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Abstract: This paper compares the performance of several tests for stochastic dom-
inance up to order three using Monte Carlo methods. The tests considered are the
Davidson and Duclos (2000) test, the Anderson test (1996) and the Kaur, Rao and
Singh (1994) test. We find that the Davidson-Duclos test appears to be the best. The
Kaur-Rao-Singh test is overly conservative and does not compare favorably against the
Davidson-Duclos and Anderson tests in terms of power.
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1 Introduction

The comparison of distribution functions has long been a research topic of major interests

with applications to income distribution and portfolio investment. Studies on income

distribution focuses on the issue of income inequality as measured by rank dominance and

Lorenz dominance. In investment decision comparison between asset classes can be made

under the criteria of stochastic dominance. Comparisons of the distribution functions

and their cumulative functions over the support of the distributions are required to draw

conclusions concerning the existence of dominance.

The early work of Beach and Davidson (1983) examined dominance at the first

order. Later work by Bishop, Formby and Thistle (hereafter BFT) (1992) extended

the comparison to the second order. Recently, several methods have been proposed for

testing for stochastic dominance. These tests may be broadly divided into two groups.

The first group relies on the comparison of the distributions at a finite number of grid

points. The papers by Anderson (1996) and Davidson and Duclos (2000) are along this

line. The second group propose the use of the inf or sup statistics over the support of the

distributions. The tests due to McFadden (1989) and Kaur, Rao and Singh (hereafter

KRS) (1994) belong to this group.

Although there have been a number of different test procedures for stochastic

dominance in the literature, little is known about the relative performance of these

tests. For the implementation of these tests there are often some questions that remain

to be answered. For example, for the tests based on the comparison of the distributions

at certain grid points, the selection of such points is often by rule of thumb. Also, as

the critical values are based on the assumption of independence of the grid statistics,

the empirical size of the test may not be reliable. Finally, little is known about the

relative power of these tests, which is an important issue for empirical applications.

In this paper we consider some of the tests for stochastic dominance available in the
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literature. Specifically, we consider the Davidson-Duclos test, the Anderson test and

the KRS test. We compare the performance of these tests using Monte Carlo methods,

which will hopefully throw some light on the above issues.

The balance of this paper is as follows. In Section 2 we describe the application of

the tests examined in this paper. The Monte Carlo results are reported in Section 3. The

Davidson-Duclos test appears to be the best. The KRS test is overly conservative and

does not compare favorably against the Davidson-Duclos test in power. Some conclusions

are provided in Section 4.

2 Tests for Stochastic Dominance

Consider a random sample of NY observations yi, i = 1, ...,NY , from a population with

distribution function FY (.). Define D
1
Y (x) = FY (x) and let

1

Ds
Y (x) =

Z x

0

D
(s−1)
Y (u) du,

for any integer s ≥ 2. Suppose zi, i = 1, ...,NZ , are a random sample from another

population with distribution function FZ(.). We define D
s
Z(x) analogously. It can be

shown that

Ds
i (x) =

1

(s− 1)!
Z x

0

(x− u)s−1dFi(u), i = Y, Z.

Y is said to dominate Z stochastically at order s if Ds
Z(x) ≥ Ds

Y (x) for all x ≥ 0, with
strict inequality for some x.2 If this is true, we write Y Âs Z.

If correlation between Y and Z is to be taken into account, we assume NY =

NZ = N and let (yi, zi) be a paired observation (such as returns of two funds in the

1Without loss of generality we assume the observations are nonnegative.
2We use Y and Z to denote the random variables representing the distributions of the populations.

If Y and Z are returns in investments, “Y stochastically dominates Z” means that Y is preferred to
Z under some conditions. If Y and Z are incomes, the first-order dominance is equivalent to rank
dominance and the second-order dominance is equivalent to generalized-Lorenz dominance.
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same period). Davidson and Duclos (2000) considered the following sample statistics:3

D̂s
Y (x) =

1

N(s− 1)!
NX
i=1

(x− yi)s−1+ ,

D̂s
Z(x) =

1

N(s− 1)!
NX
i=1

(x− zi)s−1+ ,

V̂ sY (x) =
1

N

"
1

((s− 1)!)2
1

N

NX
i=1

(x− yi)2(s−1)+ − D̂s
Y (x)

2

#
,

V̂ sZ(x) =
1

N

"
1

((s− 1)!)2
1

N

NX
i=1

(x− zi)2(s−1)+ − D̂s
Z(x)

2

#
,

V̂ sY,Z(x) =
1

N

"
1

((s− 1)!)2
1

N

NX
i=1

(x− yi)s−1+ (x− zi)s−1+ − D̂s
Y (x)D̂

s
Z(x)

#
,

and proposed the following normalized statistic:

T s(x) =
D̂s
Y (x)− D̂s

z(x)q
V̂ s(x)

,

where

V̂ s(x) = V̂ sY (x) + V̂
s
Z(x)− 2V̂ sY,Z(x),

for testing the equality of Ds
Z(x) and D

s
Y (x). They showed that, under H0 : D

s
Z(x) =

Ds
Y (x), T

s(x) is asymptotically distributed as a standard normal variate.

When unpaired observations are independently drawn from two populations, we

allow NY 6= NZ . In this case, V̂ s(x) is computed as V̂ sY (x) + V̂ sZ(x) and the asymptotic
normality result still holds. In this paper we only consider the case where the observations

from the two populations are independent.4

To test for stochastic dominance, H0 has to be examined for the full support.

