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Abstract

This paper motivates and introduces a two-stage method of estimating di¤u-
sion processes based on discretely sampled observations. In the �rst stage we make
use of the feasible central limit theory for realized volatility, as developed in Jacod
(1994) and Barndor¤-Nielsen and Shephard (2002), to provide a regression model
for estimating the parameters in the di¤usion function. In the second stage the
in-�ll likelihood function is derived by means of the Girsanov theorem and then
used to estimate the parameters in the drift function. Consistency and asymptotic
distribution theory for these estimates are established in various contexts. The
�nite sample performance of the proposed method is compared with that of the
approximate maximum likelihood method of Aït-Sahalia (2002).
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1 Introduction

For many years, continuous time models have enjoyed a great deal of success in �nance
(Merton, 1990) and more generally in economics (Dixit, 1993). Correspondingly, there
has been growing interest in estimating continuous systems using econometric methods.
Many models used in �nance for modelling asset prices can be written in terms of a

di¤usion process as
dXt = �(Xt; �1)dt+ �(Xt; �2)dBt; (1)

where Bt is a standard Brownian motion, �(Xt; �2) is a known di¤usion function,
�(Xt; �1) is a known drift function, and � = (�1; �2)

0 is a vector of k1 + k2 unknown
parameters. Note that we isolate the vector of parameters �2 in the di¤usion function
from �1 for reasons which will be clear below. The attractions of the Ito calculus make
it easy to work with processes generated by di¤usions like (1) and as a result these
processes have been used widely in �nance to model asset prices, including stock prices,
interest rates, and exchange rates.
From an econometric standpoint, the estimation problem is to estimate � from ob-

served data which are typically recorded discretely at (�; 2�; � � � ; n��(� T )) over a
certain time interval [0; T ], where � is the sampling interval and T is the time span of
the data. For example, if Xt is recorded as the annualized interest rate and observed
monthly (weekly or daily), we have � = 1=12 (1=52 or 1=250). Typically T can be as
large as 50 for US Treasury Bills, but is generally much smaller for data from swap mar-
kets. Also note that due to time-of-day e¤ects and possibly other market microstructure
frictions, it is commonly believed that intra-day data do not follow di¤usion models such
as (1). As a result, daily and lower frequencies are most frequently used to estimate
continuous time models. However, Barndor¤-Nielsen and Shephard (2002) and Boller-
slev and Zhou (2002) recently showed how to use information from intra-day data to
estimate continuous time stochastic volatility models.
A large class of estimation methods is based on the likelihood function derived from

the transition probability density of discrete sampling and then resorts to long span as-
ymptotic theory (ie T !1). Except for a few cases, the transition probability density
does not have a closed form expression and hence the exact maximum likelihood (ML)
method based on the likelihood function for the discretely sampled data is not directly
available. In the �nancial econometrics literature, interest in obtaining estimators which
approximate or approach ML estimators has been growing, in view of the natural at-
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tractiveness of maximum likelihood and its asymptotic properties. Several alternative
methods of this type have been developed in recent years.
The main purpose of the present paper is to propose an alternative method of es-

timating di¤usion processes of the form given by model (1) from discrete observations
and to establish asymptotic properties by resorting to both the long span (ie T ! 1)
and in-�ll asymptotics (ie �! 0). The estimation procedure involves two steps. In the
�rst step, we propose to use a quadratic variation type estimator of �2. In the second
step, an approximate in-�ll likelihood function is maximized to obtain a ML estimator
of �1. This method is not dependent on �nding an appropriate auxiliary model, and
does not require simulations, nor polynomial expansions. Furthermore, it decomposes
the optimization problem into two smaller scale optimization problems. Hence, it is
easy to implement and computationally more attractive relative to many other existing
methods. The approach also appears to work well in �nite samples.
The paper is organized as follows. In Section 2 we review the literature on the ML

estimation of di¤usion processes and motivate our approach. Section 3 introduces the
new method and Section 4 derives the asymptotic properties of the estimates. Section
5 presents some Monte Carlo evidence and Section 6 concludes. Proofs are provided in
the Appendix.

2 Literature Review and Motivation

2.1 Literature Review

2.1.1 Transition probability density based approaches

As explained above, a large class of estimation methods is based on the likelihood
function derived from the transition probability density of the discretely sampled data.
Suppose p(Xi�jX(i�1)�; �) is the transition probability density. The Markov property of
model (1) implies the following log-likelihood function for the discrete sample

`TD(�) =

n�X
i=2

log(p(Xi�jX(i�1)�; �)): (2)

Under regular conditions, the resulting estimator is consistent, asymptotically normally
distributed and asymptotically e¢ cient (Billingsley, 1961). Unfortunately, except for
a few cases, the transition density does not have a closed form expression and hence
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the exact ML method based on the likelihood function of the discrete sample is not
a practical procedure. In the �nancial econometrics literature, interest in �nding esti-
mators that approach ML estimators in some quanti�able sense has been growing and
many alternative methods have been developed in recent years. For example, Lo (1988)
suggested calculating the transition probability density by solving a partial di¤erential
equation numerically. Pedersen (1995) and Brandt and Santa-Clara (2002) advocate
an approach which calculates the transition probability density using simulation with
some auxiliary points between each pair of consecutive observations introduced. This
method is also closely related to the Bayesian MCMC method proposed by Elerian,
Chib and Shephard (2001) and Eraker (2001). As an important alternative to these
numerical and simulated ML methods, Aït-Sahalia (2002) proposed to approximate the
transition probability density of di¤usions using analytical expansions via Hermite poly-
nomials. Aït-Sahalia (1999) implemented the approximate ML methods and documents
its good performance. Apart from these likelihood-based approaches, numerous alterna-
tive methods are available. We simply refer readers to the book by Prakasa Rao (1999a)
for a review of many alternative approaches.

