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SUMMARY

The Stock–Watson coincident index and its subsequent extensions assume a static linear

one-factor structure for the component indicators. Such assumption is restrictive in practice,

however, with as few as four indicators. In fact, such assumption is unnecessary if one defines

a coincident index as an estimate of latent monthly real GDP. This paper considers VAR and

factor models for latent monthly real GDP and other coincident indicators, and estimates

the models using the observable mixed-frequency series. For US data, Schwartz’s Bayesian

information criterion selects a two-factor model. The smoothed estimate of latent monthly

real GDP is the proposed index.
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1 INTRODUCTION

Since the seminal work by Stock and Watson (1989, 1991), it has been standard in the literature on

business cycle indices to assume a static linear one-factor structure for coincident indicators, and

use the estimated “common factor” as a coincident index; e.g., Kim and Yoo (1995), Diebold and

Rudebusch (1996), Chauvet (1998), Kim and Nelson (1998), and Mariano and Murasawa (2003).

This one-factor structure assumption is restrictive in practice. Indeed, Murasawa (2003) tests the

autocovariance structure of the four US coincident indicators used in these works, and finds a

strong evidence against the one-factor structure assumption.

This paper proposes a method for constructing a coincident index without assuming a one-

factor model. The idea is simple. Many, if not all, will agree that if we observe real GDP promptly

on monthly basis, then we do not need a coincident index; i.e., a coincident index is a “proxy”

for latent monthly real GDP. If so, then it is natural to consider prediction of monthly real GDP

directly, which does not require a one-factor model. This paper thus relates two seemingly separate

issues, namely index construction and interpolation of real GDP.

Mariano and Murasawa (2003) stress that a business cycle index must have an economic in-

terpretation, because the “amplitude” of a cycle depends on the choice of an index. Figure 1

compares the composite index (CI) of coincident indicators, released by The Conference Board,

and the Stock–Watson Experimental Coincident Index (XCI), released by themselves on their home

pages,1 with seasonally-adjusted quarterly real GDP from 1979 to 1983, during which there are

two peaks and two troughs. The XCI indicates that the trough in November 1982 is deeper than

that in July 1980, whereas the CI indicates that the depth of the two are almost equal. In fact, real

GDP is higher in the fourth quarter of 1982 than in the third quarter of 1980. Such inconsistency

can arise because the levels of these indices have no economic interpretation. While Mariano and

Murasawa (2003) include real GDP in the one-factor model to relate the common factor to monthly

real GDP, this paper estimates monthly real GDP directly.

Figure 1.

Specifically, this paper considers VAR and factor models for latent monthly real GDP and other
1 They retired their indices in June 2004. The historical values are still available.
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coincident indicators, and estimates the models using the observable mixed-frequency series. The

estimation procedure follows Mariano and Murasawa (2003), i.e., we derive a state-space model

for the observable mixed-frequency series, and treat the mixed-frequency series as monthly series

with missing observations. Using SsfPack 2.2 by Koopman, Shephard, and Doornik (1999), which

runs on Ox 3.30 by Doornik (2001), ML estimation of a linear Gaussian state-space model is

straightforward, even with missing observations. For US data, Schwartz’s Bayesian information

criterion selects a two-factor model, where the common factors jointly follow VAR(1) and the

specific factors independently follow AR(1). The associated smoothed estimate of latent monthly

real GDP is the proposed index.

In practice, quasi-Newton methods may fail to converge if the model has too many unknown

parameters. The EM algorithm is useful in such cases. Shumway and Stoffer (1982) derive the

EM algorithm for ML estimation of a linear Gaussian state-space model, allowing for missing

observations. Since the EM algorithm slows down significantly near the maximum, many authors

suggest switching to a quasi-Newton method at some point, i.e., using the EM algorithm to find a

good starting value for a quasi-Newton method. Unfortunately, the EM algorithm does not apply

directly to factor models with mixed-frequency series; hence we use it only for VAR models in this

paper.

In the literature on interpolation of real GDP, the best linear unbiased interpolation by Chow

and Lin (1971) is most popular, but some authors use state-space models; e.g., Bernanke, Gertler,

and Watson (1997), Cuche and Hess (1999, 2000), and Liu and Hall (2001). They consider uni-

variate linear regression models for latent monthly real GDP, where for temporal aggregation,

they do not take the log transformation. This paper takes the log transformation and considers

multivariate models, following the convention in the literature on index construction.

