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Abstract

A modified family of power transformation, called the Dual Power Transformation, is proposed,

which overcomes the truncation problem of the Box-Cox power transformation. The new transfor-

mation possesses properties similar to those of the Box-Cox power transformation. It generates a rich

family of distributions that is seen to be very useful in modeling and analysis of economic durations

and medical/engineering event-times. Further, it gives rise to transformed (regression) models such

that all the standard asymptotic results of the maximum likelihood theory apply. Empirical results

presented are more favorable to the new transformation than to the Box-Cox power transformation

in terms of model fit.

Keywords: Box-Cox power transformation; Dual power transformation; Transformed regression

model; Trans-normal distribution.

1 Introduction

Box and Cox (1964) proposed to transform the response variable to achieve a model

with simple structure, normal errors and constant error variance. They used a power

transformation:

h(y,λ) =

l
(yλ − 1)/λ, λ W= 0,
log y, λ = 0,

y > 0. (1)

to demonstrate their methodology. Soon after, this method became very popular and in-

fluential among the applied scientists and researchers, in particular among the economists.

Noticeable applications of the Box-Cox method in economics include, among others, Zarem-

bka (1968), White (1972), Leech (1975), Granger and Newbold (1976), Collins (1991), Hig-

gins and Bera (1992), Buchinsky (1995), Hentschel (1995), Kim and Hill (1995), Machado

and Mata (2000), Chen (2002), Yang and Abeysinghe (2002).
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Besides all the successes of this method, there is a truncation problem associated with

the use of the Box-Cox power transformation, i.e., h(y,λ) is either bounded below or above

at −1/λ depending on whether λ is positive or negative. Hence, exact normality is incom-
patible with the distribution of the transformed variable unless λ = 0. To overcome this

problem, many alternative transformations have been proposed, including the most recent

one by Yeo and Johnson (2000). Most of the alternative transformations are constructed

along the line of extending the domain of h(y, ·) from half real line to the whole real line so

that unbounded range of h can be achieved (e.g., Manly, 1976; John and Draper, 1980; and

Bickel and Doksum, 1981). In most of the economic applications, however, the data are

nonnegative. To normalize nonnegative data, it may still be best to use the Box-Cox power

transformation although it is impossible to achieve exact normality when λ W= 0. Practically,
this truncation effect may be negligible as claimed by many researchers, but technically it

causes difficulties in deriving the asymptotic properties of the estimated model, etc..

In this paper, we propose a modified family of power transformation, called the dual

power transformation, that overcomes the shortcoming of the Box-Cox power transforma-

tion. It is shown that this new transformation has properties similar to those of the Box-Cox

power transformation. This transformation also generates a well-defined family of distri-

butions, called trans-normal distribution, that is shown to be very useful and flexible in

modeling and analysis of economic durations and medical/engineering event-times. Once

the truncation problem is removed, all the standard asymptotic results of the maximum

likelihood theory apply. Further, empirical results given are more favorable to the dual

power transformation than to the Box-Cox power transformation in terms of model fit.

Section 2 introduces the new transformation and its properties. Section 3 introduces

the trans-normal distribution and presents some properties of this new distribution. Section

4 considers the common inference problems such as estimation, testing and confidence inter-

vals in the framework of a transformed regression model. Section 5 presents some numerical

examples and Section 6 concludes.

2 The Dual Power Transformation

We have noticed that h(y,λ) is bounded below at −1/λ when λ > 0, bounded above
at −1/λ when λ < 0, and unbounded when λ = 0. Removing the bound in the Box-Cox

power transformation while at the same time preserving the nonnegativeness of y is the key

motivation of the new transformation. For example, when λ > 0 in the Box-Cox power

transformation, the h is bounded below at 1/λ. If we replace I1I in the numerator of h by

y−λ, then this bound is extended to−∞, confirmable to the domain of a normal distribution.
To make the limit of h when λ approaches zero the same as that of the Box-Cox power
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transformation, a I2I is added to the denominator. The modified power transformation thus

takes the form

h(y,λ) =

l
(yλ − y−λ)/2λ, λ > 0,

log y, λ = 0,
y > 0, (2)

