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Asymmetric Response of Volatility: Evidence from
Stochastic Volatility Models and Realized Volatility�

Jun Yuy

September 17, 2004

Abstract

This paper examines the asymmetric response of equity volatility to return shocks.
We generalize the news impact function (NIF), originally introduced by Engle and Ng
(1993) to study asymmetric volatility under the ARCH-type models, to be applicable to
both stochastic volatility (SV) and ARCH-type models. Based on the generalized concept,
we provide a uni�ed framework to examine asymmetric properties of volatility. A new
asymmetric volatility model, which nests both ARCH and SV models and at the same time
allows for a more �exible NIF, is proposed. Empirical results based on daily index return
data support the classical asymmetric SV model with a monotonically decreasing NIF.
This empirical result is further reinforced by the realized volatility obtained from high
frequency intraday data. We document the option pricing implications of these �ndings.

JEL classi�cation: C11, C15, G12
Keywords: Bayes factors; Leverage e¤ect; Markov chain Monte Carlo; EGARCH; Realized

volatility; Asymmetric volatility

1 Introduction

The intertemporal relation between the equity volatility and return shock has long been an

active research topic in the �nance literature. It is generally agreed that there is an asymmetry

in the relation, that is, a positive return shock has a smaller impact on future volatility than

does a negative shock of the same size. Volatility models which allow for such an asymmetric

�I gratefully acknowledge �nancial support from the Wharton-SMU Research Centre at Singapore Manage-
ment University. I also wish to thank Manabu Asai, Mike McAleer, Anthony Tay, Yiu Kuen Tse, Leping Wang,
and seminar participants at the 2004 New Zealand Econometrics Study Group Meeting in Auckland and the
Inaugural Singapore Econometrics Study Group Meeting for comments on an earlier version of the paper
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property not only improve the ability to describe return dynamics (Engle and Ng, 1993) but also

provide more accurate option prices (Heston and Nandi, 2000 and Christo¤ersen and Jacobs,

2004).

The economic reasons for the asymmetry are not entirely clear. A popular explanation in

the literature is the leverage e¤ect (see, for example, Black, 1976 and Christie, 1982). This

market folklore suggests that when a negative return shock (i.e., bad news) arrives, it decreases

the value of a �rm�s equity and hence increases its leverage. Consequently, the equity becomes

more risky and its volatility increases. By similar arguments the volatility decreases when

good news arrives. According to this e¤ect, there must be a negative relationship between

future volatility and returns and the volatility of returns should be a decreasing function of

return shocks. Although, the leverage e¤ect is synonymous with asymmetric volatility to many

researchers, it should be understood as a special type of asymmetric response.

Another explanation for asymmetry is the volatility feedback e¤ect (French, Schwert and

Stambaugh 1987, Campbell and Hentschel 1992, and Wu 2001). Under the assumption of

volatility clustering, a large piece of news (good or bad) will lead to a high volatility which

tends to be followed by another large volatility. According to the volatility feedback e¤ect,

since volatility is priced, an increase in volatility should increase the required rate of return and

hence decrease the stock price. As a result, when a large piece of bad news arrives, it tends to

increase future expected volatility and hence amplify the negative impact of bad news. When

a large piece of good news arrives, the increase of future volatility dampens the positive impact

of good news.

It is obvious that both e¤ects can explain volatility asymmetry. However, they di¤er in

how volatility responds to good news. In particular, while the leverage e¤ect predicts a down-

ward movement of future expected volatility, the volatility feedback e¤ect does not predict any

relationship between volatility and returns when good news arrives.

The most popular empirical method to examine asymmetry is via some form of ARCH-

type models. A rather incomplete list is Nelson (1991), Glosten, Jagannathan and Runkle

(1993), Rabemananjara and Zokoia (1993), Engle and Ng (1993), Hentschel (1995), Duan

(1996), Bekaert and Wu (2000), and Linton and Mammen (2004). Based on the work of Pagan

and Schwert (1990), Engle and Ng (1993) introduced the news impact function (NIF) as an

empirical tool to examine the e¤ect of return shocks on future volatility in isolation. Using
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NIF, Engle and Ng compared various ARCH models and found evidence of asymmetry. A

common feature of almost all empirically estimated asymmetric ARCH-type models is that the

NIF is asymmetrically U- or V-shaped, although more �exible NIFs are generally allowed. An

implication is that the asymmetry cannot be explained by the leverage e¤ect alone as the NIF

is not a globally decreasing function.

Another empirical approach to study volatility asymmetry is via the SVmodels (see Ghysels,

Harvey and Renault,1996 and Shephard, 1996 for reviews of SVmodels). Work on option pricing

based on asymmetric SV models dates back to 1987 (Hull and White, 1987 and Wiggins, 1987),

which is several years earlier than the �rst asymmetric ARCH model (Nelson 1991). There are

certain advantages in the SV models over the ARCH-type models for modeling the dynamics

of asset returns (see Ghysels et al, 1996 and Andersen, 1994). Yet asymmetric SV models

have received far less attention than asymmetric ARCH-type models in the empirical �nance

literature. For example, no SV model was considered in Engle and Ng (1993) or in any paper

surveyed by Bekaert and Wu (2000). We postulate several possible reasons why asymmetric

SV models have fewer empirical applications. First and perhaps most obviously, SV models

are di¢ cult to estimate. This is the case for the basic SV model and even more so for the

asymmetric SV model. Second, how asymmetry should be speci�ed in a SV model had long

been an open question. In particular, it was not clear if one should allow for a contemporaneous

correlation between return shocks and volatility shocks as suggested in Harvey and Shephard

(1996), or for a correlation between return shocks and lagged volatility shocks as advocated in

Jacquier, Polson and Rossi (2004). Finally, the NIF commonly used in the ARCH literature is

not directly applicable to SV models since there exist two sources of shocks in the SV models.

