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Being Naive about Naive Diversification:

Can Investment Theory Be Consistently Useful?

The modern portfolio theory pioneered by Markowitz (1952) is widely used in practice

and taught in MBA texts. DeMiguel, Garlappi and Uppal (2007), however, show that,

due to estimation errors, existing theory-based portfolio strategies are not as good as we

once thought, and the estimation window needed for them to beat the naive 1/N rule (that

invests equally across N risky assets) is “around 3000 months for a portfolio with 25 assets

and about 6000 months for a portfolio with 50 assets.” In this paper, we provide new theory-

based portfolio strategies that outperform both the 1/N rule and other existing strategies

across various scenarios with an estimation window as small as 120 months, making the gains

promised by investment theory obtainable in realistic out-of-sample applications.



ALTHOUGH MORE THAN HALF A CENTURY has passed since Markowitz’s (1952) sem-

inal work, the mean-variance framework is still the major model used in practice today in

asset allocation despite many sophisticated models developed by academics.1 One of the main

reasons is that many real-world issues, such as factor exposures and trading constraints, can

be accommodated easily within this framework with analytical insights and fast numerical

solutions. However, as is the case with any model, the true parameters are unknown and

have to be estimated from data, which introduce the parameter uncertainty problem since

the estimated optimal portfolio rules are subject to random errors and can be substantially

different from the true optimal rule. Brown (1976), Bawa, Brown, and Klein (1979), and

Jorion (1986) are examples of earlier work that provide portfolio rules accounting for pa-

rameter uncertainty. Recently, Kan and Zhou (2007) compare the performances of various

strategies including their newly proposed three-fund rule that uses a third portfolio to hedge

the estimation risk in the usual sample-based two-fund strategy.2

DeMiguel, Garlappi, and Uppal (2007), in their thought-provoking paper, find, however,

that the parameter uncertainty problem can be so severe that existing sophisticated and esti-

mated portfolio rules cannot even beat the naive diversification strategy – the 1/N rule that

invests equally across N risky assets, even when the sample size is unrealistically large. In

particular, they state in their paper that “Based on parameters calibrated to the U.S. equity

market, our analytical results and simulations show that the estimation window needed for

the sample-based mean-variance strategy and its extensions to outperform the 1/N bench-

mark is around 3000 months for a portfolio with 25 assets and about 6000 months for a

portfolio with 50 assets. This suggests that there are still many ‘miles to go’ before the gains

promised by optimal portfolio choice can actually be realized out of sample.” Their finding

challenges researchers to develop new methods for overcoming the estimation problem.3

1See Grinold and Kahn (1999), Litterman (2003) and Meucci (2005) for practical applications of the
mean-variance framework; and see Brandt (2004) for an excellent survey of the academic literature.

2Pástor (2000), Pástor and Stambaugh (2000), and Tu and Zhou (2004) are examples of Bayesian studies
on the parameter uncertainty problem, but their priors are not designed for beating the 1/N rule (see Tu and
Zhou (2007)). We focus here on the classical framework and leaves the search for suitable priors elsewhere.

3That also challenges the recent fast-growing 130-30 strategy (see, e.g., Lo and Patel (2008)) with in-
vestments of trillions of dollars, which is part of the Wall Street quantitative portfolio investment strategies
based almost entirely on the mean-variance portfolio theory (see Chincarini and Kim (2006), Qian, Hua, and
Sorensen (2007), and those books cited in Footnote 1).
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Before addressing this challenge, we should point out first that it is inconsequential if

the sample-based mean-variance strategy and other theory-based ones cannot outperform

the 1/N only in some special cases. This is because the 1/N rule is the best one when the

true optimal portfolio happens to be equal to it. In this case, it has a zero error from the

optimal portfolio and cannot be improved any further, while any estimated rule must be

subject to random errors with positive variance, and therefore must perform worse than the

1/N . Hence, in cases when the 1/N is close to the true optimal portfolio as is the case in

the exact one-factor model of DeMiguel, Garlappi, and Uppal (2007), it is expected that the

estimated strategies will underperform 1/N . Thus, a random rule that only underperforms

the 1/N when the 1/N is good by design is not sufficient to say that the rule is bad.

However, if the theory-based strategies are of value consistently across models and data

sets, we would also expect that their performances should be close to that of the 1/N when

the 1/N is set to be good, and better when the 1/N is set to be poor. Unfortunately,

this is not the case in our various simulated models. For example, in a three-factor model

even when the 1/N is significantly different from the true optimal portfolio, we find that

the theory-based strategies still underperform the 1/N substantially. More severely, for one

of the data sets used by DeMiguel, Garlappi, and Uppal (2007), all of the existing theory-

based strategies (under our consideration) not only underperform the 1/N , but also have

negative risk-adjusted returns! Moreover, every one of them fails to produce positive risk-

adjusted returns in at least one of the remaining data sets. That is, investors can be worse

off by following the theory-based strategies than by simply putting 100% of the money into

the riskless asset, due to estimation errors. This raises the serious need for proposing new

theory-based strategies that can perform well consistently across models and data sets.

To address this need, we in this paper propose a number of new theory-based portfolio

strategies based on various assumptions on the data-generating process. While it is likely

that one strategy may be the best in some scenarios but not so in others, we do find that

an optimal combination of the 1/N rule with the three-fund rule of Kan and Zhou (2007)

performs consistently well across models and data sets. Intuitively, the 1/N rule has some

merits both economically and statistically. When assets returns have equal expected means

and variances and when they are independent, 1/N is the best rule with suitable risk aversion
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adjustment. In statistics, 1/N is an excellent shrinkage point for improving the estimation of

the mean of a multivariate distribution. On the other hand, the three-fund rule of Kan and

Zhou (2007) is designed to diversify the estimation risk with two sample frontier portfolios.

In the presence of estimation risk, combining the three-fund rule with the 1/N can do no

worse than otherwise. Statistically, the combination is a tradeoff between adding bias and

reducing variance. When the sample size is small, the variance of the three-fund rule is large.

Increasing the weight on the 1/N in the combination will increase the bias, but decrease the

variance. Thus, a sample-dependent optimal weighting should make the combination better

than using either the 1/N or the three-fund rule alone. Clearly, though, as the sample size

goes up, more weight will be placed on the three-fund rule. With an infinite amount of data,

the weight will eventually converge to one, and the combination rule will converge to the

true optimal portfolio.

It is an empirical matter how well the combination rule performs. As it turns out, it

emerges as the best and most robust rule among all existing rules and those proposed in this

paper. In particular, it outperforms substantially the 1/N across almost all models in our

study: in a one-factor model with mispricing, in multiple factor models with and without

mispricing, and in models calibrated from real data without any factor structures, even when

the estimation window (sample size) T is as small as 120. For example, in a one-factor model

with 25 assets and with pricing error alphas ranging from −5% to 5% per year, it achieves

average expected utility 5.81%, 7.44%, 10.02%, and 12.99% per year, respectively, while the

1/N rule has a constant level of 3.89% per year, as T goes up from 120 months to 240, 480,

and 960 months. In a model calibrated with Fama and French’s (1993) 25 assets, its utility

values are 12.99%, 21.53%, 30.74%, and 37.49% per year, in contrast to a much smaller value

of 4.28% per year for the 1/N . Moreover, it is the only rule that never loses money (on a

risk-adjusted basis) across models and data sets.

The central question of this paper is whether investment theory can be consistently

useful.4 Our proposed optimal combination rule is clearly theory-based and it performs

consistently well across all models and real data sets under our study, with sample sizes of

4This question is related but different from the question whether investment theory can beat the 1/N ,
which, as explained earlier, is impossible in some specific scenarios. As a matter of fact, this is true for any
fixed constant rule that is independent of the data.
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only 120 and 240 months, far less than the incredible sample sizes of “around 3000 months for

a portfolio with 25 assets and about 6000 months for a portfolio with 50 assets.” Our results

support firmly the proposition of our paper that investment theory can be consistently useful

for practical sample sizes, despite of parameter uncertainty.

The remainder of the paper is organized as follows. Section I provides the various new

estimators of the true but unknown optimal portfolio rule. Section II compares the per-

formance of the 1/N with rules proposed here and some of the existing ones. Section III

discusses directions for future research. Section IV concludes.

I. Portfolio Strategies Under Parameter Uncertainty

In this section, we review first the mean-variance framework, then present the combina-

tion or shrinkage rules and a rule based on the assumption of factor model structure, and

finally two new three- and four-fund strategies.

A. The Portfolio Choice Problem

Consider the standard portfolio choice problem in which an investor chooses his optimal

portfolio among N risky assets and a riskless asset. Let rft and rt be, respectively, the rates

of returns on the riskless asset and the N risky assets at time t. We define Rt ≡ rt − rft1N

as the excess returns, i.e., the returns in excess of the riskless asset, where 1N is an N -vector

of ones. Note that allowing for the riskless asset is not only practical in asset allocation

problems, but also meaningful to fund managers. If a fund is restricted to equity only,

the returns on utility companies should be a close proxy of the riskless asset. Since the

performances of most institutional managers are benchmarked by an index, say the S&P500,

the S&P500 index portfolio is the riskless asset and the returns in excess of it are what matter

in their investment decisions. In this case, mathematically, the return on the S&P500 plays

the role of rft below, and the framework developed here applies without any problems.5

For the probability distribution of Rt, we make the common assumption that Rt is in-

dependent and identically distributed over time, and has a multivariate normal distribution

5See, e.g., Grinold and Kahn (1999) for active portfolio management with benchmarks.
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with mean µ and covariance matrix Σ. To obtain analytical solutions, we focus our analysis

on the standard mean-variance framework. In this framework, the investor at time T chooses

his portfolio weights w so as to maximize the quadratic objective function

U(w) = E[Rp]− γ

2
Var[Rp] = w′µ− γ

2
w′Σw, (1)

where Rp = w′RT+1 is the future uncertain portfolio return and γ is the coefficient of relative

risk aversion. It is well-known that, when both µ and Σ are assumed known, the portfolio

weights are

w∗ =
1

γ
Σ−1µ, (2)

and the maximized expected utility is

U(w∗) =
1

2γ
µ′Σ−1µ =

θ2

2γ
, (3)

where θ2 = µ′Σ−1µ is the squared Sharpe ratio of the ex ante tangency portfolio of the risky

assets.

However, w∗ is not computable in practice because µ and Σ are unknown. To implement

the above mean-variance theory of Markowitz (1952), the optimal portfolio weights are usu-

ally estimated by using a two-step procedure. First, the mean and covariance matrix of the

asset returns are estimated based on the observed data. The standard estimates are

µ̂ =
1

T

T∑
t=1

Rt, (4)

Σ̂ =
1

T

T∑
t=1

(Rt − µ̂)(Rt − µ̂)′, (5)

which are the maximum likelihood (ML) estimator. Second, these sample estimates are then

treated as if they were the true parameters, and are simply plugged into (2) to compute the

popular ML estimator of the optimal portfolio weights,

ŵML =
1

γ
Σ̂−1µ̂. (6)

Since ŵML is a random variable that is distributed around w∗ at most, this gives rise to a

parameter uncertainty problem because the utility associated with using ŵML is different from
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U(w∗) due to using the estimated rule rather than the true one. As shown by Brown (1976),

Bawa, Brown, and Klein (1979), Jorion (1986) and Kan and Zhou (2007), the difference can

be quite substantial in realistic applications.