The plan of the paper is as follows. Section 2 introduces what we call a mixed-frequency VAR

model, i.e., we set up a VAR model for partially latent time series, and derive a state-space model

for the observable mixed-frequency series. We also derive the EM algorithm for ML estimation

of a Gaussian mixed-frequency VAR model. Section 3 discusses a mixed-frequency factor model.

Section 4 applies the method to US data to obtain a new coincident index. Section 5 discusses
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remaining issues.

2 MIXED-FREQUENCY VAR MODEL

2.1 VAR Model

Let {Yt,1} be an N1-variate random sequence observable every third period (quarterly series) and

{Yt,2} be an N2-variate random sequence observable every period (monthly series). Let for all t,

Yt := (Y ′
t,1, Y

′
t,2)

′ and N := N1 + N2. Assume that {lnYt} is integrated of order 1.

Let {Y ∗
t,1} be a latent random sequence underlying {Yt,1} such that for all t,

lnYt,1 =
1

3

(

lnY ∗
t,1 + lnY ∗

t−1,1 + lnY ∗
t−2,1

)

, (1)

i.e., Yt,1 is the geometric mean of Y ∗
t,1, Y ∗

t−1,1, and Y ∗
t−2,1. Taking the three-period differences, for

all t,

lnYt,1 − lnYt−3,1 =
1

3

(

lnY ∗
t,1 − lnY ∗

t−3,1

)

+
1

3

(

lnY ∗
t−1,1 − ln Y ∗

t−4,1

)

+
1

3

(

lnY ∗
t−2,1 − lnY ∗

t−5,1

)

,

or

yt,1 =
1

3

(

y∗
t,1 + y∗

t−1,1 + y∗
t−2,1

)

+
1

3

(

y∗
t−1,1 + y∗

t−2,1 + y∗
t−3,1

)

+
1

3

(

y∗
t−2,1 + y∗

t−3,1 + y∗
t−4,1

)

=
1

3
y∗

t,1 +
2

3
y∗

t−1,1 + y∗
t−2,1 +

2

3
y∗

t−3,1 +
1

3
y∗

t−4,1, (2)

where yt,1 := ∆3 lnYt,1 and y∗
t,1 := ∆ lnY ∗

t,1. We observe {yt,1} every third period, and never

observe {y∗
t,1}.

Let for all t,

yt :=

(

yt,1

yt,2

)

, y∗
t :=

(

y∗
t,1

yt,2

)

,

where yt,2 := ∆ lnYt,2. Let

H(L) :=

[

(1/3)IN1
0

0 IN2

]

+

[

(2/3)IN1
0

0 0

]

L +

[

IN1
0

0 0

]

L2

+

[

(2/3)IN1
0

0 0

]

L3 +

[

(1/3)IN1
0

0 0

]

L4,

where L is the lag operator. Let µ := E(yt) and µ∗ := E(y∗
t ). Then for all t,

yt − µ = H(L)(y∗
t − µ∗). (3)
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Assume a Gaussian VAR(p) model for {y∗
t } such that for all t,

Φ(L)(y∗
t − µ∗) = wt, (4)

{wt} ∼ NID(0,Σ). (5)

2.2 State-Space Representation

If p ≤ 5, then we define the state vector as for all t,

st :=







y∗
t − µ∗

...
y∗

t−4 − µ∗






.

A state-space representation of the VAR model is for all t,

st+1 = Ast + Bzt, (6)

yt = µ + Cst, (7)

{zt} ∼ NID(0, IN ), (8)

where

A :=

[

Φ1 . . . Φp ON×(5−p)N

I4N O4N×N

]

,

B :=

[

Σ1/2

O4N×N

]

,

C := [ H0 . . . H4 ] .

If p ≥ 5, then we define the state vector as for all t,

st :=







y∗
t − µ∗

...
y∗

t−p+1 − µ∗






.

A state-space representation of the VAR model is the same except that

A :=

[

Φ1 . . . Φp−1 Φp

I(p−1)N O(p−1)N×N

]

,

B :=

[

Σ1/2

O(p−1)N×N

]

,

C := [H0 . . . H4 ON×(p−5)N ] .

2.3 ML Estimation by a Quasi-Newton Method

Using SsfPack 2.2 by Koopman, Shephard, and Doornik (1999), which runs on Ox 3.30 by Doornik

(2001), ML estimation of a linear Gaussian state-space model by a quasi-Newton method is straight-
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forward, even with missing observations. When the number of the unknown parameters is large,

however, this may fail, especially with a poor starting value.

