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Scale-invariant behavior in a spatial game of prisoners’ dilemma

Y. F. Lim and Kan Chen
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A spatially extended version of the game of prisoner’s dilemma, originally proposed by Nowak and May, is
modified to include stochastic updating and found to exhibit scale-invariant behavior. Two critical regimes with
different scaling behaviors are found; the corresponding exponents have been determined numerically. Spa-
tially, the critical states are characterized by the existence of delicately balanced networks of defectors sepa-
rating domains of cooperators; temporally, the evolution of the critical states following local perturbations is
characterized by avalanches of various magnitudes, which cause restructuring of the networks of defectors on
all scales.
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INTRODUCTION

The paradox of the Prisoners’ dilemma has been much
studied as a metaphor for the problems associated with the
evolution of cooperative behavior in ecology, politics, and
economics. The dilemma highlights the conflict between
what is best from an individual point of view and that from a
collective perspective, which cannot be resolved in the con-
text of playing a single game. The pioneering work of Axel-
rod and Hamilton@1,2# in the late 1970s, in which the game
is studied by playing it many times between players who
remember past encounters, created an entirely different way
to study the dilemma. The study of the evolutionarily stable
strategies of the repeated game has provided insight into the
understanding of sociobiological behaviors. When players
play a single game, defection is the only evolutionarily stable
strategy@3#, in the sense that a population which always
defects cannot be invaded by a mutant cooperator. For re-
peated games, evolutionarily stable strategies, such as tit-for-
tat can lead to the emergence of cooperation among individu-
als; this provides a solution to the paradox and a mechanism
for the emergence of cooperative behaviors.

Nowak and May and Nowak, Bonhoeffer, and May@4,5#
noted that there is an another mechanism for the emergence
of cooperative behavior. They considered a simple spatial
game of the prisoners’ dilemma, where the players only play
with their neighbors. In a spatial game, the territorially struc-
tured interactions can promote cooperation~even if no
follow-up encounter is expected!. If the bonus for cheating is
not too large, clusters of cooperators will grow. In addition,
the spreading of defectors will be limited in the spatial game,
because the returns diminish as they interact more with their
likes. The actual evolution of the spatial game proposed by
Nowak and May depends on the payoff values. In many
cases, Nowak and May found the coexistence of defectors
and cooperators in interesting evolving mosaics. They sug-
gested that in simpler~biological! systems, cooperation per-
sists by virtue of self-organized spatial structures generated
by interactions with immediate neighbors, because the
mechanism associated with repeated interaction among indi-

viduals who can recognize and remember one another are
unlikely at work for simpler systems. The discovery of altru-
ism and cheating in mixed clones of the amoeba,dictyostel-
ium discoideum@6#, renders the relevance of such spatially
extended models to the study of sociobiology more plausible.

In addition to the emergence of cooperation, the evolution
of biological, political, or economical systems is often char-
acterized by ‘‘punctuated equilibrium’’@7# with intermittent
bursts of activity and volatility interrupting periods of rela-
tive tranquility ~stasis!. Using a simple model of biological
evolution, Bak and Sneppen@8# suggested that ‘‘punctuated
equilibrium’’ is an inherent property of self-organized critical
systems@9,10#, which naturally evolve into a highly interac-
tive, critical state where minor perturbations lead to ava-
lanches of all sizes. The model proposed by Nowak and May,
however, does not exhibit self-organized criticality. Although
under some special conditions the model can exhibit many
fascinating Persian-carpetlike spatial patterns, the patterns
are unstable against any perturbation. Typically, the model
either evolves to a stable equilibrium state where a local
perturbation only causes slight restructuring of the spatial
pattern, or to a highly active state, which never settles down
to a period of stasis. The main purpose of this paper is to
show that when the effects of a random environment are
incorporated appropriately into the model, the spatial game
of the prisoners’ dilemma can evolve to critical states, where
small perturbations can lead to restructuring of the spatial
patterns at all scales. Thus, the stochastic, spatial game of the
prisoners’ dilemma not only provides a mechanism for the
emergence of cooperative behaviors, but also serves as an
example of ‘‘punctuated equilibrium’’ in the evolution of co-
operation.

