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Summary. Malaria remains a major epidemiologic problem in many developing countries. Malaria is de-
fined as the presence of parasites and symptoms (usually fever) due to the parasites. In endemic areas,
an individual may have symptoms attributable either to malaria or to other causes. From a clinical view-
point, it is important to correctly diagnose an individual who has developed symptoms so that the ap-
propriate treatments can be given. From an epidemiologic and economic viewpoint, it is important to
determine the proportion of malaria-affected cases in individuals who have symptoms so that policies on
intervention program can be developed. Once symptoms have developed in an individual, the diagnosis of
malaria can be based on the analysis of the parasite levels in blood samples. However, even a blood test
is not conclusive as in endemic areas many healthy individuals can have parasites in their blood slides.
Therefore, data from this type of study can be viewed as coming from a mixture distribution, with the
components corresponding to malaria and nonmalaria cases. A unique feature in this type of data, how-
ever, is the fact that a proportion of the nonmalaria cases have zero parasite levels. Therefore, one of
the component distributions is itself a mixture distribution. In this article, we propose a semiparamet-
ric likelihood approach for estimating the proportion of clinical malaria using parasite-level data from a
group of individuals with symptoms. Our approach assumes the density ratio for the parasite levels in
clinical malaria and nonclinical malaria cases can be modeled using a logistic model. We use empirical
likelihood to combine the zero and nonzero data. The maximum semiparametric likelihood estimate is
more efficient than existing nonparametric estimates using only the frequencies of zero and nonzero data.
On the other hand, it is more robust than a fully parametric maximum likelihood estimate that assumes
a parametric model for the nonzero data. Simulation results show that the performance of the proposed
method is satisfactory. The proposed method is used to analyze data from a malaria survey carried out in
Tanzania.

Key words: Attributable fraction; Density ratio model; Empirical likelihood; Malaria; Mixture methods.

1. Introduction
Recent reviews (World Health Organization, 1990) suggest
that malaria causes around 110 million sickness episodes and
one million deaths each year throughout the world. One of
the symptoms of malaria is fever. In an endemicity, a per-
son who has developed fever will be tested for parasite levels
in his/her blood. However, the test is often not conclusive
as healthy individuals living in endemic areas often tolerate
malaria parasites. Furthermore, fever can be due to causes
other than malaria. In other words, in individuals who have
developed fever, there are some with low parasite levels but
are truly malaria cases while there are some with high para-

site levels but are nonmalaria cases. Therefore, in analyzing
parasite-level data from individuals who have developed fever,
the data can be viewed as coming from a two-component mix-
ture distribution, with the components corresponding to the
malaria and nonmalaria population. A unique feature of this
type of data is that, within the nonmalaria population, there
are some who have zero-parasite level. Therefore, the distri-
bution of parasite level in the nonmalaria population is itself
a mixture distribution. More specifically, suppose a sample of
parasite levels from n febrile individuals is collected from an
endemicity. We let x1, x2, . . . ,xn be independent and identi-
cally distributed random variables representing the parasite
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levels. Then, x1, x2, . . . ,xn follow a two-component mixture
distribution with density

f(x) = (1 − λ)f ∗
1 (x) + λf2(x), (1)

where f ∗1 and f2 are the densities of parasite level in the non-
malaria and malaria populations, respectively. The mixing pa-
rameter λ is the proportion of individuals with clinical malaria
in the endemicity. It is also known as the malaria attributable
fraction. Furthermore, f ∗1 can be decomposed as

f ∗
1 (x) = pI(x = 0) + (1 − p)f1(x)I(x > 0),

where p is the proportion in the nonmalaria population with
zero parasite level, f1 is a density on (0, ∞), and I is an indi-
cator function. As a result, f can be written as

f(x) = p(1 − λ)I(x = 0)

+ {(1 − λ)(1 − p)f1(x) + λf2(x)}I(x > 0)

= p(1 − λ)I(x = 0)

+ [1 − p(1 − λ)]
{
(1 − λ∗)f1(x) + λ∗f2(x)

}
I(x > 0),

(2)

where λ∗ = λ/{1 − p(1 − λ)} can be interpreted as the proba-
bility of an individual carrying malaria given he/she has pos-
itive parasite level from the endemicity. Based on (2), we can
consider the distribution as a kind of “compound” mixture
distribution. A partitioning of a typical set of data in an en-
demicity is given in Table 1.

