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Abstract 

This paper reviews Bayesian methods that have been developed in recent years to estimate 

and evaluate dynamic stochastic general equilibrium (DSGE) models. We consider the 

estimation of linearized DSGE models, the evaluation of models based on Bayesian model 

checking, posterior odds comparisons, and comparisons to vector autoregressions, as well as 

the non-linear estimation based on a second-order accurate model solution. These methods 

are applied to data generated from correctly specified and misspecified linearized DSGE 

models and a DSGE model that was solved with a second-order perturbation method. 

 

Keywords: Bayesian analysis, DSGE models, Model evaluation, Vector autoregressions 

 

1. INTRODUCTION 

Dynamic stochastic general equilibrium (DSGE) models are micro-founded optimization-

based models that have become very popular in macroeconomics over the past 25 years. They 

are taught in virtually every Ph.D. program and represent a significant share of publications 

in macroeconomics. For a long time the quantitative evaluation of DSGE models was 

conducted without formal statistical methods. While DSGE models provide a complete 

multivariate stochastic process representation for the data, simple models impose very strong 

restrictions on actual time series and are in many cases rejected against less restrictive 

specifications such as vector autoregressions (VAR). Apparent model misspecifications were 

used as an argument in favor of informal calibration approaches along the lines of Kydland 

and Prescott (1982).  

 

Subsequently, many authors have developed econometric frameworks that formalize aspects 

of the calibration approach by taking model misspecification explicitly into account. 

Examples are Smith  (1993), Watson (1993), Canova (1994), DeJong et al. (1996), Diebold et 
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al. (1998), Geweke (1999b), Schorfheide (2000), Dridi et al. (2007), and Bierens (2007). At 

the same time, macroeconomists have improved the structural models and relaxed many of 

the misspecified restrictions of the first generation of DSGE models. As a consequence, more 

traditional econometric techniques have become applicable. The most recent vintage of 

DSGE models is not just attractive from a theoretical perspective but is also emerging as a 

useful tool for forecasting and quantitative policy analysis in macroeconomics. Moreover, 

owing to improved time series fit these models are gaining credibility in policy-making 

institutions such as central banks. 

 

This paper reviews Bayesian estimation and evaluation techniques that have been developed 

in recent years for empirical work with DSGE models.
1
 We focus on methods that are built 

around a likelihood function derived from the DSGE model. The econometric analysis has to 

cope with several challenges, including potential model misspecification and identification 

problems. We will illustrate how a Bayesian framework can address these challenges. Most 

of the techniques described in this article have been developed and applied in other papers. 

Our contribution is to give a unified perspective, by applying these methods successively to 

artificial data generated from a DSGE model and a VAR. We provide some evidence on the 

performance of Markov Chain Monte Carlo (MCMC) methods that have been applied to the 

Bayesian estimation of DSGE models. Moreover, we present new results on the use of first-

order accurate versus second-order accurate solutions in the estimation of DSGE models.  

 

The paper is structured as follows. Section 2 outlines two versions of a five-equation New 

Keynesian DSGE model along the lines of Woodford (2003) that differ with respect to the 

monetary policy rule. This model serves as the foundation for the current generation of large-

scale models that are used for the analysis of monetary policy in academic and central bank 

circles. Section 3 discusses some preliminaries, in particular the challenges that have to be 

confronted by the econometric framework. We proceed by generating several data sets that 

are used subsequently for model estimation and evaluation. We simulate samples from the 

first-order accurate solution of the DSGE model presented in Section 2, from a modified 

version of the DSGE model in order to introduce misspecification, and from the second-order 

accurate solution of the benchmark DSGE model. 

 

Owing to the computational burden associated with the likelihood evaluation for non-linear 

solutions of the DSGE model, most of the empirical literature has estimated linearized DSGE 

models. Section 4 describes a Random-Walk Metropolis (RWM) algorithm and an 

Importance Sampler (IS) algorithm that can be used to calculate the posterior moments of 

DSGE model parameters and transformations thereof. We compare the performance of the 

algorithms and provide an example in which they explore the posterior distribution only 

locally in the neighborhood of modes that are separated from each other by a deep valley in 

the surface of the posterior density. 