Fortunately, recent developments in the volatility literature make possible a thorough analy-

sis of asymmetric response of volatility under a more �exible framework. For example, in terms

of estimation, Harvey and Shephard (1996) provided one of the �rst econometric treatments of

an asymmetric SV model using a quasi-maximum likelihood method. In terms of speci�cation,

Yu (2004) showed that the speci�cation with the contemporaneous correlation is superior to that

with the inter-temporal correlation and further o¤ered a full likelihood-based treatment to the

model using a Markov chain Monte Carlo (MCMC) method. Moreover, the availability of ultra

high frequency data makes it feasible to accurately approximate unobserved volatility based on

realized daily volatility. This has prompted researchers to treat volatility as directly observable
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in many recent studies. As a result, a new and powerful channel based on realized volatility

can be used to examine the validity of parametric volatility models; see Andersen, Bollerslev,

Diebold and Labys (2001) (ABDL hereafter), Barndor¤-Nielsen and Shephard (2002), and An-

dersen, Bollerslev, Diebold and Ebens (2001) (ABDE hereafter) for important contributions in

this area, and Andersen, Bollerslev and Diebold (2004) for an excellent survey.

The central focus of the present paper is to provide a uni�ed framework to investigate asym-

metric response of volatility, applicable to both ARCH-type and SV models. The importance

of an appropriate speci�cation of asymmetry is manifest in much of �nancial decision making,

including asset allocation, volatility forecasting, options pricing, risk management, and hedging.

Our contribution to the literature is three-fold. First, we generalize the NIF of Engle and

Ng (1993) so that it is applicable to SV models. Based on the generalized NIF, we develop

a general framework to examine volatility asymmetry, which makes it feasible to compare

asymmetric ARCH with asymmetric SV models for the purpose of �nding a better speci�cation

outside the ARCH family to explain the observed asymmetry. To the best of our knowledge,

such a comparison has not been done before, re�ecting the existence of two virtually separate

literatures. Studies using ARCH-type models typically suggest an asymmetrically U- or V-

shaped NIF, whereas studies using the SV models always assume a monotonically decreasing

NIF. We propose a model which nests both the ARCH and SV models and at the same time

allows for a �exible NIF. When �tting parametric models to daily index data, we �nd evidence

of monotonically decreasing NIF.

Second, we compare the implied NIFs of various parametric volatility models with the NIF

obtained from the realized daily volatility based on ultra high frequency index data. Although

this nonparametric approach was originally suggested by ABDE (2001), the result obtained in

the present paper documents new empirical evidence in the index data �the NIF monotonically

decreases and is not V-shaped.

Third, since both daily and intraday data suggest the same kind of volatility asymmetry, we

examine the economic signi�cance of the asymmetry. In particular, as in ABDE (2001), we �nd

that the NIF is very �at, featured by the slope estimate being very close to zero. Based on this

observation, ABDE argue that the economic importance of the asymmetric e¤ect is marginal.

However, we show that it is the correlation between two shocks, not the slope of the NIF, that

matters. In the classical asymmetric SV model although the estimated slope of NIF is always

4



close to zero by construction, the correlation coe¢ cient can be quite di¤erent from zero. As a

result, we quantify the option pricing implications of asymmetry via simulations.

The remainder of the article is organized as follows. Section 2 reviews certain existing

asymmetric ARCH and SV models, and the NIF of Engle and Ng (1993), and then generalizes

the NIF to both types of models. In Section 3 a uni�ed framework is formulated by introducing a

new asymmetric model with a �exible NIF, together with an explanation of how the proposed

model is related to the existing ARCH and SV models. Empirical results based on daily

index data are discussed in Section 4, while empirical results based on intraday index data are

discussed in Section 5. Section 6 considers the economic implications of the empirical results

and Section 7 concludes.

2 Asymmetric ARCH, Asymmetric SVModels and News
Impact Function

Researchers beginning with Black (1976) have found empirical evidence that volatility tends

to rise in response to bad news and to fall in response to good news. Motivated directly from

this leverage e¤ect, numerous forms of asymmetric ARCH models have been introduced. One

of earliest and best known models is Nelson�s (1991) Exponential GARCH (EGARCH),

yt = �t�t = exp(ht=2)�t; �t � iid N(0; 1) (2.1)

ht = �+ �ht�1 +  j�t�1j+ ��t�1; (2.2)

where yt is the return, �2t is the conditional variance, and �t is the standardized return shock.

Another popular asymmetric ARCH model is proposed by Glosten, Jagannathan and Runkle

(1993) (GJR-GARCH),

�2t = �+ ��2t�1 + �y2t�1 + ��y2t�1I(yt�1 < 0); (2.3)

where I(yt�1 < 0) = 1 if yt�1 < 0 and 0 otherwise.

