schedules are employed. This discussion points to two general

themes. First, there is a substitutability between current-period advertising and future advertising

wars. Second, the productive-e¢ ciency bene�ts that are associated with sorting can be enjoyed

only if the informational cost of high current or future advertising levels is also experienced.

Our formal analysis builds on these themes. We show that an optimal SPPE always exists that is

stationary (i.e., that does not use wars). This result holds for all demand and distribution functions.

It thus con�rms at a general level that future advertising wars are a redundant instrument. We

also characterize an optimal SPPE that is stationary. In particular, if the distribution function is

log-concave and the demand function is su¢ ciently inelastic, then the optimal SPPE for su¢ ciently

patient �rms entails pooling at zero advertising for all cost types in all periods. Thus, while the

repeated game allows for a wide range of SPPE advertising behaviors, under some conditions, the

optimal SPPE is a self-enforcing agreement among �rms to eliminate combative advertising.

We emphasize that this result requires patient �rms and assumes su¢ ciently inelastic demand.

Firms must be patient in order to resist undertaking an o¤-schedule deviation and advertising a

positive amount. For patient �rms, the immediate gain in pro�t would be overwhelmed by the

loss in future pro�t that would ensue. For example, such a deviation might trigger reversion to

the advertising equilibrium of the static game in all future periods. Likewise, for other demand

functions, the optimal SPPE may not entail zero advertising by all types. We show, though, that

under general conditions the optimal SPPE has partial rigidity (i.e., intervals of cost types with

pooling). Further, for any demand function, in the special case where the support of possible

cost types is su¢ ciently small, the optimal SPPE entails pooling at zero advertising by all types.

Finally, we also consider the case of a uniform distribution of types and a CES demand function.

For this case, we show that the optimal SPPE again entails pooling at zero advertising by all types,

if the elasticity of demand does not exceed a critical level where the critical level is higher when

the support of possible cost types is smaller.

Our analysis of the repeated advertising game is closely related to work by Athey, Bagwell and

Sanchirico (2004).8 They consider a repeated game in which �rms have private cost shocks and

collude in pricing. When the distribution of cost types is log-concave, if demand is su¢ ciently

inelastic, the optimal SPPE for su¢ ciently patient �rms is a stationary equilibrium in which �rms

always select the same price, regardless of their respective cost types. We �nd a similar force in

favor of pooling when �rms collude in advertising. Athey, Bagwell and Sanchirico also establish

that an optimal SPPE exists that is stationary, if demand is su¢ ciently inelastic. In our model of

collusion in advertising, for general demand functions, an optimal SPPE exists that is stationary.

The game considered by Athey. Bagwell and Sanchirico may be thought of as a repeated �rst-price

8See also McAfee and McMillan (1992) for a related theory of identical bidding among collusive bidders. They
develop their results for a �rst-price auction in a static model. Our model of advertising is analogous to an all-pay
auction, and we also present a dynamic analysis. For other analyses of repeated games with private information in
which SPPE are analyzed, see Bagwell and Staiger (2005), Hanazono and Yang (2007) and Lee (2007).
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(procurement) auction, while the repeated advertising game that we analyze here is analogous to

a repeated all-pay auction.

We next return to the static model and extend our analysis to allow for sequential search.

If demand is su¢ ciently inelastic or if the cost of sequential search is su¢ ciently high, then our

results are maintained without modi�cation. If these conditions do not hold, however, then higher-

cost �rms must �limit price�(i.e., price below their monopoly prices), in order to deter sequential

search.9 An advertising equilibrium then continues to exist, if the support of possible cost types is

not too large and the number of informed consumers is not too great. In this equilibrium, informed

consumers use observed advertising behavior to locate the lowest price, and limit pricing by higher-

cost �rms ensures that uninformed consumers do not gain from actually undertaking sequential

search. We argue as well that the possibility of sequential search may even strengthen our results,

by raising the relative pro�tability of the random equilibrium.

We conclude by brie�y discussing two other extensions. First, while advertising entails money

burning in our main analysis, it is also plausible that advertising may directly enter the demand

function. Second, our analysis of the repeated game focuses on SPPE, and we brie�y discuss some

potential issues that might arise in an analysis of asymmetric PPE.

The paper is organized as follows. Section 2 contains the analysis of the static game. The

repeated game is examined in Section 3. Optimal collusion is characterized in Section 4. In Section

5, we extend the static model to allow for sequential search. Section 6 contains a brief discussion

of other extensions, and Section 7 concludes. Remaining proofs are in the Appendix.

2 The Static Game

In this section, we de�ne a static game in which a �xed number of �rms compete through adver-

tising for market share. Firms are privately informed as to their respective costs, and each �rm�s

advertising choice may signal its costs, and thus its price, to those consumers who are informed of

advertising activities. We establish the existence of an advertising equilibrium, in which informed

consumers visit the �rm with the highest level of advertising. We compare the expected pro�t

earned by �rms in the advertising equilibrium with that which they earn in a random equilibrium,

wherein all consumers pick �rms at random. We then endogenize the number of �rms and compare

market concentration and social welfare across the two equilibria. Next, we compare the advertising

equilibrium with the pricing equilibrium of a benchmark model, in which some consumers observe

all prices. Finally, we provide a comparative-statics analysis of the advertising equilibrium.

2.1 The Model

We assume that N � 2 ex ante identical �rms compete for sales in a homogeneous-good market.
Each �rm i is privately informed of its unit cost level �i: Cost levels are iid across �rms, and cost type

9Our analysis here builds on Reinganum (1979) and Bagwell and Ramey (1996). Reinganum examines sequential
search in a model with privately informed �rms that are not allowed to advertise. Bagwell and Ramey examine
sequential search when advertising is allowed but private information is absent.
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�i is drawn from the support [�; �] according to the twice-continuously di¤erentiable distribution

function, F (�), where � > � � 0: The density f(�) � F 0(�) is positive on [�; �]: After �rms learn

their respective cost types, they simultaneously choose their levels of advertising. A pure strategy

for �rm i is a function, Ai(�i); that maps from the set of cost types [�; �] to the set of possible

advertising expenditures R+ � [0;1): For simplicity, we assume Ai is continuously di¤erentiable
except at perhaps a �nite number of points where the function jumps. Given a strategy pro�le

[A1; :::; AN ]; let A�i denote the strategies of �rms other than i and let A�i(��i) denote the vector

of these �rms�selections when their cost types are given by the (N � 1)-tuple ��i:
There is a unit mass of consumers, where each consumer possesses a twice-continuously di¤er-

entiable demand function D(p) that satis�es D(p) > 0 > D0(p) over the relevant range of prices

p. Following Bagwell and Ramey (1994a), we assume that advertising is a dissipative expense that

does not directly a¤ect demand. Consumers cannot observe prices prior to their visitation deci-

sion; thus, prices cannot be directly communicated in the market. Consumers are divided into two

groups. A fraction I of consumers observe �rms�advertising expenses.10 Given this information,

informed consumers form beliefs as to �rms�cost types and determine a search (visitation) strategy.

For example, informed consumers may use an advertising search rule, whereby a consumer goes

to the �rm that advertises the most. The remaining fraction U = 1 � I are uninformed. Unin-
formed consumers do not observe advertising expenditures and always follow a random search rule,

whereby a consumer randomly chooses which �rm to visit.

The interaction between �rms and consumers is represented by the following static game: (i)

�rms learn their own cost types, (ii) �rms make simultaneous choices of advertising and price, and

(iii) given any advertising information, each consumer chooses a �rm to visit, observes that �rm�s

price and makes desired purchases given this price. Note that a consumer is assumed to visit only

one �rm.11 This simpli�es our analysis, since it ensures that each �rm chooses the monopoly price

that is associated with its cost type. Consequently, we assume that monopoly prices are selected

and focus on advertising selections.

We next describe a �rm�s expected pro�t. A �rm�s net revenue is r(p; �) � (p��)D(p) (excluding
advertising expense) when it has cost type �, sets the price p and captures the entire unit mass

of consumers. We assume that r(p; �) is strictly concave in p with a unique maximizer p(�) =

argmaxp r(p; �): It follows that the monopoly price p(�) strictly increases in � whereas r(p(�); �)

strictly decreases in �:We further assume that the price at the top has a positive margin: p(�) > �:

The market share for �rm i; denoted by mi; maps from RN+ to [0; 1]: Given the search rule used

by informed consumers, mi is determined by the vector of advertising levels selected by �rm i and

its rivals. If �rm i has cost type �i, its interim-stage market share is E��i [mi(Ai(�i); A�i(��i))]:

Embedding the monopoly price p(�i) into the revenue function, we may de�ne the interim-stage net

revenue for �rm i by R(Ai(�i); �i;A�i) � r(p(�i); �i)E��i [mi(Ai(�i); A�i(��i))]: Firm i�s expected

revenue is E�iR(Ai(�i); �i;A�i); and �rm i�s expected pro�t is thus E�i [R(Ai(�i); �i;A�i)�Ai(�i)].
10We assume that informed consumers observe advertising levels for simplicity. In fact, all of our results hold under

the assumption that informed consumers observe only the identity of the highest-advertising �rm(s).
11We extend the analysis to allow for sequential search in Section 5.
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For the static game, we are interested in Symmetric Perfect Bayesian Equilibria in which �rms

select their monopoly prices and uninformed consumers use the random search rule. We thus de-

�ne an equilibrium as a pro�le [A1; :::AN ] and a belief function and search rules for consumers

that collectively satisfy four conditions. First, given the market share function, mi, that is in-

duced by consumers� search rules, the pro�le [A1; :::AN ] is such that, for all i and �i; Ai(�i) 2
argmaxai [R(ai; �i;A�i)� ai]. Second, given an observed advertising level ai by �rm i, informed

consumers use Bayes�Rule whenever possible (i.e., whenever ai = Ai(�i) for some �i 2 [�; �]) in
forming their beliefs as to �rm i0s cost type �i and thus price p(�i). Third, for any observed pro�le

of advertising levels [a1; :::; aN ], given their beliefs, the informed consumers� search rule directs

them to the �rm or �rms with the lowest expected price. Finally, �rms�advertising strategies are

symmetric: Ai = A for all i:

Given symmetry, we can simplify notation somewhat. We can now de�ne �rm i�s interim-

stage market share as M(A(�i);A) � E��i [mi(Ai(�i); A�i(��i))] : Similarly, we can de�ne �rm i�s

interim-stage pro�t and net revenue as follows:

�(A(�i); �i;A) � r(p(�i); �i)M(A(�i);A)�A(�i):

� R(A(�i); �i;A)�A(�i):

We note that the interim-stage pro�t function satis�es a single-crossing property: higher types

are less willing to engage in higher advertising to increase expected market share.12 For here and

later use, we now write interim-stage pro�t in direct-form notation, ignoring subscript i: if a �rm

of type � picks an advertising level A(b�) when its rivals employ the strategy A; then we de�ne
�(b�; �;A) � �(A(b�); �;A); M(b�;A) �M(A(b�);A) and R(b�; �;A) � R(A(b�); �;A):

We are primarily interested in two kinds of equilibria. In an advertising equilibrium, informed

consumers use the advertising search rule, whereby they go to the �rm that advertises the most.13

Since p(�) is strictly increasing, such equilibria can exist only if the advertising schedule A is

nonincreasing, so that higher-advertising �rms have lower costs and thus o¤er lower prices. In a

random equilibrium, informed consumers ignore advertising and use the random search rule. A

random equilibrium thus can exist only if �rms maximize expected pro�ts and do not advertise

(i.e., A � 0): We explore these equilibria in the next two subsections.

2.2 Advertising Equilibrium

In an advertising equilibrium, informed consumers use the advertising search rule while uninformed

consumers are randomly distributed across all N �rms. We now report the following existence and

uniqueness result.

12When a �rm increases its advertising level, it may confront a trade o¤ between the larger advertising expense,
ai, and the consequent higher expected market share, M(ai;A): When the interim-stage pro�t is held constant, the
slope dai=dM(ai;A) is given by r(p(�i); �i); which is strictly decreasing in �i:
13Under the advertising search rule, if several �rms tie for the highest advertising level, then the informed consumers

divide up evenly over those �rms.
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Proposition 1. There exists a unique advertising equilibrium, and in this equilibrium A(�) is

strictly decreasing and di¤erentiable and satis�es A(�) = 0.

Proof. We �rst derive the necessary features of an advertising equilibrium. Consider any b� < �:
The following incentive constraints are necessary:

r(p(b�);b�)M(b�;A)�A(b�) � r(p(b�);b�)M(�;A)�A(�)
r(p(�); �)M(�;A)�A(�) � r(p(�); �)M(b�;A)�A(b�):

Adding yields [r(p(b�);b�)� r(p(�); �)][M(b�;A)�M(�;A)] � 0: Since r(p(�); �) is strictly decreasing
in �; it is thus necessary that M(�;A) is nonincreasing. It thus follows that A(�) is nonincreasing.

Further, given the advertising search rule, it is clear thatA(�) cannot be constant over any interval of

types: by increasing its advertising an in�nitesimal amount, a �rm with a type on this interval would

experience a discrete gain in its expected market share. Thus, A(�) must be strictly decreasing, and

consequently it is necessary thatM(x;A) = U
N +[1�F (x)]

N�1I: It thus follows thatM(�;A) = U
N .

A �rm with type � thus cannot be deterred from selecting zero advertising, and hence A(�) = 0 is

also necessary.

We next establish that A(�) must be di¤erentiable, and we also derive the necessary expression

for A0(�): Consider any b� < �: Rearranging the incentive constraints presented above, we �nd that
r(p(�); �)[M(�;A)�M(b�;A)]

� � b� � A(�)�A(b�)
� � b� � r(p(b�);b�)[M(�;A)�M(b�;A)]

� � b� :

Taking limits as � ! b�; and using the di¤erentiability ofM(�;A) = U
N +[1�F (x)]

N�1I; we conclude

that

A0(�) = r(p(�); �)
@M(�;A)

@�
:

When combined with the boundary condition A(�) = 0; this di¤erential equation may be solved to

yield

A(�) = �
Z �

�
r(p(x); x)[@M(x;A)=@x]dx;

where @M(x;A)
@x = �(N � 1)[1� F (x)]N�2f(x)I < 0 for all x < �:

We now integrate by parts and establish that A(�) must take the following unique form:

A(�) = R(�; �;A)�R(�; �;A)�
Z �

�
D(p(x))

�
U

N
+ [1� F (x)]N�1I

�
dx; (1)

where R(�; �;A) = r(p(�); �)UN : Rearranging, we note that interim-stage pro�t for type � then must

be given as

�(�; �;A) = R(�; �;A) +

Z �

�
D(p(x))

�
U

N
+ [1� F (x)]N�1I

�
dx: (2)

Observe that interim-stage pro�t is positive for all � 2 [�; �]:
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The second step in our proof is to construct an advertising equilibrium using the A(�) function

de�ned in (1). Observe that �1(�; �;A) = r(p(�); �)
@M(�;A)

@� �A0(�) = 0 when this function is used.
It follows that no type � will deviate by mimicking some other type b�, since for all b� < � we have

�(�; �;A)��(b�; �;A) =

Z �

b� �1(x; �;A)dx
=

Z �

b� [�1(x; �;A)��1(x; x;A)] dx
=

Z �

b�
Z �

x
�12(x; y;A)dydx > 0;

where the inequality follows from �12(x; y;A) = D(p(y))(N � 1)[1 � F (x)]N�2f(x)I > 0 for all

x < �: A similar argument ensures that �(�; �;A) > �(b�; �;A) for all b� > �: Next, if no type � > �
gains from deviating to A(�), then a deviation to any A > A(�) is also unattractive. Finally, since

A0(�) < 0; the advertising search rule is optimal for informed consumers. �

Proposition 1 thus establishes the existence and uniqueness of an advertising equilibrium.14 The

advertising equilibrium acts as a fully sorting mechanism: �rms truthfully reveal their cost types

along the downward-sloping advertising schedule. The informed consumers behave rationally in

the advertising model: the lowest-cost �rm advertises the most and o¤ers the lowest price, and the

informed consumers purchase from the highest-advertising �rm. Thus, ostensibly uninformative

advertising directs market share to the lowest-cost supplier and promotes productive e¢ ciency.