 

Model evaluation is an important part of the empirical work with DSGE models. We consider 

three techniques in Section 5: posterior predictive model checking, model comparisons based 

on posterior odds, and comparisons of DSGE models to VARs. We illustrate these techniques 

by fitting correctly specified and misspecified DSGE models to artificial data. In Section 6 

we construct posterior distributions for DSGE model parameters based on a second-order 

                                                           
1
 There is also an extensive literature on classical estimation and evaluation of DSGE models, but a detailed 

survey of these methods is beyond the scope of this article. The interested reader is referred to Kim and Pagan 

(1995) and the book by Canova (2007), which discusses both classical and Bayesian methods for the analysis of 

DSGE models. 



 

accurate solution and compare them to posteriors obtained from a linearized DSGE model. 

Finally, Section 7 concludes and provides an outlook on future work.

 

2. A PROTOTYPICAL DSGE MODEL

Our model economy consists of a final goods producing firm, a continuum of

goods producing firms, a representative household, and a monetary as well as a fiscal 

authority. This model has become a benchmark specification for the analysis of monetary 

policy and is analyzed in detail, for instance, in Woodford (2003

specification simple, we abstract from wage rigidities and capital accumulation. More 

elaborate versions can be found in Smets and Wouters 

 

2.1. The Agents and Their Decision Problems

The perfectly competitive, representative, fi

of intermediate goods indexed by 

 

Here 1/ν > 1 represents the elasticity of demand for each intermediate good. The firm takes 

input prices P t (j) and output prices 

for intermediate goods is  

 

The relationship between intermediate goods prices and the price of the final good is 

 

Intermediate good j is produced by a monopolist who has access to the linear production 

technology  

 

where A t is an exogenous productivity process that is common to all firms and 

labor input of firm j. Labor is hired in a perfectly competitive factor market

W t. Firms face nominal rigidities in terms of quadratic price adjustment costs 

 

where  governs the price stickiness in the economy and 

associated with the final good. Firm 

maximize the present value of future profits 
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ate solution and compare them to posteriors obtained from a linearized DSGE model. 

Finally, Section 7 concludes and provides an outlook on future work. 

2. A PROTOTYPICAL DSGE MODEL 

Our model economy consists of a final goods producing firm, a continuum of

goods producing firms, a representative household, and a monetary as well as a fiscal 

authority. This model has become a benchmark specification for the analysis of monetary 

ail, for instance, in Woodford (2003). To keep the model 

specification simple, we abstract from wage rigidities and capital accumulation. More 

elaborate versions can be found in Smets and Wouters (2003).  

2.1. The Agents and Their Decision Problems 

The perfectly competitive, representative, final goods producing firm combines a continuum 

of intermediate goods indexed by j  [0, 1] using the technology  

1 represents the elasticity of demand for each intermediate good. The firm takes 

) and output prices P t as given. Profit maximization implies that the demand 

The relationship between intermediate goods prices and the price of the final good is 

is produced by a monopolist who has access to the linear production 

is an exogenous productivity process that is common to all firms and 

. Labor is hired in a perfectly competitive factor market

Firms face nominal rigidities in terms of quadratic price adjustment costs 

governs the price stickiness in the economy and π is the steady-state inflation rate 

associated with the final good. Firm j chooses its labor input N t (j) and the price 

maximize the present value of future profits  

ate solution and compare them to posteriors obtained from a linearized DSGE model. 

Our model economy consists of a final goods producing firm, a continuum of intermediate 

goods producing firms, a representative household, and a monetary as well as a fiscal 

authority. This model has become a benchmark specification for the analysis of monetary 

To keep the model 

specification simple, we abstract from wage rigidities and capital accumulation. More 

nal goods producing firm combines a continuum 

 

1 represents the elasticity of demand for each intermediate good. The firm takes 

as given. Profit maximization implies that the demand 

 

The relationship between intermediate goods prices and the price of the final good is  

 

is produced by a monopolist who has access to the linear production 

 

is an exogenous productivity process that is common to all firms and N t (j) is the 

. Labor is hired in a perfectly competitive factor market at the real wage 

Firms face nominal rigidities in terms of quadratic price adjustment costs  

 

state inflation rate 

) and the price P t (j) to 



 

 

Here Q t+s|t is the time t value of a unit of the consumption good in period 

household, which is treated as exogenous by the firm.