In general, without specifying the forms of f ∗1 and f2, the
mixture model (1) is not identifiable. However, the identifi-
ability problem can be solved if additional information can
be obtained. Vounatsou, Smith, and Smith (1998) described
a cross-sectional survey of parasitemia and fever among chil-
dren up to 1 year old in a village in the Kilombero district in
Tanzania (Kitua et al., 1996) where this is the case. In that
study, in addition to the data from the mixture distribution
in the endemicity, a secondary set of data z1, . . . , zm from f ∗1
was obtained from the community. The secondary data can
thus be considered as a training sample. Define the parasite
prevalence probabilities in the endemicity and the commu-
nity, respectively, as pf = 1 − p(1 − λ) and pa = 1 − p, then
Vounatsou et al. (1998) and Smith, Schellenberg, and Hayes
(1994) showed that

λ = (pf − pa)/(1 − pa). (3)

Based on (3), a natural estimator of λ is to replace pf and pa

by sample proportions. However, as Vounatsou et al. (1998)
pointed out, in general, pa is very high and the proportion
of community children without parasitemia is low. As a re-
sult, the estimator of λ using the sample proportions can be

Table 1
Partitioning of a set of data in an endemicity

Parasite level No malaria Malaria Total

X = 0 p(1 − λ) 0 p(1 − λ)
X > 0 (1 − p)(1 − λ) λ 1 − p(1 − λ)

Total 1 − λ λ 1

either negative or imprecise when pa is close to one. Also,
the estimator does not utilize the quantitative nature of the
parasite-level data. Another method to estimate λ is to use
the binomial counts of zero and nonzero parasite-level data.
Finally, Vounatsou et al. (1998) suggested a multinomial like-
lihood by grouping the observations from the mixture and the
training samples into a number of ordered categories. In this
article, we explore a method that makes use of the quantita-
tive nature of the data and also does not require grouping of
the data.

Without loss of generality, we assume the nonzero obser-
vations from the training sample and the mixture sample are
z1, . . . , zm1 , and x1, . . . , xn1 , respectively. Therefore,

z1, z2, . . . , zm1 ∼ f1(z),

x1, . . . , xn1 ∼ g(x) = (1 − λ∗)f1(x) + λ∗f2(x),

so that the density f1 is the same in the endemicity and the
training sample. The log likelihood is

� = �1 + �2, (4)

where

�1 = m0 log p + m1 log(1 − p) + n0 log{(1 − λ)p}

+n1 log{1 − (1 − λ)p} (5)

and

�2 =

m1∑
i=1

log f1(zi) +

n1∑
j=1

log
{
(1 − λ∗)f1(xj) + λ∗f2(xj)

}
. (6)

In (5) and (6), �1 is the marginal log likelihood of the number
of zeros in the data and �2 is the conditional likelihood given
that the data are greater than zero.

If inference is based on �1 alone, the method is that of
making use of the binomial data of the presence/absence of
parasites. On the other hand, if inference is based only on
�2, Lancaster and Imbens (1996) called this problem a case–
control problem with contaminated controls. One can expect
that the conditional log likelihood �2 may contain information
on λ∗ (or λ). Unfortunately, if the forms of f1 and f2 are un-
specified and λ∗ is unknown, then the mixture model is not
identifiable based on �2 alone. If there is an additional sam-
ple from f2 beside the mixture and the training samples, then
it is possible to estimate λ∗ nonparametrically (Murray and
Titterington, 1978; Hall, 1981; Hall and Titterington, 1984).
Alternatively, if parametric models are assumed for f1 and
f2, then a maximum likelihood method for a standard mix-
ture model can be employed to find the underlying param-
eters (Titterington, Smith, and Makov, 1985; Lindsay, 1995;
McLachlan and Krishnan, 1997; McLachlan and Peel, 2001).

Smith et al. (1994) considered a model-based approach in
which the relationship between parasite level and malaria
fever is modeled as a smooth function using a logistic regres-
sion. This method is equivalent to a two-sample semipara-
metric modeling assumption, where the log-density ratio is
linearly related to the observed data,

log
f2(x)

f1(x)
= α + xβ, or

f2(x) = exp(α + βx)f1(x), (α, β) �= (0, 0), (7)



458 Biometrics, June 2005

and the form of f 1(x) is not specified. Using model (7) in the
setting described here, we have a two-sample problem:

z1, z2, . . . , zm1 ∼ f1(x),

x1, x2, . . . , xn1 ∼ g(x) = [(1 − λ∗) + λ∗ exp(α + βx)]f1(x).

This may be considered as a biased sample problem with
weights w1(x) = 1, w2(x) = (1 − λ∗) + λ∗ exp(α + βx),
which depend on parameters (α, β) and λ. We propose using
(7) to model the density ratio of the malaria and nonmalaria
populations.