Since the true portfolio weights w∗ are unknown, the task is how to best estimate them

based on available observations R1, . . . , RT . Any estimator must be a function of the data;

say w̃ = w̃(R1, . . . , RT ) is such an estimator. The classical criterion for its performance is

the expected loss function

L(w∗, w̃) = U(w∗)− E[Ũ(w̃)], Ũ(w̃) ≡ w̃′µ− γ

2
w̃′Σw̃, (7)

where U(w∗) is the expected utility of knowing the true parameters, and E[Ũ(w̃)], as nicely

put by DeMiguel, Garlappi, and Uppal (2007), is the average utility realized by an investor

who plays the estimated strategy w̃ infinitely many times. One can also imagine that playing

the same strategy works in different markets, such as the US and other countries. Brown

(1976), Jorion (1986), Frost and Savarino (1986), Stambaugh (1997), TerHorst, DeRoon,

and Werkerzx (2002), Kan and Zhou (2007), and DeMiguel, Garlappi, and Uppal (2007) are

examples of using L(w∗, w̃) to evaluate portfolio rules. In practice, even though there is a

long time series of data in the US equity market, the utilities from simulated data based

on similar lengths can still be substantially smaller than the true hypothetical utility (see,

e.g., Section II). Hence, parameter uncertainty is an important issue in practice (see., e.g.,

Meucci, 2005).

For any portfolio rule, we note first that the loss can be written as

L(w∗, w̃) =
γ

2

[
1

γ2
µ′Σ−1µ− 2

γ
µ′[E(w̃)] + E[w̃′Σw̃]

]

=
γ

2
E

[
(
1

γ
Σ−1µ− w̃)′Σ(

1

γ
Σ−1µ− w̃)′

]

=
γ

2
E [(w̃ − w∗)′Σ(w̃ − w∗)] , (8)

i.e., a quadratic function of the errors in estimating w∗. In contrasting this with the usual

statistical optimal estimation, there are two differences. First, it is a function of the primitive

parameters of the data-generating process that is of interest, not the parameters themselves.

Second, the weighting matrix, Σ, is unknown. These differences make a simple and analytical

solution to the best possible estimator of w impossible,as will be clear from the analysis below.
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B. Optimal Combinations

The naive 1/N rule is a special estimator of w∗ that ignores all data information, and

can be expressed as

we ≡ ce1N , (9)

where ce is a scalar determining the total allocation to risky assets per dollar. The simple

naive diversification 1/N rule takes ce = 1/N , and so we = 1N/N , which invests 1/N of each

dollar into each of the N risky assets. In general, we allocates funds equally among the N

risky assets with the total allocation equal to Nce, and it allocates the rest, 1 − Nce, into

the riskless asset. Since DeMiguel, Garlappi, and Uppal (2007) focus their studies on the

naive 1/N rule, we will also do so in what follows.

Although the naive 1/N rule is quite simple, DeMiguel, Garlappi, and Uppal (2007)

show that it can perform remarkably well under certain conditions. Indeed, when the assets

returns have equal means and variances and when they are independent, 1/N is the best one

with suitable risk aversion adjustment. As is well known in statistics (see, e.g., Lehmann,

E. L., and George Casella, 1998), 1/N is the common choice of a good shrinkage point for

improving the estimation of the mean of a multivariate distribution. However, there is an

important problem with the 1/N rule. It makes no use of sample information, and will

always fail to converge to the true optimal rule when it does not happen to be equal to it.

If it has a large difference from the true optimal rule, its performance must be poor.

To improve the 1/N rule with sample information, consider the following combination of

the 1/N with an unbiased ML estimator of w∗,

ŵs = (1− δ)we + δw̄, (10)

where

w̄ =
1

γ
Σ̃−1µ̂ (11)

satisfies Ew̄ = w∗ with Σ̃ = T Σ̂/(T −N − 2), and δ is the combination parameter, 0 ≤
δ ≤ 1. Intuitively, an optimal combination of we and w̄ should be at least as good as any

of them used alone. Since we is constant, its loss will remain the same even if we have an

infinite number of samples. On the other hand, w̄ performs well when the available sample

7



is large enough. Hence, a combination of we and w̄ can make use of the sample information

to pin down where the true rule is, and in so dosing improves the 1/N . The combination

is also known as a shrinkage estimator in statistics, which shrinks the 1/N rule toward the

true rule.

Formally, because of (8) and Ew̄ = w∗, the expected loss associated with using ŵs is

L(w∗, ŵs) =
γ

2

[
(1− δ)2(we − w∗)′Σ(we − w∗) + δ2E ((w̄ − w∗)′Σ(w̄ − w∗))

]

=
γ

2

[
(1− δ)2π1 + δ2π2

]
, (12)

where

π1 = w′
eΣwe − 2

γ
w′

eµ +
1

γ2
θ2, (13)

π2 =
1

γ2
(c1 − 1)θ2 +

c1

γ2

N

T
(14)

with θ2 = µ′Σ−1µ and

c1 =
(T − 2)(T −N − 2)

(T −N − 1)(T −N − 4)
. (15)

Equation (13) is trivial, and equation (14) follows from both equation (30) of Kan and Zhou

(2007) and equation (12) here. Equation (12) is quite intuitive. The 1/N rule is an estimator

of w with bias, but zero variance, while w̄ is unbiased, but with nonzero variance. Therefore,

the loss depends on δ, which determines the tradeoff between bias and variance. If the bias

is large, the 1/N should be weighted less and vice versa.

Interestingly, as long as we is not exactly equal to w∗, δ can be chosen small enough to

make the loss of the combination rule smaller than it would be using the 1/N rule alone.

Summarizing this, we have

Proposition 1: If 0 < δ < 2π1/(π1 + π2), then the combination estimator ŵs has a

strictly smaller loss than the 1/N rule.

Proposition 1 (proofs of all propositions are given in the appendix) says that the 1/N

can be dominated by the combination estimator as long as the true w∗ lies outside any given

neighborhood of 1/N . For example, in an application in which we are confident that we

must have at least some bias so that π1 > a1, a given positive constant, and if the weighted
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variance of w̄, as measured by π2, is less than a2, another given positive constant, then any

positive δ that is less than 2a1/(a1 +a2) will always make the combination estimator to have

a smaller loss than the 1/N rule.6

However, improving upon 1/N is not the goal. What we need is a good rule that can

perform well across models or assumptions. For this purpose, we optimize δ in equation (12)

to get a new rule. It is clear that the optimal choice of δ is

δ∗ =
π1

π1 + π2

, (16)

the midpoint of the bound given by Proposition 1. But this value is unknown, and has to

be estimated. π1 and π2 can be estimated by

π̂1 = w′
eΣ̂we − 2

γ
w′

eµ̂ +
1

γ2
θ̃2, (17)

π̂2 =
1

γ2
(c1 − 1)θ̃2 +

c1

γ2

N

T
, (18)

where θ̃2 is an accurate estimator θ2, proposed by Kan and Zhou (2007) and given by

θ̃2 =
(T −N − 2)θ̂2 −N

T
+

2(θ̂2)
N
2 (1 + θ̂2)−

T−2
2

TBθ̂2/(1+θ̂2)(N/2, (T −N)/2)
, (19)

where θ̂2 = µ̂′Σ̂−1µ̂ and

Bx(a, b) =

∫ x

0

ya−1(1− y)b−1dy (20)

is the incomplete beta function. Then, we obtain δ̂u, an estimator of δ∗, by plugging π̂1 and

π̂2 into (16). This will give us a completely new rule. We summarize the result as

Proposition 2: Among the combination rules ŵs = (1 − δ)we + δw̄, the estimated

optional one is

ŵCML = (1− δ̂u)we + δ̂uw̄, (21)

where the combination coefficient δ̂u = π̂1/(π̂1 + π̂2) with π̂1 and π̂2 given by (17) and (18).

Proposition 2 provides a simple and practical way to combine the 1/N with the unbiased

ML estimator w̄. Theoretically, if δ were known, the combination rule must dominate 1/N

unless w∗ = 1/N . But δ is unknown and has to be estimated in practice. This will introduce

6Proposition 1 can be extended to any fixed constant rule.
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a loss in the expected utility due to errors in estimating δ, making it uncertain whether

ŵCML can still outperform 1/N . Although the magnitude of the estimation error varies over

empirical applications, ŵCML does outperform 1/N with T as small as 120 in most scenarios

of later simulations. Clearly, as T goes to infinity, ŵCML converges to the true optimal

portfolio.

As alternatives, we can also consider an optimal combination of 1/N with either the three-

fund rule of Jorion (1986) or the three-fund rule of Kan and Zhou (2007). Since the latter

two rules are better than the unbiased ML one, the new combinations are likely to be even

better. However, terms like 1′N Σ̂−11N and µ̂Σ̂−1µ̂ enter Jorion’s estimator nonlinearly in both

numerators and denominators of the function of interest (see, e.g., (A29) in the Appendix).

As a result, analytical expressions for the combination coefficients are not feasible. As a

result, we will derive here only the combination with Kan and Zhou’s three-fund rule.

The three-fund rule of Kan and Zhou (2007) is motivated by adding the global minimum

variance portfolio into the usual ML estimator to hedge the estimation risk. The rule can

be analytically written as

ŵKZ =
T −N − 2

γc1T

[
η̂Σ̂−1µ̂ + (1− η̂)µ̂gΣ̂

−11N

]
, (22)

where

η̂ = ψ̂2/(ψ̂2 + N/T ), ψ̂2 = (µ̂− µ̂g1N)′Σ̂−1(µ̂− µ̂g1N) (23)

and µ̂g = µ̂′Σ̂−11N/1′N Σ̂−11N . To provide the combination estimator, we introduce the

following parameter estimators (whose meaning is evident from the proof in the Appendix),

π̂13 =
1

γ2
θ̃2 − 1

γ
w′

eµ̂ +
1

γc1

(
[η̂w′

eµ̂ + (1− η̂)µ̂gw
′
e1N ]

−1

γ
[η̂µ̂′Σ̃−1µ̂ + (1− η̂)µ̂gµ̂

′Σ̃−11N ]
)
, (24)

π̂3 =
1

γ2
θ̃2 − 1

γ2c1

(
θ̃2 − N

T
η̂

)
. (25)

With these preparations, we are ready to summarize the result as

Proposition 3: Among the combination rules ŵs = (1− δ)we + δŵKZ of the 1/N with

ŵKZ the three-fund rule of Kan and Zhou (2007), the estimated optional one is

ŵCKZ = (1− δ̂k)we + δ̂kŵ
KZ, (26)

10



where the combination coefficient δ̂k = (π̂1 − π̂13)/(π̂1 − 2π̂13 + π̂3) with π̂1, π̂13 and π̂3 given

by (17), (24) and (25), respectively.

Proposition 3 provides the estimated optimal combination rule that combines the 1/N

optimally with ŵKZ. By design, it should be better than the 1/N if the errors in estimating

δk are small and if the 1/N is not exactly identical to the optimal rule. This is indeed often

the case in our later simulations. Overall, while DeMiguel, Garlappi, and Uppal (2007) find

that the 1/N rule is difficult to beat, we provide two new combination strategies and show

that they can beat the 1/N rule easily under reasonable conditions.

C. Rules Based on Factor Models

The market model regression,

Rt,j = αj + βjRt,m + εt,j, j = 2, 3, ..., N, (27)

has a long history in finance, where Rt,m is the market excess return, and Rt,j’s are excess

returns on other risky assets of interest, and εt,j’s are the regression residuals with a diagonal

covariance matrix Σε. In equilibrium, the Sharpe-Lintner’s CAPM implies that the α’s should

be zeros. However, it is well-known that the CAPM does not hold exactly, and it is usually

replaced by multi-factor models, such as the three-factor model of Fama and French (1993).