To examine how current return shocks a¤ect future expected volatility, Engle and Ng (1993)

introduced the news impact function (NIF). The idea is to condition at time t + 1 on the

information available at t and earlier, and then consider the e¤ect of the return shock, �t, on

�2t+1 (or ht+1) in isolation. To be more speci�c, the NIF is the relation f(�) or g(�) in the
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following equations,

(�2t+1j�t; �2t = ��2; �2t�1 = ��2; � � � ) � f(�t); (2.4)

or

(ht+1j�t; ht = �h; ht�1 = �h; � � � ) � g(�t); (2.5)

where �t > 0 corresponds to good news, �t < 0 corresponds to bad news, and ��2 (�h) is the long

run mean of �2t (ht). Asymmetry occurs if and only if f(�t) 6= f(��t) or g(�t) 6= g(��t).
It can be seen that the NIF for EGARCH is

g(�t) =

8<: �+ ��h+ (� +  )�t; if �t � 0

�+ ��h+ (� �  )�t; if �t < 0:
(2.6)

As long as � 6= 0, the response of volatility is asymmetric. In particular, if � < 0 and �+ > 0,
the NIF is asymmetrically V-shaped. If � <  < ��, the NIF is monotonically decreasing.
Although EGARCH can have a �exible NIF, empirical results always suggest that � +  > 0

and � �  < 0, which implies an asymmetrically V-shaped NIF.

The NIF for GJR-GARCH is

f(�t) =

8<: �+ ���2 + ���2�2t ; if �t � 0

�+ ���2 + (� + ��)��2�2t ; if �t < 0:
(2.7)

Empirical estimates always suggest that � > 0 and �� > 0. As a result, a typical curve for NIF

is asymmetrically U-shaped. Note that the estimated NIFs from asymmetric ARCH models

are inconsistent with the prediction of the leverage e¤ect, although asymmetric ARCH models

are motivated by this.

Like the EGARCH model, most asymmetric SV models are also directly motivated by the

leverage e¤ect. The well-known asymmetric lognormal (LN) SV model takes the form of, in

discrete time, 8<: yt = �t�t = exp(ht=2)�t;

ht+1 = �+ �ht + �vvt;
(2.8)

�t and vt are iid N(0; 1) and corr(�t; vt) = �. Di¤erent from ARCH-type models, there are two

separate shocks in SV models, the return shock �t and the volatility shock vt. It is shown in

Yu (2004) that when � < 0, the model implies a negative relationship between E(ht+1j�t) and
�t and hence captures the leverage e¤ect.
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Another popular asymmetric SV model is the square root SV model proposed by Heston

(1993) which takes the form of, in discrete time,1

�2t+1 = �+ ��2t + �v�tvt: (2.9)

In a more recent study, Jones (2003) extends the square root speci�cation to a constant elastic

variance (CEV) speci�cation with the following discrete time representation,

�2t+1 = �+ ��2t + �v�


t vt: (2.10)

In both Heston�s and CEV SV models, �t and vt are iid N(0; 1) and corr(�t; vt) = �.

In a recent paper, Jacquier et al (2004) consider an asymmetric SV model similar to the

one de�ned in (2.8), but with an important di¤erence. Instead of assuming corr(�t; vt) = �,

Jacquier et al assume corr(�t; vt�1) = �. Yu (2004) provides both theoretical and empirical

evidence that the correct timing should be corr(�t; vt) = �.

In spite of being a useful tool for understanding the impact of return news on volatility, the

NIF of Engle and Ng (1993) is not directly applicable to SV models. This is because in SV

models there are two sources of shocks and hence both f(�t) and g(�t) de�ned in Equations

(2.4) and (2.5) are random functions of �t. As a result, we need to generalize the NIF before

applying it to SV models. To achieve this, we propose to �x information dated at t or earlier

at a constant, evaluate lagged �2t+1 or lagged ht+1 at the long run mean of �2t (say ��
2) or

ht (say �h), and then de�ne the NIF to be the relation between E(�2t+1) (or E(ht+1)) and �t,

Mathematically, the NIF is F (�) or G(�) de�ned by

E(�2t+1j�t; �2t = ��2; �2t�1 = ��2; � � � ) � F (�t); (2.11)

or

E(ht+1j�t; ht = �h; ht�1 � �h; � � � ) = G(�t): (2.12)

That is, instead of examining the relationship between future volatility and return shocks,

we consider the relationship between the expected future volatility and return shocks. The

NIF de�ned above is indeed a generalization of the one introduced in Engle and Ng. This is

1Strictly speaking, the model presented here is the Euler approximation to Heston�s model. It is well known
that the Lipschiz condition is violated for Heston�s model and hence the convergence of the discrete time model
to the continuous time model may not be warranted.
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obvious because in ARCH-type models �2t+1 is a deterministic function and hence conditional

expectation of �2t+1 is the same as �
2
t+1.

To derive the NIF in the classical asymmetric LN-SV model, we follow Yu (2004) by rewrit-

ing the model in a Gaussian nonlinear state space form with uncorrelated measurement and

transition equation errors8<: yt = �t�t = exp(ht=2)�t;

ht+1 = �+ �ht + ��v�t + �v
p
1� �2wt;

(2.13)

where wt � (vt � ��t)=
p
1� �2 and hence is iid N(0; 1), and corr(�t; wt) = 0. Then it can be

shown that

G(�t) = �+ ��h+ ��v�t: (2.14)

This is a linear function in �t with a slope of ��v (denoted here by �). As �v is always positive,

the monotonicity of the NIF is entirely determined by the sign of �. When � < 0, which is

typically the case in practice, a piece of bad news to return increases the expected value of

future volatility and the reverse is true when news is good, consistent with the prediction of

leverage e¤ect.

The same conclusion applies to the other two asymmetric SV models reviewed above. For

example, the NIFs for Heston�s model and CEV-SV model are, respectively,

F (�t) = �+ ���2 + ��v���t; (2.15)

and

F (�t) = �+ ���2 + ��v��

�t: (2.16)

In these two models the NIF has a slope of ��v�� and ��v��
�1, and hence slopes down when

� < 0.

