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ABSTRACT 
Given a set of objects P and a query point q, a k nearest neighbor 
(k-NN) query retrieves the k objects in P that lie closest to q. Even 
though the problem is well-studied for static datasets, the 
traditional methods do not extend to highly dynamic 
environments where multiple continuous queries require real-time 
results, and both objects and queries receive frequent location 
updates. In this paper we propose conceptual partitioning (CPM), 
a comprehensive technique for the efficient monitoring of 
continuous NN queries. CPM achieves low running time by 
handling location updates only from objects that fall in the 
vicinity of some query (and ignoring the rest).  It can be used with 
multiple, static or moving queries, and it does not make any 
assumptions about the object moving patterns. We analyze the 
performance of CPM and show that it outperforms the current 
state-of-the-art algorithms for all problem settings. Finally, we 
extend our framework to aggregate NN (ANN) queries, which 
monitor the data objects that minimize the aggregate distance with 
respect to a set of query points (e.g., the objects with the 
minimum sum of distances to all query points).       

1. INTRODUCTION 
Early work in spatial databases focused on the point k-NN query 
that retrieves the k (≥1) objects from a static dataset that are 
closest (according to Euclidean distance) to a static query point. 
The existing algorithms (e.g., [H84, RKV95, HS99]) consider that 
the data are indexed with a spatial access method and utilize some 
pruning bounds to restrict the search space. In addition, several 
papers study variations of NN search such as reverse NNs 
[SRAA01] and constrained NNs [FSAA01]. Recently, the focus 
has shifted towards moving NN queries and/or objects in client-
server architectures. Song and Roussopoulos [SR01] reduce the 
number of moving NN queries over static objects by introducing 
some redundancy. In particular, when a k-NN query is processed, 
the server sends to the client a number m > k of neighbors. The k 
nearest neighbors at a new location q' will be among the m objects 
of the first query q provided that the distance between q and q' is 
within a range determined by k and m. For the same settings 
(moving query - static data objects), Zhang et al. [ZZP+03] 
propose the concept of location-based queries that return the NN 

of q along with its Voronoi cell, i.e., the area around the query 
point where the NN set remains the same. The Voronoi cell is 
computed on-the-fly using an R-tree on the data objects. Given 
clients and data objects that move with linear and known 
velocities, time-parameterized [TP03] queries report, in addition 
to the current NN set, its validity period and the next change of 
the result (that will occur at the end of the validity period). Linear 
NN [BJKS02, TP03] queries return all NN sets up to a future 
timestamp qt assuming that there are no updates of the velocity 
vectors between the current time and qt.  
All the above techniques target the efficient processing of a single 
snapshot query since they report the NN set at the query time, 
possibly with some validity information (e.g., expiry time, 
Voronoi cell), or generate future results based on predictive 
features (e.g., velocity vectors of queries or data objects). On the 
other hand, continuous monitoring: (i) involves multiple long-
running queries (from geographically distributed clients), (ii) is 
concerned with both computing and keeping the results up to 
date, (iii) usually assumes main-memory processing to cope with 
the intensive (object or query) location updates, (iv) attempts to 
minimize factors such as the CPU or communication cost (as 
opposed to I/O overhead). Continuous monitoring of spatial 
queries is becoming increasingly important due to the wide 
availability of inexpensive and compact positioning devices, the 
evolution of mobile communications and the need for improved 
location-based services. Consequently, several techniques 
(reviewed in Section 2) have been developed in the last few years 
for continuous range and NN queries.  
In this paper, we propose the conceptual partitioning monitoring 
(CPM) method for NN queries in highly dynamic environments. 
The data objects are indexed by a main-memory grid G consisting 
of cells with size δ×δ (assuming two-dimensional space). Each 
cell c in the grid is associated with the list of objects residing 
therein. The running queries are stored along with their current 
result in a query table QT. When a query q arrives at the system, 
its initial result is computed by the NN search module of CPM. 
CPM organizes the cells into (hyper) rectangles based on their 
proximity to q. This conceptual partitioning provides a natural 
processing order of the cells in G, so that the NN search considers 
the minimal set of cells in order to retrieve the NNs of q. We refer 
to the set of encountered cells as the influence region of q. The 
next task of CPM is to monitor the results of the queries upon the 
arrival of object updates. Clearly, only updates affecting the 
influence region of a query can potentially invalidate its current 
result. To restrict processing to such updates and to efficiently 
compute the changes in the results, we maintain book-keeping 
information in the object index and the query table. We also show 
that it is often possible to compute the new result of an affected 
query among the objects that issue updates, without searching in 
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G at all. Finally, we tackle the case that the query points also 
move. As we show qualitatively and verify experimentally, CPM 
outperforms the existing state-of-the-art methods, usually by more 
than an order of magnitude. 
Furthermore, CPM provides a general methodology that can be 
applied to several types of spatial queries. As a case study we use 
aggregate nearest neighbor (ANN) queries. Given a set of query 
points Q = {q1,q2,…,qm} and an object p, the aggregate distance 
adist(p,Q) is defined as a monotonically increasing function f over 
the individual distances dist(p,qi) between p and each point qi∈Q. 
Assuming, for example, n users at locations q1, … qn and f=sum, 
an ANN query outputs the data object p that minimizes adist(p,Q) 
= ∑qi∈Q dist(p,qi), i.e., the sum of distances that the users have to 
travel in order to meet at the position of p. Similarly, if f=max, the 
ANN query reports the object p that minimizes the maximum 
distance that any user has to travel to reach p. In turn, this leads to 
the earliest time that all users will arrive at the location of p 
(assuming that they move with the same speed). The sum ANN 
query has been studied in [PSTM04] for static queries and data 
indexed by R-trees. The adaptation of CPM to the continuous 
monitoring of ANN queries can handle arbitrary aggregate 
functions and preserves the excellent performance of the 
algorithm in the presence of frequent updates.   
The rest of the paper is organized as follows. Section 2 surveys 
related work on continuous monitoring of spatial queries, 
focusing mostly on NN search. Section 3 presents the conceptual 
partitioning monitoring method. Section 4 provides an analysis of 
the space and time requirements of CPM, as well as a qualitative 
comparison with existing systems. Section 5 discusses ANN 
monitoring, while Section 6 experimentally evaluates CPM. 
Finally, Section 7 concludes the paper with directions for future 
work.       

2. RELATED WORK 
The first monitoring method for spatial queries, called Q-index 
[PXK+02], assumes static range queries over moving objects. The 
queries are indexed by an R-tree and moving objects probe the 
index to find the queries that they influence. Q-index avoids the 
expensive (due to intensive updates) maintenance of an index on 
the objects. In addition, it utilizes the concept of safe regions to 
reduce the number of updates. In particular, each object p is 
assigned a circular or rectangular region, such that p needs to 
issue an update only if it exits this area (otherwise, it does not 
influence the result of any query). MQM [CHC04], another range 
monitoring method, partitions the workspace into rectangular sub-
domains. Each object in the system is assigned a resident domain, 
consisting of adjacent sub-domains. An object is aware only of 
the range queries intersecting its resident region, and reports its 
location to the server when it crosses the boundary of any of these 
queries. The number of sub-domains that form an object’s 
resident region depends on how many queries it can store and 
process concurrently. When an object exits its resident region, it 
requests a new one from the server. To decide the new resident 
region, the server uses a binary partitioning tree, which maintains 
for each sub-division of the workspace the queries that intersect it. 
This method applies only to static ranges. 
To deal with moving range queries, Gedik and Liu [GL04] 
propose another distributed system, called Mobieyes. Mobieyes 
partitions the workspace using a grid and maintains the 
monitoring regions of the queries. The monitoring region of a 