Hence we consider a general K-factor model,

Rtq = α + βFt + εt, t = 1, 2, ..., T, (28)

where Ft is a K-vector of excess returns on K investable factors, Rtq is an (N −K)-vector of

excess returns on non-factor risky assets, and εt are the residuals with diagonal covariance

matrix Σε. Putting the K factor returns in the first component, then we have the mean and

covariance of the N risky assets,

µ =

(
µF

µR

)
=

(
0K

α

)
+

(
µF

βµF

)
(29)

and

Σ =

(
ΣF ΣF β′

βΣF βΣF β′ + Σε

)
, (30)

where µF and ΣF are the mean and covariance matrix of Ft and µR is the mean of Rtq.
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The question here is that, given a factor model for the return generating process, how

one can make use of this information in forming the optimal portfolio in the presence of

parameter uncertainty? Let µ̂F and Σ̂F be the sample mean and covariance matrix of the

factors, and α̂, β̂ and Σ̂ε be the standard ML estimator of the parameters. Then, it is easy

to write the ML estimator of the optimal rule in terms of these sample statistics. While the

K-factor model is likely to improve the estimate accuracy on Σ, it does little in estimating

the asset means. To provide a better estimator for the means which are related to the pricing

errors, we use a James-Stein estimator for α,

α̂JS =

[
1− (N − 3)(1 + µ̂′F Σ̂−1

F µ̂F )

T α̂′Σ̂−1
ε α̂

]+

α̂. (31)

With the above preparations, we can summarize our K-factor mode based rule as:

Proposition 4: Given the K-factor model, the ML rule that uses both the factor structure

and the James-Stein estimator for the alphas is

ŵFAC =
1

γ

(
Σ̂−1

F µ̂F − β̂′Σ̂−1
ε α̂JS

Σ̂−1
ε α̂JS

)
, (32)

where α̂JS is the James-Stein estimator given by (31).

McKinlay and Pastor (2000) propose a similar rule for factor models. They assume a

latent factor structure that can be more reasonable in practice. In contrast, ŵFAC assumes not

only a factor model, but also known factors. If the factors are misidentified in an application,

it is unlikely to perform well, as shown later. Hence, ŵFAC is useful in comparison only for

knowing how much the factor structure can help, and should be used with caution unless

one is sure of the known factor models.

D. Optimal Three- and Four-fund Rules

Consider first ŵCML, the combination rule that combines 1/N with the unbiased estima-

tor. This is a restricted three-fund rule that allocates δ amount per dollar in a fund with

weights 1/N and (1−δ) per dollar in a fund with weights w̄, with, in addition, a cash position

of (1 − δ)(1 − w̄). Apart from a scalar, the two basis funds, 1/N and w̄, are the same as

the other two funds with weights 1N and w̄p = Σ̂−1µ̂, respectively. Hence, as an extension
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of ŵCML, we examine here a more general three-fund combination,

ŵ = q11N + q2w̄p, (33)

where q1 and q2 are constants. The optimal choice of q1 and q2 are given by

Proposition 5: Given portfolios 1N and w̄p, the optional coefficients q1 and q2, that

maximize the expected utility, are
(

q∗1
q∗2

)
=

(
1′NΣ1N c21

′
Nµ

c21
′
Nµ c3(θ

2 + N/T )

)−1 ( 1
γ
1′Nµ

1
γ
c2θ

2

)
, (34)

where c1 is given by (15), c2 = T/(T −N − 2) and c3 = T 2(T−2)
(T−N−1)(T−N−2)(T−N−4)

.

Proposition 5 provides the optimal three-fund rule that allocates money into three funds:

cash, 1N and w̄p, with the cash position being 1 − q∗11
′
N1N − q∗2w̄

′
p1N . Although q∗1 and q∗2

depend on unknown parameters, they can be estimated from data. We will refer to the

estimated optimal three-fund rule as

ŵ3F = q̂1u1N + q̂2uw̄p, (35)

where q̂1u and q̂2u are the sample analogues of q∗1 and q∗2.

Consider now an extension of ŵCKZ. This will utilize a combination of all the four funds,

the earlier three funds with the addition of the global minimum variance portfolio. That is,

we examine

ŵ = q11N + q2w̄p + q3w̄g, (36)

where w̄g = Σ̂−11N is proportional to the estimated global minimum mean-variance portfolio,

and the q’s are constants. We summarize the result as

Proposition 6: Given portfolios 1N , w̄p, and w̄g, the optional coefficients q1, q2, and q3,

that maximize the expected utility, are given by



q∗1
q∗2
q∗3


 =




1′NΣ1N c21
′
Nµ c2N

c21
′
Nµ c3(θ

2 + N/T ) c31
′
NΣ−1µ

c2N c31
′
NΣ−1µ c31

′
NΣ−11N



−1 


1
γ
1′Nµ

1
γ
c2θ

2

c21
′
Nw∗


 . (37)

Proposition 6 provides the optimal combination given the four funds: cash, 1N , w̄p and

w̄g, with the cash position of 1− q∗11
′
N1N − q∗21

′
N w̄p− q∗31

′
N w̄g. As before, although q∗1, q∗2 and
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q∗3 depend on unknown parameters, they can be estimated from data. We will refer to the

estimated optimal four-fund rule as

ŵ4F = q̂1k1N + q̂2kw̄p + q̂3kw̄g, (38)

where q̂1k, q̂2k, and q̂3k are the sample analogues of q∗1, q∗2, and q∗3. Theoretically, if the

optimal q∗’s are known, the four-fund rule must outperform both the combination rules and

ŵ3F . However, the four-fund rule must be estimated, and it has one or two more parameters

to estimate than the others. Hence, empirically, whether it outperforms the others depends

on the estimation errors in obtaining the q∗’s. This is an issue to be studied in the next

section.

II. Performance Evaluation

In this section, we evaluate the performances of various rules – the 1/N , some of the best

existing rules and those proposed here, with data simulated from a range of possible models

of the asset returns. In addition, we examine their performances with real data sets.

A. Comparison in A One-factor Model

DeMiguel, Garlappi, and Uppal (2007) simulated data from a one-factor model only.

Their approach is similar to that in MacKinlay and Pastor (2000). In their simulations,

they assume that the factor Rt,m in equation (27) has an annual excess return of 8% and an

annual standard deviation of 16%. The mispricing α is set to zero, and the factor loadings, β,

are evenly spread between 0.5 and 1.5. Finally, the variance-covariance matrix of noise, Σε,

is assumed to be diagonal, with elements drawn from a uniform distribution with support

[0.10, 0.30] so that the cross-sectional average annual idiosyncratic volatility is 20%. We

follow their procedure exactly in what follows with two extensions. The first is that we

examine not only a case of risk-aversion 3, but also a case of γ = 1. The second is that we

allow the case of nonzero alphas as well to assess the impact of mispricing on the results.

This seems of applied interest because no known one-factor or K-factor models hold exactly

in practice.

Table I provides the average expected utilities of various rules in the one-factor model

14



without mispricing and with N = 25 assets. The results both here and later are all based on

10,000 simulated data sets. Panel A of the table corresponds to the case studied earlier by

DeMiguel, Garlappi, and Uppal (2007) with γ = 3. The true expected utility is 4.17, while

the 1/N rule achieves a close value of 3.89 (all utilities are annualized and in percentage

points). In contrast, the combination rules, ŵCML and ŵCKZ, have utility values of only 1.68

and 3.71, respectively, when T = 120. Although the values from ŵCKZ are close to those of

the 1/N , they are smaller until T is 3000. Theoretically, if the true combination coefficient

were known, ŵCKZ must outperform the 1/N . But the coefficient is unknown and has to be

estimated from data. As a result, the estimation errors make ŵKZ underperform. Clearly,

the difference is small and negligible. It should be noted that the underperformance occurs

only in this special simulation setup.

Why does the 1/N perform so well in the above simulation? This is because that the

1/N rule is equivalent roughly to a 100% investment in holding the factor portfolio in the

assumed factor model. To see why, we note first that the betas are evenly spread between

0.5 and 1.5, and so the 1/N equal-weighted portfolio of the risky assets should be close to

the factor portfolio. Second, under the assumption of no mispricing, the factor portfolio is

on the efficient frontier; the optimal portfolio must be proportional to it, and the proportion

depends on γ. The optimal weights on the factor portfolio are

w∗ =
1

γ

µf

σ2
f

, (39)

where µf and σ2
f are the factor excess return and variance, respectively. When µf = 8% and

σf = 16%, and when γ = 3, w∗ ≈ 0.33 × 0.08/0.162 = 1.03. This means that with γ = 3

the optimal portfolio is 103% of the factor portfolio. Hence, the 1/N portfolio is roughly the

optimal one. This is also evident by its utility value of 3.89. As this value is close to the

maximum possible, it is therefore true that the 1/N performs well, and will be difficult to

beat by any rules that are estimated from the data.

Theoretically, ŵ3F and ŵ4F should dominate the two combination rules, respectively,

if the combination coefficients were known. But the combination coefficients have to be

estimated, and there is one more parameter compared with the corresponding combination

rules. As a result, the performances of the rules depend on the tradeoff between the gains
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from using one additional parameter with the losses from the estimation errors in estimating

the additional parameter. The results of Panel A simply say that the estimation errors in

this case are more important than the gains in making them underperform. However, it will

not always be the case, as we will soon show in Panel B.

Of the existing rules examined by Kan and Zhou (2007) and DeMiguel, Garlappi, and

Uppal (2007), we only study four of them here. The first three are the better ones: MacKin-

lay and Pastor’s (2000) rule, Jorion’s (1986) three-fund rule (see the Appendix for the details

of these two rules) and Kan and Zhou’s (2007) ŵKZ. The fourth one is the popular ML es-

timator, ŵML. When T = 120, while the MacKinlay and Pastor (2000) rule has a positive

value of 2.11, the next two rules have negative ones, −12.85 and −2.15, making it worse to

invest in the risky assets than otherwise. The worst rule, the standard ML rule, has a value

of −85.72. Interestingly, with the factor model information, ŵFAC does much better than

ŵML, and even slightly outperforms the MacKinlay and Pastor (2000) rule. As T increases,

these four rules perform better. However, consistent with DeMiguel, Garlappi, and Uppal’s

(2007) finding, they still underperform the 1/N even when the sample size is as large as

6000. Overall, when T < 960, the 1/N rule performs the best.

Earlier analysis on the 1/N rule reveals also that, when γ = 1, the 1/N rule will not be

close to the optimal one. This is evident from Panel B of Table I. In this case, the optimal

investment is more aggressive and uses leverage. The expected utility is 12.50 by holding

the true optimal portfolio. If the 1/N rule is followed, the expected utility is much lower:

6.63. Interestingly, when T = 120, although the 1/N is not optimal, it still beats other rules

with the exception of ŵFAC. The reason is that it holds correctly the right efficient portfolio,

though the proportion is incorrect. In contrast, the other rules must hold a portfolio based

on estimated weights, which approximate the efficient portfolio weights with potentially large

estimation errors. Nevertheless, the utility from ŵCKZ has a very close value of 6.36, and

it beats the 1/N when T ≥ 240. Another interesting fact is that ŵ3F and ŵ4F outperform

their combination counterparts substantially when T ≥ 480. Now the gains dominate in the

tradeoff between the gains due to additional parameters and the losses due to additional

estimation errors. Moreover, both the MacKinlay and Pastor (2000) and ŵFAC perform very

well too. It seems that the factor structure information is valuable if the data are indeed
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drawn from a factor model. Although not reported here, the results are qualitatively similar

when γ is set to 6. After understanding the sensitivity of the 1/N to γ, we assume γ = 3 in

what follows.

When there is mispricing, the 1/N rule will get the composition of the optimal portfolio

incorrect as well, since the factor portfolio will no longer be on the efficient frontier. In this

case, the expected utility of the 1/N rule can be far away from the true expected utility.

Table II reports the results for two cases of the pricing errors in which the annualized alphas

are evenly spread over −2% and 2%, and over −5% and 5%, respectively. In the first case,

the 1/N rule has an expected utility of 3.89, about 40% less than 6.50, the true expected

utility. Now even when T = 120, ŵSK has an almost identical value as the 1/N . As T

increases, it beats the 1/N easily. In the second case, as the pricing errors become larger,

the 1/N rule has still an expected utility of 3.89, which becomes about 80% less than 18.73,

the true expected utility. In this case, both ŵCML and ŵCKZ beat the 1/N substantially,

even when T = 120, and much more so as T increases. Moreover, when T = 480, all the

other rules, including the standard ML estimator, beat the 1/N . The concern of DeMiguel,

Garlappi, and Uppal (2007) in the need of more than 3000 samples vanishes completely in

this larger pricing errors case.