2.1.2 Approaches based on realized volatility and in-�ll likelihood

When the transition probability density does not have a closed form expression but
Xt is observed continuously over [0; T ], an alternative method can be used to estimate
di¤usion models. We now introduce and motivate the approach.
When the di¤usion term is known (ie �(Xt; �2) = �(Xt)) and so does not depend on

any unknown parameters, one can construct the exact continuous record log-likelihood
via the Girsanov theorem (e.g., Liptser and Shiryaev, 2000) as follows.

`IF (�1) =

Z T

0

�(Xt; �1)

�2(Xt)
dXt �

1

2

Z T

0

�2(Xt; �1)

�2(Xt)
dt:

Lánska (1979) established the consistency and asymptotic normality of the continuous
record ML estimator of �1 when T !1 under a certain set of regularity conditions.
The assumptions of a known di¤usion function and the availability of a continuous

time record are not realistic in �nancial and other applications. Motivated by the fact
that the drift and di¤usion functions are of di¤erent orders (Bandi and Phillips, 2003,
2005), we argue that there can be advantages to estimating the di¤usion parameters
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separately from the drift parameters. For example, when �(Xt; �2) = �2, i.e., the dif-
fusion function is an unknown constant, a two-stage approach can be used to estimate
the model. First, �2 can be estimated directly by the realized volatility function, i.e.,

�̂2 =

r
[X�]T
T

; (3)

where [X�]T =
Pn�

i=2(Xi� �X(i�1)�)
2. This is because model (1) implies that

(dXt)
2 = �22dt; 8t;

and hence

[X]T =

Z T

0

(dXt)
2dt =

Z T

0

�22dt = T�
2
2;

where [X]T is the quadratic variation ofX; which can be consistently estimated by [X�]T
as �! 0. As a result, �̂2 should be a very good estimate of �2 when � is small, which
is typically the case for interest rate data. Indeed, in the special case where the drift
term is zero and the di¤usion term is an unknown constant, the exact discrete model
(Phillips, 1972) for the data is Xi��X(i�1)� = �2

�
Bi� �B(i�1)�

�
and so the maximum

likelihood estimator is trivially �̂2 (see also Aït-Sahalia, Mykland and Zhang, 2005).
Although this correspondence clearly does not apply to more general speci�cations, it
seems likely that when � is small the two estimators will be close to each other. Second,
the following logarithmic continuous record likelihood function of model (1)

`IF (�1) =

Z T

0

�(Xt; �1)

�2(Xt; �̂2)
dXt �

1

2

Z T

0

�2(Xt; �1)

�2(Xt; �̂2)
dt:

may be approximated by the in-�ll likelihood function

`AIF (�1) =

n�X
i=2

�(X(i�1)�; �1)

�̂
2

2

(Xi� �X(i�1)�)�
�

2

n�X
i=2

�2(X(i�1)�; �1)

�̂
2

2

; (4)

which is in turn maximized with respect to �1. Because �1 is estimated by ML and b�2
is close to an MLE, the two-stage procedure may be interpreted as a form of pro�le
ML estimation. This two-stage approach is closely related to the method proposed
by Florens-Zmirou (1989) where a contrast function instead of the logarithmic in-�ll
likelihood function was used in the second step.
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When the di¤usion term is only known up to a scalar factor, that is,

dXt = �(Xt; �1)dt+ �2f(Xt)dBt; (5)

the above two-stage method is easily modi�ed. First, �22 can be estimated by

�̂
2

2 =
[X�]T

�
Pn�

i=2 f
2(X(i�1)�)

: (6)

Second, the following approximate logarithmic in-�ll likelihood function can then be
maximized with respect to �1 (denoting the resulting estimator by �̂1)

`AIF (�1) =

n�X
i=2

�(X(i�1)�; �1)

�̂
2

2f
2(X(i�1)�)

(Xi� �X(i�1)�)�
�

2

n�X
i=2

�2(X(i�1)�; �1)

�̂
2

2f
2(X(i�1)�)

: (7)

This method is applicable to many popular interest rate models, including those
proposed by Vasicek (1977), Cox et al (1985) (CIR hereafter), and Ahn and Gao (1998).
It is also closely related to the method proposed by Yoshida (1992). In particular,
instead of using the estimator in (6), Yoshida (1992) used the following estimator for
�22:

~�
2

2 =
1

T

n�X
i=2

(Xi� �X(i�1)�)
2

f 2(X(i�1)�)
: (8)

Also, Yoshida (1992) suggested using an iterative procedure to construct a better esti-
mate of �22 (denoted by ~�

2

2). Under the conditions of � ! 0, T ! 1, and �2T ! 0,
Yoshida (1992) derived the limiting normal distribution for

p
n�(~�

2

2� �22) and
p
T (�̂1�

�1). Since
p
n�=

p
T =

p
1=� ! 1, the di¤usion parameter enjoys a faster rate of

convergence.
The restriction on the di¤usion term regarding parameter dependence was somewhat

�relaxed�in Hutton and Nelson (1986) who based estimation on the following �rst order
condition of the logarithmic quasi-likelihood function:Z T

0

@�(Xt; �)=@�

�2(Xt; �)
dXt �

1

2

Z T

0

@�2(Xt; �)=@�

�2(Xt; �)
dt = 0:

Although their model seems to allow for a more �exible di¤usion function, it requires that
the drift term share the same set of parameters as the di¤usion term. This assumption is
too restrictive for practical applications. Moreover, although this one-stage estimation
approach is easy to implement, the estimation is mainly based on the drift function and
hence leads to inferior �nite sample properties, as we will show below in the context of
a simple example.
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2.2 Motivation

Our two-stage method is in line with methods proposed by Florens-Zmirou (1989) and
Yoshida (1992). That is, in the �rst stage, we estimate the parameters in the di¤usion
functions based on the realized volatility, a quantity which consistently estimates the
quadratic variation under very mild conditions. In the second step, by assuming the
di¤usion function is known, we derive and approximate the logarithmic in-�ll likelihood
function. To motivate the two-step approach, we consider two simple examples.

