
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and
Information Systems School of Computing and Information Systems

7-2008

Mining temporal rules for software maintenance Mining temporal rules for software maintenance

David LO
Singapore Management University, davidlo@smu.edu.sg

Siau-Cheng Khoo
National University of Singapore

Chao LIU

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

 Part of the Software Engineering Commons

Citation Citation
LO, David; Khoo, Siau-Cheng; and LIU, Chao. Mining temporal rules for software maintenance. (2008).
Journal of Software Maintenance and Evolution: Research and Practice. 20, (4), 227-247.
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/742

This Journal Article is brought to you for free and open access by the School of Computing and Information
Systems at Institutional Knowledge at Singapore Management University. It has been accepted for inclusion in
Research Collection School Of Computing and Information Systems by an authorized administrator of Institutional
Knowledge at Singapore Management University. For more information, please email cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F742&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/150?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F742&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

JOURNAL OF SOFTWAREMAINTENANCE AND EVOLUTION: RESEARCH AND PRACTICE
J. Softw. Maint. Evol.: Res. Pract. 2008; 20:227–247
Published online 9 July 2008 inWiley InterScience (www.interscience.wiley.com). DOI: 10.1002/smr.375

Research

Mining temporal rules for
software maintenance

David Lo1,∗,†,‡, Siau-Cheng Khoo2 and Chao Liu3

1School of Information Systems, Singapore Management University, Singapore
2Department of Computer Science, National University of Singapore, Singapore
3Microsoft Research, Redmond, WA, U.S.A.

SUMMARY

Software evolution incurs difficulties in program comprehension and software verification, and hence it
increases the cost of software maintenance. In this study, we propose a novel technique to mine from
program execution traces a sound and complete set of statistically significant temporal rules of arbitrary
lengths. The extracted temporal rules reveal invariants that the program observes, and will consequently
guide developers to understand the program behaviors, and facilitate all downstream applications such
as verification and debugging. Different from previous studies that were restricted to mining two-event
rules (e.g., 〈lock〉→〈unlock〉), our algorithm discovers rules of arbitrary lengths. In order to facilitate
downstream applications, we represent the mined rules as temporal logic expressions, so that existing
model checkers or other formal analysis toolkit can readily consume our mining results. Performance
studies on benchmark data sets and a case study on an industrial system have been performed to show
the scalability and utility of our approach. We performed case studies on JBoss application server and a
buggy concurrent versions system application, and the result clearly demonstrates the usefulness of our
technique in recovering underlying program designs and detecting bugs. Copyright © 2008 John Wiley
& Sons, Ltd.

Received 28 April 2008; Revised 28 April 2008; Accepted 7 June 2008

KEY WORDS: specification mining; software evolution; dynamic analysis; data mining; program comprehension;
program verification

1. INTRODUCTION

Software keeps changing throughout its lifespan. Software maintenance deals with the management
of such changes, ensuring that the software remains correct while features are added or removed.

∗Correspondence to: David Lo, School of Information Systems, Singapore Management University, 80 Stamford Road,
Singapore 178902.

†E-mail: davidlo@smu.edu.sg
‡This work was done while the author was with School of Computing, National University of Singapore.

Copyright q 2008 John Wiley & Sons, Ltd.

228 D. LO, S.-C. KHOO AND C. LIU

Maintenance cost can contribute up to 60–80% of software cost [1]. A challenge to software
maintenance is to keep documented specifications accurate and updated as the program changes.
Outdated specifications cause difficulties in program comprehension, which account for up to 50%
of program maintenance cost [1].
In order to ensure software correctness, model checking [2] has been proposed and proved useful

in many cases. It accepts a model, often automatically constructed from the code, and a set of
formal properties to check. However, the difficulty in formulating a set of formal properties has
been a barrier to its wide-spread application [3]. Adding software evolution to the equation, the
verification process is further strained. First, ensuring the correctness of software as changes are
made is not a trivial task: a change in part of a program might induce unwanted effects resulting in
bugs in other parts of the code. Furthermore, as a system changes and features are added, there is a
constant need to add new properties or modify outdated properties to render automated verification
techniques effective in detecting bugs and ensuring the correctness of the system.
While addressing the above problems, there is a need for techniques to automatically mine

formal specifications from a program as it changes over time. Employing these techniques ensures
that specifications remain updated; it also provides a set of properties to be verified via formal
verification tools such as model checking. This family of techniques is commonly referred to as
‘specification mining’ [3].
There have been a number of studies on specification mining, which relate to either program

comprehension (e.g., [4–6]) or verification (e.g., [3,7]). Most specification mining algorithms extract
specifications in the form of an automaton (e.g., [3–6]) or two-event rules (e.g., [7]). Although
a mined automaton expresses a global picture of a software specification, mined rules break this
into smaller parts, each expressing a program property, which is significantly observed. However,
existing work on mining rules mines only two-event rules (e.g., 〈lock〉→〈unlock〉), which are
limited in their ability to express complex temporal properties.
The focus of this study is to automatically discover rules of arbitrary lengths having the following

form from program execution traces:

Whenever a series of precedent events occurs, eventually another series of consequent events
occurs.

A trace can be viewed as a series of events, with each event corresponding to a software behavior
of interest. In the existing literature on specification mining [3,6,7] a trace usually corresponds
to a series of signatures of methods that are invoked when a program is executed. A multi-event
rule is denoted by ESpre→ESpost, where ESpre and ESpost are the premise/pre-condition and the
consequent/post-condition, respectively.
The above multi-event rule can be expressed in temporal logic and belongs to two of the most

frequently used families of temporal logic expressions for model checking (i.e., response and chain-
response) according to a survey in [8]. Examples of such rules include

1. Resource locking: Whenever a lock is acquired, eventually it is released.
2. Initialization–termination: Whenever a series of initialization events is performed, eventually

a series of termination events is also performed.
3. Internet banking: Whenever a connection to a bank server is made, an authentication is

completed, and money transfer command is issued; eventually the money is transferred and a
receipt is displayed.

Copyright q 2008 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2008; 20:227–247
DOI: 10.1002/smr

MINING TEMPORAL RULES FOR SOFTWARE MAINTENANCE 229

From traces, many rules can be inferred, but not all are important. Statistics of support and
confidence employed in data mining [9] is therefore used to identify important rules. Rules satis-
fying user-specified thresholds of minimum support and confidence are referred to as statistically
significant rules.
Effective search space pruning strategies are utilized to efficiently mine multi-event rules from

traces. To prevent an explosion in the number of mined rules, we define a redundancy relation among
rules and propose to generate only a minimal subset of rules containing non-redundant ones (see
Section 3). With respect to input traces and given statistical significance thresholds, our algorithm
is statistically sound, as all mined rules are statistically significant (i.e., they meet the thresholds). It
is also statically complete as all statistically significant rules of the form ESpre→ESpost are mined
or represented.
Our definitions of statistical soundness and completeness follow data mining definitions. In data

mining, soundness and completeness is defined based on the input, i.e., the supplied set of traces
and the statistical thresholds. In program analysis, soundness and completeness is defined based on
the underlying software. We added the term ‘statistically’ to the earlier definition to describe this
difference. In some sense, for purely dynamic-analysis-based algorithm: ‘statistically sound and
complete’ is the best quality guarantee that an algorithm can achieve. The output can only be as
good as the input. Hypothetically speaking, provided that the traces are complete, the result will
be complete as well. However, a limitation with dynamic analysis is that it is difficult to generate
complete or representative execution traces [10]. In the future, we shall look into the static analysis
approach to generate representative traces with some guarantee from the code.
We carried out a performance study on several standard benchmark data sets to demonstrate the

effectiveness of our search space pruning strategies. We performed a case study on JBoss application
server (JBoss-AS)—a widely used J2EE server—to illustrate the usefulness of our technique in
recovering the specifications that a software system obeys. We also performed a case study on a
buggy concurrent versions system (CVS) application. It shows the usefulness of our technique in
mining bug-revealing properties, thus aiding model checkers in finding bugs.
Our contributions are as follows:

1. We address the limitations of approaches extracting automata-based specification from traces,
by discovering statistically sound and complete, and easily understood specifications in
temporal logic format frequently used for model checking purposes.