This, of course, is empirically impossible. A compromise is to test H0 for a selected finite

number of values of x. As multiple hypotheses are involved, tests based on multiple

3u+ is defined as max(u, 0). To simplify the notation we adopt the convention u
s
+ = (u+)

s.
4The purpose of this assumption is to scale down the Monte Carlo experiment. Many empirical

studies in the literature are based on independent samples. See, for example, Beach and Davidson
(1983).
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comparison have to be adopted. A multiple comparison procedure was proposed by

Bishop, Formby and Thistle (1992) by employing the union-intersection test. Following

BFT we consider fixed values x1, x2, ..., xK , and their corresponding statistics T
s(xi), for

i = 1, ..., K. The following hypotheses are defined:5

1. H0 : D
s
Y (xi) = D

s
Z(xi) for all xi,

2. HA : D
s
Y (xi) 6= Ds

Z(xi) for some xi,

3. HA1 : Y Âs Z,

4. HA2 : Z Âs Y.

The overall null hypothesis H0 is the logical intersection of several hypotheses

(one for each xi) and the overall alternative hypothesis HA is the logical union of these

hypotheses. To control for the probability of rejecting the overall null hypothesis, BFT

suggested using the studentized maximum modulus statistic with K and infinite degrees

of freedom, denoted by MK
∞. We denote the 1 − α percentile of MK

∞ by MK
∞,α, which

was tabulated by Stoline and Ury (1979). The following decision rules are adopted:

1. If |T s(xi)| < MK
∞,α for i = 1, ...,K, accept H0.

2. If − T s(xi) > MK
∞,α for some i and T

s(xi) < M
K
∞,α for all i, accept HA1.

3. If T s(xi) > M
K
∞,α for some i and − T s(xi) < MK

∞,α for all i, accept HA2.

4. If T s(xi) > M
K
∞,α for some i and − T s(xi) > MK

∞,α for some i, accept HA.

As the test above is based on the asymptotic distribution result of T s(x) derived

by Davidson and Duclos (2000), we call it the DD test. This procedure was originally

5Note that the equality and inequality conditions for DsY (x) and D
s
Z(x) under the different hypothe-

ses are now defined with respect to the finite set of values xi.
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proposed by BFT, in which a different normalized statistic for the point-by-point com-

parison was used. In this paper, we adopt the statistic due to Davidson and Duclos

(2000) because of its generality.

Anderson (1996) suggested an alternative method of estimating the Ds(x) func-

tions by applying the trapezoidal rule to approximate the required integrals. Suppose

we divide the data into K + 1 mutually exclusive intervals with di as the length of the

ith interval.6 We define the following matrices:

If =


1 0 . . . 0
1 1 0 . . 0
1 . 1 0 . 0
. . . . . .
1 1 1 . 1 0


and

IF = 0.5×


d1 0 . . .
d1 + d2 d2 0 . .
d1 + d2 d2 + d3 d3 0 .
. . . . .
d1 + d2 d2 + d3 d3 + d4 . dK

 ,
where If is K × (K + 1) and IF is K × K. Let pji be the probability of finding an
observation in the ith interval for the jth population, for j = Y, Z. We write pj =

(pj1, ..., pj,K+1)
0. To test for the first-order stochastic dominance, we set up the following

hypotheses:

H1
0 : If(pY − pZ) = 0,

H1
1 : If (pY − pZ) ≤ 0.

If H1
0 is rejected against H

1
1 , we conclude that Y Â1 Z.7 For the second-order dominance,

we consider

H2
0 : IF If(pY − pZ) = 0,

H2
1 : IF If(pY − pZ) ≤ 0.

6Thus, the first interval is (0, d1) and the ith interval is (d1+ ..+di−1, d1+ ..+di) for i = 2, ...,K+1,
and the full interval of the data is (0, d1 + d2 + ...+ dK+1).

7Note that H1
0 and H

1
1 state the equality and inequality, respectively, of two K-vectors. The same

is true for H2
0 , H

2
1 , H

3
0 and H

3
1 below.
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Thus, ifH2
0 is rejected againstH

2
1 , we conclude that Y Â2 Z. Likewise, for the third-order

dominance, we consider

H3
0 : IF IF If(pY − pZ) = 0,

H3
1 : IF IF If(pY − pZ) ≤ 0,

from which Y Â3 Z if H3
0 is rejected against H

3
1 .
8

We define nj = (nj1, nj2, ..., nj,K+1)
0, for j = Y, Z, as the vector of frequencies of

the sample from population j in the K+1 categories. Thus,
PK+1

i=1 nji = Nj . Under the

null hypothesis that FY = FZ, we let pj = p = (p1, ..., pK+1)
0, for j = Y, Z. We denote

υ =
nY
NY
− nZ
NZ

and

Ω =


p1(1− p1) −p1p2 . . −p1pK+1
−p2p1 p2(1− p1) . . −p2pK+1
. . . . .
. . . . .
−pK+1p1 −pK+1p2 . . pK+1(1− pK+1)

 .
Thus, nj/Nj is asymptotically distributed as N(p,Ω/Nj), for j = Y, Z.9 From this we

have10

υ →
D
N(0,mΩ),

where

m =
NY +NZ
NYNZ

.

Writing Hs for If , IF If or IF IF If , respectively, for the tests for the first-, second- and

third-order dominance, we obtain

Hsυ →
D
N(0,mHsΩH

0
s).

8Higher-order stochastic dominance can be tested similarly. But we shall stop at the third order.
9This result holds when Nj → ∞, with Njpi > 5 for i = 1, ...,K + 1. See Anderson (1996) for the

details.
10We write →

D
to denote convergence in distribution.
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Ω can be estimated by replacing p by

p̂ =
nY + nZ
NY +NZ

.

We denote this estimate by Ω̂.DenotingHsυ(i) as the ith element ofHsυ andmHsΩ̂H
0
s(i, i)

as the ith diagonal element of mHsΩ̂H
0
s, we define

Asi =
Hsυ(i)q

mHsΩ̂H 0
s(i, i)

, i = 1, ..., K,

which is asymptotically distributed as N(0, 1). Allowing Asi to take the role of T
s(xi),

we obtain an alternative set of tests for stochastic dominance. The decision rules stated

above for the T s(xi) statistics can be applied to A
s
i . We shall call this test the A test.

As before, for each order of the test there are four possible outcomes. We shall adopt

the same terminology for the various hypotheses (namely, H0, HA, HA1 and HA2) as in

the case of the DD test.11

The DD and A tests depend on a predetermined set of grid points xi. The

arbitrariness of the grid points and the number of points K are undesirable features of

the tests. Are the powers of the tests affected by the choice of K? As the A tests are

based on trapezoidal approximations of the integrals, are the size and power of the tests

compromised? It should be noted that the use of the MK
∞ statistic in providing the

critical values for the DD (or the A) tests is valid only when the T s(xi) (or A
s
i ) statistics

are independent. As pointed out by Sidak (1967) and Hochberg (1974), the studentized

maximum modulus test is conservative (i.e., the nominal size overstates the actual size) if

these statistics are not independent. As both the T s(xi) and A
s
i statistics are correlated

across different grid points, it is important to investigate how the performance of the

tests is affected. In the next section we shall provide some answers to these questions

through a Monte Carlo experiment.