query is defined as the union of the grid cells it can potentially 
intersect, provided that its center remains within its current cell. 
Objects falling in the monitoring region of a query receive 
information about the query position and velocity, and notify the 
server when they enter or leave the predicted query region. Note 
that this way the objects store locally and monitor their spatial 
relationship only with queries that they might actually affect 
when they move, saving their limited storage and processing 
resources. On the other hand, queries issue updates to the server 
when they change velocity vector, or when they move out of their 
current cell.  
Mokbel et al. [MXA04] present SINA, a system that centrally 
processes continuous range queries over mobile data. SINA is 
based on shared execution and incremental evaluation. Shared 
execution is achieved by implementing query evaluation as a 
spatial join between the objects and the queries. Incremental 
evaluation implies that the query processor computes only the 
updates of the previously reported answers, as opposed to re-
evaluating the queries from scratch. The result updates are either 
positive or negative. The former category corresponds to objects 
entering the range of a query, while the latter one to objects 
leaving a range. Both the object and the query indexes are 
implemented as disk-resident regular grids. Let UP and Uq be the 
set of objects and queries that issue location updates since the 
previous evaluation cycle. Processing begins with the hashing 
phase that joins UP and Uq in-memory to produce positive 
updates. Next, the invalidation phase generates negative updates 
for objects in UP that move out of their current cell and queries in 
Uq that exit cells that they used to overlap with. Finally, 
movement within the same cell is handled in the joining phase; 
for each cell that contains objects in UP or intersects queries in 
Uq, SINA joins the new objects with the existing queries, and the 
new queries with the static objects. The resulting updates are 
merged with the updates of the previous phases (potentially 
canceling out some of them), and are reported to the client.   
All the aforementioned methods focus on range query monitoring, 
and their extension to NN queries is either impossible or non-
trivial. Henceforth, we discuss algorithms that target explicitly 
NN processing. Koudas et al. [KOTZ04] describe DISC, a 
technique for e-approximate k-NN queries over streams of 
multidimensional points. The returned kth NN lies at most e 
distance units farther from q than the actual kth NN of q. DISC 
partitions the space with a regular grid of granularity such that the 
maximum distance between any pair of points in a cell is at most 
e. To avoid keeping all arriving data in the system, for each cell c 
it maintains only K points falling therein and discards the rest. It 
is proven that an exact k-NN search in the retained points 
corresponds to a valid ek-NN answer over the original dataset 
provided that k≤K. DISC indexes the data points with a B-tree 
that uses a space-filling curve mechanism to facilitate fast updates 
and query processing. The authors show how to adjust the index 
to: (i) use the minimum amount of memory in order to guarantee a 
given error bound e, or (ii) achieve the best possible accuracy, 
given a fixed amount of memory. DISC can process both snapshot 
and continuous ek-NN queries. 
Yu et al. [YPK05] propose a method, hereafter referred to as 
YPK-CNN1, for continuous monitoring of exact k-NN queries. 
                                                                 
1 Yu et al. [YPK05] actually propose three methods. YPK-CNN is 

shown to be the best in their experimental evaluation. 



Objects are assumed to fit in main memory and are indexed with a 
regular grid of cells with size δ×δ. YPK-CNN does not process 
updates as they arrive, but directly applies the changes to the grid. 
Each NN query installed in the system is re-evaluated every T 
time units. When a query q is evaluated for the first time, a two-
step NN search technique retrieves its result. The initial step visits 
the cells in a square R around the cell cq covering q until k objects 
are found. Figure 2.1a, shows an example of a single NN query 
where the first candidate NN is p1 with distance d from q; p1 is 
not necessarily the actual NN since there may be objects (e.g., p2) 
in cells outside R with distance smaller than d. To retrieve such 
objects, the second step searches in the cells intersecting the 
square SR centered at cq with side length 2⋅d+δ, and determines 
the actual k NN set of q therein. In Figure 2.1a, YPK-CNN 
processes p1 up to p6 and returns p2 as the actual NN. The 
accessed cells appear shaded.  
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(a) NN search (b) Update handling 
Figure 2.1: YPK-CNN examples 

When re-evaluating an existing query q, YPK-CNN makes use of 
its previous result in order to restrict the search space. In 
particular, it computes the maximum distance dmax of the current 
locations of the previous NNs (i.e., dmax is the distance of the 
previous neighbor that moved furthest). The new SR is a square 
centered at cq with side length 2⋅dmax+δ. In Figure 2.1b, assume 
that the current NN p2 of q moves to location p′2. Then, the 
rectangle defined by dmax = dist(p′2,q) is guaranteed to contain at 
least one object (i.e., p2). YPK-CNN collects all objects (p1 up to 
p10) in the cells intersecting SR and identifies the new NN p1. 
Finally, when a query q changes location, it is handled as a new 
one (i.e., its NN set is computed from scratch). Yu et al. also 
discuss the application of YPK-CNN with a hierarchical grid that 
improves performance for highly skewed data.  
SEA-CNN [XMA05] focuses exclusively on monitoring the NN 
changes, without including a module for the first-time evaluation 
of an arriving query q (i.e., it assumes that the initial result is 
available). Objects are stored in secondary memory, indexed with 
a regular grid. The answer region of a query q is defined as the 
circle with center q and radius best_dist, where best_dist is the 
distance of the current kth NN. Book-keeping information is stored 
in the cells that intersect the answer region of q to indicate this 
fact. When updates arrive at the system, depending on which cells 
they affect and whether these cells intersect the answer region of 
the query, SEA-CNN determines a circular search region SR 
around q, and computes the new k NN set of q therein. To 
determine the radius r of SR, the algorithm distinguishes the 
following cases: (i) If some of the current NNs move within the 
answer region or some outer objects enter the answer region, 
SEA-CNN sets r=best_dist and processes all objects falling in the 

answer region in order to retrieve the new NN set. (ii) If any of 
the current NNs moves out of the answer region, processing is 
similar to YPK-CNN; i.e., r = dmax (where dmax is the distance of 
the previous NN that moved furthest from q), and the NN set is 
computed among the objects lying in SR. Assume that in Figure 
2.2a the current NN p2 issues an update reporting its new location 
p′2. SEA-CNN sets r=dmax=dist(p′2,q), determines the cells 
intersecting SR (these cells appear shaded), collects the 
corresponding objects (p1 up to p10), and retrieves the new NN p1. 
(iii) Finally, if the query q moves to a new location q′, then SEA-
CNN sets r = best_dist+dist(q,q′), and computes the new k NN set 
of q by processing all the objects that lie in the circle centered at 
q′ with radius r. For instance, in Figure 2.2b the algorithm 
considers the objects falling in the shaded cells (i.e., objects from 
p1 up to p10 except for p7 and p9) in order to retrieve the new NN 
(p5).  

q

p1

dmax

p2

p6

p5

p4p3

SR

p'2

p8p7

p10
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Answer region
best_dist

 

q

p1

best_
dist+

dist(q
,q')

p2

p6

p5

p4p3

SR

q'

p8p7

p10

p9

Answer region

best_dist

(a) p2 issues an update (b) q moves to q′ 
Figure 2.2: SEA-CNN update handling examples  

Table 2.1 summarizes the properties of existing methods for 
monitoring spatial queries. The processing type refers to whether 
mobile objects have some computing capabilities, or the entire 
processing cycle takes place in a central server. For instance, Q-
index is classified as a distributed method since the objects decide 
whether they exit their safe regions before they issue an update. 
On the other hand, SINA follows a centralized paradigm since 
each object issues an update whenever it moves, independently of 
whether it influences any query or not. In summary, the only 
existing techniques applicable to continuous monitoring of exact 
k-NN queries are YPK-CNN and SEA-CNN. Similar to these 
methods CPM also assumes centralized processing (in main 
memory2). We compare CPM against YPK-CNN and SEA-CNN 
both qualitatively (in Section 4) and experimentally (in Section 
6). In the next section, we present CPM in detail. 