2. We increase the power of existing algorithms’ mining two-event linear temporal logic (LTL)
rules/properties to mining properties of arbitrary lengths.

3. We propose a mining-maintenance framework composed of instrumentation, trace collection
and abstraction, rule mining, post-processing, visualization and model checking.

4. We show the utility of our technique in recovering specifications of a large industrial program.
5. We demonstrate the usefulness of mined LTL rules/properties to reveal bugs from a buggy

CVS application (see Section 8.2).

The outline of this paper is as follows. Section 2 contains important background information on
LTL formalizing our definition of temporal rules. Section 3 presents the principles behind mining
temporal rules and the pruning strategies employed. Section 4 presents our algorithm. Section 5
describes our end-to-end mining-maintenance framework. Section 6 describes our performance
study on data mining benchmark data sets. Section 7 describes our case studies. Section 8 discusses
related work. Section 9 concludes this paper and presents the directions for future work.

Copyright q 2008 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2008; 20:227–247
DOI: 10.1002/smr

230 D. LO, S.-C. KHOO AND C. LIU

2. PRELIMINARIES

This section introduces preliminaries on LTL and its verification, which dictate the semantics of
temporal rules. Notations used in this paper are also presented here.

2.1. Linear-time temporal logic

Our mined rules can be expressed in LTL [11]. LTL is a logic that works on possible program
paths. A possible program path corresponds to a program trace. A path can be considered as a
series of events, where an event is a method invocation. For example, (file open, file read, file write,
file close) is a four-event path.
There are a number of LTL operators, amongwhich we are interested only in the operators ‘G’,‘F’

and ‘X ’‡. The operator ‘G’ specifies that globally at every point in time a certain property holds.
The operator ‘F’ specifies that a property holds either at that point in time or finally (eventually) it
holds. The operator ‘X ’ specifies that a property holds at the next event. Some examples are listed
in Table I.
There are other LTL operators, ‘U ’ (until), ‘W ’ (weak until) and ‘R’ (release). We leave mining

rules expressing other LTL operators for future work. Our purpose is to mine a sub-set of commonly
used temporal properties for verification referred to as response and chain response in [8]. As we
see in Section 8.2, this limitation can cause one to miss mining complicated bug-revealing property.
Our mined rules state that whenever a series of precedent events occurs eventually another

series of consequent events also occurs. A mined rule denoted as pre→post can be mapped to its
corresponding LTL expression. Examples of such correspondences are given in Table II. Note that
although the operator ‘X ’ might seem redundant, it is needed to specify rules such as 〈a〉→〈b,b〉
where the ‘b’s refer to different occurrences of ‘b’. The set of LTL expressions minable by our
mining framework is represented in the Backus–Naur Form (BNF) as follows:

rules := G(prepost)
prepost := event→post|event→ XG(prepost)
post := XF(event)|XF(event∧XF(post))

2.2. Checking/verifying LTL expressions

LTL expressions are mainly used for checking software systems expressed in the form of an
automaton [12] (a transition system with start and end nodes). There are existing tools converting
code to an automaton. Given an automaton and an LTL property one can check whether the
automaton satisfies the LTL property through a well-known technique of model checking [2].
Consider the example in Figure 1, the pseudo-code on the left corresponds to the automaton on

the right. Given the property 〈main, lock〉→〈unlock,end〉, a model checking tool (cf. [2]) will

‡The operators G, F and X are often also represented by �, � and ◦, respectively.

Copyright q 2008 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2008; 20:227–247
DOI: 10.1002/smr

MINING TEMPORAL RULES FOR SOFTWARE MAINTENANCE 231

Table I. LTL expressions and their meanings.

F(unlock) Eventually unlock is called
XF(unlock) From the next event onwards, eventually unlock

is called
G(lock→ XF(unlock)) Globally whenever lock is called, then from the

next event onwards, eventually unlock is called
G(main→ XG(lock→(→ XF(unlock→ XF(end))))) Globally whenever main followed by lock are

called, then from the next event onwards, eventu-
ally unlock followed by end are called

Table II. Rules and their LTL equivalences.

Notation LTL notation

a→b G(a→ XFb)
〈a,b〉→c G(a→ XG(b→ XFc))
a→〈b,c〉 G(a→ XF(b∧XFc))
〈a,b〉→〈c,d〉 G(a→ XG(b→ XF(c∧XFd)))

Possible Traces
main lock use unlock lock end
main lock use unlock lock use unlock end
main lock use unlock end

main(x){
 if (lock=0)
 lock;use;unlock;lock;
 else
 for i: 1 to 10
 lock;use;unlock
}

main

lock

use

unlock

lock

use

unlock

lock end

LTL property to check
<main,lock> -> <unlock,end>

or formally,
G(m -> XG(l -> XF (u ^ XF e)))

where: m= main, l = lock,
u = unlock, and e = end

Program

To
Check

Automata Model Transform

Violation
…

Figure 1. Code –> automaton –> verification.

ensure that for all states in the model where lock preceded by a main occurs (marked by the red
dashed arrows), eventually (whichever path is taken) unlock and then eventually end can be reached.
For the above example, the property is violated. The lock immediately before end is not followed
by an unlock. However, note that the property 〈main, lock,use〉→〈unlock,end〉 is satisfied. This is
the case since the lock immediately before end is not followed by a use, i.e., the pre-condition of
the rule is not satisfied and the rule vacuously holds.
An execution trace can be considered to be a finite path in the automaton and corresponds to

a series of events. An event in turn corresponds to a behavior of interest, e.g., method call. A
mined rule (or property) pre→post with a perfect confidence (i.e., confidence=1) states that in
the traces from all states where pre holds eventually post occurs. In the above example, for all
points in the traces (i.e., temporal points) where 〈main, lock〉 occurs (marked with a dashed red

Copyright q 2008 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2008; 20:227–247
DOI: 10.1002/smr

232 D. LO, S.-C. KHOO AND C. LIU

circle), one needs to check whether eventually 〈unlock,end〉 occurs. Based on the definition of
LTL properties and how they are verified, our technique analyzes traces and captures strong LTL
expressions that satisfy given support and confidence thresholds.
Basic notations: Let I be a set of distinct events considered in which an event corresponds to

a behavior of interest, e.g., method call. The input to our mining framework is a set of traces.
A trace corresponds to a sequence or an ordered list of events from I . For formality, we refer to
this set of traces as a sequence database denoted by SeqDB. Each trace or sequence is denoted by
〈e1,e2, . . . ,eend〉 where ei ∈ I .
We define a pattern P to be a series of events. We use last(P) to denote the last event of P .

