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Abstract. This paper proposes and solves a-autonomy and k-stops shortest path
problems in large spatial databases. Given a source s and a destination d, an a-
autonomy query retrieves a sequence of data points connecting s and d, such
that the distance between any two consecutive points in the path is not greater
than a. A k-stops query retrieves a sequence that contains exactly k intermediate
data points. In both cases our aim is to compute the shortest path subject to these
constraints. Assuming that the dataset is indexed by a data-partitioning method,
the proposed techniques initially compute a sub-optimal path by utilizing the Eu-
clidean distance information provided by the index. The length of the retrieved
path is used to prune the search space, filtering out large parts of the input dataset.
In a final step, the optimal (a-autonomy or k-stops) path is computed (using only
the non-eliminated data points) by an exact algorithm. We discuss several pro-
cessing methods for both problems, and evaluate their efficiency through exten-
sive experiments.

1 Introduction

Shortest path computation has been studied extensively in graph theory and computer
networks, assuming in-memory processing. However, the emergence of time-critical ap-
plications that require processing of voluminous spatial datasets necessitates the design
of efficient shortest path algorithms for disk-resident data. In this paper we study two
variations of the problem, and demonstrate how spatial access methods can be exploited
to speed up processing. In particular, we consider the existence of a large collection of
data in a Euclidean space, where each point is accessible from any other point in the
database, with a cost equal to their distance. In this context, identifying the shortest
path between two points is trivial; it is always the straight line connecting them. Nev-
ertheless, real-world applications impose constraints that complicate the computation
of the answer. We propose solutions to the following variations of the problem: (i) the
a-autonomy shortest path, and (ii) the k-stops shortest path.

Definition 1 (a-autonomy path). Let DB be a collection of points in the Euclidean
space and a be a constant. An a-autonomy path from source s to destination d is a
sequence of points (path) s → p1 → p2 → . . . → d, where each intermediate point
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belongs to DB, and the distance between any two consecutive points in the path is not
greater than a.

The parameter a is called the autonomy constraint. Informally, it expresses the max-
imum distance that one can travel without a stop. Assume, for example, that an airplane
must perform a flight from city A to city B, whose distance is D. If a is the autonomy
of the plane and D > a, which intermediate airports should we choose to use as refu-
eling bases, in order to minimize the overall flight distance? The a-autonomy problem
also arises in the area of mobile communications. A signal can be successfully received
when the distance between the sender and the receiver is no greater than a constant a.
Given a source s and a destination d, we want to determine the intermediate communi-
cation centers that a message has to pass from, so that the latency (which is proportional
to the overall covered distance) is minimized.

Definition 2 (k-stops path). Let DB be a collection of points in the Euclidean space
and k be a constant. A k-stops path from source s to destination d is a sequence s →
p1 → . . . → pk → d, where each intermediate point belongs to DB, and the number
of intermediate points is exactly k.

As an instance of the k-stops shortest path problem, assume that a delivery vehicle
loads some goods at point s, and has to drive to its terminus at point d. In its course
it has to deliver the goods to k of the company’s customers, where k depends on its
cargo capacity. Which k customers should it choose to serve in order to minimize the
total traveled distance? The k-stops shortest path is also related to the prize collecting
traveling salesman problem [1], where the salesman must choose k out of the total N
cities to visit.

To the best of our knowledge, there is no previous work on the aforementioned prob-
lems in the context of spatial databases. On the other hand, naı̈ve solutions, such as ex-
haustive search, are inapplicable to large datasets, due to their prohibitive CPU and I/O
cost. In this paper, we propose algorithms for both the a-autonomy and the k-stops short-
est paths. Specifically, given s and d, we initially compute an approximate solution (i.e.,
a sub-optimal path connecting s and d) that satisfies the input constraint. To obtain this
approximate answer we design fast heuristics that utilize an existing data-partition index
on the input dataset DB. The length of the retrieved path is used to prune the search space,
filtering out large parts of the input dataset. Finally, an exact algorithm computes the op-
timal a-autonomy or k-stops shortest path among the remaining points. The proposed
methodology reads only a fraction of DB from the disk, and has very low cost.

The rest of the paper is organized as follows. Section 2 surveys related work. Sec-
tion 3 describes the general framework and states our basic pruning criterion. Sections
4 and 5 focus on the a-autonomy and the k-stops problem, respectively. Section 6 ex-
perimentally evaluates our techniques with real datasets, and Section 7 concludes the
paper with a discussion on future work.