Table 1 summarizes the properties of NIF for various existing asymmetric ARCH and SV

models. By comparing the V-shaped or U-shaped asymmetry in ARCH-type models with the

downward-sloping asymmetry in SV models, several results emerge. First, both classes make

similar predictions when a negative return shock arrives, that is, the future expected volatility

tends to increase in response to bad news. Second, the two classes of models make di¤erent

predictions when good news arrives. In particular, asymmetric ARCH models predict that

future expected volatility should increase whereas the existing asymmetric SV models predict
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movement in the opposite direction. Third, the risk-return relation holds for every single change

with ARCH models, but holds only on average with SV models. This is an important di¤erence

and has an implication of a possible misspeci�cation in ARCHmodels, which we examine below.

It is well known that the ARCH e¤ect becomes insigni�cant in the context of the basic SV

models; see for example, Fridman and Harris (1998) and Danielsson (1994). In light of this

evidence, it would be interesting to examine possible misspeci�cation in asymmetric ARCH

models. To do so, we simulate 1,000 samples, each with 2,000 observations, from the classical

asymmetric LN-SV model with � = 0, � = 0:95, �v = 0:1 and � = �0:3;�0:4 so that the
true data generating process implies a monotonically decreasing NIF. All the parameter values

are chosen to be empirically reasonable. For each simulated sequence we �t EGARCH using

maximum likelihood. Table 2 shows the proportions that the estimated EGARCH model has a

V-shaped NIF, and that V-shape is statistically signi�cant. These two Monte Carlo experiments

clearly show that it is very likely that EGARCH would lead to a spurious V-shaped NIF. Similar

results occur when GJR-GARCH is estimated. The spuriousness in this experiment is due to

the restriction in ARCH-type models where volatility is speci�ed to be a deterministic function

of the return shock.

3 A Uni�ed Approach

The distinction in the NIF between the existing asymmetric ARCH and SV models and the

concern of possible misspeci�cation in asymmetric ARCH-type models point to the need to

develop a uni�ed framework to study the asymmetric response of volatility. On the one hand,

as the classical asymmetric SV models have less �exible NIFs than asymmetric ARCH models,

we retain the ARCH term in the general model. On the other hand, since ARCH-type models

may be misspeci�ed, the general model should allow for the possibility of two error processes.

These motivations lead us to introduce the following general model,8<: yt = �t�t = exp(ht=2)�t;

ht+1 = �+ �ht +  jytj+ �vvt;
(3.17)

where vt is iid N(0; 1) and corr(�t; vt) = �.2

2Alternatively, we can replace jytj with j�tj in the volatility equation. Unfortunately, we could not get
convergence for the MCMC output in the alternative model.
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The new model can be equivalently rewritten as

ht+1 = �+ �ht +  jytj+ ��v�t + �v
p
1� �2wt: (3.18)

where wt is iid N(0; 1) and corr(�t; wt) = 0. When  = 0, it becomes the classical asymmetric

LN-SV model and hence has a monotonic NIF. When � = �1, it becomes an asymmetric ARCH
model. This is not surprising because as � = �1, the two error processes are perfectly related
and hence there is essentially one source of shocks. When �v = 0, it becomes a symmetric,

although non-standard, ARCH model. When � = 0, it is the basic SV model augmented

by an ARCH term and has a symmetric NIF. Therefore, the proposed general model nests

the asymmetric LN-SV model, an asymmetric ARCH model, a symmetric SV model and a

symmetric ARCH model. Furthermore, it can be shown that the NIF for the model is

G(�t) =

8<: �+ ��h+ (��v +  ��)�t; if �t � 0

�+ ��h+ (��v �  ��)�t; if �t < 0:
(3.19)

Unless ��v = 0, i.e., � = 0, the NIF is asymmetric. Provided � < 0, if  �� > ���v, the NIF is
asymmetrically V-shaped; if ��v <  �� < ���v, the NIF is monotonically decreasing;3 if  < 0,
a positive return shock will have a larger impact on future volatility than a negative return

shock of the same size.

The proposed model is closely related to the asymmetric SV model recently proposed by

Asai and McAleer (2004), where the speci�cation of the volatility equation is given by

ht+1 = �+ �ht + 
I(yt < 0) + ��v�t + �v
p
1� �2wt: (3.20)

The NIF for this model is

G(�t) =

8<: �+ ��h+ ��v�t; if �t � 0

�+ 
 + ��h+ ��v�t; if �t < 0

Provided � < 0, if 
 6= 0, the NIF is a combination of two linear functions with the same slope
but di¤erent intercepts. As a result, the asymmetric response is also allowed. However, the

discontinuous property in the NIF is not desirable. Another di¤erence between the present

3It should be stressed that, compared with the existing asymmetric ARCH models, the proposed model has
additional �exibility in terms of the NIF. This is because the shape of the NIF depends on the value of �� in the
proposed model but not in the existing ARCH models.
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paper and Asai and McAleer (2004) is that we use MCMC to estimate the model which allows

us to go beyond the estimation problem to compare non-nested models while Asai and McAleer

(2004) only estimate the model using the Monte Carlo likelihood method. Furthermore, we

motivate our speci�cation in terms of NIF while no motivation is provided in Asai and McAleer

(2004).

