
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and
Information Systems School of Computing and Information Systems

11-1994

A Load Distribution through Competition for Workstation Clusters A Load Distribution through Competition for Workstation Clusters

Kam Hong SHUM
Singapore Management University, khshum@smu.edu.sg

Muslim Bozyigit

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

 Part of the Numerical Analysis and Scientific Computing Commons

Citation Citation
SHUM, Kam Hong and Bozyigit, Muslim. A Load Distribution through Competition for Workstation
Clusters. (1994). Proceedings of the 9th International Symposium on Computer and Information
Sciences: Antalya, Turkey, November 7-9, 1994. 810-817.
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/1059

This Conference Proceeding Article is brought to you for free and open access by the School of Computing and
Information Systems at Institutional Knowledge at Singapore Management University. It has been accepted for
inclusion in Research Collection School Of Computing and Information Systems by an authorized administrator of
Institutional Knowledge at Singapore Management University. For more information, please email
cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F1059&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/147?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F1059&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

A Load Distribution Through Competition
for Workstation Clusters�

Kam Hong Shum and Muslim Bozyigity
University of Cambridge, Computer Laboratory,
New Museums Site, Cambridge CB2 3QG, UK

khs1001@cl.cam.ac.uk

Abstract

The aim of this work is to develop a competition driven solution approach for load distri-
bution in distributed computing system (DCS) environments. The subject DCS is composed
of a set of workstation clusters. The study deals with concurrent applications, but assumes
the existence of the independent tasks executing on individual workstations as well.

Akin to conventional load balancing algorithms, the approach considers two phases; the
partitioning phase and the mapping phase. Each phase is based on the application and the
DCS data which is translated into market data, mainly price. The price is governed by the
demand and supply of the traded commodities (processing and communication capacities)
and the competition created between the buyers (tasks) and the sellers (workstations), re-
spectively. The work provides a basis for an elaborate study on realistic concurrent applica-
tions and workstation networks. It underlines the development of simple, faster, and flexible
solutions to load distribution over clusters of workstations, inspired by the market rules.

1 Introduction

Advances in computer and networking technology have led abundance of computing power
in the form of interconnected powerful workstations. These are not really intended for paral-
lel or distributed computing. The computing systems that were intended for parallel computing
are, comparatively, closely coupled, although the memory is usually distributed and the commu-
nication is message based. In this study the emphasis is put on utilisation of the first group of
distributed computing environments, through balanced load distribution using market rules.

The workstations, although often on a network, are meant for the principle user whose desk
or office it is located. However, it is evident that the principle user utilises only a fraction of
own workstation capacity [7]. There is an obvious need for improving the utilisation of intercon-
nected workstations. The problem, in its general form, is highly mathematical and its optimum
solutions are computationally intractable, except for very restricted cases [2].

The objective of this work is to apply competition based market rules to general load balanc-
ing in distributed systems; in this presentation, the term load-balancing is used interchangeably
with load-distribution. The distributed computing system (DCS) is a network of workstation�Appears in the proc. of the 9th International Sym. on Computer and Information Sciences, Antalya, 1994.yOn sabbatical leave from King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia.

1

clusters (from now on referred to as ws-clusters). Each ws-cluster is a network of connected
workstations. There is no special provision about the interconnection scheme of the worksta-
tions or inter-task communication requirements. In fact, irregular and random interconnections
are more realistic as they include all other schemes.

The concurrent applications are represented by a connected graph of tasks. The tasks are re-
lated to each other by their communication requirements in terms of unit data (bytes), the work-
stations are related to each other by the price of transmission per unit data. In market terms,
tasks are buyers of the commodities: processing and transmission power. The workstations are
sellers of these commodities. The buyers should eventually bid to get the best possible deal in
terms of their power of payment and urgency for completion in time. The sellers should even-
tually get the best possible price paid for the commodities that they auction. In doing so, both
the tasks and the workstations may compete with other tasks and workstations, respectively. In
principle, collaborations between friendly tasks and friendly workstations are possible. In that
case, the competition exists between the ws-clusters, clusters of tasks (grains) in an application,
or different applications.