We now characterize the expected pro�t for �rms in the advertising equilibrium. Using (2) and

integrating by parts, we �nd that expected pro�t may be represented as:

E� [�(�; �;A)] = r(p(�); �)
U

N
+ E�

�
D(p(�))

F

f
(�)

�
U

N
+ [1� F (�)]N�1I

��
: (3)

The �rst term on the RHS is the �pro�t at the top.�The fully sorting scheme allocates the lowest

market share for the type at the top: the probability of winning the informed consumers is zero for

the highest type, �. The second term represents the expected information rents. In regard to the

magnitude of the second term, the fully sorting scheme has both a strength and a weakness. To see

this, consider how the market share allocation a¤ects the magnitude of the term. The strength of

the fully sorting scheme is based on downward-sloping demand. Lower-cost �rms set lower prices

and thus generate greater demand from visiting consumers; hence, by directing more market share

to lower-cost �rms, the fully sorting scheme acts to expand the size of the market and increase

expected information rents. The weakness of the fully sorting scheme is associated with the term
F
f (�): When greater market share is directed to type �, this type earns greater pro�t and is thus

14See Maskin and Riley (1984) for a related equilibrium characterization of bidding functions in the context of
optimal auctions when buyers are risk averse. Our model also endogenizes the beliefs and strategies of informed
consumers. For an advertising equilibrium, beliefs are uniquely de�ned on the equilibrium path (by Bayes�rule) and
o¤ the equilibrium path (since the advertising search rule is optimal for informed consumers when they observe an
advertising level in excess of A(�) only if they believe that the deviating �rm has cost type �).
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less tempted to mimic lower types. Lower types can then also earn greater pro�t without inducing

a violation of incentive compatibility. Intuitively, the ratio F
f (�) then describes the contribution

to expected pro�t that is made when type � receives greater market share, since this measures the

proportion of types below � conditional on the occurrence of type �. Suppose that F is log-concave

(Ff (�) is nondecreasing in �).
15 Then an increase in market share to type � contributes more to

expected pro�t when type � is higher. The fully sorting scheme minimizes the market share that is

allocated to higher types and thus works against the direction to which log-concavity of F appeals.

The advertising equilibrium can be understood as a puri�cation of Bagwell and Ramey (1994a).

In their paper, advertising directs market share to the �rm that o¤ers the best deals (in terms of

price and variety) but equilibrium advertising takes the form of a mixed strategy. To see how our

model constructs a puri�ed version, consider a complete-information game, where production costs

are �xed at a constant c > 0: Then, as we establish in the supplementary materials for this paper,

there exists a unique symmetric mixed-strategy equilibrium in this game as in Bagwell and Ramey

(1994a) and Varian (1980).16 Consider next an incomplete-information game, where production

costs rise in types �: As we show in the supplementary materials, if a �rm of type � uses the ad-

vertising strategy A(�) in the unique advertising equilibrium of the incomplete-information game,

then the probability distribution induced by A is approximately the same as the distribution of ad-

vertising in the mixed-strategy equilibrium of the complete-information game, when the production

costs for types � (say, c(�)) approximate the constant c: This puri�cation result o¤ers a useful link

between the complete- and incomplete-information analyses; however, it does not establish whether

the main predictions of Bagwell and Ramey carry over when, as seems plausible, production costs

vary signi�cantly with types. As we show below, when some additional structure is placed on the

demand and distribution functions, the main predictions of the complete-information model can be

captured in the general incomplete-information setting.

2.3 Random Equilibrium

In this subsection, we analyze the random equilibrium, wherein all consumers use the random search

rule and thus divide up evenly across �rms. Each �rm then receives an equal share, 1N , of the unit

mass of consumers. Given the random search rule, �rms necessarily choose zero advertising, since

even informed consumers are unresponsive to advertising; furthermore, when �rms pool and do not

advertise, the random search rule is a best response for each consumer.17 The random equilibrium

15This assumption is common in the contract literature and is satis�ed by many distribution functions.
16 In the complete-information game considered here, all �rms set the same price and informed consumers are

indi¤erent when using the advertising search rule. By contrast, Bagwell and Ramey (1994a) allow �rms to make
cost-reducing investments, and this ensures that higher-advertising �rms o¤er strictly lower prices. In the analysis of
advertising equilibria considered here, the advertising search rule is strictly optimal for informed consumers provided
that incomplete information is present so that production costs vary (at least a little) with types.
17 If informed consumers observe a deviation whereby some �rm selects positive advertising, then random search

remains optimal in the event that informed consumers believe that the deviating �rm has an average type. Since such
a deviation may be more attractive to a lower-cost type, the random equilibrium may fail to be a �re�ned�equilibrium
in the static model. See Bagwell and Ramey (1994b) for an analysis of the re�ned equilibrium in a related model
of advertising in which one �rm has two possible cost types. As noted in the Introduction, the random equilibrium
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thus exists and takes the form of a pooling equilibrium.

In the random equilibrium, the interim-stage pro�t for the �rm of type � is given by r(p(�); �) 1N :

The random equilibrium sacri�ces productive e¢ ciency; however, all advertising expenses are

avoided. Using dr(p(�);�)
d� = �D(p(�)); it is straightforward to con�rm that the expected pro�t

for a �rm in the random equilibrium is

E�

�
r(p(�); �)

1

N

�
= r(p(�); �)

1

N
+ E�

�
D(p(�))

F

f
(�)

1

N

�
: (4)

The RHS contains the pro�t at the top and the expected information rents, respectively.

2.4 Comparison of Advertising and Random Equilibria

We now compare the advertising and random equilibria. As illustrated in (3) and (4), in both

types of equilibria, expected pro�t consists of two terms: the pro�t at the top and the expected

information rents. To increase the pro�t at the top, the random equilibrium (pooling) is strictly

preferred to the advertising equilibrium (full sorting). Intuitively, the highest-cost �rm is never �out-

advertised�in the random equilibrium and thus sells to its share of all consumers, 1N ; by contrast,

in the advertising equilibrium, the highest-cost �rm is always out-advertised and thus sells only to

its share of uninformed consumers, UN . To increase expected information rents, however, it is not

immediately clear whether the random or advertising equilibrium is preferred. On the one hand, if
F
f (�) is nondecreasing, then the random equilibrium is attractive, since this equilibrium allocates

more market share to higher-cost types. On the other hand, downward-sloping demand creates

a force that favors the advertising equilibrium, which allocates more market share to lower-cost

types, since these types price lower and thus generate larger demand D(p(�)):

For the special case in which the support of possible cost types is small, we can unambiguously

rank expected pro�ts under the advertising and random equilibria. In particular, as ��� approaches
zero, expected information rents also approach zero in both the advertising and random equilibria.

Pro�t at the top remains strictly higher under the random equilibrium, however, since the highest-

cost �rm gets strictly more market share in the random than the advertising equilibrium. Thus,

for � � � su¢ ciently small, expected pro�t is strictly higher under the random equilibrium than

under the advertising equilibrium. Given the puri�cation result described above and established in

our supplementary materials, this �nding can be understood as a direct extension of Bagwell and

Ramey�s (1994a) analogous �nding for the associated complete-information game.

Consider next the general case in which the support of possible costs may be large. To go

further in ranking expected pro�ts, we must formally analyze the expected information rents.18

Let A denote the advertising schedule used in the advertising equilibrium, in which the market

can also be associated with a setting in which advertising is prohibited (in which case deviant positive advertising
selections are not possible). Our analysis here of random equilibria is also useful when we later consider the repeated
game and the possibility of a self-enforcing agreement among �rms in which a deviation from zero advertising would
cause a future advertising war.
18Our analysis here builds on arguments made by Athey, Bagwell and Sanchirico (2004) in their analysis of price

competition and collusion.
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share allocation, M(�;A) = U
N + [1 � F (�)]N�1I; is strictly decreasing. Similarly, let Ap � 0

denote the advertising schedule used in the random (pooling) equilibrium, in which the market

share allocation, M(�;Ap) � 1
N ; is constant. We now de�ne the distribution function

G(�;A) �
R �
� M(x;A)f(x)dxR �
� M(x;A)f(x)dx

:

The distribution G(�;Ap) is similarly de�ned. The denominator represents the (ex ante) ex-

pected market share, which equals 1
N : Since M(�;A) is strictly decreasing, M(�;A

p) = 1
N crosses

M(�;A) from below: This implies in turn that G(�;Ap) �rst-order stochastically dominates G(�;A):

G(�;Ap) � G(�;A): Thus, if D(p(�))Ff (�) is nondecreasing, thenZ �

�
D(p(�))

F

f
(�)dG (�;Ap) �

Z �

�
D(p(�))

F

f
(�)dG (�;A) :

The inequality can be rewritten as

E�

�
D(p(�))

F

f
(�)M(�;Ap)

�
� E�

�
D(p(�))

F

f
(�)M(�;A)

�
: (5)

Referring to (3)-(5), we conclude that, if D(p(�))Ff (�) is nondecreasing, then expected information

rents are weakly higher in the random equilibrium than in the advertising equilibrium.

Summarizing, in comparison to the advertising equilibrium, the random equilibrium has strictly

higher pro�t at the top and, if D(p(�))Ff (�) is nondecreasing, weakly higher expected information

rents. As suggested above, D(p(�))Ff (�) is nondecreasing if the log-concavity of F is signi�cant in

comparison to the extent to which demand slopes down. Further insight is possible by considering

the limiting case in which D(p(�)) is perfectly inelastic, so that D(p(�)) is constant for all prices

up to a reservation value. In this case, if F (�) is log-concave, then D(p(�))Ff (�) is nondecreasing.
19

We may now state the following conclusion:

Proposition 2. If F is log-concave and demand is su¢ ciently inelastic, or if the support of

possible cost types is su¢ ciently small, then �rms make a strictly higher expected pro�t in the

random equilibrium than in the advertising equilibrium.

Proposition 2 indicates that important circumstances exist under which �rms gain when the

use of advertising is restricted. As our discussion of the random equilibrium con�rms, advertising

would not be used if informed consumers were to ignore it. If informed consumers were responsive to

advertising, however, then �rms might nevertheless achieve a restriction on the use of advertising if

advertising were legally prohibited. For a �xed industry structure, Proposition 2 thus suggests that

retail �rms would bene�t from a prohibition on non-price retail advertising. A further possibility is

that �rms are able to eliminate the use of advertising through a self-enforcing collusive agreement
19 In fact, if demand is perfectly inelastic and F is log-concave, the random equilibrium generates strictly higher

expected information rents than the advertising equilibrium. This follows since F
f
(�) is strictly increasing at �:
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and that �rms prefer such a restriction to any other self-enforcing advertising scheme. We delay

further consideration of this possibility until the next section.

Proposition 2 establishes that �rms gain by restricting the use of advertising if F is log-concave

and demand is su¢ ciently inelastic or if the support of possible cost types is su¢ ciently small. It is

important to note, though, that this conclusion may hold even when the assumptions are weakened.

Consider the CES demand function, D(p) = p��; and suppose that demand is elastic (i.e., � > 1):

Assume further that F is log-concave in the speci�c sense that types are distributed uniformly over

[�; �] where � > 0: For this example, calculations reveal that d
d� [D(p(�))

F
f (�)] > 0 if �=[� � �] > �:

Firms thus earn a strictly higher expected pro�t by pooling at zero advertising than by following

the advertising equilibrium, provided that the elasticity of demand, �; does not exceed a critical

level where this level is higher when the support of possible cost types is smaller.

2.5 Free-Entry Equilibrium

We now relax the assumption that the number of �rms is �xed. To this end, following Bagwell and

Ramey (1994a), we include now an initial stage for the game in which �rms simultaneously decide

whether to enter, where entry entails a positive setup (or opportunity) cost. After a �rm chooses

to enter, it privately learns its cost type. The number of entering �rms is publicly observed, and

the game then proceeds as above.

It is clear from (3) and (4) that expected pro�t is strictly decreasing in the number of �rms, N;

whether �rms anticipate the advertising or random equilibrium. Thus, in each case, an equilibrium

number of �rms is implied such that the pro�t from entry (inclusive of the �xed cost) would be

negative were one more �rm to enter. Let N s denote the equilibrium number of entering �rms

when the advertising (full sorting) equilibrium is anticipated, and let Np denote the equilibrium

number of entering �rms when the random (pooling) equilibrium is expected. It is also clear from

Proposition 2 that, if F is log-concave and demand is su¢ ciently inelastic, or if �� � is su¢ ciently
small, then Np � N s: Under these conditions, at least as many �rms enter when the random

equilibrium is expected as when the advertising equilibrium is anticipated.

The model also leads to welfare comparisons. Assume that min(N s; Np) � 1:20 When the

number of �rms is endogenized, if we ignore integer constraints, then �rms earn zero expected

pro�t whether the random or advertising equilibrium is anticipated. Uninformed consumers are also

indi¤erent. Intuitively, under either equilibrium, an uninformed consumer picks a �rm at random

and thus faces an expected price of E�p(�): Finally, consider the informed consumers. When the

random equilibrium occurs, an informed consumer also faces an expected price of E�p(�); however,

when the advertising equilibrium occurs, an informed consumer is guided by advertising activity to

the lowest market price and thus faces the expected minimum price in the market. Provided that

N s � 2; an informed consumer thus strictly prefers the advertising equilibrium. When the number
of �rms is endogenous, it follows that expected welfare is higher when the advertising equilibrium

is anticipated than when the random equilibrium is expected. This conclusion does not require any

20When N = 1; a single �rm enters the market and chooses A = 0; and all consumers visit it.
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assumption as to the elasticity of demand or the log-concavity of the distribution function.

We may now summarize with the following proposition:

Proposition 3. Assume that min(N s; Np) � 1. (i) If F is log-concave and demand is su¢ ciently
inelastic, or if the support of possible cost types is su¢ ciently small, then Np � N s (concentration

is at least as high in the advertising equilibrium as in the random equilibrium). (ii) Social surplus

is as high in the advertising equilibrium as in the random equilibrium; further, if N s � 2; then

social surplus is strictly higher in the advertising equilibrium than in the random equilibrium.

Allowing that the support of possible costs may be large, we thus establish a general sense

in which Bagwell and Ramey�s main �ndings extend to the private-information setting. When

legal or other considerations lead to the absence of advertising, if the distribution of types is log-

concave and demand is su¢ ciently inelastic, then the market is less concentrated than it would be

were advertising competition to occur. Furthermore, the average transaction price is lower, and

social welfare is thus higher, when entry is endogenized and �rms compete in advertising. Note,

however, that some �ndings such as Proposition 2 and Proposition 3 (i) are not straightforward,

given downward-sloping demand. For a given number of �rms, pooling at zero advertising acts to

increase the pro�t at the top but sorting through advertising acts to increase expected information

rents when demand is substantially larger for lower prices. This con�ict suggests that market

concentration could be lower in the advertising equilibrium than in the random equilibrium, when

demand is su¢ ciently elastic. Thus, the established positive association between advertising and

market concentration employs additional assumptions on the distribution of types and the elasticity

of demand in the general private-information setting.

It is interesting to compare these �ndings with empirical patterns emphasized in the earlier

literature on advertising. Benham (1972) provides evidence for retail markets that prices are lower

and market concentration is higher, when non-price retail advertising is allowed. Our �ndings

o¤er theoretical support for these associations. In another set of studies, Bain (1956), Comanor

and Wilson (1974) and others �nd a positive relationship between manufacturer advertising and

pro�tability. These authors suggest that the relationship may re�ect the role of advertising in

deterring entry. Consistent with interpretations o¤ered by Demsetz (1973) and Nelson (1974),

our work suggests that advertising and pro�tability may be positively related, since they are both

implications of superior e¢ ciency. In particular, in the advertising equilibrium, lower-cost �rms

advertise more, have larger sales and earn greater pro�t.

2.6 Comparison with Pricing Equilibrium

In this subsection, we compare the advertising equilibrium with the analogous pricing equilibrium

that emerges in a benchmark model in which N � 2 ex ante identical �rms compete in prices.

In particular, we follow Varian (1980) and suppose that informed consumers observe prices and

buy from the lowest-priced �rm while uninformed consumers pick a �rm at random. Following

Spulber (1995) and Bagwell and Wolinsky (2002), we modify Varian�s model and allow that �rms
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are privately informed as to their costs. We characterize the pricing equilibrium of this benchmark

game and compare the associated expected pro�t with that achieved in the advertising equilibrium

of our static game.

In the benchmark game, if a pricing strategy is denote by �; then the interim-stage pro�t in

direct form is given by

�B(b�; �; �) = [�(b�)� �]D(�(b�))MB(b�; �);
where we use the superscript B to denote the benchmark (Bertrand) game. When a �rm selects

the price �(b�) and other �rms use the pricing strategy �; then the �rm�s expected market share is
denoted as MB(b�; �): The pro�t-if-win is de�ned by [�(b�) � �]D(�(b�)) � r(�(b�); �): As in Spulber
(1995), a unique and symmetric equilibrium can be established. A new feature in our benchmark

model is that uninformed consumers exist. The pricing equilibrium � satis�es:

�0(�) = �r(�(�); �)[@M
B(�; �)=@�]

r�(�(�); �)MB (�; �)
and �(�) = p(�); (6)

where MB(�; �) = U
N + [1 � F (�)]N�1I. Straightforward arguments ensure that the equilibrium

price is lower than the monopoly price except the price at the top, so that r� > 0: As (6) con�rms,

the equilibrium pricing schedule is strictly increasing; thus, �rms are fully sorted by their types in

the pricing equilibrium. Notice that the highest-cost �rm selects its monopoly price, p(�); and sells

only to uninformed consumers.

