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Abstract: In this paper we propose an analytically corrected plug-in method for constructing
confidence intervals of the conditional quantiles of a response variable with data transformation.
The method can be applied to (i) a general conditional regression quantile, (ii) a general
monotonic transformation, and (iii) a transformation model with heteroscedastic errors. Our
results extend those in Yang (2002a), in which the median of a response variable under the
Box-Cox transformation with homoscedastic errors was considered. A Monte Carlo experiment
is conducted to compare the performance of the corrected plug-in method, the plug-in method
and the delta method. The corrected plug-in method provides superior results over the other
two methods.
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1 Introduction

Data transformation is a useful technique in econometric and financial modelling (see, e.g.,

Zarembka, 1968; White, 1972; Leech, 1975; Granger and Newbold, 1976; Carroll and Ruppert,

1991; Collins, 1991; Higgins and Bera, 1992; Buchinsky, 1995; Hentschel 1995; Kim and Hill,

1995; Chen 2002; Yang and Abeysinghe, 2002a, 2002b). In a linear regression model or a

quantile regression set up, transformations may be applied to either the response or the re-

gressors, or both. Transformations may also be applied to nonlinear regression models, time

series models and conditional volatility models. In many cases, the purpose of applying data

transformations is to induce normality in the observations or to give a more flexible functional

relationship.

In many practical applications, data transformations involve unknown parameter values,

which have to be estimated from the data. In a transformed regression set up, Yang (2002a)

showed that for inference concerning the median of a response, the extra variability introduced

by estimating the transformation cannot be ignored.1 He derived an analytical adjustment for

the confidence interval of the median obtained by plugging in the estimated transformation

parameter for the unknown true value under the Box-Cox power transformation (Box and Cox,

1964). His Monte Carlo results show that there is significant improvement in the accuracy of

the empirical contents of the adjusted confidence intervals.

In a broader context the general quantiles of a response at given values of the exogenous

variables may be of interest. For example, labor economists may want to estimate the quan-

tile wages at certain levels of education and experience (Buchinsky, 1994, 1995). Industrial-

organization economists may not only be interested in the average firm size obtained from an

ordinary regression with or without transformation, but also in the quantile intervals (Mata

and Machado, 1996; Machado and Mata, 2000). In this paper we shall extend Yang’s (2002a)

result to a general conditional quantile.

Besides developing the results for a general quantile, there is also a need for extending

1Other works on the effects of estimating the transformation include, among others, Bickel and Doksum
(1981), Carroll and Ruppert (1981), Carroll (1982), Doksum and Wong (1983), Hinkley and Runger (1984),
Taylor (1989), Duan (1993) and Yang (1999).
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the method to more general transformations beyond the well-known Box-Cox transformation.

First, the Box-Cox power transformation works only for nonnegative observations. As economic

data are not always positive, a more general transformation family that allows for both positive

and negative observations is desirable.2 Second, even if the data observations are nonnegative,

the Box-Cox transformation is unable to transform the data to exact normality unless the

transformation parameter is zero. Modified families of power transformation such as the dual-

power transformation proposed by Yang (2002b) may br more appropriate. We shall develop

correction methods for a general monotonic data transformation, and specialize the approach to

the Box-Cox transformation and a dual-power transformation that circumvents the truncation

problem of the Box-Cox transformation. Furthermore, although the use of transformation

methods mostly aims at achieving normality, other goals such as obtaining a simple model

structure with homoscedastic errors are also desirable. It is, however, often difficult to achieve

these goals simultaneously. In particular, homoscedasticity is usually not obtainable in a single

transformation. Thus, a transformation model which allows for heteroscedastic errors will be

useful (see Carroll and Ruppert, 1988).

In this paper we develop a method to calculate the confidence limits of a general conditional

quantile that applies to (i) a general monotonic transformation, and (ii) a transformation model

allowing for heteroscedastic errors. Our main task is to derive analytical adjustments to the

plug-in type of confidence limits to account for the transformation estimation and also the

estimation of the weighting parameters in the case of heteroscedastic errors. This method

is simple to use and is built upon standard asymptotic theory for pivotal statistics with an

asymptotic normal distribution. It leads to confidence limits that have excellent finite-sample

performance, and compares favorably against the delta method which has been widely used in

the literature.

We first extend the results of Yang (2002a) to the case of a general quantile and a general

monotonic transformation. A greater challenge arises when heteroscedasticity is involved in the

transformation model. We follow Carroll and Ruppert (1991) to model the heteroscedasticity as

2Alternative transformations that can handle negative observations include Manly (1976), John and Draper
(1980), Bickel and Doksum (1981), Burbidge et al. (1988) and Yeo and Johnson (2000).
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a function of the explanatory variables and/or some other variables, indexed by some unknown

parameters called the weighting parameters. We show that the plug-in type of confidence

limits (i.e., with plug-in for both the transformation and the weight function) for a general

quantile has to be calibrated with respect to the estimation of the transformation and weighting

parameters. A simple analytical correction is given. Our Monte Carlo results show that the

effect of estimating the weights is much smaller than the effect of estimating the transformation.

The calibrated confidence limits preserves its simplicity even when extra weighting parameters

are estimated and plugged in. Once the maximum likelihood estimates of the model parameters

are obtained, the analytically calibrated confidence limits can be calculated in the same way

as for the case of homoscedastic errors after dividing the estimated weights into the response

as well as the regressors.

The results obtained in this paper may be applied to econometric studies such as wage

distribution and firm size. They can also be used as an alternative to the commonly used

method of quantile regression.3 An advantage of the transformed regression over the quantile

regression is that standard inference methods are available when the transformation is known,

and can be analytically adjusted when the transformation is estimated. Our Monte Carlo

results show that the analytical calibration-based confidence intervals perform better than

those based on the delta method suggested by Carroll and Ruppert (1991).

The plan of this paper is as follows. Section 2 provides the corrected plug-in confidence

interval for a regression quantile with a general monotonic transformation and homoscedastic

errors. In Section 3 we extend the results to a transformation model with heteroscedastic

errors. Section 4 presents the Monte Carlo results, and Section 5 concludes the paper.

2 Transformation model with homoscedastic errors

Let Y be an n×1 vector of original observations, h(Y,λ) a vector of transformed observations,
and X an n× k matrix the columns of which contain the values of the explanatory variables

3Quantile regression was originally developed by Koenker and Bassett (1978). Recent applications and
developments include Chamberlain (1994), Hahn (1995), Buchinsky (1994, 1995), Mata and Machado (1996),
and Machado and Mata (2000).
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X1,X2, . . . ,Xk. The usual transformed linear regression model is given by

h(Y,λ) = Xβ + σe, (1)

where β is a k× 1 vector of parameters, σ is the error standard deviation, e is an n× 1 vector
of independent and identically distributed normal variates with zero mean and unit variance,

and h(·,λ) is a general monotonically increasing function. Given the model assumptions, the
maximum likelihood estimators (MLE) of β, σ2 and λ are given by

λ̂ = argmin
�
J̇−1(c)nMh(Y, c)n, (2)

β̂ = (X�X)−1X�h(Y, λ̂), (3)

σ̂2 =
1

n
nMh(Y, λ̂)n2, (4)

where n · n is the Euclidian norm,M = In−X(X�X)−1X�, In is the n×n identity matrix, and
J̇(c) is the geometric mean of {hy(Yi, c) = ∂h(Yi, c)/∂Yi, i = 1, · · · , n}. Note that β̂ and σ̂2 are
analytic functions of λ̂, and we shall denote these quantities as β̂(λ̂) and σ̂2(λ̂), respectively.

When λ is known, the MLE of β and σ are β̂(λ) and σ̂(λ), respectively.

2.1 The plug-in quantile limits

Consider the problem of predicting the pth quantile of Y0 at a given observation x0. We

denote the quantile as yp. As the transformation is monotonic, we have h(yp,λ) = x
�
0β + σzp,

where zp is the pth quantile of the standard normal variate. A natural predictor of h(yp,λ)

is x�0β̂(λ) + σ̂∗(λ)zp, where σ̂∗2(λ) = σ̂2(λ)[n/(n − k)] is an unbiased estimator of σ2. As
Var[x�0β̂(λ)] = σ2κ−2n0 , where κ

−2
n0 = x

�
0(X

�X)−1x0, it is natural to consider the following pivotal

quantity for inference about yp,

Tp(λ) =
x�0β̂(λ) + σ̂∗(λ)zp − h(yp,λ)

κ−1n0 σ̂∗(λ)
. (5)

Note that h(yp,λ) = x
�
0β + σzp, and Tp(λ) can be rewritten as

κn0[x
�
0β̂(λ)− x�0β]/σ − κn0zp

σ̂∗(λ)/σ
+ κn0zp, (6)

from which we can see that Tp(λ) ∼ tn−k(−κn0zp) + κn0zp, where tν(δ) denotes a noncentral

t random variable with ν degrees of freedom and noncentrality parameter δ. Thus, we obtain
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the mean µT and variance σ
2
T of Tp(λ) as

µT = κn0zp

%
1−

�
n− k
2

�1/2 Γ((n− k − 1)/2)
Γ((n− k)/2)

&
, (7)

σ2T =
n− k

n− k − 2(1 + κ2n0z
2
p)−

n− k
2

κ2n0z
2
p

�
Γ((n− k − 1)/2)
Γ((n− k)/2)

�2
. (8)

Note that when p = 0.5, µT = 0 and σT = (n − k)/(n − k − 2). For a fixed value of p,
it can be shown that as n → ∞, µT → 0 and σT converges to a number larger than 1. For

extreme values of p, however, the convergence may be very slow. These points are important

for further discussions in the next section when adjustment to the pivotal quantity has to be

made when λ is estimated.

We now denote the αth quantile of tν(δ) by t
α
ν (δ). With probability 1 − α, the following

inequality holds:

t
α/2
n−k(−κn0zp) + κn0zp ≤ Tp(λ) ≤ t1−α/2n−k (−κn0zp) + κn0zp, (9)

from which we obtain a 100(1− α)% confidence interval for h(yp,λ) as�
x�0β̂(λ)− t1−α/2n−k (−κn0zp) σ̂

∗(λ)
κn0

, x�0β̂(λ)− tα/2n−k(−κn0zp)
σ̂∗(λ)
κn0

�
. (10)

Applying inverse transformation to the lower limit L(λ) and the upper limit U(λ) in (10) gives

the following 100(1− α)% confidence interval (CI) for yp:

q
h−1[L(λ),λ], h−1[U(λ),λ]

r
. (11)

This interval is correct when exact normality is achieved by the transformation, and is

asymptotically correct when approximate normality is achieved 4. Thus, when λ is known, the

interval can be recommended for practical applications and will be attractive to practitioners

due to its simplicity. We shall call the confidence interval of yp the quantile limits (QL).

In practical situations, λ is often unknown and has to be estimated using the same set of

data. In this case, a popular approach is to ‘plug’ an estimate λ̂ into (10) for the unknown λ

4For the case of the median, the interval is asymptotically correct if E[h(Y0,λ)] = Median[h(Y0,λ)] for some
h and λ. See Yang (2002a). The fact that expression (11) provides an exact confidence interval under normality
may be a reason for the superior performance of the (corrected) plug-in method (as shown in the Monte Carlo
results reported in Section 4) over the delta method in finite samples.
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(Collins, 1991; Hahn and Meeker, 1991), so that the CI for yp becomes

q
h−1[L(λ̂), λ̂], h−1[U(λ̂), λ̂]

r
. (12)

The interval (12), referred to as the plug-in quantile limits (PQL), is sometimes used without

accounting for the extra variability introduced by λ̂. In the next section we shall discuss the

procedure to correct for the PQL when λ is unknown and is replaced by the MLE. Another

popular approach to construct the QL is the delta method suggested by Carroll and Ruppert

(1991), which provides asymptotically correct QL. In section 4, we compare the finite-sample

performance of the corrected plug-in and the delta methods.

2.2 Asymptotics of the plug-in method

We define Tp(λ̂) as Tp(λ) with λ replaced by λ̂, i.e.,

Tp(λ̂) =
κn0[x

�
0β̂(λ̂) + σ̂∗(λ̂)zp − h(yp, λ̂)]

σ̂∗(λ̂)
. (13)

We use subscripts to denote the derivative or partial derivative of a function. For example, hλ

and hλλ are, respectively, the first- and second-order partial derivatives of h with respect to

λ. Let ψ = (β�,σ,λ)� and τ2(ψ) be the asymptotic variance of
√
n( λ̂− λ). We state our first

result as follows.