2.2.1 Example 1

In the �rst example, we consider estimating the following CIR model

dXt = �(��Xt)dt+ �
p
XtdBt; (9)

using the exact MLmethod based on the transition probability density and the two-stage
method discussed in Section 2.1.
The natural estimator of � based on realized volatility is

�̂ =

s
[X�]T

�
Pn�

i=1X(i�1)�
: (10)

Moreover, since �1 = (�; �)0, the logarithmic in-�ll likelihood is,

nX
i=1

�(��X(i�1)�)(X(i�1)� �X(i�1)�)

�̂2X(i�1)�
� �
2

nX
i=1

�2(��X(i�1)�)
2

�̂2X(i�1)�
: (11)

CIR (1985) showed that the distribution of X(t + �) conditional on X(t) is non-
central chi-squared, �2[2cX(t); 2q + 2; 2�(t)], where c = 2�=(�2(1 � e���)); �(t) =
cr(t)e���; q = 2��=�2 � 1, and the second and third arguments are the degrees of free-
dom and non-centrality parameters, respectively. This transition probability density is
used to calculate the likelihood function and to obtain the exact ML estimates.
Table 1 reports some results obtained from a Monte Carlo study where we compare

two estimation methods. We vary both the sampling frequencies and time spans. Note
that the parameters and the sampling frequencies are all set to empirically reasonable
values. In all cases, the two-stage method performs comparably with the ML method.
Even in the case where very coarsely sampled data (� = 1=12) are available, the two-
stage method works quite well. In light of Phillips and Yu (2005), the observed bias in
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the estimates of � are the result of the near unit root problem. The observation that the
two-stage method is not dominated by ML is quite remarkable, as the data generating
process is based on the transition probability density on which ML itself is based. An
interesting side result to emerge from this simulation is that the two-stage method is
able to reduce the �nite sample bias and variance in � in all cases, even though the
reductions are small.

� T Method � = 0:3 � = 0:09 � = 0:06
Mean SD Mean SD Mean SD

�100 �100
1/12 20 MLE .5417 .2832 .0898 1.3848 .0603 .2841

2-STAGE .5265 .2663 .0898 1.3785 .0597 .2793
1/12 15 MLE .6350 .3610 .0903 1.8937 .0604 .3232

2-STAGE .6133 .3355 .0904 1.9611 .0596 .3198
1/52 20 MLE .5075 .2582 .0906 1.3467 .0601 .1332

2-STAGE .5045 .2552 .0906 1.3470 .0600 .1347
1/52 10 MLE .7154 .4390 .0925 2.4234 .0601 .2035

2-STAGE .7069 .4306 .0924 2.3301 .0600 .2024
1/250 20 MLE .5268 .2725 .0898 1.3176 .0600 .0617

2-STAGE .5260 .2718 .0898 1.3179 .0600 .0634
1/250 10 MLE .7533 .4737 .0904 1.9306 .0601 .0874

2-STAGE .7519 .4714 .0903 1.9283 .0600 .0891

Table 1: Simulation results under the CIR model, dXt = 0:3(0:09�Xt)dt+0:06
p
XtdBt,

based on 1000 replications. Mean and SD stand for the average and standard deviation
across 1000 replications, respectively.

2.2.2 Example 2

The model in the second example is taken from Hutton and Nelson (1986)

dXt = �dt+ �dBt: (12)

Although this model is generally not well suited to interest rate data, the feature that
the drift and di¤usion functions share the same parameter provides a nice framework
to investigate the relative performance of the estimation method based on the di¤usion
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only, against that based on the drift only and that based on the drift and di¤usion
jointly.
The �rst method is based on the realized volatility and hence only uses the di¤usion

term to estimate the model. It is easy to show that

�̂1 =

r
[X�]T
T

:

The second method is based on the transition probability density given by

Xi�jX(i�1)� � N(X(i�1)� + ��; �
2�):

Clearly this method uses information both in the drift and di¤usion functions. Denote
the resulting estimate by �̂2. Note that this estimator is equivalent to the MLE of the
discretized model via the Euler approximation.
The third method was proposed by Hutton and Nelson (1986). It uses mainly infor-

mation in the drift function and is based on maximization of the following logarithmic
quasi-likelihood function Z T

0

��2dXt �
Z T

0

��1dt:

As a result, the estimate has the following analytical expression:

�̂3 =
XT

T
:

Table 2 reports results obtained from a Monte Carlo study where we compare the
three estimation methods with di¤erent sampling frequencies. In all cases, the two-stage
method and ML perform much better than QML; and, most remarkably, the two-stage
method performs better than ML (and hence the Euler method). Just as in Example 1,
the fact that the simple two-stage method outperforms ML in �nite samples is surprising.
Moreover, the better performance of the �rst and second methods clearly re�ects the
order di¤erence in the drift and di¤usion functions.