2.4 ML Estimation by the EM Algorithm

2.4.1 Missing Observations

Following Mariano and Murasawa (2003), we fill in missing observations with random numbers

independent of the model parameters, and rewrite the measurement equation accordingly, so that

the Kalman filter “skips” the random numbers. Since realizations of the random numbers do not

matter, we can simply put 0s for missing observations in practice.

Let for all t,

y+
t,1 :=

{

yt,1 if yt,1 is observable
vt otherwise

,

where vt is a random number. We assume for convenience that {vt} ∼ NID(0, IN1
). The measure-

ment equation for {yt} is for all t,

(

yt,1

yt,2

)

=

(

µ1

µ2

)

+

[

C1

C2

]

st.

We can write for all t,

(

y+
t,1

yt,2

)

=

(

µt,1

µ2

)

+

[

Ct,1

C2

]

st +

(

Dt,1

0

)

vt,

where

µt,1 :=
{

µ1 if yt,1 is observable
0 otherwise

,

Ct,1 :=
{

C1 if yt,1 is observable
0 otherwise

,

Dt,1 :=

{

0 if yt,1 is observable
IN1

otherwise
.

Let for all t,

y+
t :=

(

y+
t,1

yt,2

)

, µt :=

(

µt,1

µ2

)

, Ct :=

[

Ct,1

C2

]

, Dt :=

[

Dt,1

0

]

.

Then we have a state-space model for
{

y+
t

}

such that for all t,

st+1 = Ast + Bzt, (9)

y+
t = µt + Ctst + Dtvt, (10)

{(

zt

vt

)}

∼ NID(0, IN+N1
). (11)
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2.4.2 Likelihood Function

Assume for simplicity that we know µ∗ to be 0. Let Φ := [Φ1, . . . , Φp], φ := vec(Φ′), and θ :=

(φ′, vech(Σ)′)′. Consider an approximate ML estimator of θ, taking s0 as given. We derive the EM

algorithm for solving this ML problem.

Let for t ≥ 0, St := (s0, . . . , st). Let Y +
0 := ∅ and for t ≥ 1, Y +

t :=
(

y+
1 , . . . , y+

t

)

. Let Ω ⊂

{1, . . . , T} be the set of periods such that yt,1 is missing. By the prediction error decomposition,

we can write the joint pdf of
(

Y +
T , ST

)

as

f
(

Y +
T , ST ; θ

)

=

T
∏

t=1

f
(

y+
t,1, yt,2|st, Y

+
t−1, St−1; θ

)

f
(

st|Y
+
t−1, St−1; θ

)

=

T
∏

t=1

f
(

y+
t,1|st; θ

)

f (st|st−1; θ)

=
∏

t∈Ω

f(vt)
T

∏

t=1

f(y∗
t |st−1; θ).

Let

F :=

{

[ IN ON×4N ] if p ≤ 5
[ IN ON×(p−1)N ] if p ≥ 5

,

G :=

{

[ IpN OpN×(5−p)N ] if p ≤ 5
IpN if p ≥ 5

.

Then for all t,

Fst = y∗
t

= Φ1y
∗
t−1 + · · · + Φpy

∗
t−p + wt

= ΦGst−1 + wt

=







φ′
1
...

φ′
N






Gst−1 + wt

=







s′t−1G
′φ1

...
s′t−1G

′φN






+ wt

=







s′t−1G
′ 0

. . .

0 s′t−1G
′













φ1
...

φN






+ wt

=
(

IN ⊗ s′t−1G
′
)

φ + wt.

The log-likelihood function of θ given
(

Y +
T , ST

)

is

lnL
(

θ; Y +
T , ST

)

7



=
∑

t∈Ω

ln f(vt) −
NT

2
ln 2π −

T

2
ln det(Σ)

−
1

2

T
∑

t=1

(Fst − ΦGst−1)
′Σ−1(Fst − ΦGst−1)

=
∑

t∈Ω

ln f(vt) −
NT

2
ln 2π −

T

2
ln det(Σ)

−
1

2

T
∑

t=1

[

Fst −
(

IN ⊗ s′t−1G
′
)

φ
]′

Σ−1
[

Fst −
(

IN ⊗ s′t−1G
′
)

φ
]

.

2.4.3 Kalman Filtering and Smoothing

Initial State Let for all t, for s ≥ 0,

st|s := E
(

st|Y
+
s

)

,

Pt|s := V
(

st|Y
+
s

)

.