SPATIAL GAME OF PRISONERS’ DILEMMA

In an individual game of prisoner’s dilemma with two
players, each has two options: to cooperate~C or 1! or to
defect~D or 0!. If both cooperate, each receives one point; a
player receives 0 points if the opponent defects andb(.1) if
the player defects and the opponent chooses to cooperate.
The spatial game of prisoners’ dilemma is defined on a two-
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dimensional~square! lattice with evolution in discrete time.
One assigns a player~who is in stateC or D! to each site of
the lattice who plays with the eight immediate neighbors and
itself at each time step, i.e., the so-called Moore neighbor-
hood is chosen for the interaction. Denoting the strategy of
the player at sitei at time t by si(t) the payoff or the score
earned by the player at sitei is given by Pi(t)
5( j Pn i

@si(t)sj (t)1b@12si(t)#sj (t)#, where n i is the

Moore neighborhood ofi. In the original model studied by
Nowak and May, the updating of the game is based on the
average payoffs of individual players,pi(t)5Pi(t)/zi where
zi is the number of neighbors~including itself! of site i.
Clearly, for an interior playerzi59 and on the edgeszi de-
pends on the boundary conditions. At the next time step, the
player at each site adopts the strategy,sh(t), of the neighbor
~excluding itself! at siteh with the highest-average payoff if
the highest payoffph(t) is greater than the average payoff of
the original player at the site, i.e.,si(t11)5sh(t) if ph(t)
.pi(t). The evolution is deterministic and there is no
memory; the behavior is determined by the initial conditions
and the parameterb which measures the benefit a defector
obtains by exploiting a cooperator. We modify the model by
introducing astochasticelement to simulate the influence of
the environment by assigning an independent random vari-
abled i at each sitei. In our model, the player with the av-
erage payoffpi will be replaced by the neighbor with the
highest-average payoffph , if ph.pi1d i . The variabled i is
also changed to a new random number if the player is re-
placed, even if the strategy does not actually change. Thus,
the dynamics in our model are no longer deterministic. In our
simulation, we choosed i independently randomly for each
player from the interval~2d0 , d0! with d0 chosen to be 2/9.
One can choose periodic boundary conditions or choose
open boundary conditions with players at the corners and on
the edges playing only with four and six players, respec-
tively. Most of our results are for the latter boundary condi-
tion. We have also studied the model with two boundary
layers of players with a fixed strategy of cooperation.

Summary of different behaviors in the model. The goal of
our paper is to characterize the asymptotic behavior of the
spatial distribution of the strategies and the spatiotemporal
response of the system to localized disturbances for various
values ofb ~bonus for cheating! from one to two. There are
roughly three regimes corresponding to different ranges of
values for b. In the first regime, corresponding to 1,b
,1.5, the system evolves to a mostly static configuration
~with occasional local periodic flips! dominated by coopera-
tors with local perturbations leading only to a small restruc-
turing of the system. In the second regime, neither coopera-
tors nor defectors dominate. The system always settles down
to a static or locally periodic state with a tightly connected
network of defectors which extends over the entire system. A
local perturbation can leads to restructuring of the network at
all scales. The second regime is the most interesting: there
are two ranges in which the system exhibits self-organized
criticality and responds on all spatial scales when perturbed
locally and concomitant power-law behavior, as discussed
later. In the third regime, which occurs forb.1.8, defectors

clearly dominate and a lone defector can invade the entire
population of cooperators. The state is stable against any
local perturbation. Between the second and the third regime,
there is actually a crossover regime (1.75,b,1.8), where
moving domains of defectors replace the mostly static net-
work structure observed in the second regime and the system
does not settle down to a steady state.

