
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and
Information Systems School of Computing and Information Systems

4-2010

Playing with Recognizers: A Call for an Extensible Editor Playing with Recognizers: A Call for an Extensible Editor

Richard C. DAVIS
Singapore Management University, rcdavis@smu.edu.sg

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

 Part of the Software Engineering Commons

Citation Citation
DAVIS, Richard C.. Playing with Recognizers: A Call for an Extensible Editor. (2010). CHI 2010 Workshop
on Designing Sketch Recognition Interfaces.
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/809

This Conference Paper is brought to you for free and open access by the School of Computing and Information
Systems at Institutional Knowledge at Singapore Management University. It has been accepted for inclusion in
Research Collection School Of Computing and Information Systems by an authorized administrator of Institutional
Knowledge at Singapore Management University. For more information, please email cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F809&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/150?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F809&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

Playing with Recognizers:
A Call for an Extensible Editor

Abstract

The sketch recognition interface community has not

produced a ―killer‖ application, because access to

sketch recognition technology has been too restricted.

If recognition technologies were more freely available

for experimentation, powerful new applications would

evolve. This paper proposes a rough architecture for an

extensible graphical editor that facilitates collaboration

between recognition technology developers, user

interface designers, and early adopters of sketch

recognition interfaces. Only by serving all three

communities will we reach the critical mass necessary

for killer applications to emerge.

Keywords

Sketch recognition interfaces, extensible editors, file

formats, research collaboration

ACM Classification Keywords

H.5.2 [Information Interfaces and Presentation]: User

Interfaces—Graphical user interfaces, Interaction

styles.

General Terms

Design, Human Factors

Copyright is held by the author/owner(s).

CHI 2010, April 10–15, 2010, Atlanta, Georgia, USA.

ACM 978-1-60558-930-5/10/04.

Richard C. Davis

Singapore Management University

School of Information Systems

80 Stamford Road

Singapore 178902

rcdavis@smu.edu.sg

 2

Introduction

The power of sketching as a medium for creative

thought and the potential of sketch recognition

technology has continued to inspire new research into

sketch recognition interfaces. The pioneers behind

these systems freely admit, however, that the

technology has not matured to the point of producing a

―killer‖ application. What is preventing sketch

recognition interfaces from reaching maturity? This

paper assumes that finding a killer app is simply a

matter of time. Recognition technology has improved,

and modern pen computing devices are more powerful

than ever. Even if the time is ripe for breakthrough

applications, however, they will only be found through

experimentation by recognition technology developers,

designers, and users. This paper proposes one model

for such collaboration: an extensible graphical editor.

Consider the evolution of the desktop computer as a

creative tool. Applications such as e-mail, word

processing, spreadsheets, and graphical editors, which

are now ubiquitous, evolved through a synthesis of

more primitive tools with similar capabilities. This

synthesis came about to serve the needs of students

and researchers who were early adopters of these

technologies. By sharing techniques and using each

other’s programs to do real work, the community was

able to discover applications with commercial potential

and produce convincing demonstrations. For the next

generation of recognition-based interfaces to evolve,

our community needs a similar collaborative

environment. Since no such environment currently

exists, we must endeavor to create it ourselves.

The open source community gives us a good model for

such collaboration. Software components are freely

shared among members of the community, allowing

everyone to experiment with and build upon each

other's work. Over time, robust applications suitable for

everyday use begin to evolve. If sketch recognition

developers would share working code and support other

application builders, we would come a long way toward

the collaborative environment we need. Still,

recognition techniques are so complex that adapting

them to new applications takes more resources than

the average student or researcher can spare.

Even if sharing sketch recognition techniques became

easy, however, designing user interfaces to take

advantage of them would still be extremely difficult.

Each technique has its own strengths and weaknesses,

and finding a way to take advantage of it could require

experimentation by many people. However, there is

currently no way to do this without considerable time

and programming skill. The platforms and tools for

building applications are complex, varied, and

constantly changing. Furthermore, few conventions

have emerged for even basic interactions like text entry

and menus, making it hard to accommodate all users.

An extensible graphical editor would address these

problems. It would provide a stable data format and

customizable editing environment on multiple platforms

that would encourage early adopters to use it for real

work. It would provide a stable plug-in architecture that

would encourage developers to create interchangeable

recognition technology components. Finally, it would

support designers by providing facilities for recording

macros and for modifying the editor’s interface without

programming. This would encourage the kind of

collaboration we need and finally lead us to the

breakthrough applications we have been searching for.