2 Related Work

Section 2.1 describes R-trees and algorithms for nearest neighbor (NN) search. Section
2.2 presents existing methods for shortest path computation and related problems.
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2.1 R-Trees and Nearest Neighbor Queries

Although our techniques can be used with any data-partition method, here we assume
R-trees [2,3] due to their popularity. Figure 1 shows an R-tree for point set DB =
{p1,p2, . . . , p12} with a capacity of three entries per node. Points that are close in space
(e.g., p1, p2, p3) are clustered in the same leaf node (N3). Nodes are then recursively
grouped together with the same principle up to the top level, which consists of a single
root. Given a node N and a query point q, the mindist(N, q) corresponds to the closest
possible distance between q and any point in the sub-tree of node N . Figure 1(a) shows
the mindist between point q and node N1.

The first NN algorithm for R-trees [4] searches the tree in a depth-first (DF) manner,
by recursively visiting the node with the minimum mindist from q. In Figure 1, for
example, DF accesses the root, followed by N1 and N4, where the first potential nearest
neighbor is found (p5). During backtracking to the upper level (node N1), the algorithm
prunes entries whose mindist is equal to or larger than the distance (best dist) of the
nearest neighbor already retrieved. In the example of Figure 1, after discovering p5, DF
backtracks to the root level (without visiting N3), and then follows the path N2, N6
where the actual NN p11 is found.

The DF algorithm is sub-optimal, i.e., it accesses more nodes than necessary. On
the other hand, the best-first (BF) algorithm of [5] achieves the optimal I/O perfor-
mance, visiting only nodes intersecting the circle centered at the query point q with
radius equal to the distance between q and its nearest neighbor. These nodes have to
be examined anyway in order to avoid false misses. In Figure 1(a), for instance, BF
visits only the root, N1, N2, and N6 (whereas DF also visits N4). BF maintains a
heap H with the entries encountered so far, sorted by their mindist. Starting from
the root, it inserts all the entries into H (together with their mindist), e.g., in Figure
1(a), H = {< N1, mindist(N1, q) >, < N2, mindist(N2, q) >}. Then, at each step,
it visits the node in H with the smallest mindist. Continuing the example, the algo-
rithm retrieves the contents of N1 and inserts all its entries in H , after which H = {<
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Fig. 1. Example of an R-tree and a NN query
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N2, mindist(N2, q) >, < N4, mindist(N4, q) >, < N3, mindist(N3, q) >}. Simi-
larly, the next two nodes accessed are N2 and N6 (inserted in H after visiting N2), in
which p11 is discovered as the current NN. At this time, the algorithm terminates (with
p11 as the final result) since the next entry (N4) in H is farther (from q) than p11. BF
(as well as DF) can be easily extended to kNN queries, where k >1. Additionally, BF
is incremental, implying that it can output the NNs in ascending order of their distance
to the query without a pre-defined termination condition.

An interesting variation of the NN search is the aggregate nearest neighbor (ANN)
query. Given a set of query points Q = {q1, q2, . . . , qm} and an object p, the ag-
gregate distance adist(p, Q) is defined as a function f over the individual distances
|p, qi| between p and each point qi ∈ Q. Assuming, for example, n users at locations
q1, . . . , qn and f = sum, an ANN query outputs the data object p that minimizes
adist(p, Q) =

∑
qi∈Q |p, qi|, i.e., the sum of distances that the users have to travel in

order to meet at the position of p. Similarly, if f = max, the ANN query reports the
object p that minimizes the maximum distance that any user has to travel to reach p. In
turn, this leads to the earliest time that all users will arrive at the location of p (assuming
that they move with the same speed). Finally, if f = min, the result is the object p which
is closest to any user, i.e., p has the smallest adist(p, Q) = minqi∈Q |p, qi|. Assuming
that the data set is indexed by an R-tree, the minimum bounding method [6] applies best-
first NN search, with the difference that each encountered node N is inserted into the
heap H with key equal to f(mindist(N, qi), mindist(N, q2), . . . , mindist(N, qm)).
We use this technique, as a module of the proposed algorithms, in Sections 4 and 5.