To start the Kalman filter, one must specify s1|0 and P1|0. Given stationarity, we have

s1|0 = 0, (12)

vec(P1|0) = (IM2 − A ⊗ A)
−1

vec(BB′), (13)

where M is the dimension of the state vector; see Hamilton (1994, p. 378). The second equation

involves inversion of a large matrix, which can cause a computational problem. Hence we instead

assume that s0 := 0, which implies that

s1|0 = 0, (14)

P1|0 = BB′. (15)

The resulting estimator is asymptotically equivalent to the exact ML estimator.

Updating We have for t ≥ 1,

(

st

y+
t

)

|Y +
t−1 ∼ N

((

st|t−1

Ctst|t−1

)

,

[

Pt|t−1 Pt|t−1C
′
t

CtPt|t−1 CtPt|t−1C
′
t + DtD

′
t

])

.

The updating equations are for t ≥ 1,

st|t = st|t−1 + Pt|t−1C
′
t

(

CtPt|t−1C
′
t + DtD

′
t

)−1 (

yt − Ctst|t−1

)

= st|t−1 + Ktet, (16)

8



Pt|t = Pt|t−1 − Pt|t−1C
′
t

(

CtPt|t−1C
′
t + DtD

′
t

)−1
CtPt|t−1

= (IM − KtCt)Pt|t−1, (17)

where

Kt := Pt|t−1C
′
t

(

CtPt|t−1C
′
t + DtD

′
t

)−1
,

et := y+
t − Ctst|t−1.

Prediction The prediction equations are for t ≥ 1,

st+1|t = Ast|t, (18)

Pt+1|t = APt|tA
′ + BB′. (19)

Fixed-Interval Smoothing The following algorithm by de Jong (1989) avoids inversion of large

matrices, and hence is more efficient than the standard smoothing equations; see also Durbin and

Koopman (2001, sec. 4.3). Let rT+1 := 0, RT+1 := 0, and for t = T, . . . , 1,

rt := C′
t

(

CtPt|t−1C
′
t + DtD

′
t

)−1
et + L′

trt+1,

Rt := C′
t

(

CtPt|t−1C
′
t + DtD

′
t

)−1
Ct + L′

tRt+1Lt,

where

Lt := A(IM − KtCt).

The smoothing equations are for t = 1, . . . , T ,

st|T = st|t−1 + Pt|t−1rt, (20)

Pt|T = Pt|t−1 − Pt|t−1RtPt|t−1. (21)

The EM algorithm for ML estimation of a linear Gaussian state-space model also requires the

smoothed first-order autocovariance matrix of {st}. Let for all t, s,

Pt,s|T := Cov
(

st, ss|Y
+
T

)

.

De Jong and MacKinnon (1988) show that for s = 1, . . . , T − 1, for t = 1, . . . , T − s,

Pt+s,t|T =
(

IM − Pt+s|t+s−1Rt+s

)

Lt+s−1 · · ·LtPt|t−1. (22)

9



In particular, for t = 1, . . . , T − 1,

Pt+1,t|T =
(

IM − Pt+1|tRt+1

)

LtPt|t−1. (23)

2.4.4 EM Algorithm

The score function of θ given
(

Y +
T , ST

)

consists of

∂ lnL
(

θ; Y +
T , ST

)

∂φ

=

T
∑

t=1

(

IN ⊗ s′t−1G
′
)′

Σ−1
[

Fst −
(

IN ⊗ s′t−1G
′
)

φ
]

=

T
∑

t=1

(IN ⊗ Gst−1)Σ−1Fst −
T

∑

t=1

(IN ⊗ Gst−1) Σ−1
(

IN ⊗ s′t−1G
′
)

φ

=

T
∑

t=1

Σ−1(Fst ⊗ Gst−1) −
T

∑

t=1

(

Σ−1 ⊗ Gst−1s
′
t−1G

′
)

φ

=
T

∑

t=1

Σ−1vec(Gst−1s
′
tF

′) −
T

∑

t=1

(

Σ−1 ⊗ Gst−1s
′
t−1G

′
)

φ,

∂ lnL
(

θ; Y +
T , ST

)

∂Σ−1

=
T

2
Σ −

1

2

T
∑

t=1

(Fst − ΦGst−1)(Fst − ΦGst−1)
′

=
T

2
Σ −

1

2

T
∑

t=1

(

Fsts
′
tF

′ − Fsts
′
t−1G

′Φ′ − ΦGst−1s
′
tF

′ + ΦGst−1s
′
t−1G

′Φ′
)

.

Let for r, s = 0, 1,

Mr,s :=
1

T

T
∑

t=1

E
(

st−rs
′
t−s|Y

+
T

)

=
1

T

T
∑

t=1

(

Pt−r,t−s|T + st−r|T s′t−s|T

)

.

