
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and
Information Systems School of Computing and Information Systems

9-2010

A new framework for RFID privacy A new framework for RFID privacy

Robert H. DENG
Singapore Management University, robertdeng@smu.edu.sg

Yingjiu LI
Singapore Management University, yjli@smu.edu.sg

Moti YUNG
Columbia University

Yunlei ZHAO
Fudan University

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

 Part of the Information Security Commons

Citation Citation
DENG, Robert H.; LI, Yingjiu; YUNG, Moti; and ZHAO, Yunlei. A new framework for RFID privacy. (2010).
Computer Security - ESORICS 2010: 15th European Symposium on Research in Computer Security,
Athens, Greece, September 20-22: Proceedings. 6345, 1-18.
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/638

This Conference Proceeding Article is brought to you for free and open access by the School of Computing and
Information Systems at Institutional Knowledge at Singapore Management University. It has been accepted for
inclusion in Research Collection School Of Computing and Information Systems by an authorized administrator of
Institutional Knowledge at Singapore Management University. For more information, please email
cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F638&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1247?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F638&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

A New Framework for RFID Privacy

No Author Given

No Institute Given

Abstract. Formal RFID security and privacy frameworks are fundamental to the design and analysis of robust
RFID systems. In this paper, we develop a new definitional framework for RFID privacy in a rigorous and precise
manner. Our framework is based on a zero-knowledge (ZK) formulation [9, 7] and incorporates the notions of
adaptive completeness and mutual authentication. We provide meticulous justification of the new framework and
contrast it with existing ones in the literature. In particular, we prove that our framework is strictly stronger than
the ind-privacy model of [17], which answers an open question posed in [17] for developing stronger RFID privacy
models. We also clarify certain confusions and rectify several defects in the existing frameworks. Finally, based
on the protocol of [19], we propose an efficient RFID mutual authentication protocol and analyze its security and
privacy. The methodology used in our analysis can also be applied to analyze other RFID protocols within the new
framework.

1 Introduction

Radio Frequency IDentification (RFID) tags are low-cost electronic devices, from which the stored information can be
collected by an RFID reader efficiently (from tens to hundreds of tags per second) at a distance (from several centime-
ters to several meters) without the line of sight [24]. RFID technology has been widely used in numerous applications,
ranging from manufacturing, logistics, transportation, warehouse inventory control, supermarket checkout counters,
to many emerging applications [1]. As a key component of future ubiquitous computing environment, however, RFID
technology has triggered significant concerns on its security and privacy as a tag’s information can be read or traced
by malicious readers from a distance without its owner’s awareness [17, 14, 26, 16, 18, 6, 15].

It is critical to investigate formal RFID security and privacy frameworks that are fundamental to the design and
analysis of robust RFID systems [17, 4, 25, 22, 11, 20, 19, 21]. However, due to high system complexity, it turns out
to be full of subtleties in developing rigorous and precise RFID system models. By examining the existing RFID
system models, in this paper we develop a new definitional framework for RFID security and privacy in a rigorous
and precise manner. Our framework is based on a zero-knowledge formulation [9, 7], and incorporates the notions of
adaptive completeness and mutual authentication. Compared to existing frameworks, our framework is more practical
than those of [11, 19], and is stronger in terms of privacy than those of [17, 4]. Along the way, we also clarify certain
confusions and rectify several defects in the existing frameworks.

To show how this new framework can be applied, we design an efficient RFID mutual authentication protocol
based on the RFID protocol of [19] and analyze its security and privacy. The methodology used in our analysis is of
independent interest and can be applied to analyze other RFID protocols within the new framework.

2 Preliminaries

If A(·, ·, ...) is a randomized algorithm, then y ← A(x1, x2, ...; ρ) means that y is assigned with the unique output of
the algorithm A on inputs x1, x2, ... and coins ρ, while y←A(x1, x2, ...) is a shorthand for first picking ρ at random
and then setting y ← A(x1, x2, ...; ρ). Let y ← AO1,...,On(x1, x2, ...) denote that y is assigned with the output of the
algorithm A which takes x1, x2, ... as inputs and has oracle accesses to O1, ..., On. If S is a set, then s ∈R S indicates
that s is chosen uniformly at random from S. If x1, x2, ... are strings, then x1||x2|| · · · denotes the concatenation of
them. If x is a string, then |x| denotes its bit length in binary code. If S is a set, then |S| denotes its cardinality (i.e. the
number of elements of S). Let Pr[E] denote the probability that an event E occurs,N denote the set of all integers,R
denote the set of all real numbers.

A function f : N → R is said to be negligible if for every c > 0 there exits a number m ∈ N such that
f(κ) < 1

κc holds for all κ > m. Two distribution ensembles {X(κ, z)}κ∈N,z∈{0,1}∗ and {Y (κ, z)}κ∈N,z∈{0,1}∗ are

Robert H. Deng(1), Yingjiu Li(1), Moti Yung(2), and Yunlei Zhao(3),
1 Singapore Management University 2 Google Inc. and Columbia University
3 Software School, Fudan University
ylzhao@fudan.edu.cn

Computer Security - ESORICS 2010: 15th European Symposium on Research in Computer Security,
Athens, Greece, September 20-22: Proceedings. pp. 1-18.
http://dx.doi.org/10.1007/978-3-642-15497-3_1

computationally indistinguishable, if for any probabilistic polynomial-time (PPT) algorithm D, and for sufficiently
large κ and any z ∈ {0, 1}∗, it holds that |Pr[D(κ, z,X) = 1]− Pr[D(κ, z, Y) = 1]| is negligible in κ.

Next, we review the definition of pseudorandom functions [8]. On a security parameter κ, let m(·) and l(·) be two
positive polynomials in κ. We say that

{Fk : {0, 1}m(κ) −→ {0, 1}l(κ)}k∈R{0,1}κ

is a PRF ensemble if the following two conditions hold:

1. Efficient evaluation: There exists a polynomial-time algorithm that on input k and x ∈ {0, 1}m(κ) returns Fk(x).
2. Pseudorandomness: A PPT oracle machine A (t, ϵ)-breaks the PRF ensemble, if

|Pr[AFκ(κ) = 1]− Pr[AHκ(κ) = 1]| ≥ ϵ

where Fκ is a random variable uniformly distributed over the multi-set {Fk}k∈R{0,1}κ , Hκ is uniformly distributed
among all functions mapping m(κ)-bit-long strings to l(κ)-bit-long strings, and the running time of A is at most
t (here each oracle query accounts for one unit operation).
The PRF ensemble is (t, ϵ)-pseudorandom, if for all sufficiently large κ there exists no algorithm A that can
(t, ϵ)-break the PRF ensemble. The PRF ensemble is pseudorandom, if for all sufficiently large κ’s there exists
no algorithm A that can (t, ϵ)-break the PRF ensemble, for any t that is polynomial in κ and any ϵ that is non-
negligible in κ.

3 Model of RFID Systems
In this section, we first give a formal description of RFID system setting and adversary. We then define RFID systems
to be “complete” in term of adaptive completeness, and “sound” in terms of mutual authentication.

3.1 RFID System Setting

Consider an RFID system comprising of a single1 legitimate reader R and a set of ℓ tags T = {T1, ..., Tℓ}, where ℓ is
a polynomial in a security parameter κ. The reader and the tags are probabilistic polynomial time interactive Turing
machines. The RFID system (R, T) is setup by a procedure, denoted Setup(κ, ℓ). Specifically, on (κ, ℓ), this setup
procedure generates the public system parameter σR, the reader secret-key kR and initial internal state s1R (if needed)
for R. It may also setup an initial database DB1 for R to store necessary information for identifying and authenticating
tags. For each i, 1 ≤ i ≤ ℓ, this procedure generates the public parameter ξTi and the initial secret-key k1Ti

for a tag Ti
and sets the tag’s initial internal state s1Ti

(typically, s1Ti
includes the public parameters σR, ξTi). It may also associate

the tag Ti with its unique ID, as well as other necessary information such as tag key and/or tag state information, as a
record in the initial database DB1 of R. Note that ξTi or/and s1Ti

can be empty strings.
We use para = (σR, ξ1, · · · , ξℓ) to denote the public system parameters. We assume that in the RFID system, the

reader is secure; in other words, the legitimate reader is a “black-box” to an adversary.
A tag Ti, 1 ≤ i ≤ ℓ, exchanges messages with the reader R through a protocol π(R, Ti). Without loss of generality,

we assume the protocol run of π is always initiated by R and π consists of 2γ + 1 rounds2 for some γ ≥ 1. Each
protocol run of π is called a session. We assume each tag interacts with the reader sequentially, but multiple tags can
interact with the reader “concurrently” (with some anti-collision protocols [27]). To allow and distinguish concurrent
sessions (at the side of the reader R), we associate each session of protocol π with a unique session identifier sid. In
practice, sid is typically generated by the reader when it is invoked to send the first-round message. We assume each
message from a tag to the reader always bears the corresponding session-identifier.

1 It is straightforward to extend the model to include multiple legitimate readers. Notice that an adversary can use its own readers
to interact with tags.

2 For protocols of even 2γ rounds with the last-round message sent by the tag, we can define, by default, the (2γ + 1)-th round
(from the reader to the tag) to be the output of R that indicates acceptation or rejection of the protocol run. Also, without loss of
generality, we assume R and Ti exchange some system public parameters in the first two rounds.

2

Each tag Ti, as well as the reader R, uses fresh and independent random coins (generated on the fly) in each
session, in case it is an randomized algorithm. We assume that the random coins used in each session are erased once
the session is completed (whether successfully finished or aborted). Also, in each session run, the tag may update
its internal state and secret-key, and the reader may update its internal state and database. We assume that the update
process of new internal state and secret-key by an uncorrupted tag automatically overwrites (i.e., erases) its old internal
state and secret-key.

Given a security parameter κ, we assume that each tag Ti takes part in at most s (sequential) sessions in its life
time3 with R, and thus R involves at most sℓ sessions, where s is some polynomial in κ. In practice, the value s can
be a fixed constant (e.g., s = 228 [1]).

More precisely, for the j-th session (ordered by the session initiation time) where 1 ≤ j ≤ sℓ, the reader R takes
the input from the system parameters para, its secret-key kR, current internal state sjR, database DBj , random coins
ρjR, and a partial transcript T , where T is either an empty string (which indicates the starting of a new session) or a
sequence of messages (sid, c1, α1, c2, α2, · · · , cu, αu), 1 ≤ u ≤ γ (which indicates the on-going of session sid). The
reader R outputs the next message cu+1. In the case of T = (sid, c1, α1, c2, α2, · · · , cγ , αγ), besides sending back
the last-round message cγ+1, the reader R also updates its internal state to sj+1

R , its database to DBj+1, and stops
the session by additionally outputting a bit, denoted by osidR . This output bit indicates either acceptance (osidR = 1) or
rejection (osidR = 0) of the current session.

Without loss of generality, we assume that the j-th session run by the reader R corresponds to the v-th session (of
session-identifier sid) run by tag Ti, where 1 ≤ v ≤ s and 1 ≤ i ≤ ℓ. In this session, Ti takes the input from the
system parameters para, its current secret-key kvTi

, current internal state svTi
, random coins ρvTi

, and a partial transcript
T = (sid, c1, α1, · · · , αu−1, cu), where 1 ≤ u ≤ γ. The tag Ti outputs the next message (sid, αu). In the case of
T = (sid, c1, α1, · · · , cγ , αγ , cγ+1) (i.e., Ti has received the last-round message of the session sid), Ti updates its
internal state to sv+1

Ti
, its secret-key to kv+1

Ti
, and stops the session by additionally outputting a bit, denoted by osidTi

.
This output bit indicates either acceptance (osidTi

= 1) or rejection (osidTi
= 0) of the current session run by Ti.

Note that in the above description, it is assumed that the reader and tags update their internal states, database, or
keys at the end of each protocol run. In reality, this can be performed at any point of each protocol run. Also, for RFID
protocol π with unidirectional authentication from tag to reader, the tag may not have a session output. In this case,
the session output osidTi

is set to “0” always.

3.2 Adversary

After an RFID system (R, T) is setup by invoking Setup(κ, ℓ), we model a probabilistic polynomial-time concurrent
man-in-the-middle (CMIM) adversary A against (R, T), with adaptive tag corruption. We use m̂ to denote a message
sent by adversary A, and m to denote the actual message sent by reader R or an uncorrupted tag. The adversary is
given access to the following oracles:

InitReader(): A invokes R to start a session of protocol π and generate the first-round message c1 which is also
used as the session identifier sid. Supposing that the new session is the j-th session run by R, the reader R stores c1
into its internal state sjR, and returns c1 to the adversary.