2 Related work

Various studies have been conducted on the computational market and its application to load
distribution. In [4], microeconomic algorithms for load balancing in distributed computer sys-
tems is studied. Here the tasks are assumed independent, i.e., with no communication between
them. Each task receives a fund upon entry to the system. This fund (money) is used to bid for
the resources needed, according to a preference rule. A preference of one processor to another
can be based on service time only, price only, or the both. On the other hand, the processors
auction their processing and communication resources, with an objective of maximising their
profit. They have found that their microeconomic algorithms can achieve effective load dis-
tribution compared to no load distribution. Another study known as Enterprise: a market-like
task scheduler for distributed computing environments was conducted in [6]. In this study, the
tasks(clients) announce their requirements asking for bids, the idle processors (contractors) bid,
in response. The tasks, in turn, choose the contractor with the best bid. Again the work involves
independent tasks, and it is really not a market driven approach. There is no market like price
control mechanism that considers supply-demand element in the bidding process.

In [8], a study on distributed computational economy (Spawn) is conducted. It is meant to
support concurrent applications as well as independent tasks. The processors auction the next
available slice of processing time. Depending on the strategy, an auction may consider giving
discounts, or raise the prices. The concurrent application is represented by a tree of tasks. Each
task is funded from the root, to bid in the auction. In their study, no provisions are given for the
communication requirements between the tasks, the spawning considers tree-structured compu-
tations. The experiments that are conducted are based on Monte Carlo applications which are
suitable for decomposition into a number of tasks, if so required.

3 Load distribution through competition

In this study, the concurrent applications are allowed to split or merge according to granularity
requirement of the system. The cumulative processing and transmission capacity of the DCS is
used to determine the split or merge option. To the best of our knowledge no study has consid-
ered this approach, although, in [1] and [3] the communication intensity between the tasks and

2

the system topologies have been used to partition the concurrent applications, by conventional
methods. Also, here, no particular interconnection scheme is imposed on application and the
DCS, in contrast to most of the earlier studies.

The applications are led through two phases: partitioning and mapping. The partitioning
phase includes two stages: granulation and merge. The granulation stage involves computing
the proportion of the application and the number of grains (task clusters) for each ws-cluster;
the merge stage groups the tasks into grains. In doing so, the ws-cluster size; processing, inter-
ference, and transmission prices incurred by the individual workstations need to be considered.
Following the partitioning phase, each selected ws-cluster will have a number of grains to be
properly mapped to the constituting workstations. The mapping phase produces the best pos-
sible distribution based on the price determined by market rules. It, too, involves two stages:
initial assignment and dynamic grain exchange between the workstations to improve the initial
assignment. The components of the price involve processing, communication, and other factors
that may represent market rules, which would normally show variations because of the supply
and the demand for the resources concerned.

Let the application be represented by a triple� = (T;E; C)where T is a set of tasks,E is the
set of task execution times, and C is the set of inter-task communication requirements. The DCS
is a set of clusters, � = f�iji 2 ng. A ws-cluster is a set of workstations, �i = fWi;j; ji 2 n; j 2mig. The workstations are related to each other by the price of unit data transmission between
them. Obviously, the price would be infinity if they were not related at all. The following list
documents all the symbols used in the rest of the paper:Cij Communication requirement (no. of bytes) between two tasksCT Total communication requirement among tasks of an applicationEi Task Execution requirement (no. of instructions)ET Total task execution requirement of an applicationNT Total number of tasksNs Total number of clustersMai No. of available workstations (ws) in a ws-clusterP pi unit processing price of a ws-clusterP ti unit transmission price of a ws-clusterP ei;j unit transmission price between two ws in different clustersqi No. of grains in a ws-clusterri Total grain-size in a ws-clustertup Maximum expected processing time of an applicationtlp Minimum expected processing time of an applicationtt Maximum expected transmission time of an applicationte Maximum expected inter-cluster transmission timeXi ws processing capacity (instr./ sec.) offered by a ws-clusterYi ws transmission capacity (bytes/ sec.) offered by a ws-clusterZi;j inter-cluster transmission capacity (bytes/ sec.) offered by two ws-clusters

3.1 Granulation of the Application

A grain consists of one or more tasks. Each grain is run on a single workstation. The grain-size
is an indication of the capacity offered by the hosting workstation. The higher the capacity, the
larger will be the grain-size. The algorithm shown in Figure 1 computes the total grain-size (rb)
and the number of grains (qb) for a ws-cluster b. The prelude to the algorithm is to compute the
normalised total price for each ws-cluster, which is a function of processing and communication
capacities of the cluster. The ws-clusters (�s) are sorted in ascending order of their normalised
total prices as indicated at the bottom end of the algorithm.