The rest of this article is organized as follows. In Sec-
tion 2, we consider estimation in a mixture model. Based
on the assumption that the component densities are related
by (7), we propose a semiparametric method using empiri-
cal likelihood (Owen, 1988) and biased sampling estimating
techniques (Vardi, 1982, 1985). In Section 3, we apply the
proposed method to the malaria survey data. Simulation re-
sults are given in Section 4. Concluding remarks are given in
Section 5.

2. Main Results
In this section, we consider estimating the parameters
(p, λ∗, α, β) in the mixture model when the component den-
sities are related by model (7). Note that we have suppressed
the parameter λ because it is a function of p, λ∗.

As defined in Section 1, m0 =
∑m

i=1 I(zi = 0),m1 = m−
m0, and n0 =

∑n

i=1 I(xi = 0), n1 = n− n0. Under (7), the log
likelihood (4) becomes

� = �1 + �2, (8)

where

�1 = m0 log p + m1 log(1 − p) + n0 log{(1 − λ)p}

+n1 log{1 − (1 − λ)p}

and

�2 =

m1∑
i=1

log f1(zi)

+

n1∑
j=1

[
log

{
(1 − λ∗) + λ∗ exp(α + βxj)

}
+ log f1(xj)

]
.

As suggested in Section 1, a naive method is to estimate λ
and p by using �1 alone. This is essentially using the binomial
counts of the zero and nonzero data. The maximum likelihood
estimates are obtained by maximizing �1; these will be termed
binomial estimators

p̂B =
m0

m
, λ̂B = 1 − n0

np̂B
. (9)

Clearly, these estimators do not use the information provided
by the quantitative part of the nonzero data. Next, we will
develop a method that utilizes the nonzero data in the condi-
tional log likelihood, �2.

In order to maximize �2, we only need to concentrate
on those distribution functions with jumps at the observed
data values. Let (t1, . . . , tN1) = (z1, . . . , zm1 , x1, . . . , xn1), N1 =
m1 + n1, and qi = dF 1(ti ), i = 1, 2, . . . ,N 1, be the nonnega-
tive jump sizes at the N1 data values so that the total of all

the jump sizes is unity. The semiparametric likelihood of the
data can be written as

m1∏
i=1

dF1(zi)

n∏
k=1

[
(1 − λ∗) + λ∗ exp{α + βxk}

]
dF 1(xk)

=

{
N1∏
i=1

qi

}{
n1∏
k=1

[
(1 − λ∗) + λ∗ exp{α + βxk}

]}
. (10)

We will maximize the likelihood in two steps as follows:

Step 1. For fixed (λ∗, α, β), maximize

N1∏
i=1

qi

subject to the constraints

N1∑
i=1

qi = 1,

n1∑
k=1

qk{exp(α + βtk) − 1} = 0,

qi ≥ 0, i = 1, . . . , N1.

Note that the second constraint comes from the fact that
F2(t) =

∫ t

−∞ exp(α + βx) dF 1(x) is a cumulative distribution
function. Therefore, EF1{exp(α + βx)} = 1. After maximiz-
ing over the qi ’s, we have (Qin and Lawless, 1994)

q̂i =
1

N1

1

1 + ν[exp(α + βti) − 1]
, i = 1, 2, . . . , N1,

where ν is a Lagrange multiplier determined by

N1∑
i=1

1

N1

exp(α + βti) − 1

1 + ν[exp(α + βti) − 1]
= 0. (11)

It can be proved that ν = ν(α, β) is an implicit function
of (α, β). Therefore, the conditional log likelihood is

�2(λ
∗, α, β, ν) = −

N1∑
i=1

log{1 + ν[exp(α + βti) − 1]}

+

n1∑
k=1

log
{
(1 − λ∗) + λ∗ exp(α + βxk)

}
.

Because λ = (λ∗ − λ∗p)/(1 − λ∗p), we can change the vari-
able from λ to λ∗, and the full semiparametric log likelihood
becomes

�(p, λ∗, α, β, ν) = �1(p, λ
∗) + �2(λ

∗, α, β, ν), (12)

where

�1(p, λ
∗) = m0 log p + m1 log(1 − p)

+n0 log{p(1 − λ∗)/(1 − λ∗p)}

+n1 log{1 − p(1 − λ∗)/(1 − λ∗p)}

= (m0 + n0) log p + (m1 + n1) log(1 − p)

+n0 log(1 − λ∗) − n log(1 − λ∗p).