SendT(Ti, m̂): Adversary A sends m̂ to Ti4. After receiving m̂, Ti works as follows: (1) If Ti currently does
not run any existing session, Ti initiates a new session with the session-identifier sid set to m̂, treats m̂ as the first-
round message of the new session, and returns the second-round message (sid, α1). (2) If Ti is currently running an
incomplete session with session-identifier sid = ĉ, and is waiting for the u-th message from R, where u ≥ 2, Ti
works as follows: If 2 ≤ u ≤ γ, it treats m̂ as the u-th message from the reader and returns the next round message
(sid, αu). If u = γ + 1 (i.e., Ti is waiting for the last-round message of the session sid), Ti returns its output osidTi

to
the adversary, and (internally) updates its internal state to sv+1

Ti
, assuming that the session sid is the v-th session run

by Ti, where 1 ≤ v ≤ s.

3 It is assumed that s is large enough so that any tag can never run up to s sessions in its life time; otherwise, an adversary may
distinguish two tags, thus violate their privacy, by running one tag more than s times while the other less than s times [17].

4 For simplicity, we abuse the notation Ti to denote any virtual identity of a tag in T (not the tag’s real identity) labeled by A when
A selects the tag from T .

3

SendR(ŝid, α̂): AdversaryA sends (ŝid, α̂) to R. After receiving (ŝid, α̂), R checks from its internal state whether
it is running a session of session identifier sid = ŝid, and works as follows: (1) If R is currently running an incomplete
session with sid = ŝid and is waiting for the u-th message from a tag, where 1 ≤ u ≤ γ, R acts as follows: If u < γ,
it treats α̂ as the u-th message from the tag, and returns the next round message cu+1 to A. If u = γ, it returns the
last-round message cγ+1 and the output osidR to A, and internally updates its internal state to sj+1

R and the database
to DBj+1, assuming that the session sid corresponds to the j-th session run by R. (2) In all other cases, R returns a
special symbol ⊥ (indicating invalid query).

Corrupt(Ti): Adversary A obtains the secret-key and internal state information (as well as the random coins)
currently held by Ti. Once a tag Ti is corrupted, all its actions are controlled and performed by the adversary A.

Let O1, O2, O3 and O4 denote the above oracles, respectively. These oracles fully capture the capability of any PPT
CMIM adversary with adaptive tag corruption.5 For presentation simplicity, we denote byO the set of the four oracles
{O1, O2, O3, O4} specified above. An adversary is a (t, n1, n2, n3, n4)-adversary, if it works in time t and makes
oracle queries to Oµ without exceeding nµ times, where 1 ≤ µ ≤ 4. We treat each oracle call as a unit operation,
and thus for a t-time adversary it holds that Σ4

µ=1nµ ≤ t. We denote by AO(R, T , para) a PPT algorithm A that, on
input of some system public parameter para, concurrently interacts with R and the tags in T via the four oracles in
O, where (R, T) is setup by Setup(κ, ℓ).

Note that in our formulation, the output bits of protocol participants (which indicate authentication success or
failure) are publicly accessible to the adversary. The reason is that, in reality, such outputs can be publicly observed
from the behaviors of protocol participants during/after the protocol run or can be learnt by some other side channels.

3.3 Adaptive Completeness and Mutual Authentication

Roughly speaking, adaptive completeness says that, after any attacks (particularly the desynchronizing attacks) made
by the adversaryA, the protocol execution between the reader R and any honest uncorrupted tag is still complete (e.g.,
being able to recover from desynchronization). In other words, after undergoing arbitrary attacks, the uncorrupted
parties of the RFID system still can recover whenever the attacks stop.

Definition 3.1 (adaptive completeness) For an RFID system (R, T) setup by Setup(κ, ℓ), denote by

(sid, csid1 , αsid
1 , · · · , αsid

γ , csidγ+1, o
sid
R , osidTi

)← π(R, Ti)

the running of a session with identifier sid of the protocol π between R and an uncorrupted tag Ti ∈ T . Suppose that
the session sid corresponds to the v-th session at the side of Ti and the j-th session at the side of R, where 1 ≤ v ≤ s
and 1 ≤ j ≤ sℓ. Consider the case that the two sessions are of the same round messages, and that all the exchanged
messages in these two (matching) sessions are all honestly generated by R and Ti respectively. Denote by E the event
that osidR = 0 holds (or osidTi

= 0 holds if the protocol π is for mutual authentication) or R identifies a different tag
Ti′ ̸= Ti in its j-th session.

A PPT CMIM adversary A (t, ϵ, n1, n2, n3, n4)-breaks the adaptive completeness of the RFID system against
the uncorrupted Ti, if the probability that event E occurs is at least ϵ and A is a (t, n1, n2, n3, n4)-adversary. The
probability is taken over the coins used by Setup(κ, ℓ), the coins of A, the coins used by R (up to finishing the
j-th session), and the coins used by Ti (up to finishing the v-th session). An RFID system (R, T) satisfies adaptive
completeness, if for all sufficiently large κ and for any uncorrupted tag Ti, there exists no adversary A that can
(t, ϵ, n1, n2, n3, n4)-break the adaptive completeness against Ti, for any (t, ϵ), where t is polynomial in κ and ϵ is
non-negligible in κ.

Next, we define mutual authentication of RFID protocols. Roughly speaking, for a protocol π of the RFID system
(R, T), authentication from reader to tag (resp., from tag to reader) means that a CMIM adversaryA cannot imperson-
ate the reader R (resp., an uncorrupted tag Ti ∈ T) to an uncorrupted tag Ti ∈ T (resp., reader R), unless A honestly
relays messages actually generated and sent by R and the uncorrupted tag Ti. Before we define mutual authentication
for RFID protocols, we first clarify the notion of matching sessions.

5 Here, for simpler definitional complexity, we assume all tags are always within the attack scope of adversary. In practice, some
tags may be in or out from the attack scope of adversary at different time [25].

4

Definition 3.2 (matching sessions) Denote by (sid, csid1 , αsid
1 , · · · , αsid

γ , csidγ+1) the transcript of exchanged round
messages (except the session outputs) of a successfully completed session sid of the protocol π run by a tag Ti,
where 1 ≤ i ≤ ℓ. This session has a matching session at the side of the reader R, if R ever successfully completed a
session of the identical session transcript.

Denote by (sid′, csid
′

1 , αsid′

1 , · · · , αsid′

γ , csid
′

γ+1) the transcript of exchanged round messages (except the session out-
puts) of a successfully completed session sid′ run by R. This session has a matching session at the side of some tag
Ti, where 1 ≤ i ≤ ℓ, if either of the following conditions holds:

– Ti ever completed, whether successfully finished or aborted, a session of the identical transcript prefix
(sid′, csid

′

1 , αsid′

1 , · · · , αsid′

γ);
– Or, Ti is now running a session with partial transcript (sid′, csid

′

1 , αsid′

1 , · · · , αsid′

γ) and is waiting for the last-
round message of the session sid′.

The matching-session definition, for a successfully completed session run by the reader R, takes into account the
following “cutting-last-message” attack: a CMIM adversary A relays the messages being exchanged by R and an
uncorrupted tag Ti for a protocol run of π until receiving the last-round message csid

′

γ+1 from R; after this, A sends an
arbitrary message ĉsid

′

γ+1(̸= csid
′

γ+1) to Ti (which typically causes Ti to abort the session), or, just drops the session at the
side of Ti without sending Ti the last-round message. Such “cutting-last-message” attacks are unpreventable.

Figure 1 shows the authentication experiment Expauth
A [κ, ℓ]. A CMIM adversary A interacts with R and tags in T

via the four oracles inO; At the end of the experiment,A outputs the transcript, trans, of a session. Denote by E1 the
event that trans corresponds to the transcript of a successfully completed session run by R in which R successfully
identifies an uncorrupted tag Ti, but this session has no matching session at the side of the uncorrupted tag Ti. Denote
by E2 the event that trans corresponds to the transcript of a successfully completed session run by some uncorrupted
tag Ti ∈ T , and this session has no matching session at the side of R.

Experiment Expauth
A [κ, ℓ]

1. run Setup(κ, ℓ) to setup the reader R and a set of tags T ;
denote by para the public system parameters;

2. trans← AO(R, T , para).

Fig. 1. Authentication Experiment

Definition 3.3 (authentication) On a security parameter κ, an adversaryA (ϵ, t, n1, n2, n3, n4)-breaks the authenti-
cation of an RFID system (R, T) against the reader R (resp., an uncorrupted tag Ti ∈ T) if the probability that event
E1 (resp., E2) occurs is at least ϵ and A is a (t, n1, n2, n3, n4)-adversary.

The RFID system (R, T) satisfies tag-to-reader authentication (resp., reader-to-tag authentication), if for all suf-
ficiently large κ there exists no adversary A that can (ϵ, t, n1, n2, n3, n4)-break the authentication of (R, T) against
the reader R (resp., any uncorrupted tag Ti ∈ T), for any (t, ϵ), where t is polynomial in κ and ϵ is non-negligible
in κ. An RFID system is of mutual authentication, if it satisfies both tag-to-reader authentication and reader-to-tag
authentication.

Adaptive completeness vs. (mutual) authentication. Adaptive completeness essentially says that, after any attacks
(particularly the desynchronizing attacks) made by the adversary A, the protocol execution between the reader R and
any honest uncorrupted tag is still complete (e.g., being able to recover from desynchronization). In other words, after
undergoing arbitrary attacks, the uncorrupted parties of the RFID system still can recover whenever the attacks stop.

We highlight some formulation differences between adaptive completeness and (mutual) authentication. On the
one hand, adaptive completeness is formulated w.r.t. the session transcript between R and an honest uncorrupted tag
Ti (that corresponds to the j-th (resp., v-th) session at the side of R (resp., Ti)), while in the authentication experiment
the session transcript (output by the adversary A) is typically between the adversary A and the reader R or an honest
tag; On the other hand, in the definition of adaptive completeness the probability is taken over the coins of R up
to finishing the j-th session and the coins of Ti up to finishing the v-th session, while in the definition of (mutual)
authentication the probability is taken over the coins of R and tags in all sessions (besides the coins used by A and
Setup(κ, ℓ)).

5

4 Zero-Knowledge Based RFID Privacy

In this section, we present a zero-knowledge based definitional framework for RFID privacy. To make our definition
formal, we need to clarify the notion of blind access to tags and the notion of clean tags.

Let AO(R, T̂ , I(Tg), aux) be a PPT algorithm A that, on input aux ∈ {0, 1}∗ (typically, aux includes the system
parameters or some historical state information of A), concurrently interacts with R and a set of tags T̂ via the four
oracles O = {O1, O2, O3, O4}. We say that A has blind access to a challenge tag Tg ̸∈ T̂ if A interacts with Tg via a
special interface I. Specifically, I is a PPT algorithm that runs Tg internally, and interacts with A externally. To send a
message ĉ to Tg , A sends to I a special O2 oracle query of the form SendT(challenge, ĉ); after receiving this special
O2 query, I invokes Tg with SendT(Tg, ĉ), and returns to A the output by Tg. From the viewpoint of A, it does not
know which tag it is interacting with. It is also required that A interacts with Tg via O2 queries only.

Next, we define the notion of clean tags. A tag Ti is called clean, if it is not corrupted (i.e., the adversary has not
made any O4 query to Ti), and is not currently running an incomplete session with the reader (i.e., the last session of
the tag has been either finished or aborted). In other words, a clean tag is an uncorrupted tag that is currently at the
status of waiting for the first-round message from the reader to start a new session.