2.2 Shortest Path Computation and Related Problems

To the best of our knowledge, a-autonomy and k-stops shortest paths have not been
studied before. On the other hand, there is extensive work on shortest path algorithms
for main memory and disk-resident graphs. The most popular algorithm of the former
category is proposed by Dijkstra [7]. This technique expands the input graph starting
from the source node until it reaches the destination. It uses a priority queue to store
the encountered nodes with key equal to their graph distance from the source. In every
step, the node with the smallest key is de-queued, and its adjacent (non-visited) nodes
are en-queued. The procedure terminates when a complete path (connecting the source
and the destination) is found. A* search [8] uses heuristics in order to direct the graph
expansion and prune the search space, assuming that the Euclidean distance between
two nodes lower bounds their graph distance. The difference from Dijkstra’s algorithm
is that the key of each en-queued node is the sum of its graph distance from the source
and its Euclidean distance from the destination. Other main memory methods include
the Bellman-Ford [9,10] and Floyd [11] algorithms.

Shortest path computation techniques for disk-resident data, such as HiTi [12] and
HEPV [13], are based on partial materialization. They partition the graph into sub-
graphs that fit in memory, and each sub-graph is abstracted as a graph node. The sub-
graphs are grouped recursively into higher level nodes, thus forming a hierarchy. All the
distances between the sub-graph boundary nodes are computed and stored in the upper
level. To answer a shortest path query, the algorithms (i) determine the lowest-level sub-
graph containing the source and destination, and (ii) utilize the materialized information
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along the two search paths to retrieve the result. [14,8] analyze the performance of
several secondary memory adaptations of shortest path algorithms.

Papadias et al. [15] propose a storage scheme for large graphs and algorithms for
nearest neighbors, range search and distance joins. Their methods combine connec-
tivity and location information about the data objects (indexed by R-trees) to guide
the search. Kolahdouzan and Shahabi [16] use the concept of network Voronoi cells
and materialization to speed-up query processing. Shahabi et al. [17] find approximate
nearest neighbors in road networks by transforming the problem to high dimensional
space. Jensen et al. [18] discuss nearest neighbor queries for points moving in a net-
work. Shekhar and Yoo [19] find all the nearest neighbors along a given route. Yiu and
Mamoulis [20] study clustering problems in spatial networks.

The most related paper to our work is [21] that uses thematic spatial constraints to
restrict the permitted paths (e.g., “find the shortest path that passes only through rural
areas”). Although the problem is similar, in the sense that it also deals with constrained
shortest path computation in spatial databases, the thematic restrictions are very differ-
ent from our autonomy and cardinality constraints. Summarizing, all the existing tech-
niques are inapplicable to the proposed problems. In the sequel, we discuss algorithms
for a-autonomy and k-stops shortest paths, starting with the general framework.

3 General Framework and Pruning Criterion

The proposed techniques follow the methodology of Figure 2. The first step applies
heuristics to efficiently retrieve a path, not necessarily optimal, that satisfies the given
constraint (on a or k). The second step uses the length of this path to prune the search
space and eliminate the majority of the data points. Finally, the third step computes the
actual shortest path (subject to the constraints) using only the non-eliminated points.

Algorithm Find Shortest Path
// Input: the source s, the destination d, the dataset DB, the parameter a or k
// Output: the constrained (i.e., a-autonomy or k-stops) shortest path
1. Find a sub-optimal solution with a fast algorithm
2. Use the length of the obtained path to prune parts of the workspace
3. Compute the exact (a-autonomy or k-stops) shortest path using only the

non-eliminated data points

Fig. 2. The general processing methodology

Whereas steps 1 and 3 are problem-dependent, the pruning criterion is common
for both a-autonomy and k-stops shortest paths. Consider that in Figure 3, we already
have a path s → p1 → p2 → d with length l satisfying the given constraint (a or k).
Our goal is to use this path in order to restrict the search space. For example, point p3
cannot belong to a better path because |s, p3| + |p3, d| > l, where |s, p3| and |p3, d|
are the distances of p3 from s and d, respectively. In general, any data point p that
may be part of a path with length equal to or shorter than l must satisfy the condition
|s, p| + |p, d| ≤ l, i.e., it must lie in the ellipse with foci at points s and d, and sum of
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s d

p1 p2

l1
l2

l1+l2>lp3

Fig. 3. Pruning example

distances from the foci equal to l. Such points are efficiently retrieved by a range query
(in the shape of the ellipse) on the data R-tree. Based on the above, the goal of the first
step of our framework is to retrieve a nearly-optimal path, so that the area of the ellipse,
and the number of data points therein, is minimized. Then, the third step computes the
actual shortest path using only these points. In the following sections we discuss steps
1 and 3 for a-autonomy and k-stops shortest paths.

