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1 Introduction

With the availability of ultra high frequency financial data, the task of finding an appropriate
econometric model to describe the movement of financial variables at the tick-by-tick level has
become an important goal in financial econometric research. The task has both theoretical
and empirical dimensions. From an empirical perspective, the near continuous recording of
financial asset prices has opened up the intriguing possibility of fitting the quadratic variation
process empirically, leading to what is possibly the most direct nonparametric measure of
asset price volatility. The resulting quantity has become known in the financial econometrics
literature as realized variance (RV) and measures the accumulated or integrated variance
(IV) of the efficient price process from some given initialization. This quantity is now the
focal point of much of the latest research on market volatility.

Compared with parametric methods of measuring volatility, this nonparametric approach
basically trades off efficiency in exchange for robustness to specification bias. The theoretical
justification of RV as a measure of volatility comes directly from standard stochastic process
theory, according to which the empirical quadratic variation converges to IV as the infill-
sampling frequency goes to zero. The empirical method inspired by this convergence has
become popular only recently with the availability of ultra high frequency data but the idea
has been around for a long time, as indicated by Hansen and Lunde (hereafter HL). In
particular, it has been discussed by econometricians working with continuous time models,
an example being Maheswaran and Sims (1993).

Just as these exciting empirical possibilities have been recognized, a number of practical
issues have arisen that challenge the suitability of conventional model specifications on which
empirical quadratic variation measures depend. For example, while conventional wisdom may
accept that efficient market prices can be well described by time homogenous continuous time
jump-diffusion models at daily or lower observation frequencies, it is well understood that
at higher frequencies these models are usually too simplistic, and at ultra high frequencies,
the presence of microstructure noise is a compelling complication that affects the dynamic
properties of market prices and distorts empirical quadratic variation measures.

In practice, therefore, as some recently articulated arguments have emphasized, one should
be careful in pushing the infill-sampling-frequency to the limit, even though this is precisely
what stochastic process theory would suggest in the ideal environment where the efficient
price is observed. Indeed, the existence of market microstructure noise means that empirical
quadratic variation measures are themselves contaminated with noise at high observation
frequencies. Rather unsurprisingly, in the presence of noise, consistent estimation of IV in-



evitably depends on modifications to the empirical quadratic variation that take account of
the dynamic structure of the market microstructure noise. In this regard, some recognition
of the properties of microstructure noise in the data is desirable in designing the modifica-
tions. Since both the microstructure noise and the efficient price are latent variables, direct
measurement of the noise is not possible and the empirical and theoretical modeling issues
therefore involve some subtleties. Paramount among these is that careful attention in spec-
ification is required to achieve identification and the empirical separation of noise from IV
measures. Moreover, it should be acknowledged that modifications to the empirical IV mea-
sures will usually stem directly from modeling assumptions made about the form of the latent
microstructure noise. Accordingly, the resulting estimates may not be robust to relaxation
of these assumptions.

The article by HL provides useful theoretical analysis of the finite sample and asymp-
totic properties of several IV measures and makes interesting empirical contributions to this
emerging literature. It also documents some stylized facts about market microstructure noise
and its relation to the hypothesized underlying efficient price process. These stylized facts
are useful in the development of consistent and more efficient nonparametric and parametric
estimators of IV. The authors’ contribution to this literature is therefore most welcome.

In developing its theoretical and empirical results, HL impose a stationarity condition on
market microstructure noise and this assumption has been used in other ongoing work in the
field. Prima facie, this assumption seems quite reasonable, but we will question its suitability
in our discussion below. Some of the results in HL, are based on more specialized cases, such as
pure microstructure noise and moving average noise. As in much earlier work, the signature
plot is the main graphical tool used here to assess the validity of these microstructure noise
assumptions, but conventional ACF and PACF plots are also used. HL focus on the bias in IV
estimation that is induced by microstructure noise and provide useful methods for correcting
for this bias. However, since the corrections do not always retain positivity in the estimates,
a clear practical recommendation does not emerge from their analysis.