 3

Here, I propose a rough architecture for an extensible

editor, which borrows ideas from Emacs and the Piccolo

interface framework [1]. It is my hope that this paper

will spur discussion in our community and lead to

deeper collaboration in the future. I begin with a brief

look at related work on extensible frameworks in the

sketch recognition and other communities. I then

address three major aspects of this editor: the data

format, basic interaction methods, and an extensibility

mechanism. Following this, I briefly discuss support for

multiple platforms and licensing issues. I close with

conclusions and an author biography.

Related Work

Unix pipes and scripts are one example of an extensible

framework that enabled collaboration. Since text

editors were ubiquitous in Unix, text files served as a

stable format for users’ data. Developers created

powerful components like grep, sed, and awk, which

users could string together in arbitrary chains to

manipulate their data. Some early adopters mastered

these tools and lashed them together in scripts. Over

time, powerful text processing applications began to

emerge. Pipes and scripts are a powerful pattern for

collaboration, but they do not facilitate interactive

applications like sketch recognition interfaces.

Extensible editors provide a pattern for collaboration

that does facilitate interactive applications. These

editors give users basic tools for editing documents and

can be customized to suit different working styles.

Through an extension mechanism, these editors also

give users access to powerful, experimental tools

written by other developers. Emacs, for example, has

extensions for code editing (written in Emacs Lisp) that

may have been the breeding ground for modern

integrated development environments. In addition,

some editors allow people with no programming

expertise to extend its capabilities with recorded

sequences of editor commands (macros).

Vmacs [8] is an extensible graphical editor that follows

the spirit of Emacs. Developers could extend vmacs by

defining productions, which are graphical patterns that

produce other patterns or trigger interactive

experiences. This editor was never distributed widely

enough to give users a stable work environment, and

its extensibility mechanism would have been awkward

for sketch recognition technology developers. It also

lacked a macro recording facility for designers.

CogSketch [6] is a freely available sketch editor that is

being advertised as a teaching aid (and also as a

research data collection tool). Teachers can extend

CogSketch by designing worksheets, in which students

draw pictures of concepts and receive automated

feedback. Parts of this editor can also be hidden for

data collection experiments. Developers can automate

CogSketch by sending it messages through a socket

interface. These extension mechanisms are an excellent

start, but designers need ways to create entirely new

forms of interaction. Developers, likewise, need ways to

add new recognition technologies.

There are also several frameworks that provide tools

and architectures for developing sketch recognition

interfaces. SATIN [7] and starPad [2] both provide pen-

based interface components and architectures for

connecting to recognizers. InkKit provides a

configurable recognition engine and interface tools that

allow certain classes of diagramming applications to be

developed easily [10]. These frameworks do not give

 4

users a stable work environment, nor do they provide

tools for designers, but they do provide considerable

support for developers.

Though several systems come close, no existing editor

satisfies all the requirements I mentioned previously:

 A stable data format

 Availability on many platforms

 Customizations supporting multiple interface styles

 A stable extension architecture

 Editor modification without programming

 Macro definition

The remainder of this paper outlines an architecture for

such an editor and discusses the challenges involved in

creating it.

Data Format

To guarantee a stable working environment for users,

the first step is to define a stable format for users’

data. A ―stable‖ format is one that will continue to be

useful indefinitely, because viewers and editors in this

format are freely available and will continue to be

available on important platforms. Without this, users

will be reluctant to use an application for everyday

work. A killer application cannot emerge without this,

because users cannot reliably evaluate a tool outside

the context of their everyday work.

A tree of graphical objects is a straightforward and

common way to represent graphical data, but which

data types should be supported? Obviously, it is

desirable to have an ink stroke data type that includes

any information given by pen input hardware (e.g.,

position, pressure, time, and tilt). However, ink data is

often transformed into other types of data or used to

annotate other types of data. The types available will

determine the range of applications that the format will

support. Following is a list of possible data types.

 Polylines: This could be a simple list of straight and
curved line segments, but a more powerful
structure would keep track of common vertices
(e.g., a vertex-edge-face list).

 Rectangles and circles: These primitives can be
represented with polylines, but having special types
for them could make some manipulations easier.