Equation (3.17) also looks similar to Equation (2) in Wu and Xiao (2002), where the implied

volatility is assumed to follow a partial linear model. However, there are two important di¤er-

ences between these two models. First, while volatility is treated as an unobserved variable and

hence will be learned from returns in our model, it is approximated by the implied volatility in

Wu and Xiao (2002). Second, our model is in essence a SV model whereas the model of Wu

and Xiao is an ARCH-type model with the error term being interpreted as the estimation error

from implied volatility.

4 Empirical Results from Daily Index Returns

To compare and demonstrate the empirical asymmetric properties of ARCH-type and classi-

cal SV models with the newly proposed model, we apply three models, namely EGARCH,

asymmetric LN-SV, and the newly proposed model, to a daily return series of the S&P500

index.

4.1 Methods for Estimation

It is well-known that SV models are more di¢ cult to estimate than ARCH models since eval-

uation of the likelihood function is non-trivial for SV models. Parameter estimation for SV

models have been done, in recent years, by the simulated or numerical maximum likelihood

(ML) methods or by Bayesian MCMC methods, which are supposed to provide full likelihood-

based inference. Examples of ML methods include Lisenfeld and Richard (2003), Sandmann

and Koopman (1999), and Fridman and Harris (1998). Examples of MCMC methods include

Jacquier, Polson and Rossi (1994) and Kim, Shephard and Chib (1998). In this paper we use a

Bayesian MCMC method to estimate the three models. There are at least two reasons why we

use MCMC. First, we have found that for the basic SV model MCMC provides almost identical

estimates to the simulated ML method of Lisenfeld and Richard (2003). This is not surprising

as both methods are full-likelihood based. With �at priors, the Bayesian estimates should be
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the same as the ML estimates. Second, as a Bayesian method, MCMC provides direct and easy

model comparison of non-nested competing models via Bayes factors and devian information

criterion (DIC).

The idea behind MCMC is based on the construction of an irreducible and aperiodic Markov

chain with realizations �1; �2; � � � in the parameter space, equilibrium distribution �(�jy), and
transition probability �(�t+1j�t). Under regularity conditions, �t tends in distribution to a
random quantity with density �(�jy) as t ! 1. As a result, when the chain converges, the
chain of simulated values is regarded as a correlated sample obtained from the joint posterior

and hence can be used for statistical inferences.

To estimate EGARCH via MCMC, we employ the Metropolis-Hasting algorithm used in

Vrontos, Dellaportas and Politis (2000) with the proposal distribution being multivariate nor-

mal. The prior distributions are: � � N(0; 25); � � U(�1; 1);  � N(0; 25); � � N(0; 25).

None of these priors is informative.

To estimate the asymmetric LN-SV and newly proposed models, we need to augment the

parameter vector from � to (�; h1; � � � ; hT ) for otherwise the computation of likelihood requires
the latent variables to be integrated out, which is numerically time consuming. Meyer and

Yu (2000) and Lancaster (2004) have shown that MCMC estimation of SV models can be

easily done using the all purpose Bayesian software package BUGS. In this paper we use BUGS

to estimate the two models based on the representations in (2.13) and (3.18). Following Kim,

Shephard and Chib (1998) andMeyer and Yu (2000), we choose the following prior distributions:

�2v � Inverse-Gamma(2:5; 0:025) which has a mean of 0.167 and a standard deviation of 0.024;
�� � Beta(20; 1:5) which has a mean of 0.93 and a standard deviation of 0.055, where �� =

(�+ 1)=2; � � N(0,25), where � = �=(1� �); � � U(-1,1);  � N(0,25).
In all cases we choose a burn-in period of 10,000 iterations and a follow-up period of 100,000.

For EGARCH, the MCMC sampler is initialized at the ML estimates. For the LN-SV and newly

proposed models, the MCMC sampler is initialized by setting � = 0; � = 0:95; �2v = 0:025,

� = �0:4, and  = 0. For all the samples we check convergence using the Heidelberger and

Welch convergence test.
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4.2 Methods for Model Comparison

The �rst and perhaps the easiest method of comparing the proposed model with the encom-

passed SV and ARCH models is to examine the signi�cance of relevant estimated coe¢ cients

in the proposed model.

The second method for model comparison is to calculate the posterior model probability

which allows for evaluation of posterior odd. Speci�cally, we calculate the Bayes factors using

the marginal likelihood approach of Chib (1995) and Chib and Jeliazhov (2001). Let � be the pa-

rameters in a competing model (excluding the latent variables). De�nem(y); f(yj�); �(�jy); �(z)
as the marginal likelihood, likelihood, posterior distribution, and prior distribution, respectively.

Bayes�theorem implies that

lnL = lnm(y) = ln f(yj�) + ln�(�)� ln �(�jy): (4.21)

This expression can be evaluated at the posterior means, say ��. While the calculation of ln �(��)

is trivial and an approximation to ln �(��jy) can be obtained by using a multivariate kernel
density estimate, the di¢ cult part in the calculation of lnL lies in the evaluation of ln f(yj�)
for the LN-SV and newly proposed models. This is because ln f(yj�) has no analytical form for
these two models as it is marginalized over the latent states fhtg. In this paper we employ the
particle �lter algorithm of Kitigawa (1996) to calculate ln f(yj�). This method is applicable to
a broad class of nonlinear non-Gaussian state space models with uncorrelated measurement and

transition errors and has been successfully applied to a variety of SV models by Berg, Meyer

and Yu (2004).