Theorem 1. Assume that for some λ, the following are true: i) λ̂
p→ λ and

√
n(λ̂ −

λ)/τ(ψ)
D→ N(0, 1); ii) X�hλ(Y,λ)/n, X�hλλ(Y,λ)/n, and h�(Y,λ)Mhλ(Y,λ)/n converge in

probability; and iii) X�X/n converges to a positive definite matrix. Then we have,

Tp(λ̂) = Tp(λ) +

√
n(λ̂− λ)

τ(ψ)
c(ψ) + op(1). (14)

Furthermore, if Tp(λ) and λ̂ are asymptotically independent,5 we have

E[Tp(λ̂)] = E[Tp(λ)] + o(1), (15)

Var[Tp(λ̂)] = Var[Tp(λ)] + c
2(ψ) + o(1), (16)

5The assumption of asymptotic independence between Tp(λ) and λ̂ is not restrictive. In the special case of
the Box-Cox transformation, it follows directly from Theorem 3.1 of Yang (1999). For the purpose of generality,
asymptotic independence is stated as an assumption for the (single parameter) transformation.
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where

c(ψ) = lim
n→∞

x�0E[β̂λ(λ)] +
1
2σzpE[σ̂

∗
λ(λ)]− hλ(yp,λ)√

nσ/[κn0τ(ψ)]
. (17)

The proof of Theorem 1 is given in Appendix A. The constant c(ψ) quantifies the effect of

estimating λ on the pivotal quantity Tp(λ), and hence on the PQL. As c
2(ψ) is a nonnegative

number, Tp(λ̂) has a limiting mean the same as that of Tp(λ), but has a limiting variance larger

than that of Tp(λ). This indicates that the QL without accounting for the estimation of λ is

too tight. The value of c2(ψ) generally depends on the value of ψ, as well as the values of zp

and x0. When p = 0.5, zp = 0 and the results reduce to those of Yang (2002a).

2.3 The analytically calibrated quantile limits

We now derive an analytical calibration of Tp(λ̂) so that the calibrated quantity has the same

limiting distribution as Tp(λ). This leads to an analytical adjustment of the PQL. From the

results of Theorem 1, it is clear that the following adjusted pivotal quantity

T ∗p (λ̂) =
Tp(λ̂)− Cm(ψ))

Cs(ψ)
, (18)

where Cm(ψ) = µT (1 − Cs(ψ)) and Cs(ψ) =
t
1 + c2(ψ)/σ2T , has the same asymptotic mean

and variance as those of Tp(λ). This leads immediately to the following corrected (calibrated)

plug-in quantile limits (CPQL):

q
h−1[L∗(λ̂), λ̂], h−1[U∗(λ̂), λ̂]

r
, (19)

with the two adjusted end points before transformation given by

L∗(λ̂) = x�0β̂(λ̂) + gC∗m(ψ)− t1−α/2n−k (−κn0zp) gCs(ψ) σ̂∗(λ̂)
κn0

, (20)

U∗(λ̂) = x�0β̂(λ̂) + gC∗m(ψ)− tα/2n−k(−κn0zp) gCs(ψ) σ̂∗(λ̂)κn0
, (21)

and gC∗m(ψ) = σ̂∗(λ̂)[1 − gCs(ψ)][zp + µT/κn0]. What remains now is a method to estimate

the correction factor c(ψ) so that the estimates gC∗s (ψ) and gC∗m(ψ) can be obtained. We

examine below the special case of the Box-Cox transformation, followed by the case of a

general monotonic transformation.
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3 The Box-Cox power transformation

For the Box-Cox power transformation (Box and Cox, 1964), we have

h(Y,λ) =

+
(Y λ − 1)/λ,
log Y,

if λ 9= 0,
if λ = 0.

(22)

In this case an explicit expression for c(ψ) can be derived, so that an estimate of it, c(ψ̂), can

be easily obtained. We denote the elementwise multiplication operator (Hadamard product)

of two vectors by �. Also, as a convention, functions applied to a vector, b say, are carried out
elementwise, e.g., log b = {log bi}n×1. The following theorem provides the required correction

for the Box-Cox transformation.

Theorem 2. Let h(.,λ) be the Box-Cox power transformation. Assume i) the first six

moments of ei are the same as those of a standard normal random variable, ii) Tp(λ) and λ̂

are independent, and iii) max |θi| is small.6 Then we have, for large n, when λ 9= 0,

c(ψ) ≈ x
�
0(X

�X)−1X�[(1n + λη)� φ+ 1
2λσθ]− (1 + λη0)φ0 + λ2a(zp)

λσk−1n0
�
nM(θ−1 � φ+ 1

2θ) n2 +2 n φ− φ̄ n2 +3
2 n θ n2

�1/2 , (23)

and when λ = 0,

c(ψ) ≈ x�0(X�X)−1X�(η2 + σ21n)− η20 + 2a(zp)

k−1n0 (nMη2 n2 +8σ2 n η − η̄ n2 +6nσ4)1/2
, (24)

where η = X�β, φ = log(1 + λη), θ = λσ(1n + λη)−1, η̄ = 1�nη/n, φ̄ = 1�nφ/n, 1n = {1}n×1,
η0 = x

�
0β, θ0 = λσ/(1 + λη0), φ0 = log(1 + λη0), and

a(zp) =

 σzp
�

1
n−k

Sn
i=1mii(φi − 3

2θ
2
i )− φ0 − 1

2θ0zp +
1
2θ
2
0z
2
p

�
λ−1, if λ 9= 0,

σzp
�

1
n−k

Sn
i=1miiηi − η0 − 1

2σzp
�
, if λ = 0,

(25)

with mii being the ith diagonal element of M.

The proof of Theorem 2 can be found in Appendix A. Note that when p = 0.5, a(zp) = 0

and Theorem 2 above reduces to Theorem 2 in Yang (2002a). Using the Box-Cox power

transformation, the implementation of the CPQL is straightforward. Once λ̂ is obtained, it is

easy to calculate c2(ψ̂) and the rest is similar to the calculation of the usual regression QL.

6This is to ensure that the truncation effect in the Box-Cox transformation model is negligible. See Yang
(1999) for a detailed discussion.
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Note that λ̂ defined in (2) can be conveniently calculated by solving the following equation for

λ:7

−nh
�(Y,λ)Mhλ(Y,λ)
h�(Y,λ)Mh(Y,λ)

+
n[
i=1

log Yi = 0. (26)

Theorem 2 provides an estimate of c2(ψ) in a very convenient way. More importantly,

it characterizes the factors governing the magnitude of the variance correction factor. In

particular, c2(ψ) depends on (i) the value of x0, (ii) the value of zp through the term a(zp),

(iii) the model structure through theM term, (iv) the mean spread through the term nφ− φ̄n2,
and (v) the residual standard deviation. Among these factors, the distance from x0 to the center

of the design is most important. The calculations given in Table 1 show that c(ψ) is a concave

function of x0, and that when x0 is far from the design region, c2(ψ) may be very large no

matter what value p takes. Therefore, there may be a large effect on the distribution of the

pivotal quantity used for constructing the QL due to the estimation of the transformation.

As a result, the QL without accounting for the transformation estimation can be extremely

liberal. This is in contrast to Carroll and Ruppert (1981), who claimed that while there is

a cost in estimating the transformation on the inference concerning the median, the cost is

generally not severe.

3.1 General transformations

In general, negative observations may arise in a transformed regression model and a general

transformation that allows for both positive and negative observations would be desirable.

Candidates for such transformations were suggested by Manly (1976), John and Draper (1980),

Bickel and Doksum (1981), Burbidge et al. (1988) and Yeo and Johnson (2000). Theorem 1

incorporates such transformations. However, even if observations are nonnegative, the Box-Cox

power transformation is, technically speaking, unable to transform the observations to exact

normality unless λ = 0. This is the well-known truncation problem associated with the Box-

Cox power transformation. Yang (2002b) proposed a modified family of power transformation,

called the dual-power transformation, that can be used to circumvent the truncation problem.

7A Fortran subroutine for doing so is available from the authors on request. For more general applications,
a SAS/IML program is also available. The program calculates the quantity in equation (2) over a grid of values
and searches for the minimum.
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The transformation is given by (for y > 0)

h(y,λ) =

+
(yλ − y−λ)/2λ, λ > 0,
log y, λ = 0.

(27)

Similar results as in Theorem 2 may be difficult (if not impossible) to obtain for a general

transformation. Here we adopt an alternative method to estimate the correction factor c(ψ)

that works for any monotonic transformation. From the way c(ψ) is defined, it is natural to

introduce the following estimate:

gc(ψ) = x�0β̂λ(λ̂) + zpσ̂∗λ(λ̂)− hλ(ŷp, λ̂)
σ̂∗(λ̂)/[κn0Jλλ(ψ̂)1/2]

, (28)

where Jλλ(ψ) is the last diagonal element of J−1(ψ). It is easy to see that gc(ψ) is a consistent
estimate of c(ψ). Thus, the adjusted QL in equations (20) and (21) can be estimated based

on the estimate gc(ψ). The MLE λ̂ now solves

−nh
�(Y,λ)Qhλ(Y,λ)
h�(Y,λ)Qh(Y,λ)

+
n[
i=1

hyλ(Yi,λ)

hy(Yi,λ)
= 0, (29)

where hyλ(·, ·) is the second order partial derivative of h with respect to Y and λ.

4 Transformation model with heteroscedastic errors

We now consider a variation of model (1) in which the error standard deviation is no longer

constant but varies with a set of ‘weights’. Thus, we assume

h(Yi,λ) = x
�
iβ + σω(vi, γ)ei, i = 1, · · · , n, (30)

where ω(vi, γ) ≡ ωi(γ) is the weight function, vi is a vector of observations on a set of vari-

ables, called the weighting variables, and γ is a vector of weighting parameters. The weight-

ing variables may include (some of) the regressors and/or other variables and the weighting

parameter-vector may include (some of) the regression coefficients and/or other parameters.8

A special weight function which is very popular in the econometrics literature is the multi-

plicative heteroscedastic function suggested by Harvey (1976), for which

ω2(vi, γ) = exp(v
�
iγ). (31)

8See Carroll and Ruppert (1988, 1991) for the general specification of the weight function.
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Another important special case is ω2(vi, γ) = X
γ
i . We now define Ω(γ) = diag {ω21(γ), · · · ,ω2n(γ)}.

If the weights are given, then equation (30) can be converted into the form of equation (1) by

premultiplyingΩ−
1
2 (γ) on each side of equation (30), whereΩ−

1
2 (γ) = diag {ω−11 (γ), · · · ,ω−1n (γ)}.

Thus, the results given in Section 2 apply after replacing h by Ω−
1
2 (γ)h, X by Ω−

1
2 (γ)X, x0

by ω−10 (γ)x0, and h(yp,λ) by ω
−1
0 (γ)h(yp,λ).