 Text: Portable fonts would be desirable to keep text

looking the same across platforms, but refusing to
use platform-specific fonts may be too restricting.

 Images: Also common in many applications.

 Animation: Motions applied to the above data types
could become a common type of information. The
types of key frames supported could be extensible.

 Sound: Commonly accompanies animation.

 Video: Just as interesting as animation and sound,
but harder to support.

 3D graphics: This is also hard to support, but
sketching of 3D models is a particularly exciting
application area. To avoid unnecessary

complications, 3D objects should almost certainly
be supported as a separate type of tree (if at all).

 Camera: These optional objects would define views
onto the data.

The list of available data types is only one consideration

for a data format. The remainder of this section lists

other desirable qualities.

 Multi-page files: of the same or differing sizes.

 Compact files: for efficient storage and download.

 5

 Fast scanning and loading

 Easy programming: of parsing and output routines.

 Data extensions: Some editor extensions may need
to store their own data. This could be done
analogously to XML, giving nodes new attributes
and tags that are ignored by other modules. Data
extensions could be used to store intermediate
recognition results, and could even allow the data

type to represent more complex scene graphs
(e.g., multi-trees allow a node to have multiple
parents). If a particular extension becomes
common, then it may be incorporated into the
―official‖ format.

 Human readability: desirable if support for a
particular extension becomes unavailable.

 Existing support: Choosing a format that already
has a base of applications could have significant
advantages. SWF is a reasonable candidate, but
access to this format is controlled by Adobe.
Microsoft claims that the new PowerPoint format

(.pptx) is open and it may be extensible. SVG also
has moderate acceptance, and InkML has
generated some modest activity.

Editor Overview

Once a data format has been established, the next step

is to create an editor that is fast, robust, configurable,

and works on popular pen computing devices. The most

important element of this editor will be a canvas for

manipulating graphical data. Multiple canvases may be

visible at any given time, containing different data files

or different views onto the same data.

The extensibility of this editor will be visible to users

through commands and interaction modes. A command

will be an action executed by a user on all or part of a

canvas. Interaction modes will determine the user’s

experience when interacting with a canvas. Some

modes may add controls or canvases to the periphery

of the main canvas or launch dialogs. Users will be able

to choose commands and interaction modes by name

or by selecting them from a list of available extensions.

As an additional stability guarantee for users, this

editor should provide some way to view and edit any

data extensions. If users do not have the software

extensions necessary for interpreting the data

extensions, the editor should help them to find the

software with a package manager. If the software is

unavailable, then allowing users to view or edit data

extensions would give them some hope of recovery.

By providing access to a variety of commands and

interaction modes, this editor already provides

considerable support for designers. Further support

would be provided by allowing sequences of commands

to be recorded as macros. Also, special interaction

modes could allow designers to configure the editor or

modify the appearance and behavior of standard

controls. This would allow both designers and users to

tailor the behavior of the editor to their tastes or

working environments. Over time, even more designer

support could be added by developers through the

extension mechanism described in the next section.

Extending the Editor

The editor would support developers of sketch

recognition interfaces by handling common operations,

such as file loading, rendering, simple editing, and

undo. To work with the editor, developers would create

plug-ins that implement one of the following interfaces:

 Data visitors: define the behavior of commands by

visiting all or part of the graphical object tree.

 6

These may execute once or repeatedly. Repeating

visitors may add editor controls, but these would

be removed when the visitor stops running. To

keep the editor running smoothly, repeating

visitors would be separated into two groups: those

that run at interactive speeds (ten milliseconds)

and those that take longer. This general interface is

suitable for building a range of extensions, such as

animated feedback, links to other applications, or

segmentation, recognition, and beautification

engines.

 Interactors: define interaction modes by receiving
and responding to input events. These may use
other interactors and add controls to the editor.
Interactors may do much of their work through
data visitors, and these visitors may likewise
require certain interactors to be active.

 Shells: define the basic editor interface, allowing
configuration for specific work environments.

 Control styles: define the behavior of a basic set of

controls and interactions, allowing the editor to be

tailored to a user’s taste or the needs of particular

hardware. Simple controls would include buttons,

checkboxes, radio buttons, menus (anchored or

pop-up), textboxes, listboxes, treeviews, sliders,

and tooltips. Additional controls would manage

input and output behavior common to graphical

editors, such as text input, selection, context menu

activation, file loading and saving, color choosing,

and viewing help.