 

The representative household derives utility from real money balances 

consumption C t relative to a habit stock. We assume that the habit stock is given by the level 

of technology A t. This assumption ensures that the economy evolves along a b

path even if the utility function is additively separable in consumption, real money balances, 

and leisure. The household derives disutility from hours worked 

 

 

where β is the discount factor, 1/

H are scale factors that determine steady

set χ H  = 1. The household supplies perfectly elastic labor services to the firms taking the real 

wage W t as given. The household has access to a domestic bond market where nominal 

government bonds B t are traded that pay (gross) interest 

aggregate residual real profits 

household's budget constraint is of the form 

 

 

where SC t is the net cash inflow from trading a full set of state

usual transversality condition on asset accumulation applies, which rules out Ponzi schemes.

Monetary policy is described by an interest rate feedback rule of the form 

 

where R, t is a monetary policy shock and 

specifications for R t , one in which the central bank reacts to inflation and deviations of 

output from potential output:  

 

and a second specification in which the central bank responds to deviations of output growth 

from its equilibrium steady-state 

 

Here r is the steady-state real interest rate, 

t−1, and π  is the target inflation rate, which in equilibrium coincides with the steady
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value of a unit of the consumption good in period t 

household, which is treated as exogenous by the firm. 

The representative household derives utility from real money balances M t /

relative to a habit stock. We assume that the habit stock is given by the level 

This assumption ensures that the economy evolves along a b

path even if the utility function is additively separable in consumption, real money balances, 

and leisure. The household derives disutility from hours worked H t and maximizes 

 is the discount factor, 1/τ is the intertemporal elasticity of substitution, and 

are scale factors that determine steady-state real money balances and hours worked. We will 

1. The household supplies perfectly elastic labor services to the firms taking the real 

he household has access to a domestic bond market where nominal 

are traded that pay (gross) interest R t. Furthermore, it receives 

aggregate residual real profits D t from the firms and has to pay lump-sum taxes 

household's budget constraint is of the form  

is the net cash inflow from trading a full set of state-contingent securities. The 

usual transversality condition on asset accumulation applies, which rules out Ponzi schemes.

Monetary policy is described by an interest rate feedback rule of the form  

is a monetary policy shock and R t is the (nominal) target rate. We consider two 

, one in which the central bank reacts to inflation and deviations of 

 

and a second specification in which the central bank responds to deviations of output growth 

state γ:  

state real interest rate, π t is the gross inflation rate defined as 

is the target inflation rate, which in equilibrium coincides with the steady

 

 + s to the 

/P t and 

relative to a habit stock. We assume that the habit stock is given by the level 

This assumption ensures that the economy evolves along a balanced growth 

path even if the utility function is additively separable in consumption, real money balances, 

and maximizes  

 

elasticity of substitution, and χ M and χ 

state real money balances and hours worked. We will 

1. The household supplies perfectly elastic labor services to the firms taking the real 

he household has access to a domestic bond market where nominal 

Furthermore, it receives 

sum taxes T t. Thus the 

 

contingent securities. The 

usual transversality condition on asset accumulation applies, which rules out Ponzi schemes. 

 

 

is the (nominal) target rate. We consider two 

, one in which the central bank reacts to inflation and deviations of 

 

and a second specification in which the central bank responds to deviations of output growth 

 

is the gross inflation rate defined as π t  = P t /P 

is the target inflation rate, which in equilibrium coincides with the steady-state 



 

inflation rate. Y t in (10) is the level of output that would prevail in the absence of nominal 

rigidities. 

 

The fiscal authority consumes a fraction 

an exogenous process. The government levies a lump

shortfalls in government revenues (or to rebate any surplus). The government's budget 

constraint is given by  

 

 

where G t  = ζ t Y t . 

 

2.2 Exogenous Processes 

The model economy is perturbed by three exogenous processes. Aggregate productivity 

evolves according to  

 

 

Thus on average technology grows at the rate 

technology growth rate. Define 

 

 

Finally, the monetary policy shock 

innovations are independent of each other at all leads and lags and are normally distributed 

with means zero and standard deviat

 

2.3 Equilibrium Relationships

We consider the symmetric equilibrium in which all intermediate goods producing firms 

make identical choices so that the 

are given by  

 

 

Since the households have access to a full set of state

 

It can be shown that output, consumption, interest rates, and inflation have to satisfy the 

following optimality conditions 
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) is the level of output that would prevail in the absence of nominal 

The fiscal authority consumes a fraction ζ t of aggregate output Y t, where ζ 

an exogenous process. The government levies a lump-sum tax (subsidy) to finance any 

shortfalls in government revenues (or to rebate any surplus). The government's budget 

The model economy is perturbed by three exogenous processes. Aggregate productivity 

Thus on average technology grows at the rate γ, and z t captures exogenous fluctuations of the 

technology growth rate. Define g t  = 1/(1 − ζ t ). We assume that  

Finally, the monetary policy shock R, t is assumed to be serially uncorrelated. The three 

innovations are independent of each other at all leads and lags and are normally distributed 

with means zero and standard deviations σ z, σ g, and σ R, respectively. 