As this modified power transformation consists of two power functions, one with positive

power and the other with negative power, we call this transformation the Dual Power Trans-

formation. Unlike the Box-Cox power transformation that leaves the data untransformed

when λ = 1, meaning there is no need to transform the data and the data itself is already

normal, the dual power transformation always transform the data no matter what value λ

takes. This may sound contradictory to our usual understanding of the Box-Cox transfor-

mation method, but as it has been claimed at beginning that y is nonnegative, this means

that y has to be transformed to make it confirmable with a normal random variable, at

least to have a desirable range. Thus, the new transformation makes more sense and is

technically more sound. We now collect some properties of the new transformation in the

following proposition.

Proposition 1. The dual power transformation defined in (2) satisfies the following:

(i) as a function of y, h(y,λ) is increasing, concave when |λ| ≤ 1, and concave and then
convex as y increases when |λ| > 1, with the turning point y0 = [(λ+ 1)/(λ− 1)]1/2λ;

(ii) as a function of λ, h(y,λ) is symmetric around λ = 0, concave when y ≤ 1 and convex
when y > 1;

(iii) letting z = h(y,λ), the inverse transformation is

y = g(z,λ) =


p
λz +

√
1 + λ2z2

Q1/λ
, λ W= 0,

exp(z), λ = 0,
(3)

(iv) h(y,λ) = −h(y−1,λ).

Proof. The proofs of (i) and (ii) are based on the relevant partial derivatives of h

which are given in Appendix. To prove (iii), solve 2λz = yλ − y−λ for yλ. There are two
roots. One of them is obliviously inadmissible due to the fact that y is positive and the

other is that given in (iii). Property (iv) is obvious.

Note that similar to the Box-Cox power transformation, the dual power transforma-

tion is also monotonic increasing, covers lognormal as a special case, and possesses partial

derivatives of any order. As h is symmetric in λ around 0, it is sufficient to consider the

positive values of λ. To give a visual comparison of the dual power transformation with

the Box-Cox power transformation, we plot the two functions in Figure 1. The plots show

that the smaller the λ value, the closer is the two power transformation with the limits (at
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Figure 1: Plots of the dual power transformation and Box-Cox power transformation

λ = 0) being the identical log transformation. When λ moves away from 0, the difference

between the two transformation becomes more and more substantial. When λ > 0, the main

difference between the two transformations happens at the part where y takes values from

0 to 1: the Box-Cox power transformation maps [0, 1] to [−1/λ, 0], whereas the dual power
transformation translates it to (−∞, 0]. Both functions translate the [1,∞) into [0,∞)
with the curve of the dual power transformation lying below that of the Box-Cox power

transformation. When λ < 0, the Box-Cox transformation is able to translate the [0, 1] part

into [−∞, 0), but maps the [1,∞) part into [0,−1/λ). The dual power transformation is
symmetric in λ, and hence a negative λ gives the same function as a positive one.

The dual power transformation is related to the inverse hyperbolic sine (IHS) trans-

formation of Johnson (1949), which was studied and compared with the Box-Cox power

transformation by Burbidge, at al. (1988). If we let y = exp(x) in the dual power trans-

formation, then h becomes, as a function of x, a hyperbolic sine function. The IHS trans-

formation, however, works with the inverse hyperbolic sine, thus has a domain of whole

real line. The dual power transformation has a domain of positive half real line with an

intention of modifiing the Box-Cox power transformation so that the truncation problem is

removed.
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3 The Trans-Normal Distribution

The dual power transformation generates a new family of distributions. In other words,

if h(Y,λ) followsN(µ,σ2), then the probability density function (pdf) of Y is given as follows

f(y;µ,σ,λ) =
1√
2πσ

exp

F
− 1

2σ2
[h(y,λ)− µ]2

k
(yλ−1 + y−λ−1), (4)

where y > 0; −∞ < µ <∞, σ > 0, and −∞ < λ <∞. Note that the distributional family
generated by the dual power transformation generalizes the ξ-normal family of Saunders

(1974). As this family of distributions is generated from a normalizing transformation, it

is called the Trans-normal Distribution. We now give some general theoretical properties

of the trans-normal family. Through out, we use the subscripted h function to denote the

partial derivatives.