In commenting on HL, our discussion will begin by focusing on the modeling assump-
tions used to achieve microstructure noise separation and the identification of IV, giving
particular attention to the advantages, limitations and suitability of the commonly used pure
microstructure noise assumption and its stationary extensions. Second, we will discuss the
use of the signature plots used by HL and other authors as a graphical diagnostic, and suggest
an alternative graphical tool called the microstructure noise function that we are using in our
own ongoing work (2005a, 2005b). The microstructure noise function has some advantages as



a graphical device over the signature plot as a noise diagnostic and it lends itself to nonpara-
metric measurement. The final part of our comment outlines a new approach that enables
us to study IV and microstructure noise in a panel regression framework. This approach
provides a mechanism for analyzing and removing the effects of microstructure noise in a
nonparametric way while still treating IV in a general way through the presence of a fixed
effect.

2 Stationary and Pure Noise Assumptions

Let p*(t), p(t), and u(t) denote the latent log-efficient price process, the observed log-price
process, and the noise process, respectively. The time interval is standardized to [0,1] and
is partitioned into a grid of m subintervals as G, = {0 = tom,tim,  * ,tmm = 1}. The
sampling interval on this grid is the mesh size A = min; |t; ,, — ti—1m| and for equispaced
observations we have A =1t; ,, —ti—1,m = % for all 7.

Like other authors, HL assume that the data generating mechanism in continuous time
is given by the system

p(t) = p*(t)+ud), (1)
dp*(t) = p(t)dt +o(t)dB(t), (2)

where the efficient price p*(t) appears as a latent unobserved variable. A key assumption
(Assumption 2) maintained throughout HL is that u(t) is covariance stationary. Two subcases
are given special attention — the pure noise assumption (Assumption 3) and the moving
average assumption (Assumption 4).

The apparent advantage of the stationarity and pure noise assumptions is that they sub-
stantially simplify econometric analysis. To see this, consider first the pure noise assumption
where u(t) is taken to be iid (0,w?) over all grids such as G,,, and also to be independent of
p*(t). A direct consequence of this assumption is that the conditional expectation of the RV
measure has the following very simple expression

E.(RV™) = E(RV™| {p*(t)}3) = IV + 2mw?, (3)

where I'V (= fol o%(t)dt) is the integrated variance of the efficient price and RV (™) = 3" | yzm
with ¥ m = Dim—Pi—1,m and p; m = p (tim) . Graphical plotting of the quantity RV (™) against
the sampling interval A produces a volatility signature plot. For equation (3), it is apparent



that the curve is simply a reciprocal function that has the simple form

E(RV™) = IV 4 2mw? = IV + %“’2 (4)
for equispaced sampling, so that E*(RV(m)) asymptotes as A — 0. It is this asymptotic
behavior in the neighborhood A ~ 0 that is the characteristic feature of the signature plot
and empirical behavior of this type is often taken as confirmatory evidence that the pure
noise model (1) and its central implication (3) conforms to the observed data.

A further implication of (3) is that the second term dominates as m — oo and A —
0. Thus, in this model, noise dominates as the infill sampling frequency increases and the
quantity RV (™ /(2m) delivers a consistent estimate of w?, the noise variance. Moreover, since
the pure noise assumption induces a unit root MA(1) structure on the return noise, the bias
corrected estimator

m m m
RVXEE = Z y?,m + Z Yim¥Yi—1,m + Z Yi mYi+1,m
i=1 i=1 i—1

is naturally unbiased. On the other hand, when the noise follows a more general MA process,
the return noise has a higher order MA structure. This linkage explains the rationale for the
use of a higher order bias corrected estimator, such as the one defined in HL.’s Theorem 7.

While the pure noise assumption clearly facilitates analysis, it suffers from the unhappy
drawback that pure noise lacks physical realism in continuous time, involving a degree of
instantaneous variability that is unimaginable in a physically realizable process. In fact,
such a process in continuous time needs to be rigorously modeled as a generalized stochastic
process, and physical realizations occur only in the form of linear functionals such as temporal
averages. Indeed, Gaussian pure noise may be interpreted as the derivative of Brownian
motion, which does not exist as a conventional stochastic process, and realizable temporal
averages of such processes take the form of stochastic integrals such as [ (t — s)dW(s) for
some Brownian motion W and weighting (or test) function 1. Clearly, the mathematical
form of (3) is a direct artifact of the pure noise assumption, and corresponds with the fact
that the quadratic variation of a pure noise process is infinite, so that the second term of (3)
dominates as m — oo.