Macroscopic characterization of regimes. We first de-
scribe the general features focusing on themacroscopic
quantities in the model. A quantitative characterization of the
different regimes is obtained in terms of the average concen-
tration of cooperators or defectors and the average payoff of
the players as a function ofb. The averages are obtained by
performing both a spatial average at a given time and a tem-
poral average over the states obtained from avalanches. The
results are plotted in Figs. 1~a! and 1~b!. The first regime is
characterized by a relatively low concentration of defectors
~less than 1/3! and high-average payoffs. Forb,3/2, the
fraction of cooperatorsf C decreases gradually from 1 to ap-
proximately 4/5; especially forb between 1.3 and 1.4, there
is very little difference between the fraction of the coopera-
tors in the deterministic and random update rules.

The transition to the second regime is sharp and is accom-
panied by a jump in the concentration of defectors and a
sudden reduction in the average payoffs. Atb'1.50, there is
a discontinuous jump in the fraction of cooperators to

FIG. 1. ~a! Concentration of cooperators and~b! average payoff
as function ofb. Results are obtained using 40340 systems.
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roughly 2/3 followed by a steady decrease to approximately
0.60 asb is increased tob51.6; this is in contrast to the
behavior of the deterministic model wheref C fluctuates
around 0.80. In this regime, the defectors form a network of
thin domain walls surrounding more or less rectangular do-
mains of co-operators. This is signaled by the fact that for
b.3/2 in the deterministic case and for periodic boundary
conditions, a row of defectors embedded in a sea of coopera-
tors undergoes a two cycle between three adjacent rows of
defectors and one row of defectors@11#.

For 1.61,b,1.66, f C increases discontinuously to 0.70
and both the deterministic and random rules yield approxi-
mately the same density of cooperators. In this regime, the
activity takes a very long time to stop in the random model
in contrast to the pure case. At approximatelyb51.67, f C
again increases with a jump to about 2/3 and in the regime
1.67,b,1.75, f C steadily decreases to 0.56 mirroring the
behavior in the regime 1.50.b.1.60. Again, in this second
regime, we have found evidence for self-organized criticality
as will be discussed below. The nature of the spatial patterns
and structures is different from that in the regime 1.51,b
,1.59; the domain shapes of cooperators are no longer rect-
angular and the thickness of the domain walls varies. See
Figs. 2~a! and 2~b!. For largerb, a few domains of defectors
~D! can be found.

The third regime obtains forb.1.80, wherein the system
consists almost entirely of defectors,f C'0.02 and the aver-

age payoff is close to zero. In the crossover region between
the second and third regimes, i.e., for 1.76,b,1.8, both
cooperators and defectors form large domains andf C lie be-
tween 0.50 and 0.57. In addition, in this regime the back-
ground exhibits a great deal of periodic activity; neverthe-
less, the overall domain structures are quite stable.

We point out in passing that in the deterministic case, the
asymptotic concentration of cooperators can depend on ini-
tial conditions. For example, forb.1.8, the system can go to
a state with density of cooperators around 0.3, a state de-
scribed in Ref.@4#, or to a state with zero cooperator density.

Mean-field results. We have also constructed a simple
mean-field theory and studied it numerically. We take into
account the fact that there are lines of defectors and study a
one-dimensional system~i.e., fully correlated lines in two
dimensions.! It is straightforward to write an evolution equa-
tion for the probabilityq that a site in one-dimension is a
cooperator at the next time step by factorizing the probability
distribution for the lattice~the mean-field assumption ne-
glecting correlations.! The future of a site depends on the
payoffs of the middle three sites of a five-site cluster:P( i )
53s( i )1$s( i )1b@12s( i )#%@s( i 21)1s( i 11)#, where the
factor of three accounts for the frozen neighbors in the or-
thogonal direction. By summing over all possible configura-
tions of the five players appropriately weighted by the prob-
abilities, we find the mean-field evolution ofq. We use a
value of d56/9 and iterate the equation to find the fixed
point or the steady-state value for different values ofb. The
results displayed in Fig. 3 reproduce the existence of three
regimes, one in whichp51 for b,1.30 and one withp
50 for b beyond 1.7 and an intermediate regime wherep
varies continuously. The first transition is discontinuous
while the second is continuous. The results for the values of
b where the transitions occur are not quantitatively good re-

FIG. 2. Typical spatial patterns in the two distinct SOC regions,
~a! b51.55, ~b! b51.70. The defectors are in black.