In the pricing equilibrium, interim-stage pro�t can be written as

�B(�; �; �) = �B(�; �; �) +

Z �

�
D(�(x))

�
U

N
+ [1� F (x)]N�1I

�
dx; (7)

where the pro�t at the top is �B(�; �; �) = r(p(�); �)UN : Integrating by parts, we �nd that expected

pro�t is given as:

E�
�
�B(�; �; �)

�
= r(p(�); �)

U

N
+ E�

�
D(�(�))

F

f
(�)

�
U

N
+ [1� F (�)]N�1I

��
: (8)

Comparing (8) with (3), we see that the pro�t at the top is the same in the advertising equilib-

rium as in the pricing equilibrium. In each case, the highest-cost �rm monopolizes only uninformed

consumers. The expected information rents are higher in the pricing equilibrium, however, since de-

mand is greater when prices are set below monopoly levels. We thus have the following conclusion:

for any �xed number of �rms, a �rm�s expected pro�t is strictly higher in the pricing equilibrium

than in the advertising equilibrium.21 Evidently, when �rms possess private information about

their costs, competition in (non-price) advertising is more aggressive than (Bertrand) competition

in prices. Intuitively, price competition induces greater in-store demand from consumers and thus

21 In a di¤erent context, Bagwell and Ramey (1988) present a somewhat related �nding. Working with a two-type
signaling model, they show that a low-cost incumbent earns greater pro�t when it separates using price as a signal
than when it separates using wasteful advertising (money-burning) as a signal.
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elevates the size of expected information rents for �rms. When the number of �rms is �xed, both

consumers and �rms agree that the pricing equilibrium is preferred to the advertising equilibrium.

When the number of �rms is endogenized by the free-entry condition, more �rms enter in the for-

mer equilibrium than in the latter equilibrium. Once market structure is endogenized, �rms are

indi¤erent between pricing and advertising competition, but consumers strictly prefer the former

to the latter (provided that at least two �rms enter in the pricing equilibrium).

We may thus summarize the �ndings of this subsection as follows:

Proposition 4. There exists a unique and symmetric pricing equilibrium, and in this equilibrium
the pricing function �(�) satis�es �(�) > � and is strictly increasing and di¤erentiable. Expected

pro�t and consumer surplus are both strictly higher in the pricing equilibrium than in the advertising

equilibrium. Further, when the number of �rms is endogenized, at least as many �rms enter in the

pricing equilibrium as in the advertising equilibrium; and, if at least two �rms enter in the pricing

equilibrium, then social surplus is strictly higher in the pricing equilibrium than in the advertising

equilibrium.

With these �ndings at hand, we may now o¤er a further interpretation of Benham�s �ndings.

Let us associate the advertising equilibrium with a setting in which only non-price advertising is

allowed, the pricing equilibrium with a setting in which price advertising is allowed, and the random

equilibrium with a setting in which advertising is banned. Provided that the market always has

at least two �rms, our results in this section indicate that the average transaction price is lowest

when price advertising is allowed, somewhat higher when only non-price advertising is allowed,

and higher yet when all advertising is banned. Likewise, when the number of �rms is endogenous,

social welfare is highest when price advertising is allowed, somewhat lower when only non-price

advertising is allowed, and lower yet when all advertising is banned. Finally, when demand is

su¢ ciently inelastic and the distribution of types is log-concave, the market is less concentrated

when advertising is banned than when non-price or price advertising is allowed.22 These �ndings

are broadly consistent with Benham�s �ndings.

2.7 Comparative Statics

We now return to the static model of advertising and conduct comparative-statics analysis. In

particular, we consider how the advertising equilibrium responds to changes in the parameters, I

and N; and to shifts of the distribution function of types.

To analyze comparative statics associated with distribution functions, we consider distribution

functions F and G that have the same support [�; �]: As above, the distribution functions are twice-

continuously di¤erentiable and have positive densities f and g:We then compare two advertising

22For a �xed number of �rms, if demand is perfectly inelastic, the expected information rents in the pricing
equilibrium are the same as in the advertising equilibrium. Thus, when demand is su¢ ciently inelastic, market
concentration is approximately the same in these two equilibria. Further, if ��� is su¢ ciently small, then the market
is less concentrated when advertising is banned than when non-price or price advertising is allowed. This is because
the random equilibrium generates the largest market share for a �rm with cost type �.
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equilibrium strategies, AF (�) and AG(�); that correspond to the distribution functions, F and

G; respectively. We compare the distributions F and G by using the monotone likelihood ratio

(MLR) order: The distribution function F dominates G in terms of the MLR order if f(�)g(�) is strictly

increasing for all � 2 [�; �]. Using the MLR order, we can show how �rms choose their advertising
when lower-cost (higher-advertising) types are more likely under G than under F:

Our comparative-statics results are contained in the following proposition:

Proposition 5. (i) Equilibrium advertising A(�) is strictly increasing in I for all � < � with

A(�) = 0: (ii) If N rises, then there exists b� 2 (�; F�1(1�e� 1
N�1 )) such that equilibrium advertising

strictly increases for � 2 [�;b�), strictly decreases for � 2 (b�; �), and is unchanged for � 2 fb�; �g:
(iii) For all � > � and " > 0, there exists N 0 such that, for all N > N 0, A(�) < ". (iv) If

distribution function F dominates G in terms of the MLR order, then there exists e� 2 (�; �) such
that AF (�) < AG(�) for � 2 [�;e�); AF (�) > AG(�) for � 2 (e�; �), and AF (�) = AG(�) for � 2 fe�; �g.
The proofs of parts (ii) and (iv) are in the Appendix.

Using the derivation of A(�) in the proof of Proposition 1, we can immediately con�rm that

part (i) holds.23 Intuitively, �rms compete more intensely by raising advertising when the gain

from capturing informed consumers rises. It is less clear, however, whether advertising increases

when N rises. On the one hand, an increase in the number of �rms may lead to greater competition

for the informed consumers and thus an increase in advertising. On the other hand, an increase in

the number of �rms may also cause �rms to become discouraged about the prospect of winning the

informed consumers and thus result in a decrease in advertising. In part (ii), we con�rm that these

competing considerations weigh di¤erently across �rms with di¤erent cost types: when the number

of �rms increases, lower-cost �rms compete more aggressively and raise advertising, while higher-

cost �rms perceive a reduced chance of winning the informed consumers and lower advertising. An

interesting implication is that the support of equilibrium advertising levels (i.e., [A(�) = 0; A(�)]) is

larger in markets with more �rms. Observe, however, that as the number of �rms goes to in�nity,

the cuto¤ type b� converges to �; thus, for markets with a su¢ ciently large number of �rms, further
entry is almost sure to lower the advertising of any given �rm. In fact, we can easily con�rm that

part (iii) holds and thus that, for any type other than the lowest type, the equilibrium level of

advertising must be near zero when the number of �rms is su¢ ciently large.24

Finally, as part (iv) establishes, competing considerations arise as well when the distribution

of costs changes so that lower-cost realizations become more likely in the sense of the MLR order.

Following such a shift, lower-cost �rms compete more aggressively for informed consumers and thus

increase their advertising; however, higher-cost �rms become discouraged about their chances of

winning the informed consumers and thus lower their advertising levels. Our work here builds on

Hopkins and Kornienko (2007), who report a similar �nding for a family of all-pay auctions.

23Formally, this follows since @M(x;A)=@x is strictly decreasing in I for all x < �.
24As shown in the proof of Proposition 1, A(�) = 0 and A0(�) = r(p(�); �)@M(�;A)=@�. Part (iii) thus follows,

since, for all � > �, @M(�;A)=@� goes to zero as N goes to in�nity.
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3 The Repeated Game

If the number of �rms is �xed at N and �rms can collude, what would they do? Our �ndings in the

static model suggest that �rms may prefer a situation in which they select zero advertising (or the

minimal advertising that ensures consumers know the �rms exist). The random equilibrium can

be achieved in a static setting if informed consumers ignore advertising; alternatively, a legal ban

on advertising can enable �rms to eliminate advertising competition. Putting these possibilities to

the side, we assume henceforth that informed consumers use the advertising search rule and that

advertising is legal. Even under these assumptions, if �rms interact repeatedly through time, they

may limit the use of advertising as part of a self-enforcing agreement. We are thus led to consider

a repeated game in which �rms are privately informed with respect to their cost levels. In this

section, we de�ne the repeated game and present some programs that are useful in the next section

where we characterize optimal collusion.

3.1 The Model

We now de�ne the repeated game. In each of an in�nite number of periods, �rms play the static

game de�ned in Section 2. We assume henceforth that, in each period, informed consumers use

the advertising search rule. Uninformed consumers again use the random search rule. As shown

in Section 2, these search rules are optimal in a given period if �rms use symmetric strategies and

lower-cost types always advertise at (weakly) higher levels. As discussed in more detail below,

for the equilibrium concept that we employ, these requirements for �rms�strategies are satis�ed.

Hence, in our formal de�nitions of the repeated game and the equilibrium concept, we may simplify

and focus exclusively on the behavior of �rms.

Upon entering a period, �rms share a public history, in that each �rm observes the realized

advertising expenditures of all �rms in all previous periods. A �rm also privately observes its

current cost type. As well, each �rm privately observes the history of the cost types that it had,

the prices that it selected and the advertising schedules that it used in previous periods. Thus, we

consider a setting in which a �rm does not observe any rival �rm�s current or past cost types and

also does not observe any rival �rm�s current or past advertising schedules. In addition, a �rm does

not observe the realized price choice of any rival in any past period.25

The vectors of cost types, advertising schedules and realized advertisements at date t are denoted

�t � (�it; ��it); At � (Ait; A�it) and at � (ait; a�it). Under the assumed consumer search rules, let
mi(at) denote the market share received by �rm i when the advertising vector at is used: Then, an

in�nite sequence f�t;Atg1t=1 generates a path-wise payo¤ for �rm i :

ui(f�t;Atg1t=1) =
1X
t=1

�t�1 [r (p (�it) ; �it)mi(at)� ait] :

25 In the supplementary materials for this paper, we discuss the implications of relaxing this assumption. Our main
results are robust to this relaxation, if demand is su¢ ciently inelastic.
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Notice that we embed the monopoly price selection into the net revenue function, r: This simpli�es

the analysis and is without loss of generality given our assumption that past prices are not public

among �rms. As in the static model, we assume that cost shocks are iid across �rms. For the

repeated game, we introduce as well the assumption that cost shocks are iid over time. With this

assumption, the repeated game takes a recursive structure.

As our solution concept, we employ Perfect Public Equilibrium (Fudenberg, Levine and Maskin,

1994). We thus focus on public strategies. A �rm uses a public strategy when a �rm�s current

advertising level depends on its current cost level and the public history of realized advertising

levels. At the close of date � ; the public history of realized advertisements is h� = fatg�t=1: Let H�
be the set of potential public histories at date � : A public strategy for �rm i in period � ; si� , is a

mapping from H��1 to the set of stage-game strategies fA j A : [�; �]! R+g: A public strategy for
�rm i, si, is then a sequence fsitg1t=1; and a pro�le of public strategies is s = fs1; :::; sNg:We restrict
attention to Symmetric Perfect Public Equilibrium (SPPE), whereby s = s1 = ::: = sN . Thus, in

an SPPE, �rms adopt symmetric advertising schedules after every history: si� (h��1) = sj� (h��1)

for all i; j; � and h��1:

3.2 Dynamic Programming Approach

Building on work by Abreu, Pearce and Stacchetti (1986, 1990) [APS], we apply a dynamic pro-

gramming approach to our recursive setting. Let V � R be the set of SPPE values. Note that, at
this point, we have not established supV 2 V or inf V 2 V . Following APS, any symmetric public
strategy pro�le s = fs; :::; sg can be factored into two components: a �rst-period advertising sched-
ule A and a continuation-value function v : RN+ ! R. The continuation-value function describes
the repeated-game expected payo¤ enjoyed by all �rms as evaluated at the beginning of period

two, before period-two cost types are realized. This payo¤ is allowed to depend on the �rst-period

advertising realization a � (a1; :::; aN ) 2 RN+ :
Under this approach, for any given symmetric public strategy pro�le s, we may ignore subscript

i (as in the static model) and denote the interim-stage �rst-period pro�t for �rm i of type � as

�(A(�); �;A) � R(A(�); �;A) � A(�). At the interim-stage in the �rst period, �rm i�s expected

continuation value may be denoted as v(A(�);A) � E��i [v(A(�); A�i(��i))], whereA�i(��i) denotes
the (N � 1)-tuple of advertising selections by other �rms when these �rms all use the schedule A.
Letting � 2 (0; 1) denote the common discount factor for �rms, we may now use �(A(�); �;A) +
�v(A(�);A) to represent a �rm�s interim-stage payo¤ from a symmetric public strategy pro�le s. A

�rm�s expected payo¤ from s is then given as E� [�(A(�); �;A) + �v(A(�);A)] :

The set of optimal SPPE can be characterized by solving a �factored program�. In particular,

we may choose an advertising schedule and a continuation-value function to maximize the expected

payo¤ to a �rm subject to feasibility and incentive constraints.

Factored Program: The program chooses an advertising schedule A and a continuation-value

function v to maximize

E� [�(A(�); �;A) + �v(A(�);A)]
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subject to: (i) for all a; v(a) 2 V; and (ii) for any deviation bA,
E� [�(A(�); �;A) + �v(A(�);A)] � E�[�( bA(�); �;A) + �v( bA(�);A)]:

A key implication of the dynamic programming approach is that the set of optimal SPPE can be

characterized by solving the Factored Program. Speci�cally, let s� = fs�; :::; s�g be a symmetric
public strategy pro�le with the corresponding factorization (A�; v�): Then, s� is an optimal SPPE

if and only if (A�; v�) solves the Factored Program.

We next follow Athey and Bagwell (2001) and Athey, Bagwell and Sanchirico (2004), who

show that existing tools from (static) mechanism design theory can be used to �nd the optimal

factorization. To this end, we rewrite the Factored Program as an Interim Program. The latter

program utilizes interim-stage pro�t and parses the incentive constraint into two kinds: (i) the

�on-schedule� constraint that each �rm truthfully announces its cost and (ii) the �o¤-schedule�

constraint that each �rm cannot gain by choosing an advertising level that is not assigned to any

cost type.

Interim Program: The program chooses A and v to maximize

E� [�(A(�); �;A) + �v(A(�);A)]

subject to:

(i) On-schedule incentive compatibility: 8b�;
8��i; v(A(b�); A�i(��i)) 2 V

8�; �(A(�); �;A) + �v(A(�);A) � �(A(b�); �;A) + �v(A(b�);A)
(ii) O¤-schedule incentive compatibility: 8ba =2 A([�; �]);

8��i; v(ba;A�i(��i)) 2 V
8�; �(A(�); �;A) + �v(A(�);A) � �(ba; �;A) + �v(ba;A)

Following Athey, Bagwell and Sanchirico (2004), we next relax the Interim Program in two

ways. First, we ignore the o¤-schedule constraints by assuming that � is su¢ ciently high so that

no o¤-schedule deviation is pro�table. Second, we relax the on-schedule constraints by replacing

v(A(b�); A�i(��i)) 2 V with v(A(b�);A) � supV: The relaxed constraint thus requires only that the
expected continuation value does not exceed the supremum of SPPE. When the constraints are

relaxed in this way, we have the Relaxed Program.

To facilitate connection with tools from mechanism design theory, we next re-write the Relaxed

Program using direct-form notation. Formally, as above, we let �(b�; �;A) � �(A(b�); �;A) and
R(b�; �;A) � R(A(b�); �;A): We also de�ne W (b�) � �[supV � v(A(b�);A)]: For instance, W (b�) > 0
means that the expected continuation value falls below the value supV subsequent to a �rm�s
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announcement b�: A continuation-value reduction represents a �war� that involves an increase of

advertising expenses in the future. We may now state the Relaxed Program in terms of the choice

of the current-period advertising schedule A and the �punishment� function W that maximizes

expected payo¤ subject to on-schedule constraints:

Relaxed Program: The program chooses A and W to maximize

E� [R(�; �;A)�A(�)�W (�)]

subject to:

8�; W (�) � 0

(On-IC) 8�;b�; R(�; �;A)�A(�)�W (�) � R(b�; �;A)�A(b�)�W (b�):
To see that the Relaxed Program is indeed a relaxation of the Interim Program, suppose that

(A; v) satis�es the constraints of the Interim Program. Let us now translate (A; v) into (A;W )

via W (b�) � �[supV � v(A(b�);A)]. Using this translation, it is now easy to con�rm that (A;W )

satis�es the constraints of the Relaxed Program and that the Interim and Relaxed Programs rank

factorizations (A; v) in the same way. Therefore, if we �nd a solution (A;W ) to the Relaxed

Program, and if that solution can be expressed as a translation of some (A; v) that satis�es all of

the constraints of the Interim Program, then this (A; v) is the factorization of an optimal SPPE.