First, for each ws-cluster b (initially, b=1), the algorithm chooses qb, between the lower and
upper bounds imposed by the application and workstation execution data. Second, it checks

3

Cluster Grain (b; rb) : initially the cluster number b=1, the grain size r1 = 1
BeginM lb � d ETXb�tup � rbeMub � d ETXb�tlp � rbeq0b �Mub � f(P pb)

While [q0b > (NT �Yb�ttCT � g(P tb))]
If (q0b > M lb)q0b � q0b � 1
Else

Termination : fail to satisfy execution requirements
If (q0b > Mab)

If (b = Ns) or [q0b > (NT �Zb;b+1�teCT � h(P eb;b+1))]
Termination : fail to satisfy execution requirements

Else rb+1 � rb � (1� Mabq0b)rb � rb � Mabq0bqb �Mab
Cluster Grain (b+ 1; rb+1)

Else qb � q0b
End

Definition of Symbols :�s = f�si ji 2 ng, and �si are arranged in sorted normalised total price order :(ETXi � P pi + CTYi � P ti) � (ETXi+1 � P pi+1 + CTYi+1 � P ti+1)f(P pb), g(P tb), and h(P eb;b+1) are the utilisation rate of average processing power,
transmission capacity, and inter-cluster transmission capacity, and P pb;max, P tb;max,
and P eb;max are the maximum prices of the respective resources.f(P pb) = PpbPpb;max ; g(P tb) = P tbP tb;max ; h(P eb;b+1) = P eb;b+1P eb;max

Figure 1: Granulation Algorithm.

whether the inter-workstation transmission requirement is also satisfied. Since the average trans-
mission cost is proportional to qb, the transmission constraint can be represented as Yb � g(P tb) �CT �qbtt�NT . If the transmission requirement is not satisfied, the value of qb will be reduced, otherwise
it will check whether qb is greater than the number of available workstations in the ws-cluster.
If the processing and transmission capacities are insufficient, the algorithm will split the appli-
cation into grains of appropriate sizes to be allocated to this cluster. Grains can be assigned to
other ws-clusters only if the inter-cluster transmission requirement is satisfied. The algorithm
runs recursively until the entire application is split.

3.2 Merging Tasks into a Grain

The second stage is to merge tasks into qTb grains for each �sb according to the rb and qb. The
merging algorithm, described in Figure 2, starts with selection of nuclei for each grain. The
nuclei are the most demanding tasks in terms of processing and transmission costs (�). Each

4

nucleus may merge with a number of non-nuclei tasks. With each merge, the processing and
transmission costs of the merging non-nuclei tasks are added to those of the nucleus.

The merging decision is determined by the value of, so called, decoupling force (df) between
a nucleus and a non-nuclei task. The df between ti and tj, consists of two components as shown
in Definition of Symbols section of the the merging algorithm in Figure 2. The first component
(term) indicates the difference in processing cost. The second term is the difference in transmis-
sion cost. The interference costs account for the cost of incompatibility of task pairs [5]. Ip is
called the processor-based interference cost incurred by process switching and synchronisation;Ic1 is the interference cost incurred by interprocess communication. When two communicating
tasks are executed on the same processor, the overhead in multiplexing/demultiplexing the ag-
gregate communication data should also be considered as illustrated in (Figure 3). Ic2 represents
this overhead which possesses the following property :ni+nj�2Xt Ic2(i; t) � niXt Ic2(i; t) + njXt Ic2(j; t)

The tasks assigned to different processors are assumed not to compete for the same com-
munication facility. Conversely, if tasks are assigned to the same workstation, they also share
the communication facilities, such as the communication processor. Higher values of df repre-
sent higher tendency for separating the tasks, thus, favouring the parallel execution. Therefore,
merging two tasks with the minimum values of df is to maximise the benefit of concurrency, un-
der the processing and transmission constraints of the ws-clusters. If the value of df is negative,
then it is preferable to execute the tasks in the same workstation.

