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Abstract—A text filtering system monitors a stream of incom-
ing documents, to identify those that match the interest profiles
of its users. The user interests are registered at a server as
continuous text search queries. The server constantly maintains
for each query a ranked result list, comprising the recent docu-
ments (drawn from a sliding window) with the highest similarity
to the query. Such a system underlies many text monitoring
applications that need to cope with heavy document traffic, such
as news and email monitoring. In this paper, we propose the
first solution for processing continuous text queries efficiently.
Our objective is to support a large number of user queries while
sustaining high document arrival rates. Our solution indexes the
streamed documents with a structure based on the principles of
the inverted file, and processes document arrival and expiration
events with an incremental threshold-based method. Using a
stream of real documents, we experimentally verify the efficiency
of our approach, which is at least an order of magnitude faster
than a competitor constructed from existing techniques.

I. INTRODUCTION

The increased use of digital information channels, such

as email, electronic news feeds and automation of business

reporting functions, coupled with the importance of making

timely decisions, raise the need for a continuous text search

model. In this model, new documents arrive at a monitoring

server in the form of a stream. The server hosts many text

search queries that are installed once and remain active until

terminated by the users. Each query Q continuously retrieves,

from a sliding window of the most recent documents [1], the

k that are most similar to a fixed set of search terms.

For instance, a security analyst who monitors email traffic

for potential terror threats would register several standing

queries to identify recent emails that most closely fit certain

threat profiles (e.g., emails that mention names of explosives or

possible biological weapons). As another example, an invest-

ment manager who is interested in a portfolio of industries and

companies would monitor newsflashes from his information

provider (e.g., Reuters, Bloomberg, etc) to identify those that

are relevant to his portfolio. Words related to the industries

of interest can be formulated as standing text queries over the

newsflashes. With the same news report stream, another user

could be an entrepreneur who is tracking developments about

competing products. All the above cases can be modeled as

continuous text search queries.

We consider count-based and time-based sliding windows,

whose sizes are expressed in numbers of documents or time

units, respectively. An example of a query with a time-based

window is “Monitor the 10 documents received in the last

15 minutes that best match the string {weapons of mass

destruction}”. The count-based counterpart of this example

is “Continuously report the 10 documents among the 500

most recent ones that best match the string {weapons of mass

destruction}”. For heavy-traffic streams, the system must be

able to update the ranked results of all user queries efficiently

enough to keep pace with the document arrivals. That is the

primary technical challenge addressed in this work.

Previous studies on document filtering (e.g., [2]) have fo-

cused on techniques for adaptively setting a similarity thresh-

old to determine whether each document is relevant to a query.

However, the problem of efficiently maintaining the list of the

k most relevant documents has not been considered. Existing

schemes for continuous top-k processing (e.g., [3]), on the

other hand, rely on spatial index structures. In text retrieval,

each term in the dictionary is considered a dimension. Since

a realistic dictionary typically contains more than 100,000

terms, the dimensionality far exceeds the capabilities of any

spatial index structure, thus ruling out the application of

those schemes. In this paper, we present the first solution for

continuous text search over high-volume document streams.

II. PROBLEM FORMULATION

A text search query Q specifies a set of terms (i.e., words

of interest) and a parameter k (k ∈ N). Q requests for the k

documents in a dataset D that are most similar to the query

terms. A similarity measure that is effective in practice is

the cosine similarity, which defines the score S(d|Q) of a

document d ∈ D as:

S(d|Q) =
∑

t∈Q

wQ,t · wd,t (1)

where wQ,t =
fQ,t

√

∑

t′∈Q
f2

Q,t′

, wd,t =
fd,t

√

∑

t′∈T
f2

d,t′

, T is the

dictionary of all possible terms and fQ,t (fd,t) is the number

of times that term t appears in query Q (in document d,

respectively). We focus on the cosine similarity function, but

our techniques are applicable to other measures, such as the

Okapi formulation.
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Fig. 1. Data structures

In our model, a stream of documents flows into a central

server. The users register text queries at the server, which is

then responsible for continuously monitoring/reporting their

results. In order to cope with frequent updates, we store all

the data in main memory, and design our methods with the

primary goal of minimizing the CPU cost.