Overall, among all the four scenarios examined thus far, the combination rule ŵCKZ

performs as well as the 1/N in some special cases and much better in general. This suggests

that there is indeed value added when using portfolio theory to guide portfolio choice over the

use of the 1/N naive diversification. In addition, when T is less than or equal to 240, ŵCKZ,

though occasionally beaten by others, is the best among all the rules across all scenarios and

sample sizes. The above conclusion is also true when the number of assets is 50, as shown

in Table III.

Following DeMiguel, Garlappi, and Uppal (2007), we also compare the performances of

different rules in terms of Sharpe ratios. Table IV provides the results in the one-factor

model. Panel A of the table corresponds to the case studied earlier by DeMiguel, Garlappi,

and Uppal (2007). The 1/N portfolio achieves a value of 13.95, which is close to the true

Sharpe ratio of 14.43 (all Sharpe ratios are monthly and in percentage points, following

the practice in the literature). In contrast, the combination rules, ŵCML and ŵCKZ, have
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values of only 12.04 and 13.70, respectively, when T = 120. Although the values from the

combination rules are close to that of the 1/N , they and other rules have smaller values until

T is 3000 with the exception of ŵFAC. Similar to the case of utility comparison, the results

are driven by the fact that the 1/N portfolio was set roughly equal to the true optimal one.

There are two surprising facts about the performances in terms of Sharpe ratios. In the

absence of parameter uncertainty, the optimal portfolio that maximizes the expected util-

ity must also maximize simultaneously the Sharpe ratio. But, in the presence of parameter

uncertainty, this is no longer the case. For example, Kan and Zhou (2007) show that an opti-

mal scaling of the covariance matrix can be applied to improve the ML rule to obtain higher

expected utility because the scaling affects the mean linearly, but the variance nonlinearly.

However, any such scaling is irrelevant here since the same Sharpe ratio will be retained.

Because of this, it is surprising that the estimated rules that are designed to maximize the

expected utility also have good Sharpe ratios. Second, the usual ML estimator of the true

portfolio rule has close Sharpe ratios to the 1/N when T = 960, a much better performance

than the case in terms of the utilities.

When there is mispricing, for brevity, we consider only the case in which the annualized

pricing errors (α’s) are evenly spread over −2% and 2%. Panel B of Table IV reports the

results. Now the 1/N rule has an average Sharpe ratio of 13.95, now about 22% less than

18.02, the true Sharpe ratio. In contrast, even when T = 120, ŵCKZ has a higher value than

the 1/N . As T increases, it beats the 1/N even more. In general, other rules perform well

too. Table V provides similar results when N = 50. Hence, in terms of Sharpe ratios, the

use of portfolio theory over the naive 1/N diversification rule becomes even more attractive.

B. Comparison in A Three-factor Model

Let us see now how the rules perform in a three-factor model. We use the same as-

sumptions as before, except now we have three factors, which are the market portfolio plus

the Fama-French’s size and book-to-market portfolios. In the simulation, the means and

covariance matrix of factors are calibrated from the monthly data from July 1963 to August

2007. The factor loadings of the non-benchmark risky assets are randomly paired and evenly

spread between 0.9 and 1.2 for the market β’s, -0.3 and 1.4 for the size portfolio β’s, and
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-0.5 and 0.9 for the book-to-market portfolio β’s.7

In the three-factor model, the 1/N rule is no longer close to the optimal portfolio. This

is evident from Table VI, which reports the results for the two cases of the pricing errors,

with the annualized α’s at zero and evenly spread over −2% and 2%, respectively. In the

first case, the 1/N rule has an expected utility of 3.85, about 70% less than 12.97, the true

expected utility. Now even when T = 120, ŵCKZ has a higher expected utility, 5.03, than the

1/N . As T increases, both wCML and wCKZ beats the 1/N substantially. In the second case,

when there are some pricing errors, the 1/N rule still has an expected utility of 3.85, which

becomes about 75% less than 14.60, the true expected utility. In this case, both wCML and

wCKZ beat the 1/N by a much greater amount when T = 240 and beyond. Moreover, when

T = 960, and both with and without mispricing, all the other rules except MacKinlay and

Pastor’s rule, beat the 1/N . Similar results are found in Table VII when N = 50.

Table VIII reports the Sharpe ratios in the three-factor model when N = 25. Now the

1/N has a Sharpe ratio about half of the true one. In contrast, most of the rules beat it

substantially even when T = 120. This is consistent with our earlier observation that beating

the 1/N is easier in terms of Sharpe ratios than in terms of utilities. When N = 50, Table IX

provides similar results. Overall, in the three-factor model, we find even stronger evidence

for beating the 1/N than in the one-factor model. The reason is that the 1/N portfolio

deviates more from the optimal portfolio in the three-factor model than in the one-factor

one.

C. Comparison with Calibrated Prameters

The comparison so far assumes a factor model structure for the return-generating process.

In general, investors may have doubts about the validity of any given factor models since

no such models can capture fully the dynamics of the returns. It is therefore of interest to

compare the performance in the case without imposing any factor model structures. To do

so, we consider two cases of using real data to calibrate the parameters. The first case is to

use the monthly excess returns of the Fama-French 25 portfolios sorted on size and book-

7These three ranges for the factor loadings are based on the ranges of the sample factor loadings of
Fama-French’s 25 size and book-to-market assets for the monthly data from July 1963 to August 2007.
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to-market ratio from July 1963 to August 2007, and the second is to use the 49 industry

portfolios from July 1969 to August 2007 provided on French’s web site. The sample means

and covariance matrix are treated as the true parameters in the calibration, and then 10,000

data sets are simulated from the normal distribution under the parametric assumptions.

Table X reports the results for both of the cases. In the first case when N = 25, the 1/N

rule has an expected utility of 4.28, about 90% less than 44.96, the true expected utility. Now

even when T = 120, wCML and wCKZ have utilities of 17.40 and 12.99, more than three times

larger than 1/N . In addition, except the McKinlay and Pastor (2000) rule and the factor

ML rule, all the others beat the 1/N significantly. When T = 960, their utilities are quickly

approaching 44.96. Since now there are no factor structures, this is why the McKinlay and

Pastor (2000) rule and ŵFAC do not perform as well as before. A similar conclusion also holds

for the second case when N = 49. However, when T = 120, wCML and wCKZ do not beat the

1/N as greatly as before. This is because as N increases, their estimation errors are larger

for a given T . Nevertheless, as T increases, they perform much better. In terms of Sharpe

ratios, Table XI reports the results. The Sharpe ratios are about twice or more as that of

the 1/N for most of the other rules. Now the ML rule has an impressive performance given

that how bad it was in terms of utilities. Overall, in comparison with the factor models, the

performance of the 1/N rule worsens greatly in the calibrated models. Therefore, there is

an unambiguous evidence for the use of the proposed portfolio rules over the naive 1/N one.

D. Comparison with Real Data

The results so far are based on simulated data sets. As emphasized by DeMiguel, Gar-

lappi, and Uppal (2007), the advantage of using simulated data is to insulate the comparison

results from the small-firm effect, calendar effects, momentum, mean-reversion, fat tails, or

other anomalies that have been documented in the literature. In other words, because of

the anomalies, results from real data do not constitute a proof that one rule is theoretically

better than another. Nevertheless, due to the inclusion of real data in other studies, we in

this subsection examine how the rules perform relative to one another with real data. The

real data sets used in our analysis below are those used by DeMiguel, Garlappi, and Uppal
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(2007),8 as well as the earlier Fama-French 25 portfolios with the three-factors, and the 49

industry portfolios plus the three factors.9

Following DeMiguel, Garlappi and Uppal (2007), we use a “rolling-sample” approach in

the estimation. Given a T -month-long dataset of asset returns, we choose an estimation

window of length M = 120 and 240 months. In each month t, starting from t = M , we use

the data in the most recent M months to month t to compute the various portfolio rules,

and apply them to determine the investments in the next month. For instance, let wz,t be

the estimated optimal portfolio rule in month t for a given rule ‘z’, and let rt+1 be the excess

return on the risky assets realized in month t+1. The realized excess return on the portfolio

is rz,t+1 = w
′
z,trt+1. We then compute the Sharpe ratio associated with z by dividing the

average value of the T −M realized returns, µ̂z, by the standard deviation, σ̂z; and calculate

the certainty-equivalent return as

CEz = µ̂z − γ

2
σ̂2

z ,

which can be interpreted as the risk-free rate that an investor is willing to accept in stead of

adopting a given risky portfolio rule z. Clearly the higher the CE, the better the rule. As

before, we set the risk aversion coefficient γ be 3.

With the real data, the true optimal rule is unknown, but can be approximated by using

the ML estimator based on the entire example. This will be referred as the in-sample ML

rule. Although this rule is not implementable in practice, it is the rule that one would have

obtained based on the ML estimator had he known all the data. Its performance serves as

a useful benchmark to see how the estimation errors affect the out-of-sample results. Table

XII report the results for the five data sets used by DeMiguel, Garlappi, and Uppal (2007)

in their Table 3, and the two additional data sets mentioned earlier.10 Indeed, due to the

limited sample size used in their estimation, all rules have CEs (annualized as before) less

than half of those from the in-sample ML rule in most cases.

8We thank Victor DeMiguel for the data, a detailed description of which can be found in DeMiguel,
Garlappi, and Uppal (2007).

9Following Wang (2005), one can exclude the five largest of the Fama-French portfolios to make their
linear combinations are not so close to the factors. But doing so has little impact on the results below.

10Note that, in comaprison with DeMiguel, Garlappi, and Uppal’s (2007) Table 3, there is one missing
column of results on the S&P sector data set, which is proprietary and not available here.
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The first data set, the 11 industry returns, is a good example that highlights the problem

of existing rules. When T = 120, the in-sample ML has a CE of 8.42 and the 1/N rule

has a decent level of 3.66. But all of the existing rules have negative CEs, ranging from

-38.18 to -0.76. In contrast, wCKZ does have a positive CE of 3.02, comparable with the

1/N rule. For the international portfolios, the 1/N remains hard to beat. Unlike other

estimated optimal rules, the CE of wCKZ is significantly positive, but its difference with the

1/N widens. However, for all the remaining five data sets, wCKZ, always performs the best

among estimated rules, and outperforms the 1/N by a large margin, with CEs about twice or

much more. However, the other estimated rules have varying performances, and lose money

at least for one of the five data sets. This is really a serious problem with existing rules that

have to be estimated from data.

The 1/N rule is not immune either. When the data set is FF-4-factor (the twenty size- and

book-to-market portfolios and the MKT, SMB, HML, and UMD factors), the 1/N performs

so poorly to have a negative return the first time. Interesting, in this case, all estimated

optimal rules except the ML, have significantly positive CEs, and wCKZ even has an CE of

25.40. This is an example where 1/N cannot be used, while the estimated rules have values.

Once again, the wCKZ is the best among all estimated rules, and is the only one that never

loses money.

When the sample size increases to M = 240, the performances of all the estimated rules

become better across data sets. Under normality, this should be true theoretically. It is

remarkable that the real data results does uphold this theoretical implication despite of

anomalies. Note that the 1/N rule now has different values. Theoretically, the performance

of the 1/N rule should be invariant to M . However, when we increase M from 120 to 240,

we have to drop 120 observations to make a fair comparison with other rules, which happens

to have increased its CE. Nevertheless, wCKZ remain the best among all estimated rules and

it outperforms the 1/N in all cases.

A related question is whether any of the portfolio strategies can beat the market out-of-

sample. Suppose that one uses the standard ML rule to allocate his wealth among cash and

the market index portfolio. The out-of-sample CEs are -0.88 and 2.40 when M = 120 and

240, respectively. This has two implications. First, the standard ML rule requires M > 120
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to be meaningful even with the market as the single risky asset. Second, when M = 240,

most of the estimated rules are better than investing into the market alone. It suggests that

there are potential gains in devising rules that account for parameter uncertainty to beat

the market.