FIG. 3. Concentration of cooperators as a function ofb in a
simple mean-field theory
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flecting the intricate geometry of the actual configurations
which is not captured by the naive, local mean-field theory;
however, incorporating the existence of the lines provides a
simple description of the macroscopic features of the three
regimes.

CRITICAL STATES OF THE MODEL

We now consider the critical regions of the model in more
detail focusing on the spatio-temporal response of the system
to localized external perturbations. As we mentioned in the
previous section, there are two critical regions of the model,
corresponding to 1.5,b,1.6 and 1.67,b,1.75, respec-
tively. Not only are the spatial patterns in these two regions
very different, but so is the dynamical behavior. One simple
way of distinguishing the behavior of the system, especially
in the two critical regimes, which we have found useful, is to
study how an initial condition with a single defector in a sea
of cooperators evolves in time. In the first critical region, a
lone defector can invade almost the entire initial population
consisting of all cooperators and generate a network of de-
fectors covering the entire system; in contrast, in the second
region, the lone defector generates only a small cluster of
defectors. As we will see shortly, the critical behaviors are
also very different. In Fig. 4, the percentage of the area af-
fected by a single defector is plotted for the stochastic model
as a function ofb. For b.1.8, while a defector affects the
entire population the resulting configuration is not spatially
complex, the entire system becomes defectors.

We now present the results on the statistical critical prop-
erties of the model in the critical regions. The stochastic
dynamical evolution is carried out on anL3L lattice until
the transients have died down. Typically, the system settles
into a state with a few periodic patterns. We make a local
perturbation which changes a cooperator to a defector in the
system or vice versa at one site. This initiates an avalanche

consisting of a sequence of synchronous updates according
to the evolution rule during which the effect of the perturba-
tion spreads through the system. In contrast to models such
as the Olami-Feder-Christensen@12# stick-slip model, the
system does not reach a quiescent state in which the system
is stationary. In this respect, this behavior is similar to that in
the state which exhibits self-organized criticality in the game
of Life @13#. Periodic local flips can continue to occur and
therefore, the stochastic nature of the model poses technical
difficulties in defining precisely when an avalanche ends. We
have defined the end of the avalanche as occurring when the
system reaches a periodic state. Once the avalanche stops,
we perturb the system again, thusdriving the system slowly.
We have also performed a simulation on two copies of the
system, one with and one without the perturbation and com-
pared the two in order to remove spurious contributions to
the avalanche due to local periodic patterns. The most com-
monly used diagnostic to study possible critical behavior is
the probability distribution of various characteristics of the
avalanches. We study the area affected by the avalanchesA,
defined as the number of sites where the values of the per-
turbed and unperturbed copies have differed at least once
during the avalanche. We also monitor the the duration of the
avalancheT, following the local perturbation and the magni-
tude ~size! M, of the event defined as the total number of
flips in the affected area~the periodic flipping outside the
affected area is not included!.

We have studied systems of sizes ranging from 20320
up–1603160. For each size of the system, we generate up to
20 000 avalanches~and occasionally more! to obtain the sta-
tistics for M, A, andT. Power-law decay of the probability
distribution of, say,M, i.e., P(M );M 2t, up to a finite-size
cutoff, M* (L) which grows algebraically withL, M* (L)
;Ln, is the typical signature of self-organized criticality.
Computational limitations render it extremely difficult to dis-
tinguish such critical behavior from exponential decay,
M 2t exp(2M/M0) for very large avalanche sizes. Our re-
sults, as all numerical results, must therefore be treated with
caution.

We found that the probability distribution of these three
quantities can be fitted to a power law:P(M )}M 2t, P(A)
}A2b, and P(T)}T2a, respectively. Figures 5~a!–5~c!
show the scaling plots for the probability distributions of
these quantities for the caseb51.55 ~in the first critical re-
gion!. The exponents of the power laws aret'1.4, b
'1.65, anda'1.75.

