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Analysis of games can often be simplified by pruning agents

Iterated Weaker-than-Weak Dominance

Shih-Fen Cheng
Singapore Management University
School of Information Systems

80 Stamford Rd
Singapore 178902
sfcheng@smu.edu.sg

Abstract

We introduce a weakening of standard game-
theoretic dominance conditions, called-
dominance which enables more aggressive
pruning of candidate strategies at the cost of solu-
tion accuracy. Equilibria of a game obtained by
eliminating aj-dominated strategy are guaranteed
to beapproximateequilibria of the original game,
with degree of approximation bounded by the
dominance parametey, We can apply elimination

of §-dominated strategies iteratively, but thdor
which a strategy may be eliminated depends on
prior eliminations. We discuss implications of this
order independence, and propose greedy heuristics
for determining a sequence of eliminations to
reduce the game as far as possible while keeping
down costs. A case study analysis of an empirical
2-player game serves to illustrate the technique,
and demonstrate the utility of weaker-than-weak
dominance pruning.

Introduction

strategy sets. For instance, a strateggtiictly dominated
iff there exists a mixture (randomization) over the renragni
strategies that achieves strictly higher payoff regagitéshe
strategies played by other agents. Elimination of striddyn-

inated strategies is a venerated idea, established at ¥e da
of game theory as a sound way to remove unworthy stratel!
gies from consideration [Gale et al., 1950, Luce and Raiffa
1957]. In particular, the dominated strategy cannot beqfart
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Elimination of a dominated strategy for one player may en-
able new dominance relations for others, as it removes cases
for which the defining inequality must hold. Therefore, we
generally invoke dominance pruning iteratively, until no-f
ther reduction is possible. This requires some care in the ca
of weak dominance, since the set of surviving strategies is
order dependentthat is, may differ based on the order of
eliminations [Gilboa et al., 1990, Myerson, 1991]. Whether
strategy is eliminable througgomesequence of removals of
weakly dominated strategies is a computationally hard fprob
lem, in general [Conitzer and Sandholm, 2005]. In contrast,
iterated strict dominance is ordieldependent.

In this paper we investigate a further weakening of weak
dominance, which enables more aggressive pruning by allow-
ing that the “dominated” strategy actually be superior ® th
“dominating” by up to a fixed valué in some contexts. Such
d-dominated strategies may participate in NE of the original
game, and NE of the pruned game are not necessarily NE of
the original. However, any NE after pruning does correspond
to anapproximateNE of the original game.

Iterated application of-dominance is likewise order de-
pendent. The order of removals dictates not only eliminabil
ity, but also the degree of approximation that can be guaran-
teed for solutions to the reduced game. We explore altemnati
elimination policies, focusing on greedy elimination kdisa
local assessment of

We illustrate the techniques by applying them to a two-
player 27-strategy symmetric game derived from simulation
data. Our case study demonstrates the potential utilithef t
weaker dominance condition, as it reduces the game substan-
ially with little loss in solution accuracy.

2 Preliminaries

any Nash equilibrium (NE). Moreover, the elimination con- A finite normal form game is formally expressed as
serves solutions in that any NE of the pruned game is also a1, {S;}, {u;(s)}], where[ refers to the set of players and
NE of the original.

m = |I| is the number of playerssS; is a finite set of pure

Weak dominanceelaxes strict dominance by allowing that strategies available to playér I. LetS = 57 x --- X Sy,

the dominating strategy achieves payoffs only equally a®e the space gbint strategies Finally, u; : S — R gives the

great. Although weakly dominated strategies may appear ipayoff to playeri when players jointly play = (s1, ..

* Sm)a

NE of the full game, it remains the case that NE of the prunedvith eachs; < 5.

game are NE of the original as well. Additional refinements It is often convenient to refer to a strategy of playesep-
and variants of dominance are possible, for example baseatately from that of the remaining players. To accomodate
on rationalizability, or minimal sets of strategies closedier
rational behavior [Benisch et al., 2006].

this, we uses_; to denote the joint strategy of all players
other thani.