4 a-Autonomy Shortest Paths

Section 4.1 describes alternative ways to obtain a good approximate solution for the
a-autonomy problem, while Section 4.2 deals with the optimal path computation.

4.1 Fast Sub-optimal Path Computation

The shortest route between the source s and the destination d in the Euclidean space is
obviously the line segment sd connecting them. If the distance |s, d| between s and d is
greater than the autonomy of the problem a, we have to introduce intermediate stops. An
intuitive strategy for choosing the stops is to select points that cause the least diversion
from the optimal route (i.e., the line segment sd). In particular, the point p in DB that
lies closest to sd is chosen as a part of the path. The process continues recursively with
segments sp and pd if their individual lengths exceed a. This Least Diversion Method
(LDM) terminates when (i) a complete path fulfilling the autonomy constraint is found,
or (ii) when all possible solutions are examined. In the latter case, there is no solution
for the given value of a and the required path is infeasible.

We illustrate the functionality of LDM using the example of Figure 4(a). Initially,
LDM retrieves the NN of the line segment sd, which is point p1. Assuming that the dis-
tance |s, p1| is less than a, s → p1 is accepted as a component of the path. On the other
hand, if |p1, d| is greater than a, the process is repeated for the line segment p1d. Contin-
uing the example, in Figure 4(b) the NN of p1d is point p2. Since both distances |p1, p2|
and |p2, d| are smaller than the autonomy a, the components p1 → p2 and p2 → d are
inserted into the path, and LDM terminates with s → p1 → p2 → d as the result.

Figure 5 contains a divide-and-conquer version of LDM. The first call has input
parameters s, d, and an empty list path. The algorithm recursively examines points
according to their distance from sd. If some point cannot lead to a feasible solution
(lines 11, 12), LDM backtracks, and continues with the next NN of the line segment
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s d

p1 a

(a) Retrieval of p1
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p1
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p2

(b) Retrieval of p2

Fig. 4. LDM example

Algorithm LDM(p, p′, path)
// p and p′ are two intermediate points, and path is the path constructed so far
1. If |p, p′| > a
2. Find the next nearest neighbor pNN of line segment pp′ in DB − {path}
3. If no pNN is found // i.e., all possible pNN have been unsuccessfully examined
4. Return false // Backtracking
5. Else
6. LDM(p, pNN , path) // Recursion
7. LDM(pNN , p′, path)
8. If both above calls of LDM return true
9. Add pNN to path
10. Return true
11. Else // Selection of pNN cannot lead to a valid path
12. Go to line 2 and continue with the next NN of pp′

13. Else // i.e., |p, p′| ≤ a
14. Add p to path
15. Return true

Fig. 5. The least diversion method for the a-autonomy problem

in line 2. Upon termination, if the returned result is false, the problem is infeasible.
Otherwise, the obtained path is stored in path. The nearest neighbor of a line segment
(in line 2) is retrieved in a way similar to the best-first NN search discussed in Section
2.1. The difference is that the mindist between the query line segment and an MBR is
computed according to the method of [22].

LDM may incur relatively high cost because each NN query (to a line segment)
may visit numerous nodes (that intersect, or are near, the segment). Furthermore, since
LDM does not aim at minimizing the intermediate points in the path, the number of such
queries may be large. Motivated by this we propose a Greedy Heuristic Method (GHM)
that (i) applies point (instead of line segment) NN queries and (ii) tries to minimize the
number of intermediate points. GHM is based on the observation that an optimal set
of intermediate points would lie on sd, and that the distance between any consecutive
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Fig. 6. GHM example

Algorithm GHM(p, path)
// p is an intermediate point, and path is the path constructed so far
1. If |p, d| > a

2. Set o to be the point in the line segment pd with distance from p equal to a
3. Find the next NN of o (pNN ) in the circle with center at p and radius a
4. If no pNN is found // i.e., all possible pNN have been unsuccessfully examined
5. Return false // Backtracking
6. Else
7. GHM(pNN , path) // Recursion
8. If the above call of GHM returns true
9. Add pNN to path
10. Return true
11. Else // Selection of pNN cannot lead to a valid path
12. Go to line 3 and continue with the next NN of o
13. Else // i.e., |p, p′| ≤ a
14. Add p to path
15. Return true

Fig. 7. The greedy heuristic method

pair would be equal to the autonomy a. Since such points do not necessarily exist in the
database, it tries to use their NNs.