Similar to the simulation case, Tbale XIII shows that the estimated rules perform much

better in terms of Sharpe ratios than in terms of the CEs. For example, most of them have

close values to the 1/N for the last five data sets even when M = 120. Again, the usual ML

rule has remarkable performance and sometimes becomes the best when M = 240. In short,

conclusions from the simulations largely carry through to the real data case.

III. Future Research

In this section, we explore two directions for future research. The first is to obtain in

some sense the best possible rule. The second is to find the optimal number of assets for

asset allocation given a finite sample size.

In statistical decision theory (see Berger, 1985, or Lehmann and Casella, 1998), one way

for judging an estimator is its admissibility. An estimator portfolio ŵ of the true optimal

one is admissible if there is no other estimator w̃ such that

L(w∗, w̃) ≤ L(w∗, ŵ) (40)

and if the inequality holds strictly for some true parameter values. Hence, if an estimator

is admissible, one cannot find another estimator that is better sometimes and never worse.

The ML rule estimator is an example of an inadmissible estimator, since, as shown by Kan

and Zhou (2007), for all possible unknown parameters,

L(w∗, w̃) < L(w∗, ŵm) (41)

where w̃ = cmŵML, a scaling adjustment of the ML rule with cm as the scalar. However,

whether w̃ is admissible or not is still an open question.

The common tool for proving admissibility of an estimator is to relate it to a generalized

Bayes estimator (GBE), which is defined as the estimator that minimizes the expected loss:

min
ŵb

E[L(w∗, ŵb)] =
γ

2

∫ ∫
p(µ, Σ) [(ŵb − w∗)′Σ(ŵb − w∗)] dµ dΣ, (42)
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where p(µ, Σ) is a prior density on µ and Σ. Theoretically, if the prior is proper, and if

there is a unique GBE, then the GBE must be admissible. It follows that any constant rule

estimator, including the 1/N rule, is admissible. This is because any other estimator must

have a nonzero error when the true and unknown rule happens to be equal to the constant,

and hence it cannot dominate the constant estimator always. The constant estimators are

known as trivial admissible estimators, which are often discarded in the statistical literature

because they can be arbitrarily poor if the true true lies far away from it. This is the

inconsistency problem: they do not converge to the true parameter even if there are infinite

samples. Hence, in a statistical sense, a good estimator of the rule should be both admissible

and consistent.

Although the two combination rules and the three- and four-fund rules are excellent

investment strategies and do converge to the true optimal rule as the sample size increases

to infinity, it is an open question whether or not they are admissible. In fact, it is unclear at

all how a nontrivial admissible rule can be obtained in the context of mean-variance utility

maximization. To see the difficulty, consider an estimator of the following type,

ŵa =
1

γ
Σ̂−1

a µ̂a, (43)

where µ̂a and Σ̂a are GBEs of µ and Σ to be determined below. Under any proper Bayes

prior p(µ, Σ), the associated GBE for µ can be solved,

µ̂a = [E(Σ̂−1
a ΣΣ̂−1

a )]−1E(Σ̂−1
a µ), (44)

where the expectation is taken under p(µ, Σ) and Σ̂a is not unique, and can in fact be

arbitrary. Hence, the usual theory about the GBE does not apply.

To obtain an approximate admissible rule estimator, we assume that Σ is known for a

moment. Then, the loss function, by equation (8), can be written as:

L(w∗, ŵa) =
1

2γ
E

[
(µ̂a − µ)′Σ−1(µ̂a − µ)

]
, (45)

which is a problem of estimating µ with a quadratic loss. Lin and Tsai (1973) provide an

admissible estimator for this reduced loss function, even with Σ unknown,

µ̂a = (1− c4/θ̂
2)µ̂, (46)
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where

c4 =
N − 2

T −N + 2
− 2

T −N + 2

[∫ 1

0

(1 + θ̂2)T/2

(1 + θ̂2t)(T+2)/2
t(N−4)/2 dt

]−1

. (47)

(see Appendix A for a proof) A combination of this mean estimator with an estimator of Σ,

Σ̂a, obtains an estimated rule ŵa = Σ̂−1
a µ̂a/γ. Future research is needed to find an estimator

of Σ such that ŵa can outperform the rules proposed in this paper.

In the parameter uncertainty literature, given N and T , one often solves the optimal

investment strategy for investing money into all N risky assets, and this paper is no exception.

In practice, though, the sample size may be considered as given, but we can devise strategies

for investing into L, L ≤ N , assets given T . Then, it is a matter of how one chooses the

optimal L to invest. The greater the L, the better the investment opportunity set, but

the greater the estimation errors. This is evident not only from the formulas for the rules,

but also from Tables I and III. Hence, there must be an optimal tradeoff between L (the

optimally selected number of assets to invest) and the estimation errors. This is another

interesting direction for future research.

Broadly speaking, the parameter uncertainty problem appears in almost all financial

decision-making problems, and there is no reason to limit its studies to asset allocation, one

of the oldest topics in finance. For example, how an investor values and hedges derivatives in

the presence of parameter uncertainty is an important problem both in theory and practice,

as is the question of how a corporate manager makes optimal investment and capital structure

decisions when investors’ expectations or the projects’ opportunity sets or the macroeconomic

determinants are unknown and have to be estimated. In short, a number of topics are related

to the parameter uncertainty problem and call for future research.

IV. Conclusion

The modern portfolio theory pioneered by Markowitz (1952) is widely used in practice

and taught in MBA texts. However, DeMiguel, Garlappi and Uppal (2007) raise serious

doubts on its value. They show that the naive 1/N investment strategy performs much

better than those recommended from theory, and the estimation window needed for the

latter to outperform the 1/N benchmark is “around 3000 months for a portfolio with 25
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assets and about 6000 months for a portfolio with 50 assets.” Note that existing theory-

based strategies are expected to underperform the 1/N when it happens to be close to the

true optimal portfolio as is the case in the exact one-factor model of DeMiguel, Garlappi, and

Uppal (2007), but the problem is that they still underperform when the 1/N is substantially

different from the true optimal portfolio. Moreover, they also perform poorly with many

real data sets.

In this paper, we provide many new theory-based portfolio strategies, one of which can

perform well consistently across models and data sets for practical sample sizes of 120 and

240. In particular, this recommended strategy not only performs well compared with the 1/N

rule in an exact one-factor model that favors the 1/N , but also outperforms it substantially

in a one-factor model with mispricing, in multi-factor models with and without mispricing,

in models calibrated from real data without any factor structures, and in applications with

an array of real data sets. In addition, it outperforms all others or does so very closely across

models and data sets.

Our results are interesting not only in addressing the theoretical challenge posed by

DeMiguel, Garlappi and Uppal (2007), but also in providing potentially useful insights into

adapting actual quantitative investing strategies (see, e.g., Grinold and Kahn (1999), Litter-

man (2003) and Lo and Patel (2008)) to accommodate parameter estimation errors. However,

there remain many theoretical issues. Whether or not our new portfolio strategies are the

best (admissible) is still an open question, as is the problem of optimally choosing both the

number of assets to be invested and the estimation strategy. Moreover, since parameter un-

certainty problem appears in almost all financial decision-making problems, it is of interest

to apply the ideas and techniques of this paper to a number of areas, such as how to value

and hedge derivatives in the presence of parameter uncertainty, and how to make optimal

investment and capital structure decisions when investors’ expectations or the projects’ op-

portunity sets or the macroeconomic determinants are unknown and have to be estimated.

While studies of these questions go beyond the scope of this paper, they are interesting topics

of future research.
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Appendix A: Proofs

A.1. Proof of Proposition 1

Based on (12), we need only to show

(1− δ)2π1 + δ2π2 = π1 − 2δπ1 + δ2(π1 + π2) < π1 (A1)

when 0 < δ < 2π1/(π1 + π2). The Proposition then follows. Q.E.D.

A.2. Proof of Proposition 2

We simply plug the estimates into the formula for the optimal combination coefficient,

δ∗ = π1/(π1 + π2). Q.E.D.

A.3. Proof of Proposition 3

Now, we have

L(w∗, w̃s) =
γ

2
E

[[
(1− δ)(we − w∗) + δ(w̃ − w∗)

]′
Σ

[
(1− δ)(we − w∗) + δ(w̃ − w∗)

]]
,

where w̃ denotes ŵKZ for brevity. Letting a = we−w∗ and b = w̃−w∗, the following identity

holds,

[(1− δ)a + δb]′Σ[(1− δ)a + δb] = (1− δ)2a′Σa + 2δ(1− δ)a′Σb + δ2b′Σb.

Taking the first-order derivative of this identity, we get the optimal choice of δ,

δ =
a′Σa− a′ΣE[b]

a′Σa− 2a′ΣE[b] + E[b′Σb]
. (A2)

It is clear that π1 = a′Σa. Let π13 = a′ΣE[b] = w′
eΣE[w̃] − w′

eµ − µ′E[w̃] + µΣ−1µ. Since

E[Σ̂−1] = TΣ−1/(T − N − 2), we can estimate π13 with π̂13 as given by (24). Finally, let

π3 = E[b′Σb]. Using equation (63) of Kan and Zhou (2007), we can estimate π3 with π̂3 as

given by (25). Q.E.D.

A.4. Proof of Proposition 4

The partition matrix Σ as given by (30) can be inverted analytically. Based on this and

(29), the optimal weights are

w∗ =
1

γ
Σ−1µ =

1

γ

(
Σ−1

F µF − β′Σ−1
ε α

Σ−1
ε α

)
. (A3)
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Let θ̂2
f = µ̂′F Σ̂−1

F µ̂F . Conditional on θ̂2
f , it is well known that

√
T/(1 + θ̂2

f )α̂ ∼ N(
√

T/(1 + θ̂2
f )α, Σε). (A4)

Therefore,

X = Σ−1/2
ε

√
T/(1 + θ̂2

f )α̂ ∼ N(
√

T/(1 + θ̂2
f )Σ

−1/2
ε α, I). (A5)

Applying the James-Stein shrinkage estimator to the mean of X, we have

µ̂JS
X =

[
1− N − 3

‖X‖2

]+

X. (A6)

This implies (31). Replacing α by α̂JS and replacing Σε, etc, by their ML estimators, we get

(32) from (A3).

A.5. Proof of Proposition 5

The loss function is now

L(w∗, ŵ) =
γ

2
E [(q11N + q2w̄p − w∗)Σ(q11N + q2w̄p − w∗)] . (A7)

Expanding this out and taking the derivatives with respect to the q’s, we get the first-order

conditions,

0 = q11
′
NΣ1N + q2E[1′NΣw̄p]− 1′NΣw∗, (A8)

0 = q2E[w̄′
pΣw̄p] + q1E[1′NΣw̄p]− E[w̄′

pΣw∗]. (A9)

Since E[w̄p] = c2Σ
−1µ, we have E[1′NΣw̄p] = c21

′
Nµ and E[w̄′

pΣw∗] = 1
γ
c2θ

2. Using equation

(16) and (22) of Kan and Zhou (2007), we obtain

E[w̄′
pΣw̄p] = E[µ̂′Σ̂−1ΣΣ̂−1µ̂] (A10)

= c3(θ
2 + N/T ). (A11)

The Proposition then follows. Q.E.D.