Now, we are ready to give a formal definition of zero-knowledge based RFID privacy (zk-privacy, for short). Figure
2 illustrates the real world of the zk-privacy experiment, Expzkp

A [κ,ℓ] (Expzkp
A , for simplicity), in which a PPT CMIM

adversary A is comprised of a pair of algorithms (A1,A2) and runs in two stages. In the first stage, algorithm A1 is
concurrently interacting with R and all the tags in T via the four oracles inO, and is required to output a set C of clean
tags at the end of the first stage, where C ⊆ T consists of δ clean tags, denoted as {Ti1 , · · · , Tiδ}. The algorithm A1

also outputs a state information st, which will be transmitted to algorithm A2. Between the first stage and the second
stage, a challenge tag, denoted as Tg , is taken uniformly at random from C. Note that if δ = 0, then no challenge
tag is selected, and A is reduced to A1 in this experiment. In the second stage, on input st, A2 concurrently interacts
with the reader R and the tags in T̂ = T − C via the four oracles in O, and additionally has blind access to Tg . Note
that A cannot corrupt any tag (particularly Tg) in C, and A does not have access to tags in C − {Tg} in the second
stage. Finally, A2 outputs its view, denoted by viewA, at the end of the second stage. Specifically, viewA is defined
to include the system public parameters para, the random coins used by A, ρA, and the (ordered) list of all oracle
answers to the queries made by A in the experiment Expzkp

A . Note that viewA does not explicitly include the oracle
queries made by A and A’s output at the first stage, as all these values are implicitly determined by the system public
parameter para, A’s coins and all oracle answers to A’s queries. The output of experiment Expzkp

A is defined to be
(g, viewA). Denote by (g, viewA(κ, ℓ)) the random variable describing the output of experiment Expzkp

A [κ, ℓ].

Experiment Expzkp
A [κ, ℓ]

1. run Setup(κ, ℓ) to setup the reader R and a set of tags
T ; denote by para the public system parameter;

2. {C, st} ← AO
1 (R, T , para), where C = {Ti1 , Ti2 , · · · ,

Tiδ} ⊆ T is a set of clean tags, 0 ≤ δ ≤ ℓ;
3. g ∈R {1, · · · , δ}, set Tg = Tig and T̂ = T − C;
4. viewA ← AO

2 (R, T̂ , I(Tg), st);
5. output (g, viewA).

Fig. 2. zk-privacy experiment: real world

Figure 3 illustrates the simulated world of zk-privacy experiment, Expzkp
S [κ,ℓ] (Expzkp

S , for simplicity), in which
a PPT simulator S is comprised of a pair of algorithms (S1,S2) and runs in two stages. In the first stage, algorithm
S1 concurrently interacts with R and all the tags in T via the four oracles in O, and outputs a set, denoted C, of clean
tags, where |C| = δ and 0 ≤ δ ≤ ℓ. It also outputs a state information st, which will be transmitted to algorithm S2.
Between the two stages, a value g is taken uniformly at random from {1, · · · , |C|} (which is unknown to S). In the
second stage of S, on input st, S2 concurrently interacts with the reader R and the tags in T̂ = T − C, and outputs a

6

Experiment Expzkp
S [κ, ℓ]

1. run Setup(κ, ℓ) to setup the reader R and a set of tags
T ; denote by para the public system parameter;

2. {C, st} ← SO1 (R, T , para), where C = {Ti1 , Ti2 , · · · ,
Tiδ} ⊆ T is a set of clean tags, 0 ≤ δ ≤ ℓ;

3. g ∈R {1, · · · , δ}, and set T̂ = T − C;
4. sview ← SO2 (R, T̂ , st), where sview particularly

includes all oracle answers to queries made by S;
5. output (g, sview).

Fig. 3. zk-privacy experiment: simulated world

simulated view, denoted sview, at the end of the second stage. We require that all oracle answers to the queries made
by S (in both the first stage and the second stage) in the experiment Expzkp

S are included in sview. The output of the
experiment Expzkp

S is defined to be (g, sview). Denote by (g, sview(κ, ℓ)) the random variable describing the output
of the experiment Expzkp

S [κ,ℓ].
Informally, an RFID protocol π satisfies zk-privacy, if what can be derived by interacting with the challenge tag Tg

in the second-stage of A can actually be derived by A itself without interacting with Tg . In this sense, the interaction
between A2 and Tg leaks “zero knowledge” to A. For this reason, our RFID privacy notion is named zk-privacy.

Definition 4.1 (zk-privacy) An RFID protocol π satisfies computational (resp., statistical) zk-privacy, if for any PPT
CMIM adversary A there exists a polynomial-time simulator S such that for all sufficiently large κ and any ℓ which
is polynomials in κ (i.e., ℓ = poly(κ), where poly(·) is some positive polynomial), the following ensembles are
computationally (resp., statistically) indistinguishable:

– {g, viewA(κ, ℓ)}κ∈N,ℓ∈poly(κ)

– {g, sview(κ, ℓ)}κ∈N,ℓ∈poly(κ)

That is, for any polynomial-time (resp., any power unlimited) algorithm D, it holds that |Pr[D(κ, ℓ, g, viewA(κ, ℓ)) =
1]− Pr[D(κ, ℓ, g, sview(κ, ℓ)) = 1]| = ε, where ε is negligible in k. The probability is taken over the random coins
used by Setup(κ, ℓ), the random coins used byA, S, the reader R and all (uncorrupted) tags, the choice of g, and the
coins used by the distinguisher algorithm D.

We now extend our definition to forward and backward zk-privacy. Denote by (kfTg
, sfTg

) (resp., (k1Tg
, s1Tg

)) the

final (resp., initial) secret-key and internal state of Tg at the end of (resp., beginning) of the experiment Expzkp
A .

An RFID protocol π is of forward (resp., backward) zk-privacy, if for any PPT CMIM adversary A there exists a
polynomial-time simulator S such that for all sufficiently large κ and any ℓ = poly(κ), the following distributions
are indistinguishable: {kfTg

, sfTg
(resp., k1Tg

, s1Tg
), g, viewA(κ, ℓ)} and {kfTg

, sfTg
(resp., k1Tg

, s1Tg
), g, sview(κ, ℓ)}. For

forward/backward zk-privacy, it is required that the challenge tag Tg should remain clean at the end of experiment
Expzkp

A . Note that the adversary is allowed to corrupt the challenge tag after the end of Expzkp
A .

4.1 Discussions

Why allow A1 to output an arbitrary set C of tags, and limit A2 to blind access to a challenge tag chosen randomly
from C? The definition of zk-privacy implies that the adversaryA cannot distinguish any challenge tag Tg from any set
C of tags; otherwise, A can figure out the identity of Tg in C from its view viewA, while this tag’s identity cannot be
derived from any simulator’s view sview (a formal proof of this in case of |C| = 2 is provided in Section 5.1). If C is
removed from the definition of zk-privacy, it is possible for the adversary to distinguish any two tags under its attack,
even if each of the tags can be perfectly simulated by a simulator. A special case is that each tag has an upper-bound of
sessions in its life time so that an adversary can distinguish any two tags by setting one tag to be run out of sessions in
the learning stage [17]. In addition, we do not restrict C to two tags so as to take into account the case that any number
of tags may be correlated.

7

Why limit A1 to output of clean tags? If A1 is allowed to output “unclean tags”, A2 can trivially violate the zk-
privacy. Consider that A1 selects two tags that are waiting for different round message (e.g., one tag is clean and the
other is not), then A2 can trivially distinguish them by forwarding to Tg different round messages.

Why allow S to have access to oracles in O? Suppose that S simulates a tag from scratch and A (run by S as
a subroutine) requests to corrupt the tag in the middle of the simulation. Without oracle access, it is difficult or even
impossible for S to continue its simulation and keep it consistent with its previous simulation for the same tag.

Why limit sview to include all oracle answers to queries made by S? This is to restrict S not to access the oracles in
O more thanA does. The indistinguishability between the simulated view sview and the real view viewA of adversary
A in zk-privacy implies that for any (t, n1, n2, n3, n4)-adversary A, with overwhelming probability, S cannot query
O1, O2, O3, O4 more than n1, n2, n3, n4 times, respectively.

Why require Tg to remain clean at the end of Expzkp
A for forward/backward privacy? In general, forward/backward

privacy cannot be achieved if the adversary is allowed to corrupt the challenge tag before the end of its sessions in
Expzkp

A (i.e., the tag is not clean at the moment of corruption); otherwise, the adversary is able to derive certain protocol
messages from the tag’s internal state, secret-key, random coins, and the partial session transcript.

More on backward privacy. In general, backward privacy means that even if A learns the internal state and secret-
key of a tag for the v-th session, it still cannot distinguish the run of (v+1)-th session run by this tag from a simulated
session run. Without loss of generality, we assume that the internal state and secret-key known toA are the initial ones
(i.e., k1Tg

and s1Tg
). For most RFID protocols in practice, the internal state and the secret-key of any tag at any time t

can be determined by the tag’s initial state, initial secret-key, and the session transcript related to the tag up to time t.
In such a case, the indistinguishability between the simulated view sview of S and the real view viewA of A relies
upon the random coins used by Tg in experiment Expzkp

A . These random coins are not disclosed toA since the random
coins used by an uncorrupted tag in any session are erased once the session is completed, and the challenge tag Tg is
required to be clean at the end of Expzkp

A .

Why disallow A2 to corrupt tags in C in zk-privacy formulation? For any tag Ti ∈ C corrupted by A2, it can
distinguish whether Ti is the challenge tag Tg or not, which can nullify any polynomial-time successful simulation by
the simulator S unless S can also corrupt the corresponding tags in C. However, allowing the simulator S to corrupt
(or just get access to) tags in C weakens simulatability (e.g., in case tags have correlated states) and can even make
simulatability meaningless (e.g., in case S corrupts the challenge tag Tg), as such a simulator may be too powerful.
Recall that A2 and the simulator should, in particular, not know which tag in C is the challenging tag. For conceptual
simplicity, we disallow A2 to have access to tags in C other than blind access to the challenge tag Tg . As we shall see,
the zk-privacy is still very poweful. We remind that A2 still can corrupt any tags in T̂ = T − C.

On some special cases in zk-privacy experiments. One special case is that in the experiment Expzkp
A , A1 outputs

C = T . In this case, the simulator S2 does not have oracle access to any tag. The zk-privacy is analogue to auxiliary-
input zero-knowledge [7], where the view ofA1/S1 corresponds to the auxiliary input. Another special case is thatA1

outputs only a single tag in C, and all other tags can be corrupted by A1 and A2. In this case, the forward/backward
zk-privacy implies that both adversary A and simulator S have access to certain secret information of all tags.

Comparison with traditional formulation of zero-knowledge. The notion of zk-privacy is defined based on the
traditional zero-knowledge formulation [9, 7] with the following differences. First, in zk-privacy, the simulator S is
allowed to have access to oracles in O (where the actions of these oracles may depend upon some secret values
such as secret-keys and internal states), while traditional zk-simulator is a polynomial-time algorithm without oracle
access to players of secret values. Second, the zk-privacy is formulated against a structured adversary A which is
divided into two phases, while the traditional zk is formulated against any polynomial-time adversary. Third, in zk-
privacy, the random challenge g is unknown to A, but is presented to the distinguisher, which renders extra power to
the distinguisher; in comparison, in the traditional zero-knowledge formulation, the distinguisher and the adversary
essentially have the same power and advantage. Lastly, for forward (resp., backward) zk-privacy, the final (resp.,
initial) secret-key and internal state of the challenge tag Tg are disclosed toA, while for the traditional zero-knowledge
formulation, no secret values of the knowledge prover are assumed to be leaked to the adversary.

8

5 Comparison with Existing Frameworks

In this section, we compare our RFID security and privacy framework with typical existing frameworks. We argue
that our framework is more reasonable in practice than some frameworks, and it is stronger in terms of privacy than at
least one of the existing frameworks. We also clarify some subtleties and confusions in the existing frameworks. The
detailed comparisons, alone with subtlety clarifications, also further justify the zk-privacy formulation.

5.1 Comparison with Model in [17]

The RFID privacy model proposed in [17] describes the indistinguishability between any two tags by an adversary,
which is referred to as “ind-privacy.” It was mentioned in [17] that an important area for future research is to study
stronger RFID privacy notions. We shall prove that zk-privacy is strictly stronger than a revised version of ind-privacy
after some subtleties are clarified.