Figure 6(a) illustrates GHM with an example. Ideally, the first intermediate point
o1 would lie on the line segment sd at distance a from s. GHM retrieves the NN p1
of o1 among the points that are directly reachable by s (i.e., the points falling in the
circle centered at s with radius a) and inserts it into the path. To compute the second
intermediate point, it determines the ideal point o2 that lies on p1d at distance a from
p1 (see Figure 6(b)). Then, it retrieves the NN of o2 (i.e., p2) among the points that are
directly reachable from p1, and inserts it into the path. The distance |p2, d| is smaller
than a, and GHM terminates with s → p1 → p2 → d as the result.

Figure 7 shows the pseudo-code of GHM. The NN computation in line 3 is an in-
stance of a constrained NN query [23], since the retrieved points must fall in a specified
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region (i.e., the circle centered at p with radius a). The search algorithm follows the
best-first paradigm and, thus, it is incremental. In particular, it inserts into a search heap
only R-tree entries N where mindist(N, p) ≤ a, with sorting key mindist(N, o). It
reports only points pNN with |p, pNN | ≤ a in ascending order of their distance from o.

Note that the paths obtained by LDM and GHM are possibly different and sub-
optimal. For instance, LDM first exploits paths containing the first NN p of the segment
sd, but the best path does not necessarily contain this point (even if there is a path
passing from p that satisfies the autonomy constraint). Similarly, in Figure 6(a), GHM
will not discover the best path s → p3 → p4 → d because p3 is not the NN of
o1. Therefore, both LDM and GHM only constitute fast filter steps before the exact
computation, which is discussed next.

4.2 Optimal Path Computation

After obtaining a sub-optimal path, we perform a query on the R-tree to retrieve the data
points that may lead to better solutions. As discussed in Section 3, if l is the length of
the sub-optimal path (returned by LDM or GHM), potential candidates lie in the ellipse
defined by points s, d, and the value of l. Assume that the corresponding set of points is
DBeps ⊆ DB. To identify the optimal path, we process DBeps with a modified version
of A* search, which takes into account the autonomy constraint and the approximate
solution available. In order to apply the algorithm, we consider that the retrieved points
form a graph, such that (i) two points (nodes) are connected, if their Euclidean distance

Algorithm Optimal Path Computation
// s: source point, d: destination point, a: autonomy
// DBeps: the subset of DB after the pruning step
1. Initialize a min-priority queue Q
2. Insert s into Q with key dist(s) = |s, d|
3. While Q is not empty
4. Get the next entry < e, dist(e) > in Q
5. If e �= d // expand the graph around point e
6. For each point p inside the circle centered at e with radius a
7. If dist(e) − |e, d| + |e, p| + |p, d| ≥ l
8. Go back to line 6 and continue with the next point
9. If p has not been de-queued before
10. If p is not currently in Q // i.e., p is visited for the first time
11. En-queue < p, dist(e) − |e, d| + |e, p| + |p, d| > in Q
12. Else // i.e., p was visited before and it is contained in Q
13. Let dist(p) be the key of p in Q
14. If dist(p) > dist(e) − |e, d| + |e, p| + |p, d|
15. Update the key of p in Q to be dist(e) − |e, d| + |e, p| + |p, d|
16. Else // i.e., e = d
17. Return the corresponding path as the result, and terminate
18. Return the path at hand as the result // i.e., no better path was found

Fig. 8. The optimal a-autonomy path computation over the un-pruned part of the dataset
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does not exceed the autonomy a, (ii) the cost of an edge connecting two points equals
their distance.

Figure 8 illustrates the pseudo-code for the optimal path computation module. Line
6 guarantees that the path returned is valid by considering as reachable only points
within distance a from the de-queued entry. The knowledge of a path with length l is
used to reduce the search space in line 7. Note that the pruning condition (dist(e) −
|e, d| + |e, p| + |p, d| ≥ l) for a considered point p also takes into account |p, d|, which
constitutes a lower bound for the length of the shortest path between p and d, in accor-
dance with the A* algorithm.