Our next step is to identify an important situation in which the solution to the Relaxed Program

can be translated back into an optimal SPPE factorization.

Proposition 6 (Stationarity): Suppose that (A�;W � � 0) solves the Relaxed Program: Then there
exists b� 2 (0; 1) such that, for all � � b�, there exists an optimal SPPE which is stationary, wherein
�rms use A� after all equilibrium-path histories, and A� solves the following program: maximize

E�[R(�; �;A)�A(�)] subject to 8�;b�; R(�; �;A)�A(�) � R(b�; �;A)�A(b�):
To prove this proposition, we follow the steps used in the proof of Proposition 2 in Athey, Bagwell

and Sanchirico (2004). In particular, we note two implications of the assumption that (A�;W � � 0)
solves the Relaxed Program. First, following the discussion just above, (A�; v� � supV ) is then a
solution to the Interim Program, provided that this factorization satis�es the additional constraints

of the Interim Program. We may therefore conclude that (A�; v� � supV ) achieves a (weakly)

higher payo¤ than can be achieved by any SPPE factorization. Thus, E� [�(�; �;A�) + � supV ] �
supV: Second, if �rms are su¢ ciently patient, then the repeated play of A� in each period along

the equilibrium path, with appropriate punishments o¤ the equilibrium path, is in fact an SPPE.

Given that W � � 0, A� satis�es (IC-On) on a period-by-period basis. Likewise; A� satis�es the

on-schedule incentive constraint of the Interim Program on a period-by-period basis (i.e., when the

continuation value does not vary with the on-schedule advertising level). The o¤-schedule incentive

constraint of the Interim Program is also satis�ed, provided that � is su¢ ciently high. Repeated

play of the (noncooperative) advertising equilibrium of the static game is always an SPPE of the
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repeated game and may be used as the punishment that follows any o¤-schedule deviation.26 Thus,

when � is su¢ ciently high, E� [�(�; �;A�)] =(1� �) � supV: Using the two inequalities, we conclude
that the repeated play of A� is then an optimal SPPE: supV = E�[�(�; �;A�)]=(1� �):

Hence, if a solution of the Relaxed Program is (A�;W � � 0), and thus does not involve wars

(i.e., is stationary), and if �rms are su¢ ciently patient, then supV is in fact in V: Further, an

associated optimal SPPE can be easily characterized. Firms simply use the schedule A� in each

period, where A� is the solution to the static program presented in Proposition 6. This result

guides our subsequent analysis. Below, we use mechanism-design tools to characterize the (A,W )

pairs that satisfy (On-IC) in the Relaxed Program. In the next section, we show that (A�;W � � 0)
is always a solution to the Relaxed Program, and we also characterize A�.

Consider now (On-IC) from the Relaxed Program. As the following lemma indicates, this

constraint may be stated in a more useful way.

Lemma 1. (A;W ) satis�es on-schedule incentive compatibility (On-IC) if and only if 8� (i) A(�)
is nonincreasing and (ii)

R(�; �;A)�A(�)�W (�) = R(�; �;A)�A(�)�W (�) +
Z �

�
D(p(x))M(x;A)dx: (9)

The proof of this result is standard in the mechanism-design literature and is therefore omitted.27

The lemma indicates that the interim-stage expected payo¤ for a �rm with period-one type � is

comprised of a payo¤-at-the-top expression (i.e., R(�; �;A) � A(�) �W (�)) and an integral that
indicates the expected information rents for this type in the �rst period.

The repeated game allows for a wide range of behaviors, even within the category of stationary

SPPE. For example, as noted, in each period of the repeated game, �rms may use the advertising

equilibrium of the static model. Further, under the conditions given in Proposition 2, �rms strictly

prefer pooling at zero advertising to using the advertising equilibrium of the static game. Hence, if

those conditions hold and �rms are su¢ ciently patient, then they can enforce a stationary SPPE

in which they pool with zero advertising. Any pooling arrangement trivially satis�es on-schedule

incentive compatibility, and patient �rms will not deviate (o¤ schedule) to a positive advertising

level if such a deviation induces a future war that entails a reversion to the advertising equilibrium.

Likewise, under appropriate conditions, stationary SPPE exist in which �rms use advertising sched-

ules that are nonincreasing step functions. More generally, stationary SPPE may entail advertising

schedules with intervals of pooling as well as intervals of separation.

26We show below in Lemma 3 that A� achieves strictly higher expected pro�t than does the advertising equilibrium
of the static game.
27As in the proof of Proposition 1, it is straightforward to con�rm that (On-IC) implies that M(�;A) is nonin-

creasing. Given the consumer search rules, M(�;A) is nonincreasing if and only if A(�) is nonincreasing. A local
optimality condition must also hold, and the application of an appropriate envelope theorem (Milgrom and Segal,
2002) thus yields (9). Together, the two conditions are su¢ cient for (On-IC), due to the single-crossing property of
the model.
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4 Optimal Collusion

In this section, we characterize optimal SPPE, assuming �rms are su¢ ciently patient so that o¤-

schedule constraints hold. First, we show that equilibrium-path wars are not necessary in an optimal

SPPE. We thus show that an optimal SPPE exists that is stationary. Second, using Proposition 6,

we report conditions under which an optimal SPPE involves pooling at zero advertising. Third, in

a more general setting, we show that an optimal SPPE involves at least partial pooling. Fourth,

we characterize the critical discount factor above which o¤-schedule constraints hold.

4.1 No Wars

We now show that equilibrium-path wars are not necessary in an optimal SPPE for patient �rms.

Suppose that a scheme (A;W ) satis�es (On-IC) in the Relaxed Program. Then, we say that an

alternative scheme ( eA;fW ) is point-wise equivalent to (A;W ) if the scheme satis�es (On-IC) and
preserves the market-share schedule and interim-stage pro�t:

8�; M(�; eA) =M(�;A) and R(�; �; eA)� eA(�)�fW (�) = R(�; �;A)�A(�)�W (�):
Lemma 2. Assume that (A;W ) satis�es (On-IC) in the Relaxed Program. (i) There exists a

no-wars scheme ( eA;fW � 0) that is point-wise equivalent to (A;W ): (ii) Any no-wars scheme

( eA;fW � 0) that is point-wise equivalent to (A;W ) satis�es eA(�) � A(�) +W (�):
Proof. The proof for (ii) is immediate by the de�nition of point-wise equivalence. Given

M(�; eA) =M(�;A); R(�; �; eA) = R(�; �;A) follows; thus, eA(�) = A(�) +W (�) must hold.
To prove (i), we decompose the market-share allocation of (A;W ) into three components: sorting

intervals, pooling intervals and jump points. We then show that the intervals on which the no-

war scheme ( eA;fW ) engages in sorting (pooling) are consistent with the intervals on which (A;W )
engages in sorting (pooling), and that (A;W ) and ( eA;fW ) jump at the same points.

First, suppose that (A;W ) entails sorting on an interval [�1; �2] � [�; �]: Using (9), the interim
pro�t for � 2 [�1; �2] is then given by

R(�; �;A)�A(�)�W (�) = R(�2; �2;A)�A(�2)�W (�2) +
Z �2

�
D(p(x))M(x;A)dx; (10)

where M(x;A) = U
N + [1� F (x)]

N�1I: This equation can be rewritten as

A(�) +W (�)� [A(�2) +W (�2)] = �
Z �2

�
r(p(x); x)[@M(x;A)=@x]dx:

As shown in the proof of Proposition 1, the RHS equals the di¤erence between type ��s and type

�2�s advertising levels in the advertising (Nash) equilibrium. Thus, eA(�) � A(�)+W (�) also entails
sorting on the interval [�1; �2] and satis�es (On-IC). Second, suppose that (A;W ) entails pooling

on an interval [�1; �2] � [�; �]: The interim pro�t for � 2 [�1; �2] takes the same form as in (10).
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When market shares are constant on the pooling interval, then (10) can be rewritten as

A(�) +W (�) = A(�2) +W (�2); (11)

and thus eA(�) � A(�)+W (�) also entails pooling on the interval [�1; �2] and satis�es (On-IC). Since
advertising is constant on the pooling interval, wars also are constant by (11). Thus, over a pooling

interval, (On-IC) is maintained when a scheme with a constant level of current advertising and a

future advertising war is replaced with a scheme in which the constant level of current advertising

is raised and the possibility of a future advertising war is removed. Third, suppose that (A;W )

involves a jump of market-share allocation at a point �� 2 [�; �] such that

M(��;A) > lim sup
�>��

M(�;A) �M+(�
�;A):

The associated limit for wars and advertising are denoted by W+(�
�) and A+(��); respectively:

Incentive compatibility at the point �� implies that

A(��) +W (��)� [A+(��) +W+(�
�)] = r(p(��); ��) [M(��;A)�M+(�

�;A)] :

Thus eA(�) � A(�) + W (�) entails a jump at �� and satis�es (On-IC).28 Note lastly that when

( eA;fW � 0) preserves the initial market-share allocation, eA(�) � A(�) +W (�) also preserves the

interim pro�t. �

Lemma 2 identi�es a substitutability between current advertising expenditures and future ad-

vertising wars. When a scheme (A;W ) sets W > 0 for some values of � and satis�es (On-IC), we

understand that the expected future payo¤ is reduced due to the possibility of an advertising war.

Lemma 2 indicates that we may then construct a point-wise equivalent scheme ( eA;fW ); in which the
possibility of a future advertising war is eliminated (fW � 0) and current advertising expenditures
are increased accordingly ( eA(�) � A(�) +W (�)): Wars are in this sense redundant.

Together, Lemma 2 and Proposition 6 greatly simplify our analysis. According to Lemma

2, for any (A;W ) that solves the Relaxed Program, there exists an equivalent no-wars scheme,

(A�;W � � 0) with A�(�) � A(�) +W (�); that also solves the Relaxed Program. By Proposition 6,
if �rms are su¢ ciently patient, we may conclude that an optimal SPPE exists that is stationary and

in which �rms use A� after all equilibrium path histories.29 Proposition 6 also provides a program

that may be solved in order to characterize A�:

Our next step is to write the program identi�ed in Proposition 6 in a more useful form. In

28 If (A;W ) satis�es (On-IC), then M(�;A) must be nonincreasing. As no type would �pay�more for less market
share, incentive compatibility thus requires that A(�) + W (�) is nonincreasing as well. It follows that eA(�) �
A(�) +W (�) is nonincreasing.
29The arguments developed here may also be applied to sets of SPPE. For example, consider the set of SPPE in

which full sorting occurs in each period. Proposition 6 also holds with respect to this class of equilibria; thus, using
Lemma 2, we may conclude that an optimal SPPE within the full sorting class is the stationary SPPE in which �rms
use the advertising equilibrium of the stage game in every period. Thus, for �rms to improve on the Nash equilibrium
of the stage game, they must use an advertising scheme that entails some pooling.
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particular, using Lemma 1 and W � � 0, we may integrate by parts and rewrite the program that

A� must solve as follows:

No-Wars Program: The program chooses A to maximize

E� [R(�; �;A)�A(�)] = R(�; �;A)�A(�) + E�
�
D(p(�))

F

f
(�)M(�;A)

�
(12)

subject to: A(�) is nonincreasing in �:

We may now summarize our discussion with the following proposition.

Proposition 7. Let A� solve the No-Wars Program. Then, there exists b� 2 (0; 1) such that,

for all � � b�, there exists an optimal SPPE which is stationary, wherein �rms use A� after all
equilibrium-path histories.

We emphasize that our no-wars (stationarity) �nding is quite general, in that it holds for any

demand function D and also for any distribution function F:

4.2 Optimal SPPE: Pooling at Zero Advertising

We now characterize A� and thereby an optimal SPPE for patient �rms that is stationary. To this

end, we solve the No-Wars Program. We thus characterize the nonincreasing advertising scheme

that maximizes expected pro�t, where as (12) indicates expected pro�t is comprised of pro�t at

the top and expected information rents.

We encounter a related problem in Proposition 2, where we provide conditions under which ex-

pected pro�t is higher in the random equilibrium than in the advertising equilibrium. Generalizing

beyond that particular comparison, we now show that the same conditions ensure that pooling at

zero advertising in fact solves the No-Wars Program.

Proposition 8. For � su¢ ciently high, if F is log-concave and demand is su¢ ciently inelastic,

or if the support of possible cost types is su¢ ciently small, then there exists an optimal SPPE that

is stationary, wherein �rms pool with zero advertising following all equilibrium-path histories.

Proof. Using Proposition 7, we must show Ap � 0 solves the No-Wars Program, if F is

log-concave and demand is su¢ ciently inelastic or if � � � is su¢ ciently small. Let A denote

any other nonincreasing scheme. Note that M(�;A) is then also nonincreasing, and recall that

M(�;Ap) � 1
N : Consider �rst the pro�t at the top term in (12). If A entails any sorting, then

M(�;Ap) = 1
N > M(�;A) and Ap(�) = 0 � A(�). Alternatively, if A is a pooling scheme (at some

positive level of advertising), then M(�;Ap) = 1
N =M(�;A) and Ap(�) = 0 < A(�): In either case,

pro�t at the top is strictly higher under Ap than A. Consider second the expected information

rents term in (12). Note that expected information rents converge to zero as � � � approaches
zero; thus, the pro�t-at-the-top term dominates if the support of possible cost types is su¢ ciently

small. Allowing for the general case in which the support may be large, we may de�ne distribution

functions G(�;A) and G(�;Ap) as in the proof of Proposition 2. Notice that M(�;Ap) � 1
N crosses
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M(�;A) from below.30 As in the proof of Proposition 2, if D(p(�))Ff (�) is nondecreasing, then

expected information rents are weakly higher under Ap than A: Thus, when F is log-concave and

demand is su¢ ciently inelastic, expected information rents are weakly higher under Ap than A: �

This result establishes conditions under which an optimal SPPE exists and entails pooling at

zero advertising in all periods. The result thereby provides a formal con�rmation of the idea that,

even if advertising is legal and informed consumers are responsive to it, �rms can still eliminate

advertising as part of an optimal self-enforcing collusive agreement. When �rms collude in this

way, the welfare of informed consumers is reduced from the welfare that they enjoy in the non-

cooperative advertising equilibrium. This is because the collusive agreement prevents informed

consumers from using advertising to locate the lowest price in the market.

While pro�t at the top is uniquely maximized when �rms pool at zero advertising, the maxi-

mization of expected information rents involves con�icting considerations. When the distribution

function is log-concave, a pooling scheme shifts market share to higher-cost types and is attractive

for this reason; however, when demand is downward sloping, a separating scheme is attractive, since

it shifts market share to lower-cost types. Allowing for a wide range of advertising schemes, Propo-

sition 8 isolates conditions under which the forces in favor of pooling at zero advertising dominate.

In particular, if the distribution function is log�concave and demand is su¢ ciently inelastic, so that

D(p(�))Ff (�) is nondecreasing, then pooling at zero advertising is an optimal SPPE for patient

�rms. While inelastic demand is su¢ cient in this sense, it is not necessary. As noted in Section 2,

for a constant elasticity demand function such that � > 1, if types are distributed uniformly and

�=[� � �] > �, then D(p(�))Ff (�) is nondecreasing.

4.3 Optimal SPPE: Partial Pooling

While Proposition 8 characterizes an optimal SPPE under an important set of conditions, it is also

interesting to consider optimal SPPE when these conditions fail. In this subsection, we maintain

the assumption that �rms are su¢ ciently patient, so that o¤-schedule constraints may be ignored,

and show that under general conditions an optimal SPPE involves at least partial pooling.