When the weights are unknown, the maximum likelihood method can be used to estimate

jointly the parameters. The log likelihood function is

c(β,σ2, γ,λ) ∝ −n
2
log σ2 −

n[
i=1

logωi(γ)− 1

2σ2

n[
i=1

�
h(yi,λ)− x�iβ

ωi(γ)

�2
+

n[
i=1

log hy(yi,λ). (32)

For given γ and λ, the MLE of β and σ are

β̂(γ,λ) = [X�Ω−1(γ)X]−1X�Ω−1(γ)h(Y,λ), (33)

σ̂2(γ,λ) =
1

n
[h(Y,λ)−Xβ̂(γ,λ)]�Ω−1(γ)[h(Y,λ)−Xβ̂(γ,λ)]. (34)

Substituting β̂(γ,λ) and σ̂(γ,λ) into the log likelihood function gives the profile likelihood

function of γ and λ, i.e.,

cp(γ,λ) = c[β̂(γ,λ), σ̂2(γ,λ), γ,λ] ∝ −n
2
log

n[
i=1

k
ω̇(γ)si(γ,λ)/J̇(λ)

l2
, (35)

where si(γ,λ) = [h(yi,λ) − x�iβ̂(γ,λ)]/ωi(γ), and ω̇(γ) and J̇(λ) are the geometric means of

ωi(γ) and Ji(λ) = hy(Yi,λ), respectively. The unrestricted MLE can thus be written as

(γ̂�, λ̂)� = arg min
(γ,λ)

k
ω̇(γ)/J̇(λ)

l2 n[
i=1

s2i (γ,λ), (36)

β̂(γ̂, λ̂) = [X�Ω−1(γ̂)X]−1XΩ−1(γ̂)h(Y, λ̂), (37)

σ̂2(γ̂, λ̂) =
1

n
h�(Y, λ̂)M(γ̂)Ω−1(γ̂)h(Y,λ), (38)

whereM(γ) = In −X[X�Ω−1(γ)X]−1X�Ω−1(γ).
Similar to the case of homoscedastic errors, to predict the pth quantile yp of the response

Y0 at values x0 and v0 of the regressors and weighting variables, respectively, we start with the

pivotal quantity for the case of known λ and γ, i.e.,

Tp(γ,λ) =
x�0β̂(γ,λ) + σ̂∗(γ,λ)ω(vo, γ)zp − h(yp,λ)

κ−1n0 (γ)σ̂∗(γ,λ)
, (39)
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where κ−2n0 (γ) = x�0[XΩ−1(γ)X]−1x0. It is easy to see that Tp(γ,λ) ∼ tn−k[−δ(γ)]+δ(γ), where

δ(γ) = κn0(γ)ω0(γ)zp. Thus, the confidence limits for yp can be constructed in the same way

as in equations (10) and (11).

When both γ and λ are unknown and are replaced by their MLE, the pivotal quantity

becomes

Tp(γ̂, λ̂) =
x�0β̂(γ̂, λ̂) + σ̂∗(γ̂, λ̂)ω(vo, γ̂)zp − h(yp, λ̂)

κ−1n0 (γ̂)σ̂∗(γ̂, λ̂)
. (40)

The PQL can be constructed in the same way as in equation (12). The issue now is the

adjustment of the PQL to account for the estimation of the weighting parameter as well as the

transformation parameter. The following theorem provides a convenient way to perform the

adjustment. We now denote ψ = {β�,σ2, γ�,λ}�.

Theorem 3. Under the specification of the model in equation (30), we assume further

that the following are true: i) λ̂
p→ λ and γ̂

p→ γ, ii)
√
n(λ̂ − λ)/τ(ψ)

D→ N(0, 1), iii)

X�Ω−1(γ)hλ(Y,λ)/n, X�Ω−1(γ)hλλ(Y,λ)/n, and h�(Y,λ)M(γ)Ω−1(γ)hλ(Y,λ)/n converge in

probability, and iv) X�Ω−1(γ)X/n converges to a positive definite matrix. Then, we have,

Tp(γ̂, λ̂) = Tp(γ,λ) +B1
√
n(γ̂ − γ) +B2

√
n(λ̂− λ) + op(1), (41)

where

B1 = lim
n→∞

x�0E[β̂γ(γ,λ)] + zpω0(γ)E[σ̂∗γ(γ,λ)] + σ̂∗(γ,λ)ω0γ(γ)zp√
nσκ−1n0 (γ)

, (42)

B2 = lim
n→∞

x�0E[β̂λ(γ,λ)] + zpω0(γ)E[σ̂∗λ(γ,λ)]− hλ(yp,λ)√
nσκ−1n0 (γ)

. (43)

Furthermore, if Tp(γ,λ) is asymptotically independent of γ̂ and λ̂, we have

E[Tp(γ̂, λ̂)] = E[Tp(γ,λ)] + o(1 ), (44)

Var[Tp(γ̂, λ̂)] = Var[Tp(γ,λ)] + c
2(ψ) + o(1) (45)

where c2(ψ) = B�ΣB, B� = {B�1, B2}, and Σ is the asymptotic variance of
√
n{γ̂�, λ̂}�.

12



Theorem 3 is similar to Theorem 1, the proof of which is given in Appendix A. Similar to

the results in Section 2, a consistent estimator of c(ψ) is given by

gc(ψ) = (B̂�Σ̂B̂)1/2, (46)

with Σ̂/n = J22(ψ̂), the (γ�,λ)� diagonal block of J−1(ψ) evaluated at ψ̂, and

B̂1 =
x�0β̂γ(γ̂, λ̂) + zpω0(γ̂)σ̂∗γ(γ̂, λ̂) + σ̂∗(γ̂, λ̂)ω0γ(γ̂)zp√

nσ̂∗(γ̂, λ̂)κ−1n0 (γ̂)
, (47)

B̂2 =
x�0β̂λ(γ̂, λ̂) + zpω0(γ̂)σ̂∗λ(γ̂, λ̂)− hλ(ŷp, λ̂)√

nσ̂∗(γ̂, λ̂)κ−1n0 (γ̂)
. (48)

With Theorem 3, it is clear that the pivotal quantity Tp(γ̂, λ̂) should be corrected as

T ∗P (γ̂, λ̂) =
Tp(γ̂, λ̂)− Cm(ψ)

Cs(ψ)
, (49)

where Cm(ψ) = µT (γ)(1 − Cs(ψ)) and Cs(ψ) =
t
1 + c2(ψ)/σ2T (γ), with µT (γ) and σ2T (γ)

being the mean and variance of Tp(γ,λ), which have similar expressions as µT and σ2T with

a different noncentrality parameter. The implementation of the CPQL is again very simple.

All the partial derivatives have simple analytical expressions except β̂γ(γ,λ) which could be

complicated in a model containing more than one explanatory variable. In this case, numerical

differentiation may be used. The final analytical expression of the CPQL takes the form

q
h−1[L∗(γ̂, λ̂), λ̂], h−1[U∗(γ̂, λ̂), λ̂]

r
, (50)

with the two adjusted end points before transformation being

L∗(γ̂, λ̂) = x�0β̂(γ̂, λ̂) + gC∗m(ψ)− t1−α/2n−k [−δ(γ̂)] gCs(ψ) σ̂∗(γ̂, λ̂)
κn0(γ̂)

, (51)

U∗(γ̂, λ̂) = x�0β̂(γ̂, λ̂) + gC∗m(ψ)− tα/2n−k[−δ(γ̂)] gCs(ψ) σ̂∗(γ̂, λ̂)κn0(γ̂)
, (52)

and gC∗m(ψ) = σ̂∗(γ̂, λ̂)[1− gCs(ψ)][ω0(γ̂)zp + µT (γ̂)/κn0(γ̂)].
5 Some Monte Carlo results

The results given in the last section provide asymptotically correct confidence limits for the

regression quantiles using the CPQL. However, it is not clear how the CPQL performs when

13



n is not large. Also, it would be interesting to compare the performance of the CPQL method

against other methods used in the literature, such as the delta method. In this section we

report some Monte Carlo results on the performance of the CPQL, the PQL and the delta

method in small samples.

We consider cases of homoscedastic and heteroscedastic errors. For homoscedastic errors

we consider the following model as the data generation process (DGP):

Model 1: h(Yi,λ) = β0 + β1Xi + σei, i = 1, · · · , n. (53)

For heteroscedastic errors we use the following DGP:

Model 2: h(Yi,λ) = β0 + β1Xi + σ exp(γXi)ei, i = 1, · · · , n. (54)

In each of the above models, Xi are fixed values of the regressor that are uniformly spaced

in [0,Xm]. For Model 1, we consider both the Box-Cox transformation and the dual-power

transformation. For Model 2, to simplify the numerical computations, only the Box-Cox

transformation is considered.

The Monte Carlo experiment can be described as follows. For a given set of parameter

values, we generate n standard normal random numbers (ei). Using these random numbers

we calculate the values of Yi based on the assumed DGP and estimate the model parameters.

We then compute the 95% quantile limits, and repeat this process a number times (10,000

for Model 1 and 5,000 for Model 2). The proportion of the quantile limits that cover the

true quantile provides a Monte Carlo estimate of the coverage probability of the quantile

limits. All simulations are performed using a FORTRAN 90 compiler which calls the IMSL

subroutines for numerical optimization. To study the effect of the adjustment, we report the

results corresponding to the PQL. Furthermore, the coverage probabilities of the commonly

used delta-method QL are also estimated.

Table 1 provides a summary of the values of c(ψ) when the DGP is Model 1 and the

Box-Cox transformation is used. The values of X (with n = 60) used in this computation

are uniformly spaced in [0, 100]. The results suggest the importance of making corrections to

the plug-in method. We can see that the required variance correction c(ψ)2 is generally quite

large, especially when x0 is far from the in-sample values.

14



Tables 2 to 8 report the empirical relative frequency of coverage of the true quantiles using

the three methods. Tables 2 to 6 summarize the results for Model 1 (homoscedastic errors),

and Tables 7 and 8 present the results for Model 2 (heteroscedastic errors). It is obvious

from the results that the PQL method has the poorest performance. The empirical coverage

probabilities do not converge to the nominal value of 95% when the sample size increases, as

expected from the asymptotic theory. The CPQL method has the best performance in all

cases, and the empirical coverage probabilities are very close to the nominal value even for a

small sample size such as 15. In what follows we summarize some regularities that seem to

have emerged from the experiment. Our discussion will focus on the following aspects: (i) the

effect of the nonlinearity parameter λ, (ii) the sample size n, (iii) the design region and the x0

value, (iv) out-of-sample forecast, and (v) the effect of heteroscedasticity.

Degree of nonlinearity. For transformations indexed by a power parameter λ, the

smaller the λ, the more nonlinear the transformation is. The Monte Carlo results show that

the λ value has a dramatic effect on the performance of the delta method, especially when p

is large. For example, for Model 1 under the Box-Cox power transformation (Tables 2 to 4),

the coverage probabilities for the nominal 95% CI of the 99th quantile at x0 = 0 and n = 15

are 0.8149, 0.8542 and 0.9067 for λ = 0.01, 0.1 and 0.5, respectively. For Model 1 under the

dual-power transformation (Tables 5 and 6), the coverage probabilities for the same quantile

are 0.7848 and 0.8980 for λ = 0.1 and 0.5, respectively. For Model 2 under the Box-Cox power

transformation (Tables 7 and 8), the coverage probabilities for the nominal 95% CI of the

99th quantile at x0 = 0 and n = 30 are 0.8716 and 0.9079 for λ = 0.1 and 0.25, respectively.

Generally speaking, when the degree of nonlinearity is high, the empirical coverage of the delta

method can be far below the nominal level. In contrast, the empirical coverage probabilities

of the CPQL method are very close to the nominal 95% value.

Sample size. The empirical coverage of the delta method improves as the sample size

increases. However, in many situations the empirical coverage is still significantly below its

nominal level even when the sample size is as large as 60 (see, e.g., the case of p = 0.99, x0 =

0, n = 60). In contrast, the empirical coverage of the CPQL method are close to the nominal

value even when the sample size is only 30, and this appears to be true for all cases reported.
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Design region and the x0 value. Simulation results (not reported here) show that the

range of values of Xi also effects the performance of the delta method. A larger range seems

to have adverse effects on the performance of the delta method. In addition, the value of x0

matters greatly to the magnitude of the correction and to the performance of the delta method.

Out-of-sample forecast. Figure 1 shows the performance of the three methods for Model

1 with n = 60. Various ranges of Xi values are examined. The purpose is to examine the

performance of the three methods when x0 deviates from the in-sample values. The vertical

dotted lines represent the maximum value Xm of Xi in each case. For the delta method, the

empirical coverage probability drops significantly when x0 moves away from the design region.

Heteroscedasticity. Tables 7 and 8 show that estimating the weighting parameter does

not have significant effect on the performance of the CPQL method. In contrast, the PQL

method may perform very poorly. Once again, the performance of the delta method may be

quite poor if λ is small. In all cases, the performance of the delta method is dominated by the

CPQL method.

We should add that another undesirable property of the delta method is that it could end

up with a negative lower quantile limit. This phenomenon, however, cannot happen for the

CPQL method under the dual-power transformation or other transformations that are free of

the truncation problem. For the case of the Box-Cox power transformation, the limits before

the inverse transformation L∗ or U∗ could end up being negative, depending on whether λ is

positive or negative. When this happens either the lower limit of the CPQL should be set to

zero or the upper limit of the CPQL should be set to∞. However, the chance of this happening
is negligible if the truncation probability is small.9

6 Conclusions

The Box-Cox transformation is a popular technique for analyzing skewed data found in many

economic applications. When the transformation is known, the usual inference theories can

be applied and simple inverse transformations can be used for the original response. However,

the transformation parameter is often unknown and has to be estimated from the data. A

9See Yang (1999) for the details.
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common practice in this case is to use the so-called ‘plug-in’ method, i.e., plugging the estimated

unknown parameters into the confidence-interval formula. This practice ignores the effect of

estimating the transformation and/or the weighting. This paper shows that there is a serious

consequence if these effects are ignored.