11It should be noted that the A test applies only to independent samples from two different popula-
tions. It does not have the flexibility of the DD test to incorporate paired observations.
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Kaur, Rao and Singh (1994) proposed a test that does not require the setting up

of grid points. Their test can be used to compare the following hypotheses: H0 : Y ¨s Z

against H1 : Y Âs Z. By reversing Y and Z, the following hypotheses can also be

compared: H 0
0 : Z ¨s Y against H 0

1 : Z Âs Y.
Assuming [0, b] is the support of Y and Z, we define

T sM = inf
0≤x≤b

{T s(x)},

T sM∗ = inf
0≤x≤b

{−T s(x)}.

Thus, these statistics are evaluated over the full support of the population rather than

at certain grid points. Denoting zα as the 1 − α percentile of the standard normal

distribution, the following decision rules can be applied at the level of significance α:

1. If T sM∗ < zα accept H0.

2. If T sM∗ > zα accept H1.

3. If T sM < zα accept H
0
0.

4. If T sM > zα accept H
0
1.

We call this test procedure the KRS test.12 KRS showed that their test is consis-

tent and has an upper bound α on the asymptotic size. It appears to be rather stringent

to require the inf statistic to exceed zα for the rejection of H0 and H
0
0. Thus, it would be

interesting to see how close the empirical size of the test is to its nominal value. Whether

the power of the test is compromised due to the stringent rejection criterion is also an

important issue. We shall examine these questions in the next section.

12Kaur, Rao and Singh (1994) considered the special case where s = 2, i.e., the case of the second-
order stochastic dominance. The proposed inf is taken over a statistic that is asymptotically equivalent
to T 2(x). An algorithm was proposed to find the minimum of the statistics over the support of the
distributions. An extension of their algorithm to s = 3 is intractable. In this paper, we use grid search
to find the minimum. Following KRS’s convention we note that T s(x) is zero when x is less than the
minimum observation of the combined sample.
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We conclude this section by making references to some other tests for stochas-

tic dominance not studied in our Monte Carlo experiment. First, a test based on

supx{D̂s
Y (x) − D̂s

Z(x)} was proposed by McFadden (1989). However, the asymptotic
distribution of the test statistic for s ≥ 2 is analytically intractable, although Monte

Carlo methods may be used to provide some estimates for the critical values. Maa-

soumi and Heshmati (2000) applied McFadden’s approach to study income distribution

in Sweden. They estimated the critical values of their test statistics using bootstrap

method. Second, a recent paper by Dardanoni and Forcina (1999) examined the use of

the distance statistic for making comparisons among more than two populations. The

proposed statistic is asymptotically distributed as a chi-bar-squared random variable.13

Due to the computational complexity of these two methods, they will not be included

in our Monte Carlo study.

3 Monte Carlo Results

To sample observations from a known population we need to select a distribution func-

tion. Following Dardanoni and Forcina (1999) we adopt the Burr distribution, which

has been found to fit empirical income data and has a simple parametric form. The dis-

tribution function of a Burr distribution with parameters α and β, denoted by B(α,β),

is given by

F (x) = 1− (1 + xα)−β, x ≥ 0,

with β > 1/α > 0.14 The inverse of F (.) is given by

F−1(u) = [−1 + (1− u)−1/β]1/α, 0 ≤ u < 1.

Thus, random numbers of the Burr distribution can be generated easily from random

numbers of the uniform distribution.
13See Shapiro (1985, 1988) for the properties of the chi-bar-squared distributions.
14This distribution is also known as the Burr Type XII distribution. The simpler terminology, how-

ever, is adopted here. See Johnson, Kotz and Balakrishnan (1994) for more details of the properties of
this distribution.
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As the support of the Burr distribution does not have an upper limit, it presents

an undesirable feature in the simulation. To obtain distributions with finite support, we

set the upper limit of the distribution at a point x∗. The modified distribution function

of the truncated distribution, denoted by F ∗(.), is

F ∗(x) =
½
F (x)/F (x∗) x ≤ x∗
1 x > x∗.

Figure 1 shows the distribution functions of two truncated Burr distributions, namely,

B(4.7, 0.55) and B(2, 0.65).15 Thus, there is no dominance for these two populations at

the first order. The Ds(.) functions for these two distributions are presented in Figures

2 and 3, respectively, for s = 2 and 3. Thus, B(4.7, 0.55) dominates B(2, 0.65) at the

third order, but not at the second order. These two distributions form the basis of our

Monte Carlo experiments.

The number of grid points used in empirical studies is often decided by rule of

thumb. Many studies used the deciles for lack of clear guidance. In this paper we

consider K = 6, 10 and 15. For these numbers the critical values of the studentized

maximum modulus statistics are given by Stoline and Ury (1979). Two methods of

determining the grid points are examined, namely, grid points that divide the samples

into equal number of observations and grid points that are evenly spaced in the range

of the sample.16 The sample size N is taken to be 500, 1000, 2000 and 3000.

As the DD and A tests depend on the asymptotic distributions of the T s(xi) and

Asi statistics being standard normal, we first examine this approximation. We generate

observations from the truncated B(4.7, 0.55) distribution. A set of grid points are fixed.

These points divide the support of the truncated B(4.7, 0.55) distribution into eleven

intervals such that x10 is the 99th percentile of the truncated distribution and the first

15We truncate the distribution at approximately the 98th percentile.
16In the simulation it is the combined sample from the two populations that is used for determining the

grid points. For the equal-probability scheme, we fix xK as the 99th percentile of the combined sample.
Then x1, ..., xK−1 are chosen to divide the combined sample into K groups of equal probability. For
the equal-interval scheme, xK is fixed similarly. However, x1, ..., xK−1 are chosen to divide the interval
(0, xK) into K equal subintervals.
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ten intervals are of equal length. Independent samples of the T s and As statistics are

generated at each grid point. For each of the T s and As statistics, eight groups are used

to construct the χ2 goodness-of-fit test. We use 5,000 Monte Carlo samples to compute

the χ2. The results are summarized in Table 1. It can be seen that the convergence to

normality is rather slow for s = 1, especially for the ending grid points. The normality

approximation, however, appears to work well for s ≥ 2 with N larger than 2000.