Figure 4 illustrates the ind-privacy experiment Expind
A [κ, ℓ, n1, n2, n3, n4] (Expind

A , for simplicity) in terms of the
notion defined in this paper. In Expind

A , an adversary A is comprised of a pair of algorithms (A1,A2) and runs in two
stages. Throughout the experiment, the adversary A is allowed to launch O1, O2, O3 and O4 oracle queries without
exceeding n1, n2, n3 and n4 overall calls, respectively. The experiment proceeds as follows. At first, the experiment
runs Setup(κ, ℓ) to setup an RFID system (R, T). Then, in the learning stage, algorithm A1 outputs a piece of state
information st and a pair of uncorrupted tags {Ti0 , Ti1} to which it has not made Corrupt queries. Next, the experiment
selects a random bit g and sets the challenge tag to be Tig . Finally, in the guess stage, algorithmA2 is asked to guess the
random bit g by outputting a bit b′. During the second stage,A2 can interact with R and the tags in T̂ = T −{Ti0 , Ti1},
and gets blind access to (but cannot corrupt) the challenge tag Tig via the interface I. (In [17], it is stated that A2 is
still allowed to access the challenge tag Tig but cannot corrupt Tig , without formally formulating the interface entity I
as within our framework.)

Experiment Expind
A [κ, ℓ, n1, n2, n3, n4]

1. run Setup(κ, ℓ) to setup the reader R and a
set of tags T ; denote by para the system public
parameters;

2. {Ti0 , Ti1 , st} ← AO
1 (R, T , para); //learning stage

3. set T̂ = T − {Ti0 , Ti1};
4. g ∈R {0, 1};
5. b′ ← AO

2 (R, T̂ , I(Tig), st); //guess stage
6. the experiment outputs 1 if b′ = g, 0 otherwise.

Fig. 4. Ind-Privacy Experiment

Definition 5.1 (ind-privacy) The advantage of A, denoted AdvindA (κ, ℓ, n1, n2, n3, n4), in the experiment
Expind

A [κ, ℓ, n1, n2, n3, n4] is defined to be :

|Pr[Expind
A [κ, ℓ, n1, n2, n3, n4] = 1]− 1

2
|.

An adversary A (ϵ, t, n1, n2, n3, n4)-breaks the ind-privacy of the RFID system (R, T) if the advantage of A in
the experiment Expind

A , i.e., AdvindA (k, ℓ, n1, n2, n3, n4), is at least ϵ and the running time of A is at most t.
An RFID system (R, T) is said to be of ind-privacy, if there exists no adversary who can (ϵ, t, n1, n2, n3, n4)-break

the RFID system for some non-negligible ϵ and some polynomials t, n1, n2, n3, n4 (all of them are in κ).

On some subtleties in ind-privacy. In the original definition of ind-privacy, it is not explicitly specified that the two
tags output byA1 must be clean tags. In the definition of forward ind-privacy [17], it is not precisely specified the time
point of tag corruption and the actions of adversary after tag corruption.

9

zk-privacy vs. ind-privacy for single-tag systems. We note that any RFID protocol, even if it just reveals the tag’s
secret-key, trivially satisfies ind-privacy for special RFID systems consisting only one tag (e.g., for a unique item
of high value). The reason is that in this special scenario, the view of A is independent of the random bit g (as the
challenge tag Tig is always the unique tag regardless of the choice of g), and thus Pr[b′ = g] is just 1

2 for any adversary.
In comparison, in this special scenario the zk-privacy is essentially degenerated to the traditional zero-knowledge
definition, which still provides very reasonable privacy guarantee.

Theorem 1 zk-privacy is stronger than ind-privacy.

Proof. First, we show that zk-privacy implies ind-privacy, which holds unconditionally. In other words, if an RFID
system (R, T) does not satisfy ind-privacy, then it also does not satisfy zk-privacy. To prove this, we show that if
there exists a PPT adversary A = (A1,A2) which can (ϵ, t, n1, n2, n3, n4)-break the ind-privacy of the RFID system
(R, T), then we can construct another PPT adversary A′ such that no PPT simulator exists for A′.

In the experiment Expzkp
A′ , let A′ run A and do whatever A does. In particular, A′ and A are of the same param-

eters (t, n1, n2, n3, n4). Since A run by A′ always outputs a pair of clean tags at the end of its first stage, Expzkp
A′

outputs (g, viewA′), where g ∈ {0, 1} is a random bit, and viewA′ implicitly determines the output of A (i.e., the
guessed bit b′). That is, the guessed bit b′ can be computed out from viewA′ in polynomial-time. As we assume A
(ϵ, t, n1, n2, n3, n4)-breaks ind-privacy, it holds that Pr[b′ = g] is at least 1

2 + ϵ for the output of Expzkp
A′ . However,

the simulated view sview in the output of the experiment Expzkp
S is independent of g (recall that the random value

g is unknown to the simulator S). Therefore, for the guessed bit b′ implied by sview (which can be computed out
from sview in polynomial-time), it always holds that Pr[b′ = g] = 1

2 . This shows that for the above A′ and for any
polynomial-time simulator, there exists a polynomial-time distinguisher that can distinguish the output of Expzkp

A and
that of Expzkp

S with non-negligible probability at least ϵ.
Next, we present several protocol examples (based on one-time secure signatures or CPA-secure public-key en-

cryption) that satisfy ind-privacy but dissatisfy zk-privacy.
Consider a special RFID system that consists of only one tag T1 (and a reader R). The secret-key of T1 is the

signature of T1’s ID, denoted sID, signed by R under the public-key of R. Consider an RFID protocol π in which
T1 just reveals its secret-key sID to R. As discussed above, any RFID protocol trivially satisfies ind-privacy for
RFID systems consisting of only one tag, and thus the protocol π is of ind-privacy. But, π clearly does not satisfy
zk-privacy. Specifically, considering an adversary A = (A1,A2) where A1 simply outputs C = {T1} and then A2

invokes Tg = T1 to get the signature sID, no PPT simulator can output sID by the security of the underlying signature
scheme. Note that one-time secure signature is sufficient to show this protocol example not satisfying zk-privacy, and
one-time secure signatures can be based on any one-way function [23].

Given any ind-private two-round RFID protocol π = (c, a) for an RFID system (R, T), where T consists of
polynomially many tags, c is the first-round message from the reader and a is the response from a tag, we transform
π into a new protocol π′ as follows: In the protocol π′, besides their respective secret-keys all tags in T also share a
unique pair of public-key PK and secret-key SK for a CPA-secure public-key encryption scheme. For a protocol run
of π′ between the reader R and a tag Ti, R sends c′ = EPK(c) in the first-round, and Ti decrypts c′ to get c and then
sends back a′ = c||a. The protocol π′ could appear in the scenario of tag group authentication, where the ability of
sending back c can demonstrate the membership of the group identified by the public-key PK. Furthermore, in the
scenario of anonymizer-enabled RFID systems [10], the decryption operation can be performed by the anonymizer.
As in the new protocol π′ all tags share the same public-key PK, the ind-privacy of π′ is inherited from that of π.
Specifically, the session transcripts of π′ can be computed in polynomial-time from the session transcripts of π and the
public-key PK. However, π′ does not satisfy zk-privacy. Specifically, consider an adversaryA = (A1,A2), whereA1

simply outputs the set of clean tags C = T (in particular,A never corrupts tags) and thenA2 blindly interacts with the
challenge tag Tg for only one session. By the CPA-security of the underlying public-key encryption scheme, no PPT
simulator can handle the SendT(challenge, ĉ) queries made by A2, as such ability implies the ability of ciphertext
decryption. Note that CPA security is sufficient here, as the adversary A involves only one session with the challenge
tag Tg . �

We remark that though the above two protocol examples may not be very realistic, they do separate the zk-privacy
notion and the ind-privacy notion. We leave it an interesting question to find more protocol examples that are ind-
private but not zk-private

10

5.2 Comparison with Model in [25, 22]

In the framework of [25, 22], the adversary is categorized into the following classes: (1) Weak adversary, which cannot
corrupt any tags; (2) Forward adversary, which can corrupt tags under the limitation that once the adversary corrupts a
tag, it can do nothing subsequently except for corrupting more tags; (3) Destructive adversary, which can do anything
after a tag corruption, but under the limitation that the adversary cannot reuse a tag after corrupting it. Specifically,
once a tag is corrupted it will be virtually destroyed. In particular, a destructive adversary cannot observe or interact
with a corrupted tag nor can the adversary impersonate a corrupted tag to the reader; (4) Strong adversary, which has
no limitations on corrupting tags, and can do anything at its wish. For each category of adversary defined above, it is
also defined a narrow variant, where a narrow adversary cannot access the outputs of the players for any protocol run.

Suppose that C is one of the adversary categories. Informally, an RFID protocol is called C-private if for any
adversary A ∈ C, there exists a simulator S such that A cannot distinguish its interactions with the actual RFID
system or with the simulator (the reader is referred to [25, 22] for formal definitions).

The major differences between our framework and that of [25, 22] are summarized below.
In [25, 22], the simulator is not required to handle tag corruption queries by the adversary. In other words, the

simulator works only for those adversaries which do not make tag corruption queries. It is not clear how such a
simulator acts upon tag corruption queries made by an adversary. Suppose that S simulates a tag from scratch and A
(typically run by S as a subroutine) requests to corrupt the tag in the middle of simulation (possibly in the middle of a
session run). Without access to tag corruption queries, it is difficult or even impossible for S to continue its simulation
for the tag and keep it consistent with its previous simulation for the same tag.

The adversary considered in our framework essentially corresponds to strong adversary in [25, 22], with the dif-
ference in that the adversary cannot corrupt any tag in set C before the end of zk-privacy experiment Expzkp

A . In
comparison, the model in [25, 22] poses no restriction on tag corruption (though it is not clear how the simulator
handles such adversaries), which implies that an adversary can corrupt any tag at any time (possibly in the middle of
session). However, in such a case, forward/backward privacy may not be achievable if the challenge tag is corrupted in
the middle of a session; this is the reason why we require that the challenge tag Tg must remain clean at the moment
of corruption. Indeed, there are some confusions in [25, 22].

The matching session concept defined in [25, 22] is restricted to identical session transcript, without clarifying
some subtleties such as the “last-round-message attacks” for defining authentication from tag to reader.

The notion of adaptive completeness is not defined in [25, 22]. The completeness notion in [25, 22] is defined for
honest protocol execution only, with no adversarial desynchronizing attacks being taken into account.

The privacy notions proposed in [25, 22] and that proposed in [17] are incomparable in general (though for certain
concrete adversarial strategies, the privacy notions of [25, 22] may imply the ind-privacy), while the privacy notion
proposed in this work is strictly stronger than that of [17].

5.3 Comparison with Models in [11, 19]

The RFID privacy notion given in [11, 19] is formulated based on the unpredictability of protocol output. We refer
to this privacy notion as “unp-privacy.” The unp-privacy is formulated with respect to RFID protocols with a 3-round
canonical form, denoted as π = (c, r, f), where c, r, f stand for the first, second, and third round message, respectively.
Note that our framework, as well as models in [17, 25, 22]), are not confined to this protocol structure.

The unp-privacy notion formulated in [11, 19] essentially says that the second-round message sent from a tag must
be pseudorandom (i.e., indistinguishable from a truly random string). We observe that this requirement has certain
limitations. First, given any unp-private RFID protocol π = (c, r, f) between a reader and a tag, we can modify the
protocol to π′ = (c, r||1, f), where “||” denotes the string concatenation operation. That is, the modified protocol π′

is identical to π except that in the second-round the tag additionally concatenates a bit ‘1’ to r. This modified RFID-
protocol π′ is not of unp-privacy, as the second-round message r||1 is clearly not pseudorandom. However, intuitively,
the tags’ privacy should be preserved since the same bit ‘1’ is appended to all second-round messages for all tags.
Notice that when RFID-protocols are implemented in practice, the messages being exchanged between reader and tags
normally bear some non-random information such as version number of RFID standard. Another limitation is that the
unp-privacy may exclude the use of public-key encryption in RFID-protocols, as public-key generated ciphertexts are
typically not pseudorandom.

11

Another point is that the adversaries considered in the definition of unp-privacy [11, 19] is not allowed to access
protocol outputs. Therefore, such adversaries are narrow ones as defined in [25, 22]. Informally, the unp-privacy exper-
iment works as follows. Given a first-round message c (which could be generated by the adversaryA), the experiment
selects a value r which could be either the actual second-round message generated by an uncorrupted tag in response
to c or just a random value in a certain domain; then the experiment presents the value r to A. The unp-privacy means
that A cannot determine in which case the value r is. Note that if A has access to protocol outputs, it can simply dis-
tinguish between the two cases of r. What A needs to do is to forward r to the reader R as the second round message.
If r is generated by an uncorrupted tag (and the value c was generated by the reader in a matching session), R will
always output “accept.” On the other hand, if r is just a random value, with overwhelming probability R will reject the
message due to authentication soundness from tag to reader.