5 k-Stops Shortest Paths

Section 5.1 presents two heuristics for the efficient retrieval of sub-optimal k-stops
paths. Section 5.2 describes an algorithm for computing the optimal answer.

5.1 Fast Sub-optimal Path Computation

A naı̈ve heuristic for computing a good initial path is to select the k closest points to the
line segment that connects s and d. In certain cases, however, this may lead to a poor
solution. Consider, for instance, that in Figure 9(a) we want to compute the shortest path
that passes through three intermediate stops. The four NNs of sd are p1, p2, p3, p4 (in
this order). The path s → p1 → p2 → p3 → d containing the first 3NNs is relatively
long since p2 is on the opposite side (of sd) with respect to p1 and p3. In order to
avoid this problem we follow the least diversion paradigm. Figure 9(b) illustrates the
adaptation of LDM (called k-LDM) to the k-stops problem on the example of Figure
9(a). First, k-LDM adds to the path the NN (p1) of line segment sd. Then, it retrieves
the point with the minimum distance from line segments sp1 and p1d. Among the NNs
(p3 and p4) of sp1 and p1d, p3 is inserted into the path. The process is repeated for the
NN of sp1, p1p3, p3d, and LDM terminates with s → p4 → p1 → p3 → d as the result.

The k-LDM algorithm is illustrated in Figure 10. It is worth mentioning that the best
NN computation in line 3 is not performed by individual NN queries for each edge of
the path, because this approach would lead to multiple traversals of the R-tree of DB.

s d

p1

p2

p3
p4

(a) 3NNs as 3 intermediate stops

s d

p1

p2

p
3

p4

(b) k-LDM shortest path

Fig. 9. k-LDM motivation and example
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Algorithm k-LDM(s, d)
// s and d are the source and destination, and path is the path constructed so far
1. Initialize path to s → d
2. For i = 1 to k
3. Find the point p in DB with the min distance from any line segment in path
4. Add p to path
5. Return path

Fig. 10. The least diversion method for the k-stops problem

s d

p1

(a) Retrieval of p1

E1s d

p1
p2

E2

(b) Retrieval of p2

Fig. 11. LOM example

To compute an intermediate point with a single traversal, line 3 is implemented us-
ing an adaptation of the aggregate nearest neighbor search discussed in Section 2.1.
In particular, the query set Q now consists of the edges in the path constructed so
far, and the aggregate distance of a point is defined as the distance from its closest
line segment in Q. The algorithm follows the best-first paradigm, by inserting each
encountered node N in the R-tree of DB into the search heap H with key equal to
minp→p′∈path mindist(N, pp′), i.e., the minimum mindist between N and any of the
edges in the path.

An alternative to k-LDM is the Local Optimum Method (LOM). Given any pair of
points p and p′, if we want to select one intermediate point o ∈ DB so that the length
of the path p → o → p′ is minimized, then o is by definition the point that minimizes
the sum of distances from p and p′ (i.e., |p, o| + |o, p′|). Based on this observation,
given a path with fewer than k points, LOM chooses as the next point o the one that
minimizes the sum of distances from any pair of consecutive points in the current path.
In other words, it selects o ∈ {DB−path} that minimizes minp→p′∈path |p, o|+|o, p′|.
Figure 11 gives an example for a 2-stops query. The first intermediate point is p1, since
it minimizes the sum of distances from s and d. Geometrically, this implies that the
ellipse in Figure 11(a) does not contain any other point. The second intermediate point
p2 is computed as the point in DB−{s, d, p1} that minimizes the quantity min(|s, p2|+
|p2, p1|, |p1, p2|+|p2, d|). Consequently, in Figure 11(b) the ellipse E1 does not contain
any point other than p2, while ellipse E2 (defined by foci p1 and d, and length |p1, p2|+
|p2, d|) is empty.

Figure 12 shows the LOM algorithm. Similar to the implementation of k-LDM,
step 3 is performed with an ANN algorithm, in order to avoid multiple traversals of
the R-tree of DB. The query set Q contains all the edges in the current path, and the
aggregate distance of a point is defined as the minimum sum of distances from the
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Algorithm LOM(s, d)
// s and d are the source and destination, and path is the path constructed so far
1. Initialize path to s → d
2. For i = 1 to k
3. Find the point p in DB with the min sum of distances from the endpoints
4. of any line segment in path
5. Add p to path
6. Return path

Fig. 12. The local optimum heuristic method for the k-stops problem

endpoints of any line segment in Q. The ANN search traverses the R-tree of DB in
a best-first manner, inserting each encountered node N into the search heap H with
key equal to minp→p′∈path mindist(N, p) + mindist(N, p′), i.e., the minimum sum
of mindist between N and the endpoints of any of the edges in the path.