Let X(R) be the set of all probability distributions (mix- Proposition2 LetI'®, ..., I'" be a series of games, witt{
tures) over a given sek. A mixture o; € X(9;) is called  the original game, and/*! = IV \ /. Further, suppose the
amixed strategyfor playeri. The payoffu;(c) of amixed  eliminated strategy’ is §;-dominated inC7. Then, ifo is an
strategy profile o € X(5), is given by the expectation of ¢.NEinT™, itis also a(>."_1 6; + ¢)-NE inT.

u;(s) with respect ta. —7=0" . _

A configuration where all agents play strategies that ardl he result follows straightforwardly by induction on Prepo

best responses to the others constitutiisish equilibrium sition 1.

Definition 1 A strate rofiler constitutes @Nash equilib- o . .

rium (NE) of game[?}l{gi}, {u;(s)}] iff for everyi qe 1, 4 ldentifying j-Dominated Strategies

o; € X(8i), ui(0oi,0-5) > ui(o}, 0-;). Definition 4 characterizes the condition féxdominance of

We also define anpproximateversion. a singlg strategy. It is often expedient to eI_imi_nate many
Definition 2 A strategy profiler constitutes an-Nash equi- strategies at once, hence we extend the definition to cover

librium (e-NE) of game[T, {S:}, {u(s)}] iff for everyi e I, d-dominance of a subset of strategies.

ol € 3(Si), ui(oi,0-;) + € > ui(ol,0-;). Definition 5 The set of strategi€s C S, is 6-dominated iff
In this study we devote particular attention to games thathere exists, for eache T', a mixed strategy; € $(S; \ T

exhibit symmetry with respect to payoffs. such that:

Definition 3 A game [I,{S;}, {ui(s)}] is symmetric iff §+ui(ob,s_) >ui(t,s_;),¥s_; € S_;. 2

V’L,] e I, (a) S; = Sj and (b)ui(si,s,i) = Uj(Sj,S,j)

wheneves; = s; ands_; = s_;

That is, the agents in symmetric games are strategically ide Propositions 1 and 2 can be straightforwardly generalined t
tical, since all elements of their strategic behavior ame th eliminations of subsets of strategies for a particular gtay

same. It is well known that standard dominance criteria can be
evaluated through linear programming [Myerson, 1991]. The

3 J4-Dominance same is true fob-dominance, and moreover we can employ

We start by defining our weaker-than-weak dominance conSUch Programs to identify the minimaffor which the dom-

inance relation holds. The problem below characterizes the
minimum § such that the set of strategisis 6-dominated.

Definition 4 Strategys{ € ; is 6-dominated iff there exists The problem for dominating a single strategy is a specia.cas
oP € %(8; \ {s¢}) such that:

dition.

D d min ¢ 3
o+ ui(ai 7S_i) > ul(sz , S_i)7vs_i €S_;. (1) stVieT
In other wordss¢ is 5-dominated if we can find a mixed strat-
egy (on the set of pure strategies excludify that, when d+ Z wi(s)uis,s—i) > uit, i), Vsi €5
compensated by, outperformss¢ against all pure opponent s€S\T
profiles. Notice that unlike the standard conditions, in-con Z z4(s) = 1
sidering whether strategy is dominated, we must exclude seST

it from the domain of potential dominators. Otherwisé,
would bes-dominated by itself. ¢ 0<z(s) <1, VseS\T

. Supposes{ is -dominated in gamé'. As noted above,  prgoplem (3) is not quite linear, due to the strict inequality
if & > 0, s{ may well appear with positive probability in in the first constraint. We can approximate it with a linear
NE profiles. We may nevertheless choose to elimindte  constraint by introducing a small predefined constant,he
obtaining a new gamg’ = T\ s¢, which is identical tol'  resultis the linear program LP{A, T').