Step 2. Maximize the semiparametric log likelihood �(p, λ∗,
α, β, ν) with respect to (p, λ∗, α, β, ν).
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Differentiating � with respect to (p, λ∗, α, β, ν), we have

∂�

∂α
=

n1∑
i=1

λ∗ exp(α + βxi)

(1 − λ∗) + λ∗ exp(α + βxi)

−
N1∑
i=1

ν exp(α + βti)

1 + ν{exp(α + βti) − 1} = 0,

∂�

∂β
=

n1∑
i=1

λ∗xi exp(α + βxi)

(1 − λ∗) + λ∗ exp(α + βxi)

−
N1∑
i=1

νti exp(α + βti)

1 + ν[exp(α + βti) − 1]
= 0,

∂�

∂λ∗ = − n0

1 − λ∗ +
np

1 − λ∗p

+

n1∑
i=1

−1 + exp(α + βxi)

(1 − λ∗) + λ∗ exp(α + βxi)
= 0,

∂�

∂p
=

m0 + n0

p
− m1 + n1

1 − p
+

nλ∗

1 − λ∗p
= 0.

Also, applying (11) to ∂�/∂α = 0, we have

ν = λ∗ 1

N1

n1∑
i=1

exp(α + βxi)

(1 − λ∗) + λ∗ exp(α + βxi)
. (13)

We now give some theoretical results. Detailed proofs of
these results can be found at https://mercury.smu.edu.sg/
rsrchpubupload/3228/malaria.pdf. We first give the large
sample distributional properties of the parameter estimates.
Denote η = (α, β, λ∗, p, ν), N = m + n, the true value of
η as η0 = (α0, β0, λ

∗
0, p0, ν0), the maximum semiparametric

likelihood estimate of η as η̂ = (α̂, β̂, λ̂∗, p̂, ν̂) and assuming
m/N → ρ, 0 < ρ < 1.

Theorem 1: Under suitable regularity conditions,
√
N(η̂ − η0) → N(0,Σ), Σ = V −1UV −1, (14)

where U and V are defined in the Appendix. Furthermore, it
can be proved that

√
N(λ̂− λ0) → N(0, σ2), σ2 =

(
∂λ(η0)

∂η

)
Σ

(
∂λ(η0)

∂η

)T

.

Next, we consider the semiparametric empirical likelihood
ratio test statistic. As pointed out by Hall and La Scala
(1990), the empirical likelihood method has many advantages
over normal approximation methods and the usual bootstrap
approximation approaches for constructing confidence inter-
vals. For example, empirical likelihood confidence intervals
do not have predefined shapes. Furthermore, the intervals are
range respecting, that is, if the natural range of a parameter,
say γ, is (0, 1), then the confidence interval will be within the
same range; and transformation respecting, that is, the confi-
dence interval for g(γ), is given by g applied to each value in
the confidence interval for γ.

We now give a large sample likelihood ratio test for the
parameter λ.

Theorem 2: Denote λ∗(λ, p) = λ/{1 − p(1 − λ)} and let

R(λ) = 2

{
sup

α,β,λ,p

�(α, β, λ∗(λ, p), p)

− sup
α,β,p

�(α, β, λ∗(λ, p), p)

}
. (15)

Under the regularity conditions in Theorem 1, if H0 :λ = λ0 �=
0 is true, then

R(λ0) → χ2
(1).

If parametric models for f 1(x, θ1) and f 2(x, θ2) are postu-
lated, we can consider a parametric approach. Let

�P
(
θ1, θ2, λ

∗, p
)

= �1(p, λ
∗) + �2P

(
λ∗, θ1, θ2

)
be the parametric log likelihood, where

�2P

(
θ1, θ2, λ

∗
)

=

m1∑
i=1

log f1(zi, θ1)

+

n1∑
j=1

log
{
(1 − λ∗)f1(xj , θ1) + λ∗f2(xj , θ2)

}
.

Denote the maximum parametric likelihood estimate as
(θ̂1P , θ̂2P , λ̂

∗
P , p̂P ). For comparison, see Theorem 3, as follows.

Theorem 3: Under the regularity conditions in Theorem 1,
the parametric likelihood ratio statistic

RP (λ) = 2

{
max

(θ1,θ2,λ,p)
�P

(
θ1, θ2, λ

∗(λ, p), p
)

− max
(θ1,θ2,p)

�P
(
θ1, θ2, λ

∗(λ, p), p
)}

(16)

converges to a χ2
(1) distribution for λ = λ0, the true value of λ.