Notwithstanding the above remarks, it is quite possible to proceed with a rigorous and
physically realizable treatment under a pure noise assumption when one confines attention
to a discrete time finite grid such as G,,. In such a case, the realized microstructure noise
process u (t; n) is a discrete time éid process. Such an approach makes it possible to rigorously
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Figure 1: Time series plot of 33 transactions that took place after 10:05:17 on May 24, 2004
for AA.

define the manner in which pure microstructure noise enters the system and indeed to study
properties in the limit as m — oo. However, while such an approach neatly finesses the
mathematical difficulty of having to define pure noise in continuous time as a generalized
process, the essential implication that the quadratic variation is infinite in the limit and
that the second term of (3) dominates as m — oo remains valid. The remaining issue of
importance is whether such behavior is supported by empirical observation and the realities
of practical trading in financial markets. To this issue we now turn.

It is our contention that pure microstructure noise and stationary microstructure noise
both lack realism with the data. To illustrate, we make use of the dataset employed by HL in
their Figure 2. The evidence from this data clearly contradicts the assumptions of stationary
noise and pure noise. In our Figure 1 we plot 33 transactions that took place after 10:05:17
on May 24, 2004 for Alcoa Inc. (AA) on the NYSE. This covers a sample period of just over

4 minutes of calendar time and is a typical segment of a trading day. It can be seen that the



plot starts with a nearly 2 minute period of a flat transaction price, in which 11 transactions
were recorded, and finishes with a 40-second period of another flat transaction price, in which
6 transactions were recorded. Such an observation record with periods of flat price trading is
completely inconsistent with both stationary noise and 7¢d noise at the tick-by-tick level. By
contrast, this observation record is compatible with nonstationary noise, as we now explain.

When the efficient price follows a Brownian semimartingale as in (2) and the observed
trading price is related to the efficient price according to (1), both conventional assumptions
in this literature, then during the flat pricing period the microstructure noise must itself
completely offset the efficient price process to produce a sustained flat transactions price.
The noise process must therefore inherit the same martingale-like behavior as the efficient
price in continuous time over this subinterval. In consequence, the microstructure noise
will be locally nonstationary and will have unit negative correlation with the efficient price
process. These characteristics, it hardly needs to be said, are strongly at variance with pure
noise or stationary noise assumptions.

As evident in column 4 of their Table 1, HL also notice that observed prices normally
display many spells of constancy within a trading day. So Figure 1 is quite typical. More
particularly, for the DJIA stocks traded on the NYSE, the percentage of observations for
which the transaction price was the same as the previous price ranges from 39% to 71%.
The constancy is even more pronounced in mid-quotes. For example, for the DJIA stocks
traded in NYSE, the percentage of observations for which the quote price was the same as
the previous price ranges from 45% to 87%.

These numbers are too substantial to be ignored in modeling the price process. Yet,
it is now common practice to ignore this constancy in observed prices when working with
ultra high frequency data and building models of microstructure noise. Ignoring constancy
in trading prices inevitably induces specification error and can explain some of the anom-
alies that have arisen in applied work. In particular, when allowance is made for the local
nonstationarity induced by constant price trading, signature plots no longer have the simple
reciprocal function form of (4). In fact, local nonstationarity in microstructure noise can
even induce non-monotonicity in the signature plot, a feature that is found by HL in their
own data analysis. In general, the larger the percentage of flat price trading, the further the
departure from the reciprocal curve for the signature plot. This property may also help to
explain why signature plots calculated from the quote price are less like a reciprocal curve
than those calculated from the transaction price.

If the locally nonstationary noise property is taken into account, then none of the bias



correction procedures examined by HL or those suggested elsewhere in the literature deliver an
unbiased or consistent estimator of IV. To illustrate, consider the following simple Bernoulli

model of trading
o P;m +€,.m  with probability ©
Piom = Di—1,m with probability 1 — m,

(5)

where €; , ~ id(0, 0?), P follows a random walk or a local-to-unity discrete time diffusion,
and the process is initialized at ¢ = 0 with pom = p,, = Op (1) . This model allows for flat
trading with a constant probability of 1 — 7 and efficient price plus pure noise trading with
probability w. Thus, when 7w € (0, 1), there is a positive probability of flat trading at each
point on the temporal grid. Using conventional indicator notation, we may write the trading
price in the form