except thatS! = S, \ {s¢}, and the payoff functions apply
only on the reduced joint-strategy space. Althougtdoes
not necessarily conserve solutions, we can in fact relate it S-t.VteT

min 6

solutions to approximate solutions Bf* 54 Z wo(8)ui(s, 5-4) > uilt, s_s), Vs_i € S_;
Proposition 1 LetT" be the original game and let be §- SES\T

dominatedil. If o is ane-NE inT'\ s¢, then itis a(6+¢)-NE

inT. o om(s)<1-7

Note that withe = 0, the proposition states that exact NE of SESAT

I\ s¢ ared-NE of T, wheres is the compensation needed to 0<a(s) <1, VseS\T

support dominance. _ _
We may also eliminaté-dominated strategies in an itera- 5 Controlling Iterated 6-Dominance

tive manner. By Proposition 1, every time we eliminate f/adominated

The proofs of Proposition 1 and subsequent results areemitt Strategy, we add to the potential error in solutions to the
due to space limitations. pruned game. In deciding what to eliminate, we are generally



interested in obtaining the greatest reduction in sizetier t Algorithm 1 Simple greedy heuristic. At each iteration, the
least cost in accuracy. We can pose the problem, for examplstrategy with least is pruned.
as minimizing the total error to achieve a given reduction, 0 Greepy(S, A)
maximizing the reduction subject to a given error tolerance 1 el S"eS
In either case, we can view iterated elimination as operat-zﬁ while ’A > 0do
ing in a state space, where nodes correspond to sets of remain,. for s € S™ do
ing strategies, and transitions to elimination of one orenor 4I 3(s) (_l LP-A(S™, {s})
strategies. The cost of a transition from ndtle= (.S;,5_;) . ’

to (S; \ T, S_;) is thed minimizing LP-A(S,T'). We can for- > terf ;(;r mingess 5(s)

mulate the overall problem as search from the original strat d 5% s€Si

egy space. However, the exponential number of nodes an if Z >(d)then

exponential number of transitions from any given node ren- _ A A—d

der any straightforward exhaustive approach infeasible. 10: Snﬁr_l <—_S” \{t), S (ST S
As indicated above, the problem is complicated by the or—llj i(_ 4 1i ’ it

der dependence of strategy eliminations. Eliminating at-str 12j elsne "

egy from player; generally expands the set &dominated 13j A0

strategies for the others, though it may shrink its odvn 14: end if

dominated set. We can formalize this as follows. &gt T") 15. end while

denote the minimum such that strategyis 6-dominated in 16: return S™

r.2
Proposition 3 Lett, € S;.
1. 6(t,T\¢)) < (¢, 1) forall t € S}, j # i, and Algorithm 2, GREEDY-K(S, A, k), is a simple extension
, - that prunesk strategies in one iteration. We identify the
2. 0(t,T'\ t;) > 6(¢,T) forall t € S; \ ;. k strategies with least when considered individuallyand

Because eliminating a strategy may decrease the cost of sorgeoup them into a sé€. We then employ LP-AS, K) to de-

future eliminations and increase others, understandmpnh  termine the cost incurred for pruning them at once. Since the

plications of a pruning operation apparently requires someetK is selected greedily, it will not necessarily be the largest

lookahead. possible set that can be pruned at this cost, nor the minimum-
Our choice at each point is what set of strategies to elimeost set of sizé. Nevertheless, we adopt greedy selection to

inate, which includes the question of how many to elim-avoid the('*:l) optimizations it would take to consider all the

inate at one time. For example, suppage!,I') = 4, candidates.

and§(t2,T \ t!}) = d5. In general, it can be shown that

2 < 6({t},#?},T) < 61 + d2. In many instances, the cost 5.2 Computing Tighter Error Bounds

of eliminating both strategies will be far less than the uppe , .

bound, which is the value that would be obtained by sequenWe can reduce several players’ strategy spaces by running

: L . ; Algorithm 2 sequentially. Let" be the original game, and
tially eliminating the singletons. However, since the n@mb p y
of candidate elimination sets of siZeis exponential ink, let I be the reduced game. L¢K;} and {S5;} be the set