Also the naive likelihood ratio based on binomial counts of zeros
and nonzero observations,

RB(λ) = 2

{
max
(p,λ)

�1(p, λ) − max
p

�1(p, λ)

}
(17)

converges to a χ2
(1) distribution for λ = λ0.

An advantage of using the proposed semiparametric like-
lihood is that the distributions, F1 and G (where G is the
distribution of the community [training sample] defined in
(5) and (6)), can be estimated using the q̂i’s, i.e.,

F̂1(t) =
1

N1

N1∑
i=1

I(ti ≤ t)

1 + ν̂[exp(α̂ + β̂ti) − 1]
,

Ĝ(t) =
1

N1

N1∑
i=1

I(ti ≤ t)
[
(1 − λ̂∗) + λ̂∗ exp(α̂ + β̂ti)

]
1 + ν̂[exp(α̂ + β̂ti) − 1]

. (18)

As Qin and Zhang (1997) suggested, the discrepancy between
the distribution functions given in (18) and the empirical dis-
tribution functions

F̃1(t) =

m1∑
i=1

I(zi ≤ t)/m1, G̃(t) =

n1∑
i=1

I(xi ≤ t)/n1
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Figure 1. Histograms showing parasite levels in the endemicity and community data (nonzero data only). Left panel:
community. Right panel: endemicity.

can be used to form a goodness-of-fit statistic

∆ = max
−∞<t<∞

√
N |F̂1(t) − F̃1(t)|, (19)

for the model (7). We do not give details of the theoretical
results here. However, we will use (19) to assess the fit of the
proposed method to the malaria data in the next section.

3. The Malaria Example
In this section, we analyze the malaria data set collected by
Kitua et al. (1996). The data were obtained from repeated
cross-sectional surveys of parasitemia and fever among chil-
dren up to 1 year old in a village in the Kilombero district in
Tanzania. Vounatsou et al. (1998) used a subset of the data
from children aged between 6 and 9 months that was col-
lected in two seasons: the wet season (January–June) during
which malaria prevalence is high, and the dry season (July–
December) during which the mosquito population, and also
malaria prevalence, decreases. We use one of the data sets that
can be obtained from http://www.blackwellpublishers.

co.uk/rss. In this data set, there are n = 264 observations in
the mixture sample and m = 144 observations in the training
sample. Among these, there are n0 = 53 and m0 = 63 obser-
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Figure 2. Estimated cumulative probability function of parasite levels using empirical and semiparametric methods. Left
panel: empirical distribution functions in community and endemicity. Center panel: comparison of semiparametric and em-
pirical distribution functions in community. Right panel: comparison of semiparametric and empirical distribution functions
in endemicity.

vations with zero parasite level in the mixture and training
samples, respectively. Therefore, m1 = 81 and n1 = 211. The
parasite level (per µl) ranges from 0 to 399952.1. Note that
the parasite level is not necessarily an integer. This is because
parasite level is an estimate obtained using the following pro-
cedure. First, the number of parasites is counted in relation
to a predetermined number of white blood cells (WBCs) (200
and 500 in this study) and an average of 8000 WBCs per
µl is taken as standard. Then the following formula is ap-
plied: number of parasites/µl = (number of parasites/number
of WBCs counted) × 8000. The parasite levels, after log trans-
formation for the nonzero data values, are shown in Figure 1.

Three estimators were used to analyze the data: the bino-
mial estimator based on maximizing �1, the semiparametric
estimator based on maximizing �, and the parametric estima-
tor based on maximizing �P .

Using the binomial estimator, only (p, λ, λ∗) are relevant
parameters. The binomial estimates for this data set are

(p̂B , λ̂B , λ̂
∗
B) = (0.437, 0.541, 0.677).

The maximum semiparametric likelihood estimates are

(α̂, β̂, λ̂, λ̂∗, p̂) = (−19.62, 2.038, 0.507, 0.641, 0.423).
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Table 2
Mean (standard deviation) of different estimators based on 1000 simulations

µ Estimators p = 0.2, λ = 0.5 p = 0.3, λ = 0.6 p = 0.4, λ = 0.5

µ = 2.0 λ̂ 0.496 (0.069) 0.598 (0.059) 0.498 (0.062)

λ̂∗ 0.551 (0.072) 0.679 (0.059) 0.622 (0.066)
α̂ −2.424 (1.348) −2.226 (0.840) −2.359 (1.343)

β̂ 2.272 (0.860) 2.170 (0.598) 2.257 (0.933)
p̂ 0.201 (0.028) 0.299 (0.034) 0.401 (0.035)