Out of the qTb grains remained to be considered at this point, only qb of them, with the highest
values of �, are selected as the grains that can be executed on �sb. If the value of df between any
pair of the qTb grains is negative, the value of qTb will be reduced and the merging algorithm will
be restarted on �sb. The merging algorithm will be repeated until all the grains of an application
have been allocated to the ws-clusters, �s.
4 Mapping

After the merging process, the mapping algorithm that maps the allocated grains into worksta-
tions will be executed on one of the workstations in each ws-cluster, called cluster controller.
The algorithm (Figure 4) has two parts: initial mapping and dynamic exchange. In the first part,
the grain with the maximum total cost of processing and transmission is assigned to the worksta-
tion with the minimum total price. The processing price of the workstation (P pb;x) is then updated
according to the proportion of consumption as in Eq.1.P pb;x = P pb;x � (1 + XbXTb) (Eq.1)

Where XTb is the total processing capacity of a workstation in �sb.
After the first assignment, the next adjacent grain with the maximum total cost is assigned to

the workstation with the minimum total price. Besides the processing price, the link transmis-
sion prices (P tb;��) along the path between the workstations to which the two adjacent grains are
assigned are updated as in Eq.2. This mapping is repeated until all the grains have been mapped.P tb;�� = P tb;�� � (1 + YbY Tb) (Eq.2)

5

Begin
For every �sb 2 �s and rb > 0,

Select qTb tasks from T to be nuclei with highest values of �
For every ti 2 T except the nuclei

For every nucleus tj
Calculate decoupling force df(i; j)

Merge ti into tj with the minimum value of df(i; j),
(break ties by smaller value of Ej)

Select qb task clusters with highest values of � allocated in �sb
End

Definition of Symbols :qTb = qbrb � b�1Xi=1 qi� = Ei � P pb + (Xj Cij) � P tbdf(i; j) = f[(Ei +Ej) + Ip(i; j)]�Max(Ei; Ej)g � P pb+f[ni+nj�2Xl Ic2(i; l) + Ic1(i; j)]�[niXl Ic1(i; l) + njXl Ic2(j; l) + Cij]g � P tb
where Ip is processor-based interference cost,Ic1 is interference cost due to intertask communication,Ic2 is interference cost due to multiplexing and demultiplexing,ni is the number of communication links of task ti

Figure 2: Merging Algorithm

Merging t and t

t t

t + t

n comm. links n comm. links

n + n - 2 comm. links

i j

i
j

i

j

i j

i

j

Figure 3: Merging of two tasks

6

Initial assignment

Begin
Select a grain ti with Max(P pb �Ei + (Pj Cij) � P tb)
Assign ti to Wb;x 2 �sb with Min(P pb;x �Ei + (Pj Cij)�Max(P tb;xz)),

where Wb;z 2 �sb is an adjacent nodes of Wb;x
Update processing price of Wb;x by applying Eq.1
While there are any grain tj which have not been assigned

Select tj adjacent to ti with Max(P pb � Ei + Cij � P tb)
Assign tj to Wb;y 2 �sb with Min(P pb;y � Ej + Cij � P tb;xy)
Update processing prices of Wb;y by applying Eq.1
Update link transmission prices along hWb;x;Wb;yi

to which ti and tj are assigned by applying Eq.2
If all the adjacent grains of ti have been assigned,

Select the ws to which ti is assigned as Wb;x,
and the assigned grain with Max(P pb � Ei + (Pj Cij) � P tb) as ti

End

Dynamic Exchange

Begin
For every Wb;x 2 �sb,

While there is any Wb;y 2 �sb s.t. �i;x > (�i;y + �),
If Max(x;y) > �

Perform task exchange between Wb;x and Wb;y
Else

Termination
Update processing prices of the exchanged tasks by applying Eq.1
Update link transmission prices along hWb;x;Wb;yi by applying Eq.2.