The third method for model comparison is DIC developed by Spiegelhalter, Best, Carlin

and van der Linde (2002). While the Bayes factor addresses how well the prior predicts the

observed data, DIC addresses how well the posterior might predict future data generated by the

same mechanism that gives rise to the observed data. Assume, in general, that the distribution

of the data, y = (y1; :::; yT ), depends on a parameter vector �. (In the context of SV models,

� includes the vector of log-volatilities (h1; : : : ; hT ). Similar to AIC and BIC, DIC consists of

two compromising components,

DIC = �D + pD: (4.22)

The �rst component is a Bayesian measure of model �t

�D = �2E�jy[ln f(yj�)]: (4.23)
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The second component is a penalty which measures the complexity of the model and de�ned

by

pD = �2E�jy[ln f(y j �)] + 2 ln f(yj��): (4.24)

From the de�nition it can be seen that DIC is almost trivial to compute and particularly

suited for comparing Bayesian models when posterior distributions have been obtained using

MCMC simulation. This is in sharp contrast to Chib�s marginal likelihood method. Moreover,

for complex hierarchical models, such as the SV models, the number of unknown parameter

exceeds the number of observations and hence the number of free parameters is not well de�ned.

As a result, AIC and BIC are not applicable. However, DIC is always well de�ned and applicable

to both hierarchical and non-hierarchical models. Berg et al. (2004) compared the performances

of Chib�s method and DIC and found that both methods are e¤ective for comparing SV models.

Given the marginal likelihood estimate and DIC value for each model, we can rank all the

competing models, as explained in Berg et al. (2004). Moreover, we can obtain Bayes factor

for pairs of competing models using Je¤rey�s rule.

4.3 Data

The daily data used are 1,892 daily returns of S&P500 from January 4, 1993 to June 30, 2000

and plotted in the �rst panel of Fig 1.4 This sample period is chosen because we have high

frequency intraday data over the same sample period. The index data are used because it is

known that asymmetry is more pronounced in indices (ABDE, 2001).5

Estimation results, including the posterior means, standard deviations and 95% Bayes cred-

ible intervals are reported in Table 3. Several conclusions can be drawn when the signi�cance

of certain coe¢ cients is examined. First, EGARCH implies a strong asymmetrically V-shaped

NIF. On the other hand, the LN-SV model implies a signi�cantly downward sloping NIF, with

the 95% credible interval of � being (�0:6622;�0:362). This inconsistency is re-examined in
the proposed general model, which suggests that there is little evidence against the hypothesis

of  = 0, featured by a nearly zero posterior mean and a 95% credible interval which contains

4Returns on June 27, 1995 and December 18, 1998 have been deleted because the high frequency cash index
data on these two days are missing. A close look at the two daily returns suggests that they are too small to
make important contributions to empirical results.

5It worths pointing out that we have experimented with other index data, such as daily S&P500 returns over
a di¤erent sample period and daily CRSP returns. The empirical results are all very similar to what is reported
here.
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zero. The result supports the classical asymmetric LN-SV speci�cation. Indeed, the two sets

of estimates of common parameters from the LN-SV and the newly proposed models are very

close to each other. Furthermore, we cannot �nd evidence to support either � = �1 or �v = 0
in the proposed model, which indicates the importance of stochastic volatility over the ARCH

term, in line with Fridman and Harris (1998) and Danielsson (1994). Moreover, the 95% pos-

terior credibility interval for � in the proposed model is (�0:6617;�0:3805) which indicates the
presence of a signi�cant negative correlation between the return shocks and volatility shocks.

It is useful to point out that MCMC allows for a straightforward estimation and inference of �

(= ��v) without resorting to the delta method. Although the posterior means of � are close to

zero in both models, the 95% credible intervals do not include zero and hence indicate strong

evidence of asymmetry.

Also reported in Table 3 are the log-marginal likelihood and DIC values. Both criteria

rank the classical LN-SV model ahead of the newly proposed model, followed by EGARCH.

Moreover, using the log marginal likelihood values we obtain the Bayes factor of the classical

LN-SV over the EGARCH model which is 6:1�1010. This indicates decisive evidence in favor of
the LN-SV model against EGARCH. When we compare the classical LN-SV with the proposed

model, we �nd no support for the latter. On the contrary, a value of 12.06 for the Bayes

factor indicates that there is strong evidence in favor of the classical LN-SV model. All these

results are consistent with the �nding of an insigni�cant ARCH term in the new model and our

conjecture that EGARCH may be misspeci�ed.

Fig. 2 plots the three estimated NIFs. It is seen that NIFs of the LN-SV and newly proposed

models almost coincide and slope downward, albeit quite �atly. This compares with the NIF

of EGARCH which slopes downward sharply to the left of the origin and slopes upward less

sharply to the right of the origin. Relative to the other two models, EGARCH tends to overstate

ht for extreme �t�1, but understate ht for less extreme �t�1.

5 Empirical Results from Intraday Index Returns

Over the last several years realized daily volatility has become a popular empirical measure

of daily volatility. Under mild conditions ABDL (2001) show that the realized daily volatility

yields a perfect estimate of daily volatility when prices are observed in continuous time and

there is no measurement error. However, it is also well known that noise exists due to the imper-
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fections of the trading processes. These two results motivate ABDE (2001) and ABDL (2001)

to calculate the realized daily volatility using returns over arti�cially constructed �ve-minute

sampling intervals, a frequency that was argued to be high enough to have e¤ective continuous

time record while at the same time being low enough to mitigate the market microstructure

frictions. The use of realized volatility enables ABDE and ABDL to treat daily volatility as

directly observable without the need of �tting parametric ARCH or SV models.