In summary, we argue that zk-privacy is more reasonable than unp-privacy in practice. It allows for more general
protocol structure, more powerful adversary, and non-pseudorandom protocol messages.

5.4 Comparison with Model in [3]

In the model of [3], a tag can have multiple different pseudonyms in different sessions. Then, roughly speaking, an
RFID scheme is private, if for any pair (ti, tj), no probabilistic polynomial-time algorithm can tell whether ti, tj
correspond to the same tag or not, where ti, tj are two pseudonyms used in two sessions in chronological order. That
is, any polynomial-time adversary A is not able to make the link between several authentications of a same tag [3].
The scheme is called past (resp., future) private, if A cannot link (ti, tj) even if tj (resp., ti) is corrupted. The reader
is referred to [3] for details.

We note that, in the framework of [3], upon corruption of a tag, only the secret-key of this tag is revealed to
the adversary. In comparison, within our framework, upon corruption of a tag both its secret-key and internal state
and random coins are revealed to the adversary. We note the security analysis of the RFID protocols proposed in
[3], based upon public-key cryptosystems, critically relies upon this assumption on tag corruption (i.e., no random
coins are revealed upon tag corruption). Specifically, in the analysis of [3], the “dummy” adversary (corresponding
to the simulator within our framework) simulates messages sent by the challenge tag (which are just ciphertexts of a
public-key encryption scheme). But, suppose the challenge tag is corrupted just after the dummy adversary sent the
simulated ciphertexts, and the adversary learns both the secret-key and random coins of the challenge tag, then the
dummy adversary (i.e., the simulator) cannot give a consistent simulation further (i.e., unable to make the simulated
ciphertext to be consistent with the private-key and random coins of the corrupted tag).

In the framework of [3], no internal state update mechanism is given. This implies that symmetric encryptions
or MACs alone are almost useless for achieving past or future privacy (without appropriate internal state update
mechanisms). Indeed, all the authentication protocols proposed in [3] are based upon public-key cryptosystems.

In the framework of [3], only authentication from tag to reader is formulated, while mutual (both tag-to-reader and
reader-to-tag) authentication is formulated within our framework.

6 An RFID Protocol within Our Framework

Let Fk: {0, 1}2κ → {0, 1}2κ be a pre-specified keyed PRF and F 0
k (resp., F 1

k) the κ-bit prefix (resp., suffix) of the
output of Fk, where κ is the system security parameter. In practice, the PRF can be implemented based on some
lightweight stream or block ciphers [13, 2, 12]. When a tag Ti with identity ID registers to the reader R, it is assigned
a secret-key k ∈R {0, 1}κ, a counter ctr of length lctr with initial value 1. R pre-computes an initial index I =
F 0
k (1||pad1) for the tag, where pad1 ∈ {0, 1}2κ−lctr is a fixed padding, and stores the tuple (I, k, ctr, ID) into its

database.
At the start of a new protocol session, R sends a challenge string c ∈R {0, 1}κ to Ti, which also serves as the

session identifier. To simplify the presentation, the session identifier and the corresponding verification of the identifier
by protocol players are implicitly implied and will not be explicitly mentioned in the following.

Upon receiving c from R, Ti computes I = F 0
k (ctr||pad1), (r0, r1) = Fk(c||I) (where r0 = F 0

k (c||I) and
r1 = F 0

k (c||I)), and rT = r0 ⊕ (ctr||pad2). Ti sends (I, rT) to R and then updates its counter ctr = ctr + 1, where
pad2 ∈ {0, 1}κ−lctr is another predetermined padding string.

After receiving (I, rT), R searches its database to find a tuple indexed by I:

12

– If R finds such a tuple, say (I, k, ctr′, ID), it computes (r0, r1) = Fk(c||I), and checks whether ctr′||pad2 =
r0 ⊕ rT : If yes, R accepts Ti by outputting “1”, sends rR = r1 to the tag, updates the tuple (I, k, ctr′, ID) with
ctr′ = ctr′ + 1 and I = F 0

k (ctr
′||pad1); If not, R searches for the next tuple including I (to avoid potential

collision of index I , i.e., two different tuples are of the same index I).
– If no tuple is found to have an index I (which indicates counter desynchronization between R and Ti), for each

tuple (I ′, k, ctr′, ID) in its database, R computes (r0, r1) = Fk(c||I) and ctr||pad2 = r0 ⊕ rT , and checks
whether I = F 0

k (ctr||pad1): If yes (which indicates ctr is the correct counter value at Ti), R accepts Ti, outputs
“1”, sends back rR = r1 as the third message, and updates the tuple (I ′, k, ctr′, ID) with ctr′ = ctr + 1 and
I ′ = F 0

k (ctr
′||pad1). In the case that R fails with all the tuples in its database, it rejects the tag and outputs “0”.

Upon receiving rR, Ti checks whether rR = r1: If yes, Ti accepts the reader and outputs “1”; otherwise it rejects
the reader and outputs “0”. This RFID protocol is also depicted in Figure 5.

Reader R
{(I, k, ctr, ID)}

Tag Ti
(k, ctr)

c
−−−−−−−−−−−−−−−→

I||rT
←−−−−−−−−−−−−−−−

rR
−−−−−−−−−−−−−−−→

I = F 0
k (ctr||pad1)

(r0, r1) = Fk(c||I)
rT = r0 ⊕ (ctr||pad2)
ctr = ctr + 1

If rR = r1, accept the reader
Else reject

If find a tuple (I, k, ctr′, ID), then
compute (r0, r1) = Fk(c||I)
If ctr′||pad2 = r0 ⊕ rT , then

accept the tag, send back rR = r1
update ctr′ = ctr′ + 1 and I = F 0

k (ctr
′||pad1)

Else If ∃(I ′, k, ctr′, ID) s.t. ctr||pad2 = F 0
k (c||I)⊕ rT and F 0

k (ctr||pad1) = I ,
accept the tag, send back rR = F 1

k (c||I)
update ctr′ = ctr + 1 and I ′ = F 0

k (ctr
′||pad1)

Else reject

Fig. 5. RFID Protocol with Mutual Authentication and ZK-Privacy

In comparison with the protocol proposed in [19], the above protocol adds mutual authentication (and is logically
more precise), and we can formally prove that it is of adaptive completeness, mutual authentication, and zk-privacy
within the new framework. Analysis of completeness and authentication was not conducted in [19], and as we shall
see, the zk-privacy analysis of the new protocol is much more complicated than the unp-privacy analysis in [19]. We
suggest that the methodology used in our analysis is of independent interest, which can be applied to analyze other
RFID protocols (particularly those based on PRFs) within our new framework.

Theorem 2 Assuming Fk is a pseudorandom function, the protocol specified above satisfies adaptive completeness,
mutual authentication and zk-privacy.

Below we provide a high level analysis of the zk-privacy property. The complete detailed proof of the theorem is given
in Appendix A.

The core of the simulation by the simulator S = (S1,S2), who runs the underlying adversary A = (A1,A2) as a
subroutine, lies in the actions of S2 in dealing with the following queries made byA2 to the reader R and the challenge
tag Tg . S1 just mimics A1 by using the PRF Fk.
1. On oracle query InitReader(), S2 makes the same oracle query to R, and gets back a random string c ∈ {0, 1}κ

from R. Then, S2 relays back c to A2.

13

2. On oracle query SendT(challenge, ĉ), where the challenge tag Tg (simulated by S2) currently does not run any
session, S2 opens a session for Tg with ĉ as the first-round message (that also serves as the session-identifier of
this new session); Then, S2 randomly selects I, rT ∈R {0, 1}κ, and sends back I||rT to A2 as the second-round
message.

3. On oracle query SendR(ĉ, Î||r̂T), S2 works as follows:
Case-3.1. If Î||r̂T was sent by Tg (simulated by S2) in a session of session-identifier ĉ, S2 simulates the responses

of the reader R as follows:
Case-3.1.1 If R is running an incomplete session of session-identifier ĉ (i.e., ĉ was sent by R upon an

InitReader query and R is waiting for the second-round message), S2 just returns a random string
rR ∈R {0, 1}κ to A2, and outputs “1” indicating “accept”.

Case-3.1.2. Otherwise, S2 simply returns a special symbol “⊥” indicating invalid query.
Case-3.2. In all other cases, S2 makes the same oracle query SendR(ĉ, Î||r̂T) to the reader R, and relays back

the answer from R to A2.
4. On oracle query SendT(challenge, r̂R), where the challenge tag Tg (simulated by S2) currently runs a session of

partial session-transcript (ĉ, I||rT) and is waiting for the third-round message, S2 works as follows:

Case-4.1. If there exists a matching session of the same session transcript (ĉ, I||rT , r̂R) at the side of R (where
r̂R may be simulated by S2 as in the above Case-3.1), S2 outputs “1” indicating “accept”.

Case-4.2. Otherwise, S2 simply outputs “0” indicating “reject”.
5. Output of S2: Finally, whenever A2 stops, S2 also stops and outputs the simulated view sview as specified in the

zk-privacy definition, which particularly consists of all oracle answers (including ones provided by the real oracles
in O and ones simulated by S2) to queries made by A.

It is easy to see that S works in polynomial-time. We investigate the differences between the simulated view sview
output by S and the real view viewA of A:

Difference-1: In Case-4.1 (resp., Case-4.2) S2 always outputs “accept” (resp., “reject”), while the actual challenge
tag Tg may output “reject” in Case-4.1 (resp., “accept” in Case-4.2) in the experiment Expzkp

A .
Difference-2: On oracle query SendT(challenge, ĉ) or in Case-3.1 upon the oracle query SendR(ĉ, Î||r̂T), S2 al-

ways returns truly random strings, while the actual players (i.e., Tg and R) provide pseudorandom strings in the
experiment Expzkp

A by invoking the PRF Fk where k is the secret-key of Tg .
Intuitively, Difference-1 can occur only with negligible probability, by the properties of adaptive completeness

and mutual authentication. The subsequent analysis argues that the properties of adaptive completeness and mutual
authentication indeed hold under the simulation of S in Expzkp

S .
Intuitively, Difference-2 should not constitute distinguishable gap between sview and viewA, due to the pseudo-

randomness of Fk. However, the technical difficulty and subtlety here is that: the difference between pseudorandom-
ness and real randomness only occurs in the second stages of both Expzkp

A and Expzkp
S (i.e.,A2 and S2), while both S1

and A1 are w.r.t. the PRF Fk. In other words, to distinguish the PRF Fk from a truly random one in the second stage,
the distinguisher has already accessed Fk for polynomially many times in the first stage. In general, the definition of
PRF says nothing on the pseudorandomness in the second stage. To overcome this technical difficulty, we build a list
of hybrid experiments.

In the first hybrid experiment, a polynomial-time algorithm Ŝ runs A as a subroutine and has oracle access to
the PRF Fk or a truly random function H . Ŝ first randomly guesses the challenge tag Tg (by taking g uniformly at
random from {1, · · · , ℓ}), and then setups the RFID system (R, T) except for the challenge-tag Tg. Note that Ŝ can
perfectly handle all oracle queries made by A to the reader R and all tags in T − {Tg}. For oracle queries directed
to Tg, Ŝ mimics Tg with the aid of its oracle, i.e, the PRF Fk or a truly random function H . Denote by the view of
A under the run of Ŝ with oracle access to Fk (resp., H) as viewŜFk

A (resp., viewŜH

A). By the pseudorandomness
of Fk, we have that viewŜFk

A and viewŜH

A are indistinguishable. Next, suppose Ŝ successfully guesses the challenge
tag Tg (that occurs with probability 1

ℓ), viewŜFk

A is identical to viewA. In particular, in this case, the properties of
adaptive completeness and mutual authentication hold in viewŜFk

A and thus also in viewŜH

A (as viewŜFk

A and viewŜH

A
are indistinguishable). Thus, to show the indistinguishability between viewA and sview, it is reduced to show the
indistinguishability between viewŜH

A (in case Ŝ successfully guesses the challenge tag Tg) and sview.