End

Definition of Symbols :�i;x = Ei � P pb;x +Pk(Cik � P vik;xz)	x;y = (�i;x ��j;x) + (�j;y ��i;y)
where �i;x is the total price of executing ti in Wb;x,P vik;xz is the price on the path hWb;x;Wb;zi, if ti was assigned to Wb;x,tk is the adjacent grain to ti,	x;y is the gain incurred, if the tasks ti on Wb;x and tj on Wb;y are switched.

Figure 4: Mapping Algorithm

7

Where Wb;� and Wb;� are the adjacent workstations along the path between workstations Wb;x
and Wb;y to which ti and tj are assigned respectively, and Y Tb is the total transmission capacity
of a workstation in �sb.

The second part of the algorithm involves a dynamic exchange to improve the initial map-
ping. First, the cluster controller searches for any differences of total prices for grain execution
that is greater than the amount of the grain exchange overhead (�). Second, if the maximum gain
in a grain exchange (x;y) is greater than �, then the grain exchange will be performed. After
each exchange, the processing and transmission prices related to the exchange are updated ac-
cordingly. The algorithm repeats until all the differences of the total prices are not greater than�, or any maximum gain is not greater than �.
5 Conclusion

In this work, an integrated solution approach is developed for load balancing in a DCS environ-
ment that involves concurrent applications and clusters of workstations, inspired by the market
rules. The main aim is to handle the problem in its comprehensive framework, but with simpli-
fication and flexibility provided by the market rules which are often translated into price. The
algorithm could allow dynamic adjustments, effected by the changes in the ws-clusters and/or the
applications. All required is to incorporate the changes in the new auction and bidding prices of
the commodities (processing and communication capacities). The formulation developed, which
takes the price as its heart, acknowledges the feasibility of the approach.

The presentation has provided a framework for future work which is planned to involve im-
plementation and analysis, regarding various concurrent applications and ws-clusters.

References
[1] R. Agrawal, and H. V. Jagadish, ‘Partitioning techniques for large-grained parallelism,’ IEEE Trans. on Com-

puters, Vol.37, No.12, 1988, pp.1627-1634.

[2] S.H. Bokhari, ‘A Shortest Tree Algorithm for Optimal Assignments across Space and Time in a Distributed
Processor Systems,’ IEEE Trans. on Software Engineering, Vol.SE-7, No.6, 1981, pp.583-589.

[3] M. Bozyigit, U. Kalaycioglu, and M. Melhi,‘Load balancing in dense distributed systems,’ Proceedings of
the 4th ISCIS, Cesme, Vol. 1, pp.345-361, October 1989.

[4] D. Ferguson, Y. Yemini, C. Nikolaou, ‘Microeconomic algorithms for load balancing in distributed computer
systems,’ Proc. 8th International Conf. on Distributed Computing Systems, 1988, pp.491-499.

[5] V.M. Lo, ‘Heuristic algorithms for task assignment in distributed systems,’ IEEE Trans. on Computers,
Vol.37, No.11, 1988, pp.1384-1397.

[6] T.W. Malone, R.E. Fikes, K.R. Grant, and M.T. Howard, ‘Enterprise: a market-like task scheduler for dis-
tributed computing environments,’ in The Ecology of Computation, Huberman B.A., Ed. Amsterdam:North-
Holland, 1988, pp.177-205.

[7] M.W. Mutka, and M. Livny, ‘Profiling workstations’ available capacity for remote execution,’ Perfor-
mance’87, Proceedings of the 12th IFIP WG &.3 Symposium on Computer Performance, Brussels, Belgium,
December, 1987.

[8] C.A. Waldspurger, T. Hogg, B.A. Huberman, J.O. Kephart, and W.S. Stornetta, ‘Spawn: a distributed com-

putational economy,’ IEEE Trans. on Software Engineering, Vol.SE-18, No.2, 1992, pp.103-117.

8

	A Load Distribution through Competition for Workstation Clusters
	Citation

	tmp.1420769339.pdf.5i3Xr