Table 2 summarizes the empirical relative frequencies of accepting H0 when the

equal-probability scheme is used to fix the grid points. The observations from popula-

tions Y and Z are generated from the same distribution. B(4.7, 0.55) and B(2.0, 0.65)

are considered. In the experiments, the numbers of cases of accepting each of the four

hypotheses are recorded. We use 10,000 Monte Carlo runs for each experiment. From

the results we find that the number of cases where HA is accepted is negligible, while

the acceptance of HA1 and HA2 are almost equally divided. Thus, only the acceptance

of H0 is given in the table. Note that one minus the figures in Table 2 gives the empir-

ical sizes of the tests. We can see that the DD and A tests are too conservative.17 In

comparison, the understatement in the size of the A test is more serious. The variation

in the empirical size with respect to K seems to be small, although it appears that the

empirical size is slightly closer to the nominal value when K is smaller. This is true for

both tests. Also, the nominal size is better approximated when s is smaller. Again, this

is true for both tests.

To examine the power of the tests, we generate Z from B(2.0, 0.65). We consider

the following distributions for Y : B(4.5, 0.55), B(4.6, 0.55) and B(4.7, 0.55). For each

case of Y there is no dominance between Y and Z at the first and second order (i.e., HA

is true for s = 1, 2). However, Y Â3 Z, so that HA1 is true for s = 3. Table 3 summarizes
the empirical relative frequencies of accepting HA1 when the equal-probability scheme

is used to fix the grid points. We note that the numbers of cases of H0 and HA2 being

17Recall that this result agrees with the findings of Sidak (1967) and Hochberg (1974).
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accepted are almost zero, so that one minus the figures in the table gives the relative

frequencies of accepting HA. It can be seen that for s = 1, the tests are able to make the

right decision almost all the time, even for a small sample of 500. For s = 2, however,

there are high frequencies of making the wrong decision that Y dominates Z. The A test

makes the wrong decision more frequently than the DD test. As expected, the wrong

decision is made less frequently when the sample size N increases. Rather interestingly,

wrong decisions are made less frequently when K is small.18 This regularity applies

to both tests and for all pairs of populations. Finally, for s = 3, both tests have no

difficulty identifying the dominance correctly.

We repeat the experiments using the equal-interval scheme to fix the grid points.

The results are presented in Tables 4 and 5. Comparing Tables 2 and 4, we can see that

the under-rejection for the equal-interval scheme is more serious.19 On the other hand,

from Tables 3 and 5 we can see that the probability of making the wrong conclusion

Y Â2 Z has reduced when the equal-interval scheme is used. The improvement is

especially significant for the A test.20 Indeed, when the equal-interval scheme is used,

the A test is only marginally inferior to the DD test in wrongly concluding that Y Â2 Z.
The fact that the T s and As statistics use the same sample observations for

different xi renders these statistics correlated across different xi. This causes the tests

to under-reject when the null is correct. One method to overcome this problem is to use

independent samples for different xi. We run Monte Carlo experiments with the same

set-up as above, except that an independent sample is used for each xi.
21 We find that

18Note that this finding also applies to the A test, notwithstanding the fact that the trapezoidal
approximation is expected to improve with large K.
19It is noted that the under-rejection is due to the correlations between the grid-point statistics. The

equal-probability scheme has the effect of spacing out the grid-points to reduce the correlations. On
the other hand, when the equal-interval scheme is used the correlation between two adjacent grid-point
statistics may be very high in a region where the functions Ds are flat.
20The improvement in the A test may be due to better results in the trapezoidal approximation when

the equal-interval scheme is used. For the DD test, the differences are small and the improvement in
the equal-interval scheme is not uniform.
21Hence the total number of observations in the sample is KN .
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the empirical size becomes very close to the nominal size. To save space, the results are

not summarized here.22

To investigate how the powers of the tests are affected by the independent sam-

pling method, we conduct Monte Carlo experiments following the same set-up as Tables

3 and 5. The results are summarized in Tables 6 and 7, for the equal-probability and

equal-interval schemes, respectively. From the results we can see that, as before, the

decisions concerning s = 1 and s = 3 are made with high accuracy. For s = 2, there is

improvement in the reduction of the probability of making the wrong decision. While

the improvement is marginal for the equal-probability scheme, it is very significant for

the equal-interval scheme.23 As independent sampling requires more data, it is impor-

tant to see if such a sampling scheme is worthwhile. As far as the size of the test is

concerned, the improvement in the independent sampling is impressive. However, the

improvement in avoiding wrongly accepting HA1 is not significant and does not warrant

the additional observations.

We now turn to the KRS test. The same Monte Carlo set-up is used. The

results are summarized in Table 8. Two sets of hypotheses are compared. These are

H0 : Y ¨s Z against H1 : Y Âs Z, and H 0
0 : Z ¨s Y against H 0

1 : Z Âs Y . The figures
in Table 8 are the empirical relative frequencies of accepting H0 (against H1) and H

0
0

(against H 0
1). These figures should be interpreted as follows. For PD1 and PD2, both

H0 and H
0
0 are correct. Thus, one minus the figures in the table represents the empirical

size of the tests. This applies to all s. For PD3, PD4 and PD5, there is no dominance

between Y and Z for s = 1, 2, while Y stochastically dominates Z for s = 3. Thus, for

s = 1, 2, H0 and H
0
0 are correct. For s = 3, H0 is incorrect, while H

0
0 is correct.