This model-free approach has recently prompted more and more research on using realized

volatility to study the properties of daily volatility in di¤erent markets over di¤erent time peri-

ods. For example, using realized volatility ABDE (2001) obtained the NIF non-parametrically

by plotting ln�rv;t against yt�1=�rv;t�1 based on high frequency intraday returns on individual

stocks, where �rv;t is the realized volatility on day t and hence yt�1=�rv;t�1 is the lagged stan-

dardized return shock. They found that the NIF for typical stocks in the Dow Jones Industrial

Average is asymmetrically V-shaped, but very �at to both sides of the origin. This observation

leads them to conclude that the economic importance of asymmetric e¤ect is marginal. Ebens

(1999) found the similar V-shape asymmetry in intraday Dow Jones Industrial Average index.

In this section we obtain the NIF non-parametrically using the high frequency intraday

returns on S&P500 cash index over the period from January 4, 1993 to June 30, 2000. The

data are provided by Chicago Merchantile Exchange (CME) and pre-processed by Qianqiu

Liu.6 Although our daily record covers 9:30 EST to 16:00 EST, the data used are from 10:00

EST to 16:00 EST in order to avoid extra high volatility in the beginning of the day, leaving

a total of 72 �ve-minute returns in each trading day. The �ve-minute returns are constructed

as the logarithmic di¤erence between the cash index levels at each �ve-minute interval and

the overnight returns are done at each overnight interval.7 The realized daily volatility is

constructed from the �ltered 72 �ve-minute returns within a day. The second and third panels

of Fig. 1 plot daily returns obtained from the 72 �ve-minute returns within a day and realized

daily volatility. The main results found in this section hold when the overnight returns and

the returns in the �rst thirty minutes of the day are also used to calculate the realized daily

volatility.

6We are grateful to Qianqiu Liu for providing the �ltered data and CME for allowing us to use the data. We
refer to Liu (2004) and ABDE (2001) for details regarding how to �lter the intraday returns.

7If anything, one would expect that aggregation should decrease market microstructural e¤ects. As a result,
using �ve-minute returns should be more conservative for the index than for individual stocks.
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Fig. 3 and 4 display the scatter plot for ln�rv;t against yt�1=�rv;t�1. In Fig. 3 a nonpara-

metric regression curve for the NIF is �tted while in Fig. 4 a regression line for the NIF is

�tted. Comparison of these two graphs with Fig. 10 in ABDE (2001) reveals an important

di¤erence. In ABDE, the NIF is asymmetrically V-shaped when two regression lines are �tted,

consistent with the implication of asymmetric ARCH models. In Fig. 3 and 4, we �nd new em-

pirical evidence in the high frequency index data �NIFs monotonically decrease. The �ndings

are consistent with the classical asymmetric SV model and the proposed model. Furthermore,

there is an important similarity between Fig. 3 and 4 and Fig. 10 in ABDE, that is, the NIFs

are all very �at. Because of this feature, ABDE argue that the economic importance of the

asymmetric e¤ect is marginal. However, our interpretation of economic signi�cance is di¤erent.

We know that in the context of LN-SV models, it is the correlation between two shocks (�) but

not the slope of NIF (�) that determines the economic importance of asymmetry. As �v always

takes a small, positive value and � is bounded between -1 and 1, being a product of �v and �, �

inevitably takes a value close to zero. To examine economic signi�cance, therefore, we have to

investigate the sensitivity of �nancial variables with respect to �. In the next section, we will

provide the economic implications of asymmetry.

6 The Economic Signi�cance of Asymmetric Volatility

One important application of volatility models lies in their use for pricing options. In this

section we investigate whether volatility asymmetry in the preferred model is economically

important. For the asymmetric LN-SV model, however, option prices have no closed form

formula and hence need to be approximated. A �exible way for approximating option prices is

via Monte Carlo simulations (Hull and White 1987).

Let C be the value of a European call option on a stock with maturity � (or T if measured

in number of days), strike price X, current volatility �20, current stock price S0, and interest

rate r. The Monte Carlo algorithm for calculating the value of a European call option may be

summarized as follows:

1. Obtain the initial value of h0 based on the initial value of �20;

2. Draw a bivariate normal variable, denoted by �t and vt, with 0 means, unit variances and

correlation coe¢ cient �;
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3. Generate ht and hence �t = exp(ht=2) according to

ht = �+ �ht�1 + �vvt; for t = 1; :::; T ;

4. Generate St according to

St = St�1 expfr � �2t�1=2 + �t�1�tg; for t = 1; :::; T ;

5. Calculate e�r� maxfST �X; 0g and call it p1;

6. Repeat Steps 3-5 using f��t;�vtg and de�ne e�r� maxfST �X; 0g by p2;

7. Calculate the average value of p1 and p2 and call it c;

8. Repeat Steps 2-7 for K times and hence obtain a sequence of c�s;

9. Calculate the mean of c�s and this is the estimate of the option price C.

The algorithm is then applied to price a half-year call option based on the classical asym-

metric LN-SV model with K = 10; 000. The parameters used are S0 = 10, r = 0:1, �0 = 0:3,

� = �0:033, � = 0:986, �v = 0:15, and S0=(Xe�r� ) takes each of the following values, 0.9,

0.95, 1, 1.05, 1.1. Moreover, � = 0;�0:1;�0:3;�0:5;�0:7. These parameters are chosen to be
empirically relevant.

Table 4 compares the di¤erences, in percentage term, of the prices between the symmetric

and asymmetric LN-SV models. Several results emerge from this table. First, in all cases the

symmetric model tends to overprice options. The more the asymmetry, the larger the bias.