3 A Two-Stage Method

The estimation procedure discussed in Section 2.1 is not directly applicable to general
di¤usions such as model 1, as it requires either a constant di¤usion function or separa-
bility of the scalar parameter from the reminder of the di¤usion function. As a result, we
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True value of � = 0:1
� T RV ML QML

Mean Variance Mean Variance Mean Variance
�100 �100 �100

1/12 20 .1013 .0224 .1054 .0266 .0954 .469
1/52 20 .1003 .00488 .1013 .00514 .1005 .5121
1/250 20 .1000 .0011 .1002 .0011 .0992 .518

Table 2: Simulation results under dXt = 0:1dt + 0:1dBt based on 1000 replications.
Mean and variance are calculated across 1000 replications, respectively.

have to provide a more general two-step procedure to estimate a di¤usion process in the
form of model (1). In particular, in the �rst step we propose to estimate the parameters
in the di¤usion function by using the feasible central limit theorem for realized volatility
derived by Jacod (1994) and popularized by Barndor¤-Nielsen and Shephard (2002).
Assume that Xt is observed at times

t = �; 2�; � � � ;M��(=
T

K
); (M� + 1)�; � � � ; 2M��(=

2T

K
); � � � ; n��(= T );

where n� = KM� with K being a �xed and positive integer, T is the time span of
the data, � is the sampling frequency, and M� = O(n�). This particular construction
allows for the non-overlapping K sub-samples

((k � 1)M� + 1)�; � � � ; kM��; where k = 1; � � � ; K;

so that each sub-sample has M� observations over the interval ((k � 1) T
K
; k T

K
]. For

example, if ten years of weekly observed interest rates are available and we split the
data into ten blocks, then T = 10, � = 1=52, M� = 52, K = 10. The total number of
observations is 520 and the number of observations contained in each block is 52.
As �! 0, n� = T

�
!1 and M� !1; so that

M�X
i=2

(X(k�1)M�+i� �X(k�1)M�+(i�1)�)
2 p! [X]k T

K
� [X](k�1) T

K
; (13)

and PM�

i=2 (X(k�1)M�+i� �X(k�1)M�+(i�1)�)
2 � ([X]k T

K
� [X](k�1) T

K
)

rk

d! N(0; 1); (14)
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log(
PM�

i=2 (X(k�1)M�+i� �X(k�1)M�+(i�1)�)
2 � log([X]k T

K
� [X](k�1) T

K
)

sk

d! N(0; 1);

(15)
where

rk =

vuut2

3

M�X
i=2

(X(k�1)M�+i� �X(k�1)M�+(i�1)�)
4

and

sk = minf
s

r2k
(
PM�

i=2 (X(k�1)M�+i� �X(k�1)M�+(i�1)�)
2)2
;
2

M�

g (16)

for k = 1; � � � ; K. The limit (13) follows by virtue of the de�nition of quadratic variation,
while the central limit theorem (CLT) results (14) and (15) are due to Jacod (1994) and
Barndor¤-Nielsen and Shephard (2002), where (16) involves a �nite sample correction
on the asymptotic theory of Barndor¤-Nielsen and Shephard (2005).
Based on the CLT (14), �2 can be estimated in the �rst stage by running a (nonlinear)

least squares regression of the standardized realized volatilityPM�

i=2 (X(k�1)M�+i� �X(k�1)M�+(i�1)�)
2

rk
(17)

on the standarized di¤usion function

([X]k T
K
� [X](k�1) T

K
)

rk
=

�R k T
K

(k�1) T
K

�2 (Xt; �2) dt
�

rk
(18)

'
PM�

i=2 �
2
�
X(k�1)M�+(i�1)�; �2

�
�

rk
(19)

for k = 1; � � � ; K. Denote the resulting estimator of �2 by �̂2. In fact, we can write �̂2
as the extremum estimator

�̂2 = argmin
�2
Q� (�2) ; (20)

where

Q� (�2) = �

KX
k=1

"PM�

i=2

�
(X(k�1)M�+i� �X(k�1)M�+(i�1)�)

2 � �2
�
X(k�1)M�+(i�1)�; �2

�
�
	

rk

#2
:
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A similar regression in standardized log levels of realized volatility can be run using
result (15).
This approach provides a more general estimation procedure than those designed to

estimate models with a constant di¤usion or a scalar parameter in the di¤usion function.
Indeed, when K = 1, the least squares regression above is equivalent to minimizing the
squared di¤erence between the terms given by Equations (17) and (18), which yields
exactly the expression of the estimator (6) when the di¤usion term is known up to the
scalar factor.
In the second stage, the approximate log-likelihood function is maximized with re-

spect to �1 (denoting the resulting estimator by �̂1)

`AIF (�1) =

n�X
i=2

�(X(i�1)�; �1)

�2(X(i�1)�; �̂2)
(Xi� �X(i�1)�)�

�

2

n�X
i=2

�2(X(i�1)�; �1)

�2(X(i�1)�; �̂2)
: (21)

4 Asymptotic Results

The asymptotic theory of a slightly di¤erent two-stage estimator in the multivariate
case has been obtained in Yoshida (1992) for models whose di¤usion term is known up
to a constant (matrix) factor, where both in�ll and long span asymptotics are employed
both for the di¤usion and drift parameter estimators. In this section we �rst derive
the asymptotic theory for the same class of (scalar) models but only resort to long
span asymptotics for the drift parameter asymptotic theory. We then investigate the
asymptotic properties of the estimators proposed in Section 3 for model (1) whose
di¤usion function has a general form.