Method Query  Memory Processing Result 
Q-index Range Main Distributed Exact 
MQM Range Main Distributed Exact 
Mobieyes Range Main Distributed Exact 
SINA Range Disk Centralized Exact 
DISC NN Main Centralized Approximate
YPK-CNN NN Main Centralized Exact 
SEA-CNN NN Disk Centralized Exact 

Table 2.1: Properties of monitoring methods 

                                                                 
2 Even though SEA-CNN assumes that objects reside in 

secondary memory, it can be also used for memory-resident 
data. 



3. CONCEPTUAL PARTITIONING MONITORING 
In accordance with real-world scenarios, we assume 2D3 data 
objects and queries that change their location frequently and in an 
unpredictable manner. An update from object p is a tuple <p.id, 
xold, yold, xnew, ynew>, implying that p moves from (xold, yold) to 
(xnew, ynew). A central server receives the update stream and 
continuously monitors the k NNs of each query q installed in the 
system. Similar to existing approaches (e.g., YPK-CNN, SEA-
CNN), we use a grid index since a more complicated data-
structure (e.g., main memory R-tree) would be very expensive to 
maintain dynamically. The extent of each cell on every dimension 
is δ, so that the cell ci,j at column i and row j (starting from the 
low-left corner of the data space) contains all objects with x co-
ordinate in the range [i⋅δ, (i+1)⋅δ) and y co-ordinate in the range 
[j⋅δ, (j+1)⋅δ). Conversely, an object with co-ordinates (x,y) 
belongs to the cell ci,j, where i= ⎣x/δ⎦  and j= ⎣y/δ⎦. CPM (and 
SEA-CNN) can also be applied with the hierarchical grid of 
[YPK05].  
Section 3.1 describes the NN computation algorithm, which 
constitutes the core module of CPM. Then, Sections 3.2 and 3.3 
discuss the handling of location updates. Table 3.1 summarizes 
the primary symbols and functions we use throughout this section.  

Symbol Description  
P The set of moving objects 
N Number of objects in P 
G The grid that indexes P 
δ Cell side length 
q  The query point  
cq The cell containing q 
n The number of queries installed in the system 

dist(p,q) Euclidean distance from object p to query point q  
best_NN The best NN list of q 
best_dist The distance of the kth NN from q 

mindist(c,q) Minimum distance between cell c and query point q 
Table 3.1: Frequently used symbols and functions 

3.1 The NN computation module of CPM 
Given a cell c and a query q, mindist(c,q) is the minimum possible 
distance between any object p∈c and q. Let best_NN be the list of 
the k best NNs (of q) found so far, and best_dist be the distance of 
the kth of them. If mindist(c,q)≥best_dist, we can safely prune c 
because it cannot contain any object lying closer to q than any of 
the current NNs. Based on this observation, a naive way to 
process a NN query q in P, is to sort all cells c∈G according to 
mindist(c,q), and visit them in ascending mindist(c,q) order. For 
each considered cell, we compute dist(p,q) for the objects p 
inside, and update accordingly the best_NN list. The search 
terminates when the cell c under consideration has mindist(c,q) ≥ 
best_dist. Figure 3.1a illustrates this process for a 1-NN query q. 
The algorithm visits only the shaded cells and encounters in total 
two objects, p1 and p2. Between them, p2 is returned as the result 
of the query.  
It can be easily shown that the above algorithm processes only the 

                                                                 
3 We focus on two-dimensional Euclidean spaces, but the 

proposed techniques can be applied to higher dimensionality 
and other distance metrics. Furthermore, for ease of 
presentation, the examples demonstrate retrieval of a single NN. 

cells that intersect the circle centered at q with radius equal to the 
distance between q and its kth NN. These cells have to be visited 
anyway in order to avoid false misses; therefore, the naïve 
algorithm is optimal in terms of the number of processed cells. 
Nevertheless, in practice it may be very expensive, since it 
requires computing the mindist for all cells and subsequently 
sorting them. CPM overcomes this problem and avoids 
unnecessary computations by utilizing a conceptual space 
partitioning. 

q

p1

δ

p2
best_dist

 
(a) Retrieval of one NN (b) Partitioning into rectangles

Figure 3.1: NN search and conceptual partitioning  

Figure 3.1b illustrates the conceptual partitioning of the space 
around the cell cq of q. Each rectangle rect is defined by a 
direction and a level number. The direction could be U, D, L, or R 
(for up, down, left and right) depending on the relative position of 
rect with respect to q. The level number indicates the number of 
rectangles between rect and cq. Lemma 3.1 regulates the visiting 
order among rectangles of the same direction.  
Lemma 3.1: For rectangles DIRj and DIRj+1 of the same direction 
DIR with level numbers j and j+1, respectively, it holds that 
mindist(DIRj+1,q) = mindist(DIRj,q) + δ. 
Proof: Without loss of generality, assume that the direction is D. 
The minimum distance of q from either rectangle equals the 
length of its projection on the top edge of the rectangle. Since the 
side length of the cells is δ, it follows that mindist(DIRj+1,q) = 
mindist(DIRj,q) + δ.           � 
Based on Lemma 3.1, the NN computation module of CPM visits 
cells in ascending mindist(c,q) order, thus, preserving the property 
of processing the minimal set of cells. In particular, CPM 
initializes an empty heap H and inserts (i) the cell cq with key 
mindist(cq,q)=0, and (ii) the level zero rectangles for each 
direction DIR, with key mindist(DIR0,q). Then, it starts de-
heaping entries iteratively. If the de-heaped entry is a cell, it 
examines the objects inside and updates accordingly the best_NN. 
If the de-heaped entry is a rectangle DIRlvl, it inserts into H (i) 
each cell c∈DIRlvl with key mindist(c,q) and (ii) the next level 
rectangle DIRlvl+1 with key mindist(DIRlvl+1,q) = mindist(DIRlvl,q) 
+δ. The algorithm terminates when the next entry in H 
(corresponding either to a cell or a rectangle) has key greater than 
or equal to best_dist.  
Proof of correctness: Let best_NN be the list of NNs returned by 
the algorithm, and best_dist be the distance of the kth NN. Clearly, 
all cells c inserted at some point into H do not contain any better 
NN than the objects in best_NN. This is guaranteed by the sorting 
property of the heap and the fact that dist(p,q) ≥ mindist(c,q) 
holds ∀p∈c. In order to prove correctness, it suffices to show that 
each cell that was not inserted into H cannot contain any object 



closer to q than best_dist. This part of the proof is based on the 
observation that, at any point, the heap H contains exactly four 
rectangle entries, one for each direction. We call these rectangles 
boundary boxes. Let the boundary box of direction DIR be DIRlvl. 
The algorithm has considered all cells falling into rectangles DIRi 
with i<lvl. From Lemma 3.1 it follows that all cells c belonging to 
DIRi with i>lvl have mindist(c,q)>mindist(DIRlvl,q). Since 
mindist(DIRlvl,q) ≥ best_dist for each boundary box DIRlvl, and 
since all the unexplored space falls in some rectangle of some 
direction DIR with level greater than lvl, best_NN is the correct 
result of q. � 
In the example of Figure 3.2a, CPM initially inserts into the heap 
the cell cq = c4,4 and the rectangles of level zero, i.e.,  H = 
{<c4,4,0>, <U0,0.1>, <L0,0.2>, <R0,0.8>, <D0,0.9>} (the numbers 
indicate mindist assuming that δ=1). Then it de-heaps c4,4, which 
is empty4 and ignored. The next entry in H is U0. CPM en-heaps 
the cells of U0, as well as rectangle U1 and proceeds in the same 
way until it de-heaps <c3,3,1>, where it finds the first candidate 
NN p1 with best_dist=dist(p1,q)=1.7. Since, the next entry in H 
has key less than best_dist, it continues until it de-heaps c2,4 and 
discovers the new candidate p2, with best_dist = dist(p2,q) = 1.3. 
The algorithm terminates (with p2 as the NN) when the top heap 
entry is c5,6 because mindist(c5,6,q) ≥best_dist. 