Each element of the input stream comprises a text document

d, a unique document identifier (for simplicity, we also denote

the identifier as d), the document arrival time, and a compo-

sition list. The composition list contains one 〈t, wd,t〉 pair for

each term t ∈ T in the document. We assume a count-based

sliding window [1] of length N ; i.e., only the N most recent

documents participate in query evaluation. We call these N

documents valid and collectively denote them as set D. Our

method can be easily adapted to time-based windows.

Each user query Q specifies the number of desired result

documents k, and a set of search terms. The query string is

translated to Q = {〈t1, wQ,t1〉, 〈t2, wQ,t2〉, . . . , 〈tn, wQ,tn
〉},

where the wQ,t frequencies are defined in Formula (1). At any

given time, the result R of Q contains the k valid documents

with the highest scores. We denote as Sk the smallest score

across all documents in R.

A simple monitoring technique (termed Naı̈ve) is the fol-

lowing. When a query Q is evaluated for the first time, R

is computed by scanning all valid documents and computing

their scores. In a subsequent timestamp, assume that a doc-

ument dins arrives, forcing an existing one ddel to expire. If

S(dins|Q) > Sk, we insert dins into R. If ddel ∈ R, we

delete it from R. After these updates, if R contains more than

k documents, we evict the last one. If R contains fewer than

k documents, we recompute R by scanning through D.

Update handling in Naı̈ve is very inefficient. For each

arriving document dins, Naı̈ve needs to compute S(dins|Q) for

every user query Q. Also, for each expiring document ddel, it

needs to check whether ddel ∈ R for every query. Furthermore,

top-k recomputation (by scanning D) is expensive.

III. INCREMENTAL THRESHOLD ALGORITHM

In this section, we introduce our Incremental Threshold

Algorithm (ITA). ITA employs a threshold-based technique for

computing the initial result for each query. The derived thresh-

olds are subsequently updated to reflect document arrivals and

expirations, so that the query results can be incrementally

maintained, without processing documents that cannot affect

the query.

Figure 1 depicts the data structures in our system. The valid

documents D are stored in a first-in-first-out list. Arriving

documents are inserted at the end of the list and expiring ones

are deleted from its head. On top of the document list we build

an inverted index [4]. The structure at the top of the figure is

the dictionary of search terms. The dictionary entry for t points

to the corresponding inverted list Lt. Lt holds an impact entry

〈d, wd,t〉 for each document d that contains t, together with a

pointer to d’s full information in the document list. The entries

in Lt are sorted in decreasing wd,t order. When a document

d arrives (expires), an impact entry 〈d,wd,t〉 is inserted into

(deleted from) the inverted list of each term t in d.

For each inverted list Lt, we maintain a book-keeping

structure termed threshold tree. It contains an entry 〈θQ,t, Q〉
for each query Q that includes t. The θQ,t values are called

local thresholds. The threshold tree is used to efficiently

retrieve all the queries whose local thresholds are below a

given parameter.

A. Initial Top-k Search

When a query Q is first submitted to the system, its top-

k result is computed using an adaptation of the threshold

algorithm [5]. The inverted lists of the query terms are

iteratively probed from their first entry downwards. Unlike



the original threshold algorithm, we do not probe the lists in

a round-robin fashion. Since the similarity function associates

different weights wQ,t with the query terms, we favor those

lists with higher such weights. Specifically, we probe the Lt

with the highest wQ,t ·ct value, where ct is the frequency wd,t

of the next entry in Lt.

When the next document in a list is encountered, its

score is computed and it is inserted into R. Threshold τ =∑
t∈Q wQ,t · ct is maintained throughout the process. Once

τ drops below the score of an encountered document d,

we say that d is verified. The search terminates when k

documents are verified; these documents form the query result.

We keep in R all encountered documents, verified or not. The

ranking of unverified documents cannot be guaranteed but

they are necessary for subsequent result maintenance. Upon

termination, we record τ as the influence threshold of Q. Also,

we set local thresholds θQ,t to the the latest ct values for each

term, and insert them into the corresponding threshold tree.

B. Result Maintenance

After the initial result computation, a straightforward mon-

itoring approach is to recompute from scratch the top-k result

of each Q (using the above procedure) after every update.