4.1 Scalar Parameter in the Di¤usion Function

To highlight the di¤erences between our approach and Yoshida (1992), we �rst assume
the data are generated from the following stochastic di¤erential equation:

dXt = �(Xt; �
�
1)dt+ �

�
2f(Xt)dBt: (22)

Denote �22 by � and �
�2
2 by � �. Both �(�; �1) and f(�) are time-homogeneous, B-

measurable functions on D = (l; u) with �1 � l < u � 1, where B is the �-�eld
generated by Borel sets on D. � is estimated by �̂ de�ned by Equation (6); �1 is esti-
mated by �̂1, the maximizer of Equation (7).
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To prove consistency of �̂ in a di¤usion process with a constant di¤usion term (ie
f(Xt) = 1), Florens-Zmirou (1989) assumed �! 0, T !1, and �2T ! 0. The same
set of assumptions were employed by Yoshida (1992) to deal with the di¤usion process
for more general, but still known, f(Xt). In this paper, using the theory of Jacod (1994)
and Barndor¤-Nielsen and Shephard (2002), we show that the condition of an in�nite
time span of data (ie T ! 1) is not needed to develop the asymptotic theory for �̂ ;
thereby extending the asymptotic results of Yoshida (1992) in a signi�cant way.
We list the following conditions.
Assumption 1: Equation [X]t� �

R t
0
f 2(Xs)ds = 0 has a unique solution at � � > 0

8t > 0.
Assumption 2: infx2J f 2(x) > 0, where J is a compact subset of the range of the

process.
Assumption 3:

R t
0
�2(Xs; �1)ds <1 8t <1.

Remark 4.1: Assumption 1 is an identi�cation condition. Assumption 3 ensures
weak convergence of the error process from the Euler approximation to the di¤usion
process (Jacod and Protter, 1998).
THEOREM 4.1 (Asymptotics of the Di¤usion Parameter Estimate): Suppose As-

sumptions 1-2 hold, �̂
p! � � as �! 0. If, in addition, Assumption 3 holds,

��1=2(�̂ � � �) d!
p
2
R T
0
� �f 2(Xs)dWsR T

0
f 2(Xs)ds

:

where Wt is a Brownian motion which is independent of Xt.
Remark 4.2: With a di¤erent estimate for � , we substantially improve the results

of Yoshida (1992), who derived asymptotic properties of the di¤usion estimate assuming
that � ! 0 and T ! 1; by only requiring in Theorem 4.1 that � ! 0. Our result is
not surprising and con�rms the intuition that when the sampling interval goes to zero,
the sample path within a �nite time span, no matter how short, can perfectly reveal
the quadratic variation of the process (see, for example, Merton 1980) at least over that
time span.
To establish the asymptotic properties of the drift parameter estimate, we follow

Yoshida (1992) closely. In particular, we �rst list the following conditions.
Assumption 4: �1 2 �1 where the parameter space �1 � RK1 is a compact set

with ��1 2 Int(�1).
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Assumption 5: Both �(�; �1) and f(�) functions are twice continuously di¤eren-
tiable. As a result, for any compact subset J of the range of the process, we have the
following two conditions:
(i) (Lipschitz condition) There exists a constant L1 so that

j�(x; ��1)� �(y; ��1)j+ ��2jf(x)� f(y)j � L1jx� yj;

for all x and y in J .
(ii) (Growth condition) There exists a constant L2 so that

j�(x; ��1)j+ ��2jf(x)j � L2j1 + xj;

for all x and y in J .
Assumption 6: De�ne the scale measure of Xt by

s(x; �) = exp

�
� 2

Z x

c

�(y; �1)

�f 2(y)
dy

�
;

where c is a generic constant. We assume the following conditions holdZ u

c

s(x; �)dx =

Z c

l

s(x; �)dx =1;

and Z u

l

1

s(x; �)�f 2(x)
dx = A(�) <1:

Assumption 7: For arbitrary p � 0,

sup
t
E(jXtjp) <1:

Assumption 8: De�ne the following function

�1 ! Y (�1; �
�) =

Z
�(x; �1)

� �f 2(x)
(�(x; ��1)�

1

2
�(x; �1))��(dx)

and assume function Y (�; � �) has the unique maximum at �1 = �
�
1, where �� is de�ned

in Remark 4.4.
Assumption 9: For �xed �1, the derivatives @l�(x; �1)=@xl and @lf(x)=@xl ( l =

1; 2) exist and they are continuous in x. For �xed x, @l�(x; �1)=@�
l
1 exist. Moreover,

j@l�(x; �1)=@xlj; j@lf(x)=@xlj; j@l�(x; �1)=@�l1j � C(1 + jxj)C ;
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for l = 0; 1; 2.
Assumption 10: The matrix

� =

Z
@�(x; ��1)

@�>1
(� �f 2(x))�1

@�(x; ��1)

@�1
��(dx) (23)

is positive de�nite.
Remark 4.3: Under Assumption 5, these exists a solution process for the stochastic

di¤erential equation and the solution is unique.
Remark 4.4: Under Assumption 6, the process Xt is ergodic with an invariant

probability measure that has density

��(x) =
1

A(�)s(x; �)�f 2(x)
;

for x 2 (l; u) with respect to Lebesque measure on (l; u), where A(�) and s(x; �) are
de�ned in Assumption 6. We further assume that X0 � ��� so that Xt is a stationary
process with Xt � ���.
THEOREM 4.2 (Asymptotics of the Drift Parameter Estimates): Let �̂1 =

argmax
�12�1

T�1 log `AIF (�1) with `AIF (�1) given by Equation (7). Suppose Assump-

tions 1-10 hold, �̂1
p! ��1 as �! 0 and T !1. If, in addition, �2T ! 0,

T 1=2(�̂1 � ��1)
d! N(0;��1);

where � is given in Equation (23).