We show that the plug-in method can be modified to obtain an analytically calibrated

confidence interval which is very accurate even when the sample size is small. The gains of

introducing the corrected plug-in method are significant as the Monte Carlo results show that

its performance dominates uniformly that of the delta method.

There are important implications of the corrected plug-in method. It may be applied to

solve problems of a similar nature. For example, it can be applied to a model where both the

response and regressors are transformed. Generally speaking, the methodology can be applied

to any situation where standard inference theory is available when certain parameters (such

as the transformation parameters) are known, but not available when these parameters are

unknown and have to be estimated from the same set of data.
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APPENDIX A: Proof of the Theorems

Proof of Theorem 1. First-order Taylor expansions of β̂(λ̂), h(yp, λ̂) and σ̂∗(λ̂) give

β̂(λ̂) = β̂(λ) + β̂λ(λ)(λ̂− λ) +Op(n
−1),

h(yp, λ̂) = h(yp,λ) + hλ(yp,λ)(λ̂− λ) +Op(n
−1),

σ̂∗(λ̂) = σ̂∗(λ) + σ̂∗λ(λ)(λ̂− λ) +Op(n
−1).

Combining the above gives

x�0β̂(λ̂) + σ̂∗(λ̂)zp − h(yp, λ̂)

= x�0β̂(λ) + σ̂∗(λ)zp − h(yp,λ) + (λ̂− λ)[x�0β̂λ(λ) + σ̂∗λ(λ)zp − hλ(yp,λ)] +Op(n−1).

It is easy to see that 1/σ̂∗(λ̂) = 1/σ̂∗(λ) + Op(n−1/2) = 1/σ + Op(n
−1/2). Summarizing the

above, we obtain the first result of Theorem 1. The rest of the proof is straightforward.

Proof of Theorem 2. Yang (1999) obtained an accurate approximation to τ2(ψ) as follows:

τ2(ψ) ≈


nλ2

8Q(θ−1 φ+ 1
2
θ)82+28φ−φ̄82+3

2
8θ82 , if λ 9= 0,

4nσ2

8Qη282+8σ28η−η̄82+6nσ4 , if λ = 0.

For the power transformation, we have hλ(y,λ) = [y
λ log y−h(y,λ)]/λ for λ 9= 0, and (log y)2/2

for λ = 0. The latter leads directly to equation (24) of Theorem 2 for the case of λ = 0. When

λ 9= 0, using the following approximation:

λ logYi ≈ φi + θiei − 1
2
θ2i e

2
i ,

we obtain the approximations to E[hλ(Yi,λ)] and hλ(yp,λ), which lead to the result in equation

(23) of Theorem 2 after some algebra.

Proof of Theorem 3. First-order Taylor expansion of the numerator of Tp(γ̂, λ̂) leads to

x�0β̂(γ̂, λ̂) + σ̂∗(γ̂, λ̂)ω0(γ̂)zp − h(yp, λ̂)

= x�0β̂(γ,λ) + σ̂∗(γ,λ)ω0(γ)zp − h(yp,λ)

+[x�0β̂λ(γ,λ) + σ̂∗λ(γ,λ)ω0(γ)zp − hλ(yp,λ)](λ̂− λ)

+[x�0β̂γ(γ,λ) + σ̂∗γ(γ,λ)ω0(γ)zp + σ̂∗(γ,λ)ω0γ(γ)zp](λ̂− λ) +Op(n
−1).
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As 1/σ̂∗(γ̂, λ̂) = 1/σ̂∗(γ,λ) + Op(n−1/2) = 1/σ + Op(n−1/2), the above leads to the first part

of the theorem. The rest of the proof is straightforward.

APPENDIX B: Delta Method Quantile Limits

Carroll and Ruppert (1991) recommended using the delta method or the likelihood ratio

test method to construct confidence intervals for yp. Implementation of the delta method

is straightforward. Implementation of the likelihood ratio test method requires constrained

maximization. To apply the delta method, let ψ̂ be the MLE of ψ where ψ may or may not

contain γ. Write β̂(λ̂) or β̂(γ̂, λ̂) as β̂, and σ̂(λ̂) or σ̂(γ̂, λ̂) as σ̂. Suppose that the distribution

of ψ̂ is asymptotically normal with mean ψ and variance matrix I−1(ψ). Then the distribution

of the MLE of yp, ŷp = h−1[(x�0β̂ + σ̂ω0(γ̂)zp), λ̂] ≡ g(ψ̂), is asymptotically normal with

mean g(ψ) and variance g�ψ(ψ)I
−1(ψ)gψ(ψ). The variance can be consistently estimated by

g�ψ(ψ̂)J
−1(ψ̂)gψ(ψ̂) with J(ψ̂) being the observed information matrix evaluated at ψ̂. Thus, a

100(1− α)% large-sample confidence interval for yp is given by

fyp ± zα/2tg�ψ(ψ̂)J−1(ψ̂)gψ(ψ̂).
Implementation of the delta-method QL requires the quantile function and its partial deriva-

tives, as well as the observed information matrix. We provide the details of the delta method

below.

The quantile function and partial derivatives. The quantile function for the general

transformation model with heteroscedastic errors is defined as

g(ψ) = h−1[x�0β + σω0(γ)zp,λ].

For the Box-Cox transformation model with heteroscedastic errors, g(ψ) = (1 + λµ0)
1/λ,

where µ0 = x
�
0β + σω0(γ)zp. Hence, the partial derivatives of g(ψ) are

gβ(ψ) = (1 + λµ0)
1/λ−1x0

gσ2(ψ) =
1

2σ
(1 + λµ0)

1/λ−1ω0(γ)zp
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gγ(ψ) = (1 + λµ0)
1/λ−1σzpω0γ(γ)

gλ(ψ) = g(ψ)
k
µ0λ

−1(1 + λµ0)
−1 − λ−2 log(1 + λµ0)

l
.

Setting ω0(γ) = 1 in the above expressions and removing the gγ(ψ) element gives the partial

derivatives of the quantile function for the Box-Cox transformation model with homoscedastic

errors.

For the dual-power transformation model with heteroscedastic errors, we have g(ψ) =

[λµ0 + (1 + λ2µ20)
1/2]1/λ, and the partial derivatives are

gβ(ψ) = g(ψ)x0(1 + λ2µ20)
−1/2

gσ2(ψ) =
1

2σ
g(ψ)ω0(γ)zp(1 + λ2µ20)

−1/2

gγ(ψ) = g(ψ)σω0γ(γ)zp(1 + λ2µ20)
−1/2

gλ(ψ) = g(ψ)
k
µ0λ

−1(1 + λ2µ20)
−1/2 − λ−2 log(λµ0 + (1 + λ2µ20)

1/2)
l
.

Again, setting ω0(γ) = 1 and removing the gγ(ψ) gives the partial derivatives of the quantile

function in the dual-power transformation model with homoscedastic errors.

The observed information matrix. For models with general transformation and weight-

ing function, the elements of the observed information matrix are given by:

Jββ =
1

σ2

n[
i=1

xix
�
i

ω2i (γ)

Jσ2σ2 =
1

σ6

n[
i=1

[h(Yi,λ)− x�iβ]2
ω2i (γ)

− n

σ4

Jγγ =
n[
i=1

#
ω2iγγ(γ)

ωi(γ)
− ω2iγ(γ)

ω2i (γ)

$
− 1

σ2

n[
i=1

�
h(Yi,λ)− x�iβ

�2#ωiγγ(γ)
ω3i (γ)

− 3ω
2
iγ(γ)

ω4i (γ)

$

Jλλ =
1

σ2

n[
i=1

h2λ(Yi,λ) + [h(Yi,λ)− x�iβ]hλλ(Yi,λ)
ω2i (γ)

−
n[
i=1

#
hyλλ(Yi,λ)

hy(Yi,λ)
− h

2
yλ(Yi,λ)

h2y(Yi,λ)

$

Jβσ2 =
1

σ4

n[
i=1

[h(Yi,λ)− x�iβ]xi
ω2i (γ)

Jβγ =
2

σ2

n[
i=1

[h(Yi,λ)− x�iβ]xiωiγ(γ)
ω3i (γ)

Jβλ =
1

σ2

n[
i=1

hλ(Yi,λ)xi
ω2i (γ)
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Jσ2γ =
1

σ4

n[
i=1

[h(Yi,λ)− x�iβ]2ωiγ(γ)
ω3i (γ)

Jσ2λ = − 1
σ4

n[
i=1

[h(Yi,λ)− x�iβ]hλ(Yi,λ)
ω2i (γ)

Jγλ = − 2
σ2

n[
i=1

[h(Yi,λ)− x�iβ]hλ(Yi,λ)ωiγ(γ)
ω3i (γ)

.

Now, for the Box-Cox transformation, we have hy(y,λ) = yλ−1, hyλ(y,λ) = yλ−1 log y,

hyλλ(y,λ) = y
λ−1(log y)2, and (for y > 0)

hλ(y,λ) =

+
1
λ [1 + λh(y,λ)] log y − 1

λh(y,λ), λ 9= 0,
1
2(log y)

2, λ = 0,

hλλ(y,λ) =

+
hλ(y,λ)(log y − 1

λ) +
1
λ2 [h(y,λ)− log y], λ 9= 0,

1
3(log y)

3, λ = 0.

For the dual-power transformation, we have

hλ(y,λ) =
1

2λ
(yλ + y−λ) log y − 1

λ
h(y,λ)

hλλ(y,λ) = h(y,λ)(
2

λ2
+ (log y)2)− 1

λ2
(yλ + y−λ) log y

hy(y,λ) =
1

2
[yλ−1 + y−λ−1],

hyλ(y,λ) =
1

2
(yλ−1 − y−λ−1) log y

hyλλ(y,λ) =
1

2
(yλ−1 + y−λ−1)(log y)2.

Setting ωi(γ) ≡ 1 gives the information matrix for models with homoscedastic errors.

Furthermore, for the Box-Cox transformation model with homoscedastic errors, the observed

information matrix reduces to

Jββ =
1

σ2
X�X

Jσ2σ2 = − n

2σ4
+
1

σ6
[h(Y,λ)−Xβ]�[h(Y,λ)−Xβ]

Jλλ =
1

σ2
[h�λ(Y,λ)hλ(Y,λ) + (h(Y,λ)−Xβ)�hλλ(Y,λ)]

Jβσ2 =
1

σ4
X�[h(Y,λ)−Xβ]

Jβλ = − 1
σ2
X�hλ(Y,λ)

Jσ2λ = − 1
σ4
[h(Y,λ)−Xβ]�hλ(Y,λ).
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For the dual-power transformation model with homoscedastic errors, the information matrix

takes identical forms as the above except that the quantity 4
Sn
i=1 log

2 Yi/(Y
λ
i + Y

−λ
i )2 has to

be subtracted from Jλλ.

22



REFERENCES

Bickel, P. J. and Doksum, K. A. (1981). An analysis of transformations revisited. Journal of

the American Statistical Association, 76, 296—311.

Box, G. E. P. and Cox, D. R. (1964). An analysis of transformation (with discussion). Journal

of the Royal Statistical Society B, 26, 211—252.

Buchinsky, M. (1994). Changes in U.S. wage structure 1963-1987: An application of quantile

regression. Econometrica, 62, 405—458.

Buchinsky, M. (1995). Quantile regression, Box-Cox transformation model, and the U.S. wage

structure, 1963-1987. Journal of Econometrics, 65, 109—154.

Burbidge, J. B., Magee, L. and Robb, A. L. (1988). Alternative transformations to handle ex-

treme values of the dependent variable. Journal of the American Statistical Association,

83, 123—127.

Carroll, R. J. (1982). Tests for regression parameters in power transformation models. Scan-

dinavian Journal of Statistics, 9, 217—222.

Carroll, R. J. and Ruppert, D. (1981). On prediction and power transformation family.

Biometrika, 68, 609—615.

Carroll, R. J. and Ruppert, D. (1988). Transformation and Weighting in Regression, Chap-

man & Hall.