Taking the conditional expectation of the likelihood equation given Y +
T ,

Σ∗−1vec(GM1,0F
′) −

(

Σ∗−1 ⊗ GM1,1G
′
)

φ∗ = 0,

Σ∗ −
(

FM0,0F
′ − FM0,1G

′Φ∗′ − Φ∗GM1,0F
′ + Φ∗GM1,1G

′Φ∗′
)

= 0,

or

φ∗ =
(

Σ∗−1 ⊗ GM1,1G
′
)−1

Σ∗−1vec(GM1,0F
′)

=
[

IN ⊗ (GM1,1G
′)−1

]

vec(GM1,0F
′), (24)

Σ∗ = FM0,0F
′ − FM0,1G

′Φ∗′ − Φ∗GM1,0F
′ + Φ∗GM1,1G

′Φ∗′. (25)
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The EM algorithm proceeds as follows:

1. Choose a starting value θ(0).

2. (E step) Compute
{

st|T

}

,
{

Pt|T

}

, and
{

Pt,t−1|T

}

.

3. (M step) Compute (φ∗, Σ∗), and use it as θ(1).

4. Iterate until convergence.

The smoothing algorithm gives
{

E
(

y∗
t,1|Y

+
T

)}

.

3 MIXED-FREQUENCY FACTOR MODEL

3.1 Factor Model

Assume a K-factor model for {y∗
t }, where K < N , such that for all t,

y∗
t = µ∗ + Λft + ut, (26)

Φf (L)ft = vt, (27)

Φu(L)ut = wt, (28)

{(

vt

wt

)}

∼ NID

(

0,

[

Σvv 0
0 Σww

])

, (29)

where Φf (.) is the pth-order polynomial on <K×K and Φu(.) is the qth-order polynomial on <N×N .

For identification, assume that

Λ :=

[

IK

Λ2

]

,

and that Φu(.) and Σww are diagonal.

3.2 State-Space Representation

Assume that p, q ≤ 5. Let for all t,

st :=



















ft
...

ft−4

ut
...

ut−4



















.

A state-space representation of the factor model is for all t,

st+1 = Ast + Bzt, (30)
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yt = µ + Cst, (31)

{zt} ∼ NID(0, IK+N ), (32)

where

A :=



























Φf,1 . . . Φf,p OK×(5−p)K

IK 0 OK×K

. . .
...

0 IK OK×K

O5K×5N

O5N×5K

Φu,1 . . . Φu,q ON×(5−q)N

IN 0 ON×N

. . .
...

0 IN ON×N



























,

B :=









Σ
1/2
vv

O4K×K
O5K×N

O5N×K
Σ

1/2
ww

O4N×N









,

C := [ H0Λ . . . H4Λ H0 . . . H4 ] .

3.3 ML Estimation

The EM algorithm does not apply when the measurement equation has unknown parameters but

does not have an error term, since these parameters do not appear in the complete-data likelihood

function. According to Ruud (1991, p. 310), “the transformation τ from latent to observable data

cannot depend on parameters to be estimated in such a way that the support of y∗ conditional on

y depends on θ.”

Watson and Engle (1983, p. 397) give an alternative state-space representation of a factor

model, and apply the EM algorithm. Their representation does not hold with mixed-frequency

series, however. Hence we rely on a quasi-Newton method from an ad hoc starting value.

Given the parameters, we have for t = 1, . . . , T ,

E
(

y∗
t |Y

+
T

)

= µ∗ + Λ′E
(

ft|Y
+
T

)

+ E
(

ut|Y
+
T

)

. (33)

The smoothing algorithm gives
{

E
(

ft|Y
+
T

)}

and
{

E
(

ut|Y
+
T

)}

.

4 APPLICATION

4.1 Data

We apply the method described above to US coincident indicators to construct a new coincident

index of business cycles. The component indicators are quarterly real GDP and the four monthly
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coincident indicators that currently make up the CI; see Table 1 for their descriptions. The sample

period is from January 1959 to December 2002.

Table 1.

To stationarize the series, we take the first difference of the natural log of each series and

multiply it 100, which is approximately equal to the quarterly or monthly percentage growth rate

series. Table 2 gives summary statistics of these “growth rate” series.

Table 2.

4.2 VAR Coincident Index

We take two shortcuts in ML estimation of our state-space models, both of which are common and

useful in practice. First, we “demean” the series, and delete the constant term from the model.