4.2 General Di¤usions

Now we consider the general case where Florens-Zmirou (1989) and Yoshida (1992) are
not applicable. Suppose data are generated from the following stochastic di¤erential
equation

dXt = �(Xt; �
�
1)dt+ �(Xt; �

�
2)dBt; (24)

where �1 2 �1 � RK1 and �2 2 �2 � RK2. Both �(�; �1) and �(�; �2) are time-
homogeneous, B-measurable functions on D = (l; u) with �1 � l < u � 1, where B
is the �-�eld generated by Borel sets on D. �2 is estimated by regressing (17) on (18),
giving the extremum estimator (20); �1 is estimated by �̂1, de�ned by Equation (21).
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As in the scalar factor parameter case, we show that an in�nite time span (ie T !1)
is not needed to develop the asymptotic theory for �̂2.
Some additional assumptions are required, given the nonlinear dependence of the

di¤usion �(Xt; �2) on �2. Also we have to modify some earlier Assumptions listed in
Section 4.1.
Assumption 10: The equation

[X]t �
Z t

0

�2(Xs; �2)ds =

Z t

0

�2(Xs; �
�
2)ds�

Z t

0

�2(Xs; �2)ds = 0 (25)

has a unique solution at ��2; 8t > 0.
Assumption 20: infx2J �2(x; ��2) > 0, where J is a compact subset of the range of

the process.
Assumption 40: �1 2 �1, �2 2 �2; where parameter spaces �1 � Rk1 and �2 � Rk2

are compact set with ��1 2 Int(�1) and �
�
2 2 Int(�2):

Assumption 50: Both �(�; �1) and �(�; �2) functions are twice continuously di¤er-
entiable. As a result, for any compact subset J of the range of the process, we have the
following two conditions:
(i) (Lipschitz condition) There exists a constant L1 so that

j�(x; ��1)� �(y; ��1)j+ j�(x; ��2)� �(y; ��2)j � L1jx� yj;

for all x and y in J .
(ii) (Growth condition) There exists a constant L2 so that

j�(x; ��1)j+ j�(x; ��2)j � L2j1 + xj;

for all x and y in J .
Assumption 60: De�ne the scale measure of Xt by

s(x; �) = exp

�
� 2

Z x

c

�(y; �1)

�2(y; �2)
dy

�
;

where c is a generic constant. We assume the following condition holdsZ u

c

s(x; �)dx =

Z c

l

s(x; �)dx =1;
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and Z u

l

1

s(x; �)�2(x; �2)
dx = A(�) <1:

Assumption 80: De�ne the following function

�1 ! Y (�1; �
�
2) =

Z
�(x; �1)

�2(x; ��2)
(�(x; ��1)�

1

2
�(x; �1))���(dx)

and assume Y (�; ��2) has the unique maximum at �1 = �
�
1.

Assumption 90: For �xed �1, the derivatives @l�(x; �1)=@xl and @l�(x; �2)=@xl ( l =
1; 2) exist and they are continuous in x. For �xed x, @l�(x; �1)=@�

l
1 and @

l�(x; �2)=@�
l
2

exist. Moreover,

j@l�(x; �1)=@xlj; j@l�(x; �2)=@xlj; j@l�(x; �1)=@�l1j; j@l�(x; �2)=@�l2j � C(1 + jxj)C ;

for l = 0; 1; 2.
Assumption 100: The matrices

�1 =

Z
@�(x; ��1)

@�1
��2(x; ��2)

@�(x; ��1)

@�01
��(dx) (26)

and
Z t

0

@�2 (Xs; �
�
2)

@�2

@�2 (Xs; �
�
2)

@�02
ds

are positive de�nite and
R t
0
�4 (Xs; �

�
2) ds > 0 for all t > 0:

THEOREM 4.3 (Asymptotics of the Di¤usion Parameter Estimate): Suppose As-
sumptions 1 0-10 0 hold. Then, �̂2

p! ��2 as �! 0 and

��1=2
�
�̂2 � ��2

�
d!

264 KX
k=1

R k T
K

(k�1) T
K

@�2(Xs;�
�
2)

@�2

@�2(Xs;�
�
2)

@�02
dsR k T

K

(k�1) T
K

�4 (Xs; �
�
2) ds

375
�1

�

264 KX
k=1

p
2
R k T

K

(k�1) T
K

@�2(Xs;�
�
2)

@�2
�2 (Xs; �

�
2) dWs

2
R k T

K

(k�1) T
K

�4 (Xs; �
�
2) ds

375 ;
where Wt is a Brownian motion which is independent of Xt.
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THEOREM 4.4 (Asymptotics of the Drift Parameter Estimate): Let �̂1 =
argmax T�1 log `AIF (�1) with `AIF (�1) given by Equation (21). Suppose Assumptions
10 � 100 hold, then �̂1

p! ��1 as �! 0 and T !1. If, in addition, �2T ! 0,

T 1=2(�̂1 � ��1)
d! N(0;��11 );

where �1 is given in Equation (26).

5 Monte Carlo Results

To examine the performance of the proposed procedure, we estimate the following model
for short-term interest rates due to Chan et al. (CKLS hereafter) (1992),

dXt = �(��Xt)dt+ �X


t dBt; (27)

with � = 0:6; � = 0:09; � = 0:06; 
 = 0:5. We choose 
 = 0:5 so that the true model
becomes a CIR model which enables an exact data simulation. The parameters are
estimated from 10 years of daily data (2500 observations). The experiment is replicated
1000 times to get the means and standard errors for each estimate. Two estimation
methods are employed to estimate the model: the approximate ML method of Aït-
Sahalia (2002) and the proposed two-stage method.1 The results are reported in Table
3.
To use the two-stage method, the number of subsamples has to be chosen. Since

there are two parameters in the di¤usion term, K = 1 is not adequate. Although K = 2

may seem a natural choice, the simulation results suggest that larger values of K are
better and the performance of the procedure improves substantially when K � 10. The
estimation of parameters in the drift function does not seem to be dependent on the
di¤usion parameters in any critical way. This suggests that in all cases the quadratic
variations are well estimated. As a result, we are able to treat the di¤usion term as a
known function and the in-�ll likelihood function is a very good approximation to the
one with a known di¤usion function. Not surprisingly, therefore, our estimates are close
to the approximate ML method of Aït-Sahalia (2002).