Pim = (Dim + €im) 1(¢,=1) + Pi-1.m1(¢,=0); (6)

where (; is a Bernoulli variable which is unity with probability = and zero with probability
1—m. If # =1, then 1(¢,=0) = 0 a.s. and the model reduces to the efficient price plus pure
noise model. But, for 7 € (0,1), we have

Dim = p;ml(Ci:l) + Ui,m; with Uim = €i7m1(C¢:1) + pi—l,ml(gizo), (7)

and it is clear that the “implied noise” process u;,, depends on p;—im,. In view of (6), we
have the explicit expression

i j—1 i j—1
Wi;m = Zp;k*jvm {1(@7]‘:1) B 50j} H 1(@'71@-:0) T Z ei_jﬂnl(ﬁz‘fj:l) H 1(§i7k:0)7
7=0 k=0 7=0 k=0
-1
where dg; = 1,0 according as j = 0,# 0, and where we use the convention [[ = 1. In

this case, the implied noise process u; », clearly depends on the entire past histor§ of shocks
and efficient price realizations {ei—j,’ﬂwp:—j—l,m; j =0,1,..,i}, and so Assumption 4 of HL
fails because u;,, has non zero autocorrelations at all lags and inherits some persistence
characteristics of the efficient price process. In consequence, the conventional kernel-based
bias correction procedures that are considered by HL will fail to correct for the induced serial
correlation of u; ., and its first difference u; ., — u;—1,m, leading to biased estimates of IV.
Of course, discarding flat prices is one way to circumvent the problem of nonstationarity.
However, by doing so one has to discard a very large amount of data. For example, from
the data given in the authors’ Table 1, for the quote price of Philip Morris (MO) in 2000,
one has to throw away 87% of the data. Much of the present research on this topic, such



as Ait-Sahalia, Mykland and Zhang (2005a, 2005b) and Zhang, Mykland and Ait-Sahalia
(2005), is motivated by the desire to utilize all available high frequency data rather than
discard data to avoid difficulties stemming from microstructure noise. The problems outlined
here fall very much within this category and it seems highly desirable to seek better models
of microstructure noise that accord with the observed transactions data and to use these
models and all the available data to provide better solutions to the problem of estimating
the IV functional of the efficient price. In work that is now underway (2005a, 2005b) we are
attempting to move in that direction.

3 Signature Plots

Signature plots, which depict RV as a function of the infill sampling frequency!, have proved
to be an effective and popular tool for assessing the degree of bias induced by microstructure
noise. Without noise, one would expect a relatively flat curve corresponding to the conver-
gence of empirical quadratic variation as A — 0. So any departure from a flat curve is taken
as an indicator of the presence of microstructure noise. Under the pure noise assumption, the
signature plots should diverge as A — 0 at the rate O (A‘l) as in (4). Consequently, several
papers have used the apparent explosive pattern (as A — 0) in observed signature plots as
strong evidence in support of the pure noise assumption.

In constructing signature plots it is conventional to aggregate data over a period such
as a month. Figure 2 shows the signature plot of AA for the month of May 2004, thereby
giving an aggregate representation for the same month that includes the transactions data
for May 24 that were plotted earlier in Figure 1. The explosive pattern in the signature plot
of Figure 2 stands out in a dramatic way, although it is important to note that the vertical
axis volatility measurements are very small numbers.

Although an explosive pattern (as A — 0) in a signature plot such as Figure 2 is sufficient
to refute the noise-free assumption, it does not necessarily imply the presence of pure mi-
crostructure noise. This is because under the pure noise assumption, signature plots should
behave specifically as a reciprocal curve in A, as manifest in equation (4). Unfortunately, it
is difficult to assess the rate of divergence by a visual inspection of a signature plot such as
our Figure 2. For this reason we argue that signature plots are not an effective graphical tool
for checking the validity of specific microstructure noise assumptions like pure noise.