14

In the second hybrid experiment, we consider another polynomial-time algorithm S′ that mimics Ŝ, with oracle
access to Fk or H , but with the following modifications: in the second stage of this hybrid experiment, S′ essentially
mimics the original zk-privacy simulator S. Denote by the view ofA under the run of S′ with oracle access to Fk (resp.,
H) as viewS′Fk

A (resp., viewS′H

A). By the pseudorandomness of Fk, viewS′Fk

A and viewS′H

A are indistinguishable. We
can show that viewS′H

A and viewŜH

A are also indistinguishable, and that viewS′Fk

A and sview are also indistinguishable
(conditioned on S′ successfully guesses the challenge tag Tg), which particularly implies that the properties of adaptive
completeness and mutual authentication hold also in sview. This establishes the indistinguishability between sview
and viewA.

7 Future Work

One of our future research directions is to analyze existing RFID protocols and design new protocols within the new
framework presented in this paper.

Since our framework is formulated w.r.t. the basic scenario of an RFID system consisting of a single uncompro-
mised reader and multiple tags, where tags identify themselves to the reader individually and independently. A future
research direction is to extend our RFID privacy framework to more sophisticated and practical scenarios which allow
compromising of readers, tag group authentication, anonymizer-enabled RFID systems, and tag ownership transfer.

Acknowledgment: We are indebted to Andrew C. Yao for many contributions to this work, though he finally declined
the coauthorship. Yunlei Zhao thanks Shaoying Cai for helpful discussions on RFID security and privacy.

References

1. C. Berbain, O. Billet, J. Etrog and H. Gilbert. An Efficient Forward Private RFID Protocol. In Conference on Computer and
Communications Security – CCS’09.

2. C. de Canniere and B. Preneel. Trivium. In M. Robshaw and O. Billet, editors, New Stream Cipher Designs: The eSTREAM
Finalists, volume 4986 of LNCS, pages 244-266. Springer-Verlag, 2008.

3. S. Canard1, I. Coisel, J. Etrog, and M. Girault. Privacy-Preserving RFID Systems: Models and Constructions, Cryptology
ePrint Archive, Report No. 2010/405.

4. I. Damgård and M. Ostergaard. RFID Security: Tradeoffs between Security and Efficiency. In Topics in Cryptology–CT-RSA
2008, volume 4964 of Lecture Notes in Computer Science, pages 318–332, 2008.

5. R. H. Deng, Y. Li, A. C. Yao, M. Yung and Y. Zhao. A New Framework for RFID Privacy. Cryptology ePrint Archive, Report
No. 2010/059.

6. S. Garfinkel, A. Juels, and R. Pappu. RFID Privacy: An Overview of Problems and Proposed Solutions. IEEE Security and
Privacy, 3(3):34–43, 2005.

7. O. Goldreich. The Foundations of Cryptography, volume I, Basic Tools. Cambridge University Press, 2001.
8. O. Goldreich, S. Goldwasser, and S. Micali. How to construct random functions. J. ACM, 33(4):792–807, 1986.
9. S. Goldwasser, S. Micali and C. Rackoff. The Knowledge Complexity of Interactive Proof-Systems In ACM Symposium on

Theory of Computing, pages 291-304, 1985.
10. P. Golle, M. Jakobsson, A. Juels, and P. Syverson. Universal reencryption for mixnets. In Topics in Cryptology–CT-RSA 2004,

LNCS 2964, pages 163-178.
11. J. Ha, S. Moon, J. Zhou, and J. Ha. A new formal proof model for RFID location privacy. In European Symposium on Research

in Computer Security (ESORICS) 2008, volume 5283 of Lecture Notes in Computer Science.
12. M. Hell, T. Johansson, and W. Meier. The Grain Family of Stream Ciphers. In M. Robshaw and O. Billet, editors, New Stream

Cipher Designs: The eSTREAM Finalists, volume 4986 of LNCS, pages 179-190. Springer-Verlag, 2008.
13. International Standard ISO/IEC 9798 Information technology−Security techniques−Entity authentication−Part 5: Mecha-

nisms using Zero-Knowledge Techniques.
14. Nicholas J. Hopper and Manuel Blum. Secure human identification protocols. In ASIACRYPT, pages 52–66, 2001.
15. A. Juels. RFID Security and Privacy: A Research Survey. IEEE Journal on Selected Areas in Communications, 24(2):381–394,

2006.
16. A. Juels, R. L. Rivest, and M. Szydlo. The blocker tag: Selective blocking of RFID tags for consumer privacy. In 8th ACM

Conference on Computer and Communications Security – ACM CCS, pages 103–111. ACM Press, 2003.
17. A. Juels and S. Weis. Defining Strong Privacy for RFID. In International Conference on Pervasive Computing and Communi-

cations – PerCom 2007.

15

18. Ari Juels and Stephen A. Weis. Authenticating pervasive devices with human protocols. In CRYPTO, pages 293–308, 2005.
19. C. Ma, Y. Li, R. Deng, and T. Li. RFID Privacy: Relation Between Two Notions, Minimal Condition, and Efficient Construc-

tion. In Conference on Computer and Communications Security – ACM CCS, 2009.
20. C. Yu Ng, W. Susilo, Y. Mu, and R. Safavi-Naini. RFID privacy models revisited. In European Symposium on Research in

Computer Security (ESORICS) 2008, volume 5283 of Lecture Notes in Computer Science.
21. C. Yu Ng, W. Susilo, Y. Mu, and R. Safavi-Naini. New Privacy Results on Synchronized RFID Authentication Protocols against

Tag Tracing. In European Symposium on Research in Computer Security (ESORICS) 2009, pages 321-336, volume 5786 of
Lecture Notes in Computer Science.

22. R.L.Paise and S. Vaudenay. Muthal Authentication in RFID: Security and Privacy. In AsiaCCS 2008, pages 292-299.
23. J. Rompel. One-Way Functions are Necessary and Sufficient for Digital Signatures. In 22nd ACM Symposium on Theory of

Computing (STOC’90), pages 12C19, 1990.
24. A. Shamir. SQUASH: A New MAC with Provable Security Properties for Highly Constrained Devices Such as RFID Tags.

FSE 2008, LNCS 5086, pages 144-157, 2008.
25. S. Vaudenay. On Privacy Models for RFID. In Advances in Cryptology - Asiacrypt 2007.
26. S. Weis, S. Sarma, R. Rivest, and D. Engels. Security and Privacy Aspects of Low-Cost Radio Frequency Identification

Systems. In International Conference on Security in Pervasive Computing – SPC 2003.
27. 860 MHz - 930 MHz Class 1 Radio Frequency Identification Tag Radio Frequency and Logical Communication Interface

Specification Candidate Recommendation Version 1.0.1, Auto-ID Center, 2002.

A Proof Details of Theorem 1

In this section, we present the proof details of Theorem 2.

A.1 Adaptive Completeness

For any uncorrupted tag Ti, denote by (c, I||rT , rR, ocR, ocTi
) the run of a session between R and an uncorrupted tag

Ti. Suppose this session corresponds to the v-th session run by Ti and the j-th session run by R, where 1 ≤ v ≤ s
and 1 ≤ j ≤ sℓ. That is, after any potential (particularly, desynchronizing) attacks by a PPT CMIM adversary A,
finally R completes its j-th session and Ti completes its v-th session such that these two sessions are of identical
round messages and identical session-identifier. Suppose Ti is of identity ID and secret-key k, and denote by ctri the
counter value that was used by Ti to generate I , i.e., I = F 0

k (ctri||pad1), we consider the probability that the event E
(defined in Definition 3.1) occurs.

Firstly, we observe that as R sends the third-round message, it implies ocR = 1. Secondly, we consider the proba-
bility that R identified a different tag Ti′ (̸= Ti) of identity ID′(̸= ID) in its j-th session. This event occurs only with
one of the following two cases:

Case-1. There exists a tuple (I, k′, ctr′, ID′) in the database of R, where ID′ ̸= ID, such that ctr′||pad2 = r′0⊕ rT
and (r′0, rR) = Fk′(c||I), where I = F 0

k′(ctr′||pad1) was pre-computed by R.
Case-2. There exists a tuple (I ′, k′, ctr′, ID′) in the database of R, where ID′ ̸= ID, such that ctr||pad2 =

F 0
k′(c||I)⊕ rT and I = F 0

k′(ctr||pad1).

As ID ̸= ID′ and the random secret-keys for different tags are independent, it holds that Pr[k = k′] = 2−κ in
the above two cases. Further note that both Case-1 and Case-2 imply that there exists a tuple in the database of R that
determines a counter value, denoted ctri′ (i.e., ctr′ or ctr), such that I = F 0

k (ctri||pad1) = F 0
k′(ctri′ ||pad1). We

consider the event that there exists an i′, 1 ≤ i′ ̸= i ≤ ℓ, such that I = F 0
k (ctri||pad1) = F 0

k′(ctri′ ||pad1), where k
(resp., k′) is the secret-key of Ti (resp., Ti′ of identity ID′), and have the following observations:

– There exists an i′, 1 ≤ i′ ̸= i ≤ ℓ, such that k′ = k, which happens with probability (ℓ− 1)2−κ;
– Suppose for all i′, 1 ≤ i′ ̸= i ≤ ℓ, k′ ̸= k and Fk is a truly random function, we get that the probability that

there exists an i′, 1 ≤ i′ ̸= i ≤ ℓ, such that I = F 0
k (ctri||pad1) = F 0

k′(ctri′ ||pad1), is also (ℓ − 1)2−κ. Due
to the pseudorandomness of the underlying PRF Fk, by straightforward calculation, we get that the probability
that there exists an i′, 1 ≤ i′ ̸= i ≤ ℓ, such that I = F 0

k (ctri||pad1) = F 0
k′(ctri′ ||pad1) and k ̸= k′, is at most

(ℓ− 1)2−κ + ϵ, where ϵ is some negligible quantity in κ.

16

Putting all together, we conclude that the total probability that the above Case-1 or Case-2 occurs is at most
ϵ̂ = 2(ℓ− 1)2−κ + ϵ that is still negligible in κ.

Also note that conditioned on R correctly identifies Ti in its j-th session, the third-round message rR will be
F 1
k (c||I) upon which Ti will output “accept” (i.e., ocTi

= 1). We conclude that the event E occurs with probability at
most ϵ̂ that is negligible in κ.

A.2 Mutual Authentication

We show that suppose there exists a CMIM adversaryA that breaks the tag-to-reader (resp., reader-to-tag) authentica-
tion of the RFID protocol depicted in Figure 5, we can construct another algorithm A′ that breaks the pseudorandom-
ness of the underlying PRF.

The algorithm A′ has oracle access to a PRF Fk or a truly random function H : {0, 1}2κ → {0, 1}2κ, where
k ∈R {0, 1}κ is the random seed, and works as follows:

1. Run Setup(κ, ℓ) to setup an RFID system (R, T);
2. Randomly take i ∈R {1, · · · , ℓ}; That is, A′ randomly guesses the target tag Ti, with respect to which the event

E1 defined for tag-to-reader authentication (resp., E2 defined for reader-to-tag authentication) occurs.
3. Corrupt all tags in T other than Ti; Note that, by this way, A′ can perfectly mimic all the actions of the tags in
T − {Ti}. Moreover, A′ gets and maintains all the records of the database DB of the reader R except the record
corresponding to Ti.

4. Run A and perfectly answer all oracle queries (made by A) directed to tags T − {Ti}, and handle oracle queries
directed to the reader R and Ti as follows (in particular, A′ runs a counter ctr for simulating Ti that is initiated to
be 1):
(a) On query InitReader(), A′ initiates a new session and returns back a random string c ∈R {0, 1}κ. Here, the

random string c also serves as the session identifier.
(b) On query SendT(Ti, ĉ) where ĉ ∈ {0, 1}κ and Ti (simulated by A′) is waiting for the first-round message

of a new session, A′ initiates a new session with ĉ as the session identifier. Then, A′ queries its oracle (i.e.,
Fk or H) with ctr||pad1 to get I and then queries its oracle with ĉ||I to get (r0, r1). Finally, A′ computes
rT = r0⊕ctr||pad2, keeps r1 for this incomplete session, returns back (I, rT) (as the second-round message)
and updates ctr = ctr + 1.