1Although the asymptotic theory has been developed for the standardized realized volatility in the
present paper, the �nite sample performance often improves for the regression based on the log realized
volatility. As a result, the Monte Carlo results reported in Table 3 are based on Equation (15).
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Two-Stage Method
AML K=2 K=10 K=20 K=50


 Mean 0.4901 0.5326 0.4992 0.4954 0.4927
(=0.5) SD 0.1044 0.5117 0.1295 0.1136 0.1104
� Mean 0.0604 0.1562 0.0628 0.0612 0.0603

(=0.06) SD 0.0157 0.4754 0.0235 0.0177 0.0167
� Mean 1.0716 1.0697 1.0729 1.0730 1.0726

(=0.6) SD 0.5447 0.5399 0.5417 0.5417 0.5415
� Mean 0.0901 0.0902 0.0902 0.0902 0.0902

(=0.09) SD 0.0097 0.0094 0.0094 0.0094 0.0094

Table 3: Simulation results under the CKLS model, dXt = �(��Xt)dt+�X


t dBt, based

on 1000 samples of 2500 daily observations. Mean and SD stand for the average and
standard deviation across 1000 replications, respectively.

6 Conclusion Remarks

This paper proposes a two-stage method to estimate di¤usion processes in a general
form. In the �rst stage the realized volatility calculated from a sequence of split sam-
ples is regressed on the corresponding quadratic variation in order to estimate all the
parameters in the di¤usion function. Then, conditional on the resulting consistent es-
timate of the di¤usion, the in-�ll likelihood function approximation of the di¤usion
process can be readily constructed. The resulting discrete approximation produces es-
timates of all the parameters in the drift function. Monte Carlo simulations show that
the �nite sample performance of the proposed method is very satisfactory and as good
as conventional maximum likelihood even when the discrete likelihood can be obtained.
One advantage of the proposed method is that a larger scale optimization problem is
decomposed into two smaller scale optimization problems. Although, like other extreme
estimators, our method tends to over estimate the mean reversion parameter, �, the nu-
merical attractability of our method makes it an ideal initial estimate for the jackknife
method of Phillips and Yu (2005) to reduce the �nite sample bias in �.
There exist alternative two-step procedures to estimate di¤usion processes. For

example, in Bandi and Phillips (2005), nonparametric estimates of the drift and di¤usion
functions are matched with the parametric counterparts to provide consistent estimation
of parameters in the drift and in the di¤usion, respectively. One can certainly use our
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�rst step estimate (i.e. via realized volatility) in place of the di¤usion estimate (i.e. via
kernel functions) in the procedure of Bandi and Phillips (2005).
The approach can be readily extended to the multi-dimensional case. Both im-

plementation and asymptotic theory only need trivial modi�cations. Since the method
separates estimation of the drift and di¤usion functions, it may be a desirable method to
use when the drift but not the di¤usion involves certain market microstructure features.
However, if the di¤usion function is contaminated by market microstructure noise,

which is typically the case in practice for ultra high frequency data, the realized volatil-
ity calculated from the observed variable does not provide as much directly useable
information about the di¤usion function. Indeed, as shown in Zhang, Mykland and Aït-
Sahalia (2005), under the assumption of the pure noise, realized volatility diverges. So,
the presence of microstructure noise will require some modi�cation of our procedure.
Appropriate extensions to deal with noise perturbations will be considered in future
work.
The two-step approach can be also adapted to deal with the following di¤usion model

mixed with jumps:

dXt = �(Xt; �1)dt+ �(Xt; �2)dBt + f(Xt; �3)dZ
�3
t ;

where Z�3t is a Lévy process with parameter �3. For this model realized volatility cannot
be used to consistently estimate �2 as it does not converge to

R
�2(Xt; �2)dt. Fortunately,

empirical tripower variation converges to
R
�2(Xt; �2)dt. Barndor¤-Nielsen, Shephard

and Winkel (2005) obtained a central limit theorem for the tripower variation process
when a di¤usion process is mixed with �nite activity jumps. Since the in-�ll likelihood
is readily available for jump-di¤usion processes once the di¤usion term is known, we
can adopt the following two-step procedure to estimate the model: �rst, use tripower
variation to estimate �2; then, maximize the approximated in-�ll likelihood with respect
to �1 and �3. The properties of the resulting estimator will be reported in future work.

7 Appendix

Proof of Theorem 4.1: It is known that all di¤usion-type processes are semi-martingales
(Prakasa Rao, 1999b). As a result, when �! 0,

[X�]T
p! [X]T = �

�
Z T

0

f 2(Xs)ds;
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where the convergence follows from the theory of quadratic variation for semi-martingales
and the equality follows from Assumption 1.
By Assumption 3, we have

�̂ =
[X�]TPn�

i=1 f
2(X(i�1)�)

p! [X]TR T
0
f 2(Xs)ds

= � �:

This proves the �rst part of Theorem 1.
Since Xt is a semi-martingale, by Ito�s lemma for semi-martinagles (Prakasa Rao,

1999b) we have

X2
T = [X]T + 2

Z T

0

Xs�dXs�:

Following Theorem 1 of Barndor¤-Nielsen and Shephard (2002) we have

��1=2([X�]T � [X]T )
d! � �

p
2

Z T

0

f 2(Xs)dWs; (28)

where Wt is a Brownian motion which is independent of Xt. Hence,

��1=2(�̂ � � �)

= ��1=2
�

[X�]TPn�
i=1 f

2(X(i�1)�)
� [X]TR T

0
f 2(Xs)ds

�

= ��1=2 1R T
0
f 2(Xs)ds

� R T
0
f 2(Xs)dsPn�

i=1 f
2(X(i�1)�)

[X�]T � [X]T
�
: (29)

By Assumption 3, Pn�
i=1 f

2(X(i�1)�)R T
0
f 2(Xs)ds

p! 1:

By Slutsky�s theorem, Equations (28) and (29) imply that

��1=2(�̂ � � �) d! � �
p
2
R T
0
f 2(Xs)dWsR T

0
f 2(Xs)ds

: (30)

This completes the proof of Theorem 1.
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Proof of Theorem 4.2:
Obviously, the proposed drift estimator is in the class of extremum estimators.