 

D1
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(a) NN computation (b) Search heap contents 
Figure 3.2: A NN computation example 

The final point that requires clarification concerns the book-
keeping information and related structures maintained for 
efficient search and handling of updates (to be discussed shortly). 
CPM keeps (in main memory) a query table QT that stores for 
each query, its co-ordinates, the current result, the best_dist, the 
visit list, and the search heap H:  
●   best_dist determines the influence region of q, i.e., the set of 
cells that intersect the circle centered at q with radius best_dist. 
Only updates affecting these cells can influence the NN result.  
●   The visit list of q consists of all cells c processed during NN 
search, sorted on mindist(c,q). Each cell entry de-heaped from H 
is inserted at the end of the list. In our example, the visit list of q 
contains the shaded cells in Figure 3.2a. 
●   The search heap H contains the cell and rectangle entries that 
were en-heaped, but not de-heaped during NN search (i.e., their 
mindist from q is greater than or equal to best_dist). The contents 
of H in our example are the shaded cells in Figure 3.2b, plus the 
four boundary boxes U2, D1, L2, and R1. 

                                                                 
4 Note that, from now on, we ignore the empty cells in our 

examples for the sake of clarity. 

In addition, each cell c of the grid is associated with (i) the list of 
data objects within its extents, and (ii) the list of queries whose 
influence region contains c. For example, cell c3,3 contains q in its 
influence list, while c5,6 does not.  The structures of the query 
table and the object grid are shown in Figure 3.3.  

 

(a) Query table (b) Object grid  
Figure 3.3: Query table and object grid structures 

Figure 3.4 presents the full functionality of the CPM NN 
computation including the maintenance of the data structures. The 
influence lists of the encountered cells are updated in line 11, 
while, in line 12, each processed cell is inserted into the visit list 
of q. Line 18 stores the new best_dist value in the query table. 
Upon termination, the heap H is also stored in QT. The algorithm 
is optimal in the sense that it processes the minimal set of cells for 
retrieving the NN set of q. As opposed to the naïve algorithm 
discussed in the beginning of the section, the only redundant 
mindist computations concern the cells that were en-heaped but 
not de-heaped (i.e., the shaded cells in Figure 3.2b). As shown in 
Section 4.1, the number of such cells and rectangles is small. 
Furthermore, as discussed next, CPM utilizes these computations 
for the efficient handling of updates.   

NN Computation (G, q) 
// Input= G: the grid indexing P  
// q: the query    
1. best_dist = ∞; best_NN = NULL;  
2. Insert a new entry for q into the query table 
3. Initialize an empty heap H 
4. Insert <cq, 0> into H 
5. For each direction DIR insert <DIR0, mindist(DIR0,q)> into H 
6. Initialize an empty list visit_list  
7. Repeat 
8.   Get the next entry of H 
9.   If it is a cell entry <c, mindist(c,q)> 
10.     For each object p∈c, update best_NN & best_dist if necessary 
11.     Insert an entry for q into the influence list of c 
12.     Insert  <c, mindist(c,q)> at the end of visit_list     
13.   Else // it is a rectangle entry <DIRlvl, mindist(DIRlvl,q)> 
14.     For each cell c in DIRlvl 
15.        Insert <c, mindist(c,q)> into H 
16.     Insert <DIRlvl+1, mindist(DIRlvl,q)+δ> into H 
17. Until the next entry has key ≥ best_dist or H is empty 
18. Update the influence region information of q to <q, best_dist> 

Figure 3.4: The NN computation module of CPM  

3.2 Handling a single object update 
Assume, for simplicity, that a single update from p∈P arrives at a 
time. The first step is to delete p from its old cell cold. CPM scans 
the influence list of cold and identifies the queries that contain p in 
their best_NN set. Specifically, for each query q (in the influence 
list of cold), if p∈q.best_NN and dist(p,q) ≤ best_dist, then the k 



NN set of q remains the same, but the order of the NNs can 
potentially change. Therefore, CPM updates the order in 
q.best_NN to reflect the new dist(p,q). On the other hand, if 
p∈q.best_NN and dist(p,q) > best_dist (i.e., p is a NN that has 
moved farther from q than best_dist), there may exist objects (not 
in q.best_NN) that lie closer to q than p; thus, q is marked as 
affected to indicate this fact and ignored for now. Next, CPM 
inserts p into its new cell cnew, and scans the influence list of cnew. 
For each entry q therein, if q has been marked as affected it 
ignores it. Otherwise, if dist(p,q) < q.best_dist, it evicts the 
current kth NN from the result, inserts p into q.best_NN, and 
updates q.best_dist. The last step re-computes the NN set of every 
query q that is marked as affected.  
Figure 3.5a illustrates update handling, assuming that object p4 
moves to position p'4. CPM first deletes p4 from the object list of 
c5,6, which has an empty influence list and, hence, the deletion 
does not affect any result. Next, it inserts p4 into its new cell c5,3, 
whose influence list contains an entry for q. Since dist(p'4,q) > 
best_dist, update handling terminates without any change in the 
result. Assume that, later on, object p2 moves to a new position 
p'2, as shown in Figure 3.5b. Since the old cell c2,4 contains q in 
its influence list, CPM checks the query table entry for q and 
detects that p2 = best_NN. Query q is marked as affected because 
dist(p'2,q) > best_dist. The insertion of p2 into its new cell c0,6 
does not trigger any additional processing (because the influence 
list of c0,6 is empty). Finally, CPM invokes the NN re-
computation module to find the new NN (p'4) of the affected 
query q. 
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Figure 3.5: Update examples 

Figure 3.6 illustrates the re-computation module that retrieves the 
new NN set of the affected queries. The algorithm is based on the 
same principles as the NN search module of CPM (Figure 3.4), 
but re-uses the information stored in the query table to reduce the 
running time. In particular, it starts processing sequentially the 
cells stored in the visit list of q, and then it continues with the 
entries of the search heap H. Note that all the cells in the visit list 
have mindist less than (or equal to) the entries of H. It follows that 
the NN re-computation algorithm considers cells c in ascending 
mindist(c,q) order, which guarantees the correctness of the result, 
as well as the minimality of the set of processed cells. The 
benefits of NN re-computation over computation from scratch are: 
(i) it utilizes the previously computed mindist values, and (ii) it 
significantly reduces the number of heap operations 
(insertions/deletions). Recall that the cost of each heap operation 
is logarithmic to the heap size, while the “get next” operation on 
the visit list (in line 3 of Figure 3.6) is O(1).   