A di¢ culty with solving the No-Wars Program is that the market-share function and the as-

sociated expected pro�t are conditional on the entire advertising schedule. Our analysis therefore

proceeds from the fact that the entire advertising schedule can be decomposed into three di¤erent

kinds of components: sorting, pooling and jumps. Consider the simplest case that has three parts:

from the lowest step (from the highest type), a schedule has a pooling interval with A(�) = 0 on

(y; �] and then jumps to a sorting interval on [�; y]: This nondecreasing scheme has the following

30 If A is a pooling scheme, then M(�;Ap) crosses M(�;A) from below in a weak sense.
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expected pro�t:31

E�[R(�; �;A)�A(�)] = r(p(�); �)M(y; �;A) +

Z y

�
D(p(x))

F

f
(x)M(�; y;A)f(x)dx (13)

+

Z �

y
D(p(x))

F

f
(x)M(y; �;A)f(x)dx;

where (with some abuse in notation)M(�; y;A) represents the market share for type x in the sorting

interval [�; y] and M(y; �;A) represents the (constant) market share for any type in the pooling

interval (y; �]. Formally, these market share functions are de�ned as:

M(�; y;A) � U

N
+ [1� F (x)]N�1I and M(y; �;A) � U

N
+ [1� F (y)]N�1 I

N
:

The level of jump is determined such that incentive-compatibility constraint is binding at y:

A(y) = r(p(y); y)
�
M(�; y;A)�M(y; �;A)

�
;

where M(�; y;A) is here evaluated at x = y: Note that when y ! �; the scheme approaches the

fully sorting scheme. Given the assumption that p(�) > � and f(�) > 0; we may di¤erentiate (13)

with respect to y and con�rm that fully sorting can be improved upon by a scheme that has a

pooling interval (y; �] at the top.

This �nding illustrates a more general point. As we establish next, any incentive compatible

scheme that has a sorting interval at the top can be improved upon by an alternative scheme that

has a pooling interval at the top.

Lemma 3. For any F; if � is su¢ ciently high, then any optimal SPPE that is stationary has a
pooling interval (y; �] on which A(�) = 0.

The proof is in the Appendix. Since the repeated play of the advertising equilibrium of the static

game is a stationary SPPE that entails full sorting, Lemma 3 ensures that for su¢ ciently patient

�rms an optimal SPPE must involve some pooling and strictly improve upon the repeated use of

the advertising equilibrium.

Lemma 3 thus establishes that under general conditions an optimal SPPE involves at least

partial pooling. In the supplementary materials for this paper, we extend the analysis and o¤er a

more complete characterization of optimal SPPE for any F when � is su¢ ciently high. In particular,

we show that an optimal SPPE entails a single �at step on any interval where D(p(�))Ff (�) is

nondecreasing. We show as well that, if an optimal SPPE entails sorting over an interval, then

D(p(�))Ff (�) must be decreasing over that interval.

31The expected pro�t is derived in the Appendix.
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4.4 O¤-Schedule Incentive Constraints

Up to this point, we have ignored the o¤-schedule constraints by assuming that �rms are su¢ ciently

patient. We now consider o¤-schedule constraints and characterize the critical discount factor,b� 2 (0; 1); above which an optimal SPPE exists that is stationary (as established in Proposition 7).
To focus our discussion, we emphasize the setting described in Proposition 8, wherein the optimal

SPPE is stationary and entails pooling at zero advertising following all equilibrium-path histories.

Suppose, then, that the optimal SPPE entails pooling at zero advertising. When �rms behave

in this fashion, a �rm faces a temptation to cheat by advertising a small, positive amount, as

it thereby attracts all informed consumers rather than only its share of these consumers. This

short-term incentive to cheat must be balanced against the long-term cost of a punishment (i.e., a

reduced continuation value). Given our focus on SPPE, such a punishment must be experienced

by all �rms. We thus suppose that an o¤-schedule deviation of this kind triggers a reversion to the

advertising equilibrium of the static game.32 Thus, the long-term cost of an o¤-schedule deviation

is that the future discounted expected pro�t associated with pooling at zero advertising is replaced

with that associated with the repeated play of the advertising equilibrium. In other words, if a

�rm cheats on the collusive agreement to not advertise, then a breakdown in cooperation occurs

and the �rms revert to the advertising equilibrium thereafter.

We now consider the type of �rm for which the o¤-schedule constraint �rst binds. Given our

assumption that cost types are determined in an iid fashion through time, a �rm faces the same

long-term cost of an o¤-schedule deviation regardless of its current type, �: The short-term incentive

to deviate, however, is sensitive to �: In particular, when �rms pool at zero advertising, a �rm with

cost type � has the greatest short-term incentive to defect. This type of �rm values most the increase

in market share that accompanies cheating, since it has the highest pro�t-if-win, r(p(�); �): When

�rms pool at zero advertising, the o¤-schedule constraint is sure to hold for all � if it holds for �:

We may thus represent the o¤-schedule constraint for this situation as follows:

r(p(�); �)I(1� 1

N
) � �

1� � [�
p � �s]; (14)

where �s � E� [�(�; �;A)] and �p � E�
�
r(p(�); �) 1N

�
are a �rm�s expected per-period pro�t when

�rms separate using the advertising equilibrium, A; and pool at zero advertising, respectively.

These pro�t terms are formally characterized in (3) and (4).

Solving (14) for the critical discount factor, we obtain that pooling at zero advertising satis�es

the o¤-schedule constraint if

� � b�p � r(p(�); �)(N � 1)I
r(p(�); �)(N � 1)I +N (�p � �s) :

As shown in Proposition 2, �p > �s if F is log-concave and demand is su¢ ciently inelastic or if

32Other symmetric punishments, such as those that take a �carrot-stick" form, may also be considered. Building on
arguments developed by Athey, Bagwell and Sanchirico (2004), we can show that the repeated play of the advertising
equilibrium generates the lowest SPPE payo¤ when D(p(�))F

f
(�) is everywhere nondecreasing.
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� � � is su¢ ciently small. Thus, under these conditions, b�p 2 (0; 1): We have thus established:
Proposition 9. If F is log-concave and demand is su¢ ciently inelastic, or if the support of

possible cost types is su¢ ciently small, then b�p 2 (0; 1) and, for all � � b�p, there exists an optimal
SPPE which is stationary, wherein �rms pool at zero advertising after all equilibrium-path histories.

In comparison to Proposition 7, Proposition 9 provides an explicit characterization of the critical

discount factor above which �rms can enforce an optimal SPPE in which they agree to eliminate

the use of advertising.

It is also possible to derive characterizations of optimal collusion when the discount factor is not

su¢ ciently high to support the scheme that would be optimal were only on-schedule constraints

considered. We can show, for example, that the no-wars �nding extends to the low-� setting.

Intuitively, if the o¤-schedule constraint is an issue, it is better to shift current-period pro�t toward

the future, as a �rm then has more to lose in the future by undertaking an o¤-schedule deviation

in the present. Exploiting the substitutability between current advertising and future wars, �rms

can achieve the desired shift by increasing advertising and eliminating future wars. Athey, Bagwell

and Sanchirico (2004) provide a related argument in their analysis of price collusion, and so we do

not develop this point in detail here.

5 Sequential Search

We assume above that consumers are unable to engage in sequential search. Focusing on the static

setting, we now examine equilibrium behavior when this assumption is relaxed. Thus, we allow

that after a consumer visits a �rm and observes that �rm�s price, the consumer may elect to incur

a search cost and visit another �rm.

Consider then a modi�ed static game, in which consumers can undertake costly sequential search

and �rms choose advertising levels and prices. A Symmetric Perfect Bayesian Equilibrium may be

informally de�ned in terms of the following requirements: (i) each �rm selects its advertising level

and price to maximize its expected pro�t, given its type and the strategies of other players; (ii) each

consumer selects an initial �rm to visit and any subsequent �rm to visit in a way that maximizes

the consumer�s expected welfare at each point, given the information that the consumer then has

and the consumer�s beliefs about prices at �rms not yet visited; (iii) where possible, consumers�

beliefs are formed in a manner consistent with Bayes� rule, given the equilibrium strategies of

�rms;33 and (iv) �rms use symmetric price and advertising strategies. An advertising equilibrium

is a Symmetric Perfect Bayesian Equilibrium in which informed consumers pick an initial �rm using

the advertising search rule while uninformed consumers pick an initial �rm at random. A random

33The concept of Perfect Bayesian Equilibrium also includes a no-signaling-what-you-don�t-know requirement. In
the present context, this means that, if a consumer initially visits �rm i and contemplates undertaking the sequential
search cost and visiting some other �rm j, then the consumer�s belief about the price that might be observed at �rm
j is not altered by the price observed at �rm i. Of course, for an informed consumer, the belief about the price at
�rm j may be in�uenced by the advertising level selected by �rm j:

30



equilibrium is a Symmetric Perfect Bayesian Equilibrium in which all consumers ignore advertising

and select an initial �rm at random.

We begin by observing that the sequential-search option is irrelevant if the cost of sequential

search is su¢ ciently large relative to the expected dispersion of prices in the market. Suppose that

�rms follow the advertising equilibrium of the original static game as characterized in Proposition

1. An uninformed consumer is then most tempted to search again in the event that the consumer

encounters the highest possible monopoly price, p(�): Let U(p) denote consumer surplus at the price

p; and let the cost of sequential search be denoted as d > 0.34 Even a consumer that encounters

p(�) won�t gain from sequential search, if U(p(�)) � E�U(p(�))� d. Thus, if p(�)�E�p(�) is small
relative to the cost of sequential search, then an uninformed consumer never gains from sequential

search. This condition is sure to hold in the limiting case of perfectly inelastic demand, since

then the monopoly price is independent of production costs. Likewise, for any CES demand with

elasticity � > 1, we have that p(�) � E�p(�) = �
��1 [� � E�]. Thus, if the extent of dispersion in

production costs is small relative to the size of the sequential-search cost, then uniformed consumers

will not search again even after encountering the highest monopoly price.

If instead the cost of sequential search is small relative to the expected dispersion of prices,

then higher-cost �rms induce search if they select their monopoly prices. To capture this situation,

we assume henceforth that U(p(�)) < E�U(p(�)) � d: Building on work by Reinganum (1979)

and Bagwell and Ramey (1996), our goal is to establish conditions under which an advertising

equilibrium exists in which �rms with cost types at or above a critical level �c 2 (�; �) select the
monopoly price for this critical type. In particular, we seek to construct an advertising equilibrium

in which a �rm with cost type � > �c prices at p(�c) < p(�), where p(�c) is determined so that the

costs and bene�ts of sequential search are equal. Higher-cost �rms then �limit price�and thereby

deter uninformed consumers from searching again.

In our proposed advertising equilibrium, a �rm of cost type � thus selects the price p�(�) �
minfp(�); p(�c)g and earns the corresponding net revenue r(p�(�); �): We now impose a new as-

sumption that p(�) > �: This assumption is sure to hold if the dispersion in cost types is not too

great or if demand is su¢ ciently inelastic, and it ensures that p(�c) > � so that r(p�(�); �) remains

strictly positive even for the highest type. Observe also that r(p�(�); �) is strictly decreasing with
dr(p�(�);�)

d� = �D(p�(�)) < 0: With these properties in place, we can con�rm that the arguments

used in the proof of Proposition 1 continue to hold when �rms use the pricing function p�(�): Thus,

the level of advertising again strictly declines as costs increase, and no �rm of any type gains from

undertaking an on-schedule deviation and mimicking the advertising level of some other type. In-

formed consumers are again rational in visiting the �rm with the highest advertising level, since this

�rm selects the lowest price in the market.35 Two issues remain. First, we must establish that a

critical value �c 2 (�; �) indeed exists such that an uninformed consumer is indi¤erent to sequential
search upon observing p(�c): Second, we must establish that no �rm with cost type � > �c would

34For simplicity, we assume that the initial search has zero cost.
35Note, though, that informed consumers are indi¤erent about using the advertising search rule in the event that

all �rms draw cost types at or above �c:
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gain from undertaking an o¤-schedule deviation to a higher price.

Consider the �rst issue. Under our assumption that U(p(�)) < E�U(p(�))� d, it is straightfor-
ward to establish that there exists a unique value �c 2 (�; �) such that

U(p(�c)) = [1� F (�c)]U(p(�c)) +
Z �c

�
U(p(�))dF (�)� d: (15)

The LHS of (15) represents the consumer welfare from remaining with a �rm that selects p(�c);

while the RHS represents the expected welfare from incurring the sequential-search cost d and

�nding the same price or a lower price. The critical value �c 2 (�; �) is then determined so as
to make the consumer indi¤erent between the two options: Notice that �c is independent of the

fraction of informed consumers, I, and is strictly increasing in the sequential-search cost, d. As d

gets close to zero, �c gets close to � and thus almost all types select the limit price.

To understand the second issue, consider a �rm with cost type � > �c: This �rm retains

its uninformed consumers if it sets the limit price, p(�c); and loses its uninformed consumers if

it sets any higher price. Under our assumption that p(�) > �; we know that the �rm earns

strictly positive net revenue on its uninformed consumers at the price p(�c): Thus, as regards its

uninformed consumers, the �rm earns strictly more by selecting the price p(�c) than it would make

by undertaking an o¤-schedule deviation to any higher price. But this �rm must also consider

informed consumers. With probability [1�F (�)]N�1, this �rm advertises more than all other �rms

and receives the informed consumers. In this event, as in the model analyzed by Bagwell and Ramey

(1996), the informed consumers observe all advertising choices and thus know that all other �rms

have higher costs and thus select the price p(�c): The informed consumers will then tolerate a price

hike without searching again, provided that the hike is not too large. The maximal price hike that

informed consumers will tolerate is h(d) where h(d) is de�ned by U(p(�c) + h(d)) � U(p(�c))� d:
It follows that the optimal o¤-schedule deviation for a �rm of type � > �c is the price p(�; �c; d) �
minfp(�); p(�c) + h(d)g; where �c is determined as a function of d by (15).

We may now conclude that a �rm with cost type � > �c does not gain from an o¤-schedule

deviation to a higher price if


(�; �c; d) � [(1� F (�))N�1I][r(p(�; �c; d); �)� r(p(�c); �)]�
U

N
r(p(�c); �) � 0: (16)

The �rst term on the RHS of (16) captures the possible bene�t of a price hike in terms of more

pro�table sales to informed consumers whereas the second term re�ects the certain cost of a price

hike in terms of lost sales to uninformed consumers. Notice that 
(�c; �c; d) < 0, since p(�c; �c; d) =

p(�c). Likewise, 
(�; �c; d) < 0 follows, since the highest-cost �rm wins the informed consumers

with probability zero and earns strictly positive net revenue at the price p(�c) under our assumption

that p(�) > �: Outside of these boundary cases, we cannot immediately sign 
(�; �c; d): We can,

however, state the following su¢ cient condition: There exists I� 2 (0; 1) such that if I < I� then
for all � 2 (�c; �); 
(�; �c; d) < 0. In other words, if the fraction of informed consumers is not too
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great, then no type of �rm will undertake an o¤-schedule deviation by raising price.

We may now summarize our �ndings as follows.

Proposition 10. Consider the static game, modi�ed to allow for sequential search. Assume that
the search cost satis�es U(p(�)) < E�U(p(�)) � d and that p(�) > �: There exists I� 2 (0; 1)

such that if I < I� then an advertising equilibrium exists. In this equilibrium, (i) �rms use an

advertising strategy A(�) that is strictly decreasing and di¤erentiable and satis�es A(�) = 0; (ii)

�rms use the pricing strategy p�(�); where �c 2 (�; �) satis�es (15); and (iii) consumers do not
engage in sequential search along the equilibrium path.

In e¤ect, Proposition 10 establishes conditions under which Proposition 1 extends to the setting in

which sequential search is possible and not prohibitively expensive.36

We now consider the e¤ect of sequential search on the comparison between expected pro�ts

under the random and advertising equilibria. When sequential search is possible, our assumption

that p(�) > � ensures that a random equilibrium exists, wherein �rms use the modi�ed pricing

schedule, p�(�):37 As this assumption implies that pro�t at the top is strictly positive, the random

equilibrium again generates strictly greater pro�t at the top than does the constructed advertising

equilibrium (when it exists). When sequential search is prohibited, expected information rents are

higher under the random than advertising equilibrium if Ff (�)D(p(�)) is nondecreasing. Likewise,

when sequential search is possible, expected information rents are strictly higher under the random

than advertising equilibrium if Ff (�)D(p
�(�)) is nondecreasing. Since p�(�) is constant in � for

� > �c; log-concavity of F alone now ensures that F
f (�)D(p

�(�)) is nondecreasing when � > �c:

Thus, the tension between log-concavity and reduced demand is removed for higher types when

sequential search is possible. In this respect, the possibility of sequential search serves to strengthen

our basic result that �rms achieve higher expected pro�t when they restrict the use of advertising.38

6 Other Extensions

In this section, we provide an informal discussion of extended models in which advertising enters

the demand function and asymmetric PPE are allowed.