2.3 Equilibrium Relationships 

We consider the symmetric equilibrium in which all intermediate goods producing firms 

make identical choices so that the j subscript can be omitted. The market clearing conditions 

Since the households have access to a full set of state-contingent claims, Q

It can be shown that output, consumption, interest rates, and inflation have to satisfy the 

following optimality conditions  

) is the level of output that would prevail in the absence of nominal 

 t   [0, 1] follows 

sum tax (subsidy) to finance any 

shortfalls in government revenues (or to rebate any surplus). The government's budget 

 

The model economy is perturbed by three exogenous processes. Aggregate productivity 

 

captures exogenous fluctuations of the 

 

is assumed to be serially uncorrelated. The three 

innovations are independent of each other at all leads and lags and are normally distributed 

We consider the symmetric equilibrium in which all intermediate goods producing firms 

subscript can be omitted. The market clearing conditions 

 

Q t+s|t in (6) is  

 

It can be shown that output, consumption, interest rates, and inflation have to satisfy the 



 

 

In the absence of nominal rigidities (

 

 

which is the target level of output that 

Since the non-stationary technology process 

consumption, it is convenient to express the model in terms of detrended variables 

t and y t  = Y t /A t. The model economy has a unique steady

variables that is attained if the innovations 

state inflation π equals the target rate 

 

 

Let t  = ln (x t /x) denote the percentage deviation of a variable 

Then the model can be expressed as 

 

 

For the output growth rule specification, Equation (
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In the absence of nominal rigidities (  = 0) aggregate output is given by  

which is the target level of output that appears in the output gap rule specification.

stationary technology process A t induces a stochastic trend in output and 

consumption, it is convenient to express the model in terms of detrended variables 

The model economy has a unique steady-state in terms of the detrended 

variables that is attained if the innovations R, t, g, t, and z, t are zero at all times. The steady

 equals the target rate π  and  

) denote the percentage deviation of a variable x t from its steady

Then the model can be expressed as  

For the output growth rule specification, Equation (24) is replaced by  

 

 

appears in the output gap rule specification. 

induces a stochastic trend in output and 

consumption, it is convenient to express the model in terms of detrended variables c t  = C t /A 

state in terms of the detrended 

are zero at all times. The steady-

 

from its steady-state x.  

 

 



 

2.4. Model Solutions 

Equations (21) to (26) form a 

 t, t, t, , t, and t that is driven by the vector of innovations 

This rational expectations system has to be solved before the DSG

Define
2
  

 

 

The solution of the rational expectations system takes the form

  

 

From an econometric perspective, 

non-linear state space model and (

 

A variety of numerical techniques are available to solve rational expectations systems. In the 

context of likelihood-based DSGE mode

popular because they lead to a state

analyzed with the Kalman filter. Linearization and straightforward manipulation of Equations 

(21) to (23) yields  

where  

Equations (29) to (31) combined with (

linear rational expectations system in 

for instance, Blanchard and Kahn 

(1998), Uhlig (1999), Anderson (2000), Kim (2000), Christiano (2002), and Sims (2002)

Depending on the parameterizatio

rational expectations solution exists, the stable solution is unique (determinacy), or there are 

multiple stable solutions (indeterminacy). We will focus on the case of determinacy and 

restrict the parameter space accordingly. The resulting law of motion for the 

takes the form  

                                                          
2
 Under the output growth rule specification for R  t the vector 
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) form a non-linear rational expectations system in the variables

that is driven by the vector of innovations t  = [

This rational expectations system has to be solved before the DSGE model can be estimated. 

 

The solution of the rational expectations system takes the form 

From an econometric perspective, s t can be viewed as a (partially latent) state vector in a 

linear state space model and (28) is the state transition equation. 