A pattern P1++P2 denotes the concatenation of patterns P1 and P2. A pattern P1 (〈e1,e2, . . . ,en〉)
is considered a subsequence of another pattern P2 (〈 f1, f2, . . . , fm〉) denoted as P1	 P2 if there
exist integers 1�i1<i2< · · ·<in�m such that e1= fi1 , e2= fi2, . . . ,en = fin .

3. GENERATION OF TEMPORAL RULES

Each temporal rule of interest has the form P1→ P2, where P1 and P2 are two series of events. P1
is referred to as the premise or pre-condition of the rule, while P2 is referred to as the consequent
or post-condition of the rule. The rules correspond to temporal constraints expressible in LTL
notations. Some examples are given in Table II.
In this paper, as a trace is a series of events, where an event corresponds to a software behavior of

interest, e.g., method call, we formalize a trace as a sequence and a set of input traces as a sequence
database. We use the sample trace or sequence database in Table III as our running example to
illustrate the concepts behind generation of temporal rules.

3.1. Concepts and definitions

Mined rules are formalized as LTL expressions with the format: G(· · ·→XF · · ·). The semantics
of LTL and its verification technique described in Section 2 will dictate the semantics of temporal
rules described here. Noting the meaning of the temporal operators illustrated in Table I, to be
precise, a temporal rule expresses:

Whenever a series of events has just occurred at a point in time (i.e., a temporal point),
eventually another series of events occurs.

From the above definition, to generate temporal rules, we need to ‘peek’ at interesting temporal
points (to mine a set of pre-conditions) and ‘see’ what series of events are likely to occur next (to
mine a set of post-conditions). We will first formalize the notion of temporal points and the related
notion of occurrences.

Table III. Example database—DBEX.

Identifier Trace/sequence

S1 〈a,b,e,a,b,c〉
S2 〈a,c,b,e,a,e,b,c〉
S3 〈a,d〉

Copyright q 2008 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2008; 20:227–247
DOI: 10.1002/smr

MINING TEMPORAL RULES FOR SOFTWARE MAINTENANCE 233

Definition 1 (Temporal points). Consider a sequence S of the form 〈a1,a2, . . . ,aend〉. All events
in S are indexed by their positions in S, starting at 1 (e.g., a j is indexed by j). These positions
are called temporal points in S. For a temporal point j in S, the prefix 〈a1, . . . ,a j 〉 is called the
j-prefix of S.

Definition 2 (Occurrences and instances). Given a pattern P and a sequence S, the occurrences of
P in S are defined by a set of temporal points T in S such that for each j ∈T, the j-prefix of S
is a super-sequence of P and last (P) is indexed by j . The set of instances of pattern P in S is
defined as the set of j-prefixes of S, for each j ∈T.

Example. Consider a pattern P 〈a,b〉 and the sequence S1 in Table III (i.e., 〈a,b,e,a,b,c〉). The
occurrences of P in S1 form the set of temporal points {2,5}, and the corresponding set of instances
is {〈a,b〉, 〈a,b, e,a,b〉}.
We define database projection operations to capture events occurring after specified temporal

points. The following are two different types of projections and their associated support notions.

Definition 3 (Projected and sup). A database projected on a pattern p is defined as SeqDBP =
{(j,sx)| the j th sequence in SeqDB is s, where s= px++sx , and px is the minimum prefix of s
containing p}.
Given a pattern PX , we define sup(PX ,SeqDB) to be the size of SeqDBPX (equivalently, the

number of sequences in SeqDB containing PX). Reference to the database is omitted, i.e., we write
it as sup(PX), if the database is clear from the context, e.g., it refers to input sequence database
SeqDB.

Definition 4 (Projected-all and sup-all). A database projected-all on a pattern p is defined as
SeqDBall

P = {(j,sx)| the j th sequence in SeqDB is s, where s= px++sx , and px is an instance
of p in s and last(px)= last(p)}.
Given a pattern PX , we define supall(PX ,SeqDB) to be the size of SeqDBall

PX
. Reference to the

database is omitted if it is clear from the context.

Definition 3 defines a standard database projection (c.f. [13,14]) capturing events occurring after
the first temporal point. Definition 4 is a new type of projection to capture events occurring after
each temporal point.

Example. To illustrate the above concepts, we project and project-all the example database DBEX
with respect to the pattern 〈a,b〉. The results are given in Table IV(a) and (b), respectively.

The two projection methods’ associated notions of sup and supall are different. Specifically,
supall reflects the number of occurrences of PX in SeqDB rather than the number of sequences in
SeqDB supporting PX .

Example. Consider the example database, sup(〈a,b〉,DBEX)=|DBEX〈a,b〉|=2. On the other hand,
supall(〈a,b〉,DBEX)=|DBEXall〈a,b〉|=4.

From the above notions of temporal points, projected databases and pattern supports, we can
define the support and confidence of temporal rules.

Copyright q 2008 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2008; 20:227–247
DOI: 10.1002/smr

234 D. LO, S.-C. KHOO AND C. LIU

Table IV. (a) DBEX〈a,b〉 and (b) DBEXall〈a,b〉.

Identifier Trace/sequence

(a)
S1 (1,〈e,a,b,c〉)
S2 (2,〈e,a,e,b,c〉)
(b)
S11 (1,〈e,a,b,c〉)
S12 (1,〈c〉)
S21 (2,〈e,a,e,b,c〉)
S22 (2,〈c〉)

Definition 5 (Support and confidence). Consider a temporal rule RX (preX →postX). The support
of RX is defined as the number of sequences in SeqDB where preX occurs, which is equivalent
to sup(preX ,SeqDB). The confidence of RX is defined as the likelihood of postX occurring after
preX . This is equivalent to the ratio of sup(postX ,SeqDBall

preX) to the size of SeqDBall
preX .

Example. Consider DBEX and a temporal rule RX , 〈a,b〉→〈c〉. From the database, the support
of RX is the number of sequences in DBEX supporting (or is a super-sequence of) the rule’s
pre-condition—〈a,b〉. There are two of them; see Table IV(a). Hence, the support of RX is 2. The
confidence of the rule RX (〈a,b〉→〈c〉) is the likelihood of 〈c〉 occurring after each temporal point
of 〈a,b〉. Referring to Table IV(b), we see that there is a 〈c〉 occurring after each temporal point of
〈a,b〉. Hence, the confidence of RX is 1.

Significant rules to be mined must have their supports greater than the min sup threshold, and
their confidences greater than the min conf threshold.
In mining program properties, the confidence of a rule (or property), which is a measure of its

certainty, matters the most (cf. [7]). Support values are considered to differentiate high confidence
rules from one another according to the frequency of their occurrences in the traces. Rules with
confidences less than 100% are also of interest due to the imperfect trace collection and the presence
of bugs and anomalies [7]. Similar to the assumption made by the work in statistical debugging
(e.g., [15]), simply put, if a program behaves in one way 99% of the time, and the opposite 1%
of the time, the latter likely corresponds to a possible bug. Hence, a high confidence and highly
supported rule is a good candidate for bug detection using program verifiers.
We added the notions of support and confidence to the temporal rules. The formal notation of

temporal rules is defined below.

Definition 6 (Temporal rules). A temporal rule RX is denoted by pre→post (sup,conf). The series
of events pre and post represent the rule’s pre- and post-condition and are denoted by RX .Pre
and RX .Post, respectively. The notions sup and conf represent the support and confidence of RX ,
respectively. They are denoted by sup(RX) and conf (RX), respectively.

Example. Consider DBEX and the rule RX , 〈a,b〉→〈c〉 shown in the previous example. It has a
support of 2 and a confidence of 1. It is denoted by 〈a,b〉→〈c〉(2,1).