This reduces the number of the parameters by N . Second, we use an approximate ML estimator

instead of the exact one regarding the initial state for the Kalman filter, i.e., we assume that

s0 := 0. This avoids inversion of a large matrix, and saves the computational cost further. Recall

that without missing observations one usually estimates a VAR model by applying OLS to the

demeaned series. We take similar shortcuts here.

One must select p, the order of the VAR model. The two common criteria for model selection

are Akaike’s information criterion (AIC) and Schwartz’s Bayesian information criterion (SBIC).

For our model,

AIC := −
1

T

{

lnL
(

θ̂
)

−

[

pN2 +
N(N + 1)

2

]}

,

SBIC := −
1

T

{

lnL
(

θ̂
)

−
lnT

2

[

pN2 +
N(N + 1)

2

]}

,

where θ̂ is the (approximate) ML estimator of θ.

We estimate the mixed-frequency VAR model and compute the associated AIC and SBIC for

p = 1, . . . , 12. Since a quasi-Newton method from an ad hoc starting value may fail to converge

when p is large, we estimate the model in the following two steps:

1. Apply the EM algorithm to obtain a preliminary ML estimate.
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2. Using this as the starting value, apply a quasi-Newton method to obtain the final ML esti-

mate.

We use Ox 3.30 with SsfPack 2.2 for computation. Ox has the Broyden–Fletcher–Goldfarb–Shanno

(BFGS) algorithm for numerical maximization.

Table 3 summarizes the result of model selection. AIC selects p = 10, whereas SBIC selects

p = 1. We typically follow AIC for optimal one-step ahead prediction and SBIC for consistent

model selection. Although it is unclear which is better for optimal smoothing, we follow SBIC

here, preferring the simpler model.

Table 3.

The smoothing algorithm gives the smoothed estimate of the “demeaned growth rate” series of

monthly real GDP. We transform it to the level series as follows:

1. Add the mean growth rate of monthly real GDP (the mean growth rate of quarterly real

GDP divided by 3), and divide the series by 100.

2. Take the cumulative sum; then take the exponential transformation.

Figure 2 plots the resulting estimate of monthly real GDP, which we call the VAR coincident index.

It appears rather volatile, but captures the NBER business cycle reference dates fairly well.

Figure 2.

4.3 K-Factor Coincident Index

A factor model may predict monthly real GDP better than VAR models with less parameters. AIC

and SBIC for a K-factor model are

AIC := −
1

T

{

lnL
(

θ̂
)

−

[

(N − K)K + pK2 +
K(K + 1)

2
+ qN + N

]}

,

SBIC := −
1

T

{

lnL
(

θ̂
)

−
lnT

2

[

(N − K)K + pK2 +
K(K + 1)

2
+ qN + N

]}

.

Since the EM algorithm does not apply directly to mixed-frequency factor models, we use an ad

hoc starting value for the BFGS algorithm. We find that numerical singularity tends to occur as
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K increases, which may be an identification problem as well as a numerical problem; hence we

consider only up to two-factor models.

Table 4 and 5 summarize the result of model selection. AIC selects (K, p, q) = (2, 1, 3), whereas

SBIC selects (K, p, q) = (2, 1, 1). Both criteria select two-factor models rather than one-factor

models. Among both VAR and factor models, AIC selects the VAR(1) model, whereas SBIC

selects the above two-factor model. We follow SBIC again, preferring the simpler model.

Table 4 and 5.

A factor model gives two different coincident indices: the smoothed estimate of monthly real

GDP and its common factor component (or the first common factor according to our identification

restriction). Mariano and Murasawa (2003) propose the latter as a natural extension of the Stock–

Watson coincident index, assuming a one-factor model. Figure 3 shows that the two indices differ

substantially, although both capture the NBER business cycle reference dates.

Figure 3.

4.4 Comparison

We have three candidate coincident indices:

1. smoothed estimate of monthly real GDP based on the VAR(1) model (VAR coincident index),

2. smoothed estimate of monthly real GDP based on the two-factor model (2-factor coincident

index),

3. smoothed estimate of the common factor component of monthly real GDP in the two-factor

model.

Figure 4 plots the three indices with the CI from 1979 to 1983. The two estimates of monthly

real GDP are close to each other and to quarterly real GDP in Figure 1, although they are rather

volatile. The first common factor is smoother, but differs significantly from monthly real GDP;

hence it is not a good proxy for monthly real GDP.