Proposition 2. The pdf f(y;µ,σ,λ) defined in (4) satisfies the following:

(i) it is a monotonic function of y if m(y) = 0 does not have a real root;

(ii) it is a unimodal pdf if m(y) = 0 has a unique real root in the interior of [0,∞);
(iii) it has two stationary points if m(y) = 0 has two real roots;

(iv) it is bimodal if m(y) = 0 has three real roots, etc., where

m(y) =
(λ− 1)yλ − (λ+ 1)y−λ

(yλ + y−λ)2
− y

λ − y−λ − 2λµ
2λσ2

.

Proof. Let k(y) = exp{−[h(y,λ) − µ]2/(2σ2)}. Then, f(y;µ,σ,λ) ∝ k(y) hy(y,λ),
and ∂f(y;µ,σ,λ)/∂y = k(y)h2y(y)[hyy(y,λ)/h

2
y(y,λ)−(h(y,λ)−µ)/σ2] = k(y)h2y(y,λ)m(y).

Since the function k(y)h2y(y,λ) is a positive function of y, how many times that ∂f/∂y

changes its sign as y changes depends on how many real roots that m(y) = 0 has, which

determines the behavior of f . The results of Proposition 2 thus follow.

Note that the case (i) in Proposition 2 rarely happens, case (ii) is the most typical

case and it happens as long as f vanishes at both ends and hyy(y,λ)/h
2
y(y,λ) is monotonic

in y. The cases (iii) is also not common and (iv) can happen for certain special functions

at certain parameter settings. All the necessary partial derivatives of h(y,λ) are given in

Appendix.

To illustrate the versatility and usefulness of the trans-normal distribution, we pick

a special modified power transformation corresponding to λ = 0.5, i.e., h(y,λ) = y.5 −
y−.5, and plot the pdf, the survivor function (sf) and the hazard function (hf) for serval

parameter configurations. From the plots summarized in Figure 2, we see that the pdf of

this trans-normal distribution has all kinds of shapes: it can be nearly symmetric, bimodal,

or very skewed depending whether σ is small, medium, or large relative to the mean of
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Figure 2: Plots of the trans-normal pdfs (a)-(d), sfs (e)-(f), and hfs (g)-(j), λ = 0.5 through

out, and µ = 5 except in Plot (e)
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Y . When σ is small relative to the mean, the pdf has one bump at the center part; as

σ increases, another bump shows up at the left of the center and as σ further increases,

the first bump disappeared and the distribution becomes unimodal again. Figure 1 also

exhibits serval shapes of hazard function, including the interesting ‘bath-tub’ shape, which

has a popular engineering interpretation: first bump represents the ‘burn-in’ period, the

center flat part represents the ‘stable period’ and the second bump represents the ‘wear-out’

period. Econometricians call this the U-shaped hazard (Kiefer, 1988) and some evidence for

its existence is provided by Kennan (1985) from the analysis of the strike duration data. It

is interesting to note that when σ is large, the hf has a sharp increase at the very beginning

and then quickly becomes flat for a long period of ’time’. This exactly reflects the failure

mechanisms of certain engineering systems and electronic components which are very fragile

at the very beginning, but once stabilized, can last for a very long period of time.