A.6. Proof of Proposition 6

The loss function is now

L(w∗, ŵ) =
γ

2
E [(q11N + q2w̄p + q3w̄g − w∗)Σ(q11N + q2w̄p + q3w̄g − w∗)] . (A12)
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Expanding this out and taking the derivatives with respect to the q’s, we get the first-order

conditions,

0 = q11
′
NΣ1N + q2E[1′NΣw̄p] + q3E[1′NΣw̄g]− 1′NΣw∗, (A13)

0 = q2E[w̄′
pΣw̄p] + q1E[1′NΣw̄p] + q3E[w̄′

pΣw̄g]− E[w̄′
pΣw∗], (A14)

0 = q3E[w̄′
gΣw̄g] + q1E[1′NΣw̄g] + q2E[w̄′

pΣw̄g]− E[w̄′
gΣw∗]. (A15)

Since E[w̄g] = E[Σ̂−1]1N , we have E[1′NΣw̄g] = c21
′
N1N = c2N and E[w̄′

gΣw∗] = c2
γ
µ′Σ−11N =

c21
′
Nw∗. Using equation (22) of Kan and Zhou (2007), we obtain

E[w̄′
gΣw̄g] = E[1′N Σ̂−1ΣΣ̂−11N ] (A16)

= c31
′
NΣ−11N (A17)

and

E[w̄′
gΣw̄′

p] = E[µ̂′Σ̂−1ΣΣ̂−11N ] (A18)

= c31
′
NΣ−1µ. (A19)

Then the Proposition follows. Q.E.D.

A.7. MacKinlay and Pastor’s (2000) Rule and Its Analytical Solution

MacKinlay and Pástor (2000) impose an exact one-factor structure to provide a more

efficient estimator of the expected returns by assuming

Σ = σ2IN + aµµ′, (A20)

where a and σ2 are positive scalars. The ML estimator of a, σ2 and µ are obtained by

maximizing the log-likelihood function

lnL = −NT

2
ln(2π)− T

2
ln

(|aµµ′ + σ2IN |
)− 1

2

T∑
t=1

(Rt−µ)′(aµµ′+σ2IN)−1(Rt−µ). (A21)

This is an N + 2 dimensional problem whose numerical solution is difficult. Since we

need to implement the rule hundreds and thousands of times, an analytical solution to

the problem is critical.11 Let Q̂Λ̂Q̂′ be the spectral decomposition of Û = Σ̂ + µ̂µ̂′, where

11We are grateful to Raymond Kan for sharing his analytical solution (that involves only one trivial
1-dimensional optimization) with us.
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Λ̂ = Diag(λ̂1, . . . , λ̂N) are the eigenvalues in descending order and the columns of Q̂ are the

corresponding eigenvectors. Further, let ẑ = Q̂′µ̂. For any c, λ̂1 ≥ c ≥ λ̂N , it can be shown

that

p(φ) =
N∑

i=1

(λ̂i − c)ẑ2
i

[1− φ(λ̂i − c)]2
= 0 (A22)

has a unique solution, which can be trivially found numerically, in the interval (uN , u1) with

ui = 1/(λ̂i − c). Then, the following objective function,

g(c) = ln

(
c−

N∑
i=1

ẑ2
i

1− φ̃(c)(λ̂i − c)

)
+ (N − 1) ln

(
N∑

i=1

λ̂i − c

)
, (A23)

is well defined, and can be solved easily because it is a one-dimensional problem. Let c∗ be

the solution, then the ML estimator of µ is given by

µ̃ = Q̂[IN − φ̃(c∗)(Λ̂− c∗IN)]−1ẑ, (A24)

and hence the ML estimators of σ2 and a are

σ̃2 =

∑N
i=1 λi − c∗

N − 1
, (A25)

ã =
c∗ − σ̃2

µ̃′µ̃
− 1. (A26)

The MacKinlay and Pástor (2000) portfolio rule is thus given by

ŵMP =
µ̃

γ(σ̃2 + ãµ̃′µ̃)
=

µ̃

γ(c∗ − µ̃′µ̃)
. (A27)

A.8. Jorion (1986) Rule

Jorion (1986) develops a Bayes-Stein estimator of µ,

µ̂BS = (1− v)µ̂ + vµ̂g1N , (A28)

where

v =
N + 2

(N + 2) + T (µ̂− µ̂g1N)′Σ̃−1(µ̂− µ̂g1N)
, µ̂g =

1′N Σ̂−1µ̂

1′N Σ̂−11N

. (A29)

His rule is then given by

wBS =
1

γ
(Σ̂BS)−1µ̂BS, (A30)
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where

Σ̂BS =

(
1 +

1

T + λ̂

)
Σ̃ +

λ̂

T (T + 1 + λ̂)

1N1′N
1′N Σ̃−11N

(A31)

and λ̂ = (N + 2)/[(µ̂− µ̂g1N)′Σ̃−1(µ̂− µ̂g1N)].

A.9. Proof of Equation (46)

The expression is based on Kubokawa (1991, p. 126). Note that X and S of that paper

are µ̂ ∼ N(µ, Σ/T ) and Σ̂ ∼ WN(T − 1, Σ/T ), respectively. Then the equation follows.

Q.E.D.
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Table I

Utilities in A One-factor Model without Mispricing (N=25)

This table reports the average utilities of a mean-variance investor under various investment rules: the true
optimal one, the 1/N , the two combination rules, the three- and four-funds, McKinlay and Pastor (2000),
Jorion (1986), Kan and Zhou (2007), the ML rule with factor sttructure, and the standard ML estimator,
with 10,000 sets of sample size T simulated data from a one-factor model with zero alphas and with N = 25
assets. Panels A and B assume that the risk aversion γ is 3 and 1, respectively.

T

Rules 120 240 480 960 3000 6000

Panel A: γ = 3

True 4.17 4.17 4.17 4.17 4.17 4.17

1/N 3.89 3.89 3.89 3.89 3.89 3.89

wCML 1.68 2.95 3.42 3.60 3.81 3.90
wCKZ 3.71 3.77 3.81 3.85 3.91 3.95

w3F 0.85 2.41 3.11 3.41 3.73 3.87
w4F -0.33 1.75 2.74 3.19 3.65 3.83

McKinlay-Pastor 2.11 3.00 3.44 3.65 3.79 3.83
Jorion -12.85 -3.79 -0.18 1.55 2.98 3.47
Kan-Zhou -2.15 -0.00 1.13 1.90 2.97 3.47

Factor ML 2.29 3.27 3.73 3.95 4.10 4.13
ML -85.72 -25.81 -8.35 -1.61 2.42 3.30

Panel B: γ = 1

True 12.50 12.50 12.50 12.50 12.50 12.50

1/N 6.63 6.63 6.63 6.63 6.63 6.63

wCML 1.14 4.79 6.39 7.47 9.50 10.62
wCKZ 6.36 6.70 6.99 7.41 8.78 9.97

w3F 2.55 7.23 9.32 10.23 11.20 11.60
w4F -0.98 5.26 8.21 9.58 10.96 11.49

McKinlay-Pastor 6.33 9.00 10.31 10.94 11.37 11.48
Jorion -38.55 -11.38 -0.55 4.66 8.95 10.42
Kan-Zhou -6.44 -0.01 3.38 5.69 8.92 10.40

Factor ML 6.86 9.81 11.18 11.84 12.29 12.39
ML -257.16 -77.42 -25.05 -4.83 7.25 9.91
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Table II

Utilities in A One-factor Model with Mispricing (N=25)

This table reports the average utilities of a mean-variance investor under various investment rules: the true
optimal one, the 1/N , the two combination rules, the three- and four-funds, McKinlay and Pastor (2000),
Jorion (1986), Kan and Zhou (2007), the ML rule with factor structure, and the standard ML estimator,
with 10,000 sets of sample size T simulated data from a one-factor model with N = 25 assets. Panels A and
B assume that the mispricing α’s, spread evenly between -2% to 2% per year and between -5% to 5% per
year, respectively. The risk aversion coefficient γ is 3.

T

Rules 120 240 480 960 3000 6000

Panel A: α in [−2%, 2%]

True 6.50 6.50 6.50 6.50 6.50 6.50

1/N 3.89 3.89 3.89 3.89 3.89 3.89

wCML 2.02 3.32 3.91 4.43 5.38 5.82
wCKZ 3.84 3.95 4.12 4.41 5.14 5.62

w3F 1.15 2.74 3.56 4.24 5.33 5.80
w4F 0.55 2.84 3.93 4.60 5.50 5.88

McKinlay-Pastor 2.34 3.23 3.67 3.88 4.02 4.06
Jorion -12.36 -2.99 0.95 3.09 5.06 5.71
Kan-Zhou -2.35 0.02 1.64 3.14 5.06 5.71

Factor ML 2.32 3.32 3.81 4.16 4.92 5.40
ML -84.75 -23.84 -6.18 0.65 4.73 5.62

Panel B: α in [−5%, 5%]

True 18.73 18.73 18.73 18.73 18.73 18.73

1/N 3.89 3.89 3.89 3.89 3.89 3.89

wCML 5.13 8.30 11.57 14.34 17.06 17.86
wCKZ 5.81 7.44 10.02 12.99 16.62 17.70

w3F 4.10 7.66 11.28 14.23 17.05 17.85
w4F 6.25 9.97 12.73 14.91 17.16 17.89

McKinlay-Pastor 2.70 3.60 4.04 4.25 4.40 4.43
Jorion -6.32 5.21 10.76 14.10 17.03 17.85
Kan-Zhou 2.23 6.80 10.90 14.10 17.03 17.85

Factor ML 3.31 5.67 8.88 11.86 14.68 15.49
ML -79.30 -13.62 5.23 12.52 16.85 17.80
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Table III

Utilities in A One-factor Model (N=50)

This table reports the average utilities of a mean-variance investor under various investment rules: the true
optimal one, the 1/N , the two combination rules, the three- and four-funds, McKinlay and Pastor (2000),
Jorion (1986), Kan and Zhou (2007), the ML rule with factor structure, and the standard ML estimator,
with 10,000 sets of sample size T simulated data from a one-factor model with N = 50 assets. Panels A and
B assume that the mispricing α’s are zeros or between -2% to 2% per year, respectively. The risk aversion
coefficient γ is 3.

T

Rules 120 240 480 960 3000 6000

Panel A: α=0

True 4.17 4.17 4.17 4.17 4.17 4.17

1/N 4.03 4.03 4.03 4.03 4.03 4.03

wCML 1.36 2.87 3.51 3.75 3.91 3.98
wCKZ 3.95 3.93 3.94 3.95 3.97 4.00

w3F 0.57 2.36 3.21 3.57 3.84 3.94
w4F -0.70 1.69 2.84 3.37 3.77 3.90

McKinlay-Pastor 2.27 3.19 3.60 3.81 3.96 4.00
Jorion -39.77 -12.03 -3.74 -0.25 2.20 2.96
Kan-Zhou -3.15 -0.85 0.38 1.16 2.32 2.98

Factor ML 2.34 3.31 3.73 3.95 4.10 4.13
ML -458.29 -83.43 -25.69 -8.39 0.58 2.42

Panel B: α in [−2%, 2%]

True 8.71 8.71 8.71 8.71 8.71 8.71

1/N 4.03 4.03 4.03 4.03 4.03 4.03

wCML 1.80 3.46 4.31 5.08 6.62 7.41
wCKZ 4.07 4.18 4.38 4.79 6.06 6.98

w3F 0.97 2.91 3.96 4.89 6.57 7.39
w4F -0.31 2.21 3.58 4.70 6.53 7.38

McKinlay-Pastor 2.29 3.21 3.62 3.83 3.98 4.01
Jorion -39.22 -10.05 -1.12 2.90 6.16 7.25
Kan-Zhou -2.49 0.24 2.02 3.66 6.19 7.25

Factor ML 2.34 3.32 3.75 4.02 4.80 5.60
ML -467.35 -81.31 -21.88 -4.15 5.04 6.93
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Table IV

Sharpe Ratios in A One-factor Model (N=25)

This table reports the average Sharpe ratios of a mean-variance investor under various investment rules:
the true optimal one, the 1/N , the two combination rules, the three- and four-funds, McKinlay and Pastor
(2000), Jorion (1986), Kan and Zhou (2007), the ML rule with factor structure, and the standard ML
estimator, with 10,000 sets of sample size T simulated data from a one-factor model with N = 25 assets.
Panels A and B assume that the mispricing α’s are zeros or between -2% to 2% per year, respectively. The
risk aversion coefficient γ is 3.