NN Re-Computation (G, q) 
// Input= G: the grid indexing P, q: the affected query    
1. best_dist = ∞; best_NN = NULL;  
2. Repeat 
3.   Get the next element <c, mindist(c,q)> of visit_list 
4.   For each object p∈c, update best_NN & best_dist if necessary 
5.   Insert an entry for q into the influence list of c 
6. Until the next element has key ≥ best_dist or visit_list is empty 
7. If the first entry in H has key < best_dist 
8.    (Same as lines 7-17 of Figure 3.4)   
9. Set influence region information of q to <q, best_dist> 

Figure 3.6: The NN re-computation module of CPM  

3.3 Handling multiple updates 
So far we have dealt with processing a single update. However, in 
the general case, there is a set UP of object updates that arrive 
during the time interval between two consecutive update handling 
cycles. Processing incrementally each update in UP, as discussed 
in Section 3.2, guarantees correctness of the result. However, this 
can be improved upon. Consider the example of Figure 3.7a, 
where UP contains location updates for p2 and p3. If p2 is 
processed first, q will be marked as affected (p2 is the current NN 
and moves farther than best_dist), triggering the NN re-
computation module. This, however, is unnecessary because 
object p3 moves closer to q than the previous best_dist, and we 
could simply replace the outgoing NN p2 with the incoming p3.  
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Figure 3.7: An update handling example 

In general, let O be the set of outgoing NNs (i.e., NNs that move 
farther from q than best_dist) and I be the set of incoming objects 
(i.e., objects other than the current NNs that move closer to q than 
best_dist). The circle with center q and radius best_dist contains 
objects I ∪ best_NN – O. If |I|≥|O| (where |I| and |O| are the 
cardinalities of I and O, respectively), this circle includes at least 
k objects. Therefore, we can form the new NN set from the k best 
objects in I ∪ best_NN – O without invoking re-computation. We 
embed this enhancement in the CPM algorithm as follows. Before 
processing UP, we record the current best_dist of q. During update 
handling, we maintain the in_list of the k best incoming objects 
(we do not need more than the k best incomers in any case). At 
the end of the procedure, if in_list contains more than |O| objects, 
we merge the NNs in best_NN – O with in_list, and keep the best 
k among them to form the new result of q. We resort to NN re-
computation only if in_list contains fewer than |O| objects.  
Figure 3.8 shows the complete update handling module of CPM. 
An important remark is that if |I|≥|O|, the influence region of q 
shrinks. Consequently, line 22 deletes q from the influence lists of 



the cells that no longer belong to it. Note that, at any time, the 
visit list contains a superset of the cells in the influence region of 
q. Therefore, we can simply scan the cells c in the visit list with 
mindist(c,q) between the new and the old value of best_dist, and 
delete q from their influence lists. The new influence region of q 
in our example is shown in Figure 3.7b. After update handling, 
the visit list contains a superset of the cells in the influence region 
(i.e., the visit list still includes the shaded cells in Figure 3.7a). 

Update Handling (G, QT, UP) 
// Input= G: the grid, QT: query table, UP: set of updates in P    
1. For each query q in QT 
2.   Set q.out_count=0; // Counter of outgoing NNs 
3.   Initialize a sorted list q.in_list of size k    
4. For each update <p.id,xold,yold,xnew,ynew>∈UP 
5.   Delete p from its old cell cold  
6.   For each query q in the influence list of cold 
7.     If p∈q.best_NN 
8.       If dist(p,q) ≤ q.best_dist // p remains in the NN set 
9.         Update the order in q.best_NN 
10.       Else // p is an outgoing NN   
11.         Evict p from q.best_NN 
12.         q.out_count = q.out_count +1; 
13.   Insert p into its new cell cnew  
14.   For each query q in the influence list of cnew 
15.     If dist(p,q)≤q.best_dist and p∉q.best_NN  // p is an incomer 
16.       Update q.in_list with p 
17. For each query q in QT 
18.   If q.in_list contains at least q.out_count objects 
19.     candidate_list = q.in_list ∪ q.best_NN ; 
20.     q.best_NN = the best k objects in candidate_list  
21.     Update q.best_dist, Set inf. region of q to <q, p.best_dist> 
22.     Delete q from inf. lists of cells no longer in its inf. region   
23.   Else // Not enough incoming objects 
24.     NN Re-Computation (G, q); 

Figure 3.8: The update handling module of CPM 

In addition to data objects, queries may also be dynamic; i.e., 
some are terminated, new ones arrive at the system, while others 
move. When a query is terminated, we delete its entry from QT 
and remove it from the influence lists of the cells in its influence 
region. For new arrivals, we execute the NN computation 
algorithm of Figure 3.4. When an existing query q moves, we 
treat the update as a termination of the old query, and an insertion 
of a new one, posed at its new location. Queries that receive 
updates are ignored when handling object updates in order to 
avoid waste of computations for obsolete queries. Figure 3.9 
presents the complete CPM algorithm, covering all update types.  

NN Monitoring (G, QT) 
// Input= G: the grid indexing P, QT: query table 
1. In every processing cycle do  
2.    Uq = set of query updates 
3.    UP = set of updates in P 
4.    Invoke Update Handling (G, QT, UP) ignoring queries in Uq 
5.    For each query q in Uq  
6.      If q is a terminated or a moving query    
7.        Delete q from QT and from inf. lists of cells in its inf. region 
8.      If q is a new or a moving query 
9.        NN Computation (G, q); 
10.    Inform client for updated results 

Figure 3.9: The CPM algorithm 

In general, the nearest neighbors of q are concentrated in a small 

area of the workspace and the influence region of q contains few 
cells. Therefore, the influence list overhead, and the search 
heap/visit list sizes are expected to be small. However, in case that 
the physical memory of the system is exhausted, we can directly 
discard the search heap and the visit list of q to free space. Even 
without this information, CPM can continue monitoring q; the 
difference is that we have to invoke the NN computation 
algorithm from scratch (instead of NN re-computation) in line 24 
of the update handling module of Figure 3.8. 

4. PERFORMANCE ANALYSIS 
Section 4.1 analyzes the performance of CPM in terms of space 
requirements and running time. Section 4.2 compares CPM with 
the existing algorithms for continuous NN monitoring. 

4.1 Analysis of CPM 
In order to study the performance of CPM and analyze the effect 
of the cell size δ, we assume that the objects (queries) are 
uniformly distributed5 in a unit square workspace. First, we 
provide formulae for the space/time overhead with respect to: (i) 
the number of cells Cinf in the influence region of a k-NN query q, 
(ii) the number Oinf of objects in the influence region, and (iii) the 
total number CSH of cells stored either in the visit list or in the 
search heap of q. Then, we estimate the values of these 
parameters as functions of δ, and conclude with observations 
about the expected performance of CPM in practice.  
For simplicity, we assume that the minimum unit of memory can 
store a (real or integer) number. The amount of memory required 
for an object is sobj=3 for its id and two co-ordinates. Similarly, 
each heap/visit list entry consumes setr=3 memory units for the 
cell (rectangle) column/row and mindist.  The first component of 
the space overhead is the size of the grid index. The grid contains 
N objects, consuming sobj⋅N=3⋅N space, plus the auxiliary 
influence lists of the cells. For each query q, we insert its id into 
the influence lists of Cinf cells. Assuming n concurrent k-NN 
queries, the grid index has total size SpaceG = 3⋅N + n⋅Cinf. The 
query table contains one entry for each query q. The memory 
dedicated for an entry is sobj + 2⋅k + setr⋅(CSH+4); sobj=3 is required 
for the id and co-ordinates of q, while 2⋅k space is used for the 
object ids of the k NNs and their distances from q. The 
setr⋅(CSH+4)=3⋅(CSH+4) component corresponds to the storage 
overhead of the visit list and the search heap H; these two 
structures combined contain CSH cells plus four rectangle entries. 
It follows that the size of the query table is SpaceQT = 
n⋅(15+2⋅k+3⋅CSH). In total, the memory requirements of CPM are 
SpaceCPM = SpaceG + SpaceQT = 3⋅N + n⋅(15+2⋅k+3⋅CSH+Cinf) 
memory units.   
In order to estimate the running time per processing cycle, we 
assume that N⋅fobj objects and n⋅fqry queries issue location updates 
following random displacement vectors. The total cost is TimeCPM 
= N⋅fobj⋅Timeind + n⋅fqry⋅Timemq + n⋅(1-fqry)⋅Timesq, where Timeind is 
the index update time for a single object, Timemq is the time 
required for the NN computation of a moving query, and Timesq is 
the time required for updating the NNs of a static query. The 
                                                                 