4 The Transformed Regression Model

Let Y be an n× 1 vector of original observations, h(Y,λ) be a vector of transformed
observations, andX be an n×p matrix whose columns contain the values of the explanatory
variables X1, X2, . . . ,Xk. The Box-Cox transformed linear model (Box and Cox, 1964) has

the form

h(Y,λ) = Xβ + σe (5)

where β is a k × 1 vector of parameters, σ is the error standard deviation, e is an n × 1
vector of independent and identically distributed (iid) normal errors, and h(·,λ) is the dual
power transformation. The log likelihood function in terms of original variables is

f(β,σ2,λ) ∝ −n
2
log(σ2)− 1

2σ2
[h(Y,λ)−Xβ]I[h(Y,λ)−Xβ] + log J(λ), (6)

where J(λ) = |�ni=1 ∂h(Yi,λ)/∂Yi| = �ni=1(Y λ
i + Y

−λ
i ).

Parameter Estimation and Asymptotic Properties. For a given λ, the model

(5) is just an ordinary regression model and thus the maximum likelihood estimators (MLE)

for β and σ are

β̂(λ) = (XIX)−1XIh(Y,λ) and σ̂2(λ) =
1

n
,Mh(Y,λ),2, (7)

where , · , is the Euclidian norm, M = In − X(XIX)−1XI, and In is an n × n identity
matrix. Substituting β̂(λ) and σ̂2(λ) into (6) for β and σ2 gives the profile likelihood of λ

fp(λ) ∝ −n
2
log ,Mh(Y,λ),2 + log J(λ) (8)
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Maximizing fp(λ) gives the MLE λ̂ of λ. Equivalently, λ̂ can be obtained by solving the

equation Sp(λ) = 0, where Sp(λ) = dfp(λ)/dλ is the profile score with the expression

Sp(λ) = −nh(Y,λ)
IMhλ(Y,λ)

h(Y,λ)IMh(Y,λ)
+

n3
i=1

(Y λ
i − Y −λi ) log Yi

Y λ
i + Y

−λ
i

. (9)

Finally, substituting λ̂ back into β̂(λ) and σ̂2(λ) gives the unrestricted MLEs of β and σ2.

It is easy to check that the model (5) satisfies the usual regularity conditions (see, for

example, Rao, 1973) and hence the MLEs possess the standard asymptotic properties. In

particular, ψ̂ is consistent and ψ̂ is asymptotic normal with mean ψ and variance-covariance

matrix I−1(ψ), where ψ = {βI,σ2,λ}I and I(ψ) is the expected information matrix.
Tests of Transformation. Once the parameter estimates are obtained, a problem

that is of primary interest is to test the transformation parameter to decide in which scale

the subsequent inferences be carried out. In other words, we want to perform a test of the

hypothesis H0 : λ = λ0, where λ0 often represents convenient values such as 0, 1/2, 1/3,

etc, corresponding to the log, square-root, cubic-root transformation, etc. The traditional

tests such as sign-square-root likelihood ratio test, score test (econometricians call it the

Lagrange multipliers test) and Wald test can be easily implemented in this context. We

now outline the three tests below.

The sign-square-root likelihood ratio test has the form

TL = 2 sign(λ̂− λ0)[fp(λ̂)− fp(λ0)]1/2

The Wald test is given by

TW =
λ̂− λ0
se(λ̂)

where se(λ̂) is the estimated standard error of λ̂ and can be obtained as the square root of the

last diagonal element of J−1(ψ̂), where J(ψ̂) is the observed information matrix evaluated

at the full MLEs of the parameters (see Appendix for the full expression of J(ψ)).

The score test has the form

TS = Sp(λ0)se(λ0)

where se(λ0) is the same quantity used in the Wald test but evaluated at the restricted

MLEs β̂(λ0) and σ̂(λ0).

The three tests have the same limiting null distribution (standard normal), but their

finite sample distributions are not known and are not necessarily the same. The score test

is the easiest one to implement as it requires only the restrictive MLEs of β and σ, both of

which have explicite expressions. Note that the score and Wald tests given here are based

on the observed information.