The following conclusions emerge from Table 8. Firstly, the true size of the KRS

22The accuracy of the empirical size is indeed very impressive. For the complete set of experiments
conducted, the empirical probabilities of accepting H0 range from 94.30% to 96.06%.
23As the tests are no longer conservative under independent sampling, the improvement in power is

expected.
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test is very much understated by the nominal size. Indeed, we can see that the empirical

size of the test is zero for many of the cases simulated. Secondly, considering H0 with

s = 3 for PD3, PD4 and PD5 (which is a wrong hypothesis), we can see that the

empirical power of the test is rather low. The lack in power is clear when we compare

the results against those of the DD and A tests in Tables 3, 5, 6 and 7. Both DD and

A tests correctly select the hypothesis with very high probability.

There is always a danger in generalizing results of Monte Carlo experiments.

Notwithstanding this caveat, however, our results tend to suggest the following findings.

The DD test appears to be the best procedure to adopt in examining stochastic domi-

nance. If the studentized maximum modulus statistic is used to provide critical values,

there is under-rejection of the null hypothesis when it is true. The under-rejection is

corrected when independent sampling scheme is adopted to calculate the grid statistics.

The improvement in power, however, is not impressive. It appears one may as well adopt

the single sampling scheme. While the DD and A tests are similar in execution, the DD

test appears to be superior in both size and power. As far as the choice of the number

of grid points is concerned, the tests appear to perform well with small number of grid

points such as six, although the literature often adopts ten points. The KRS test is

excessively conservative. When it comes to the power, the KRS test does not compare

favorably against the DD and A tests. Furthermore, the KRS test is computationally

more intensive than the DD and A tests.

4 Conclusions

We have reported some Monte Carlo results for the performance of several tests for

stochastic dominance, namely, the Davidson-Duclos (2000) test, the Anderson (1996)

test and the Kaur-Rao-Singh (1994) test. The KRS test is found to be too conservative

and has weaker power compared to the DD and A tests. The DD test appears to

14



dominate the A test in terms of better size and higher power. While the problem of

under-rejection may be corrected by using independent samples, the improvement in

power is not significant. Overall, of the tests examined, the DD test is the one to be

recommended.
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Table 1 χ2 Goodness-of-Fit Test for the normality of the T s and As Statistics

N s Statistic x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

500 1 T s 658.51 30.65 14.99 23.88 25.75 68.03 56.96 114.72 242.00 354.26
As 70.72 8.30 11.47 6.85 5.92 26.71 25.80 29.04 30.87 1962.92

2 T s 110.73 3.07 7.19 4.77 5.66 9.25 7.55 7.52 6.11 2.52
As 66.08 3.60 4.93 8.80 3.78 10.52 8.67 18.44 7.05 2.79

3 T s 471.94 5.57 8.03 8.68 4.40 10.52 6.69 7.55 6.96 4.95
As 67.39 3.53 2.30 6.50 2.41 8.39 6.47 6.80 8.52 4.29

1000 1 T s 290.89 24.79 11.76 13.66 7.09 24.45 36.99 60.23 99.43 209.50
As 48.95 1.94 24.27 8.54 16.68 7.72 35.82 2.75 37.43 213.55

2 T s 27.42 9.87 9.87 5.04 1.91 9.40 9.80 13.61 7.84 8.15
As 59.80 7.67 2.39 10.60 10.26 8.84 2.60 14.30 3.64 4.12

3 T s 119.88 7.44 6.84 3.80 2.52 3.70 10.92 4.62 9.46 10.90
As 75.71 1.61 7.72 2.50 2.52 5.50 6.68 4.01 12.80 5.33

2000 1 T s 174.63 11.86 23.72 5.96 22.05 15.46 17.08 31.62 45.73 62.86
As 52.48 11.42 6.04 6.32 11.00 7.95 11.47 4.00 16.10 447.27

2 T s 4.44 11.21 9.74 4.17 1.48 5.44 7.28 6.36 1.12 5.73
As 37.51 10.40 14.77 3.78 4.16 10.09 3.24 8.22 4.45 3.81

3 T s 21.62 5.78 5.35 9.63 6.11 4.17 4.45 4.68 5.83 2.60
As 30.58 6.43 6.31 13.05 7.02 4.64 2.56 4.83 6.91 4.81

3000 1 T s 102.00 4.93 10.15 16.93 11.50 9.63 29.26 17.16 42.54 51.13
As 37.97 1.57 8.22 11.25 10.26 12.11 4.61 8.57 18.83 174.64

2 T s 3.56 1.86 5.69 4.63 4.25 8.04 5.36 2.27 13.24 3.44
As 20.55 7.74 7.93 4.66 9.52 4.69 6.22 4.08 5.81 2.40

3 T s 14.24 4.39 7.81 7.82 3.23 8.69 12.04 5.10 9.12 15.32
As 17.21 7.62 7.30 10.60 6.80 10.42 12.65 3.32 9.64 17.30

Notes: The figures are the χ2 statistics for the normality of T s and As computed at the

grid points xi, i = 1, ...10. The grid points are fixed and divide the support of the truncated

B(4.7, 0.55) distribution into eleven intervals such that x10 is the 99th percentile and the first ten

intervals are of equal length. For each of the T s and As statistic, eight groups are used to construct

the goodness-of-fit test. The critical value of χ28 is 14.1 at the 5% level.
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Table 2 Empirical Relative Frequency of Accepting H0 for the DD and A Tests:

The Case of Dependent Samples with Equal-Probability Groups

Population s = 1 s = 2 s = 3
Distribution N K DD A DD A DD A

Y ∼ B(4.7, 0.55) 500 6 96.34 96.39 97.24 97.38 97.47 97.85
Z ∼ B(4.7, 0.55) 10 96.32 96.36 97.91 98.13 98.63 98.73

15 96.34 96.53 98.50 98.82 99.07 99.24
1000 6 95.56 95.53 97.34 97.74 97.55 98.19

10 96.51 96.49 98.00 98.28 98.28 98.62
15 96.80 96.92 98.68 98.80 98.71 98.99

2000 6 95.83 95.84 97.65 98.00 97.74 98.28
10 96.17 96.17 98.07 98.17 98.44 98.71
15 96.87 96.82 98.64 98.82 98.92 99.10

3000 6 95.76 95.70 97.50 97.79 97.57 98.19
10 96.50 96.56 98.29 98.59 98.54 98.89
15 96.53 96.71 98.77 98.94 98.86 98.99