This, however, leads to unnecessary costs because:

• Most of the document arrivals/expirations do not affect

the query result. A query Q monitors only a very small

number of search terms (say, up to a dozen from a

dictionary with 100,000 terms). Consequently, most doc-

uments (either arriving or expiring) share no common

terms with Q, and hence have a zero similarity score.

Even when a document d contains some common terms

t, the document’s wd,t frequencies may be too small to

affect the current top-k result.

• Re-scanning the inverted lists from scratch, especially

those corresponding to popular terms that appear in many

documents, is an expensive procedure. Having incurred

the cost to compute the initial top-k result, we should

reuse the work done to accelerate future re-evaluations.

Motivated by the above considerations, we propose an incre-

mental maintenance strategy that restricts processing only to

those updates that may affect the current top-k result. We base

our method on the fact that in order for an arriving/expiring

document d to alter the top-k result, its score must be at least

Sk, the score of the k-th document in R. Revisiting the initial

top-k search module, we observe that instead of Sk per se, we

could use the influence threshold τ and its break-down into the

local thresholds. Specifically, an arriving/expiring document d

may affect the result of Q if and only if it is inserted ahead

of Q’s local threshold in at least one of the inverted lists Lt

where t ∈ Q. Otherwise, d cannot cause any change to R and

can be ignored safely. This observation allows us to reduce

the maintenance cost for Q, by restricting processing to only

a small region of the term frequency space. In the rest of

this section we detail the processing of document arrivals and

expirations separately.

Consider the arrival of a document d. We first scan its

composition list and insert impact entries into the correspond-

ing inverted lists. For each of these lists Lt we perform the

following steps. We probe its threshold tree to identify all those

queries Qi where θQi,t ≤ wd,t; these queries are potentially

affected by d. For each of them, we compute S(d|Qi). If

S(d|Qi) ≤ Sk, the top-k result of Qi is not altered, but we

insert d into R; this is in the same spirit as the inclusion

of extra (unverified) documents into R in the initial top-k

search, and its purpose will be discussed shortly. Otherwise

(S(d|Qi) > Sk), we insert d into the top-k result and “roll-up”

accordingly the local thresholds of Qi in all involved inverted

lists, reversing the steps of the threshold algorithm in Section

III-A. Note that now the ct values are defined by the preceding

entry in Lt, and we roll-up the list with the smallest wQ,t · ct

value each time. The roll-up process stops at the last iteration

where τ is still smaller than or equal to the new Sk. The

rationale behind the roll-up is that, since Sk has increased, we

should “shrink” the monitored region of the term frequency

space in order to reduce the number of future updates that

need to be handled. This is also the reason for choosing to

roll-up the list with the smallest wQ,t ·ct value. d is processed

only once for each Qi even if d ranks higher than several of

Q’s local thresholds, to avoid redundant computations.

Consider the example in Figure 1. Let Q1 be a query with

search string {white white tower} and k = 2. Assume that

its initial result is {〈d6, 0.19〉, 〈d2, 0.17〉} and that the local

thresholds for t11 (“tower”) and t20 (“white”) are set at the

entries shown shaded in their inverted lists. Suppose now that

document d9 arrives at the server as illustrated in Figure 2(a);

its impact entry is highlighted in bold in the updated L11 . The

new document is inserted above θQ1,t11 , the local threshold

of Q1 in L11, therefore it is placed into R and its score

S(d9|Q1) = 0.20 is computed. Since S(d9|Q1) is larger than

the current Sk = 0.17, it enters the top-2 result which now

becomes {〈d9, 0.20〉, 〈d6, 0.19〉} with Sk = 0.19. Next, we

need to roll-up the lists. The ct values are defined by d7 and

d2, respectively. Assuming that wQ1,t11 ·c11 < wQ1,t20 ·c20, we

consider L11 for roll-up. Assume that lifting its local threshold

to d7 would lead to τ = 0.18. Since this τ is below Sk, the

roll-up is feasible, θQ1,t11 is set to wd7,t11 (i.e., 0.10), and

d7 is deleted from R because it is now below all the local

thresholds of Q1. Figure 2(b) shows the updated system state.