5.2 Optimal Path Computation

The optimal path computation involves an implementation of Bellman-Ford’s algo-
rithm. This algorithm works iteratively, and calculates the shortest paths in increasing
number of hops. In particular, during step i it computes the shortest paths consisting
of exactly i hops between the source node and every other node of the graph. The
complexity of Bellman-Ford’s algorithm is O(mE) for a graph with E edges and a
maximum path length of m hops, rendering it very expensive for dense graphs. Notice
that in the k-stops problem formulation there is no autonomy constraint, and therefore,
the number of edges is O(N2) (where N is the number of points after the pruning step).
Consequently, the running time of the algorithm is expected to be O(kN2), and a good
first solution is crucial for achieving low cost.

6 Experimental Evaluation

In this section we experimentally evaluate the performance of our methods, in terms
of I/O and CPU cost. We use the two real spatial datasets TCB and LA (available at
www.rtreeportal.org), containing 450K and 1.3M points, respectively. Both datasets are
normalized to fit in a [0, 10000]2 workspace. The block size of the R-trees is set to 2
KBytes. For each simulation, we select two random points from the dataset and compute
the constrained shortest path using the proposed methods. In order to reduce random-
ness, each result is obtained by averaging over the measurements of 10 simulations. For
all experiments we use a Pentium 3.2 GHz CPU with 1 GByte memory. Section 6.1
focuses on the a-autonomy problem, while Section 6.2 on k-stops shortest paths.

6.1 Evaluation of a-Autonomy

We first study the effect of the autonomy value a using the GHM and LDM heuristics.
We fix the distance between the source and destination points to 3000 and vary a from
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Step 1, sub-optimal path computation Step 2, retrieval of points within ellipse
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Fig. 14. Total CPU time vs. autonomy a

200 to 600. Figure 13 shows the total I/O cost for datasets TCB and LA, and its break-
down into the sub-optimal path computation (step 1) and the elliptical range search (step
2) that collects the points passing the criterion of Section 3. As a increases, the cost
drops because the path consists of fewer intermediate points. Regarding the final range
search, the methods incur similar overhead. On the other hand, obtaining the initial path
with GHM incurs significantly fewer node accesses compared to LDM. This happens
because GHM performs (cheap) point NN queries, as opposed to the (expensive) linear
NN queries of LDM. Furthermore, since GHM aims at reaching the destination with
the minimum number of steps, it performs fewer NN searches than LDM.

Figure 14 depicts the total CPU time for the previous experiment. The running time
decreases with a because both the sub-optimal and the optimal path consist of fewer
points. The performance gain of GHM is similar to the I/O gain for the reasons ex-
plained in the context of Figure 13. An important remark concerning both methods is
that the initial path computation dominates the total CPU time because, as discussed
shortly the number of non-eliminated points (that participate in the selection of the op-
timal path) is small.

We now present some interesting measurements regarding the cost and accuracy
of the sub-optimal path computation. Figure 15 depicts the CPU time for calculating
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Fig. 15. CPU time and quality of the sub-optimal path vs. autonomy a
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Fig. 16. Total I/O cost vs. distance of endpoints
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Fig. 17. Total CPU time vs. distance of endpoints

the initial path, the deviation percentage e of the achieved path length compared to the
optimal one, and the percentage p of the dataset that is pruned according to the criterion
of Section 3. LDM provides a better quality path than GHM, at the expense of higher
CPU cost. Both methods, however, produce a very accurate result (with less than 0.04%
deviation from the optimal path length) and are able to prune over 99% of the database.
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Fig. 18. CPU time and quality of the sub-optimal path vs. distance of endpoints

Next, we investigate the effect of the distance between the source and destination.
We set the autonomy variable a to 300, and vary the (Euclidean) distance between the
endpoints of the path from 1000 to 5000. The total number of node accesses and the
overall CPU time are illustrated in Figures 16 and 17, respectively. As expected, a larger
distance implies higher I/O and CPU cost. LDM is affected more because of the numer-
ous linear NN queries. Figure 18 focuses on the sub-optimal path computation step.
As the distance between the endpoints of the path increases, the pruning percentage p
decreases, since the ellipse of the criterion of Section 3 grows. On the other hand, the
deviation e from the optimal solution is very small in all cases.