T

Rules 120 240 480 960 3000 6000

Panel A: α=0

True 14.43 14.43 14.43 14.43 14.43 14.43

1/N 13.95 13.95 13.95 13.95 13.95 13.95

wCML 12.04 12.88 13.34 13.53 13.83 13.98
wCKZ 13.70 13.79 13.86 13.91 14.00 14.07

w3F 10.21 12.23 13.22 13.49 13.79 13.97
w4F 9.20 11.36 12.61 13.13 13.66 13.90

McKinlay-Pastor 12.19 13.51 13.86 13.89 13.89 13.89
Jorion 4.54 6.46 8.40 10.18 12.38 13.24
Kan-Zhou 4.97 7.03 8.80 10.27 12.34 13.24

Factor ML 12.81 14.06 14.39 14.42 14.43 14.43
ML 3.88 5.59 7.54 9.54 12.19 13.18

Panel B: α in [−2%, 2%]

True 18.02 18.02 18.02 18.02 18.02 18.02

1/N 13.95 13.95 13.95 13.95 13.95 13.95

wCML 12.81 13.69 14.30 15.02 16.45 17.09
wCKZ 14.02 14.23 14.54 15.04 16.21 16.91

w3F 11.13 13.10 14.12 14.93 16.44 17.09
w4F 10.95 13.44 14.76 15.53 16.68 17.19

McKinlay-Pastor 12.70 13.98 14.28 14.30 14.31 14.31
Jorion 5.61 8.03 10.69 13.16 16.03 16.95
Kan-Zhou 4.77 7.15 10.09 12.97 16.02 16.95

Factor ML 12.89 14.14 14.54 14.78 15.82 16.53
ML 5.92 8.34 10.94 13.32 16.06 16.97
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Table V

Sharpe Ratios in A One-factor Model (N=50)

This table reports the average Sharpe ratios of a mean-variance investor under various investment rules:
the true optimal one, the 1/N , the two combination rules, the three- and four-funds, McKinlay and Pastor
(2000), Jorion (1986), Kan and Zhou (2007), the ML rule with factor structure, and the standard ML
estimator, with 10,000 sets of sample size T simulated data from a one-factor model with N = 50 assets.
Panels A and B assume that the mispricing α’s are zeros or between -2% to 2% per year, respectively. The
risk aversion coefficient γ is 3.

T

Rules 120 240 480 960 3000 6000

Panel A: α=0

True 14.43 14.43 14.43 14.43 14.43 14.43

1/N 14.19 14.19 14.19 14.19 14.19 14.19

wCML 11.90 12.87 13.49 13.77 14.00 14.11
wCKZ 14.09 14.07 14.10 14.11 14.14 14.17

w3F 9.37 11.95 13.28 13.74 13.97 14.10
w4F 8.22 11.00 12.64 13.39 13.85 14.04

McKinlay-Pastor 12.54 13.84 14.17 14.20 14.20 14.20
Jorion 2.68 4.33 6.16 8.08 10.96 12.29
Kan-Zhou 2.91 4.81 6.66 8.34 10.95 12.28

Factor ML 12.77 14.09 14.40 14.43 14.43 14.43
ML 2.39 3.87 5.59 7.53 10.69 12.17

Panel B: α in [−2%, 2%]

True 20.87 20.87 20.87 20.87 20.87 20.87

1/N 14.19 14.19 14.19 14.19 14.19 14.19

wCML 12.91 14.12 15.01 16.09 18.26 19.29
wCKZ 14.31 14.54 14.95 15.72 17.79 19.01

w3F 10.68 13.34 14.79 16.00 18.23 19.28
w4F 9.45 12.36 14.16 15.70 18.17 19.26

McKinlay-Pastor 12.58 13.89 14.20 14.23 14.23 14.23
Jorion 5.18 8.17 11.18 14.06 17.72 19.10
Kan-Zhou 5.16 8.24 11.16 13.97 17.71 19.10

Factor ML 12.78 14.10 14.44 14.55 15.63 16.87
ML 4.91 7.74 10.75 13.75 17.64 19.07
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Table VI

Utilities in A Three-factor Model (N=25)

This table reports the average utilities of a mean-variance investor under various investment rules: the true
optimal one, the 1/N , the two combination rules, the three- and four-funds, McKinlay and Pastor (2000),
Jorion (1986), Kan and Zhou (2007), the ML rule with factor structure, and the standard ML estimator,
with 10,000 sets of sample size T simulated data from a three-factor model with N = 25 assets. Panels
A and B assume that the mispricing α’s are zeros or between -2% to 2% per year, respectively. The risk
aversion coefficient γ is 3.

T

Rules 120 240 480 960 3000 6000

Panel A: α=0

True 12.97 12.97 12.97 12.97 12.97 12.97

1/N 3.85 3.85 3.85 3.85 3.85 3.85

wCML 3.41 5.42 7.30 9.21 11.42 12.14
wCKZ 5.03 5.84 6.96 8.51 11.01 11.96

w3F 2.45 4.78 6.97 9.08 11.40 12.13
w4F 2.59 5.35 7.41 9.34 11.46 12.15

McKinlay-Pastor 1.84 2.73 3.16 3.37 3.51 3.54
Jorion -8.34 2.05 6.55 9.09 11.42 12.14
Kan-Zhou 1.54 4.71 7.02 9.10 11.41 12.13

Factor ML 6.92 10.13 11.59 12.28 12.75 12.86
ML -81.77 -18.48 -0.13 6.94 11.14 12.06

Panel B: α in [−2%, 2%]

True 14.60 14.60 14.60 14.60 14.60 14.60

1/N 3.85 3.85 3.85 3.85 3.85 3.85

wCML 3.84 6.15 8.44 10.63 13.02 13.76
wCKZ 5.09 6.06 7.57 9.59 12.56 13.58

w3F 2.87 5.51 8.12 10.51 13.00 13.75
w4F 2.53 5.63 8.26 10.61 13.02 13.76

McKinlay-Pastor 1.78 2.66 3.09 3.30 3.44 3.48
Jorion -7.85 2.84 7.65 10.45 12.99 13.75
Kan-Zhou 1.61 5.12 7.96 10.45 12.99 13.75

Factor ML 6.92 10.13 11.60 12.30 12.92 13.29
ML -81.09 -17.11 1.39 8.52 12.76 13.69
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Table VII

Utilities in A Three-factor Model (N=50)

This table reports the average utilities of a mean-variance investor under various investment rules: the true
optimal one, the 1/N , the two combination rules, the three- and four-funds, McKinlay and Pastor (2000),
Jorion (1986), Kan and Zhou (2007), the ML rule with factor structure, and the standard ML estimator,
with 10,000 sets of sample size T simulated data from a three-factor model with N = 50 assets. Panels
A and B assume that the mispricing α’s are zeros or between -2% to 2% per year, respectively. The risk
aversion coefficient γ is 3.

T

Rules 120 240 480 960 3000 6000

Panel A: α=0

True 12.97 12.97 12.97 12.97 12.97 12.97

1/N 3.87 3.87 3.87 3.87 3.87 3.87

wCML 2.15 4.23 5.76 7.55 10.32 11.45
wCKZ 4.22 4.71 5.46 6.72 9.52 10.99

w3F 1.38 3.68 5.43 7.39 10.28 11.44
w4F 0.68 3.73 5.70 7.62 10.36 11.46

McKinlay-Pastor 1.73 2.64 3.06 3.27 3.41 3.44
Jorion -38.43 -7.80 1.79 6.30 10.14 11.40
Kan-Zhou -1.45 1.93 4.41 6.84 10.16 11.40

Factor ML 6.97 10.13 11.58 12.28 12.74 12.86
ML -474.00 -79.17 -18.33 -0.18 9.22 11.14

Panel B: α in [−2%, 2%]

True 16.06 16.06 16.06 16.06 16.06 16.06

1/N 3.87 3.87 3.87 3.87 3.87 3.87

wCML 2.59 5.07 7.26 9.77 13.19 14.46
wCKZ 4.38 5.14 6.39 8.41 12.27 14.01

w3F 1.79 4.50 6.93 9.62 13.16 14.46
w4F 1.24 4.68 7.26 9.86 13.22 14.48

McKinlay-Pastor 1.70 2.61 3.03 3.24 3.38 3.42
Jorion -37.96 -6.19 3.93 8.84 13.08 14.44
Kan-Zhou -0.75 3.13 6.23 9.28 13.09 14.44

Factor ML 6.97 10.13 11.58 12.29 12.96 13.64
ML -480.46 -77.71 -15.72 2.71 12.26 14.21
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Table VIII

Sharpe Ratios in A Three-factor Model (N=25)

This table reports the average Sharpe ratios of a mean-variance investor under various investment rules:
the true optimal one, the 1/N , the two combination rules, the three- and four-funds, McKinlay and Pastor
(2000), Jorion (1986), Kan and Zhou (2007), the ML rule with factor structure, and the standard ML
estimator, with 10,000 sets of sample size T simulated data from a three-factor model with N = 25 assets.
Panels A and B assume that the mispricing α’s are zeros or between -2% to 2% per year, respectively. The
risk aversion coefficient γ is 3.

T

Rules 120 240 480 960 3000 6000

Panel A: α=0

True 25.46 25.46 25.46 25.46 25.46 25.46

1/N 13.89 13.89 13.89 13.89 13.89 13.89

wCML 15.35 17.19 19.44 21.66 23.97 24.67
wCKZ 16.06 17.49 19.35 21.45 23.91 24.65

w3F 14.00 16.72 19.28 21.59 23.96 24.67
w4F 15.10 17.75 19.85 21.87 24.02 24.69

McKinlay-Pastor 11.47 12.91 13.33 13.37 13.38 13.38
Jorion 12.59 16.37 19.43 21.69 23.97 24.67
Kan-Zhou 13.35 16.76 19.37 21.62 23.97 24.67

Factor ML 22.07 23.73 24.60 25.02 25.32 25.39
ML 11.09 14.99 18.57 21.32 23.92 24.66

Panel B: α in [−2%, 2%]

True 27.02 27.02 27.02 27.02 27.02 27.02

1/N 13.89 13.89 13.89 13.89 13.89 13.89

wCML 16.07 18.25 20.89 23.26 25.58 26.26
wCKZ 16.15 17.85 20.24 22.81 25.50 26.24

w3F 14.79 17.80 20.73 23.20 25.57 26.26
w4F 15.10 18.13 20.87 23.28 25.59 26.27

McKinlay-Pastor 11.33 12.77 13.20 13.25 13.25 13.25
Jorion 13.30 17.37 20.72 23.19 25.57 26.26
Kan-Zhou 13.55 17.37 20.55 23.13 25.56 26.26

Factor ML 22.08 23.73 24.62 25.05 25.49 25.82
ML 12.30 16.49 20.22 22.99 25.54 26.25
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Table IX

Sharpe Ratios in A Three-factor Model (N=50)

This table reports the average Sharpe ratios of a mean-variance investor under various investment rules:
the true optimal one, the 1/N , the two combination rules, the three- and four-funds, McKinlay and Pastor
(2000), Jorion (1986), Kan and Zhou (2007), the ML rule with factor structure, and the standard ML
estimator, with 10,000 sets of sample size T simulated data from a three-factor model with N = 50 assets.
Panels A and B assume the mispricing α’s, are zeros or between -2% to 2% per year, respectively. The risk
aversion coefficient γ is 3.