6.1 Advertising in the Demand Function

In our analysis above, advertising does not enter the demand function. Instead, we build on earlier

work and study the role of advertising in directing informed consumers to the lowest prices. Of

36The advertising equilibrium of the modi�ed static game is also unique, if the de�nitions of the advertising and
random search rules are extended to cover sequential search decisions. Otherwise, some uninformed consumers that
encounter the price p(�c) may undertake sequential search out of indi¤erence, for example.
37The existence of the random equilibrium does not require any additional assumption on the fraction of informed

consumers, since �rms do not advertise in the random equilibrium and thus all consumers are, in e¤ect, uninformed.
Thus, the random equilibrium is the counterpart of the equilibrium featured by Reinganum (1979).
38Note, though, that sequential search lowers pro�t at the top, since higher-cost �rms earn lower pro�t when

sequential search is possible. Sequential search thus diminishes the magnitude of the pro�t-at-the-top advantage that
the random equilibrium has in comparison to the advertising equilibrium.
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course, other kinds of advertising are also interesting and worthy of separate analysis. Here, we

brie�y highlight two possibilities.

A �rst possibility is that advertising by a �rm directly increases the demand function that

informed consumers bring to this �rm, in the event that the �rm out-advertises all other �rms.

In this case, Proposition 4 may change in interesting ways, as it is no longer clear that �rms earn

greater expected pro�t in the pricing equilibrium than in the advertising equilibrium. As noted,

the low prices of the pricing equilibrium serve to expand in-store demand, and they thus elevate

expected information rents. If advertising enters the demand function directly, then high advertising

likewise expands in-store demand and thereby elevates expected information rents. Whether price

or non-price advertising is more pro�table may then depend on the respective elasticities of demand

with respect to price and advertising.

A second possibility is that advertising by any one �rm may have a public-good �avor and

serve to expand the size of market demand. By contrast, in the model analyzed above, advertising

is redistributive: the size of aggregate demand is not a¤ected by advertising, and so one �rm�s

market-share gain is another �rms�market-share loss. In the case of public-good advertising, when

a �rm advertises more, aggregate demand increases and so rival �rms bene�t to some degree as

well. Such advertising may be especially important for new-product markets. An analysis of this

kind of advertising is an important direction for future work.

6.2 Asymmetric PPE

As Athey and Bagwell (2001) show, when �rms collude in prices, pro�t may be higher in asymmetric

PPE than in SPPE. They emphasize the role of future market share favors, whereby a �rm that

claims low costs and enjoys high market share today must su¤er a reduced market share in the

future. Rival �rms then enjoy a future market share gain. Thus, asymmetric PPE allow that

continuation values may be used to satisfy on-schedule constraints, without requiring that all �rms

symmetrically experience a reduced continuation value.39

In the price-collusion model, consumers directly observe price and have no independent interest

in �rms�costs. By contrast, in the advertising model analyzed in this paper, informed consumers

observe advertising and draw inferences as to costs and thus prices. The construction of asymmetric

PPE may be more challenging in this context. Suppose, for example, that one �rm advertises heavily

in the current period and that the equilibrium then requires that this �rm advertise less in the

future, so as to transfer future market share to other �rms. Consider now the informed consumers.

If they understand the equilibrium, then they recognize that the reduced level of advertising by

this �rm in some future period is not necessarily a signal that this �rm has a high cost type and

thus a high price in that period. Thus, even if the equilibrium calls for reduced advertising by this

�rm, this in itself does not guarantee that the �rm obtains reduced market share.

39As Athey and Bagwell (forthcoming) show in their analysis of price collusion, however, when cost shocks are
persistent, the advantage of asymmetric PPE may be signi�cantly reduced. Indeed, if demand is perfectly inelastic
and the distribution of types is log-concave, they show that a stationary pooling equilibrium is optimal for patient
�rms when cost types are perfectly persistent.
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7 Conclusion

We investigate the advertising behavior of �rms with private information as to their respective costs.

We �rst analyze a static model, and we show there that an advertising equilibrium exists, in which

informed consumers use an advertising search rule whereby they buy from the highest-advertising

�rm. The key point is that the highest-advertising �rm has the lowest cost and thus selects the

lowest price. In this way, �non-informative�advertising directs consumers to the lowest price in the

market. We establish conditions under which �rms earn greater expected pro�t when advertising

is banned. Consumer welfare falls in this case, however. We then analyze a dynamic model in

which privately informed �rms interact repeatedly. In this setting, �rms may achieve a collusive

equilibrium in which they limit the use of advertising, and we establish conditions under which

optimal collusion entails pooling at zero advertising. In summary, advertising can promote product

e¢ ciency and raise consumer welfare; however, �rms often have incentive to diminish advertising

competition, whether through regulatory restrictions or collusion.

8 Appendix

Proof of Proposition 5. (ii) Note �rst that advertising at the top is held �xed at A(�) = A0(�) = 0
for all N: Di¤erentiating jA0 (�)j with respect to N yields:

@ jA0 (�)j
@N

=
��A0(�)�� �1 + (N � 1) ln[1� F (�)]

N � 1

�
:

The equation means that for a slight increase of N; A(�) becomes �atter over the types above

F�1(1� e�
1

N�1 ) 2 (�; �) and steeper over the types below F�1(1� e�
1

N�1 ):We can next show that
advertising at the bottom, A(�); strictly increases when N rises. To see this, integrating by parts,
we get

A(�) =

Z �

�
r(p(x); x)(N � 1)[1� F (x)]N�2f(x)Idx

= r(p(�); �)I �
Z �

�
[1� F (x)]N�1D(p(x))Idx:

The integral on the RHS strictly decreases with N and thus A(�) strictly increases in N: Hence,

we can now conclude that there exists a cuto¤ type b� < F�1(1 � e�
1

N�1 ) such that equilibrium
advertising strictly increases with N for � 2 [�;b�), strictly decreases with N for � 2 (b�; �), and is
constant with N when � 2 fb�; �g.

(iv) For the proof, we proceed with four steps as follows. First, we establish a monotonicity in
the ratio of advertising equilibrium slopes under MLR dominance. De�ne

(�) � A0F (�)

A0G(�)
=
f(�)

g(�)

�
1� F (�)
1�G(�)

�N�2
:
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For � 2 [�; �), the ratio (�) of two slopes is strictly increasing in �; since f(�)
g(�) and

1�F (�)
1�G(�) are

then positive and strictly increasing under MLR dominance. The latter term, 1�F (�)1�G(�) ; is strictly

increasing if 1�F (�)
f(�) > 1�G(�)

g(�) : To see that this inequality holds for � 2 [�; �), note that MLR

dominance can be re-stated as f(y)
f(x) >

g(y)
g(x) for all y > x; hence, for x 2 [�; �), MLR dominance

implies
R �
x
f(y)
f(x)dy >

R �
x
g(y)
g(x)dy and thus

1�F (x)
f(x) > 1�G(x)

g(x) : Second, we establish that AF (�) < AG(�):
Note that

AF (�)�AG(�) = �
Z �

�

�
[1� F (x)]N�1 � [1�G(x)]N�1

�
D(p(x))Idx:

We thus have that AF (�) < AG(�) if
1�F (�)
1�G(�) > 1 for all � > �. This inequality holds, since

1�F (�)
1�G(�) achieves its minimum value of 1 at � and (as established above) is strictly increasing for

� 2 [�; �) under MLR dominance: Third, we show that (�) = f(�)
g(�) < 1 < [f(�)

g(�)
]N�1 = (�). The

stated properties for (�) follow immediately from the de�nition of (�) and MLR dominance,
while the stated properties for (�) follow from using L�Hopital�s rule and MLR dominance. Given
AF (�) < AG(�), AF (�) = AG(�) = 0 and (�) > 1, we can conclude that there exists e� 2 (�; �)
at which AG(�) crosses AF (�) from above. Fourth, we establish that a second interior crossing
does not exist. Assume to the contrary that there exists �2 2 (�; �) at which AG(�) crosses AF (�)
from below and thus (�2) > 1. Given AF (�) = AG(�) = 0 and (�) > 1, there must then exist
�3 2 (�2; �) at which AG(�) crosses AF (�) from above and thus (�3) < 1. But this contradicts our
�rst result that (�) is strictly increasing in � over � 2 [�; �) under MLR dominance.

Derivation of Interim-Stage Pro�t. We show that if A has a pooling interval with A(�) = 0
on (y; �] and jumps to a sorting interval on [�; y]; then it has the expected pro�t (13) in the text:

E�[R(�; �;A)�A(�)] = r(p(�); �)M(y; �;A) +

Z y

�
D(p(x))

F

f
(x)M(�; y;A)f(x)dx

+

Z �

y
D(p(x))

F

f
(x)M(y; �;A)f(x)dx;

where M(�; y;A) and M(y; �;A) are de�ned as in the text. The interim-stage pro�t for � � y is

R(�; �;A)�A(�) = R(y; y;A)�A(y) +
Z y

�
D(p(x))M(�; y;A)dx;

while the interim-stage pro�t at y is

R(y; y;A)�A(y) = R(�; �;A)�A(�) +
Z �

y
D(p(x))M(y; �;A)dx:

Using two equations, we �nd the interim-stage pro�t for � � y:

R(�; �;A)�A(�) = R(�; �;A)�A(�) +
Z y

�
D(p(x))M(�; y;A)dx+

Z �

y
D(p(x))M(y; �;A)dx:
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The interim-stage pro�t for � > y is

R(�; �;A)�A(�) = R(�; �;A)�A(�) +
Z �

�
D(p(x))M(y; �;A)dx:

Based on the two interim-stage pro�ts, we �nd the expected value (13) in the text by integrating
by parts and setting A(�) = 0. �

Proof of Lemma 3. Suppose that a scheme has a sorting interval at the top on (z; �]: Then we
can consider an alternative scheme A that decomposes the sorting interval on (z; �] into a sorting
interval on (z; y] and a pooling interval on (y; �]; where y > z: Letting M(�;A) denote the market
allocation for types below z; the expected pro�t becomes

E� [R(�; �;A)�A(�)] = r(p(�); �)

�
U

N
+ [1� F (y)]N�1 I

N

�
+

Z z

�
D(p(x))F (x)M(x;A)dx

+

Z y

z
D(p(x))F (x)

�
U

N
+ [1� F (x)]N�1I

�
dx

+

Z �

y
D(p(x))F (x)

�
U

N
+ [1� F (y)]N�1 I

N

�
dx:

If the initial advertising scheme is nonincreasing in �; then the alternative scheme A also is nonin-
creasing in �: Note that if y ! �; then this scheme approaches the initial scheme. We show that
the optimal choice of y is lower than �: Taking derivatives of the objective function with respect to
y; we obtain

@E� [R(�; �;A)�A(�)]
@y

=
N � 1
N

[1� F (y)]N�1I
�
D(p(y))F (y)� r(p(�); �) f(y)

1� F (y)

�
�
Z �

y
D(p(x))F (x)

�
N � 1
N

[1� F (y)]N�2f(y)I
�
dx:

Because of the assumption that f(�) > 0 and p(�) > �; the expected pro�t rises when y slightly
falls from �: �

9 References

Abreu, D., D. Pearce and E. Stacchetti (1986), �Optimal Cartel Equilibria with Imperfect Moni-
toring,�Journal of Economic Theory, 39.1, 251-69.

Abreu, D., D. Pearce and E. Stacchetti (1990), �Toward a Theory of Discounted Repeated Games
with Imperfect Monitoring,�Econometrica, 58.5, 1041-63.

Athey, S. (2002), �Monotone Comparative Statics under Uncertainty,�Quarterly Journal of Eco-
nomics, 117, 187-223.

Athey, S. and K. Bagwell (2001), �Optimal Collusion with Private Information,�Rand Journal of
Economics, 32.3, 428-65.

Athey, S. and K. Bagwell (forthcoming), �Collusion with Persistent Cost Shocks,�Econometrica.
Athey, S., K. Bagwell and C. Sanchirico (2004), �Collusion and Price Rigidity,�Review of Economic

Studies, 71.2, 317-349.

37



Bagwell, K. (2007), �The Economic Analysis of Advertising,� in M. Armstrong and R. Porter
(eds.), Handbook of Industrial Organization, Vol. 3, North-Holland: Amsterdam,
1701-1844.

Bagwell, K. and G. Ramey (1988), �Advertising and Limit Pricing,�Rand Journal of Economics,
19, 59-71.

Bagwell, K. and G. Ramey (1994a), �Coordination Economies, Advertising, and Search Behavior
in Retail Markets,�American Economic Review, 84.3, 498-517.

Bagwell, K. and G. Ramey (1994b), �Advertising and Coordination,�Review of Economic Studies,
61, 153-171.

Bagwell, K. and G. Ramey (1996), �Coordination Economies, Sequential Search and Advertising,�
Northwestern CMSEMS D.P. No. 1148.

Bagwell, K. and A. Wolinsky (2002), �Game Theory and Industrial Organization,�in R. J. Aumann
and S. Hart (eds.), Handbook of Game Theory, Vol. 3, North-Holland: Amsterdam,
1851-1895.

Bagwell, K. and R.W. Staiger (2005), �Enforcement, Private Political Pressure and the GATT/WTO
Escape Clause,�Journal of Legal Studies, 34.2, 471-513.

Bain, J. (1956), Barriers to New Competition: Their Character and Consequences in
Manufacturing Industries, Cambridge, MA: Harvard University Press.

Benham, L. (1972), �The E¤ect of Advertising on the Price of Eyeglasses,� Journal of Law and
Economics, 15.2, 337-352.

Cable, J. (1972), �Market Structure, Advertising Policy and Intermarket Di¤erences in Advertising
Intensity,�in K. Cowling (ed.),Market Structure and Corporate Behavior, London:
Gray-Mills Publishing, 107-24.

Cady, J. (1976), �An Estimate of the Price E¤ects of Restrictions on Drug Price Advertising,�
Economic Inquiry, 14.4, 493-510.

Comanor, W. S. and T. A. Wilson (1974), Advertising and Market Power, Cambridge, MA:
Harvard University Press.

Demsetz, H. (1973), �Industry Structure, Market Rivalry, and Public Policy,�Journal of Law and
Economics, 16, 1-9.

Ferguson, J. M. (1974), Advertising and Competition; Theory, Measurement, Fact, Cam-
bridge, MA.: Lippincott, Ballinger.

Friedman, J. W. (1983), �Advertising and Oligopolistic Equilibrium,�Bell Journal of Economics,
14.2, 464-473.

Gasmi, F., La¤ont, J.J., and Q. Vuong (1992), �Econometric Analysis of Collusive Behavior in a
Soft-Drink Market,�Journal of Economics & Management Strategy, 1.2, 277-311.

Greer, D. F. (1971), �Advertising and Market Concentration,�Southern Economic Journal, 38.1,
19-32.

Hanazono, M. and H. Yang (2007), �Collusion, Fluctuating Demand and Price Rigidity,�Interna-
tional Economic Review, 48.2, 483-515.

Hopkins, E., and T. Kornienko (2007) �Cross and Double Cross: Comparative Statics in First Price
and All Pay Auctions,� The B. E. Journal of Theoretical Economics, Vol. 7: Iss. 1
(Topics), Article 19.

Kadiyali, V. (1996), �Entry, Its Deterrence, and Its Accommodation: A Study of the US Photo-
graphic Film Industry,�RAND Journal of Economics, 27.3., 452-478.

Lebrun, B. (1998), �Comparative Statics in First Price Auctions,�Games and Economic Behavior,
25, 97-110.

38



Lee, G. M. (2007), �Trade Agreements with Domestic Policies as Disguised Protection,� Journal
of International Economics, 71.1, 241-259.

Maskin, E. and J. Riley (1984), �Optimal Auctions with Risk Averse Buyers,�Econometrica, 52.6,
1473-1518.

McAfee, R.P. and J. McMillan (1992), �Bidding Rings,�American Economic Review, 82.3, 579-599.
Milgrom, P. and I. Segal (2002), �Envelope Theorems for Arbitrary Choice Sets,�Econometrica,

70.2, 583-601.
Nelson, P. (1974), �Advertising as Information,�Journal of Political Economy, 82, 729-754.
Nocke, V. (2007), �Collusion and Dynamic (Under-) Investment in Product Quality,�Rand Journal

of Economics, 38.1, 227-49.
Reinganum, J. (1979), �A Simple Model of Equilibrium Price Dispersion,� Journal of Political

Economy, 87, 851-58.
Scherer, F. M. (1980), Industrial Market Structure and Economic Performance, 2d ed.,

Chicago: Rand McNally College Publishing Co.
Simon, J. (1970), Issues in the Economics of Advertising, Urbana: University of Illinois Press.
Spulber, D.F. (1995), �Bertrand Competition when Rivals�Costs are Unknown,�Journal of Indus-

trial Economics, 43.1, 1-11.
Stigler, G. J. (1968), �Price and Non-Price Competition,� Journal of Political Economy, 76.1,

149-54.
Sutton, C. J. (1974), �Advertising, Concentration and Competition,�Economic Journal, 84, 56-69.
Symeonidis, G. (2000), �Price Competition and Market Structure: The Impact of Cartel Policy on

Concentration in the U.K.,�Journal of Industrial Economics, 48.1, 1-26.
Varian, H. (1980), �A Model of Sales,�American Economic Review, 70.4, 651-659.