Carroll, R. J. and Ruppert, D. (1991). Prediction and Tolerance Intervals with Transforma-

tions and/or Weighting. Technometrics, 33, 197—210.

Chamberlain, G. (1994). Quantile regression, censoring and the structure of wages. In Ad-

vances in Econometrics, Sims C. (eds), Cambridge University Press, 171—209.

Chen, S. (2002). Rank Estimation of Transformation Models. Econometrica. Forthcoming.

Collins, S. (1991). Prediction Techniques for Box-Cox Regression Models. Journal of Business

and Economic Statistics, 9, 267—277.

23



Doksum, K. A. and Wong, C. W. (1983). Statistical tests based on transformed data. Journal

of American Statistical Association, 78, 411—417.

Duan, N. (1993). Sensitivity analysis for Box-Cox power transformation model: Contrast

parameters. Biometrika, 80, 885—897.

Granger, C. W. J. and Newbold, P. (1976). Forecasting transformed time series. Journal of

the Royal Statistical Society B, 38, 189—203.

Hanh, J. (1995). Bootstrapping quantile regression estimators. Econometric Theory, 11,

105—121.

Hahn, G.J. and Meeker, W.Q. (1991). Statistical Intervals, A Guide for Practitioners. John

Wiley & Sons.

Harvey, A. C. (1976). Estimating regression models with multiplicative heteroscedasticity.

Econometrica, 44, 461—465.

Hentschel, L. (1995). All in the family: Nesting symmetric and asymmetric GARCH models.

Journal of Financial Economics, 39. 71—104.

Higgins, M. L. and Bera, A. (1992). A class of nonlinear ARCH model. International Eco-

nomic Review, 33, 137—158.

Hinkley, D. V. and Runger, G. (1984). The analysis of transformed data (with discussion).

Journal of the American Statistical Association, 79, 302—309.

John, J. A. and Draper, N. A. (1980). An alternative family of transformations. Applied

Statistics, 29, 190—197.

Kim, M. and Hill, R. C. (1995). Shrinkage estimation in nonlinear regression The Box-Cox

transformation. Journal of Econometrics, 66, 1—33.

Koenker, R. and Bassett, G. (1978). Regression quantiles. Econometrica, 46, 33—50.

Leech, D. (1975). Testing the error specification in nonlinear regression. Econometrica, 43,

719—725.

24



Machado, J. and Mata, J. (2000). Box-Cox quantile regression and the distribution of firm

sizes. Journal of Applied Econometrics, 15, 253—274.

Manly, B. F. (1976). Exponential data transformation. The Statistician, 25, 37—42.

Mata, J. and Machado, J. (1996). Firm start-up size: A conditional quantile approach.

European Economic Review, 40, 1305—1323.

Taylor, J. M. G. (1989). A note on the cost of estimating the ratio of regression parameters

after fitting a power transformation. Journal of Statistical Planning and Inference, 21,

223—230.

White, K. J. (1972). Estimation of the liquidity trap with a generalized functional form.

Econometrica, 40, 193—199.

Yang, Z. (1999) Estimating a transformation and its effect on Box-Cox T-ratio. Test, 8,

167—190.

Yang, Z. (2002a). Median estimation through a regression transformation. Canadian Journal

of Statistics, 30, 235—242.

Yang, Z. (2002b). A Modified Family of Power Transformations. Working Paper #12-2002.

School of Economics and Social Sciences, Singapore Management University.

Yang, Z. and Abeysinghe, T. (2002a). An explicit variance formula for the Box-Cox functional

form estimator. Economics Letters, 76, 259—265.

Yang, Z. and Abeysinghe, T. (2002b). A score test of Box-Cox functional form. Economics

Letters, to appear.

Yeo, I. K. and Johnson, R. A. (2000). A new family of power transformation to improve

normality or symmetry. Biometrika, 87, 954—959.

Zarembka, P. (1968). Functional form in the demand for money. Journal of the American

Statistical Association, 63, 502—511.

25



Table 1. Summary of c(ψ) Values: Model 1, Box-Cox Transformation, n = 60, ψ = (5, 1, 1, 0.1),
Xi ∈ [0, 100]

c(ψ)
x0 κn0 p = .01 p = .05 p = .25 p = .50 p = .75 p = .95 p = .99

0 3.8247 -1.6936 -1.6133 -1.5043 -1.4319 -1.3618 -1.2645 -1.1982
10 4.4711 -0.8058 -0.7796 -0.7010 -0.6427 -0.5874 -0.5128 -0.4775
20 5.2936 -0.1097 -0.0717 -0.0136 0.0181 0.0568 0.0938 0.1172
30 6.2808 0.4867 0.5102 0.5477 0.5721 0.5887 0.6117 0.6436
40 7.2520 0.9338 0.9498 0.9595 0.9639 0.9717 0.9770 0.9794
50 7.7427 1.1070 1.0972 1.0846 1.0729 1.0593 1.0438 1.0250
60 7.3826 0.9085 0.8830 0.8535 0.8267 0.8094 0.7691 0.7374
70 6.4528 0.4947 0.4681 0.4119 0.3862 0.3467 0.2940 0.2551
80 5.4485 0.0212 -0.0201 -0.0677 -0.0959 -0.1333 -0.1816 -0.2107
90 4.5953 -0.3964 -0.4493 -0.4951 -0.5316 -0.5726 -0.6085 -0.6939
100 3.9215 -0.8147 -0.8378 -0.8795 -0.9125 -0.9533 -1.0005 -1.0364
120 2.9831 -1.4352 -1.4691 -1.5178 -1.5518 -1.5861 -1.6357 -1.6709
140 2.3855 -1.9793 -2.0046 -2.0445 -2.0838 -2.1087 -2.1556 -2.1827
160 1.9800 -2.3971 -2.4233 -2.4691 -2.5241 -2.5595 -2.5584 -2.5932
180 1.6892 -2.8127 -2.8291 -2.8347 -2.8595 -2.9067 -2.9962 -2.9795
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Table 2. Empirical Coverage Probabilities for 95% QL: Model 1, Box-Cox Transformation, ψ =
(5, 1, 1, 0.01), Xi ∈ [0, 100]

n = 15 n = 30 n = 60
p x0 CPQL PQL Delta CPQL PQL Delta CPQL PQl Delta

0.01 0 0.9183 0.7876 0.8882 0.9335 0.7970 0.9073 0.9426 0.8162 0.9329
10 0.9283 0.8835 0.9275 0.9420 0.8996 0.9377 0.9489 0.9108 0.9476
20 0.9382 0.9342 0.9385 0.9444 0.9418 0.9431 0.9504 0.9483 0.9499
40 0.9374 0.9231 0.9363 0.9480 0.9304 0.9477 0.9441 0.9191 0.9452
50 0.9352 0.9094 0.9355 0.9380 0.9076 0.9403 0.9479 0.9124 0.9483
60 0.9352 0.9092 0.9330 0.9421 0.9086 0.9415 0.9474 0.9221 0.9477
80 0.9454 0.9443 0.9346 0.9483 0.9480 0.9440 0.9504 0.9502 0.9485
100 0.9312 0.9012 0.9359 0.9414 0.8965 0.9449 0.9465 0.8946 0.9479

0.05 0 0.9172 0.7596 0.8833 0.9333 0.7809 0.9111 0.9444 0.7933 0.9324
10 0.9321 0.8786 0.9237 0.9431 0.8922 0.9388 0.9477 0.9029 0.9452
20 0.9393 0.9339 0.9348 0.9427 0.9401 0.9393 0.9501 0.9478 0.9475
40 0.9360 0.9101 0.9344 0.9408 0.9050 0.9397 0.9445 0.9062 0.9433
50 0.9233 0.8762 0.9222 0.9371 0.8789 0.9360 0.9475 0.8890 0.9482
60 0.9310 0.8917 0.9282 0.9402 0.8923 0.9394 0.9477 0.8998 0.9473
80 0.9425 0.9411 0.9300 0.9504 0.9502 0.9462 0.9466 0.9465 0.9432
100 0.9269 0.8794 0.9259 0.9414 0.8797 0.9404 0.9476 0.8783 0.9472

0.25 0 0.9259 0.7499 0.8773 0.9411 0.7657 0.9073 0.9402 0.7682 0.9213
10 0.9298 0.8591 0.9068 0.9437 0.8853 0.9318 0.9465 0.8973 0.9439
20 0.9344 0.9284 0.9167 0.9469 0.9445 0.9368 0.9494 0.9487 0.9473
40 0.9328 0.8824 0.9225 0.9405 0.8654 0.9353 0.9461 0.8635 0.9446
50 0.9223 0.8300 0.9172 0.9391 0.8322 0.9361 0.9434 0.8358 0.9428
60 0.9275 0.8474 0.9193 0.9403 0.8588 0.9364 0.9490 0.8662 0.9449
80 0.9433 0.9423 0.9219 0.9457 0.9456 0.9362 0.9443 0.9442 0.9408
100 0.9303 0.8641 0.9199 0.9440 0.8549 0.9371 0.9452 0.8449 0.9431

0.50 0 0.9242 0.7509 0.8601 0.9408 0.7653 0.8954 0.9516 0.7852 0.9285
10 0.9308 0.8642 0.8891 0.9438 0.8898 0.9249 0.9479 0.8968 0.9367
20 0.9416 0.9366 0.9108 0.9393 0.9363 0.9236 0.9500 0.9497 0.9445
40 0.9349 0.8610 0.9119 0.9428 0.8497 0.9289 0.9453 0.8409 0.9385
50 0.9274 0.8034 0.9078 0.9389 0.8100 0.9277 0.9505 0.8087 0.9451
60 0.9289 0.8309 0.9105 0.9407 0.8461 0.9327 0.9451 0.8478 0.9406
80 0.9355 0.9351 0.9103 0.9440 0.9440 0.9333 0.9479 0.9477 0.9380
100 0.9336 0.8525 0.9109 0.9457 0.8433 0.9323 0.9482 0.8265 0.9380

0.75 0 0.9196 0.7597 0.8488 0.9367 0.7870 0.8934 0.9403 0.7989 0.9191
10 0.9340 0.8801 0.8810 0.9419 0.8975 0.9125 0.9437 0.9078 0.9325
20 0.9396 0.9361 0.8914 0.9456 0.9452 0.9212 0.9485 0.9485 0.9324
40 0.9275 0.8662 0.8894 0.9401 0.8600 0.9235 0.9462 0.8574 0.9321
50 0.9240 0.8356 0.8975 0.9409 0.8342 0.9288 0.9478 0.8354 0.9375
60 0.9258 0.8531 0.8990 0.9390 0.8622 0.9229 0.9462 0.8716 0.9386
80 0.9424 0.9422 0.9005 0.9475 0.9474 0.9279 0.9506 0.9495 0.9427
100 0.9267 0.8425 0.8948 0.9400 0.8356 0.9211 0.9463 0.8271 0.9391

0.95 0 0.9206 0.8055 0.8278 0.9401 0.8378 0.8785 0.9474 0.8421 0.9146
10 0.9273 0.8930 0.8369 0.9433 0.9186 0.8988 0.9417 0.9180 0.9209
20 0.9384 0.9379 0.8575 0.9465 0.9464 0.9020 0.9451 0.9450 0.9251
40 0.9299 0.8967 0.8635 0.9437 0.8979 0.9037 0.9474 0.8981 0.9276
50 0.9223 0.8748 0.8650 0.9393 0.8875 0.9089 0.9485 0.8938 0.9266
60 0.9296 0.8951 0.8653 0.9410 0.9049 0.9098 0.9423 0.9044 0.9224
80 0.9446 0.9446 0.8703 0.9418 0.9405 0.9041 0.9501 0.9492 0.9327
100 0.9288 0.8631 0.8773 0.9422 0.8503 0.9062 0.9440 0.8434 0.9256