These four types of extensions would give designers

and users access to a wide range of innovations.

Furthermore, the separation of concerns in this

architecture liberates developers. Recognition

technology developers, for example, do not need to

worry about users’ preferred interaction styles.

Interface developers, on the other hand, can create

applications without committing themselves to one

recognition technology. The set of available controls is

small, which would seem to limit innovation. However,

new controls and dialog boxes would be built on top of

canvases and interactors, allowing unbounded

extension (at the loss of some control style

independence).

Extensions would have access to a set of core data

types, including collections and dates. They would also

have interfaces for manipulating the data model,

getting input, formatting output, creating command

objects (for undo, redo, and macro recording), and

logging data. It may also be possible to provide some

access to network and threading routines.

Choosing a Platform

Choosing a set of hardware platforms for this extensible

editor is both important for attracting a user base and

extremely difficult due to the complex caveats

associated with each platform. Following is a brief list of

candidate platforms:

 Windows and Tablet PC: Tablets are the best
hardware for many recognition based interfaces.

 Macintosh: used by many students, educators, and
creative professionals.

 iPhone and iPad: this popular platform is being
used for ink applications despite the absence of a
stylus. The iPhone has a prohibitively small form
factor, but the new iPad is much larger.

 Android and Pocket PC: Google’s and Microsoft’s
platforms for hand-held computers.

 7

 Linux: less frequently used for pen computing, but
interesting because it is free.

The choice of platforms also affects the languages that

can be used to build extensions and to build the editor

itself. Following is a short list of possible languages:

 C and C++: difficult to work with, but can be
ported to almost any platform.

 C# and Java: easier to work with than C or C++
and supported on many platforms.

 Python: a popular scripting language that is easily
ported to new platforms.

 Ruby and Lisp: more flexible than Python, but
slower and with less support.

 JavaScript and ActionScript: related languages that
are popular for web development but have limited
support outside web browsers.

Scripting languages are better for simple extensions, as

these languages are easy to work with. However,

compiled languages are more appropriate for

extensions that require high performance (e.g.,

recognizers). It may be possible to get the best of both

worlds by allowing extensions to be written in both

types of languages.

Platform and language choices will also be influenced

by available software tools and APIs. Following is a

brief list of software frameworks that might be used to

develop an extensible editor.

 Microsoft WPF: This can be used only on Windows
operating systems, but it includes many helpful
features for managing and rendering ink data.
Programs can be built with C# or with a variety of
other languages such as Python and Ruby. The

starPad system [2] was built with WPF and could
provide the foundation for an extensible editor.

 Microsoft Silverlight: This is similar to WPF, but
programs can also run on Macintosh computers and
possibly Linux (eventually). Programs must be
delivered initially through a web browser, but can
be configured to run without the browser.
Unfortunately, Silverlight’s support for ink data is

significantly less than WPF’s.

 Adobe Flex: These programs run on all desktop
platforms but few mobile platforms. Programs are
written with Adobe’s ActionScript language.

 Apple Cocoa: These programs run on the
Macintosh, iPhone, and IPad. Interface components
must be written in Objective C, and support for
other languages is somewhat limited.

 GTK: This is an open-source toolkit for Windows,
Macintosh, and Linux computers. It was originally
designed for C, but other language options are
becoming available.

 Unity: This is a commercial game development
toolkit for many platforms, including Windows,
Macintosh, and the iPhone [11]. Programming can
be done in C#, JavaScript, and Python.

A good development strategy for this editor would
balance developers’ need to keep costs low with users’
need for a robust and responsive interface that runs on
many platforms. One approach would be to develop the
editor first with Microsoft WPF, allowing extensions to
be written in Python. Over time, core functionality could
be moved into C++, dynamic linking to C++ extensions
could be supported, and the editor could be ported to

new platforms as needed.

License

If the extensible editor described here were developed,

it would presumably be owned by the university or

consortium responsible for its development. The license

 8

under which the editor is made available will have far

reaching implications for it acceptance and further

development. Since the purpose of the editor is to

promote development of sketch recognition interfaces,

it should be made available for free, but under what

license?