39



10 Supplementary Materials

10.1 Introduction

These supplementary materials contain three parts. The �rst part de�nes a complete-information
game, characterizes the associated symmetric mixed-strategy equilibrium, and shows that the dis-
tribution of advertising in this equilibrium is approximately the same as that which is induced
by the pure-strategy advertising equilibrium of the incomplete-information game when production
costs vary su¢ ciently little with respect to types. The second part considers the repeated game
and extends our analysis so as to provide a more general characterization of optimal collusion. The
third part considers the robustness of the results of the repeated game to a relaxation under which
price selections are publicly observed by all �rms.

10.2 Equilibrium in Complete-Information Game

Suppose that N �rms sell a homogeneous good at a constant cost c > 0: A pure strategy for �rm i

is Ai 2 [0; r(p(c); c)] and A�i denotes the (N � 1)-tuple of advertising selected by other �rms. The
pro�t for �rm i is

�i(Ai; A�i) =

8><>:
r(p(c); c)UN �Ai if Ai < maxj 6=iAj

r(p(c); c)
�
U
N +

I
k

�
�Ai

if Ai � maxj 6=iAj and
kfj j Aj = Aigk = k � 1:

The term r(p(c); c) represents [p(c)�c]D(p(c)): A mixed strategy for �rm i is a distribution function
� over [A(�); A(�)]: The pro�t for �rm i is

Ei(�i;��i) =

Z A

A
� � �
Z A

A
�(Ai; A�i)d�1 � � � d�N ;

where A and A are de�ned below. This complete-information game has a unique symmetric mixed-
strategy equilibrium, � = �i for all i; which is characterized as follows:

Lemma A1. (i) There is no pure-strategy Nash equilibrium. (ii) There is a unique symmetric
mixed-strategy equilibrium:

�(A) =

�
A

r(p(c); c)I

� 1
N�1

with A(�) = 0 and A(�) = r(p(c); c)I: (A1)

Proof. To prove (i), assume that there are k �rms that select the highest advertising A: First,
suppose that 2 � k � N: If A < r(p(c); c)I; then a �rm can gain by raising A slightly by " and
winning all the informed consumers:

r(p(c); c)

�
U

N
+ I

�
�A� " > r(p(c); c)

�
U

N
+
I

k

�
�A:

If A = r(p(c); c)I; then a �rm can increase its pro�t by reducing A to zero and winning only the
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uninformed consumers:

r(p(c); c)
U

N
> r(p(c); c)

�
U

N
+
I

k

�
�A:

Second, suppose that k = 1: The highest-advertising �rm can raise its pro�t by setting A� " which
is slightly above the second-highest advertising.

To prove (ii), we begin by showing that any symmetric Nash equilibrium, �; must satisfy (A1).
To this end, we establish four �ndings. First, there is no mass point in �: If A is a mass point of
�; then there is a positive probability of tie at A: A �rm can increase its pro�t, if it preserves the
hypothesized equilibrium strategy, except that it replaces the selection of A with the selection of
A+ " for small ": Second, A(�) = 0: Suppose that A(�) > 0: If a �rm chooses A(�); then it wins
only the uninformed consumers with probability one, since ties occur with zero probability (because
of no mass point). The �rm can increase its pro�t when it replaces the selection of [A(�); A(�)+"]
with the selection of zero advertising. Third, A(�) = r(p(c); c)I: This result is immediate, since
the pro�t at the top is equal to the pro�t at the bottom in the mixed-strategy equilibrium:

r(p(c); c)

�
U

N
+ I

�
�A(�) = r(p(c); c)U

N
:

Fourth, � is strictly increasing over (A(�); A(�)): Suppose that there is a gap (A1; A2) such that
A(�) < A1 < A2 < A(�) and �(A1) = �(A2): Advertisements in the interval (A1; A2) are then
selected with zero probability. For " small, a �rm would gain by replacing the selection of advertising
levels in the interval [A2; A2+"] with the selection of A1+": This deviation has the same probability
of winning but uses a lower level of advertising. Given these four �ndings, we may conclude that,
in any symmetric Nash equilibrium, �; and for all A 2 [0; r(p(c); c)I];

r(p(c); c)

�
U

N
+ [�(A)]N�1I

�
�A = r(p(c); c)U

N
: (A2)

This equation yields (A1). Thus, (A1) is necessarily satis�ed in a symmetric Nash equilibrium.
Observe next that (A1) identi�es a well-de�ned and unique distribution function �(A): Lastly, we
verify that � is a Nash equilibrium. A �rm earns the same expected pro�t for any A 2 [A(�); A(�)]
when all other N�1 �rms adopt �(A): It cannot increase the pro�t by altering the distribution over
the interval. Any advertising above A(�) earns a lower expected pro�t than does A(�); because
A(�) wins the informed consumers with probability one. Any advertising below A(�) is infeasible.
�

Puri�cation. We consider an incomplete-information game, where production costs rise in
types �: We argue that if each �rm of type � chooses A(�); which is the unique advertising equi-
librium in the incomplete-information game, then the probability distribution induced by A is
approximately the distribution of advertising in the mixed-strategy equilibrium, when the payo¤
relevance of types � gets small. In the incomplete-information game, the �rm of type � 2 [�; �] pri-
vately observes its type and has the cost c(�): Assume that function c is di¤erentiable and strictly
increasing in �; with 0 < c(�) < c(�) < pR; where pR is given by D(pR) = 0: The static game is the
same as in the text. Then, arguing as in the proof of Proposition 1, there is a unique advertising
equilibrium A which satis�es:

A0(�) = �r(p(�); �)(N � 1)[1� F (�)]N�2f(�)I < 0 and A(�) = 0; (A3)
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where r(p(�); �) = [p(c(�))� c(�)]D(p(c(�))):
Lemma A2. Given a constant c 2 (0; pR); for any " > 0; there exists � > 0 such that if
jc(�)� cj < � for all � 2 [�; �]; then the probability distribution of advertising induced by the adver-
tising equilibrium in the incomplete-information game is "-close to �c; where �c is the distribution
of advertising in the mixed-strategy equilibrium of the complete-information game with constant cost
c:

Proof. The distribution induced by A(�) is

prob (� j A(�) � x) = prob
�
� � A�1(x)

�
= 1� F

�
A�1(x)

�
:

Let �c denote the symmetric mixed-strategy equilibrium with costs c: De�ne the function Ac by

Ac(�) = �
�1
c (�(�)); where �(�) � 1� F (�):

Given that �(�) is strictly decreasing in � and �c is strictly increasing, Ac(�) is strictly decreasing
in �: The proof is established as a consequence of the following results. First, if each �rm of type �
chooses Ac(�); then the distribution of advertising becomes �c: In other words, Ac(�) induces the
same distribution of advertising as �c:

prob (Ac(�) � x) = prob
�
��1c (�(�)) � x

�
= prob (�(�) � �c(x))

= prob (F (�) � 1� �c(x))

= prob
�
� � F�1(1� �c(x))

�
= 1� F

�
F�1(1� �c(x))

�
= �c(x):

Second, Ac(�) solves (A3) when c(�) = c: By the de�nition of Ac(�); we have that

A0c(�) = �f(�)=�0c(Ac(�)):

To �nd �0c(Ac(�)); we recall the mixed strategy (A2) and di¤erentiate it with respect to A :

1 = (N � 1)r(p(c); c) [�(A)]N�2�0(A)I:

Replacing � with �c; we obtain

�0c(A) =
1

(N � 1)r(p(c); c) [�c(A)]N�2 I
:

Substituting, we thus �nd that

A0c(�) = �(N � 1)r(p(c); c) [�c(Ac(�))]N�2 f(�)I:

Note also that Ac(�) = ��1c (1 � F (�)) = ��1(0) = 0: Hence, when c(�) = c; Ac(�) solves (A3).
Third, if jc(�)� cj is small, then A(�) induces approximately the same distribution of advertising
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as does �c: This result is based on the �rst and second result. The function Ac(�) induces �c by
the �rst result, and Ac(�) approximates A(�) when c(�) approaches c by the second result: for any
" > 0; there exists � > 0 such that if jc(�)� cj < � for all � 2 [�; �]; then jA(�)�Ac(�)j < ": As c(�)
becomes closer to a constant c; the type � becomes less payo¤-relevant. Hence, the distribution
of advertising induced by A(�); prob(� j A(�) � x) ; approximates �c when the payo¤ relevance of
types � gets small. �

10.3 Optimal SPPE in the Repeated Game

We now extend the analysis in the main paper that leads to Lemma 3. To this end, suppose
that the entire advertising schedule is decomposed into K intervals, [[�1; �2]; (�2; �3]; :::; (�K ; �K+1]];
where �1 = � and �K+1 = �; and �k < �k+1: Using Lemma 3, if the schedule A solves the No-Wars
Program, then the expected pro�t is

E� [R(�; �;A)�A(�)] = r(p(�); �)M(�K ; �K+1;A) (A4)

+
KX
k=1

Z �k+1

�k

D(p(x))
F

f
(x)M(�k; �k+1;A)f(x)dx:

The interval at the top is pooling so that

M(�K ; �K+1;A) =
U

N
+ [1� F (�K)]N�1

I

N
:

The market-share allocation function on a pooling interval is

M(�k; �k+1;A) =
U

N
+
N�1X
j=0

�
N � 1
j

�
1

j + 1
[F (�k+1)� F (�k)]j [1� F (�k+1)]N�j�1 I: (A5)

On a sorting interval, the market share allocated to type � 2 (�k; �k+1] is

M(�k; �k+1;A) =
U

N
+ [1� F (�)]N�1 I: (A6)

Note that the expected market share over the entire interval is 1
N :

KX
k=1

Z �k+1

�k

M(�k; �k+1;A)f(�)d� =
1

N
:

An advertising schedule has a discontinuity (a jump) between two �at steps (pooling intervals) and
between sorting and pooling intervals. The level of jump at a point is determined by the binding
incentive constraint at the point.

We next ask whether an optimal SPPE adopts �at steps other than at the top. To provide a
su¢ cient condition for an interval to take a �at step, we �rst show that either pooling or sorting
has the same expected market share on a given interval. The market-share allocation function on
a pooling (sorting) interval is denoted by M(�k; �k+1;Ap) (M(�k; �k+1;As)): These functions are
de�ned in (A5) and (A6), respectively.
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Lemma A3. Fix a partition of types [[�1; �2]; (�2; �3]; :::; (�K ; �K+1]]. On any interval (�k; �k+1];
separating and pooling market-share allocation functions generate the same expected market share:Z �k+1

�k

M(�k; �k+1;A
s)f(x)dx =

Z �k+1

�k

M(�k; �k+1;A
p)f(x)dx:

Proof. We follow two steps to prove that either sorting or pooling has the same expected
market share:

8�k+1 � �k;
Z �k+1

�k

M(�k; �k+1;A
p)f(x)dx =

Z �k+1

�k

M(�k; �k+1;A
s)f(x)dx: (A7)

First, we can immediately show that if �k+1 = �k; then the equation holds. Second, we can show
that for any �k+1 > �k;

@
R �k+1
�k

M(�k; �k+1;A
p)f(x)dx

@�k+1
=
@
R �k+1
�k

M(�k; �k+1;A
s)f(x)dx

@�k+1
: (A8)

In other words, the expected market-share allocations are the same in both schemes at �k+1 = �k;
and then they increase at the same rate as �k+1 rises above �k: The LHS of (A8) is given by

@
R �k+1
�k

M(�k; �k+1;A
p)f(x)dx

@�k+1
=

�
U

N
+ [1� F (�k+1)]N�1I

�
f(�k+1)

=
@
R �k+1
�k

�
U
N + [1� F (x)]

N�1I
�
f(x)dx

@�k+1

=
@
R �k+1
�k

M(�k; �k+1;A
s)f(x)dx

@�k+1
:

The last term is the RHS of (A8). The �rst equality is established by tedious works of induction
for N � 2. Because of the �rst equality, we can deriveZ �k+1

�k

M(�k; �k+1;A
p)f(x)dx =

�
[1� F (�k)]N � [1� F (�k+1)]N

� I
N
+ [F (�k+1)� F (�k)]

U

N
: (A9)

Lemma A3 is now established. �
We next argue that if � is su¢ ciently high, then an optimal SPPE involves a single �at step

on any general interval over which D(p(�))Ff (�) is nondecreasing. We thus argue that, if a scheme
on such an interval involves sorting throughout the interval, multiple �at steps, or combinations of
sorting and pooling, then it is not optimal.

To build toward this result, we �x an interval (�k; �k+1] and de�ne a distribution function under
a pooling scheme Ap:

G (�k; �k+1;A
p) �

R �
�k
M(�k; �k+1;A

p)f(x)dxR �k+1
�k

M(�k; �k+1;Ap)f(x)dx
: (A10)
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A distribution G (�k; �k+1;As) is analogously de�ned under a sorting scheme As. In the two dis-
tributions, the denominators are the same by Lemma A3. It then follows that G (�k; �k+1;Ap)
�rst-order stochastically dominates G (�k; �k+1;As). Thus, for nondecreasing D(p(�))Ff (�);Z �k+1

�k

D(p(�))
F

f
(�)dG (�k; �k+1;A

p) �
Z �k+1

�k

D(p(�))
F

f
(�)dG (�k; �k+1;A

s) : (A11)

The inequality can be rewritten to show that a �at step is preferred to a sorting scheme on an
interval (�k; �k+1] where D(p(�))Ff (�) is nondecreasing:Z �k+1

�k

D(p(x))
F

f
(x)M(�k; �k+1;A

p)f(x)dx �
Z �k+1

�k

D(p(x))
F

f
(x)M(�k; �k+1;A

s)f(x)dx: (A12)

The analysis just presented establishes the �rst-order stochastic dominance of Ap over As: The
argument presented uses Lemma A3, which ensures that the denominators of the distributions
G (�k; �k+1;A

p) and G (�k; �k+1;As) are the same. We pause now to show that the result can be
extended to the comparison between a single-step function Ap and a two-step function A2step over
an interval (�k; �k+1]: To this end, suppose that there is a jump at �� 2 (�k; �k+1); and de�ne a
distribution:

G
�
�k; �k+1;A

2step
�
�
R ��
�k
M(�k; �

�;A2step)f(x)dx+
R �
��M(�

�; �k+1;A
2step)f(x)dxR �k+1

�k
M(�k; �k+1;A2step)f(x)dx

: (A13)

Observe that if the denominators of G (�k; �k+1;Ap) and G
�
�k; �k+1;A

2step
�
are the same, then

G (�k; �k+1;A
p) �rst-order stochastically dominates G

�
�k; �k+1;A

2step
�
: It thus su¢ ces to show

that Z �k+1

�k

M(�k; �k+1;A
2step)f(x)dx =

Z �k+1

�k

M(�k; �k+1;A
p)f(x)dx: (A14)

Because of (A9), the RHS of (A14) becomes

�
[1� F (�k)]N � [1� F (�k+1)]N

� I
N
+ [F (�k+1)� F (�k)]

U

N
;

and the LHS becomesZ ��

�k

M(�k; �
�;A2step)f(x)dx+

Z �k+1

��
M(��; �k+1;A

2step)f(x)dx

=
�
[1� F (�k)]N � [1� F (��)]N

� I
N
+ [F (��)� F (�k)]

U

N

+
�
[1� F (��)]N � [1� F (�k+1)]N

� I
N
+ [F (�k+1)� F (��)]

U

N
:

A simpli�cation con�rms (A14). The result can be extended to any form of multiple-step functions.
The inequality (A12) indicates that there is a force in favor of pooling on an interval where

D(p(�))Ff (�) is nondecreasing. It is premature, however, to conclude that optimal SPPE always
entails a single pooling step on such an interval. In particular, our discussion so far has ignored
the possibility that pooling on a given interval may have a negative externality on the pro�ts for
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other types on other intervals. Fortunately, however, in our model, a pooling step on one interval
is not harmful to types on other intervals. The reason is that for any candidate scheme for optimal
SPPE, there is an alternative scheme that has a pooling step on an interval and maintains the initial
market-share allocations on other intervals. To see this, suppose that an optimal scheme, A; does
not entail a single pooling step over an interval (�i; �i+1] on which D(p(�))Ff (�) is nondecreasing.
Our attention can be restricted to the candidate scheme that has no wars and is pooling with zero
advertising at the top. We now construct an alternative scheme eA from the top: eA preserves the
original scheme A for � > �i+1 and eA is pooling over (�i; �i+1] and makes a parallel shift from A for
� � �i:40 There are jumps at �i and �i+1: The level of jump is made such that (On-IC) is binding
at each point. Observe that the alternative scheme preserves the market-share allocations of the
original scheme except for the types on (�i; �i+1]; and that the pooling on (�i; �i+1] a¤ects (On-IC)
for all the types below �i+1 and their interim-stage pro�ts. Having the same pro�t at the top, their
interim pro�ts take di¤erent forms of information rents. Assuming that eA consists of K intervals,
the expected pro�t becomes

E�

h
R(�; �; eA)� eA(�)i = r(p(�); �)M(�K ; �K+1; eA) (A15)

+
KX

k 6=i;k=1

Z �k+1

�k

D(p(x))
F

f
(x)M(�k; �k+1; eA)f(x)dx

+

Z �i+1

�i

D(p(x))
F

f
(x)M(�i; �i+1; eA)f(x)dx:

The �rst two terms on the RHS are the same under the original scheme, A. The last term is in favor
of pooling when D(p(�))Ff (�) is nondecreasing over (�i; �i+1]: This result contradicts the optimality

of A and shows that D(p(�))Ff (�) being nondecreasing over an interval is a su¢ cient condition for
optimal SPPE to take a pooling step over the interval.