0.99 0 0.9193 0.8323 0.8149 0.9395 0.8601 0.8642 0.9455 0.8697 0.9068
10 0.9325 0.9122 0.8314 0.9446 0.9278 0.8833 0.9482 0.9334 0.9161
20 0.9413 0.9407 0.8431 0.9442 0.9442 0.8893 0.9451 0.9450 0.9135
40 0.9366 0.9165 0.8451 0.9406 0.9134 0.8910 0.9477 0.9193 0.9205
50 0.9311 0.9064 0.8458 0.9403 0.9075 0.8921 0.9475 0.9107 0.9201
60 0.9359 0.9141 0.8507 0.9438 0.9212 0.8990 0.9445 0.9239 0.9214
80 0.9423 0.9421 0.8544 0.9458 0.9454 0.8960 0.9486 0.9478 0.9254
100 0.9306 0.8763 0.8612 0.9399 0.8637 0.9001 0.9443 0.8581 0.9234
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Table 3. Empirical Coverage Probabilities for 95% QL: Model 1, Box-Cox Transformation, ψ =
(5, 1, 1, 0.1), Xi ∈ [0, 100]

n = 15 n = 30 n = 60
p x0 CPQL PQL Delta CPQL PQL Delta CPQL PQl Delta

0.01 0 0.9127 0.7214 0.8925 0.9330 0.7474 0.9158 0.9470 0.7679 0.9384
10 0.9257 0.8753 0.9273 0.9434 0.8974 0.9424 0.9481 0.9067 0.9468
20 0.9405 0.9370 0.9211 0.9467 0.9457 0.9363 0.9499 0.9495 0.9450
40 0.9366 0.9193 0.9126 0.9459 0.9218 0.9343 0.9461 0.9165 0.9395
50 0.9313 0.9049 0.9072 0.9424 0.9079 0.9324 0.9468 0.9099 0.9413
60 0.9328 0.9090 0.9048 0.9457 0.9202 0.9261 0.9431 0.9149 0.9356
80 0.9413 0.9404 0.9045 0.9459 0.9459 0.9309 0.9470 0.9470 0.9393
100 0.9324 0.9061 0.9148 0.9444 0.9109 0.9413 0.9471 0.9052 0.9450

0.05 0 0.9168 0.7058 0.8931 0.9379 0.7351 0.9207 0.9435 0.7525 0.9361
10 0.9316 0.8660 0.9294 0.9411 0.8893 0.9384 0.9420 0.8945 0.9407
20 0.9395 0.9362 0.9214 0.9476 0.9464 0.9373 0.9497 0.9494 0.9440
40 0.9309 0.9010 0.9109 0.9401 0.8992 0.9321 0.9478 0.9018 0.9446
50 0.9316 0.8884 0.9124 0.9430 0.8888 0.9341 0.9464 0.8885 0.9419
60 0.9290 0.8938 0.9103 0.9417 0.9030 0.9310 0.9508 0.9107 0.9442
80 0.9417 0.9412 0.9107 0.9437 0.9437 0.9292 0.9529 0.9529 0.9455
100 0.9312 0.8907 0.9208 0.9415 0.8867 0.9361 0.9455 0.8855 0.9431

0.25 0 0.9266 0.6888 0.8911 0.9405 0.7182 0.9206 0.9444 0.7307 0.9347
10 0.9287 0.8576 0.9177 0.9404 0.8778 0.9348 0.9474 0.8941 0.9450
20 0.9422 0.9396 0.9221 0.9475 0.9472 0.9374 0.9493 0.9492 0.9451
40 0.9281 0.8591 0.9126 0.9392 0.8593 0.9341 0.9468 0.8613 0.9441
50 0.9230 0.8228 0.9121 0.9407 0.8386 0.9369 0.9475 0.8427 0.9449
60 0.9257 0.8533 0.9083 0.9438 0.8682 0.9380 0.9508 0.8801 0.9455
80 0.9392 0.9389 0.9154 0.9498 0.9497 0.9402 0.9529 0.9525 0.9459
100 0.9358 0.8758 0.9241 0.9416 0.8653 0.9395 0.9472 0.8623 0.9457

0.50 0 0.9250 0.6931 0.8849 0.9374 0.7295 0.9216 0.9444 0.7250 0.9308
10 0.9311 0.8569 0.9121 0.9409 0.8886 0.9337 0.9486 0.8982 0.9427
20 0.9376 0.9358 0.9115 0.9492 0.9491 0.9379 0.9441 0.9441 0.9404
40 0.9338 0.8534 0.9186 0.9409 0.8437 0.9356 0.9458 0.8414 0.9426
50 0.9321 0.8186 0.9207 0.9373 0.8137 0.9328 0.9447 0.8185 0.9423
60 0.9353 0.8443 0.9225 0.9386 0.8572 0.9306 0.9465 0.8707 0.9439
80 0.9349 0.9349 0.9100 0.9461 0.9459 0.9360 0.9474 0.9464 0.9431
100 0.9292 0.8583 0.9151 0.9407 0.8527 0.9347 0.9462 0.8519 0.9444

0.75 0 0.9162 0.7129 0.8756 0.9404 0.7503 0.9156 0.9437 0.7651 0.9349
10 0.9292 0.8754 0.9069 0.9426 0.9006 0.9340 0.9449 0.9090 0.9420
20 0.9390 0.9382 0.9095 0.9450 0.9450 0.9280 0.9477 0.9475 0.9402
40 0.9267 0.8591 0.9127 0.9430 0.8577 0.9330 0.9485 0.8576 0.9444
50 0.9243 0.8302 0.9065 0.9396 0.8417 0.9349 0.9415 0.8409 0.9423
60 0.9283 0.8624 0.9126 0.9442 0.8765 0.9338 0.9467 0.8849 0.9441
80 0.9415 0.9415 0.9153 0.9451 0.9447 0.9288 0.9483 0.9462 0.9415
100 0.9297 0.8630 0.9111 0.9397 0.8562 0.9357 0.9409 0.8430 0.9377

0.95 0 0.9174 0.7722 0.8664 0.9353 0.8002 0.9068 0.9440 0.8147 0.9281
10 0.9368 0.9035 0.8888 0.9394 0.9161 0.9184 0.9471 0.9285 0.9334
20 0.9478 0.9475 0.8985 0.9470 0.9466 0.9233 0.9444 0.9440 0.9336
40 0.9322 0.8988 0.9026 0.9415 0.8964 0.9260 0.9488 0.9036 0.9420
50 0.9304 0.8903 0.9083 0.9429 0.8976 0.9288 0.9495 0.8964 0.9406
60 0.9336 0.9026 0.9008 0.9422 0.9112 0.9246 0.9464 0.9172 0.9385
80 0.9380 0.9378 0.8926 0.9476 0.9465 0.9271 0.9476 0.9460 0.9381
100 0.9308 0.8715 0.9059 0.9403 0.8644 0.9276 0.9448 0.8592 0.9394

0.99 0 0.9155 0.8030 0.8524 0.9310 0.8305 0.9008 0.9391 0.8445 0.9238
10 0.9326 0.9102 0.8781 0.9466 0.9289 0.9160 0.9463 0.9345 0.9333
20 0.9431 0.9429 0.8825 0.9459 0.9457 0.9194 0.9481 0.9469 0.9328
40 0.9342 0.9124 0.8903 0.9473 0.9206 0.9260 0.9461 0.9150 0.9364
50 0.9348 0.9079 0.8922 0.9416 0.9105 0.9246 0.9442 0.9096 0.9341
60 0.9355 0.9177 0.8929 0.9428 0.9271 0.9233 0.9510 0.9332 0.9379
80 0.9404 0.9402 0.8926 0.9464 0.9450 0.9226 0.9506 0.9493 0.9408
100 0.9323 0.8854 0.9012 0.9406 0.8758 0.9249 0.9452 0.8725 0.9397
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Table 4. Empirical Coverage Probabilities for 95% QL: Model 1, Box-Cox Transformation, ψ =
(5, 1, 0.5, 0.5), Xi ∈ [0, 100]

n = 15 n = 30 n = 60
p x0 CPQL PQL Delta CPQL PQL Delta CPQL PQl Delta

0.01 0 0.9155 0.7270 0.9194 0.9357 0.7493 0.9371 0.9464 0.7749 0.9463
10 0.9304 0.8881 0.9126 0.9402 0.9049 0.9318 0.9489 0.9157 0.9429
20 0.9394 0.9382 0.9051 0.9466 0.9466 0.9273 0.9482 0.9482 0.9403
40 0.9366 0.9183 0.9013 0.9447 0.9190 0.9315 0.9486 0.9203 0.9399
50 0.9328 0.9048 0.8966 0.9431 0.9107 0.9269 0.9473 0.9110 0.9381
60 0.9335 0.9128 0.8990 0.9456 0.9235 0.9255 0.9470 0.9224 0.9376
80 0.9426 0.9425 0.9016 0.9501 0.9501 0.9298 0.9495 0.9495 0.9393
100 0.9311 0.9057 0.9124 0.9415 0.9025 0.9356 0.9446 0.8974 0.9407

0.05 0 0.9156 0.6951 0.9187 0.9328 0.7271 0.9313 0.9439 0.7345 0.9462
10 0.9310 0.8763 0.9180 0.9440 0.9006 0.9374 0.9430 0.9047 0.9425
20 0.9422 0.9401 0.9083 0.9452 0.9451 0.9313 0.9510 0.9510 0.9423
40 0.9259 0.8941 0.9013 0.9422 0.9009 0.9315 0.9464 0.8970 0.9381
50 0.9290 0.8836 0.9026 0.9395 0.8881 0.9282 0.9479 0.8882 0.9405
60 0.9307 0.8982 0.9006 0.9416 0.9048 0.9280 0.9479 0.9112 0.9408
80 0.9408 0.9407 0.9059 0.9426 0.9426 0.9234 0.9486 0.9484 0.9403
100 0.9301 0.8863 0.9114 0.9428 0.8884 0.9383 0.9445 0.8850 0.9439

0.25 0 0.9230 0.6656 0.9175 0.9319 0.6895 0.9312 0.9450 0.7213 0.9445
10 0.9303 0.8570 0.9152 0.9470 0.8916 0.9393 0.9502 0.9049 0.9447
20 0.9405 0.9389 0.9159 0.9457 0.9457 0.9324 0.9481 0.9481 0.9428
40 0.9263 0.8620 0.9104 0.9402 0.8627 0.9319 0.9450 0.8525 0.9413
50 0.9254 0.8363 0.9146 0.9394 0.8353 0.9320 0.9397 0.8386 0.9381
60 0.9270 0.8609 0.9110 0.9374 0.8723 0.9318 0.9465 0.8764 0.9415
80 0.9449 0.9446 0.9154 0.9471 0.9467 0.9359 0.9483 0.9479 0.9427
100 0.9327 0.8697 0.9185 0.9397 0.8682 0.9364 0.9445 0.8619 0.9427

0.50 0 0.9217 0.6674 0.9115 0.9405 0.6984 0.9371 0.9457 0.7184 0.9429
10 0.9312 0.8613 0.9175 0.9431 0.8855 0.9362 0.9485 0.9036 0.9445
20 0.9398 0.9383 0.9190 0.9457 0.9457 0.9352 0.9478 0.9474 0.9416
40 0.9332 0.8512 0.9177 0.9412 0.8417 0.9349 0.9445 0.8405 0.9412
50 0.9314 0.8148 0.9182 0.9411 0.8153 0.9343 0.9473 0.8241 0.9452
60 0.9331 0.8505 0.9167 0.9398 0.8666 0.9342 0.9456 0.8687 0.9421
80 0.9386 0.9386 0.9129 0.9450 0.9447 0.9356 0.9470 0.9453 0.9425
100 0.9336 0.8640 0.9179 0.9425 0.8567 0.9354 0.9479 0.8584 0.9447

0.75 0 0.9189 0.6766 0.9109 0.9384 0.7161 0.9365 0.9436 0.7353 0.9431
10 0.9368 0.8790 0.9195 0.9402 0.8934 0.9345 0.9450 0.9033 0.9403
20 0.9418 0.9412 0.9152 0.9443 0.9443 0.9340 0.9461 0.9456 0.9398
40 0.9313 0.8679 0.9199 0.9403 0.8549 0.9344 0.9457 0.8585 0.9428
50 0.9300 0.8352 0.9177 0.9358 0.8371 0.9342 0.9445 0.8397 0.9432
60 0.9287 0.8605 0.9142 0.9397 0.8756 0.9332 0.9492 0.8857 0.9455
80 0.9403 0.9403 0.9165 0.9448 0.9439 0.9323 0.9432 0.9417 0.9396
100 0.9274 0.8631 0.9114 0.9383 0.8577 0.9325 0.9452 0.8583 0.9421