Copyright q 2008 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2008; 20:227–247
DOI: 10.1002/smr

MINING TEMPORAL RULES FOR SOFTWARE MAINTENANCE 235

3.2. Monotonicity properties and non-redundancy

Our algorithm is a new addition to the family of pattern mining algorithms, e.g., [13,14,16,17].
Monotonicity (a.k.a. a priori) properties have been widely used to ensure efficiency of many
pattern mining techniques (e.g., [16,17]). One of the novelty in our new mining algorithm is the
identification of new and suitable a priori properties that apply. Fortunately, temporal rules obey
the following a priori properties:

Theorem 1 (Monotonicityproperty—support). If a rule evsP →evsC does not satisfy the min sup
threshold, neither will all rules evsQ →evsC , where evsQ is a super-sequence of evsP .

Theorem 2 (Monotonicityproperty—confidence). If a rule evsP →evsC does not satisfy the
min conf threshold, neither will all rules evsP →evsD, where evsD is a super-sequence of evsC .

To reduce the number of rules and improve efficiency, we define a notion of rule redundancy
defined based on the super-sequence relationship among rules having the same support and confi-
dence values. This is similar to the notion of closed patterns applied to sequential patterns [13,14].
Definition 7 (Rule redundancy). A rule RX (preX →postX) is redundant if there is another rule RY
(preY →postY) where

(1) RX is a sub-sequence of RY (i.e., preX++postX 	preY++postY).
(2) Both rules have the same support and confidence values

In addition, in the case where the concatenations are the same (i.e., preX++postX =preY++
postY), to break the tie, we call the one with the longer premise as being redundant (i.e., we wish
to retain the rule with a shorter premise and longer consequent).

To illustrate redundant rules, consider the following set of rules describing an automated teller
machine:

R1 accept card → enter pin,display goodbye,eject card
R2 accept card→enter pin
R3 accept card→display goodbye
R4 accept card→enter pin,eject card
R5 accept card→display goodbye,eject card

If all of the above rules have the same support and confidence values, rules R2–R5 are redundant
as they are represented by rule R1. To keep the number of mined rules manageable, we remove
redundant rules. Noting the combinatorial nature of redundant rules, removing redundant rules can
drastically reduces the number of reported rules.
A simple approach to reduce the number of rules is to first mine a full set of rules and then

remove redundant rules. However, this ‘late’ removal of redundant rules is inefficient due to the
exponential explosion of the number of intermediary rules that need to be checked for redundancy.
To improve efficiency, it is therefore necessary to identify and prune a search space containing
redundant rules ‘early’ during the mining process. The following two theorems are used for ‘early’
pruning of redundant rules. The proofs are available in our technical report [18].

Copyright q 2008 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2008; 20:227–247
DOI: 10.1002/smr

236 D. LO, S.-C. KHOO AND C. LIU

Theorem 3 (Pruning redundant pre-conds). Given two pre-conditions PX and PY where PX�PY ,

if SeqDBPX =SeqDBPY , then for all sequences of events post, the rule PX →post is rendered
redundant by PY →post and can be pruned.

Theorem 4 (Pruning redundant post-conds). Given two rules RX (pre→ PX) and RY (pre→ PY)

if PX�PY and (SeqDBall
pre)PX =(SeqDBall

pre)PY , then RX is rendered redundant by RY and can be
pruned.

Using Theorems 3 and 4, many redundant rules can be pruned ‘early’. However, the theorems
only provide sufficient conditions for the identification of certain redundant rules—there are other
redundant rules that are not identified by them. To remove the remaining redundant rules, we
perform a post-mining filtering step based on Definition 7.
Our approach to mining a set of non-redundant rules satisfying the support and confidence

thresholds is as follows:
Step 1: Leveraging Theorems 1 and 3, we generate a pruned set of pre-conditions satisfying

min sup.
Step 2: For each pre-condition pre, we create a projected-all database SeqDBall

pre.

Step 3: Leveraging Theorems 2 and 4, for each SeqDBall
pre, we generate a pruned set containing

such a post-condition post, such that the rule pre→post satisfies min conf.
Step 4: Using Definition 7, we filter any remaining redundant rules.
In the following section, we describe our algorithm in detail.

4. MINING ALGORITHM

In the previous section, the process of mining non-redundant rules has been divided into four
steps. Steps 1 and 3 sketch how a pruned set of pre- and post-conditions is mined. The following
paragraphs will elaborate them in more detail.
Before proceeding, we first describe a set of patterns called projected database closed (or LS-Set)

first mentioned in [13]. A pattern is in the set if there does not exist any super-sequence pattern
having the same projected database. Patterns having the same projected database must have the
same support, but patterns with the same support can have different projected databases. Projected
database closed patterns are of special interest to us, as explained in the following paragraphs.
At step 1, a pruned set of pre-conditions is generated from the input database SeqDB. From

Theorem 3, a pattern is in the pruned pre-condition set if there does not exist any super-sequence
pattern having the same projected database. Comparing with the definition of projected database
closed patterns in the previous paragraph, we note that this pruned set of pre-conditions corresponds
to the projected database closed set (or LS-Set) mined from SeqDB.
At step 3, starting with a projected-all database SeqDBall

pre, we generate a pruned set of post-
conditions. From Theorem 4, a pattern is in the pruned post-condition set if there does not exist
any super-sequence pattern having the same projected database. Again, this set of pruned post-
conditions corresponds to the projected database closed set (or LS-Set) mined from SeqDBall

pre.
Our mining algorithm is shown in Figure 2. First, a pruned set of pre-conditions satisfying

the minimum support threshold (i.e., min sup) is mined using an LS-Set miner modified from

Copyright q 2008 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2008; 20:227–247
DOI: 10.1002/smr

MINING TEMPORAL RULES FOR SOFTWARE MAINTENANCE 237

Figure 2. Mining algorithm.

BIDE [14], the state-of-the-art closed sequential pattern miner§ . Next, for each pre-condition mined,
a database projected-all on it is formed. Consequently, another LS-Set generator is run on each
projected-all database to mine the set of post-conditions of the corresponding candidate rules having
enough confidence values. Finally, a filtering step to remove any remaining redundant rules based
on Definition 7 is performed. To perform the final filtering step scalably, each remaining rule is first
hashed based on its support and confidence values. Only rules falling into the same hash bucket
need to be checked for super-sequence relationship.

§The details are available in our technical report [18].

Copyright q 2008 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2008; 20:227–247
DOI: 10.1002/smr

238 D. LO, S.-C. KHOO AND C. LIU

The algorithm can be adapted easily to generate a full set of temporal rules satisfying min sup
and min conf thresholds. This is performed to serve as a point of reference for investigating the
benefit of early identification and pruning of redundant rules. To generate the full set we can simply
(1) generate a full set of pre- and post-conditions of rules satisfying the support and confidence
thresholds at lines 1 and 5 of the algorithm, respectively (we use PrefixSpan [19] for this purpose)
and (2) skip the final redundancy filtering step (i.e., lines 8–10 of the algorithm in Figure 2).

5. MINING-MAINTENANCE FRAMEWORK

Section 4 discusses how to convert a set of traces to a statistically complete and sound set of non-
redundant rules. However, how do we generate traces? Also, how to integrate the mining algorithm
in an end-to-end framework starting from a program and ending in visualization of mined properties
and/or program verification via model checking? To address the above questions we propose a
mining framework that comprises four parts:

Part 1: Program instrumentation.
Part 2: Trace generation and abstraction to sequences of symbols.
Part 3: Execution of the mining algorithm.
Part 4: Presentation of mined rules, post-processing and model checking.