For the second critical region, we have a different set of
exponents:t'1.1, b'1.4, anda'1.05. This clearly shows
that these two critical regions are very different. In the sec-
ond region, there is a significant chance that the system will
not settle down to a periodic state, but to a pseudoperiodic
state. This is due to the fact that the dynamics is not deter-
ministic whenever a player is replaced. Numerically, we de-
fine the end of an avalanche when the system settles down to
a pseudoperiodic state, in which the same configuration ap-
pears after certain number of time steps.

From a theoretical point of view, the understanding of
scale-invariant behavior in systems which are driven slowly
~i.e., where one perturbs, waits for the avalanche to end and

FIG. 4. Percentage of affected area due to a lone defector.
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then perturbs again! is meager. Numerically, the existence of
power-law scaling in the stick-slip model@12#, which do not
have an obvious conservation law, as is the case with the
model studied in this paper, has been established fairly con-
vincingly numerically. In other models such as the game of
life, there is also evidence for power laws. So the existence
of power laws in our model is not unusual. However, the
stick-slip model is deterministic with randomness occurring
only through initial conditions. The original deterministic
model does not exhibit scaling behavior for anyb; the model
studied in this paper has an intermittent underlying stochas-
ticity, which nevertheless only leads to periodic patches in an
otherwise quiescent background because of the discrete na-
ture of the model. It is also worth noting that in contrast to
the stick-slip model, there is not a great deal of sensitivity to
boundary conditions although the scaling is better for some
boundary conditions. We also recall that the finite-size scal-
ing hypothesis postulates for any quantityx, ~i.e., A, M, or
T!, P(x,L)5L2pxF(x/Lnx). The other possibility is that the
system obeys multifractal scaling as in the case of some sys-
tems exhibiting self-organized criticality@14#:

log10P~x, L !

log10L/L0
5 f ~a! where a5

log10~x/x0!

log10~L/L0!
. ~1!

We display a plot ofLbP(A,L) vs ALnA with b50.65 and
nA50.40 and find reasonable data collapse forL ranging
from 20–160. This is displayed in Fig. 6. The scaling fits for
the other quantities are somewhat poorer or of comparable
quality. We note that the value ofn is rather small in the first
critical region and the plot implies that the scaling or metri-
cal factor inA/LnA is small. The fits to the multifractal form
were not satisfactory. Given our limited theoretical under-
standing of scale-invariant behavior in discrete, driven dy-
namical systems and the limitations of numerical simulations
~the number of avalanches needed to get statistics for large-
system sizes is computationally prohibitive! the results must
be treated with due caution. Nevertheless, the occurrence of
scaling behavior over a wide range of scales is an interesting
phenomenon in models used in the context of evolutionary
biology.

CONCLUSION

In summary, we have studied a modified version of the
spatial game of prisoners’ dilemma originally proposed by
Nowak and May by incorporating the effect of a random
environment. We have shown that in the regime where nei-
ther cooperators nor defectors dominate, the spatial game
naturally evolves to critical states in which a small perturba-
tion can lead to restructuring of the defector network at all
scales. Two different critical behaviors are found in the
model, and the nature of these critical states remain to be
understood. We have also tried to include other type of play-
ers, such as players using tit-for-tat and Pavlov strategies.
Preliminary results show that similar self-organized critical
states persist in these more complicated models. The crucial
elements for self-organized criticality appear to be the play-

FIG. 5. Probability distribution of~a! M, ~b! A, and ~c! T for
various sizes of the system in the first critical regime;b51.55 is
used.

FIG. 6. Scaling plot ofP(A,L)L0.65 vs A/L0.4.
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ers who always defect~all-D players!. These players will
form a tightly connected but delicately balanced network that
separates the domains consisting of other type of players. It
is the all-D players who force the system to a state of ‘‘punc-
tuated equilibrium.’’ Without these players, we found that the
evolution of the game to be quite random without the emer-

gence of any particular spatial structures. While the occur-
rence of asymptotic criticality is an open question, very large
correlation lengths and response on many scales clearly oc-
cur for a range of parameter values. These results may indi-
cate that defectors such as parasites in real biological sys-
tems play a crucial role in evolution.
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