5 Although, admittedly, the uniformity assumption does not hold 

in practice, similar to previous work [YPK05], we use it to 
obtain general observations about the effect of the problem 
parameters. 



object lists of the cells are implemented as hash tables so that the 
deletion of an object from its old cell and the insertion into its 
new one takes expected Timeind=2. For each moving query we 
have to invoke the NN computation algorithm of Figure 3.4 with 
cost Timemq = CSH⋅logCSH + Oinf⋅logk + 2⋅Cinf. The first factor is 
due to the heap operations. The number of entries in H throughout 
the NN search procedure is upper-bounded by CSH+4  ≈ CSH. 
Since insertion and deletion is logarithmic to the size of the heap, 
the overall time spent on heap operations is CSH⋅logCSH. The 
algorithm processes Oinf objects, taking Oinf⋅logk time 
cumulatively; each object is probed against the best_NN list to 
update the result, taking logk time with a red-black tree 
implementation of best_NN. Removing or inserting q from/into 
the influence list of a cell takes constant expected time (the lists 
are implemented as hash-tables). Therefore, updating the 
influence lists of all cells falling in the old and the new influence 
region costs 2⋅Cinf. For estimating Timesq, observe that at any time 
instant, the objects are distributed uniformly in the workspace. 
This implies that the circle with radius best_dist always contains k 
objects, or equivalently, there are as many incoming objects as 
outgoing NNs. Let there be |O| outgoing NNs. In the worst case, 
all the remaining k-|O| NNs move. Re-ordering the remaining 
NNs and inserting the |I|=|O| incomers into best_NN takes Timesq 
= k⋅logk. Summing over all queries and the index update time, the 
computational overhead of a processing cycle is TimeCPM = 
2⋅N⋅fobj + n⋅fqry⋅(CSH⋅logCSH + Oinf⋅logk + 2⋅Cinf) + n⋅(1-fqry)⋅k⋅logk. 
It remains to estimate the numbers Cinf (Oinf) of influencing cells 
(objects) and cells CSH in the visited list and heap of a random 
query q. Let Θq be the circle centered at q with radius equal to 
best_dist. For uniform data, the ratio of the area of Θq to the area 
of the workspace equals k/N so that best_dist= k/π⋅N . The 
influence region of q consists of cells intersecting Θq. The number 
of these cells is roughly Cinf = π⋅⎡best_dist/δ⎤2, and the 
corresponding objects are Oinf = Cinf⋅N⋅δ 2 (each cell contains N⋅δ 2 
objects on average). As δ decreases, Cinf increases, the shape of 
the influence region better approximates Θq, and Oinf approaches k 
(which is its minimum value). On the other hand, a large δ leads 
to a small number of cells which, however, contain a large 
number of objects. Figure 4.1 illustrates the effect of δ on Cinf and 
Oinf, assuming a 1-NN query q. The shaded cells correspond to the 
influence region of q, which in Figure 4.1a contains Cinf=39 cells 
and Oinf=1 objects. For a larger value of δ, in Figure 4.1b, Cinf=8 
and Oinf=8. To estimate CSH, assume for simplicity that q is 
located at the center of its cell cq. The boundary boxes are of the 
same level in each direction. It follows that CSH is the number of 
cells that intersect the circumscribed square of Θq. Thus, CSH can 
be approximated by 4⋅⎡best_dist/δ⎤2. Similar to Cinf, CSH decreases 
as δ increases, e.g., in Figure 4.1a, CSH=49, while in Figure 4.1b, 
CSH=9. 
In summary, the space consumed by the influence lists of the cells 
and the query table, is inversely proportional to δ 2. Similarly, 
both the size of the influence lists and the size of the query table 
are linear to n and k. Concerning the computational cost of CPM, 
index update time is linear to N and fobj. The result maintenance 
task takes linear time with respect to n, and is expected to grow as 
fqry increases. The time of NN computation for a new or a moving 
query depends strongly on the cell size; a small value for δ incurs 
high overhead due to heap operations, while a large value implies 
a high number Oinf of processed objects.   
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Figure 4.1: The effect of δ on the performance of CPM 

4.2 Qualitative comparison with existing methods 
Next, we illustrate the superiority of CPM over the existing 
methods through some update handling scenarios. YPK-CNN re-
evaluates periodically every query q, even if the object updates 
have not affected any cell in its vicinity. This is due to the fact 
that it does not include a mechanism for detecting queries 
influenced by location updates. Furthermore, in the general case, 
YPK-CNN visits more cells than necessary when performing NN 
search for moving and new queries. Consider the 1-NN 
computation of query q in Figure 4.2a. As discussed in Section 2 
(the example is the same as Figure 2.1), YPK-CNN processes 25 
cells and six objects (p1 up to p6). Finally, it also incurs redundant 
computations for static queries. Assuming that in Figure 4.2b the 
current NN p2 moves to location p′2, YPK-CNN processes 49 
cells and ten objects (p1 up to p10). Clearly, the unnecessary 
computations increase with dist(p′2,q). On the other hand, CPM 
(i) only processes queries whose influence region intersects some 
updated cell, and (ii) the NN computation and re-computation 
modules restrict the search space to the minimum number of cells 
around q (i.e., shaded cells in Figure 4.2). 
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Figure 4.2: CPM versus YPK-CNN 

SEA-CNN also performs redundant computations in several 
cases. First, assume that the only updates are from incoming 
objects and/or NNs that move within distance best_dist from q. 
For instance, in Figure 4.3a, p6 moves closer to q than best_dist. 
SEA-CNN visits all cells intersecting the circle centered at q with 
radius r = best_dist and determines the new NN (p'6) among the 
processed objects p1, p2 and p'6. On the other hand, CPM directly 
compares dist(p'6,q) with best_dist and sets p'6 as the result 
without visiting any cells. When k is larger, the computational 
waste of SEA-CNN increases because it considers a higher 
number of objects, even though there might be few changes in the 



result. Another weak point of SEA-CNN concerns handling of 
outgoing NNs, which is similar to YPK-CNN. Recall that when p2 
moves to p′2, SEA-CNN processes ten objects p1 up to p10 (see 
Figure 2.2a), while CPM considers only four objects (see Figure 
4.2b). SEA-CNN incurs higher cost than CPM also in the case 
that q changes position. In Figure 4.3b, assuming that q moves to 
q′, CPM considers only cells intersecting the circle with center at 
q′ and radius dist(p5,q′), and retrieves the NN (p5) by processing 
only two objects (p4 and p5) in total. SEA-CNN considers 33 cells 
and eight objects. A final remark about SEA-CNN is that it does 
not handle the case where some of the current NNs go off-line. 
On the contrary, CPM trivially deals with this situation by 
treating off-line NNs as outgoing ones. 
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Figure 4.3: CPM versus SEA-CNN 

Summarizing, the speed of the objects does not affect the running 
time of CPM since update handling is restricted to the influence 
regions of the queries. On the other hand, the performance of both 
YPK-CNN and SEA-CNN (as also observed in [YPK05] and 
[XMA05]) degrades with object speed because the search region 
for a static query is determined by how far the furthest previous 
NN has moved since the last evaluation. For moving queries, 
CPM examines the minimum possible number of cells (which is 
independent of the query moving distance), whereas the cost of 
SEA-CNN increases with the velocity of q.   