Our proposed mining framework is outlined diagrammatically in Figure 3. At the start of a mining
task, four inputs are provided: a program (in source code, byte code or binary) to analyze, a test
suite, a set of thresholds and an abstract model of the corresponding system to verify. The abstract
model can be generated automatically from the code (cf. [20]) or provided by the user. These inputs

Inst.
ProgramStart

End

Program
Instrumentation Program

Trace
Generation

Test
Suite

Thresholds

Trace
Abstraction

Mining
Algorithm

Display &
User Selection

Abst.
Traces

Mined
Rules

User
Input

Process Intermediate
Result Legend

PA
R

T
 1

PA
R

T
 2

PA
R

T
 3

PA
R

T
 4Selected

Rules

VerificationModel

Figure 3. Mining framework.

Copyright q 2008 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2008; 20:227–247
DOI: 10.1002/smr

MINING TEMPORAL RULES FOR SOFTWARE MAINTENANCE 239

will be fed to various parts of the mining framework resulting in a set of mined rules ready for
presentation to the user and for inputs to a model checker.
The input program needs to be instrumented. Instrumentation inserts ‘print’ statements at the

entry points of various function definitions. When the instrumented program is run, a trace will be
generated. A trace is a series of signatures of the methods being invoked. Various instrumentation
strategies can be employed including aspects, byte code manipulation [21] and binary editing [22].
Much open-source and industrial software comes with a test suite. Running the instrumented

program over a test suite will produce a set of traces. Each trace corresponds to a series of method
invocations. The set of raw traces can then be abstracted to a set of sequences of symbols by
mapping each method signature to a unique symbol. This set of sequences of symbols is the input
to our mining algorithm.
The limitation with generation of traces by running a set of test cases is the dependence on the

quality of test cases. One needs to balance the running of both unit and system tests. With unit
tests alone, running these tests may produce smaller traces and may not be representative of true
execution scenarios.
At the end of the mining process, a set of rules will be obtained. These rules can be sorted

according to their support and confidence. The rules are then presented to the user to help the
user understand the temporal properties and implicit rules of the software system under analysis.
Selected rules can be input to a model checker for bug finding and verification of a system.
The mining process can be applied periodically along with the various maintenance tasks

performed during the software lifespan. Mined rules can help developers understand program
behaviors, update obsolete specifications and verify a program via model checking.

6. PERFORMANCE EVALUATION

Experiments have been performed on both synthetic and real data sets to evaluate the scalability of
our mining framework on standard data mining benchmark data sets. Low support threshold similar
to the range considered in [13,14,23] is utilized to test for scalability. Our algorithms are the first
algorithms mining multi-event temporal rules; hence, we compare and contrast the runtime required
when full and non-redundant sets of temporal rules are mined to evaluate the effectiveness of our
non-redundant rule pruning strategies (i.e., Theorems 3 and 4).
We use two data sets in our experiments: one synthetic and another real. Synthetic data generator

provided by IBM (cf. [17]) was used with modification to generate synthetic traces. We produce a
synthetic data set by running the IBM synthetic data generator with the following parameter setting:
D (no. of sequences—in 1000 s)=5,C (average sequence length)=20, N (no. of unique events—in
1000 s) =10 and S (average no. of events in maximal sequences) =20. We also experimented on a
click stream data set (i.e., Gazelle data set) from KDD Cup 2000 [24]. It contains 23 639 sequences
with an average length of 3 and a maximum length of 651. Both the synthetic data generator and
Gazelle data set have been standard benchmarks used in pattern mining research [13,14,17,23].
The Gazelle data set, based on KDD Cup 2000, is not evenly distributed—the maximum length

is 651 and the average length is 3. Although the average length is 3, it contains almost 30 000
sequences. At high support threshold the data set is relatively easy to mine. However, at very low

Copyright q 2008 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2008; 20:227–247
DOI: 10.1002/smr

240 D. LO, S.-C. KHOO AND C. LIU

support thresholds, as considered in this study (see [13,14]), the data set is hard to mine as the rules
are long and the number of significant rules is many.
All experiments were performed on a PentiumM 1.6GHz tablet PC with 1.5GBmemory, running

Windows XP Tablet PC Edition 2005. Algorithms were written using C#.Net.
Experiments were performed by varying min sup and min conf thresholds. The min sup value

is represented as a percentage ratio to the number of sequences in the database. The results are
plotted as line graphs. ‘Full’ and ‘NR’ correspond to the full set and non-redundant set of rules,
respectively. The x-axis of each graph corresponds to one of the thresholds considered, whereas
the y-axis represents either the algorithm runtime or the number of mined rules.
The experiment results for mining rules from the synthetic data set are shown in Figure 4(A)–(D).

The experiment results for the Gazelle data set are shown in Figure 4(E) and (F).
From the two experiments we note that the runtime is significantly increased when the min sup

threshold is lowered. On the other hand, lowering the min conf threshold has lesser effect on the
runtime. The results also show that we can efficiently mine temporal rules from standard data
mining benchmark data sets even at a low min sup threshold. The lower the threshold, the more
difficult it is to mine the rules. We did not experiment with low min conf thresholds as we believe
that the usefulness of low confidence rules (if any) is minimal.
Mining non-redundant rules rather than a full set of rules reduced the runtimes and the number

of rules by up to more than 28 times less and up to 8500 times less, respectively. Admittedly, the
pruning strategies themselves require some computation cost; hence, for cases where the benefit

108

107

106

105

104

103

102

50 60 70 80 90
min_conf (%)

|R
ul

es
| -

 (l
og

-s
ca

le
) Full

NR

102

103

104

0.034 0.041 0.048 0.055 0.062

min_sup (%)

R
u

n
ti

m
e

 (
s

)
-

(l
o

g
-s

c
a

le
)

Full
NR

Full is not mine-able

105

104

103

102

101

50 60 70 80 90
min_conf (%)

R
u

n
ti

m
e

 (
s

)
-

(l
o

g
-s

c
a

le
)

Full
NR

Full is not mine-able105

104

103

102

101

50 60 70 80 90
min_conf (%)

R
un

tim
e

(s
) -

 (l
og

-s
ca

le
)

Full
NR

108

107

106

105

104

103

102

0.4 0.45 0.5 0.55 0.6

min_sup (%)

|R
ul

es
| -

 (l
og

-s
ca

le
) Full

NR

101

102

103

104

105

0.4 0.45 0.5 0.55 0.6

min_sup (%)

R
un

tim
e

(s
) -

 (l
og

-s
ca

le
)

Full
NR

D5C20N10S20 Dataset Gazelle Dataset

M
I
N
-
S
U
P

M
I
N
-
C
O
N
F

emitnuRseluRfooNemitnuR

(A)

(D)(C) (F)

(E)(B)

Figure 4. Varying min sup at min conf =50% (A) and (B) and min conf at min sup=0.4%
(C) and (D) for D5C20N10S20 data set. Varying min sup at min conf =50% (E) and min conf

at min sup=0.041% (F) for Gazelle data set.