λ̂B 0.483 (0.136) 0.593 (0.089) 0.493 (0.084)

λ̂∗
B 0.535 (0.145) 0.672 (0.090) 0.615 (0.092)

p̂B 0.197 (0.032) 0.302 (0.037) 0.401 (0.040)

λ̂P 0.500 (0.052) 0.599 (0.048) 0.500 (0.048)

λ̂∗
P 0.555 (0.053) 0.680 (0.047) 0.624 (0.051)

α̂P −2.065 (0.424) −2.053 (0.379) −2.059 (0.434)

β̂P 2.053 (0.310) 2.051 (0.296) 2.047 (0.333)
p̂P 0.201 (0.026) 0.299 (0.032) 0.401 (0.033)

µ = 1.5 λ̂ 0.498 (0.085) 0.602 (0.066) 0.503 (0.066)

λ̂∗ 0.552 (0.089) 0.683 (0.065) 0.626 (0.070)
α̂ −1.371 (1.201) −1.222 (0.459) −1.244 (0.525)

β̂ 1.678 (0.795) 1.586 (0.407) 1.604 (0.466)
p̂ 0.200 (0.027) 0.303 (0.033) 0.402 (0.036)

λ̂B 0.476 (0.135) 0.594 (0.089) 0.497 (0.085)

λ̂∗
B 0.527 (0.144) 0.674 (0.090) 0.619 (0.093)

p̂B 0.197 (0.032) 0.302 (0.037) 0.401 (0.040)

λ̂P 0.503 (0.072) 0.603 (0.059) 0.503 (0.061)

λ̂∗
P 0.558 (0.075) 0.685 (0.058) 0.619 (0.093)

α̂P −1.188 (0.357) −1.161 (0.296) −1.185 (0.351)

β̂P 1.551 (0.319) 1.538 (0.285) 1.556 (0.333)
p̂P 0.201 (0.026) 0.303 (0.032) 0.402 (0.035)

µ = 1.0 λ̂ 0.491 (0.107) 0.599 (0.076) 0.501 (0.075)

λ̂∗ 0.544 (0.112) 0.680 (0.076) 0.624 (0.080)
α̂ −0.673 (0.826) −0.552 (0.258) −0.561 (0.284)

β̂ 1.146 (0.582) 1.060 (0.307) 1.068 (0.350)
p̂ 0.199 (0.029) 0.303 (0.035) 0.402 (0.038)

λ̂B 0.476 (0.135) 0.594 (0.089) 0.497 (0.085)

λ̂∗
B 0.527 (0.144) 0.674 (0.090) 0.619 (0.093)

p̂B 0.197 (0.032) 0.302 (0.037) 0.401 (0.040)

λ̂P 0.497 (0.099) 0.601 (0.074) 0.501 (0.074)

λ̂∗
P 0.550 (0.104) 0.681 (0.074) 0.624 (0.079)

α̂P −0.580 (0.283) −0.536 (0.195) −0.550 (0.236)

β̂P 1.074 (0.326) 1.044 (0.262) 1.058 (0.311)
p̂P 0.200 (0.029) 0.302 (0.037) 0.402 (0.038)

To assess the goodness of fit of the semiparametric method,
the distribution function estimates of F1 and F2 using (18) are
calculated and plotted against the corresponding empirical
distribution functions (Figure 2). As seen in Figure 2, the
semiparametric distribution function estimates are extremely
close to the empirical distribution functions. We also used
1000 bootstrap samples to calculate the significance of the
statistic (19) and found the p-value to be 0.340, indicating no
evidence of model lack of fit.

The maximum parametric likelihood estimation assumed
normal models for the component distributions, f 1 ∼
N(µ1, σ2) and f 2 ∼ N(µ2, σ2). Note that f 2(x)/f 1(x) sat-
isfies (7) with

α =
µ2

1 − µ2
2

2σ2 , β =
µ2 − µ1

σ2 .

The estimated parameters are

(α̂P , β̂P , λ̂P , λ̂
∗
P , p̂P ) = (−9.427, 1.059, 0.627, 0.763, 0.478).

Clearly the choice of normal models for f1 and f2 is not
good; λ is overestimated by an amount of 0.1, which is a
large deviation considering that the range of λ is between 0
and 1.