A variety of numerical techniques are available to solve rational expectations systems. In the 

based DSGE model estimation, linear approximation methods are very 

popular because they lead to a state–space representation of the DSGE model that can be 

analyzed with the Kalman filter. Linearization and straightforward manipulation of Equations 

) combined with (24) to (26) and the trivial identity 

linear rational expectations system in s t for which several solution algorithms are available, 

for instance, Blanchard and Kahn (1980), Binder and Pesaran (1997), King and Watson 

(1998), Uhlig (1999), Anderson (2000), Kim (2000), Christiano (2002), and Sims (2002)

Depending on the parameterization of the DSGE model there are three possibilities: no stable 

rational expectations solution exists, the stable solution is unique (determinacy), or there are 

multiple stable solutions (indeterminacy). We will focus on the case of determinacy and 

he parameter space accordingly. The resulting law of motion for the 

                   

Under the output growth rule specification for R  t the vector s t also contains t−1 

linear rational expectations system in the variables 

 R, t, g, t, z, t ]′. 

E model can be estimated. 

 

can be viewed as a (partially latent) state vector in a 

A variety of numerical techniques are available to solve rational expectations systems. In the 

l estimation, linear approximation methods are very 

space representation of the DSGE model that can be 

analyzed with the Kalman filter. Linearization and straightforward manipulation of Equations 

 

 

R, t  =  R, t form a 

for which several solution algorithms are available, 

, Binder and Pesaran (1997), King and Watson 

(1998), Uhlig (1999), Anderson (2000), Kim (2000), Christiano (2002), and Sims (2002). 

n of the DSGE model there are three possibilities: no stable 

rational expectations solution exists, the stable solution is unique (determinacy), or there are 

multiple stable solutions (indeterminacy). We will focus on the case of determinacy and 

he parameter space accordingly. The resulting law of motion for the jth element of s t 

 



 

Here J denotes the number of elements of the vector 

in the vector t. Here the coefficients 

of the DSGE model. 

 

While in many applications first

refinement is an active area of research. For instance, if the goal of the analysis is to compare 

welfare across policies or market structures that do not have first

steady-state or to study asset pricing implications of DSGE models, a more accurate solution 

may be necessary; see, for instance, Kim and Kim 

example can illustrate this point. Consider a on

function of consumption and is approximated as 

where is the percentage deviation of consumption from its steady

denotes the ith derivative. Suppose that consumption is a smooth fun

random shock which is scaled by 

steady-state (σ = 0) is  

 

 

If first-order approximations are used for both 

approximated by the steady-state utility 

described above, is not affected by the coefficients 

(24). A second-order approximation of both 

 

 

Using a second-order expansion of the utility function together with a first

consumption ignores the second term in (

C 
(2)

(c) is zero. The first case arises if the marginal utility of consumption in the steady

is zero, and the second case arises if the percentage deviation of consumption from the 

steady-state is a linear function of the shock.

 

A second-order accurate solution to the DSGE model can be obtained from a second

expansion of the equilibrium conditions (

have been developed by Judd 

Schmitt-Grohé and Uribe (2006), Kim et al. (2005), and Swanson et al. (2005). 

state transition equation can be expressed as 
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denotes the number of elements of the vector s t and n is the number of shocks stacked 

Here the coefficients and are functions of the structural parameters 

While in many applications first-order approximations are sufficient, the higher

refinement is an active area of research. For instance, if the goal of the analysis is to compare 

welfare across policies or market structures that do not have first-order effects on the model's 

state or to study asset pricing implications of DSGE models, a more accurate solution 

may be necessary; see, for instance, Kim and Kim (2003) or Woodford, M. (2003

example can illustrate this point. Consider a one-period model in which utility is a smooth 

function of consumption and is approximated as  

is the percentage deviation of consumption from its steady-state and the superscript 

th derivative. Suppose that consumption is a smooth function of a zero mean 

which is scaled by σ. The second-order approximation of 

order approximations are used for both U and C, then the expected utility is simply 

state utility U(0), which, for instance, in the DSGE model 

described above, is not affected by the coefficients ψ1 and ψ2 of the monetary policy rule 

order approximation of both U and C leads to  

order expansion of the utility function together with a first-

consumption ignores the second term in (36) and is only appropriate if either 

) is zero. The first case arises if the marginal utility of consumption in the steady

arises if the percentage deviation of consumption from the 

state is a linear function of the shock. 

order accurate solution to the DSGE model can be obtained from a second

expansion of the equilibrium conditions (21) to (26). Algorithms to construct such solutions 

have been developed by Judd (1998), Collard and Juillard (2001), Jin and Judd (2002), 