Copyright q 2008 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2008; 20:227–247
DOI: 10.1002/smr

MINING TEMPORAL RULES FOR SOFTWARE MAINTENANCE 241

of the pruning strategies is less, mining a full set of rules might be slightly faster than the non-
redundant set. However, the desired result is the non-redundant set of rules. The full set of rules
contains too many redundant rules—up to more than 10 million rules were produced! In addition,
for experiments with the real-life benchmark data set Gazelle, the full set of rules is not mine-able
even at the highestmin sup threshold shown in Figure 4(E)—our attempt produced a gigantic 51GB
file before we had to stop the process after it runs for many hours.
In the case study section (i.e., Section 7) we analyze traces from real software. In this section, we

analyze traces obtained from related works on sequences in the field of data mining. These traces
are generated by the IBM data generator and Gazelle data set. These traces have customarily been
used to test the scalability of data-mining algorithms, such as ours. Furthermore, since the data
generators produce random sequences, it helps to ensure that the algorithm is not biased or tuned
to work on only particular software or group of software under analysis.

7. CASE STUDIES

In this section we discuss our case studies on two different systems: JBoss-AS and a buggy CVS
application. The first study shows the utility of our method in recovering specifications of a large
industrial system. The second study demonstrates the usefulness of mined LTL rules/properties to
reveal bugs from a buggy application. A discussion on additional strategies to improve the scalability
of our approach is also presented in the end of this section.

7.1. JBoss-AS

JBoss-AS is the most widely used J2EE application server. It contains over 100 000 lines of code
and comments. The purpose of this study is to show the usefulness of the mined rules to describe
the behavior of a real software system.
Case 1: JBoss-AS security component. We instrumented the security component of JBoss-AS

using JBoss-AOP and generated traces by running the test suite that comes with the JBoss-AS
distribution. In particular, we ran the regression tests on enterprise Java bean (EJB) security imple-
mentation of JBoss-AS. Twenty-three traces of a total size of 4115 events, with 60 unique events,
were generated. Running the algorithm with the minimum support and confidence thresholds set at
15 and 90%, respectively, six non-redundant rules were mined. The algorithm completed within 3 s.
A sample of the mined rules is shown in Figure 5 (left). It describes authentication using Java

authentication and authorization service for EJB within JBoss-AS. When authentication scenario
starts, first configuration information is checked to determine authentication service availability—
this is described by the premise of the rule. This is followed by invocations of actual authen-
tication events, binding of principal information to the subject being authenticated and utiliza-
tions of subject’s principal and credential information in performing further actions—these are
described by the consequent of the rule. The meaning of the rule has been checked against JBoss
documentation.
Case 2: JBoss-AS transaction component. We instrumented the transaction component of JBoss-

AS using JBoss-AOP and generated traces by running the test suite that comes with the JBoss-AS
distribution. In particular, we ran a set of transaction manager regression tests of JBoss-AS. Each

Copyright q 2008 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2008; 20:227–247
DOI: 10.1002/smr

242 D. LO, S.-C. KHOO AND C. LIU

Premise Consequent

XmlLoginCI.getConfEntry()
AuthenInfo.getName()

ClientLoginMod.initialize()
ClientLoginMod.login()
ClientLoginMod.commit()
SecAssocActs.setPrincipalInfo()
SetPrincipalInfoAction.run()
SecAssocActs.pushSubjectCtxt()
SubjectThreadLocalStack.push()
SimplePrincipal.toString()
SecAssoc.getPrincipal()
SecAssoc.getCredential()
SecAssoc.getPrincipal()
SecAssoc.getCredential()

Premise Consequent

TxManLoc.getInstance()
TxManLoc.locate()
TxManLoc.tryJNDI()
TxManLoc.usePrivateAPI()
TxManager.getInstance()
TxManager.begin()
XidFactory.newXid()
XidFactory.getNextId()
XidImpl.getTrulyGlobalId()
LocalId.assocCurThread()
TransactionImpl.lock()

TransImpl.instanceDone()
TxManager.getInstance()
TxManager.releaseTransImpl()
TransImpl.getLocalId()
XidImpl.getLocalId()
LocalId.hashCode()
LocalId.equals()
TransImpl.unlock()
XidImpl.hashCode()

Figure 5. A sample rule from JBoss security (left) and another from JBoss transaction (right). Each of the rules
is read from top to bottom, left to right.

trace is abstracted as a sequence of events, where an event corresponds to a method invocation.
Twenty-eight traces with a total size of 2551 events containing 64 unique events were generated.
Running the algorithm on the abstracted traces with the minimum support and confidence thresh-
olds set at 25 traces and 90%, respectively, 182 non-redundant rules were mined. The algorithm
completed within 30 s.
In the presentation of mined rules, we display first rules in which their constituent events rarely

repeat and sort them according to their support and confidence values. These help to distinguish
more interesting rules from the others.
A sample of the mined rules is shown in Figure 5 (right). The 20-event rule in Figure 5 (right)

describes that the series of events 〈connection to a server instance events, transaction manager and
implementation set up event〉 (events 1–11) at the start of a transaction is always followed by the
series of events 〈transaction completion events and resource release events〉 (events 12–20) at the
end of the transaction. The above rule describing the temporal relationship and constraint between
the 20 events is difficult to identify manually. The rule sheds light on the implementation details
of JBoss-AS, which are implemented at various locations in (i.e., crosscuts) the JBoss-AS trans-
action code base. It corresponds to the code in TransactionManagerLocator, TransactionManager,
TransactionImpl, etc.
Discussion: For many applications, data mining is an iterative process; there are no hard-and-fast

rules as to the best thresholds to be used. Similarly, our rule mining tool is used in an iterative
manner. One can start at a reasonably high support and confidence thresholds and iteratively reduce
the thresholds.
Some mined rules are shorter (e.g., 8) whereas others are longer (e.g., 56). In our result, we saw

a number of similar rules due to small minor variations. Note that, by definition, employing rule
redundancy removal removes only those rules with the same support and confidence. In the future,
we shall look into ways to group these rules with minor variations together, or introduce new weaker
notions of rule redundancy. We leave a detailed study on the effect of degree of incompleteness
of trace and result of mined specification for future work. There are various studies that work on
ensuring coverage of tests or automated test generation. In this paper, we give the guarantee of
statistical soundness and completeness given input trace and thresholds.
Note that the time taken for mining is much improved with search space pruning strategies.

Without employing any search space pruning strategy (i.e., if an approach similar to that in [7,25] to

Copyright q 2008 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2008; 20:227–247
DOI: 10.1002/smr

MINING TEMPORAL RULES FOR SOFTWARE MAINTENANCE 243

mine two-event rules is employed), the mining process will require EL check operations, where E
is the number of unique events and L is the maximum length of the trace. For traces from JBoss-
AS considered, the mining process will require more than 50100 operations. Considering 1 ps per
operation, it will only complete in about 2.501×10148 centuries! This highlights the power and
importance of search space pruning strategies in improving the scalability of the mining process.

7.2. Buggy CVS application

This section describes a case study conducted on a buggy CVS application adapted from the one
studied in [6,26]. This case study shows the usefulness of mined rules for model checking and bug
detection.