0.95 0 0.9147 0.7386 0.9174 0.9335 0.7679 0.9298 0.9486 0.7902 0.9463
10 0.9342 0.8948 0.9140 0.9446 0.9149 0.9341 0.9478 0.9252 0.9441
20 0.9410 0.9402 0.9036 0.9491 0.9490 0.9319 0.9471 0.9468 0.9401
40 0.9339 0.9019 0.9185 0.9408 0.8974 0.9332 0.9435 0.8924 0.9411
50 0.9300 0.8866 0.9115 0.9414 0.8896 0.9303 0.9465 0.8939 0.9402
60 0.9306 0.9009 0.9058 0.9418 0.9122 0.9304 0.9425 0.9128 0.9367
80 0.9418 0.9418 0.9054 0.9433 0.9429 0.9239 0.9492 0.9479 0.9421
100 0.9282 0.8777 0.9082 0.9444 0.8771 0.9340 0.9413 0.8751 0.9380

0.99 0 0.9101 0.7673 0.9067 0.9379 0.8079 0.9321 0.9432 0.8157 0.9409
10 0.9306 0.9002 0.9030 0.9459 0.9249 0.9307 0.9487 0.9294 0.9384
20 0.9430 0.9427 0.9054 0.9436 0.9434 0.9291 0.9495 0.9490 0.9431
40 0.9333 0.9118 0.9061 0.9448 0.9178 0.9271 0.9453 0.9164 0.9403
50 0.9338 0.9086 0.9010 0.9410 0.9112 0.9303 0.9492 0.9174 0.9412
60 0.9354 0.9186 0.9024 0.9430 0.9264 0.9271 0.9472 0.9301 0.9407
80 0.9427 0.9427 0.8981 0.9474 0.9466 0.9274 0.9505 0.9490 0.9410
100 0.9313 0.8912 0.9077 0.9431 0.8909 0.9304 0.9461 0.8861 0.9406
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Table 5. Empirical Coverage Probabilities for 95% QL: Model 1, Dual-Power Transformation, ψ =
(5, 1, 2, 0.1), Xi ∈ [0, 100]

n = 15 n = 30 n = 60
p x0 CPQL PQL Delta CPQL PQL Delta CPQL PQl Delta

0.01 0 0.9183 0.6583 0.7826 0.9339 0.6893 0.8236 0.9474 0.6999 0.8600
10 0.9342 0.8460 0.9023 0.9415 0.8708 0.9250 0.9480 0.8807 0.9380
20 0.9414 0.9329 0.9385 0.9468 0.9422 0.9435 0.9456 0.9432 0.9483
40 0.9379 0.9202 0.9250 0.9450 0.9184 0.9397 0.9480 0.9201 0.9466
50 0.9352 0.9063 0.9164 0.9424 0.9086 0.9353 0.9443 0.9061 0.9409
60 0.9355 0.9093 0.9182 0.9401 0.9100 0.9254 0.9456 0.9169 0.9410
80 0.9404 0.9390 0.9149 0.9484 0.9476 0.9356 0.9493 0.9485 0.9436
100 0.9390 0.9216 0.9318 0.9404 0.9180 0.9366 0.9477 0.9199 0.9471

0.05 0 0.9201 0.6361 0.7832 0.9355 0.6777 0.8311 0.9470 0.6980 0.8664
10 0.9312 0.8397 0.9102 0.9416 0.8675 0.9249 0.9466 0.8827 0.9383
20 0.9366 0.9304 0.9306 0.9494 0.9478 0.9458 0.9477 0.9470 0.9447
40 0.9324 0.8984 0.9134 0.9402 0.8972 0.9340 0.9474 0.9058 0.9455
50 0.9335 0.8809 0.9140 0.9395 0.8846 0.9354 0.9454 0.8857 0.9421
60 0.9316 0.8933 0.9140 0.9451 0.9031 0.9357 0.9478 0.9075 0.9435
80 0.9434 0.9419 0.9163 0.9463 0.9457 0.9291 0.9494 0.9490 0.9429
100 0.9396 0.9118 0.9320 0.9444 0.9088 0.9454 0.9486 0.9044 0.9475

0.25 0 0.9288 0.6510 0.7899 0.9387 0.6883 0.8470 0.9461 0.7077 0.8819
10 0.9345 0.8549 0.9069 0.9427 0.8776 0.9308 0.9488 0.8927 0.9398
20 0.9394 0.9360 0.9235 0.9449 0.9447 0.9392 0.9448 0.9448 0.9388
40 0.9348 0.8664 0.9174 0.9451 0.8673 0.9379 0.9468 0.8590 0.9439
50 0.9324 0.8355 0.9186 0.9462 0.8435 0.9397 0.9451 0.8398 0.9430
60 0.9335 0.8578 0.9146 0.9432 0.8778 0.9382 0.9455 0.8801 0.9423
80 0.9402 0.9398 0.9190 0.9497 0.9497 0.9399 0.9474 0.9473 0.9432
100 0.9375 0.8792 0.9281 0.9447 0.8803 0.9396 0.9475 0.8822 0.9450

0.50 0 0.9289 0.6712 0.7868 0.9360 0.7109 0.8501 0.9443 0.7225 0.8834
10 0.9364 0.8607 0.8924 0.9461 0.8986 0.9274 0.9471 0.9033 0.9379
20 0.9364 0.9346 0.9082 0.9485 0.9485 0.9323 0.9502 0.9501 0.9442
40 0.9319 0.8496 0.9155 0.9415 0.8434 0.9335 0.9502 0.8440 0.9437
50 0.9341 0.8156 0.9146 0.9452 0.8280 0.9358 0.9455 0.8277 0.9416
60 0.9367 0.8539 0.9188 0.9458 0.8671 0.9382 0.9477 0.8800 0.9456
80 0.9417 0.9417 0.9167 0.9473 0.9465 0.9357 0.9478 0.9467 0.9433
100 0.9368 0.8715 0.9203 0.9464 0.8660 0.9404 0.9505 0.8667 0.9476

0.75 0 0.9250 0.7141 0.7945 0.9376 0.7512 0.8529 0.9425 0.7696 0.8912
10 0.9277 0.8758 0.8769 0.9423 0.9083 0.9098 0.9506 0.9232 0.9320
20 0.9405 0.9402 0.8966 0.9476 0.9473 0.9273 0.9491 0.9476 0.9383
40 0.9375 0.8620 0.9105 0.9434 0.8601 0.9298 0.9454 0.8583 0.9415
50 0.9313 0.8398 0.9128 0.9395 0.8460 0.9319 0.9481 0.8532 0.9410
60 0.9355 0.8800 0.9176 0.9443 0.8909 0.9351 0.9473 0.8964 0.9433
80 0.9437 0.9436 0.9119 0.9437 0.9419 0.9323 0.9455 0.9415 0.9381
100 0.9401 0.8683 0.9153 0.9462 0.8593 0.9346 0.9478 0.8554 0.9434

0.95 0 0.9163 0.7825 0.7875 0.9368 0.8153 0.8546 0.9449 0.8375 0.8892
10 0.9379 0.9125 0.8537 0.9438 0.9277 0.8961 0.9497 0.9384 0.9267
20 0.9372 0.9366 0.8656 0.9456 0.9443 0.9047 0.9498 0.9467 0.9327
40 0.9401 0.9029 0.8935 0.9443 0.8968 0.9187 0.9475 0.9031 0.9378
50 0.9369 0.8951 0.8966 0.9410 0.9003 0.9199 0.9481 0.9099 0.9398
60 0.9347 0.9113 0.8991 0.9440 0.9216 0.9251 0.9501 0.9314 0.9415
80 0.9423 0.9410 0.8877 0.9449 0.9416 0.9227 0.9515 0.9471 0.9413
100 0.9353 0.8667 0.8951 0.9434 0.8565 0.9257 0.9464 0.8558 0.9386

0.99 0 0.9201 0.8327 0.7848 0.9399 0.8616 0.8479 0.9440 0.8724 0.8838
10 0.9377 0.9247 0.8376 0.9424 0.9353 0.8887 0.9479 0.9421 0.9128
20 0.9413 0.9405 0.8607 0.9447 0.9425 0.8980 0.9435 0.9416 0.9232
40 0.9363 0.9140 0.8776 0.9486 0.9201 0.9114 0.9482 0.9171 0.9340
50 0.9387 0.9165 0.8897 0.9430 0.9187 0.9184 0.9481 0.9234 0.9363
60 0.9398 0.9274 0.8862 0.9455 0.9343 0.9160 0.9481 0.9381 0.9359
80 0.9400 0.9376 0.8773 0.9444 0.9408 0.9177 0.9489 0.9437 0.9353
100 0.9323 0.8725 0.8915 0.9448 0.8686 0.9193 0.9494 0.8693 0.9416
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Table 6. Empirical Coverage Probabilities for 95% QL: Model 1, Dual-Power Transformation, ψ =
(5, 1, 1, 0.5), Xi ∈ [0, 100]

n = 15 n = 30 n = 60
p x0 CPQL PQL Delta CPQL PQL Delta CPQL PQl Delta

0.01 0 0.9144 0.6741 0.8756 0.9388 0.7080 0.9166 0.9486 0.7293 0.9386
10 0.9329 0.8772 0.9235 0.9429 0.8936 0.9301 0.9430 0.9033 0.9397
20 0.9406 0.9387 0.9073 0.9465 0.9456 0.9276 0.9477 0.9477 0.9382
40 0.9348 0.9140 0.8976 0.9396 0.9138 0.9249 0.9470 0.9147 0.9363
50 0.9348 0.9022 0.9023 0.9407 0.9081 0.9247 0.9444 0.9083 0.9364
60 0.9396 0.9153 0.9001 0.9433 0.9216 0.9296 0.9464 0.9238 0.9379
80 0.9401 0.9394 0.8984 0.9452 0.9451 0.9294 0.9469 0.9468 0.9357
100 0.9353 0.9094 0.9187 0.9429 0.9117 0.9377 0.9439 0.9046 0.9403

0.05 0 0.9278 0.6570 0.8977 0.9396 0.6815 0.9257 0.9484 0.7117 0.9421
10 0.9318 0.8653 0.9232 0.9416 0.8909 0.9349 0.9493 0.9014 0.9432
20 0.9424 0.9389 0.9121 0.9483 0.9475 0.9319 0.9494 0.9494 0.9427
40 0.9349 0.9002 0.9052 0.9418 0.8932 0.9271 0.9447 0.8969 0.9378
50 0.9295 0.8830 0.9025 0.9400 0.8873 0.9274 0.9483 0.8938 0.9406
60 0.9333 0.8978 0.9048 0.9435 0.9047 0.9271 0.9490 0.9143 0.9426
80 0.9436 0.9433 0.9069 0.9493 0.9492 0.9341 0.9495 0.9495 0.9416
100 0.9352 0.8960 0.9214 0.9422 0.8932 0.9377 0.9479 0.8932 0.9435

0.25 0 0.9336 0.6488 0.9080 0.9415 0.6753 0.9316 0.9447 0.6973 0.9375
10 0.9304 0.8543 0.9207 0.9458 0.8907 0.9404 0.9490 0.8964 0.9442
20 0.9340 0.9321 0.9108 0.9446 0.9445 0.9325 0.9484 0.9482 0.9432
40 0.9328 0.8696 0.9133 0.9437 0.8596 0.9337 0.9507 0.8610 0.9459
50 0.9296 0.8321 0.9141 0.9407 0.8339 0.9299 0.9443 0.8445 0.9423
60 0.9294 0.8573 0.9101 0.9426 0.8749 0.9352 0.9460 0.8860 0.9411
80 0.9432 0.9429 0.9182 0.9421 0.9419 0.9299 0.9479 0.9475 0.9425
100 0.9331 0.8677 0.9215 0.9422 0.8666 0.9354 0.9456 0.8676 0.9424

0.50 0 0.9316 0.6559 0.9050 0.9353 0.6835 0.9255 0.9467 0.7124 0.9424
10 0.9334 0.8593 0.9205 0.9390 0.8827 0.9317 0.9444 0.8968 0.9405
20 0.9403 0.9391 0.9169 0.9461 0.9461 0.9354 0.9497 0.9493 0.9446
40 0.9389 0.8554 0.9248 0.9427 0.8431 0.9352 0.9440 0.8405 0.9418
50 0.9343 0.8180 0.9203 0.9411 0.8163 0.9365 0.9450 0.8213 0.9420
60 0.9363 0.8531 0.9226 0.9424 0.8618 0.9347 0.9436 0.8734 0.9399
80 0.9390 0.9390 0.9153 0.9427 0.9420 0.9321 0.9518 0.9499 0.9453
100 0.9372 0.8687 0.9221 0.9429 0.8622 0.9377 0.9479 0.8632 0.9446