Figure 4.
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Note a “dip” in January 1982. The dip is deeper than the trough in November 1982 for the two

estimates of monthly real GDP, but it is the opposite for the other two indices. Although quarterly

real GDP increased, the four monthly coincident indicators all decreased between the two months,

which explains the slight decline in the common factor component of monthly real GDP.

In general, the behavior of the common factor component strongly depends on the choice of

the component indicators; hence monthly real GDP and its common factor component can give

different turning points. This paper thus proposes using an estimate of monthly real GDP, the

2-factor coincident index selected by SBIC, as a new coincident index of business cycles.

5 DISCUSSION

Index construction is interpolation of real GDP; i.e., a coincident index of business cycles must be

an estimate of monthly real GDP. This paper uses VAR and factor models for predicting monthly

real GDP, but one can try other models as well, e.g., a univariate regression model.

Dating turning points in the estimated monthly real GDP is another issue. The dating algorithm

by Bry and Boschan (1971) is popular. Fitting a Markov-switching model to the estimated monthly

real GDP is an alternative; see Hamilton (1989). Harding and Pagan (2003) compare the two

approaches, and criticize the latter.

ML estimation of a mixed-frequency factor model could be difficult when there are many com-

mon factors. One solution is to extract major principal components from quarterly and monthly

indicators respectively, and estimate a mixed-frequency VAR model for quarterly real GDP and the

principal components. Another solution is to apply the Bayesian method, perhaps using simulation.

One can extend this paper in several ways. First, construction of leading and lagging indices

is straightforward by defining a leading index as, say, a six-month ahead forecast of monthly real

GDP and a lagging index as the final estimate of the past monthly real GDP. Second, other models

are worth considering, since they may predict better with less parameters; e.g., VARMA models,

dynamic factor models, Markov-switching models, cointegration, etc. Third, to exploit information

in various indicators, one can consider a VAR model for latent monthly real GDP and major prin-

cipal components, or “diffusion indices,” extracted from many indicators; see Stock and Watson
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(2002a, 2002b). Fourth, it seems useful to predict monthly real GDP from the production, expen-

diture, and distribution sides respectively, and combine the three forecasts. Fifth, our framework

has other interesting applications; e.g., one can estimate monthly impulse response functions using

mixed-frequency series.
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Table 1: US Coincident Indicators

Indicator Description
Quarterly

GDP Real GDP (billions of chained 2000 dollars, SA, AR)
Monthly

EMP Employees on nonagricultural payrolls (thousands, SA)
INC Personal income less transfer payments (billions of chained 1996

dollars, SA, AR)
IIP Index of industrial production (1997 = 100, SA)
SLS Manufacturing and trade sales (millions of chained 1996 dollars,

SA)

Note: SA means “seasonally-adjusted” and AR means “annual rate.”

Table 2: Summary Statistics

Indicator Mean S.D. Min. Max.
Quarterly

GDP 0.82 0.88 −2.04 3.86
Monthly

EMP 0.17 0.23 −0.88 1.23
INC 0.27 0.56 −4.95 3.70
IIP 0.26 0.83 −3.66 6.00
SLS 0.27 1.05 −3.21 3.54

Note: Statistics are for the first difference of the natural log times 100.

Table 3: Model Selection (VAR Model)

p Log-likelihood AIC SBIC
1 −1825.2 −3.5109 −3.6121
2 −1766.5 −3.4469 −3.6493
3 −1723.8 −3.4133 −3.7170
4 −1697.6 −3.4110 −3.8159
5 −1674.5 −3.4146 −3.9207
6 −1636.5 −3.3900 −3.9973
7 −1607.3 −3.3819 −4.0904
8 −1570.2 −3.3590 −4.1687
9 −1554.1 −3.3759 −4.2868
10 −1516.7 −3.3523 −4.3644
11 −1495.4 −3.3594 −4.4728
12 −1475.2 −3.3684 −4.5830
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Table 4: Model Selection (One-Factor Model)