7.2.1. CVS scenarios

The CVS application is built on top of the FTP library provided by Jakarta Commons Net [27].
Jakarta Commons Net is a set of reusable open-source java code implementing the client side of
many commonly used network protocols. The CVS application can be considered as a client of
Jakarta Commons Net, and it follows a certain protocol described by a set of scenarios.
There are eight common FTP interaction scenarios in our CVS implementation: Initialization and

re-initialization of a repository, multiple-file upload, download, rename and deletion, and multiple-
directory creation and deletion. All scenarios begin by connecting and logging-in to the FTP server.
They end by logging-off and disconnecting from the FTP server. The CVS interaction protocol can
be represented as a 33-state automata partially drawn in Figure 6 (see [6,26] for a more complete
diagram). We focus on the following two scenarios:
Multiple-file upload scenario: One can store one or more files. For each file, the following is

performed. First, the type of the file to be transferred is set. If the file is new, store the file directly
and append the new file information to the CVS system file in the server. Otherwise, rename the old
file by adding to the filename the time it is replaced and proceed to store the new file—the CVS
system file need not be updated.
Multiple-file deletion scenario: One can delete one or more files. For each file, first go to its

directory. List all files in the current working directory. Delete the file and all its previous versions.
If the files are not located in the same directory, change the working directory accordingly. Finally,
record file deletion information by appending it to the CVS system file.

7.2.2. Bug description and trace generation

Each invocation of a method of FTPClient may raise exceptions, especially FTPConnection
ClosedException and IOException. Hence, the code accessing FTPClientmethods need
to be enclosed in a try..catch.. finally block. Every time such an exception occurs the
program simply logs out and disconnects from the FTP server. These are represented by adding
error transitions (shown as dashed lines) to the automata as shown in Figure 7.
The above exceptions might cause a number of bugs, but we focus only on 4 bugs causing

the system log file to be in an inconsistent state. The system file describes the state of the CVS
repository and should be kept consistent with the stored files. Bugs of this type are illustrated by

Copyright q 2008 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2008; 20:227–247
DOI: 10.1002/smr

244 D. LO, S.-C. KHOO AND C. LIU

2

11

0

13X

G

G

O

12 Y

Info
A – appendFile
S – storeFile
N – rename
C – changeWorkingDir
T – setFileType
I - listNames
D - deleteFile

Info
W- <init>
X – Connect
G – Login
O – Logout
Y – Disconnect

3 4

5

6

A

T
S

N

S

A

S

C
A

9 8 10

D

I D 7 C

1

W

<<Other 6 Scenarios>>

Multiple-File Deletion Scenario

Multiple-File Upload Scenario

Figure 6. CVS protocol.

..

Store(S) and rename(N) without appropriate
next actions

Normal Injected Bug Legend

[Bug-1]

[Bug-2]

9 10

C

D

D
A 118 I

D

[Bug-3]

[Bug-4]

C

Deletion(D) without log update

114

5
S

N

A

S
6

N

S

3 T ..

Figure 7. Injected bug.

the error transitions shown in Figure 7. Because of the bugs, a file can be added or deleted without
a proper log entry being made. An old version of a file can be renamed by appending a time-stamp
without the new version being stored in the CVS. These bugs occur because the CVS scenarios are
not executed atomically.
To generate traces, we followed the process discussed in [6]. First, we instrumented the CVS

application byte code using an adapted version of Java runtime analysis toolkit [21]. Next, we
ran the instrumented CVS application over a set of test cases to generate traces. Via a trace post-
processing step, we then filtered events in the traces not corresponding to the interactions between
the CVS application and the Jakarta Commons Net FTP library. Thirty-six traces of a total size of
416 events were generated.

7.2.3. Mined rules and model checking results

We ran our mining algorithm on the generated traces. It completed within 1 s and mined five rules
with minimum support and confidence thresholds set at 15 traces and 90%, respectively. Among

Copyright q 2008 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2008; 20:227–247
DOI: 10.1002/smr

MINING TEMPORAL RULES FOR SOFTWARE MAINTENANCE 245

the mined rules, the following two rules are the bug-revealing program properties:

1. Whenever the application is initialized (W), the connection (X) and login (G) to the server
are made, the file type is set (T) and an old file is renamed (N), then eventually a new file is
stored (S), followed by a logout (O) and a disconnection from the server (Y). This is denoted
as 〈W, X,G,T,N 〉→〈S,O,Y 〉.

2. Whenever the application is initialized (W), the connection (X) and login (G) to the server
are made, a working directory is set (C), then eventually the files in the directory is listed (I),
a file is deleted (D), a log entry is made (A), followed by a logout (O) and a disconnection
from the server (Y). This is denoted as 〈W, X,G,C〉→〈I,D, A,O,Y 〉.

We used a model checker outlined in [28]. We drafted an abstract model of the buggy CVS
system from the code manually in the format accepted by the model checker and checked against the
above two properties. Alternatively, one can try to use some tools that automate model generation
from the code. As the focus of this case study is on mining bug-revealing properties, we leave this
for future work. The model checker reported violations of the above properties. These violations
correspond to 3 out of the 4 bugs in the model. Bug-2 violates the first property. Bug-3 and Bug-4
violate the second property.
It is interesting to note that no two-event rules can be used in detecting these bugs, as invocations

of FTP file delete (D), rename (R) and store (S) follow a different protocol in different scenarios
(e.g., ‘D’ must be followed by ‘A’ in file deletion but not in the repository re-initialization scenario).
Multi-event rules provide more precise contexts for identifying the scenarios where specified events
occur, thus enabling the detection of the bugs.
One of the bugs (Bug-1) cannot be revealed because the required bug-revealing property is

outside the bound of the LTL expressions mineable by our algorithm. This bug-revealing property
is whenever the application is initialized (W), the connection (X) and login (G) to the server are
made, a file type is set (T), and there is no rename (N) until a new file is stored (S), then eventually
a log entry is made (A), followed by a logout (O) and a disconnection from the server (Y). Note
that the phrase in italics is not expressible by any of our mined rules whose format (in BNF) is
described in Section 2. To mine such properties, we need to mine rules containing the LTL operators
not(¬) and until (U)—this is a possible future work.

8. RELATED WORK

Ernst et al. propose an interesting work called Daikon that discovers value-based program invariants
occurring at a certain program point by analyzing program execution traces [29]. These value-
based invariants are usually in the form of algebraic equations or boolean expressions (e.g., X>Y ,
Z<Y , etc.). Different from Daikon, in this work we focus on mining temporal properties, capturing
ordering among events.
Yang et al. [7] present an interesting work on mining two-event temporal logic rules (i.e., of the

form G(a→ XF(b)), where G, X and F are LTL operators [11]), which are statistically significant
with respect to a user-defined ‘satisfaction rate’. The algorithm presented, however, does not scale
to mine multi-event rules of arbitrary length. To handle longer rules, Yang et al. suggest a partial
solution based on the concatenation of mined two-event rules. Yet, the method proposed might

Copyright q 2008 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2008; 20:227–247
DOI: 10.1002/smr

246 D. LO, S.-C. KHOO AND C. LIU

miss some multi-event rules or introduce superfluous rules that are not statistically significant—
it is neither statistically sound nor complete. In contrast, we mine LTL rules of arbitrary sizes;
scalability is accomplished by utilizing search space pruning strategies inspired from research in
the data mining domain. Our method is also statistically sound and complete.
Many specification mining algorithms extract temporal specifications in the form of automata

[3–6]. Different from the above, we mine a set of multi-event temporal logic rules. While an
automaton expresses a global picture of software specification, mined LTL rules break this into
smaller parts, each expressing program properties observed in the traces.
Technique wise, this work is a new addition to the family of pattern mining algorithms

[13,14,16,17]. Different from other pattern mining algorithms, in this work we mine LTL rules that
have a different semantics and require different mining strategies than previous approaches.