0.75 0 0.9296 0.6911 0.9129 0.9416 0.7189 0.9359 0.9432 0.7311 0.9408
10 0.9284 0.8669 0.9096 0.9425 0.8990 0.9332 0.9444 0.9093 0.9387
20 0.9419 0.9414 0.9130 0.9452 0.9450 0.9341 0.9495 0.9487 0.9424
40 0.9312 0.8578 0.9224 0.9435 0.8630 0.9366 0.9493 0.8608 0.9453
50 0.9341 0.8394 0.9218 0.9423 0.8449 0.9389 0.9474 0.8489 0.9441
60 0.9346 0.8690 0.9257 0.9429 0.8854 0.9380 0.9475 0.8924 0.9452
80 0.9445 0.9445 0.9187 0.9450 0.9440 0.9336 0.9536 0.9525 0.9492
100 0.9312 0.8611 0.9127 0.9402 0.8600 0.9332 0.9476 0.8639 0.9446

0.95 0 0.9163 0.7475 0.9028 0.9321 0.7794 0.9301 0.9418 0.7899 0.9370
10 0.9304 0.8926 0.9043 0.9424 0.9188 0.9306 0.9468 0.9284 0.9372
20 0.9400 0.9398 0.9062 0.9452 0.9450 0.9306 0.9460 0.9443 0.9411
40 0.9374 0.9014 0.9169 0.9377 0.8932 0.9324 0.9430 0.8954 0.9368
50 0.9291 0.8848 0.9160 0.9415 0.8935 0.9333 0.9390 0.8906 0.9359
60 0.9318 0.9050 0.9130 0.9423 0.9162 0.9335 0.9477 0.9192 0.9422
80 0.9392 0.9389 0.9034 0.9465 0.9452 0.9313 0.9488 0.9459 0.9389
100 0.9346 0.8761 0.9075 0.9467 0.8775 0.9373 0.9440 0.8620 0.9393

0.99 0 0.9174 0.7823 0.8980 0.9360 0.8205 0.9271 0.9447 0.8357 0.9390
10 0.9337 0.9120 0.9028 0.9415 0.9262 0.9267 0.9474 0.9348 0.9384
20 0.9439 0.9438 0.9012 0.9469 0.9466 0.9270 0.9495 0.9479 0.9427
40 0.9364 0.9138 0.9071 0.9454 0.9171 0.9323 0.9477 0.9164 0.9404
50 0.9381 0.9111 0.9077 0.9494 0.9236 0.9355 0.9487 0.9184 0.9410
60 0.9367 0.9206 0.9041 0.9484 0.9335 0.9301 0.9508 0.9360 0.9402
80 0.9421 0.9416 0.9001 0.9446 0.9430 0.9280 0.9472 0.9449 0.9349
100 0.9333 0.8875 0.9014 0.9417 0.8780 0.9300 0.9448 0.8804 0.9421
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Table 7. Empirical Coverage Probabilities for 95% QL: Model 2, Box-Cox Transformation, β = (5, 1),
σ = 0.5, γ = 0.1, Xi ∈ [0, 25]

n = 30, λ = 0.1 n = 60, λ = 0.1 n = 60, λ = 0.05
p x0 CPQL PQL Delta CPQL PQL Delta CPQL PQl Delta

0.01 0 0.9482 0.7336 0.9542 0.9540 0.7674 0.9534 0.9388 0.7668 0.9442
5 0.9354 0.8130 0.9408 0.9416 0.8292 0.9408 0.9384 0.8332 0.9460
10 0.9314 0.8981 0.9392 0.9408 0.9130 0.9408 0.9456 0.9202 0.9492
15 0.9498 0.9309 0.9472 0.9482 0.9324 0.9466 0.9504 0.9372 0.9526
20 0.9409 0.7888 0.9085 0.9452 0.7914 0.9264 0.9446 0.7912 0.9038
25 * * * 0.9490 0.6200 0.8475 0.9444 0.6050 0.8008

0.05 0 0.9493 0.7482 0.9471 0.9472 0.7784 0.9466 0.9474 0.7886 0.9434
5 0.9304 0.8256 0.9306 0.9370 0.8340 0.9366 0.9418 0.8432 0.9416
10 0.9344 0.8956 0.9344 0.9432 0.9090 0.9420 0.9400 0.9060 0.9424
15 0.9488 0.9339 0.9430 0.9520 0.9398 0.9488 0.9460 0.9330 0.9462
20 0.9380 0.7978 0.9213 0.9444 0.8130 0.9388 0.9380 0.7996 0.9280
25 * * * 0.9376 0.6188 0.9006 0.9502 0.6292 0.8504

0.25 0 0.9476 0.7917 0.9436 0.9454 0.8204 0.9488 0.9416 0.8330 0.9374
5 0.9327 0.8585 0.9228 0.9402 0.8668 0.9364 0.9404 0.8658 0.9420
10 0.9359 0.8767 0.9270 0.9416 0.8934 0.9374 0.9434 0.8936 0.9418
15 0.9444 0.9308 0.9374 0.9494 0.9420 0.9444 0.9540 0.9476 0.9446
20 0.9264 0.8152 0.9300 0.9450 0.8430 0.9474 0.9446 0.8370 0.9350
25 0.9212 0.6797 0.9108 0.9376 0.6806 0.9338 0.9324 0.6556 0.9014

0.50 0 0.9328 0.7956 0.9189 0.9368 0.8302 0.9326 0.9378 0.8292 0.9270
5 0.9366 0.8585 0.9288 0.9428 0.8656 0.9372 0.9444 0.8678 0.9400
10 0.9428 0.8738 0.9276 0.9426 0.8834 0.9352 0.9452 0.8884 0.9364
15 0.9459 0.9295 0.9335 0.9498 0.9430 0.9410 0.9414 0.9344 0.9316
20 0.9476 0.8420 0.9353 0.9496 0.8496 0.9440 0.9430 0.8492 0.9290
25 0.9473 0.7052 0.9318 0.9424 0.7040 0.9356 0.9436 0.6978 0.9172

0.75 0 0.9275 0.7959 0.8998 0.9348 0.8246 0.9226 0.9300 0.8204 0.9162
5 0.9490 0.8537 0.9323 0.9520 0.8598 0.9392 0.9500 0.8704 0.9368
10 0.9421 0.8858 0.9254 0.9440 0.8966 0.9348 0.9498 0.8964 0.9342
15 0.9461 0.9252 0.9147 0.9458 0.9372 0.9336 0.9480 0.9374 0.9232
20 0.9614 0.8257 0.9266 0.9490 0.8394 0.9308 0.9508 0.8344 0.9172
25 0.9689 0.6918 0.9251 0.9530 0.6884 0.9286 0.9510 0.6858 0.9042

0.95 0 0.9179 0.7664 0.8875 0.9378 0.8114 0.9208 0.9386 0.8138 0.9060
5 0.9536 0.8301 0.9181 0.9496 0.8458 0.9298 0.9468 0.8458 0.9222
10 0.9468 0.9066 0.9026 0.9476 0.9180 0.9276 0.9486 0.9198 0.9172
15 0.9516 0.9253 0.8912 0.9478 0.9310 0.9172 0.9440 0.9248 0.9006
20 0.9300 0.7249 0.8759 0.9572 0.8234 0.9234 0.9524 0.8182 0.9012
25 0.9376 0.5652 0.8850 0.9604 0.6614 0.9068 0.9592 0.6427 0.8756

0.99 0 0.9168 0.7509 0.8716 0.9406 0.7894 0.9158 0.9364 0.7914 0.9064
5 0.9554 0.8077 0.9062 0.9498 0.8378 0.9240 0.9424 0.8278 0.9054
10 0.9407 0.9120 0.8905 0.9422 0.9184 0.9102 0.9430 0.9230 0.9014
15 0.9509 0.9180 0.8659 0.9508 0.9266 0.9088 0.9500 0.9246 0.8860
20 0.9289 0.7082 0.8585 0.9558 0.7952 0.9120 0.9478 0.7926 0.8800
25 0.9417 0.5409 0.8648 0.9566 0.6464 0.8998 0.9578 0.6401 0.8602

Note: An asterisk denotes simulation failure due to nonconvergence of some cases.
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Table 8. Empirical Coverage Probabilities for 95% QL: Model 2, Box-Cox Transformation, β = (5, 1),
σ = 0.2, γ = 0.1, Xi ∈ [0, 25]

n = 30, λ = 0.25 n = 60, λ = 0.25
p x0 CPQL PQL Delta CPQL PQL Delta

0.01 0 0.9418 0.7261 0.9370 0.9372 0.7594 0.9366
5 0.9383 0.8001 0.9201 0.9424 0.8254 0.9348
10 0.9256 0.8903 0.9099 0.9354 0.9030 0.9260
15 0.9435 0.9309 0.9163 0.9468 0.9344 0.9326
20 0.9461 0.8197 0.9327 0.9444 0.8142 0.9392
25 * * * 0.9496 0.6532 0.9450

0.05 0 0.9327 0.7446 0.9287 0.9462 0.7884 0.9456
5 0.9337 0.8169 0.9215 0.9446 0.8354 0.9368
10 0.9325 0.8911 0.9199 0.9422 0.9090 0.9310
15 0.9452 0.9315 0.9251 0.9502 0.9392 0.9418
20 0.9424 0.8223 0.9348 0.9400 0.8164 0.9362
25 0.9393 0.6468 0.9343 0.9426 0.6570 0.9420

0.25 0 0.9339 0.7704 0.9295 0.9404 0.8092 0.9386
5 0.9306 0.8479 0.9206 0.9396 0.8486 0.9372
10 0.9276 0.8795 0.9210 0.9436 0.8986 0.9376
15 0.9512 0.9402 0.9388 0.9476 0.9402 0.9420
20 0.9362 0.8199 0.9324 0.9436 0.8250 0.9380
25 0.9205 0.6615 0.9283 0.9374 0.6770 0.9410

0.50 0 0.9251 0.7668 0.9175 0.9376 0.8176 0.9364
5 0.9280 0.8503 0.9194 0.9416 0.8652 0.9392
10 0.9367 0.8825 0.9301 0.9412 0.8912 0.9372
15 0.9467 0.9311 0.9373 0.9476 0.9382 0.9422
20 0.9399 0.8252 0.9347 0.9406 0.8378 0.9376
25 0.9392 0.6759 0.9367 0.9418 0.6996 0.9386

0.75 0 0.9230 0.7705 0.9108 0.9380 0.8184 0.9358
5 0.9351 0.8350 0.9267 0.9468 0.8590 0.9416
10 0.9375 0.8888 0.9281 0.9432 0.9020 0.9350
15 0.9479 0.9323 0.9301 0.9438 0.9296 0.9332
20 0.9495 0.8163 0.9347 0.9506 0.8294 0.9464
25 0.9489 0.6689 0.9479 0.9468 0.6846 0.9462

0.95 0 0.9214 0.7618 0.9096 0.9260 0.7936 0.9232
5 0.9476 0.8143 0.9301 0.9454 0.8416 0.9356
10 0.9394 0.8967 0.9232 0.9450 0.9114 0.9270
15 0.9502 0.9325 0.9131 0.9558 0.9458 0.9400
20 0.9554 0.8171 0.9284 0.9548 0.8150 0.9366
25 0.9603 0.6469 0.9399 0.9518 0.6698 0.9440

0.99 0 0.9216 0.7462 0.9079 0.9376 0.7846 0.9328
5 0.9469 0.8024 0.9190 0.9486 0.8256 0.9360
10 0.9376 0.9019 0.9155 0.9496 0.9218 0.9342
15 0.9479 0.9279 0.9013 0.9472 0.9324 0.9224
20 0.9576 0.8069 0.9210 0.9562 0.8326 0.9400
25 0.9619 0.6478 0.9328 0.9494 0.6604 0.9382

Note: An asterisk denotes simulation failure due to nonconvergence of some cases.
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Figure 1: Plots of the coverage probabilities against x0: Model 1, Box-Cox transformation,

n = 60, ψ = (5, 1, 1, 0.01), and Xi ∈ [0,Xm] where Xm is marked by the vertical dashed line
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