Y ∼ B(2.0, 0.65) 500 6 96.21 96.32 97.04 97.24 97.02 97.63
Z ∼ B(2.0, 0.65) 10 96.47 96.45 97.72 98.05 98.05 98.23

15 96.64 96.87 98.51 98.68 98.63 98.74
1000 6 94.95 94.95 96.76 96.95 97.19 97.73

10 96.29 96.27 97.68 97.92 98.09 98.30
15 96.76 96.97 98.51 98.51 98.29 98.64

2000 6 95.83 95.82 97.25 97.38 97.42 97.70
10 96.15 96.18 97.76 98.00 98.03 98.36
15 96.96 96.92 98.26 98.32 98.61 98.86

3000 6 95.94 95.88 97.37 97.74 97.47 98.11
10 96.04 96.16 97.88 98.04 98.35 98.51
15 96.55 96.64 98.27 98.51 98.57 98.76

Notes: The figures (in percentage) are the empirical relative frequencies of accepting H0 :

DsY (xi) = D
s
Z(xi). N is the sample size and K is the number of grid points.
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Table 3 Empirical Relative Frequency of Accepting HA1 for the DD and A Tests:

The Case of Dependent Samples with Equal-Probability Groups

Population s = 1 s = 2 s = 3
Distribution N K DD A DD A DD A

Y ∼ B(4.7, 0.55) 500 6 4.77 5.17 90.20 93.07 99.88 99.96
Z ∼ B(2.0, 0.65) 10 3.48 3.40 92.55 94.17 99.97 99.98

15 3.08 3.33 94.37 95.47 99.95 99.99
1000 6 0.04 0.04 76.55 84.12 99.97 100.00

10 0.01 0.01 81.24 86.05 99.99 100.00
15 0.01 0.01 84.61 87.37 100.00 100.00

2000 6 0.00 0.00 46.89 63.78 99.98 100.00
10 0.00 0.00 53.65 64.36 100.00 100.00
15 0.00 0.00 59.62 66.99 100.00 100.00

3000 6 0.00 0.00 24.36 43.56 100.00 100.00
10 0.00 0.00 30.12 42.30 100.00 100.00
15 0.00 0.00 34.15 43.77 100.00 100.00

Y ∼ B(4.6, 0.55) 500 6 5.94 6.17 88.43 91.76 99.87 99.95
Z ∼ B(2.0, 0.65) 10 3.68 3.53 91.82 93.52 99.91 99.97

15 3.82 4.13 93.48 94.56 99.92 99.95
1000 6 0.02 0.04 73.50 81.41 99.96 99.99

10 0.01 0.01 78.31 83.23 99.96 100.00
15 0.02 0.02 81.83 84.68 99.98 100.00

2000 6 0.00 0.00 41.05 57.49 99.96 100.00
10 0.00 0.00 48.30 58.34 99.99 100.00
15 0.00 0.00 52.35 59.75 99.99 99.99

3000 6 0.00 0.00 18.32 35.55 99.99 100.00
10 0.00 0.00 23.74 34.48 99.99 100.00
15 0.00 0.00 27.98 36.03 100.00 100.00

Y ∼ B(4.5, 0.55) 500 6 6.77 7.15 86.84 90.06 99.75 99.85
Z ∼ B(2.0, 0.65) 10 4.42 4.33 89.85 91.71 99.87 99.96

15 4.32 4.55 92.44 93.53 99.96 99.99
1000 6 0.11 0.11 69.22 77.09 99.83 100.00

10 0.01 0.02 75.38 80.03 99.91 99.98
15 0.04 0.03 79.45 82.91 99.91 99.98

2000 6 0.00 0.00 35.74 51.49 99.92 100.00
10 0.00 0.00 40.95 50.82 99.90 100.00
15 0.00 0.00 47.41 53.86 99.97 100.00

3000 6 0.00 0.00 14.46 28.49 99.93 100.00
10 0.00 0.00 18.13 27.25 99.98 100.00
15 0.00 0.00 22.18 29.10 99.99 100.00

Notes: The figures (in percentage) are the empirical relative frequencies of accepting HA1 :

Y Âs Z. For all pairs of populations, there is no dominance between Y and Z for s = 1, 2, while

Y dominates Z for s = 3. Thus, HA1 is true for s = 3, but not for s = 1, 2. N is the sample size

and K is the number of grid points.
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Table 4 Empirical Relative Frequency of Accepting H0 for the DD and A Tests:

The Case of Dependent Samples with Equal-Interval Groups

Population s = 1 s = 2 s = 3
Distribution N K DD A DD A DD A

Y ∼ B(4.7, 0.55) 500 6 96.07 96.30 97.54 98.25 97.86 98.41
Z ∼ B(4.7, 0.55) 10 96.30 96.56 97.99 98.36 98.68 98.63

15 96.98 97.14 98.73 98.78 99.09 99.02
1000 6 95.66 95.75 97.36 97.88 97.72 98.12

10 95.89 96.15 97.98 98.25 98.46 98.35
15 96.28 96.46 98.58 98.53 99.02 98.86

2000 6 95.26 95.31 97.42 97.79 97.58 98.14
10 95.86 95.87 98.18 98.30 98.29 98.42
15 96.68 96.64 98.64 98.70 98.78 98.82

3000 6 96.02 96.13 97.54 97.67 97.90 98.24
10 96.24 96.24 98.31 98.24 98.46 98.48
15 96.43 96.40 98.41 98.58 98.70 98.80

Y ∼ B(2.0, 0.65) 500 6 96.75 96.84 98.29 98.47 98.26 98.63
Z ∼ B(2.0, 0.65) 10 96.76 96.92 98.56 98.70 98.61 99.03

15 97.30 97.39 98.87 98.97 98.72 99.08
1000 6 95.61 95.83 98.22 98.40 98.31 98.54

10 96.89 96.97 98.45 98.84 98.52 98.88
15 96.91 96.95 98.92 99.09 98.96 99.04

2000 6 95.95 95.90 98.00 98.45 98.30 98.64
10 96.64 96.67 98.83 98.99 98.69 98.84
15 97.28 97.30 99.02 99.06 98.86 99.21