No further roll-up is possible at this time, otherwise τ would

exceed Sk and leave us without enough verified documents.

Consider now the expiration of a document d. To remove

it from the system, we delete its impact entry from the Lt

of every term t in d. For each of these lists Lt, we probe its

threshold tree to locate all the potentially affected queries Qi,

i.e., queries where θQi,t ≤ wd,t. For each such query Qi, we

know that d is inside R, be it verified or not. Also, we know

its score S(d|Qi); it is stored in R, so we do not need to

calculate it anew. If S(d|Qi) < Sk (i.e., d is not among the

top-k documents), we simply remove it from R. Otherwise, d

is in the current top-k set; we delete d from R and “refill” the

result (since R now contains fewer than k verified documents).
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Fig. 2. Arrival handling in ITA

To perform this “refill”, we do not invoke the top-k search

of Section III-A from scratch. Instead, we resume the search

from where it stopped previously, using the current list R (that

contains both verified and unverified documents) and looking

inside the involved inverted lists Lt from their local thresholds

downwards. This downward search follows the same process

as the initial top-k computation. The incremental refill is

possible only because we keep and maintain upon updates all

the unverified documents inside R. By definition, to be able to

only examine the lists downwards, we should have maintained

in R all valid documents d where at least one wd,t frequency

is higher than the corresponding local threshold θQi,t, and

treat them in the same way as the initial search treats any

encountered document prior to termination.

IV. EXPERIMENTS

In Figure 3 we empirically compare ITA against Naı̈ve. We

enhance Naı̈ve with the technique of [6], which retrieves the

top-kmax documents (for an analytically derived kmax that is

larger than k) whenever the result is computed from scratch,

in order to reduce the frequency of subsequent recomputa-

tions. We form a document stream using the WSJ corpus,

which comprises 172,961 articles published in the Wall Street

Journal from December 1986 to March 1992. After standard

stopword removal [7], the dictionary contains 181,978 terms.

The WSJ documents are streamed into the monitoring system,

following a Poisson process with a mean arrival rate of 200

documents/second. We generate 1,000 queries with k = 10 and

terms selected randomly from the dictionary. We use a count-

based window; the results for a time-based one are similar.

First, we investigate the effect of the number of search terms

n on the performance of ITA and Naı̈ve. In Figure 3(a), we

set the window size to 1,000 documents, and vary n from

4 to 40. We measure the average processing time, i.e., the

elapsed time between the arrival of a new document (which

additionally causes the expiration of an existing one) and the

point where all the query results are updated accordingly.

The measurements are in milliseconds and are plotted in

logarithmic scale. With more search terms (i.e., larger n),

an arriving/expiring document has a higher chance of sharing

common terms with the queries. This leads to an increase in

the number of queries that need updating, and thus to a longer
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Fig. 3. Processing time versus query length and window size

processing time. ITA is about 10 times faster than Naı̈ve for

queries comprising 4 search terms, and 6 times faster for 40-

term queries.

In Figure 3(b), we study the effect of the sliding window

size N . We set the query length to 10 terms, and vary

N from 10 to 100,000 documents. A larger window holds

more valid documents in the system. For Naı̈ve this imposes

a higher cost whenever the result needs to be recomputed,

because it scans the entire D. For ITA, the inverted lists

grow longer, leading to higher index update cost and slower

arrival/expiration handling. ITA is 13 times faster than Naı̈ve

for a window size of 10, and 18 times faster when the

sliding window comprises 10,000 documents. Note that the

last measurement for Naı̈ve is missing, because for N > 10000
the CPU utilization approaches 100% and the system becomes

unstable. The above experiments, as well as others omitted due

to lack of space, verify the general superiority of ITA over

Naı̈ve.

V. CONCLUSION

In this paper, we study the processing of continuous text

queries over high-volume document streams. The problem

arises in a variety of text monitoring applications, e.g., email

and news tracking. To the best of our knowledge, this is the

first attempt to address this problem. Our solution, termed

ITA, follows the incremental evaluation paradigm and employs

threshold-based techniques to reduce the processing time at

the stream processing server. ITA is empirically shown to

significantly outperform a solution compiled from existing

methods.
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