T

Rules 120 240 480 960 3000 6000

Panel A: α=0

True 25.46 25.46 25.46 25.46 25.46 25.46

1/N 13.96 13.96 13.96 13.96 13.96 13.96

wCML 13.85 15.56 17.36 19.61 22.78 23.96
wCKZ 14.55 15.45 16.85 18.97 22.50 23.85

w3F 11.79 14.88 17.15 19.54 22.76 23.96
w4F 11.63 15.18 17.54 19.83 22.85 23.98

McKinlay-Pastor 11.26 12.72 13.13 13.19 13.19 13.19
Jorion 7.66 11.80 15.62 18.90 22.63 23.92
Kan-Zhou 7.93 12.13 15.65 18.84 22.63 23.92

Factor ML 22.01 23.73 24.59 25.02 25.32 25.39
ML 7.09 11.04 14.96 18.50 22.55 23.89

Panel B: α in [−2%, 2%]

True 28.34 28.34 28.34 28.34 28.34 28.34

1/N 13.96 13.96 13.96 13.96 13.96 13.96

wCML 14.66 16.89 19.43 22.30 25.75 26.93
wCKZ 14.82 16.22 18.43 21.49 25.54 26.86

w3F 12.80 16.31 19.26 22.23 25.73 26.92
w4F 12.81 16.72 19.66 22.49 25.79 26.94

McKinlay-Pastor 11.19 12.67 13.08 13.14 13.14 13.14
Jorion 9.35 14.15 18.40 21.90 25.67 26.91
Kan-Zhou 9.63 14.40 18.37 21.85 25.67 26.91

Factor ML 22.01 23.73 24.59 25.03 25.53 26.16
ML 8.68 13.32 17.75 21.55 25.61 26.89
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Table X

Utilities without Factor Structure

This table reports the average utilities of a mean-variance investor under various investment rules: the true
optimal one, the 1/N , the two combination rules, the three- and four-funds, McKinlay and Pastor (2000),
Jorion (1986), Kan and Zhou (2007), the ML rule with factor structure, and the standard ML estimator,
with 10,000 sets of sample size T simulated data without assuming any factor model structure. Panels A and
B simulate data sets based on the sample means and covariance matrix calibrated from the monthly excess
returns of Fama-French 25 assets sorted on size and book-to-market ratio and Fama-French’s 49 industry
portfolios, respectively. The risk aversion coefficient γ is 3.

T

Rules 120 240 480 960 3000 6000

Panel A: N = 25 size and book-to-market portfolios

True 44.96 44.96 44.96 44.96 44.96 44.96

1/N 4.28 4.28 4.28 4.28 4.28 4.28

wCML 17.40 27.07 34.46 39.17 42.97 43.95
wCKZ 12.99 21.53 30.74 37.49 42.69 43.87

w3F 16.29 26.53 34.28 39.12 42.97 43.95
w4F 16.76 26.88 34.44 39.17 42.98 43.95

McKinlay-Pastor 2.08 3.02 3.48 3.70 3.84 3.88
Jorion 10.28 26.38 34.52 39.22 42.98 43.95
Kan-Zhou 18.26 27.56 34.66 39.24 42.98 43.95

Factor ML -57.75 -46.72 -42.72 -44.59 -49.08 -51.09
ML -67.13 8.07 29.68 37.93 42.85 43.92

Panel B: N = 49 industry portfolios

True 27.39 27.39 27.39 27.39 27.39 27.39

1/N 2.31 2.31 2.31 2.31 2.31 2.31

wCML 3.55 8.64 14.05 18.93 24.06 25.63
wCKZ 3.56 5.91 10.23 15.82 23.08 25.29

w3F 2.98 8.15 13.81 18.84 24.05 25.63
w4F 2.17 7.86 13.74 18.84 24.05 25.63

McKinlay-Pastor 0.42 1.36 1.80 2.02 2.16 2.20
Jorion -34.14 0.41 12.39 18.67 24.05 25.63
Kan-Zhou 2.05 8.19 13.93 18.91 24.06 25.63

Factor ML -341.92 -408.68 -507.89 -592.62 -669.56 -691.07
ML -469.51 -68.70 -5.35 13.66 23.46 25.48
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Table XI

Sharpe Ratios without Factor Structure

This table reports the average Sharpe ratios of a mean-variance investor under various investment rules:
the true optimal one, the 1/N , the two combination rules, the three- and four-funds, McKinlay and Pastor
(2000), Jorion (1986), Kan and Zhou (2007), the ML rule with factor structure, and the standard ML
estimator, with 10,000 sets of sample size T simulated data without assuming any factor model structure.
Panels A and B simulate data sets based on the sample means and covariance matrix calibrated from the
monthly excess returns of Fama-French 25 assets sorted on size and book-to-market ratio and Fama-French
49 industry portfolios, respectively. The risk aversion coefficient γ is 3.

T

Rules 120 240 480 960 3000 6000

Panel A: N = 25 size and book-to-market portfolios

True 47.41 47.41 47.41 47.41 47.41 47.41

1/N 14.63 14.63 14.63 14.63 14.63 14.63

wCML 31.14 37.58 41.88 44.43 46.41 46.90
wCKZ 27.00 35.26 41.17 44.26 46.39 46.90

w3F 30.52 37.30 41.78 44.40 46.40 46.90
w4F 30.85 37.45 41.87 44.43 46.41 46.90

McKinlay-Pastor 12.26 13.55 13.97 13.98 13.98 13.98
Jorion 32.25 38.14 42.06 44.48 46.41 46.91
Kan-Zhou 32.20 37.95 42.00 44.47 46.41 46.91

Factor ML 11.81 14.18 16.62 17.32 16.59 16.33
ML 30.64 37.33 41.77 44.40 46.40 46.90

Panel B: N = 49 industry portfolios

True 37.01 37.01 37.01 37.01 37.01 37.01

1/N 11.26 11.26 11.26 11.26 11.26 11.26

wCML 16.66 21.70 26.94 30.97 34.75 35.83
wCKZ 13.33 17.36 23.71 29.68 34.59 35.79

w3F 15.48 21.42 26.86 30.93 34.74 35.83
w4F 14.93 21.08 26.76 30.92 34.74 35.83

McKinlay-Pastor 7.82 9.45 10.35 10.55 10.56 10.56
Jorion 15.03 21.69 27.08 31.02 34.75 35.83
Kan-Zhou 15.00 21.57 26.96 30.99 34.75 35.83

Factor ML 14.41 19.15 20.48 20.49 20.49 20.48
ML 14.31 20.96 26.63 30.84 34.73 35.82
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Table XII

Certainty-equivalent Returns Based on Real Data
This table reports the certainty-equivalent returns of a mean-variance investor under various investment
rules: the in-sample ML rule, the 1/N , the two combination rules, the three- and four-funds, McKinlay and
Pastor (2000), Jorion (1986), Kan and Zhou (2007), the ML rule with factor structure, and the standard
ML estimator. While the in-sample ML rule uses all the data for its estimation, other rules are based on
a rolling sample with an estimation window M = 120, or 240, respectively. The real data sets are the five
data sets used by DeMiguel, Garlappi, and Uppal (2007), and two additional data sets, the Fama-French
25 size and book-to-market portfolios with the Fama-French three-factors and the Fama-French 49 industry
portfolios with the Fama-French three-factors. The risk aversion coefficient γ is 3.

Industry Inter’l Mkt/ FF- FF- FF25 Indu49
portfolios portfolios SMB/HML 1-factor 4-factor 3-factor 3-factor

Rules N=11 N=9 N=3 N=21 N=24 N=28 N=52

Panel A: M=120

ML (in-sample) 8.42 7.74 13.61 46.04 54.55 45.24 57.67

1/N 3.66 3.26 4.33 5.27 -8.74 5.51 5.14

wCML -1.39 -0.34 6.39 22.25 13.17 14.62 -6.40
wCKZ 3.02 1.79 8.54 28.97 25.40 19.36 8.51

w3F -2.77 -2.18 5.63 20.47 23.48 13.05 -8.05
w4F -2.51 -3.02 5.62 19.64 20.84 10.36 -14.36

McKinlay-Pastor -0.76 0.86 -0.20 0.47 2.58 1.02 1.45
Jorion -9.21 -5.80 9.51 0.82 1.58 -20.72 -152.10
Kan-Zhou -3.59 -3.42 9.51 20.75 21.84 9.15 -17.77

Factor ML -1.59 -0.44 5.45 -3.20 9.73 4.57 1.24
ML -38.18 -18.30 4.90 -100.69 -128.59 -194.33 -1173.78

Panel B: M=240

ML (in-sample) 8.42 7.74 13.61 46.04 54.55 45.24 57.67

1/N 5.04 0.92 3.46 4.44 -16.67 5.09 5.48

wCML 4.58 0.29 11.96 18.73 1.58 16.70 6.29
wCKZ 5.40 0.88 11.03 26.84 17.81 20.09 16.28

w3F 3.71 -0.49 11.84 18.23 11.22 16.34 5.49
w4F 3.80 0.27 3.83 24.79 11.04 15.03 15.75

McKinlay-Pastor 2.84 -0.02 0.44 2.78 3.24 3.37 4.32
Jorion -0.76 -1.38 12.40 23.15 9.81 10.44 -18.70
Kan-Zhou 1.89 -0.17 12.21 26.60 18.92 14.08 12.43

Factor ML 1.73 -0.56 9.50 5.37 12.21 9.92 5.01
ML -14.30 -6.94 12.08 -5.10 -38.63 -20.80 -158.40
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Table XIII

Sharpe Ratios Based on Real Data
This table reports the Sharpe ratios of a mean-variance investor under various investment rules: the in-
sample ML rule, the 1/N , the two combination rules, the three- and four-funds, McKinlay and Pastor (2000),
Jorion (1986), Kan and Zhou (2007), the ML rule with factor structure, and the standard ML estimator.
While the in-sample ML rule uses all the data for its estimation, other rules are based on a rolling sample
with an estimation window M = 120, or 240, respectively. The real data sets are the five data sets used by
DeMiguel, Garlappi, and Uppal (2007), and two additional data sets, the Fama-French 25 size and book-to-
market portfolios with the Fama-French three-factors and the Fama-French 49 industry portfolios with the
Fama-French three-factors. The risk aversion coefficient γ is 3.

Industry Inter’l Mkt/ FF- FF- FF25 Indu49
portfolios portfolios SMB/HML 1-factor 4-factor 3-factor 3-factor

Rules N=11 N=9 N=3 N=21 N=24 N=28 N=52

Panel A: M=120

ML (in-sample) 20.52 19.67 26.09 47.98 52.23 47.56 53.70

1/N 13.53 12.77 22.40 16.23 23.40 16.87 16.41

wCML 8.23 6.76 18.09 38.50 41.57 32.32 14.32
wCKZ 12.37 10.00 21.24 38.56 37.45 32.62 22.45

w3F 7.43 4.18 17.64 37.25 40.28 31.10 12.18
w4F 8.58 4.60 21.23 37.37 39.59 30.51 16.54

McKinlay-Pastor 7.65 8.69 5.22 8.38 18.49 9.31 9.93
Jorion 5.64 2.58 22.13 37.98 39.69 29.80 14.74
Kan-Zhou 7.06 3.62 22.07 37.93 38.64 29.99 15.66

Factor ML 6.00 7.25 18.72 8.38 29.82 18.93 16.55
ML 2.74 -0.27 19.66 36.78 40.59 29.39 12.22

Panel B: M=240

ML (in-sample) 20.52 19.67 26.09 47.98 52.23 47.56 53.70

1/N 16.33 8.00 20.48 14.90 20.67 16.39 17.79

wCML 15.29 6.57 24.56 37.31 40.52 33.72 21.75
wCKZ 16.80 7.89 24.42 36.72 36.86 31.73 32.09

w3F 14.03 5.39 24.45 36.81 39.68 33.33 20.94
w4F 14.62 8.30 17.38 39.22 39.45 32.81 31.47

McKinlay-Pastor 12.04 6.32 5.54 11.86 17.64 12.98 15.18
Jorion 11.48 5.27 24.91 41.19 42.14 34.62 26.24
Kan-Zhou 12.71 6.91 24.71 40.10 41.18 32.54 29.94

Factor ML 9.76 5.13 21.96 16.39 29.75 22.52 18.25
ML 8.31 0.26 24.79 41.15 43.85 37.13 19.78
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