In some ongoing work (2005a) we suggest an alternative graphical method that is bet-

! Again it is convenient to assume an equidistant sampling scheme.



ter suited for this purpose — a direct plot of the microstructure noise functions, where RV
is treated as a function of the number of observations in a given sampling time frame. In
such noise functions, shape characteristics are more evident as the number (m) of infill ob-
servations increases. Pure noise manifests as a linear relation in m as in (3) and departures
from pure noise show up simply as nonlinearities, or more specifically as concave shapes.
Using DJIA transaction prices (both from a single market and from the consolidated mar-
ket), our estimates of microstructure noise functions have always turned out to be decisively
concave, despite being monotonically increasing. This concavity indicates that the pure noise
assumption is altogether too strong for most stock price data. Another advantage of plotting
microstructure noise functions is that there is no need to do equidistant sampling.

0.0009
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Realized Variance

0.0003

0.0001 T T T T T T T T
50 300 550 800 1050 1300 1550 1800
Sampling Interval (seconds)

Figure 2: Signature plot for AA. The horizontal axis is the sampling interval ranging from
1 second to 1800 seconds. The vertical axis is the averaged relaized variance across all
the trading days in May 2004. Superimposed in the variable span smoother developed by
Friedman (1984) and implemented by the S-PLUS command supsmu.
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Figure 3: Market microstructure noise function for AA. The horizontal axis is the number
of prices used to construct the realized variance. The vertical axis is the averaged realized
variance across all trading days in May 2004. Superimposed is the variable span smoother
developed by Friedman (1984) and implemented by the S-PLUS command supsmu.

Figure 3 shows the microstructure noise function for the same data as Figure 2. The
departure from linearity is very evident in this plot and the (super smoother) fitted curve.

4 Panel Approach

Like other methods in this literature, the bias correction procedures suggested in HL: are all
time series based approaches. There are alternative approaches to dealing with noise and
estimating IV. The microstructure noise function (3) has motivated us (2005a) to use panel
data methods to model the effects of microstructure noise nonparametrically and treat IV
parametrically as a fixed effect in a panel regression. These panel data methods can be used

to test more specialized specifications, such as that implied by the pure noise assumption.

10



We briefly explain the idea here.

Suppose Gy, is a grid that contains some or all the observation points, where n+1 = #(G,,).
Denote the empirical quadratic variation by y,q = [p, p] g” using d = 1, ..., D as the date stamp
for each day’s observations with D days in total, and where [-,-]9" represents the empirical
quadratic variation on the grid G,. Similarly, let ag = fol Ufhdt denote the IV for day d
and o2, be the diffusion function of the efficient price for day d. In general, IV is a random
variable and varies from day to day. Often these variations are of interest in empirical work.

2 is constant

On the other hand, it may be reasonable to assume the pure noise variance w
across days over a relatively short time interval. Under these conditions, the microstructure

noise function (3) may be formulated as
Ynd = Qd + 2071 + €ng = g + 1 + eng, (8)

where 3 = 202, d is the daily date stamp, and ¢,4 is an induced error process of the form

g = ([p*,p*]gn _ [p*,p*]d> +2[p*, e]g” + ([e, e]g” —F {[6, E]g"}) . 9)

*

Since [p*, p*]g" — [p*,p*]; —p 0, as n — oo, and the empirical covariation [p ,e]%& has zero

mean and variance which is asymptotically proportional to [p*,p*];, the dominant term of

Cgl" —-FE {[e, e]g”} , has zero mean and

€nd 1s the final component of (9). This component, [e, €]
its variance is O (n) .

By varying the number of observations used in the construction of RV, say n = nq,--- ,ny,
the formulation (8) leads to a panel data model for RV. The model is complicated by the fact

that the error process

ni = [ A5 — B {le 4§} 10, (1) = 0, (n}7?)

is heterogeneous and autocorrelated over n;. Nevertheless, even crude estimation methods,
such as dummy variable least-squares, can be used to estimate the model and deliver a
consistent estimate of the slope coefficient 202, because the regressor n; is deterministic and
has a stronger signal than €,,4. To ensure consistency of estimates of the fixed effects and
hence IV, some sample splitting and jackknifing methods are required, as in the work of
Zhang, Mykland and Ait-Sahalia (2005) and Ait-Sahalia, Mykland and Zhang (2005b). One
advantage of (8) is that it sets out a formal framework for studying such approaches.