3000 6 96.13 96.16 98.18 98.47 98.34 98.60
10 96.58 96.59 98.30 98.35 98.82 98.90
15 97.36 97.35 98.96 99.10 98.86 99.09

Notes: The figures (in percentage) are the empirical relative frequencies of accepting H0 :

DsY (xi) = D
s
Z(xi). N is the sample size and K is the number of grid points.
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Table 5 Empirical Relative Frequency of Accepting HA1 for the DD and A Tests:

The Case of Dependent Samples with Equal-Interval Groups

Population s = 1 s = 2 s = 3
Distribution N K DD A DD A DD A

Y ∼ B(4.7, 0.55) 500 6 1.71 1.71 89.53 90.78 99.91 99.85
Z ∼ B(2.0, 0.65) 10 1.50 1.59 92.97 92.99 99.96 99.97

15 1.89 1.94 94.57 94.69 99.97 99.97
1000 6 0.00 0.00 75.69 79.38 99.97 99.98

10 0.00 0.01 81.12 81.13 99.98 99.98
15 0.00 0.00 84.25 84.26 99.98 99.98

2000 6 0.00 0.00 46.26 54.80 100.00 99.99
10 0.00 0.00 53.39 54.54 99.98 99.98
15 0.00 0.00 58.77 59.31 99.99 99.99

3000 6 0.00 0.00 24.63 33.12 99.99 100.00
10 0.00 0.00 29.69 30.43 100.00 100.00
15 0.00 0.00 34.79 35.16 100.00 100.00

Y ∼ B(4.6, 0.55) 500 6 2.17 2.12 89.12 90.03 99.87 99.84
Z ∼ B(2.0, 0.65) 10 1.95 2.11 91.16 91.44 99.96 99.92

15 2.19 2.29 93.66 93.81 99.95 99.94
1000 6 0.00 0.00 73.45 77.27 99.93 99.92

10 0.00 0.00 78.46 78.67 99.97 99.96
15 0.00 0.00 81.54 81.96 99.96 99.96

2000 6 0.00 0.00 41.13 49.54 99.99 99.97
10 0.00 0.00 47.26 48.06 100.00 100.00
15 0.00 0.00 53.18 53.59 99.98 99.98

3000 6 0.00 0.00 18.37 26.29 99.99 99.98
10 0.00 0.00 23.31 23.83 99.99 99.99
15 0.00 0.00 28.15 28.55 99.99 99.99

Y ∼ B(4.5, 0.55) 500 6 2.21 2.25 86.63 87.82 99.81 99.70
Z ∼ B(2.0, 0.65) 10 2.17 2.22 89.99 90.03 99.86 99.86

15 2.57 2.80 92.27 92.44 99.91 99.91
1000 6 0.00 0.00 69.57 73.40 99.77 99.76

10 0.01 0.01 74.49 74.65 99.93 99.92
15 0.01 0.01 78.98 79.23 99.89 99.88

2000 6 0.00 0.00 35.15 42.60 99.89 99.92
10 0.00 0.00 41.92 42.54 99.91 99.92
15 0.00 0.00 47.29 47.74 99.93 99.93

3000 6 0.00 0.00 14.14 20.86 99.97 99.96
10 0.00 0.00 18.01 18.79 99.93 99.89
15 0.00 0.00 21.82 22.30 99.96 99.96

Notes: The figures (in percentage) are the empirical relative frequencies of accepting HA1 :

Y Âs Z. For all pairs of populations, there is no dominance between Y and Z for s = 1, 2, while

Y dominates Z for s = 3. Thus, HA1 is true for s = 3, but not for s = 1, 2. N is the sample size

and K is the number of grid points.
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Table 6 Empirical Relative Frequency of Accepting HA1 for the DD and A Tests:

The Case of Independent Samples with Equal-Probability Groups

Population s = 1 s = 2 s = 3
Distribution N K DD A DD A DD A

Y ∼ B(4.7, 0.55) 500 6 3.05 3.21 90.43 93.03 99.92 99.97
Z ∼ B(2.0, 0.65) 10 0.27 0.25 92.10 94.09 99.98 100.00

15 0.01 0.01 93.28 94.47 99.99 100.00
1000 6 0.00 0.00 76.54 83.85 99.95 99.99

10 0.00 0.00 81.29 85.85 99.98 99.99
15 0.00 0.00 82.94 86.39 99.97 99.99

2000 6 0.00 0.00 46.55 63.00 100.00 100.00
10 0.00 0.00 53.33 63.91 99.99 100.00
15 0.00 0.00 55.59 63.78 100.00 100.00

3000 6 0.00 0.00 24.23 43.95 99.99 100.00
10 0.00 0.00 30.60 43.56 100.00 100.00
15 0.00 0.00 32.09 41.83 100.00 100.00

Y ∼ B(4.6, 0.55) 500 6 3.43 3.65 88.98 91.64 99.83 99.93
Z ∼ B(2.0, 0.65) 10 0.39 0.42 91.12 92.75 99.92 99.96

15 0.05 0.05 91.15 92.63 99.95 99.99
1000 6 0.01 0.01 72.78 80.71 99.95 100.00

10 0.00 0.00 77.92 82.66 99.98 100.00
15 0.00 0.00 78.87 83.01 99.95 99.97

2000 6 0.00 0.00 39.38 56.37 99.96 100.00
10 0.00 0.00 47.83 57.74 99.98 100.00
15 0.00 0.00 48.64 56.30 99.99 100.00

3000 6 0.00 0.00 18.19 35.65 99.98 100.00
10 0.00 0.00 23.46 34.92 99.99 100.00
15 0.00 0.00 24.73 33.23 100.00 100.00

Y ∼ B(4.5, 0.55) 500 6 4.06 4.30 87.79 91.02 99.81 99.93
Z ∼ B(2.0, 0.65) 10 0.40 0.39 89.79 91.61 99.85 99.94

15 0.10 0.10 91.01 92.36 99.91 99.94
1000 6 0.02 0.02 68.66 77.35 99.85 99.96

10 0.00 0.00 73.26 78.42 99.91 99.99
15 0.00 0.00 76.18 79.85 99.94 99.98

2000 6 0.00 0.00 35.66 50.96 99.90 99.99
10 0.00 0.00 40.39 49.56 99.93 100.00
15 0.00 0.00 42.84 50.38 99.93 99.97