8



In the context of the Box-Cox power transformation, Yang (1999b, 2000) constructed

the score and Wald tests based on the expected information and have shown that, within

the parameter regions such that the truncation effect is small, the two tests behave better

than those based on the observed information. Similar work could be carried out for the

dual power transformation, but apparently it is more difficult to approximate the expected

information in this case.

Inferences Concerning Regression Parameters. There have been some debates

on which parameter should the inference focus on after a transformation has been decided

on the response (Bickel and Doksum, 1981, Box and Cox, 1982, Hinkley and Runger, 1984).

Hooper and Yang (1997) and Yang (1999c) showed that if inference concern a regression

parameter defined on the selected transformation scale, the usual inference methods remain

asymptotically valid. Recently, Chen, et, al. (2002) argued that the inference should be

carried out on the scaled regression coefficient β/σ, and showed that estimation on this

parameter is much more stable with respect to the transformation estimation than the

estimation of β itself. See also the comment by Yang (2002a).

All the theoretical results mentioned above (except Bickel and Doksum, 1981) are based

on the Box-Cox power transformation. These results can be extended to the case of dual

power transformation in a straightforward manner, hence the details will not be given here.

Prediction in Original Scales. One of the attractive feature of the transformation

method is it allows the use of the standard normal-theory methods to give prediction or

confidence interval concerning a future transformed observation, and then inverse-transform

the end points of the intervals to give prediction and confidence intervals concerning the

original observation. When the transformation parameter is unknown, it is then replaced

by its estimate. This method is usually termed as the plug-in method.

It has been shown that the plug-in method works well for prediction intervals for a

future response Y0 at a future predictor value x0 (Carroll and Ruppert, 1991; Yang, 1999a,

and Chu at al., 2001), but needs a correction for confidence intervals of quantiles of Y0

(Carroll and Ruppert, 1981, 1991; Yang 2001, 2002b). A result of Yang and Tse (2002) can

be used to give an analytically adjusted confidence interval for the quantile of Y0.

5 Numerical Examples

We now use two real data sets, the strike duration data of (Keenan, 1985) and the

computer execution time data of Meeker and Escobar (1998), to demonstrate the application

of the new transformation. Also, comparisons are made with the applications of the Box-

Cox power transformation on the same data sets.

9



The Strike Duration Data. The data set (Kennan, 1985): 7 9 13 14 26 29 52 130 9 37

41 49 52 119 3 17 19 28 72 99 104 114 152 153 216 15 61 98 2 25 85 3 10 1 2 3 3 3 4 8 11 22 23

27 32 33 35 43 43 44 100 5 49 2 12 12 21 21 27 38 42 117, represent the durations in days of 62

strikes in the period from 1968 to 1976. It has been subsequently analyzed by many authors

including Keifer (1988) and Greene (2000), using models such as exponential, lognormal,

log logistic and Weibull. The data is positively skewed. We fit the trans-normal model with

the dual power transformation and with the Box-Cox power transformation to the data.

The MLE of (µ,σ2,λ) is (4.2876, 2.1009, 0.166253) if the Box-Cox power transformation is

used, and (3.7461, 1.8228, 0.284335) if the dual power transformation is usaed. The two

models give quite different values of the transformation parameter.

Figure 3 gives histograms of the original data (Duration), the dual power transformed

data (DPTrans), and the Box-Cox power transformed data (BCTrans). It also gives the

probability plots of the two sets of transformed data, as well as plots of the fitted densities

using the two transformations. The goodness of fit statistic (Anderson-Darling) is 0.499

when dual power transformation is used, and 0.531 when Box-Cox power transformation is

used. The trans-normal model with the dual power transformation gives a better fit to the

data as compared with the model with Box-Cox power transformation. Also, both models

fit the data better than the models used in Greene (2000).

Computer Execution Time Data. The data given in Table 1 is taken from Meeker

and Escobar (1998, p638). It represents the amount of time it took to execute a particular

computer program, on a multiuser computer system, as a function of system load (obtained

with the Unix uptime command) at the time when execution was beginning. The data was

analyzed by Meeker and Escobar using a simple log-linear regression model.