(c) On query SendR(ĉ, (Î , r̂T)) (where ĉ is supposed to be a session identifier), A′ first checks whether it is
keeping a session (simulated for R) of the session identifier ĉ and is waiting for the second-round message:
If not, A′ returns back a special symbol “⊥” indicating invalid query; If A′ indeed runs a session of session-
identifier ĉ (which means that ĉ is some random string ever sent by A′ as the first-round message) and is
waiting for the second-round message, A′ mimics the actions of the reader R as follows: Any computation
involving records of tags in T − {Ti} in the database DB (actually maintained by A′) is performed by A′

itself; The computation involving the database record of Ti is performed by A′ with the aid of its oracle
(i.e., the PRF Fk or a truly random function H). Note that A′ actually does not necessarily know the actual
identities of the tags in T to simulate the reader R in this case.

(d) On query SendT(Ti, r̂R) where r̂R ∈ {0, 1}κ and Ti (simulated by A′) is currently running an incomplete
session of session-identifier ĉ and is waiting for the third-round message, A′ retrieves the value r1 (generated
when generating the second-round message of the session ĉ) and checks whether r̂R = r1. If r̂R = r1
A′ completes the session ĉ and returns back “accept”, otherwise, it completes the session and returns back
“reject”.

(e) On query Corrupt(Ti) (i.e., A tries to corrupt Ti), A′ stops and outputs “failure”.
5. If A′ did not output “failure” in the above step (e) due to request by A to corrupt Ti, A′ stops whenever A stops,

and then investigates and outputs “1” if the event E1 (resp., E2) defined in Definition 3.3 (resp., Definition ??)
occurs.

We first note that the running time ofA′, denoted t′, is polynomially related to the running time ofA. Furthermore,
suppose the oracle accessed by A′ is the PRF Fk and A′ did not stop outputting “failure” at step (e) due to corruption
query of Ti, the view ofA in its real attack and the view ofA under the simulation ofA′ are identical. AsA′ uniformly

17

selects the uncorrupted tag Ti and the view of A is independent of the choice of i when A′ gets oracle access to Fk,
we have that: supposeA (ϵ, t, n1, n2, n3, n4)-breaks the tag-to-reader (resp., reader-to-tag) authentication andA′ gets
oracle access to the PRF Fk, with probability ℓ−1ϵ the event E1 (resp., E2) occurs (under the simulation of A′) w.r.t.
the uncorrupted tag Ti (selected by A′), on which A′ will output “1”.

Recall that the event E1 is:A successfully finishes a session with the reader R of the session transcript (c, I||rT , rR),
in which R identified A as some uncorrupted tag Ti, but no matching session exists at the side of the tag Ti; That
is, no session of transcript prefix (c, I||rT) was ever run or is now running by Ti, where I = F 0

k (ctr||pad1) and
rT = F 0

k (c||I) ⊕ (ctr||pad2) for some counter value ctr. The event E2 is: A successfully finishes a session with an
uncorrupted tag Ti of the session transcript (c, I||rT , rR), in which Ti outputs “accept”, but no matching session of
the identical session transcript exists at the side of the reader R.

Now, we consider the probability thatA′ outputs “1” when having oracle access to a truly random function H , i.e.,
the probability that the event E1 (resp., E2) occurs w.r.t. Ti under the simulation of A′ with oracle access to the truly
random function H .

We first consider the probability the event E1 occurs w.r.t. Ti under the simulation of A′ with oracle access to a
truly random function H . Recall that, in this case, I = H0(ctr||pad1) and rT = H0(c||I)⊕ (ctr||pad2) for some ctr,
where H0 (resp., H1) stands for the κ-bit prefix (resp., suffix) of the output of the truly random function H .

– There exists no session of partial session transcript (c, I||r′T) at the side of Ti (in the simulation of A′), where
r′T = H0(c||I) ⊕ (ctr′||pad2) for any counter value ctr′. That is, Ti did not ever compute the value H(c||I)
before the event E1 occurs. In this case, the view of A under the simulation of A′ is independent of rT =
H0(c||I) ⊕ (ctr||pad2) that is a truly random string in {0, 1}κ. Thus, in this case, the event E1 occurs w.r.t. Ti
with probability at most n32

−κ, where n3 is the upper-bound of O2 (i.e., SendR) oracle queries made by A.
– For each session of partial session transcript (c, I||r′T) at the side of Ti (in the simulation of A′), where r′T =

H0(c||I)⊕ (ctr′||pad2) and I = H0(ctr′||pad1) for some counter value ctr′, we observe that: (1) As we assume
no matching session exists at the side of Ti, it must be that r′T ̸= rT = H0(c||I)⊕(ctr||pad2) and thus ctr′ ̸= ctr;
(2) But, the fact that I = H0(ctr||pad1) = H0(ctr′||pad1) means that such a session exists with probability 2−κ.
As we assume each tag involves at most s sessions, where s ≤ n2 and n2 is the upper-bound of O2 (i.e., SendT)
oracle queries made by A, we conclude that the probability that there exists a session of partial session transcript
(c, I||r′T) at the side of Ti (in the simulation ofA′), where r′T = H0(c||I)⊕(ctr′||pad2) and I = H0(ctr′||pad1)
for some counter value ctr′, is at most s · 2−κ.

Putting all together, we get that the probability that event E1 occurs w.r.t. Ti under the simulation of A′ when
oracle accessing a truly random function, on which A′ outputs “1”, is at most (n3 + s)2−κ ≤ (n3 + n2)2

−κ.
Now, we consider the probability that event E2 occurs w.r.t. Ti under the simulation of A′ with oracle access to a

truly random function H . Recall that, in this case, the event E2 w.r.t. Ti is: A successfully finishes a session with the
uncorrupted tag Ti of the session transcript (c, I||rT , rR), in which Ti outputs “accept”, but no matching session of the
identical session transcript exists at the side of the reader R, where I = H0(ctr||pad1), rT = H0(c||I)⊕ (ctr||pad2)
and rR = H1(c||I). We investigate several cases:

– The reader R (simulated by A′) did not send rR = H1(c||I) (before the event E2 occurs). In this case, the view
of A (under the simulation of A′) is independent of rR = H1(c||I) that is a random string in {0, 1}κ. Thus, the
probability that event E2 occurs w.r.t. Ti is at most s · 2−κ in this case, where s(≤ n2) is the upper-bound of
sessions involved by Ti.

– For each session run by R in which R sends rR = H1(c||I) to Ti, we observe that: This session is of session
transcript (c, I||r′T , rR)), where r′T = H0(c||I) ⊕ (ctr′||pad2) and I = H0(ctr′||pad1) for some counter value
ctr′; As we assume no matching session exists at the side of R, we get r′T = H0(c||r) ⊕ (ctr′||pad2) ̸= rT =
H0(c||r)⊕(ctr||pad2), and thus ctr′ ̸= ctr; But, as Pr[I = H0(ctr||pad1) = H0(ctr′||pad1)|ctr′ ̸= ctr] = 2−κ,
this session happens with probability 2−κ. As A makes at most n3 SendR (i.e., O3) queries, we have that the
probability that there exists a session at the side of R in which R sends H1(c||r) is at most n3 · 2−κ.

Putting all together, we get that the probability E2 occurs w.r.t. Ti under the simulation ofA′ when oracle accessing
a truly random function, on which A′ outputs “1”, is also at most (s+ n3)2

−κ ≤ (n2 + n3)2
−κ.

18

Recall that, supposeA (ϵ, t, n1, n2, n3, n4)-breaks the tag-to-reader authentication, we have shown thatA′ outputs
“1” with probability at least ℓ−1ϵ when oracle accessing the PRF Fk. Denote by ϵ1 = |ℓ−1ϵ− (s+ n3)2

−κ|, suppose
A (ϵ, t, n1, n2, n3, n4)-breaks the tag-to-reader or reader-to-tag authentication, we conclude thatA′ can (t′, ϵ1)-breaks
the pseudorandomness of the underlying PRF, where t′ is polynomially related to t. As we assume the underlying PRF
is secure, i.e., ϵ1 is negligible for any t′ that is polynomial in κ, we have that ϵ must also be negligible for any t-time
adversaryA where t is polynomial in κ. This establishes both the tag-to-reader and the reader-to-tag authentication of
the protocol depicted in Figure 5.

A.3 zk-Privacy

According to the zk-privacy formulation presented in Section 4, after an RFID system (R, T) is setup by Setup(κ, ℓ),
for any PPT adversary A = (A1,A2) the simulator S = (S1,S2) works as follows: In the first stage of S, S1 runs A1

as a subroutine, and concurrently interacts with R and all the tags in T (via the four oracles inO = {O1, O2, O3, O4}).
For all oracle queries made byA1, S1 makes the same oracle queries, and relays back the oracle answers toA1. Finally,
S1 outputs whateverA1 outputs at the end of the first stage, say (C, st), where C = {Ti1 , Ti2 , · · · , Tiδ} ⊆ T is a set of
clean tags, 0 ≤ δ ≤ ℓ, and st is some state information to be transmitted to the second stage. As for any adversary A
who outputs an empty set C of clean tags (i.e., no challenge tag will be chosen), the view ofA can be trivially perfectly
simulated by the simulator with oracle access to all the tags and the reader R. In the following analysis, we focus on
the case that |C| ≥ 1, i.e., 1 ≤ δ ≤ ℓ.

Then, a value g is selected uniformly at random from {1, · · · , δ}, which specifies the challenge tag Tg = Tig . In
the second stage of S, S2 runs A2(st) as a subroutine and concurrently interacts with the reader R and the tags in
T̂ = T − C. For all oracle queries made by A2 directed to tags in T̂ = T − C, S2 makes the same oracle queries, and
relays back oracle answers to A2. But, for oracle queries made by A2 directed to the reader R and to the challenge
tag Tg = Tig (blindly accessed by A2), S2 works as follows: (Recall that, according to the zk-privacy formulation in
Section 4, the oracle queries made by A2 to the challenge tag is of the form SendT(challenge, ·).)

1. On oracle query InitReader() made by A2, S2 makes the same oracle query to R, and gets back a random string
c ∈ {0, 1}κ from R. Then, S2 relays back c to A2.

2. On oracle query SendT(challenge, ĉ), where the challenge tag Tg (simulated by S2) currently does not run
any session (which means ĉ will be treated as the first-round message), S2 opens a session for Tg with ĉ as the
first-round message (that also serves as the session-identifier of this new session); Then, S2 randomly selects
I, rT ∈R {0, 1}κ, and sends back I||rT to A2 as the second-round message.

3. On oracle query SendR(ĉ, Î||r̂T), S2 works as follows:

Case-3.1. If Î||r̂T was sent by the challenge tag Tg (simulated by S2) in a session of session-identifier ĉ (i.e., the
first-round message), in this case S2 simulates the responses of the reader R according to the following two
cases. (In particular, S2 does not make the oracle query SendR(ĉ, Î||r̂T) to R in this case. Note that, as Î and
r̂T are truly random strings in this case, if S2 makes the same oracle query SendR(ĉ, Î||r̂T) to the reader R,
with overwhelming probability R will abort this session and outputs “0” indicating “reject”.)
Case-3.1.1 If R is running an incomplete session of session-identifier ĉ (i.e., ĉ was sent by R upon an Ini-

tReader query and R is waiting for the second-round message), S2 just returns back a random string
rR ∈R {0, 1}κ to A2, and outputs “1” indicating “accept”.

Case-3.1.2. Otherwise, S2 simply returns back a special symbol “⊥” indicating invalid query.
Case-3.2. In all other cases, S2 makes the same oracle query SendR(ĉ, Î||r̂T) to the reader R, and relays back

the answer from R to A2.

4. On oracle query SendT(challenge, r̂R), where the challenge tag Tg (simulated by S2) currently runs a session of
partial session-transcript (ĉ, I||rT) and is waiting for the third-round message, S2 works as follows:

Case-4.1. If there exists a matching session of the same session transcript (ĉ, I||rT , r̂R) at the side of R (where
r̂R may be simulated by S2 as in the above Case-3.1), S2 outputs “1” indicating “accept”;

Case-4.2. Otherwise, S2 simply outputs “0” indicating “reject”.

19

5. Output of S2: Finally, whenever A2 stops, S2 also stops and outputs the simulated view, denoted sview(κ, ℓ),
which consists of: the system public parameters para (output by Setup(κ, ℓ)), the random coins used byA (actu-
ally set by S), all oracle answers (including ones provided by the real protocol participants and ones simulated by
S2) to queries made by A. Recall that the output of the experiment Expzkp

S [κ,ℓ] is defined to be (g, sview(κ, ℓ)).