5. AGGREGATE NNS AND OTHER QUERY TYPES 
In this section we extend the CPM algorithm to aggregate NN 
queries starting with the sum function. Given a set of query points 
Q = {q1,q2,…,qm}, a sum ANN query continuously reports the 
data object p that minimizes adist(p,Q) = ∑qi∈Q dist(p,qi). The 
basis of our method remains the conceptual partitioning of the 
space around the query Q. Since Q now consists of a set of query 
points, the partitioning applies to the space around the minimum 
bounding rectangle M of Q. Figure 5.1a exemplifies the 
partitioning into rectangles in the case of a 1-ANN query Q = 
{q1,q2,q3}. We define amindist(c,Q) = ∑qi∈Q mindist(c,qi), which 
is a lower bound for the distance adist(p,Q) of any object p∈c. 
The definition of amindist(DIRlvl,Q) for a rectangle DIRlvl is 
similar. The cell processing order is derived by corollary 5.1, 
which is based on the same geometric observations as Lemma 3.1 
(and, hence, we omit its proof). 
Corollary 5.1 (f=sum): For rectangles DIRj and DIRj+1 of the 
same direction DIR with level numbers j and j+1, it holds that 
amindist(DIRj+1,Q) = amindist(DIRj,Q) + m⋅δ, where m is the 
number of  points in Q.  
The ANN search module of CPM is essentially the same as the 

algorithm in Figure 3.4. The difference is that in the beginning of 
the search, we en-heap (in line 4) all cells c intersecting M.  The 
sorting key is amindist(c,Q) and amindist(DIRlvl,Q) for the en-
heaped cells and rectangles, respectively. When an object p is 
processed, we compute adist(p,Q) and update accordingly the list 
of best ANNs found so far (i.e., best_NN). The algorithm 
terminates when the next entry in H has amindist greater than or 
equal to best_dist. In our example, the algorithm terminates with 
p2 as the result, after processing all the shaded cells in Figure 
5.1b. Similar to Section 3.1, the influence region of Q is the set of 
cells c with amindist(c,Q)≤best_dist; only updates affecting these 
cells can change the ANN result. Note that the influence region of 
a query is no longer a circle, but has an irregular shape (i.e., the 
shaded region in Figure 5.1b). Update handling is the same as in 
Section 3, the difference being that we use the aggregate distance 
function instead of the Euclidean one.   
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Figure 5.1: ANN monitoring for f=sum  

When f=min, an ANN query Q retrieves the object(s) in P with 
the smallest distance(s) from any point in Q. The ANN search 
considers cells and rectangles in ascending amindist order. For a 
cell c, amindist(c,Q) = minqi∈Q mindist(c,qi), while for a rectangle 
DIRlvl, amindist(c,DIRlvl) = minqi∈Q mindist(DIRlvl,qi). Corollary 
5.2 dictates the cell processing order. 
Corollary 5.2 (f=min or f=max): For rectangles DIRj and DIRj+1 
of the same direction DIR with level numbers j and j+1, it holds 
that amindist(DIRj+1,Q) = amindist(DIRj,Q) + δ. 
The ANN search and update handling modules of CPM are 
similar to the sum case. Furthermore, for the min function, we can 
improve the O(m) time required to compute amindist(DIR0,Q) to 
O(1). The MBR M of Q contains by definition one point of Q on 
each edge. Therefore, computing amindist(DIR0,Q) for each 
direction DIR reduces to calculating the minimum distance 
between rectangle DIR0 and the closest edge of M. For example, 
amindist(D0,Q) equals to the distance between the top edge of D0 
and the bottom edge of M. An interesting observation about the 
min aggregate function is that the influence region of Q contains 
cells that intersect at least one of the circles centered at some qi 
with radius best_dist. Figure 5.2a shows an example where Q = 
{q1,q2,q3} and f=min. The result of the query is p2, and the 
influence region of Q appears shaded.    
When f=max, CPM monitors the object(s) of P that have the 
lowest maximum distance(s) from points in Q. For each cell c, 
amindist(c,Q) = maxqi∈Q mindist(c,qi), while for each boundary 
box DIRlvl, amindist(DIRlvl,Q) = maxqi∈Q mindist(DIRlvl,qi). 
Corollary 5.2 holds also in the case of max, whereas computing 
amindist(DIR0,Q) for each direction DIR can be performed in 



O(1) time: amindist(DIR0,Q) equals the minimum distance 
between DIR0 and the opposite edge of M. In Figure 5.2b we 
illustrate the case where Q = {q1,q2,q3} and f=max. The result of 
the query is object p4, and the corresponding influence region 
consists of the shaded cells. 
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Figure 5.2: ANN monitoring for f=min and f=max 

Finally, CPM can easily handle constrained variations of NN (and 
ANN) search that retrieve the NNs of a query point in a user-
specified area of the data space. Ferhatosmanoglu et al. [FSAA01] 
propose algorithms for static datasets indexed by R-trees. The 
adaptation of CPM to this problem inserts into the search heap 
only cells and conceptual rectangles that intersect the constraint 
region. Assume, for instance, that in Figure 5.3 we want to 
monitor the NN to the northeast of q. CPM en-heaps only the 
cells c4,4, c4,5, c5,4, c5,5 and rectangles U0, R0, U1, R1. Inside c5,5, 
object p3 is identified as the NN. Note that object p1 (the 
unconstrained NN) is not encountered at all since its cell is not 
visited, whereas p2 is processed but not reported.  

 
Figure 5.3: Monitoring of a constrained NN query 

6. EXPERIMENTAL EVALUATION 
In this section we evaluate the performance of CPM and compare 
it with YPK-CNN and SEA-CNN. In accordance with the 
experimental study of [XMA05], our datasets are created with the 
spatiotemporal generator of [B02]. The input of the generator is 
the road map of Oldenburg (a city in Germany). The output is a 
set of objects (e.g., cars, pedestrians) moving on this network, 
where each object is represented by its location at successive 
timestamps. An object appears on a network node, completes the 
shortest path to a random destination, and then disappears. We use 
the default velocity values of the generator for slow, medium, and 

fast object speeds. Objects with slow speed cover a distance that 
equals 1/250 of the sum of the workspace extents per timestamp. 
Medium and fast speeds correspond to distances that are 5 and 25 
times larger, respectively. The NN queries are generated 
similarly, i.e., they are objects moving on the same network, but 
they stay in the system throughout the simulation. The queries are 
evaluated at every timestamp and the simulation length is 100 
timestamps. In the implementation of SEA-CNN, we use the NN 
search algorithm of YPK-CNN to compute the initial results of 
the queries, or to retrieve the new NN sets when some of the 
current NNs disappear. Table 5.1 summarizes the parameters 
under investigation, along with their ranges and default values. In 
each experiment we vary a single parameter, while setting the 
remaining ones to their default values. For all simulations we use 
a Pentium 2.4 GHz CPU with 1 GByte memory. 