The 95% semiparametric likelihood ratio-based confidence
intervals for λ and λ∗ are (0.406, 0.615) and (0.529, 0.748), re-
spectively. Also the 95% binomial likelihood ratio-based con-
fidence intervals for λ and λ∗ are (0.380, 0.663) and (0.497,
0.795), respectively. Note that the semiparametric confidence
intervals are much shorter that the binomial confidence inter-
vals. We do not report the confidence intervals for the para-
metric method because its estimates are biased.
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Table 3
Empirical coverages of 90% (95%) likelihood ratio confidence intervals using three different methods

based on 1000 simulations

µ Methods p = 0.2, λ = 0.5 p = 0.3, λ = 0.6 p = 0.4, λ = 0.5

1.0 Semiparametric 89.8% (94.6%) 90.1% (96.2%) 89.1% (95.0%)
Binomial 88.7% (94.5%) 89.5% (96.1%) 89.9% (93.8%)
Parametric 89.3% (94.5%) 88.7% (95.3%) 89.2% (94.7%)

1.5 Semiparametric 89.3% (94.4%) 90.0% (96.1%) 90.5% (95.1%)
Binomial 89.2% (94.6%) 91.3% (95.4%) 88.9% (94.1%)
Parametric 89.3% (94.5%) 88.7% (95.3%) 89.2% (94.7%)

2.0 Semiparametric 88.7% (93.8%) 91.1% (95.5%) 90.2% (94.8%)
Binomial 88.9% (94.7%) 91.2% (96.1%) 88.4% (93.8%)
Parametric 89.3% (94.5%) 88.7% (95.3%) 89.2% (94.7%)

Denote D = 1 or D = 2 as clinical nonmalaria and
malaria, respectively, for an individual from an endemicity.
The conditional probability of D = 2 for a given parasite
level, x, is

P (D=2 |x) =
P (D=2)f(x |D=2)

P (D=1)f(x |D=1) + P (D=2)f(x |D=2)

=
λ∗f2(x)

λ∗f2(x) + (1 − λ∗)f ∗
1 (x)

,

which can be estimated using the parameter estimates as

P̂ (D = 2 |x) =

{
0 if x = 0

exp(−19.62 + 2.04x)
1 + exp(−19.62 + 2.04x)

if x > 0.

4. Simulation Study
In this section, we present the results of a simulation study
designed to evaluate the performance of the proposed estima-
tor. In the study, we tried to mimic the malaria example by
fixing n = 264 and m = 144. Data in the mixture sample were
generated from a normal mixture model (1 − λ∗)N(0, 1) +
λ∗N(µ, 1) and data in the training sample followed a standard
normal distribution. One thousand simulations each were car-
ried out under different combinations of λ∗ and µ. For each
combination, the means and standard deviations of the semi-
parametric estimator are reported in Table 2. For compari-
son, we also report the corresponding values using the bino-
mial estimator and the parametric estimator. For estimation
of (λ, λ∗), (λ̂, λ̂∗) and (λ̂P , λ̂

∗
P ) have better overall performance

and smaller standard deviations than the binomial estimates
(λ̂B , λ̂

∗
B). This is expected because the binomial estimation

only uses information from the binomial counts of zero and
nonzero data. The advantages of the semiparametric and the
parametric methods over the binomial method are more sig-
nificant when the two components (f1 and f2) in the mixture
are well separated from each other and when the prevalence
probability, (1 − p), is high. On the other hand, when there is
much overlap in the two components, the improvements are
only moderate. These results are not surprising because in the
latter case not much information on λ (and λ∗) is contained
in the mixture sample.

Comparing the semiparametric and the parametric meth-
ods, the latter is more efficient in estimating the parameters
α, β. However, for the more important parameters λ, λ∗, p, the

semiparametric method is nearly as efficient as the parametric
method, in all the cases we studied. As demonstrated in the
previous section, the semiparametric method is more robust
than the parametric method under model misspecification.

In Table 3, we report the empirical coverages of the 90%
and 95% nominal confidence intervals for λ based on the semi-
parametric likelihood ratio statistic (15), the binomial likeli-
hood ratio statistic (17), and the parametric likelihood ratio
statistic (16). From this table, we can observe that the per-
formances of all three likelihood ratio confidence intervals are
satisfactory. The empirical coverage levels are close to the
nominal levels.

5. Conclusion
In this article, we proposed a semiparametric method for an-
alyzing a “compound” mixture distribution problem with a
training sample. The proposed method assumes the compo-
nent densities are related by a density ratio model (or equiva-
lently a logistic regression model). Based on this assumption,
we used empirical likelihood to estimate the unknown param-
eters in the model. Unlike previous methods, which grouped
data into distinct categories, the method discussed in this ar-
ticle uses the original quantitative scale of the data. Therefore,
the method avoids the arbitrariness in grouping and also gives
more precise estimates. As demonstrated in the malaria ex-
ample, the proposed method provides excellent fit to the data
whereas the fully parametric method gives biased estimates.