A strong open-source license that forces all extensions

to be shared with the community (e.g., GPL) seems to

be most in line with the goals of this editor. If there is

to be any commercial development, however, it will be

necessary to use a weaker license that permits

proprietary extensions (e.g., LGPL) or a permissive

license that permits modification of the editor (e.g.,

BSD). This paper has assumed, however, that a

stronger license is needed to challenge the status quo

and spur innovation.

Conclusions

I have outlined an architecture for an extensible editor

that would create a stable playground for

experimentation with sketch recognition technology.

This playground would facilitate collaboration between

recognition technology developers, interface designers,

and early adopters of new sketch recognition

applications. I have argued that such an editor could

enable our community to discover a new generation of

killer applications.

I offer this proposal to the sketch recognition

community to urge deeper collaboration. I do not

expect to accomplish anything by defining yet another

de jure standard, as such standards tend to be ignored.

However, if a motivated group of HCI researchers could

find a way to collaborate with a motivated group of

sketch recognition researchers, their work could bring

about a vibrant community that changes the world.

Author Biography

I am an Assistant Professor of Information Systems at

Singapore Management University, and I have been

doing research and development in HCI and pen

computing for over 10 years. My work shows my

frustration with sketch recognition systems more than

my expertise with them. My first system, NotePals [4],

included note taking applications for PalmPilots and

CrossPads that recognized simple gestures as well as

offline handwriting recognition in a web-based

repository. Fascinated with sketch recognition

technology, but unable to deploy it effectively, my later

work used it less. JotMail [12] linked voice mail with ink

notes but provided no sketch recognition. I helped

bring handwriting recognition to Mimio [9], but this was

an expensive add-on that was never fully integrated

with the system. SketchWizard [5] was originally

intended to facilitate experimentation with sketch

recognizers, but this feature was never completed due

to cost. Finally, my K-Sketch animation sketching

system [3] avoids the use of sketch recognition

altogether. I am still eager to use recognition

technology to make new creative tools, but recognition

components seem continually out of reach.

References
[1] Bederson BB, Grosjean J, Meyer J. Toolkit design
for interactive structured graphics. IEEE Transactions
on Software Engineering, 30(8):535-46, 2004.

[2] Brown University, starPad SDK.

http://graphics.cs.brown.edu/research/pcc/starpad.htm
l

 9

[3] Davis RC, Colwell B, Landay JA. K-Sketch: a
―kinetic‖ sketch pad for novice animators. Proceedings
of the SIGCHI Conference on Human Factors in
Computing Systems, pp 413-22. Florence, Italy, April
2008.

[4] Davis RC, Landay JA, Chen V, Huang J, Lee RB, Li
FC, Lin J, Morrey CB, Schleimer B, Price MN, Schilit BN.
NotePals: lightweight note sharing by the group, for the
group. Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems, pp 338-45.
Pittsburgh, PA, May 1999.

[5] Davis RC, Saponas TS, Shilman M, Landay JA.

SketchWizard: Wizard of Oz prototyping of pen-based
user interfaces. Proceedings of the ACM Symposium on
User Interface Software and Technology, pp 119-28.
Newport, RI 2007.

[6] Forbus KD. CogSketch Tutorial. Proceedings of
The Annual Meeting of the Cognitive Science Society
(CogSci) Amsterdam, Netherlands, July 2009.

[7] Hong JI, Landay JA. SATIN: a toolkit for informal
ink-based applications. Proceedings of the ACM
Symposium on User Interface Software and
Technology, pp 63-72. San Diego, CA, August 2000.

[8] Lakin F, Wambaugh J, Leifer L, Cannon D, Sivard
C. The Electronic Design Notebook: Performing Medium
and Processing Medium. The Visual Computer, 5:214-
26, 1989.

[9] Newell Rubbermaid, mimio electronic whiteboard
tool. http://www.mimio.com

[10] Plimmer B, Freeman I. A Toolkit Approach to
Sketched Diagram Recognition. Proceedings of the
British Computer Society Conference on Human-
Computer Interaction, pp 205-13. Lancaster, UK,
September 2007.

[11] Unity Technologies, Unity game development
platform. http://unity3d.com

[12] Whittaker S, Davis R, Hirschberg J, Muller U.
Jotmail: a voicemail interface that enables you to see
what was said. Proceedings of the SIGCHI Conference

on Human Factors in Computing Systems, pp 89-96.
The Hague, The Netherlands, April 2000.

	Playing with Recognizers: A Call for an Extensible Editor
	Citation

	Background