The intuition is that the negative correlation between the return shocks and volatility shocks

makes the terminal stock price distribution more peaked. Second, the bias is more serious in-

the-money than out-of-the-money, and can be as large as -20% in-the-money when � takes an

empirically reasonable value. Since in-the-money options where the strike price is about 10%

of the spot price are traded frequently on exchanges, our results suggest that the bias cannot

be ignored and hence asymmetry in SV has important practical implications.
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7 Conclusion

In this paper we examine the NIF in the context of SV models using daily index data on

S&P500 and non-parametrically using realized daily volatility based on the high frequency

data on the same index. As the NIF of Engle and Ng (1993) is not well de�ned for SV models,

we generalize it so that it is applicable to both ARCH and SV models. Comparison of the NIFs

of existing asymmetric ARCH-type and SV models shows that two classes of models make

di¤erent prediction about how volatility responds to good news.

Model comparisons of EGARCH, asymmetric LN-SV, and a new model which nests both

the ARCH e¤ect and stochastic volatility, reveal that the classical asymmetric LN-SV model

�ts the daily data the best. Both the asymmetric LN-SV and the newly proposed models

suggest a monotonically decreasing NIF, while EGARCH suggests a spurious V-shaped NIF.

This result is con�rmed by the realized volatility calculated from the high frequency index data

and suggests that it is better to study volatility asymmetry by examining the average value

of volatility and return shocks. The economic signi�cance of asymmetry on option pricing is

examined and results suggest that the degree of asymmetry obtained in real data can lead to

substantially di¤erent prices, which is important in practical applications.
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Table 1: Typical Parameter Values and the NIF for Asymmetric ARCH and SV Models

Models EGARCH GJR-GARCH LN SV Heston�s SV CEV-SV

Typical � < 0 �; �� > 0 � < 0 � < 0 � < 0

Parameter  + � > 0

Values

Shape Asymmetric-V Asymmetric-U Slope down Slope down Slope down

of NIF for g(�) for f(�) for G(�) for F (�) for F (�)

Table 2: Estimated Shaped for NIF When EGARCH is Fitted to Data Simulated from LN-SV

� -0.3 -0.4

Proportion of V-shaped NIF 98.5% 99.7%

Proportion of signi�cant V-shaped NIF 66.6% 73.8%
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Table 3: Estimation using daily data

EGARCH LN-SV New Model

� Post Mean -0.1192 -0.01355 -0.02423
Post SD (0.0196) (0.0052) (0.0144)

95% Cred Int [-.158,-.079] [-.0248,-.0047] [-.058,-.0016]

� Post Mean 0.9809 .9780 .9731
Post SD (0.004) (.0069) (.0088)

95% Cred Int [.967,.988] [.9632,.990] [.9539,.9882]

 Post Mean 0.1476 0.01322
Post SD (0.029) (0.01684)

95% Cred Int [.088,.201] [-.0152,.0518]

� Post Mean -0.094
Post SD (0.018)

95% Cred Int [-.129,-.060]

�v Post Mean 0.1638 0.1644
Post SD (.02408) (.02174)

95% Cred Int [.1185..2113] [.1463,.2457]

� Post Mean -0.5250 -0.5258
Post SD (0.07684) (0.07262)

95% Cred Int [-.6622,-.3620] [-.6617,-.3805]

� Post Mean -0.1018 -0.1026
(= ��v) Post SD (0.02122) (0.02104)

95% Cred Int [-.143,-.061] [-.146,-.0637]

Log Marg Likelihood -2333.19 -2306.05 -2308.54

DIC 4703.85 4501.04 4508.18
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Table 4: Di¤erence in Percentage of Call Option Prices Based on symmetric SV and asymmetric
SV Models; Option Parameters: � = 0:5 years, S0 = 10, r = 0:1, �0 = 0:3, � = �0:033,
� = 0:986, �v = 0:15

S0
Xe�r� � = �0:1 � = �0:3 � = �0:5 � = �0:7 � = �0:9

0.9 -3.104 -9.477 -16.141 -23.239 -30.990

0.95 -1.721 -5.326 -9.182 -13.395 -18.189

1 -0.900 -2.953 -5.225 -7.851 -10.884

1.05 -0.463 -1.566 -2.838 -4.303 -6.252

1.1 -0.182 -0.609 -1.265 -2.122 -3.431
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Daily SP500 Returns Based on Closing Prices from 01/1993 to 06/2000
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Figure 1: The �rst panel shows the time series plot of daily SP500 returns calulated from daily
closing prices over the period from January 1993 to June 2000. The second panel shows the
time series plot of daily SP500 returns calculated from 72 �ve-minutes intraday prices within
each day over the period from January 1993 to June 2000. The third panel shows the time
series plot of realized daily volatilities for SP500 cash index over the period from January 1993
to June 2000. The realized volatilities are calculated from 72 �ve-minute intraday returns from
10:00 EST to 16:00 EST.
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Figure 2: Estimated NIFs for EGARCH, the classical asymmetric LN-SV model and the newly
proposed model.
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Figure 3: News impact function. The �gure shows the scatter plot of the realized daily volatility
against the lagged standardized return shock for SP500. The solid curve is a kernel regression
smoother. The realized volatilities are calculated from 72 �ve-minute intrday returns from
10:00 EST to 16:00 EST.
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Figure 4: News impact function. The �gure shows the scatter plot of the realized daily volatility
against the lagged standardized return shock for SP500. The solid curve refers to the estimated
regression line. The realized volatilities are calculated from 72 �ve-minute intrday returns from
10:00 EST to 16:00 EST.
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