, , ;
we will typically not be able to evaluate the cost of all such of all players’ strategy spaces fbrandI” respectively. For

candidates. Instead, we investigate heuristic approabhés %ag;zgfgifé I?’th%itcgzltgﬁ;ccgrzlﬂﬁfgberrtﬁrezgt?eﬂlzcltjizii
consider only sets up to a fixed size for elimination in any : 9 y ’

single iteration step according to Proposition 2, is bounded by, A;. By taking
' into account the actual resulting garfie however, we can

5.1 Greedy Elimination Algorithms directly compute an error bound that is potentially tighter

We propose iterative elimination algorithms that emplo Let A be the set of all NE if”. The overall error bound
propose I : g P'%Yis the maximum oven’ of the maximal gain available to any
greedy heuristics for selecting strategies to prune forvargi

playeri. Extending these to consider player choice as Welrolayerto unilaterally deviating to the original strategase.

is straightforward. The algorithms take as input a starting ¢ = maxmaxmax [u;(t,0_;) — ui(0s,0-)],  (4)
set of strategies, and aror budget A, placing an upper ceN i€l teT;
g_c:juonrgiggntg: I;:rlimiﬁlgtlve error we will tolerate as a result OfwhereTi — S, \ S'. To compute with (4), we must first find
. p . :
Alorin 1, GREEDY(5 ), computesi( 1) for each 31N 5L Hower computio SLE wh generaly ot
t;, € S;, and eliminates the strategy thatdslominated at ' ' P

minimal §. The algorithm repeats this process one strateg)cefseirr?g:it?stgisﬁé inT", we have thatus(o:,0_;) >
) 3 (3} -1 iy

at a time, until such a removal would exceed the cumulative h ;
error budget ui(z;,0_;), forallz; € ¥(S}). With eachi € I, ¢t € T;, we

associate a mixed strategy. Replacings; by z! in (4) can
2Equivalently,§(¢, T') is the solution to LP-AS, {¢}) for S the ~ Only increase the error bound. The resulting expression no

strategy space df. We also overload the notation to wrigéT', ") longer involves’s equilibrium strategy. We can further relax
for the analogous function on strategy s&ts the bound by replacing maximization wrt equilibrium mix-



Algorithm 2 Generalized greedy heuristic, withstrategies
pruned in each iteration.
GREEDY-K(S, A, k)

Ln—1, 8"§S

2: while A > 0do

3: forseSitdo

4 0(s) < LP-A(S™,{s})
5:  end for
6: K~ {}
7. forj=1tokdo
8: tj < argmingegn\k 0(s)
9: K« {K,tj}
10: end for
11: 6K « LP-A(S™,K)
12:  if A > 6K then
13: A — A=K
14: Sl Sr\ K, S (8PS )
15:  else
16: if A > t;then
17: A—A—-6(t)
18: S?Jrl — Sln \ {tl}, Sn+1 — (S?Jrl, S_l)
19: else
20: A—0
21: end if
22:  endif
23: n+<—n+1
24: end while
25: return S™

tureso_; with maximization wrtany pure opponent strate-
gies,s_;, yielding

€ = maxmax max [u(t,s_;) —ui(a},5_;)] (5)

i€l teT; s_;€5"

Y

. Y — i (xt )
magp ey e [t o0 — sl o)

> {.neajff(%leafxgé% [ui(t,o0—i) —ui(oi,0-;)] = €.

According to (5), we can boundby €, which does not refer
to the set\. We can finde by solving the following opti-
mization problem:

min €
s.t.

(6)

€ > u;(t,s—;) — o (si)ui(si, 524,

Viel,teTy,s ;€8
Viel,teT;
S»;ES:;
0<al(si) <1, Viel,t €T s; €8,

Note that this formulation is very similar to LP{A, T'), de-
fined in Section 4. The major difference is that LPSAT)
is defined for a particular playeér whereas (6) considers all

players at once. We employ this bound in experimental eval-

uation of our greedy heuristics, in Section 6.

5.3 J§-Dominance for Symmetric Games

Thus far, we have emphasized the operation of pruning one
or more strategies from a particular player’s strategy spac
The method of the previous section can improve the bound
by considering all players at once. For the special case of
symmetric games (Definition 3), we can directly strengthen
the pruning operation. Specifically, when we pruné-a
dominated strategy for one player, we can at no additional
cost, prune this strategy from the strategy sets of all pfaye

Proposition4 Let I' be a symmetric game, and suppose
strategys is 6s-dominated il". LetI be the symmetric game
obtained by removing fromall players inI". If o is ane-NE
inT, thenitis a(ds + €)-NE inT.