K p q Log-likelihood AIC SBIC
1 0 0 −2025.9 −3.8631 −3.9036
1 0 1 −1940.9 −3.7113 −3.7720
1 0 2 −1884.0 −3.6129 −3.6938
1 0 3 −1865.6 −3.5874 −3.6886
1 0 4 −1860.4 −3.5871 −3.7086
1 0 5 −1853.7 −3.5839 −3.7256
1 1 0 −1953.0 −3.7268 −3.7714
1 1 1 −1883.6 −3.6045 −3.6693
1 1 2 −1827.3 −3.5073 −3.5923
1 1 3 −1808.1 −3.4802 −3.5855
1 1 4 −1803.4 −3.4807 −3.6063
1 1 5 −1796.6 −3.4775 −3.6233
1 2 0 −1949.7 −3.7225 −3.7710
1 2 1 −1881.6 −3.6028 −3.6716
1 2 2 −1826.1 −3.5069 −3.5960
1 2 3 −1807.1 −3.4802 −3.5895
1 2 4 −1802.3 −3.4806 −3.6101
1 2 5 −1795.3 −3.4769 −3.6267
1 3 0 −1949.3 −3.7235 −3.7762
1 3 1 −1881.5 −3.6044 −3.6773
1 3 2 −1825.7 −3.5079 −3.6010
1 3 3 −1806.8 −3.4816 −3.5950
1 3 4 −1803.6 −3.4851 −3.6187
1 3 5 −1795.1 −3.4783 −3.6321
1 4 0 −1949.3 −3.7254 −3.7821
1 4 1 −1881.4 −3.6061 −3.6830
1 4 2 −1825.2 −3.5088 −3.6060
1 4 3 −1806.8 −3.4834 −3.6008
1 4 4 −1802.1 −3.4840 −3.6217
1 4 5 −1794.9 −3.4799 −3.6378
1 5 0 −1949.3 −3.7273 −3.7880
1 5 1 −1881.3 −3.6078 −3.6887
1 5 2 −1825.0 −3.5104 −3.6117
1 5 3 −1806.3 −3.4844 −3.6059
1 5 4 −1801.4 −3.4847 −3.6264
1 5 5 −1794.4 −3.4807 −3.6427
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Table 5: Model Selection (Two-Factor Model)

K p q Log-likelihood AIC SBIC
2 0 0 −2018.7 −3.8571 −3.9138
2 0 1 −1896.1 −3.6339 −3.7108
2 0 2 −1874.2 −3.6019 −3.6990
2 0 3 −1855.6 −3.5760 −3.6934
2 0 4 −1853.5 −3.5816 −3.7193
2 0 5 −1853.7 −3.5915 −3.7494
2 1 0 −1861.3 −3.5661 −3.6390
2 1 1 −1769.6 −3.4015 −3.4947
2 1 2 −1757.4 −3.3879 −3.5012
2 1 3 −1750.6 −3.3844 −3.5180
2 1 4 −1746.0 −3.3851 −3.5390
2 1 5 singular
2 2 0 −1852.8 −3.5575 −3.6465
2 2 1 −1766.9 −3.4040 −3.5133
2 2 2 −1754.8 −3.3904 −3.5200
2 2 3 −1747.0 −3.3852 −3.5350
2 2 4 −1742.3 −3.3858 −3.5558
2 2 5 singular
2 3 0 −1835.8 −3.5328 −3.6381
2 3 1 −1766.1 −3.4101 −3.5356
2 3 2 −1753.5 −3.3957 −3.5414
2 3 3 −1745.3 −3.3896 −3.5556
2 3 4 −1741.8 −3.3924 −3.5787
2 3 5 −1735.5 −3.3899 −3.5964
2 4 0 −1834.2 −3.5373 −3.6588
2 4 1 −1754.0 −3.3947 −3.5364
2 4 2 −1744.3 −3.3858 −3.5478
2 4 3 −1739.3 −3.3858 −3.5680
2 4 4 −1735.9 −3.3888 −3.5912
2 4 5 singular
2 5 0 −1828.0 −3.5331 −3.6708
2 5 1 −1760.4 −3.4145 −3.5723
2 5 2 −1742.5 −3.3899 −3.5681
2 5 3 −1737.6 −3.3901 −3.5885
2 5 4 −1733.6 −3.3921 −3.6107
2 5 5 −1728.8 −3.3924 −3.6313

Note: “singular” means that BFGS algorithm fails because of numerical singularity.
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Figure 1: The CI, the Stock–Watson XCI, and Seasonally-Adjusted Quarterly Real GDP from
1979 to 1983 (1980:Q1=1). The vertical lines are the NBER business cycle reference dates.
Sources: The NBER, the home page of James Stock, and the Bureau of Economic Analysis.
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Figure 2: Historical Plot of the VAR Coincident Index (1959:1=1). The vertical lines are the
NBER business cycle reference dates.
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Figure 3: Historical Plot of the Two-Factor Coincident Index (1959:1=1). The vertical lines are
the NBER business cycle reference dates.
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Figure 4: Comparison of Alternative Indices from 1979 to 1983 (1980:1=1). The vertical lines are
the NBER business cycle reference dates.
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