3000 6 0.00 0.00 13.71 28.55 99.90 100.00
10 0.00 0.00 18.41 28.00 99.95 99.98
15 0.00 0.00 19.13 26.81 99.99 100.00

Notes: The figures (in percentage) are the empirical relative frequencies of accepting HA1 :

Y Âs Z. For all pairs of populations, there is no dominance between Y and Z for s = 1, 2, while

Y dominates Z for s = 3. Thus, HA1 is true for s = 3, but not for s = 1, 2. N is the sample size

and K is the number of grid points.
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Table 7 Empirical Relative Frequency of Accepting HA1 for the DD and A Tests:

The Case of Independent Samples with Equal-Interval Groups

Population s = 1 s = 2 s = 3
Distribution N K DD A DD A DD A

Y ∼ B(4.7, 0.55) 500 6 0.02 0.01 83.66 85.43 99.92 99.90
Z ∼ B(2.0, 0.65) 10 0.00 0.00 82.48 82.53 99.95 99.90

15 0.00 0.00 81.77 82.39 99.92 99.92
1000 6 0.00 0.00 64.17 69.91 99.98 99.97

10 0.00 0.00 61.67 62.15 99.99 100.00
15 0.00 0.00 57.70 58.63 99.97 99.97

2000 6 0.00 0.00 29.60 39.10 100.00 100.00
10 0.00 0.00 25.51 26.31 100.00 99.99
15 0.00 0.00 19.75 20.32 100.00 100.00

3000 6 0.00 0.00 10.79 19.34 100.00 99.99
10 0.00 0.00 7.57 8.15 100.00 100.00
15 0.00 0.00 3.97 4.05 100.00 100.00

Y ∼ B(4.6, 0.55) 500 6 0.11 0.10 80.29 92.19 99.87 99.83
Z ∼ B(2.0, 0.65) 10 0.00 0.00 79.55 79.83 99.84 99.85

15 0.05 0.05 78.64 78.96 99.92 99.91
1000 6 0.00 0.00 57.98 64.58 99.88 99.91

10 0.00 0.00 55.79 55.87 99.96 99.95
15 0.00 0.00 51.21 51.56 99.98 99.98

2000 6 0.00 0.00 22.65 31.89 99.93 99.95
10 0.00 0.00 17.41 17.99 99.98 99.98
15 0.00 0.00 12.76 13.47 100.00 100.00

3000 6 0.00 0.00 6.74 12.82 99.97 99.98
10 0.00 0.00 3.53 3.77 100.00 100.00
15 0.00 0.00 1.88 2.02 100.00 100.00

Y ∼ B(4.5, 0.55) 500 6 0.11 0.11 77.67 79.40 99.75 99.67
Z ∼ B(2.0, 0.65) 10 0.00 0.00 76.18 76.29 99.79 99.74

15 0.00 0.00 74.71 74.95 99.82 99.80
1000 6 0.00 0.00 53.08 58.71 99.85 99.80

10 0.00 0.00 48.08 48.77 99.91 99.89
15 0.00 0.00 44.23 44.65 99.94 99.92

2000 6 0.00 0.00 16.57 24.37 99.89 99.90
10 0.00 0.00 12.11 12.41 99.96 99.95
15 0.00 0.00 8.14 8.26 99.95 99.94

3000 6 0.00 0.00 3.98 8.37 99.91 99.93
10 0.00 0.00 1.58 1.81 99.93 99.90
15 0.00 0.00 0.67 0.72 99.94 88.93

Notes: The figures (in percentage) are the empirical relative frequencies of accepting HA1 :

Y Âs Z. For all pairs of populations, there is no dominance between Y and Z for s = 1, 2, while

Y dominates Z for s = 3. Thus, HA1 is true for s = 3, but not for s = 1, 2. N is the sample size

and K is the number of grid points.
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Table 8 Empirical Relative Frequencies of Accepting H0 and H
0
0 for the KRS Test:

The Case of Independent Samples

Population s = 1 s = 2 s = 3

Distribution N H0 H
0
0 H0 H

0
0 H0 H

0
0

PD1: 500 100.00 100.00 99.75 99.70 99.75 99.25
Y ∼ B(4.7, 0.55) 1000 99.95 100.00 99.80 99.45 99.60 99.60
Z ∼ B(4.7, 0.55) 2000 100.00 100.00 99.50 99.80 99.45 99.65
PD2: 500 100.00 100.00 99.90 99.75 99.80 99.90
Y ∼ B(2.0, 0.65) 1000 100.00 99.95 99.85 99.90 99.85 99.65
Z ∼ B(2.0, 0.65) 2000 100.00 100.00 99.85 99.85 99.85 99.75

PD3: 500 100.00 100.00 99.55 100.00 54.90 100.00
Y ∼ B(4.7, 0.55) 1000 100.00 100.00 99.90 100.00 28.55 100.00
Z ∼ B(2.0, 0.65) 2000 100.00 100.00 100.00 100.00 7.40 100.00
PD4: 500 100.00 100.00 99.75 100.00 60.35 100.00
Y ∼ B(4.6, 0.55) 1000 100.00 100.00 100.00 100.00 37.30 100.00
Z ∼ B(2.0, 0.65) 2000 100.00 100.00 100.00 100.00 13.90 100.00
PD5: 500 100.00 100.00 99.60 100.00 64.50 100.00
Y ∼ B(4.5, 0.55) 1000 100.00 100.00 100.00 100.00 45.10 100.00
Z ∼ B(2.0, 0.65) 2000 100.00 100.00 100.00 100.00 21.65 100.00

Notes: H0 is Y Âs Z and H
0
0 is Z Âs Y . For PD1 and PD2, both H0 and H 0

0 are correct.

Thus, one minus the figures in the table represents the empirical size of the tests. This applies

to all s. For PD3, PD4 and PD5, there is no dominance between Y and Z for s = 1, 2, while Y

stochastically dominates Z for s = 3. Thus, for s = 1, 2, H0 and H 0
0 are correct. For s = 3, H0 is

incorrect, while H 0
0 is correct.
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