Table 1: Computer Program Execution Time Versus Load

Seconds load Seconds load Seconds load

123 2.74 78 0.51 317 5.86

704 5.47 98 0.29 142 1.18

184 2.13 240 0.96 127 0.57

113 1.00 110 0.60 96 1.10

94 0.32 213 2.10 111 1.89

76 0.31 284 3.10

Fitting a transformed regression model with the dual power transformation results in

an MLE of the transformation parameter being zero (significant up to 8th decimal point).

In other words, the loglinear model Meeker and Escobar (1998) is warrant from the fitting of

10



Figure 3: Histograms, Normal Probability Plots and Fitted Distributions for Strike Duration

Data

11



the dual power transformation. The MLEs of the regression coefficient and the error stan-

dard deviation are, respectively, 4.4936, 0.2907 and 0.3125. Fitting a transformed regression

model with the Box-Cox power transformation results in a Box-Cox estimate of the trans-

formation parameter being −0.434015, which is very much different from the estimate of

the dual power transformation. The MLEs of β0, β1 and σ are, respectively, 1.9829, 0.0291

and 0.0338. The multiple coefficient of regression (R2) is 70.2% for the model with dual

power transformation, and 67.0% for the model with the Box-Cox power transformation,

showing that the model with dual power transformation gives a better fit to the data.

6 Conclusions

A new power transformation is proposed. It overcomes the truncation problem of

the Box-Cox power transformation. It generates a rich family of distributions that can be

applied to economics, engineering, medicine, and other fields to model the nonnegative data

with a skewed distribution, with two modes, etc.. As the transformation is a monotonic

smooth function that has a domain half real line and a range of whole real line, it turns

out that the normality assumption is technically valid for the transformed observations. It

follows that all the standard asymptotic results of the maximum likelihood theory apply.

The empirical results favor the dual power transformation.
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Appendix A: Derivatives, Score and Observed Information

Denote the partial derivatives of h(y,λ) by adding the relevant subscripts on h. Then,

hλ(y,λ) =
1

2λ
(yλ + y−λ) log y − 1

λ
h(y,λ)

hλλ(y,λ) = h(y,λ)(
2

λ2
+ log2 y)− 1

λ2
(yλ + y−λ) log y

hy(y,λ) =
1

2
[yλ−1 + y−λ−1],

hyy(y,λ) =
1

2
[(λ− 1)yλ−2 − (λ+ 1)y−λ−2],

hyλ(y,λ) =
1

2
(yλ−1 − y−λ−1) log y

hyλλ(y,λ) =
1

2
(yλ−1 + y−λ−1) log2 y

The score functions are

Sβ(ψ) =
1

σ2
XI[h(Y,λ)−Xβ]

Sσ2(ψ) = − n

2σ2
+
1

σ4
[h(Y,λ)−Xβ]I[h(Y,λ)−Xβ]

Sλ(ψ) = − 1
σ2
[h(Y,λ)−Xβ]I[h(Y,λ)−Xβ] +

n3
i=1

(Y λ
i − Y −λi ) log Yi

Y λ
i + Y

−λ
i

.

The elements of the observed information matrix are

Jββ =
1

σ2
XIX

Jσ2σ2 = − n

2σ4
+
1

σ6
[h(Y,λ)−Xβ]I[h(Y,λ)−Xβ]

Jλλ =
1

σ2
[hIλ(Y,λ)hλ(Y,λ) + (h(Y,λ)−Xβ)Ihλλ(Y,λ)]

+
n3
i=1

[Y λ
i + Y

−λ
i − (Y λ

i − Y −λi )2] log Yi

(Y λ
i + Y

−λ
i )2

Jβσ2 =
1

σ4
XI[h(Y,λ)−Xβ]

Jβλ = − 1
σ2
XIhλ(Y,λ)

Jσ2λ = − 1
σ4
[h(Y,λ)−Xβ]Ihλ(Y,λ)
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