As discussed earlier, it seems important in practical work to allow for the fact that the
microstructure noise function may be nonlinear. We may generalize (8) by formulating a

11



nonparametric noise function and attempting to fit this function empirically. For example,
suppose f is continuous and asymptotically homogeneous of degree v as n — oo. Then we

can formulate the noise function in standardized form as

q—« n; En, ,
y’“d—ﬂ:f(—’>+"—;d, i=1,...,N. (10)
ny ny ny
where f is taken to be common across days, and n; is the smallest number of observations
used in the calculation of RV. It is convenient for identification purposes to normalize the
function f to pass through the origin so that

f (%) = 0. (11)

For example, if n; = 1800 which corresponds to a 30-minute sampling frequency, the identifi-
cation condition (11) is equivalent to assuming that RV calculated at the 30-minute sampling
frequency yields an unbiased estimator. This is the benchmark that HL used in their paper.
Averaging across days and using (11) leads to the estimable model

Un;e _'ygm. :f(&> +Lﬁw, 1=1,..., N, (12)
ny ny ny

where we use the notation y,,e = D! Zle Ynids Enje = D71 25):1 €n;d- When v > 1/2
N7 (Enje — Enye) = 0p (1), and then (12) can be fitted consistently by kernel smoothing,
making it possible to estimate the shape of the microstructure noise function and test the
pure noise/linearity assumption. Since ”7\7 is simply a constant scaling factor in this regression
it is not necessary to standardize the data when performing the regression empirically and
the shape of the curve is invariant to the scaling factor. Hence, v does not need to be known
a priori and it is, in fact, implicitly determined within the nonparametric estimation of the

ng
nn

function f ( > . However, the standardization factor n}; and the magnitude of v do affect
the limit theory.

There is an interesting link between the general model (10) and the specific approach
taken by Zhang, Mykland and Ait-Sahalia (2005) to eliminate the effects of microstructure
noise. When v = 1 and the microstructure noise function is asymptotically linear as in (8),

local level kernel estimation of (10) for a particular day leads to the estimate

N Yn.d—xd N, N Yn.d ni
f(l) _ Zj:l ]nN Kh(ﬁ -1 - Zj:l nzjv Kh(ﬁ -1 (13)
Zj-vzl Kh(% - 1) Zjvzl Kh(% - 1)

12



where Kj,(-) = h"1K(-/h) for some given kernel function K (-) and bandwidth parameter h.
The estimate (13) is simply a locally smoothed version of the estimate

r3 ynNd 1 gnN
1 = ——= —
fy =2t )]

that is suggested in Zhang, Mykland and Ait-Sahalia (2005) for estimating the microstructure
noise variance 202 in the model with pure noise, i.e., the slope coefficient in the linear regres-
sion (8). Nonparametric estimation of (10) and (12) may be regarded as a generalization of
this approach that allows for a much wider class of microstructure noise.

LOESS Fit(degree =1,span =0.3000)

(y(ni)-y(n1))/n(N)

0.0 0.2 0.4 0.6 0.8 1.0

n(i)/n(N)

Figure 4: Locally weighted regression estimate (with a tricube weight) of the microstructure
noise function f for AA for May 2004. The value v = 1 is used and the vertical axis is
multiplied by 1 x 108.

Using the same data for AA as before, Figure 4 shows the nonparametric estimate of
the function f obtained by locally weighted least squares regression of Cleveland and Devlin
(1988) on (12). As before, the empirical evidence rather strongly rejects the pure noise
assumption.

13



5 Conclusion

We find ourselves very much in agreement with the thrust of HL’s message concerning the
complexity induced by microstructure noise. In particular, we agree that noise is time de-
pendent and correlated with the efficient price - features that in our view are a necessary
consequence of the observed form of market transactions, as we have argued above - and that
the properties of noise inevitably evolve over time, again just as the efficient price is itself
evolutionary. We further agree that microstructure noise cannot be accommodated by simple
specifications. Since microstructure noise at ultra high infill sampling frequencies often off-
sets the actual transactions data to the latent efficient price, the complexity of microstructure
noise includes local nonstationarity and perfect correlation with the efficient price. These are
properties that are not permitted in the models and methods presently used in the litera-
ture. However, there are empirical procedures that are capable of addressing these additional
complexities as we have indicated in parts of our discussion.

We join the authors in saying there is still much to do in this exciting field and we look
forward to further developments that build on the work they and others have done recently.
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