6.2 Evaluation of k-Stops

In the following experiments we evaluate the performance of the k-stops shortest path
algorithms. First, we study the effect of k on the LOM and k-LDM techniques. We fix
the distance between the source and destination points to 3000 and vary the number k
of intermediate stops from 3 to 7. Figure 19 shows the total I/O cost, and its breakdown
into the initial sub-optimal path computation and the retrieval of points passing the
pruning criterion. The node accesses of LOM remain relatively stable, while for k-
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Fig. 19. Total I/O cost vs. number k of required stops
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Fig. 21. CPU time and quality of the sub-optimal path computation vs. number k of required
stops
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Fig. 22. Total I/O cost vs. distance of endpoints

LDM they increase linearly with k. Initially, k-LDM incurs fewer node accesses than
LOM, but this changes for larger values of k. Regarding the elliptical range search for
points passing the pruning criterion, its I/O cost is similar for both methods.

Figure 20 illustrates the total running time for the previous experiment. k-LDM is
considerably faster than LOM, and the performance gap increases sharply with k. This
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Fig. 23. Total CPU time vs. distance of endpoints
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Fig. 24. CPU time and quality of the sub-optimal path vs. distance of endpoints

fact indicates that the k-LDM technique retrieves a better sub-optimal solution, and
thus achieves more effective pruning than LOM. Recall that the time complexity of the
optimal path computation is O(kN2), where N is the number of points that pass the
criterion of Section 3. It follows that even a slightly worse initial solution can increase
significantly the overall running time. Regarding the detailed behavior of each method,
the CPU time for LOM is dominated by the optimal path computation, while for k-LDM
approximately 10%-50% of the CPU time is spent on the initial path computation.

Figure 21 verifies the above observation, by comparing the accuracy and the CPU
time of the sub-optimal path computation for k-LDM and LOM. The path returned by
k-LDM is at most 0.003% longer than the optimal one in all cases. LOM is not as
effective, especially for large values of k. Its solution deviates from the optimal by up
to 0.86%. On the other hand, LOM is considerably faster than k-LDM, and it is a good
choice for providing approximate results to time-critical applications that can tolerate a
certain amount of inaccuracy in return for a fast response.

Finally, in Figures 22, 23 and 24 we investigate the impact of the distance between
the two endpoints of the path. We set the number k of stops to 5, and vary the distance
between the source and destination from 1000 to 5000. As expected, when the distance
increases, both the I/O and CPU costs are higher. The reason is that the ellipse covers
a larger area of the workspace, and prunes fewer nodes and points (also verified by the
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pruning percentages p in Figure 24). Furthermore, the I/O cost increases because the
edges of the path are longer, and the ANN queries of both k-LDM and LOM access
a larger part of the index. As shown in Figure 24, the running time of the heuristics
remains relatively stable because the required number of intermediate points is con-
stant (i.e., k).

7 Conclusion

This paper formulates and solves a-autonomy and k-stops shortest path queries, in spa-
tial databases. Assuming a large collection of points in the Euclidean space indexed
by a data-partitioning access method, we propose several techniques for the efficient
computation of the constrained shortest paths. Our methods exploit the spatial infor-
mation provided by the index, in order to produce very fast an initial sub-optimal path.
The length of this path is then used to prune the workspace, according to a geometric
criterion. The optimal path is retrieved by utilizing an exact shortest path algorithm on
the non-eliminated data points. Our experimental results on real spatial datasets demon-
strate that the proposed techniques are able to prune over 98% of the database for all
examined settings, thus leading to very low response times.

A promising direction for future work concerns a top-K version of the constrained
shortest path problem, where instead of a single path, we are asked to compute the best
K paths according to some input constraint (e.g., a-autonomy or k-stops). Furthermore,
in this paper we consider that all points are equivalent. It would be interesting to study
cases where the data points have different properties. For instance, in autonomy prob-
lems it may be beneficial to visit a point that incurs relatively high diversion, if it can
provide a large benefit (e.g., in terms of refueling capacity).
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