9. CONCLUSION AND FUTURE WORK

In this paper, a novel method to mine a non-redundant set of statistically significant rules of arbitrary
lengths of the form: ‘Whenever a series of events ESPre occurs, eventually another series of events
ESPost also occurs’ is proposed. According to a survey in [8], these rules belong to two of the
most frequently used families of temporal logic expressions for model checking. Our approach is
statistically sound and complete, meaning that all mined rules are statistically significant and all
statistically significant rules are mined or represented. The problems of a potentially exponential
runtime cost and a huge number of reported rules have been effectively mitigated by employing
search space pruning strategies and elimination of redundant rules. A case study on JBoss-AS
shows the utility of our technique in recovering specifications of a large industrial program. Another
case study on a buggy CVS application demonstrates the usefulness of our approach in mining
bug-revealing properties for bug detection using a model checker.
As the future work, we shall investigate advanced techniques to reduce the size of input traces

while retaining the quality of the specification mined. One can do so by throwing away non-
important or less important events. Zaidman et al. [30] identify important key classes using a
webmining algorithm. Hamou-Lhadj and Lethbridge [31] propose a technique to summarize the
content of large traces. An approach similar to that in [30,31] can potentially be employed to
identify and remove less important events from the traces. Kuhn and Greevy [32] partition a trace
into different phases. We are investigating on the possibility of separately mining specifications for
each phase of a program. We also plan to investigate additional pruning strategies to further improve
the performance of our algorithm. Additionally, we plan to mine for more properties involving
disjunction, negation and additional sub-sets of LTL.

REFERENCES

1. Canfora G, Cimitile A. Software maintenance. Handbook of Software Engineering and Knowledge Engineering. World
Scientific: River Edge NJ, 2001; 1:91–120.

2. Clarke E, Grumberg O, Peled D. Model Checking. MIT Press: Cambridge MA, 1999.
3. Ammons G, Bodik R, Larus JR. Mining specification. Proceedings of Symposium on Principles of Programming

Languages (POPL), 2002; 4–16.

Copyright q 2008 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2008; 20:227–247
DOI: 10.1002/smr

MINING TEMPORAL RULES FOR SOFTWARE MAINTENANCE 247

4. Reiss SP, Renieris M. Encoding program executions. Proceedings of International Conference on Software Engineering
(ICSE), 2001; 221–230.

5. Cook JE, Wolf AL. Discovering models of software processes from event-based data. ACM Transactions on Software
Engineering and Methodology 1998; 7(3):215–249.

6. Lo D, Khoo SC. SMArTIC: Toward building an accurate, robust and scalable specification miner. Proceedings of
International Symposium on the Foundations of Software Engineering (FSE), 2006; 265–275.

7. Yang J, Evans D, Bhardwaj D, Bhat T, Das M. Perracotta: Mining temporal API rules from imperfect traces. Proceedings
of International Conference on Software Engineering (ICSE), 2006; 282–291.

8. Dwyer M, Avrunin G, Corbett J. Patterns in property specifications for finite-state verification. Proceedings of International
Conference on Software Engineering (ICSE), 1999; 411–420.

9. Han J, Kamber M. Data Mining Concepts and Techniques. Morgan Kaufmann: Los Altos CA, 2006.
10. Ball T. The concept of dynamic analysis. Proceedings of European Software Engineering Conference/International

Symposium on the Foundations of Software Engineering (ESEC/FSE), 1999; 216–234.
11. Huth M, Ryan M. Logic in Computer Science. Cambridge University Press: Cambridge, 2004.
12. Hopcroft J, Motwani R, Ullman J. Introduction to Automata Theory, Languages, and Computability. Addison-Wesley:

Reading MA, 2001.
13. Yan X, Han J, Afhar R. CloSpan: Mining closed sequential patterns in large data sets. Proceedings of SIAM International

Conference on Data Mining (SDM), 2003.
14. Wang J, Han J. BIDE: Efficient mining of frequent closed sequences. Proceedings of International Conference on Data

Engineering (ICDE), 2004; 79–90.
15. Engler D, Chen DY, Hallem S, Chou A, Chelf B. Bugs as deviant behavior: A general approach to inferring errors in

systems code. Proceedings of Symposium on Operating System Principles (SOSP), 2001; 57–72.
16. Agrawal R, Srikant R. Fast algorithms for mining association rules. Proceedings of International Conference on Very

Large Data Bases (VLDB), 1994; 487–499.
17. Agrawal R, Srikant R. Mining sequential patterns. Proceedings of International Conference on Data Engineering (ICDE),

1995; 3–14.
18. Lo D, Khoo SC, Liu C. Mining recurrent rules from sequence database. NUS SoC Technical Report TR 12/07, 2007

[27 June 2008].
19. Pei J, Han J, Mortazavi-Asl B, Pinto H, Chen Q, Dayal U, Hsu MC. Prefixspan: Mining sequential patterns efficiently by

prefix-projected pattern growth. Proceedings of International Conference on Data Engineering (ICDE), 2001; 215–224.
20. Corbett J, Dwyer M, Hatcliff J, Laubach S, Pasareanu CS, Robby, Zheng H. Bandera: Extracting finite-state models

from Java source code. Proceedings of International Conference on Software Engineering (ICSE), 2000; 439–448.
21. JRat. http://jrat.sourceforge.net/ [27 June 2008].
22. Larus J, Schnarr E. EEL: Machine-independent executable editing. Proceedings of SIGPLAN Conference on Programming

Language Design and Implementation (PLDI), 1995; 291–300.
23. Lo D, Khoo SC, Liu C. Efficient mining of iterative patterns for software specification discovery. Proceedings of SIGKDD

International Conference on Knowledge Discovery and Data Mining (KDD), 2007; 460–469.
24. Kohavi R, Brodley C, Frasca B, Mason L, Zheng Z. KDD-Cup 2000 organizers’ report: Peeling the onion. SIGKDD

Explorations 2000; 2:86–98.
25. Weimer W, Necula G. Mining temporal specifications for error detection. Proceedings of International Conference on

Tools and Algorithms for the Construction and Analysis of Systems (TACAS), 2005; 461–476.
26. Lo D, Khoo SC. QUARK: Empirical assessment of automaton-based specification miners. Proceedings of Working

Conference on Reverse Engineering (WCRE), 2006; 51–60.
27. Apache. Jakarta commons/net. Available from: http://jakarta.apache.org/commons/net/ [27 June 2008].
28. Hinton A, Kwiatkowska M, Norman G, Parker D. PRISM: A tool for automatic verification of probabilistic systems.

Proceedings of International Conference on Tools and Algorithms for the Construction and Analysis of Systems (TACAS),
2006; 441–444.

29. Ernst M, Cockrell J, Griswold W, Notkin D. Dynamically discovering likely program invariants to support program
evolution. IEEE Transactions on Software Engineering 2001; 27(2):99–123.

30. Zaidman A, Calders T, Demeyer S, Paredaens J. Applying web mining techniques to execution traces to support the
program comprehension process. Proceedings of European Conference on Software Maintenance and Reengineering
(CSMR), 2005; 134–142.

31. Hamou-Lhadj A, Lethbridge T. Summarizing the content of large traces to facilitate the understanding of the behaviour
of a software system. Proceedings of International Conference on Program Comprehension (ICPC), 2006; 181–190.

32. Kuhn A, Greevy O. Exploiting analogy between traces and signal processing. Proceedings of International Conference
on Software Maintenance (ICSM), 2006; 320–329.

Copyright q 2008 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2008; 20:227–247
DOI: 10.1002/smr

	Mining temporal rules for software maintenance
	Citation

	Mining temporal rules for software maintenance