Based on Proposition 4, we can specialize our greedy elim-
ination algorithms for the case of symmetric games. For Al-
gorithm 1, we modify line 10, so thdt} is pruned from all
players’ strategy spaces within the same iteration. FopAlg
rithm 2, we modify lines 14 and 18 analogously.

When a game is symmetric, symmetric equilibria are guar-
anteed to exist [Nash, 1951]. As Kreps [1990] argues, such
equilibria are especially plausible. In our analysis of syat-
ric games, therefore, we focus on the symmetric NE.

6 lterative 5-Dominance Elimination: A Case
Study

To illustrate the use of-dominance pruning, we apply the
method to a particular game of interest. On this example,
we evaluate the greedy heuristics in terms of the tradeoff be
tween reduction and accuracy. We also compare the theo-
retical bounds to actual approximation errors observeten t
reduced games.

6.1 The TAC|, Game

The subject of our experiment is a 2-player symmetric
game, based on the Trading Agent Competition (TAC) travel-
shopping game [Wellman et al., 2003]. TAC Travel is actually
an 8-player symmetric game, where agents interact through
markets to buy and sell travel goods serving their clients.
TAC|, is derivative from TAC Travel in several respects:

e TAC travel is a dynamic game with severely incomplete
and imperfect information, and highly-dimensional infi-
nite strategy sets. TAG restricts agents to a discrete
set of strategies, all parametrized versions of the Uni-
versity of Michigan agentWalverine [Wellman et al.,
2005b]. The restricted game is thus representable in nor-
mal form.

e Payoffs for TAC| ., are determined empirically through
Monte Carlo simulation.

e The game is reduced to two players by constraining
groups of four agents each to play the same strategy.
This can be viewed as assigning a leader for each group
to select a strategy for all to play. The game among
leaders is in this case a 2-player game. The transfor-
mation from TAC|s to TAC |5 is an example of the
hierarchical reduction technique proposed by Wellman



et al. [2005a] for approximating games with many play- the algorithms may prune strategies in a different ordec- Se
ers. Note that this form of reduction is orthogonal to ond, the algorithm GEEDY-K computes the bound for each
the reduction achieved by eliminating strategies throughteration taking into account all strategies pruned at once.

dominance analysis. In this instance, in fact the sequence of eliminations isequi

Although TAC|» is a highly simplified version of the ac- similar. The first four strategies eliminated brEeDY-1 and

tual TAC game, Wellman et al. [2005b] argue that ana|yzingGREEDY-2 are the same, and the next four are the same ex-

such approximations can be useful, in particular for foogsi Ceﬁpt for a _one-pair order svvlap_. Thus, V\;e can ﬁttribﬁg the
on a limited set of candidate strategies to play in the actudf!Te€rence in apparent cumulative error after eight renova

game. Toward that end, dominance pruning can play a co 169 versus 78) entirely to the di.sti.ncti.on in how they ta}lly
plementary role to other methods of analysis. error bounds. In general, the elimination orders can differ
The actual instance of TAG we investigate comprises 27 almost arbitrarily, though we might expect them typicaty t

strategies (378 distinct strategy profiles) for which sighi¢ ~ °€ Similar. In another instance of TA¢(based on an earlier
samples (at least 20 per profile) were collected to estimat napshot_ofthg databas_,e W.'th 26 _strateg|es), we also m.ef"
payoffs. that the first eight-eliminations differed only in a one-pair

swap. We have not to date undertaken an empirical study of
6.2 Comparison of Greedy Heuristics the comparison. _ o
Since the game is symmetric, we eliminate strategies from 'tA‘ more al;:curg;[e_ asgebssment OI. thetr(]:ostft ?1ft |telr3ateddel|(;n|-
all players at once rather than one at a time (see Section 5.f-ga lon can be obtained by computing the tighter bounds de-