By the same token, a sorting scheme is optimal on an interval where D(p(�))Ff (�) is decreasing,

ignoring its impact on types on the other intervals.41 We �nd, however, that D(p(�))Ff (�) being
decreasing over an interval is only a necessary (not a su¢ cient) condition for optimal SPPE to
entail sorting over the interval. Suppose that D(p(�))Ff (�) decreases over (�i�1; �i] and then rises
over (�i; �i+1] (or is followed by a pooling step at the top). If a sorting scheme is selected over
(�i�1; �i] and is followed by a pooling step over the next interval, then the sorting scheme may have
a negative externality on types above �i: If D(p(�))Ff (�) decreases slowly on a rather short interval

and rises sharply on the next interval (or if r(p(�); �) is very high), then a single �at step over the
two intervals may be optimal because of the importance of pooling over the second interval.42

We may now summarize our �ndings as follows:

Lemma A4. Allow for any F and assume that � is su¢ ciently high. (i) An optimal SPPE entails
a single �at step on any interval where D(p(�))Ff (�) is nondecreasing, and has a pooling step at
the bottom and at the top. (ii) If a sorting scheme is ever used, it is restricted to a subset of the
interval on which D(p(�))Ff (�) is decreasing.

40The de�nition of eA is detailed in the proof of Lemma A4 below.
41This result is directly given when we multiply both sides of (A11) by �1:
42 If a scheme takes a separate pooling step on the interval where D(p(�))F

f
(�) is decreasing, it is not optimal, since

there is an alternative scheme that has a separate sorting step on the interval and maintains the initial market-share
allocations on the other intervals.
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Pooling at the top is immediate from Lemma 3 in the main paper, andD(p(�))Ff (�) strictly increases
at the neighborhood of � when f(�) > 0: The result ensures that an optimal SPPE for patient �rms
involves a single step or multiple steps. The remainder of the proof follows.

Proof. Suppose D(p(�))Ff (�) is nondecreasing over an interval (�i; �i+1]. Assume further that

the initial scheme A is not constant over this interval. We now de�ne eA and derive the corresponding
expected pro�t seen in the text. Recalling the de�nition of A+ and M+ from the proof of Lemma
2 in the main paper, we de�ne an alternative scheme eA as

eA(�) =
8>>>>><>>>>>:

A(�) if � > �i+1eAp � A+(�i+1) + r(p(�i+1); �i+1) hM(�i; �i+1; eA)�M+(�i+1; eA)i if � 2 (�i; �i+1]eA(�i) � r(p(�i); �i) hM(�i; eA)�M(�i; �i+1; eA)i+ eAp if � = �i

A(�)�
h
A(�i)� eA(�i)i if � < �i

The alternative scheme jumps at �i and �i+1 such that (On-IC) is binding at each point. It preserves
A above �i+1; pools over (�i; �i+1] and makes a parallel shift from A by A(�i)� eA(�i) below �i:We
assume that eA consists of K intervals. The initial scheme A may not have K intervals; it may have
less than K intervals. (On-IC) for the types below �i+1 and their interim pro�ts are a¤ected undereA: The interim pro�t for � 2 (�i; �i+1] is

R(�; �; eA)� eA(�) = r(p(�); �)M(�K ; �K+1; eA) + KX
k=i+1

Z �k+1

�k

D(p(x))M(�k; �k+1; eA)dx
+

Z �i+1

�
D(p(x))M(�i; �i+1; eA)dx;

where the intervals are de�ned to correspond to regions over which eA entails pooling and separation,
respectively. The interim pro�t for � 2 (�j�1; �j ] 8j � i is

R(�; �; eA)� eA(�) = r(p(�); �)M(�K ; �K+1; eA) + KX
k 6=i;k=j

Z �k+1

�k

D(p(x))M(�k; �k+1; eA)dx
+

Z �j

�
D(p(x))M(�j�1; �j ; eA)dx+ Z �i+1

�i

D(p(x))M(�i; �i+1; eA)dx:
Since eA preserves the initial market-share allocations except for � 2 (�i; �i+1]; what is new undereA is the last term in each interim pro�t. Integrating by parts, we can yield the expected pro�t as
stated in (A15). �

Despite various possibilities of sorting and pooling intervals, an optimal SPPE may take a
simple form. The use of sorting schemes is quite limited, and the number of pooling steps is also
limited, since a separate pooling step is never used over the interval where D(p(�))Ff (�) decreases.

The simplicity of an optimal SPPE is evident when D(p(�))Ff (�) is quasiconcave, which is likely
when F is log-concave and which includes as a special case the possibility emphasized above in
which D(p(�))Ff (�) is nondecreasing. If D(p(�))

F
f (�) is quasiconcave, then an optimal SPPE will

be characterized by either a single pooling step with zero advertising or two pooling steps that may
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or may not include a sorting interval in the middle. Consider a linear demand function D(p) = 1�p
when N = 5; and suppose that � is uniformly distributed over [0; �]: Then D(p(�))Ff (�) =

(1��)�
2

is concave with the maximum at 0:5: When � decreases from 1; pooling becomes more desirable,
since pro�t at the top rises and the interval on which D(p(�))Ff (�) decreases becomes shortened.

When � = 0:99; an optimal SPPE has two �at steps that include a sorting interval approximately
between 0:752 and 0:962: When � = 0:77; an optimal SPPE has only two �at steps with a jump at
0:75: When � = 0:70; it is a single step with zero advertising.

As we show above, if �rms are su¢ ciently patient and D(p(�))Ff (�) fails to be nondecreasing

over [�; �]; then the optimal SPPE is again stationary but may involve multiple pooling steps or
perhaps even sorting intervals. For such cases, we can characterize the critical discount factor in
the same general fashion as described in the main paper. Along a pooling step, the type that is
most tempted to cheat is the lowest type on the step. If a sorting interval exists, then advertising
must rise discontinuously as the type is lowered below the lowest type on the sorting interval. The
lowest type on the sorting interval already advertises strictly more than all other types on this
interval, and thus does not gain from a slight o¤-schedule increase in its advertising level. Building
on this reasoning, it can be shown that the o¤-schedule constraint is sure to hold if the lowest type
on any pooling interval does not gain from a slight increase in its advertising.

10.4 Public Price Histories

In our repeated-game analysis, we assume that each �rm observes the realization of rival �rms�past
advertising choices but not the realization of rival �rms�past pricing choices. This assumption may
be appropriate in markets with complex and customer-speci�c pricing schemes, or when search
costs are high. It also enables us to set prices at monopoly levels, so that we may use results
from the static model and focus on the incentive constraints that are associated with collusion in
advertising. The assumption is not always plausible, however, and we now discuss the robustness
of our analysis when this assumption is relaxed.

When our repeated game is extended to allow for public price histories, each �rm observes the
realizations of rival �rms�past advertising and price choices. Thus, in the extended model, a �rm
with cost type � can undertake an on-schedule deviation only if it mimics the advertising and price
selection of a �rm with cost type b�: The gain from mimicry is thus reduced, and so new equilibria
exist. At the same time, our featured SPPE - in which �rms pool at zero advertising and set their
monopoly prices - continues to exist when price histories are public. In this equilibrium, �rms
simply condition their future play on the public history of advertising, and �rms again set their
prices at monopoly levels.

Formally, in the repeated game with public price histories, we denote a candidate advertising
and pricing schedule as (A; ep); where ep(�) may di¤er from p(�): If a �rm of cost type � mimics the
advertising and price selection of a �rm of cost type b�; then it must select A(b�) and ep(b�): To use the
Relaxed Program, we let W (b�) � �[supV �v(A(b�); ep(b�);A; ep)] and write the interim-stage pro�t as

�(b�; �;A; ep) � r(ep(b�); �)M(b�;A)�A(b�)�W (b�):
For simplicity, assume that A and ep are continuously di¤erentiable except at a �nite number of
points where the functions may jump.

The scheme (A; ep;W ) satis�es on-schedule incentive compatibility only if two conditions hold.
First, a local optimality condition must hold. Under an appropriate envelope theorem (Milgrom
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and Segal, 2002), we may use �2(b�; �;A; ep) = �D(ep(b�))M(b�;A) to get
�(�; �;A; ep) = r(ep(�); �)M(�;A)�A(�)�W (�) + Z �

�
D(ep(x))M(x;A)dx:

Second, a monotonicity condition must hold. On-schedule incentive compatibility implies

r(ep(�); �)M(�;A)�A(�)�W (�) � r(ep(b�); �)M(b�;A)�A(b�)�W (b�)
r(ep(b�);b�)M(b�;A)�A(b�)�W (b�) � r(ep(�);b�)M(�;A)�A(�)�W (�):

Adding the two inequalities, we �nd that D(ep(�))M(�;A) must be nonincreasing in �: As in Lemma
1, these two necessary conditions are also su¢ cient for (A; ep;W ) to satisfy on-schedule incentive
compatibility.

We now further restrict attention to those incentive-compatible schemes (A; ep;W ) for which
informed consumers are rational in using the advertising search rule.43 With this restriction, we
�nd that A(�) must be nonincreasing.44 Since informed consumers use the advertising search rule,
M(�;A) must be nonincreasing as well. Given the restriction that informed consumers are rational
to use the advertising search rule, ep(�) must be nondecreasing; equivalently, D(ep(�)) must be
nonincreasing. Thus, a scheme (A; ep;W ) satis�es on-schedule incentive compatibility and is also
consistent with the rational use of the advertising search rule only if M(�;A) and D(ep(�)) are each
nonincreasing.

Consider now the potential use of wars. When prices are public, we cannot immediately use
the arguments in Lemma 2 to establish that wars are unnecessary. The reason is that incentive
compatibility no longer ensures that A(�) +W (�) is nonincreasing; hence, we cannot be sure that
an alternative scheme de�ned by eA(�) � A(�) +W (�) would exhibit the necessary nonincreasing
property.45 In the limiting case where demand is inelastic, however, we can establish that wars
are unnecessary. In that case, for an initial scheme that involves a war on a step, it is possible to
eliminate the war and adjust price and advertising on that step, while ensuring that the induced
advertising schedule is nonincreasing and that market shares and pro�ts are maintained for all
types.46 When demand is elastic, however, such step-by-step maneuvers are not possible. The

43This restriction holds automatically when prices are not public, since p(�) is strictly increasing.
44Assume to the contrary that � > b� and A(�) > A(b�): This implies M(�;A) > M(b�;A); given that informed

consumers use the advertising search rule. Since we require as well that it is rational for informed consumers to use
the advertising search rule, it must be that ep(�) � ep(b�) and hence D(ep(�)) � D(ep(b�)): Thus, A(�) > A(b�) implies
D(ep(�))M(�;A) > D(ep(b�))M(b�;A); which contradicts the requirement that D(ep(�))M(�;A) is nonincreasing.
45To see that A(�)+W (�) may have increasing segments, consider a two-step scheme in which A is at a high (low)

level for cost types below (at or above) a critical type, �c: Suppose that ep(�) = p(�c) for types at or above �c whileep(�) = p(�) for types below �c: Even though market share is higher for lower types, a �rm with cost type �c may
earn greater net revenue by setting its monopoly price and accepting a lower market share. On-schedule incentive
compatibility would then require that A(�) +W (�) is higher for higher types.
46Consider a two-step scheme, where b� represents a type on the bottom step and � represents a type on the top

step. Let �c denote the critical type that separates the steps. Suppose that A(b�) > A(�) and thusM(b�;A) > M(�;A):
Suppose further that A +W is increasing: A(b�) +W (b�) < A(�) +W (�): Incentive compatibility is satis�ed if type
�c is indi¤erent between the two steps. Given that the higher step entails a lower value for M and a higher value
for A +W; this is possible only if the higher step entails a higher price: ep(�) > ep(b�): We now create a new scheme,
in which W (�) is lowered to a new value, WN (�); at which A(b�) +W (b�) = A(�) +WN (�) + �; for � > 0 small. To
maintain incentive compatibility, we adjust ep(�) downward until type �c is again indi¤erent. The resulting new priceepN (�) satis�es epN (�) > ep(�): This maneuver maintains pro�t for all types. We next eliminate wars and de�ne eA in
terms of the new scheme: eA(b�) = A(b�) +W (b�) and eA(�) = A(�) +WN (�): Note that eA decreases with � in the same
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appeal of a price change then varies with cost type; thus, a price change on one step requires that
the scheme be modi�ed on other steps, in order for the initial market share allocation to remain
incentive compatible.47

To allow for general demand functions, we now impose W (�) � 0 and focus on stationary
SPPE. Utilizing the two conditions for on-schedule incentive compatibility, we thus now analyze
the No-Wars Program, in which (A; ep) is selected to maximize

E� [�(�; �;A; ep)] = r(ep(�); �)M(�;A)�A(�) + E� �D(ep(�))F
f
(�)M(�;A)

�
subject to: D(ep(�)) and M(�;A) are nonincreasing in �:

A �rst point is that, if demand is su¢ ciently inelastic and F is log-concave, then zero advertising
and monopoly pricing, (A � 0; p(�)); solves this program. Given the requirement that M(�;A) is
nonincreasing, we may argue as before to �nd that pro�t at the top and expected information rents
are maximized when A � 0 and each type receives market share 1

N . The best choice of ep(�) is then
the monopoly pricing function, p(�): We conclude that our results are robust to the possibility of
public price histories, if demand is su¢ ciently inelastic.

A second point is that pooling at zero advertising is optimal within the class of stationary SPPE
in which the pricing function ep(�) satis�es the further constraint that D(ep(�))Ff (�) is nondecreasing.
For example, if F is log-concave and all types of �rms set a constant price, p � ep(�) � �; then the
optimal advertising schedule entails pooling at zero advertising. Firms may set a constant price for
a variety of (unmodeled) reasons, including resale price maintenance requirements and customer
market concerns. In fact, when these reasons apply and a constant price is used, we can argue as in
Lemma 2 and show that wars are not useful (i.e., the restriction to stationary SPPE is without loss
of generality, when price is constant). Thus, in a modi�ed game where �rms must use a constant
price, if F is log-concave, the optimal SPPE for patient �rms entails pooling at zero advertising.
Of course, in the case where price is exogenously �xed at p, it is immaterial whether or not price
is public.

Our third point is that robust forces remain in favor of pooling in advertising, even for general
demand functions.48 A simple way to make this point is to consider any scheme (A; ep) in which
A(�) is strictly decreasing and thus entails sorting over [�; �]. We may then consider an alternative
pooling scheme (A�; ep�) in which ep� � �p� and A� � 0 over [�; �]. The level of price �p� is determined
to satisfy Z �

�
D(�p�)

1

N
f(x)dx =

Z �

�
D(ep(x)) �U

N
+ [1� F (x)]N�1I

�
f(x)dx

We now de�ne a distribution function under (A� � 0; �p�):

G (�;A�; �p�) �
R �
� D(�p

�) 1N f(x)dxR �
� D(�p

�) 1N f(x)dx
:

A distribution G (�;A; ep) is analogously de�ned under (A; ep): Since G(�;A�; �p�) �rst-order stochas-
way as did A; hence, eA generates the same market share allocation as did A.
47For related reasons, Athey, Bagwell and Sanchirico (2004) are also unable to eliminate wars when demand is

elastic.
48Our discussion here builds on Athey, Bagwell and Sanchirico (2004).
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tically dominates G (�;A; ep) ; we can show that, for nondecreasing F
f (�);Z �

�

F

f
(x)D(�p�)

1

N
f(x)dx �

Z �

�

F

f
(x)D(ep(x)) �U

N
+ [1� F (x)]N�1I

�
f(x)dx:

Thus, when F is log-concave, any scheme in which advertising entails sorting over the support
generates lower expected information rents than does an alternative pooling scheme in which all
types select zero advertising.
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