The method described in this article depends on the exis-
tence of a training sample, as do other semiparametric meth-
ods, for identifying the model parameters.

The method developed in this article can also be applied to
outputs of biomedical assays that classify samples into groups
according to whether some outputs, such as parasite den-
sity or optical density, exceed a given cut-off. The proposed
method can also be generalized to cases where there are co-
variates.
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Appendix

Asymptotic Covariance Formula
In this Appendix, we present the asymptotic covariance
formula in Theorem 1. Proofs of the other results can
be found at https://mercury.smu.edu.sg/rsrchpubupload/
3228/malaria.pdf.

Define

ν0 =
λ∗

0

1 + ρE(m1)/E(n1)
, ρ = lim

N→∞

m

N
,

a(x) =
exp(α0 + β0x)(

1 − λ∗
0

)
+ λ∗

0 exp(α0 + β0x)
,

b(x) =
exp(α0 + β0x)

(1 − ν0) + ν0 exp(α0 + β0x)
, κ =

E(n1/n)

ρ + 1

and

V = (vij)1≤i,j≤5, U = (uij)1≤i,j≤5,

where

v11 = λ∗
0

(
1 − λ∗

0

)
κ

∫
a(x) dF 1(x),

v12 = λ∗
0

(
1 − λ∗

0

)
κ

∫
xa(x) dF 1(x)

v13 = κ

∫
a(x) dF 1(x), v14 = 0, v15 = −κ

λ∗
0

ν0
,

v21 = κλ∗
0

(
1 − λ∗

0

)∫
xa(x) dF 1(x)

−κ(1 − ν0)λ
∗
0

∫
xb(x) dF 1(x),

v22 = κλ∗
0

(
1 − λ∗

0

)∫
x2a(x) dF 1(x)

−κ(1 − ν0)λ
∗
0

∫
x2b(x) dF 1(x)

v23 =

∫
xa(x) dF 1(x), v24 = 0

v25 = κ
λ∗

0

ν0

∫
xb(x) dF 1(x), v31 = κ

∫
a(x) dF 1(x),

v32 = κ

∫
xa(x) dF 1(x),

v33 = − κp0(
1 − λ∗

0p0

)(
1 − λ∗

0

) +
κp2

0

(1 − p0)
(
1 − λ∗

0p0

)
− κ

1 − λ∗

∫
[1 − a(x)]2

1 − λ∗a(x)
dF1(x)

v34 =
κ(

1 − λ∗
0p0

)
(1 − p0)

, v35 = 0

v41 = v42 = 0, v43 =
κ

(1 − p0)
(
1 − λ∗

0p0

) ,
v44 = − 1

p2
0

+
ρE(m1) + E(n1)

1 + ρ

(
1

p2
0
− 1

(1 − p0)2

)
, v45 =0
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v51 = −κλ∗
0

ν0

∫
b(x) dF 1(x), v52 = −κλ∗

0

ν0

∫
xb(x) dF 1(x)

v53 = v54 = 0, v55 = − κλ∗

ν0(1 − ν0)

∫
[1 − b(x)]2

1 − ν0b(x)
dF1(x)

q1(x) =
[
λ∗

0a(xi) − ν0

]
I(x > 0), r1(z) = −ν0I(zi > 0)

q2(x) = λ∗
0xa(x)I(x > 0), r2(z) = −ν0zb(z)I(z > 0)

q3(x) = −I(x = 0)

1 − λ∗
0

+
p0

1 − λ∗
0p0

+
a(x) − 1

1 − λ∗
0
I(x > 0), r3(z) = 0

q4(x) =
I(x = 0)

p0
− I(x > 0)

1 − p0
+

λ∗
0

1 − λ∗
0p0

,

r4(z) =
I(z = 0)

p0
− I(z > 0)

1 − p0

q5(x) = − b(x) − 1

1 − ν0
I(x > 0), r5(z) = − b(z) − 1

1 − ν0
I(z > 0).

uij =
1

1 + ρ
Cov(qi(X), qj(X))

+
ρ

1 + ρ
Cov(ri(Z), rj(Z)), 1 ≤ i, j ≤ 5.

Σ = V −1U(V T )−1.


	A semi-parametric two-component compound mixture model and its application to estimating Malaria attributable fractions
	Citation

	A Semiparametric Two?Component ?Compound? Mixture Model and Its Application to Estimating Malaria Attributable Fractions