Grohé and Uribe (2006), Kim et al. (2005), and Swanson et al. (2005). 

state transition equation can be expressed as  

is the number of shocks stacked 

functions of the structural parameters 

order approximations are sufficient, the higher-order 

refinement is an active area of research. For instance, if the goal of the analysis is to compare 

er effects on the model's 

state or to study asset pricing implications of DSGE models, a more accurate solution 

, M. (2003). A simple 

period model in which utility is a smooth 

 

state and the superscript i 

ction of a zero mean 

 around the 

 

, then the expected utility is simply 

(0), which, for instance, in the DSGE model 

of the monetary policy rule 

 

-order expansion of 

) and is only appropriate if either U 
(1)

(0) or  

) is zero. The first case arises if the marginal utility of consumption in the steady-state 

arises if the percentage deviation of consumption from the 

order accurate solution to the DSGE model can be obtained from a second-order 

). Algorithms to construct such solutions 

uillard (2001), Jin and Judd (2002), 

Grohé and Uribe (2006), Kim et al. (2005), and Swanson et al. (2005). The resulting 
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As before, the coefficients are functions of the parameters of the DSGE model. For the 

subsequent analysis we use Sims’ (2002) procedure to compute a first-order accurate solution 

of the DSGE model and Schmitt-Grohé and Uribe’s (2006 ) algorithm to obtain a second-

order accurate solution. 

 

While perturbation methods approximate policy functions only locally, there are several 

global approximation schemes, including projection methods such as the finite-elements 

method and Chebyshev–polynomial method on the spectral domain. Judd (1998) covers 

various solution methods, and Taylor and Uhlig (1990), Den Haan and Marcet (1994), and 

Aruoba et al. (2004) compare the accuracy of alternative solution methods. 

 

2.5. Measurement Equations 

The model is completed by defining a set of measurement equations that relate the elements 

of s t to a set of observables. We assume that the time period t in the model corresponds to 

one quarter and that the following observations are available for estimation: quarter-to-

quarter per capita GDP growth rates (YGR), annualized quarter-to-quarter inflation rates 

(INFL), and annualized nominal interest rates (INT). The three series are measured in 

percentages, and their relationship to the model variables is given by the set of equations  

 

 
 

The parameters γ
(Q)

, π
(A)

, and r 
(A)

 are related to the steady states of the model economy as  

 

 
 

The structural parameters are collected in the vector θ. Since in the first-order approximation 

the parameters ν and are not separately identifiable, we express the model in terms of κ, 

defined in (32). Let  
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For the quadratic approximation the composite parameter κ will be replaced by either ( , ν) 

or alternatively by (κ, ν). Moreover, θ will be augmented with the steady-state ratio c/y, 

which is equal to 1/g. 

 

3. PRELIMINARIES 

Numerous formal and informal econometric procedures have been proposed to parameterize 

and evaluate DSGE models, ranging from calibration, e.g., Kydland and Prescott (1982) over 

generalized method of moments (GMM) estimation of equilibrium relationships, e.g., 

Christiano and Eichenbaum (1992), minimum distance estimation based on the discrepancy 

among VAR and DSGE model impulse response functions, e.g., Rotemberg and Woodford 

(1997), to full-information likelihood-based estimation as in Altug (1989), McGrattan (1994), 

Leeper and Sims (1994), and Kim (2000). Much of the methodological debate surrounding 

the various estimation (and model evaluation) techniques is summarized in papers by 

Kydland and Prescott (1996), Hansen and Heckman (1996), and Sims (1996). 

 

We focus on Bayesian estimation of DSGE models, which has three main characteristics. 

First, unlike GMM estimation based on equilibrium relationships such as the consumption 

Euler equation (21), the price setting equation of the intermediate goods producing firms 

(22), or the monetary policy rule (24), the Bayesian analysis is system-based and fits the 

solved DSGE model to a vector of aggregate time series. Second, the estimation is based on 

the likelihood function generated by the DSGE model rather than, for instance, the 

discrepancy between DSGE model responses and VAR impulse responses. Third, prior 

distributions can be used to incorporate additional information into the parameter estimation. 

Any estimation and evaluation method is confronted with the following challenges: potential 

model misspecification and possible lack of identification of parameters of interest. We will 

subsequently elaborate these challenges and discuss how a Bayesian approach can be used to 

cope with them. 