Hence, one can prove consistency by checking su¢ cient conditions for extremum es-
timation problems. It is convenient here to check the conditions given in Newey and
McFadden (1994, p.2121), namely, compactness, continuity, uniform convergence, and
identi�ability.
Compactness of �, continuity of T�1 log `AIF (�1; �̂) and the identi�cation condition

are assured by Assumption 1, Assumption 9 and Assumption 8, respectively. The uni-
form convergence of T�1 log `AIF (�1) to Y (�1; � �) follows from Proposition 1, Lemma 1
and Lemma 2 in Yoshida (1992). Hence the �rst part of the theorem is proved.
To show asymptotic normality, we follow Yoshida (1992) by obtaining the weak

convergence of the likelihood ratio random �eld,

Z�;n�(� ; u) = `AIF (�
�
1 + T

�1=2u; �̂)=`AIF (�
�
1; �̂):

Under the listed conditions, Yoshida (1992) showed that

logZ�;n�(�
�; u) = u>T�1=2

n�X
i=1

@�(x; ��1)

@�1

1

� �f 2(X(i�1)�)

Z i�

(i�1)�
� �f(x)dWt

�1
2
u>�u+ ��;n(u); (31)

where ��;n(u)
p! 0 and � is de�ned in Equation (23).

From Theorem 1, we have, 8� > 0, that there exists a � and a positive number c1
such that

P (��1=2(�̂ � � �) > c1) < �=2:
Let �̂ = � � +�1=2M and we have, 8� > 0

P (j logZ�;n�(�̂ ; u)� logZ�;n�(� �; u)j > �)
= P (��1=2(�̂ � � �) > c1) + P ( sup

jM j�c1
j logZ�;n(�̂ ; u)� logZ�;n�(� �; u)j > �)

< �: (32)

Combining equations (31) and (32) proves Proposition 4 of Yoshida (1992). Similarly,
we can obtain Propositions 5 and 6 of Yoshida (1992) based on �̂ . The week convergence
of the likelihood random �eld follows these propositions. In particular,

T 1=2(�̂1 � ��1)
d! N(0;�):
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This completes the proof of Theorem 4.2.

Proof of Theorem 4.3:
The argument is brie�y sketched here. We consider the case where the estimate �̂2

is obtained from the extremum estimation problem (20), viz.,

�̂2 = argmin
�2
Q� (�2) ;

where

Q� (�2) = �
KX
k=1

"PM�

i=2

�
(X(k�1)M�+i� �X(k�1)M�+(i�1)�)

2 � �2
�
X(k�1)M�+(i�1)�; �2

�
�
	

rk

#2
:

A similar argument can be employed in the case where standardized log levels of realized
volatility are used in the regression based on the CLT result (15).
Observe that, as �! 0;

Q� (�2)
p! Q (�2) =

KX
k=1

nR k T
K

(k�1) T
K

�2 (Xs; �
�
2) ds�

R k T
K

(k�1) T
K

�2 (Xs; �2) ds
o2

2
R k T

K

(k�1) T
K

�4 (Xs; �
�
2) ds

;

uniformly in �2; since

M�X
i=2

(X(k�1)M�+i� �X(k�1)M�+(i�1)�)
2 p! [X]k T

K
� [X](k�1) T

K
=

Z k T
K

(k�1) T
K

�2 (Xs; �
�
2) ds;

and
M�X
i=2

�2
�
X(k�1)M�+(i�1)�; �2

�
�

p!
Z k T

K

(k�1) T
K

�2 (Xs; �2) ds; (33)

uniformly in �2 2 �2 in view of the compactness of �2 and the smoothness of �2 (Xs; �2) :

Next,

r2k
�
=

2

3�

M�X
i=2

(X(k�1)M�+i� �X(k�1)M�+(i�1)�)
4 p! 2

Z k T
K

(k�1) T
K

�4 (Xs; �
�
2) ds; (34)
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as in Barndor¤-Nielsen and Shephard (2002, hereafter BNS). Thus, since Q (�2) is min-
imized for �2 = �

�
2 in view of (25), we have �̂2

p! ��2 by a standard extremum estimator
argument.
Next, by a Taylor series argument under the stated smoothness and positive de�-

niteness assumptions, we have

��1=2
�
�̂2 � ��2

�
=

24 1
�

@2Q�

�
~�2

�
@�2@�

0
2

35�1 � 1

�3=2

@Q� (�
�
2)

@�2

�

�
�
1

�

@2Q� (�
�
2)

@�2@�
0
2

��1 �
1

�3=2

@Q� (�
�
2)

@�2

�
; (35)

where ~�2 is on the line segment connecting �̂2 to �
�
2 and thus satis�es ~�2 !p �

�
2: Setting

g�i = g
�
X(k�1)M�+(i�1)�; �

�
2

�
=
@�2

�
X(k�1)M�+(i�1)�; �

�
2

�
@�2

;

we get
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�
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�

(36)

and, in view of Theorem 1 of BNS,
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(k�1) T
K
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�
2)

@�2
�2 (Xs; �

�
2) dWs (37)

whereWs is a standard Brownian motion independent ofXt: It follows from (34), (37)and
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(36) that
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: (38)

Next we have
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: (39)

Combining (35), (38) and (39) we obtain
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375 ;
as stated.

Proof of Theorem 4.4:
The proof follows similar lines to the proof of Theorem 4.2 and is therefore omitted.
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