i i ; ; ibed in Section 5.2, or directly assessing the errour€ig
Starting with our 27-strategy TAG game, we first apply iter-  >¢"' _ _ _
ative elimination of strictly dominated strategies. Thigmes ~ PreSents the data from Figure 1 (axes inverted), along Wwith t

nine strategies, leaving us with an 18-strategy game thmt cq MOTe precise error measurements.
not be further reduced without incurring potential appnoa 180 —

tion error. We then applied bothREEDY-1 and GREEDY-2, —®— Greedy-l - e
each with a budget ok = 200. Figure 1 plots, for each algo- ~ **°]  —* Sreev?
rithm, the cumulative error cost incurred to reach the @ssoc 10| —* Tomerbound
ated number of remaining strategies. Each elimination-opers , —#— Actual epsilon
ation takes a step down (by the number of strategies pruned) .
and across (by the erréradded to the total). Note that the 51
first large step down at cost zero corresponds to the initiak . o @
pruning by strict dominance. "g o I
w
30 , , 40 o—e -
L,
20+ * o
251 1 0——-‘¢‘¢‘¢J’_ﬁ—k¢‘¢‘¢‘ T T T T

T T T *
18 17 16 15 14 13 12 11 10 9 8 7
Strategies Remaining

N
=]
T

Figure 2: Error bounds derived from REEDY-1 and
GREEDY-2, compared to tighter bound estimates as well as
8 actual errors.

Number of strategies
&
:

Tighter bounds reported in Figure 2 are those derived from
7 the linear program (6), applied to the respective stratetgs/ s
! We use the remaining strategy sets based REE®DY-1 down
| to 10 remaining, and the sets foIRGEDY-2 thereafter. We
i - also determined the actual error for a given reduced strat-
° egy set, by computing all symmetric NE of the reduced game
T S T T Ry e e T (usingcAMBIT [McKelvey and McLennan, 1996P and for
Accumulated each finding the best deviation to eliminated strategie® Th
maximum of all these is the error for that strategy set.
Figure 1: Number of strategies versus accumulatetbr As we can see from the figure, the cumulative error bounds
GREEDY-1 and GREEDY-2. reported by the algorithms (based on Proposition 2) ar@quit

=
o
T

3 )
Lo In some instances;AMBIT was unable to solve our reduced
As the graph apparently indicatesREEDY-2 reaches any ames in reasonable time due to numerical difficulties. Bs¢h

particular reduction level at a cost less than or equal Kgases we tried small random (s ) ; ;
- , ymmetry-preserving) peations
GREEDY-1. With the error toleranc& = 200, GREEDY-1 4t the game until we were able to solve one for all NE. The er-

prunes the game down to ten strategies, WhereaseEBY-2  rors reported are with respect to the solutions we foundghvtiius
takes us all the way down to two. However, we must decoupléend to overstate the error due to elimination because theyde
two factors behind the difference in measured results.t,Firs an additional source of noise.



conservative. In all cases, after a few eliminations thietég  strategy sets. Results are generally order dependent, how-
bounds are far more accurate. The actual errors are in margver greedy selection techniques may work well in practice.
cases quite small (often zero). Thatis, in atleastthid(esa  The bounds for iterated elimination are quite conservative
ample game, we can aggressively prune weaker-than-weakgnd can be tightened by retrospective analysis of the actual
dominated strategies and then still have games where all sget of strategies eliminated.

lutions are near equilibria of the original garhe. A case study applying iterated elimination®tiominated
o strategies to an empirical game illustrates the approabb. T
6.3 Loss of Equilibria exercise demonstrates the possibility of identifying a muc

The preceding analysis considers the accuracy of solutions Smaller subgame with solutions that are excellent approxi-
the reduced game with respect to the Origina|_ We may also b@ations wrt the orlglnal. Further work should evaluate the
concerned about losing solutions to the original that may in methods more broadly over a range of games.
cludej-dominated strategies. To examine this issue, we track

the 21 symmetric NE found for the instance of TACana- Acknowledgments
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