It is clear that if A works in polynomial-time, S works also in polynomial-time. For all sufficiently large κ,
any ℓ (that is polynomial in κ), any PPT adversary A, and any polynomial-time distinguisher D, denote by pS =
Pr[D(κ, ℓ, g,
sview(κ, ℓ)) = 1] and by pA = Pr[D(κ, ℓ, g, viewA(κ, ℓ)) = 1]. Below, we show that |pS − pA| is negligible, which
establishes the zk-privacy property.

For any (κ, ℓ) and any PPT adversary A = (A1,A2), we first consider a mental experiment Expprf

Ŝ
(κ, ℓ) w.r.t. a

PPT algorithm Ŝ. The algorithm Ŝ has oracle access to a PRF Fk or a truly random function H : {0, 1}2κ → {0, 1}2κ,
and works as follows:

Step-1. Select i ∈R {1, · · · , ℓ} uniformly at random.
Step-2. Setup ℓ− 1 tags, denoted T ′ = {T1, · · · , Ti−1, Ti+1, · · · ,
Tℓ}, with secret-keys k1, · · · , ki−1, ki+1, · · · , kℓ and counters ctr1, · · · , ctri−1, ctri+1, · · · , ctrℓ respectively,
where each secret-key is a random string of length κ and each counter is initiated to be “1”; Ŝ also maintains
a counter ctri to simulate Ti with the aid of its oracle (i.e., the PRF Fk or a truly random function); Ŝ also setups
and maintains all the database records (of the reader R) w.r.t. the tags in T ′.

Step-3. Run A1 as a subroutine, and answer the oracle queries made by A1 as follows:
– For oracle queries directed to tags in T ′, Ŝ computes and gives the answers by itself. Note that Ŝ can perfectly

simulate the actions of tags in T ′.
– For oracle queries directed to the tag Ti, Ŝ mimics the actions of Ti, and provides the oracle answer, with the

aid of its oracle (i.e., the PRF Fk or a truly random function H).
– For any oracle query directed to the reader R, Ŝ works as follows: If the oracle query is InitReader(), Ŝ

simply returns back a random string c ∈R {0, 1}κ. If the oracle query is SendR(ĉ, Î||r̂T), Ŝ mimics the
actions of R with the following modifications: the computation involving database records w.r.t. tags in T ′

is performed by Ŝ itself; the computation involving the record w.r.t. Ti is performed by Ŝ with the aid of its
oracle (i.e., the PRF or a truly random function).

Step-4. When A1 stops outputting (st, C), where C = {Ti1 , · · · ,
Tiδ} is a set of clean tags, 1 ≤ δ ≤ ℓ, Ŝ selects g ∈R {1, · · · , δ} uniformly at random. If the challenge-tag
Tg(= Tig) ̸= Ti, Ŝ stops and outputs “⊥” indicating “failure”; otherwise (i.e., Tg = Ti), Ŝ continues to do the
next step.

Step-5. In case Tg = Ti, Ŝ further runs A2(st) as a subroutine and mimics the actions of S2, but with the following
modifications: (Recall that Ti is just the challenge tag Tg in this case.)

– For oracle queries made by A2 to tags in T̂ = T − C, Ŝ computes and gives the answers by itself. Note that
Ŝ can perfectly simulate the actions of tags in T ′ ⊇ T̂ .

– For oracle queries directed to the challenge tag Tg = Ti of the form SendT(challenge, ·), Ŝ provides the
answer, mimicking the actions of Ti, with the aid of its oracle (i.e., the PRF Fk or a truly random function H).

– For oracle queries directed to the reader R, Ŝ works in the same way as in its first stage.
– Output of Ŝ: Whenever A2 stops, Ŝ also stops and then gets a view, denoted viewŜ

A(κ, ℓ), which consists of:
the system public parameters para (generated by Ŝ itself), the random coins used by A (actually set by Ŝ),
all oracle answers (provided by Ŝ itself to queries made by A). Finally, Ŝ runs the assumed distinguisher D
on inputs (κ, ℓ, g, viewŜ

A(κ, ℓ)), and outputs whatever D(κ, ℓ, g, viewŜ
A(κ, ℓ)) outputs.

Denote by pFk

Ŝ
(resp., pH

Ŝ
) the probability that Ŝ outputs “1”, with oracle access to the PRF Fk (resp., a truly

random function H). Note that Ŝ outputting “1” implies Tg = Ti (as otherwise Ŝ will output “⊥” indicating failure).
By the pseudorandomness of Fk, we get that for some quantity ϵŜ that is negligible in κ, it holds that (for sufficiently
large κ):

|pFk

Ŝ
− pH

Ŝ
| = ϵŜ (1)

20

Note also that the real view of A, i.e., viewA, and the view of A under the simulation of Ŝ in the experiment
Expprf

Ŝ
(κ, ℓ), i.e., viewŜ

A, are identical conditioned on Ŝ gets oracle access to the PRF Fk and Ŝ did not output “⊥”
at Step-4 (i.e., Tg = Ti). In particular, the view (particularly, the output of C) of A1 is independent of the choices of i
in this case, and thus Pr[Ti = Tg] = 1

ℓ , and we get:

pFk

Ŝ
=

1

ℓ
pA (2)

The above analysis also implies that the adaptive completeness and mutual authentication properties hold also in
the experiment Expprf

Ŝ
(κ, ℓ), whether Ŝ gets oracle access to the PRF Fk or a truly random function H; Otherwise,

the pseudorandomness property of the underlying PRF Fk will be violated.
Now, we consider another experiment Expprf

S′ (κ, ℓ), in which a PPT algorithm S′, with oracle access to the PRF
Fk or a truly random function H , mimics the actions of Ŝ until Step-5 in the experiment Expprf

Ŝ
(κ, ℓ), but with the

following modifications at Step-5 (recall that Step-5 actions imply Tg = Ti):

D1. For any oracle query directed to the challenge tag Tg = Ti of the form SendT(challenge, ĉ), Ŝ mimics the
actions of the simulator S and returns back I, rT ∈R {0, 1}κ, where I, rT are taken randomly by S′ itself.

D2. For any oracle query directed to the reader R of the form SendR(ĉ, Î||r̂T), S′ works as follows:
Case-D2.1 In Case-3.1 (of the simulation of S), S′ just mimics the actions of the simulator S.
Case-D2.2 In Case-3.2 (of the simulation of S), S′ simulates the actions of R as follows:

Case-D.2.2.1. The computation involving database records w.r.t. tags in T ′ is performed by S′ itself (just as
Ŝ does), which perfectly mimics the actions of the reader R in this case.

Case-D.2.2.2. But, the computation involving the record w.r.t. Ti is just ignored by S′.
D3. For any oracle query directed to Tg = Ti of the form SendT(challenge, r̂R), S′ just mimics the actions of the

simulator S (in Case-4.1 and Case-4.2 of the simulation of S).

Note that S′ only queries its oracle (i.e., the PRF Fk or a truly random function H) in its first-stage of simulation
(in dealing with A1), but never queries its oracle in the second-stage simulation (in dealing with A2).

Denote by pFk

S′ (resp., pHS′) the probability that S′ outputs “1”, with oracle access to the PRF Fk (resp., a truly
random function H) in the experiment Expprf

S′ . By the pseudorandomness of Fk, we get that for some quantity ϵS′

that is negligible in κ, it holds that (for sufficiently large κ):

|pFk

S′ − pHS′ | = ϵS′ (3)

Now, we investigate the differences between the view of A under the simulation of S and the view of A under
the simulation of S′, conditioned on S′ gets oracle access to the PRF Fk and S′ does not output “⊥” at Step-4
(i.e., Tg = Ti). The only difference is: in Case-D.2.2.2 above, the computation involving the record w.r.t. Ti = Tg is
always ignored by S′; but in the simulation of S this computation will be performed by the reader R. The observation
here is: Case-D.2.2 (that corresponds to Case-3.2 of the simulation of S) means that, when A2 makes the oracle
query SendR(ĉ, Î||r̂T), Tg = Ti did not run or is running a session of the (partial) session transcript (ĉ, Î||r̂T). Just
analogue to the analysis of tag-to-reader authentication (presented in Section A.2), it is straightforward to calculate
that the probability that the reader R successfully identifies Ti in Case-3.2 of the simulation of S is negligible. Under
this observation and by noting that the view of A1 is independent of the choice of i when S′ gets oracle access to Fk

(and thus Pr[Tg = Ti] = 1
ℓ), we have that for some quantity ϵS that is negligible in κ, it holds that (for sufficiently

large κ):

pFk

S′ =
1

ℓ
pS + ϵS (4)

Now, we investigate the differences between the view ofA under the simulation of Ŝ and that under the simulation
of S′, when both Ŝ and S′ get access to a truly random function H . We have the following observations:

– In Case-D.1 (resp., Case-D2.1), S′ always returns back random and independent I, rT (resp., rR). As Ti always
generates I with the updated counter value, the value I return back by Ŝ in Case-D.1, with the aid of the truly

21

random function H , is also always uniformly distributed over {0, 1}κ and is independent of what previously sent
by Ŝ. But the value rT (resp., rR) returned back by Ŝ in Case-D.1 (resp., Case-D.2.1), with the aid of the truly
random function H , might not be independent of the values previously sent by Ŝ, for the following reasons:
(1) In case I is equal to some I-values previously sent by Ŝ, the value H(c||I) = (r0, r1) (that determines
rT = r0 ⊕ ctr||pad2 and rR = r1) can be previously defined. Note that the adversary A can use the same ĉ
for all sessions with the tags. This event occurs with probability at most s · 2−κ, where s is the upper-bound of
sessions involved by Ti; (2) For Case-D.2.1, upon the request SendR(ĉ, Î||r̂T) where Î||r̂T was sent by Tg = Ti
(simulated by Ŝ) in session ĉ, the reader R (simulated by Ŝ) may identify a tag Ti′ ̸= Ti, and thus the value rR
returned by Ŝ may be F 1

k′(ĉ||I) (rather than an independent and random string in {0, 1}κ), where k′ is the secret-
key of Ti′ . But, as the adaptive completeness property holds in the experiment Expprf

Ŝ
(κ, ℓ), this event occurs also

with negligible probability.
– By the mutual authentication (specifically, the tag-to-reader authentication in this case) of the experiment Expprf

Ŝ
(κ, ℓ),

the difference caused by Case-D.2.2.2 in Expprf
S′ (κ, ℓ) occurs also with negligible probability.

– In Case-D.3 in Expprf
S′ (κ, ℓ) (that corresponds to Case-4.1 and Case-4.2 of the simulation of S) , Tg = Ti (simu-

lated by S′) always outputs “accept” (resp., “reject”) in Case-4.1 when existing matching session at the side of R
(resp., Case-4.2 when existing no matching session at R). But, in the simulation of Ŝ in Expprf

Ŝ
(κ, ℓ), with oracle

access to a truly random function H , Tg = Ti may output “reject” in Case-4.1 (resp., “accept” in Case-4.2).
We first observe that, by the mutual authentication (specifically, the reader-to-tag authentication in this case) of
the experiment Expprf

Ŝ
(κ, ℓ), the probability that Tg = Ti simulated by Ŝ, with oracle access to the truly random

function H , outputs “accept” in Case-4.2 is negligible.
Next, note that Tg = Ti (simulated by Ŝ in Expprf

Ŝ
(κ, ℓ)) outputs “reject” in Case-4.1, only if the reader R

(simulated by Ŝ) identified a tag Ti′ ̸= Ti upon the query SendR(ĉ, I||rT), where I||rT was sent by Ti in the
session ĉ. But, by the adaptive completeness of the experiment Expprf

Ŝ
(κ, ℓ), this event occurs also with negligible

probability.

From above discussions, we have that for some quantity ϵH that is negligible in κ, it holds (for sufficiently large
κ):

|pHS′ − pH
Ŝ
| = ϵH (5)

Combining all the equations (1), (2), (3), (4), (5), we have: |pFk

Ŝ
− pH

Ŝ
| = |ℓ−1pA − pH

Ŝ
| = |ℓ−1pA − pHS′ ± ϵH | =

|ℓ−1pA− pFk

S′ ± ϵS′ ± ϵH | = |ℓ−1pA− ℓ−1pS ± ϵS ± ϵS′ ± ϵH | = ϵŜ . From this equation, we conclude that |pA− pS |
must be negligible, which then establishes the zk-privacy property of the protocol depicted in Figure 5.

22

	A new framework for RFID privacy
	Citation

	tmp.1463047621.pdf.ehTfm