Parameter Default  Range 
Object population (N) 100K 10, 50,100,150,200 (K) 
Number of queries (n)  5K 1,2,5,7,10 (K) 
Number of NNs (k) 16 1,4,16,64,256 
Object/Query speed medium slow, medium, fast 
Object agility (fobj) 50% 10,20,30,40,50 (%) 
Query agility (fqry) 30% 10,20,30,40,50 (%) 

Table 6.1: System parameters (ranges and default values) 

Initially, we generate 5K queries and 100K objects, according to 
the default parameters of Table 6.1. We process the queries with 
each monitoring algorithm, and measure the overall running time 
by varying the grid granularity. Figure 6.1 illustrates the results 
for grid sizes ranging between 32×32 and 1024×1024.  CPM 
clearly outperforms both competitors for all grid sizes. SEA-CNN 
is worse than YPK-CNN because it incurs unnecessary 
computations for moving queries, as explained in Section 4.2. A 
128×128 grid (i.e., δ = 1/128) constitutes a good tradeoff between 
the CPU time and the space requirements for all methods6. 
Therefore, we perform the remaining experiments using δ = 
1/128.  
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Figure 6.1: CPU time versus grid granularity  

Next we examine scalability issues. Figure 6.2a measures the 
effect of the object population N on the running time. The 
generator is tuned so that the average object population during the 
simulation equals the desired value N. Similarly, Figure 6.2b 
illustrates the CPU overhead as a function of the number n of 
queries in the system. The cost of all algorithms increases linearly 

                                                                 
6 The space overhead is 2.854 MBytes, 3.074 MBytes, and 3.314 

MBytes for YPK-CNN, SEA-CNN and CPM, respectively.  



to both N and n. However, YPK-CNN and SEA-CNN are much 
more sensitive than CPM to these parameters, confirming the 
scalability of our approach. 
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Figure 6.2: CPU time versus N and n 

Figure 6.3a shows the CPU time as a function of the number k of 
NNs (using the default values for the remaining parameters). 
Figure 6.3b plots (in logarithmic scale) the number of cell 
accesses per query per timestamp. A cell visit corresponds to a 
complete scan over the object list in the cell. Note that a cell may 
be accessed multiple times within a cycle, if it is involved in the 
processing of multiple queries. For CPM, cell accesses occur 
during the NN computation algorithm (for moving queries), and 
during NN re-computation (for stationary queries, when there are 
more outgoing NNs than incomers). YPK-CNN re-evaluates the 
queries in every timestamp, and therefore induces cell visits for 
each query in every processing cycle. SEA-CNN accesses cells 
whenever some update affects the answer region of a query and/or 
when the query moves. CPM significantly outperforms its 
competitors because: (i) it does not search the grid if the update 
information suffices to maintain the results, and (ii) even if the 
updates necessitate computation from scratch or re-computation 
of the NN sets, CPM processes the minimal number of cells. An 
interesting observation is that for k=1 and k=4, CPM accesses less 
than one cell per query on the average. This happens because 
queries of case (ii) have a small cost (i.e., 1-2 cell visits), which is 
counter-balanced by queries of case (i) that do not incur any 
visits.     
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Figure 6.3: Performance versus k 

Figure 6.4a illustrates the CPU time with respect to the object 
speed. The performance of CPM is practically unaffected by the 
speed of objects. On the contrary, both YPK-CNN and SEA-CNN 
degenerate when objects move fast, as anticipated in Section 4.2. 
Figure 6.4b depicts the effect of the query speed on the running 
time of the algorithms. The cost of CPM and YPK-CNN is 
independent of the query velocity, since both techniques compute 
the results of the moving queries from scratch. On the other hand, 
SEA-CNN is negatively affected because, as discussed in Section 

4.2, the search region grows when the queries move far from their 
previous position, increasing the number of computations.  
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Figure 6.4: CPU time versus object and query speed 

Figure 6.5a compares the performance of CPM, YPK-CNN and 
SEA-CNN versus the percentage of objects that move within a 
timestamp (i.e., the object agility fobj). As expected (see Section 
4.1), the running time of CPM scales linearly with the object 
agility, due to the increasing index update cost. In order to 
quantify the effect of the query agility fqry (i.e., the probability 
that a query moves within a timestamp), we vary fqry from 10% to 
50% and keep the remaining parameters fixed to their default 
values. As shown in Figure 6.5b, the CPU time of CPM increases 
linearly with fqry because NN computations (for moving queries) 
are more expensive than result maintenance for static queries. 
Note that YPK-CNN is rather insensitive to the query agility 
because the incremental maintenance of the NN set (for stationary 
queries) has similar cost to the two-step NN computation (for 
moving queries).  
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Figure 6.5: CPU time versus object and query agility 

In the remaining two experiments, we compare individually the 
NN computation and result maintenance modules of the 
alternative methods. First, we monitor 5K constantly moving 
queries (i.e., queries that issue location updates in every 
timestamp), while varying the object population N. The query 
results are computed from scratch at every processing cycle; 
therefore, we can study the efficiency of the NN computation 
modules. SEA-CNN is omitted (since it does not include an 
explicit mechanism for obtaining the initial NN set). As shown in 
Figure 6.6a, CPM outperforms YPK-CNN and the performance 
gap increases with N. Finally, we process 5K static queries (i.e., 
fqry=0%), while varying the object population N. This way we 
eliminate the NN computations from scratch (apart from the 
initial query evaluation) and measure the pure result maintenance 
cost. As shown in Figure 6.6b, the behavior of YPK-CNN and 
SEA-CNN is similar, while CPM induces considerably fewer 
computations. 
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Figure 6.6: CPU time for constantly moving and static queries 

7. CONCLUSIONS 
This paper investigates the problem of monitoring continuous NN 
queries over moving objects. The task of the query processor is to 
constantly report the results of all queries, as location updates 
stream by from both the objects and the queries. Our contribution 
is an efficient processing method, referred to as the conceptual 
partitioning monitoring (CPM) algorithm. CPM is based on a 
conceptual partitioning of the space around each query q, in order 
to restrict the NN retrieval and the result maintenance 
computations to objects that lie in the vicinity of q. The core of 
CPM is its NN computation module, which retrieves the first-time 
results of incoming queries, and the new results of existing 
queries that change location. This module produces and stores 
book-keeping information to facilitate fast update handling. 
Keeping the NN set of a query q up-to-date is performed by 
processing on-line the object updates as they arrive. If the new 
NN set of a query can be determined solely by the previous result 
and the set of updates, then access to the object grid G is avoided. 
Otherwise, CPM invokes the NN re-computation module, which 
uses the book-keeping information stored in the system to reduce 
the running time (compared to NN computation from scratch). 
CPM is a generally applicable technique, since it does not require 
any knowledge about the object or query moving patterns (e.g., 
velocity vectors), and can concurrently process multiple (static or 
moving) queries. We analyze its performance and compare it with 
the existing state-of-the-art methods. As demonstrated by a 
qualitative analysis and by an extensive experimental study, CPM 
outperforms its competitors.  
Finally, to support the generality of the proposed methodology, 
CPM is applied to aggregate NN monitoring, where a query 
consists of a set of points and the optimization goal depends on an 
aggregate function (such as sum, min and max). In the future, we 
intend to explore the problem of continuous monitoring for 
variations of NN search, such as reverse NNs. A preliminary 
approach on this topic considers one-dimensional streams and 
aggregate reverse NN [KMS02]. It would be interesting to 
develop alternative approaches for the continuous monitoring of 
multiple (conventional) reverse NN queries in spaces of higher 
dimensionality.   
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