Throughout the paper we will use the following notation: the n × 1 vector y t stacks the time t 

observations that are used to estimate the DSGE model. In the context of the model 

developed in Section 2 y t is composed of YGR t, INFL t, INT t. The sample ranges from t = 1 to 

T and the sample observations are collected in the matrix Y with rows y t ′. We denote the 

prior density by p(θ), the likelihood function by (θ | Y), and the posterior density by 

p(θ | Y). 

3.1. Potential Model Misspecification 

If one predicts a vector of time series y t, for instance composed of output growth, inflation, 

and nominal interest rates, by a function of past y t 's, then the resulting forecast error 

covariance matrix is non-singular. Hence any DSGE model that generates a rank-deficient 

covariance matrix for y t is clearly at odds with the data and suffers from an obvious form of 

misspecification. This singularity is an obstacle to likelihood estimation. Hence one branch of 

the literature has emphasized procedures that can be applied despite the singularity, whereas 
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the other branch has modified the model specification to remove the singularity by adding so-

called measurement errors, e.g., Sargent (1989),  Altug (1989), Ireland (2004), or additional 

structural shocks as in Leeper and Sims (1994) and more recently Smets and Wouters (2003). 

In this paper we pursue the latter approach by considering a model in which the number of 

structural shocks (monetary policy shock, government spending shock, technology growth 

shock) equals the number of observables (output growth, inflation, interest rates) to which the 

model is fitted. 

A second source of misspecification that is more difficult to correct is potentially invalid 

cross-coefficient restrictions on the time series representation of y t generated by the DSGE 

model. Invalid restrictions manifest themselves in poor out-of-sample fit relative to more 

densely parameterized reference models such as VARs. Del Negro et al. (2006) document 

that even an elaborate DSGE model with capital accumulation and various nominal and real 

frictions has difficulties attaining the fit achieved with VARs that have been estimated with 

well-designed shrinkage methods. While the primary research objectives in the DSGE model 

literature is to overcome discrepancies between models and reality, it is important to have 

empirical strategies available that are able to cope with potential model misspecification. 

Once one acknowledges that the DSGE model provides merely an approximation to the law 

of motion of the time series y t, then it seems reasonable to assume that there need not exist a 

single parameter vector θ0 that delivers, say, the “true” intertemporal substitution elasticity or 

price adjustment costs and, simultaneously, the most precise impulse responses to a 

technology or monetary policy shock. Each estimation method is associated with a particular 

measure of discrepancy between the ‘true’ law of motion and the class of approximating 

models. Likelihood-based estimators, for instance, asymptotically minimize the Kullback–

Leibler distance (see White, 1982). 

One reason that pure maximum likelihood estimation of DSGE models has not turned into the 

estimation method of choice is the “dilemma of absurd parameter estimates.” Estimates of 

structural parameters generated with maximum likelihood procedures based on a set of 

observations Y are often at odds with additional information that the research may have. For 

example, estimates of the discount factor β should be consistent with our knowledge about 

the average magnitude of real interest rates, even if observations on interest rates are not 

included in the estimation sample Y. Time series estimates of aggregate labor supply 

elasticities or price adjustment costs should be broadly consistent with microlevel evidence. 

However, due to the stylized nature and the resulting misspecification of most DSGE models, 

the likelihood function often peaks in regions of the parameter space that appear to be 

inconsistent with extraneous information. 

In a Bayesian framework, the likelihood function is reweighted by a prior density. The prior 

can bring to bear information that is not contained in the estimation sample Y. Since priors 

are always subject to revision, the shift from prior to posterior distribution can be an indicator 

of the tension between different sources of information. If the likelihood function peaks at a 

value that is at odds with the information that has been used to construct the prior 

distribution, then the marginal data density of the DSGE model, defined as  
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will be low compared to, say, a VAR, and in a posterior odds comparison the DSGE model 

will automatically be penalized for not being able to reconcile the two sources of information 

with a single set of parameters. Section 5 will discuss several methods that have been 

proposed to assess the fit of DSGE models: posterior odds comparisons of competing model 

specifications, posterior predictive checks, and comparisons to reference models that relax 

some of the cross-coefficient restrictions generated by the DSGE models. 

3.2. Identification 

Identification problems can arise owing to a lack of informative observations or, more 

fundamentally, from a probability model that implies that different values of structural 

parameters lead to the same joint distribution for the observables Y. At first glance the 

identification of DSGE model parameters does not appear to be problematic. The parameter 

vector θ is typically low dimensional compared to VARs and the model imposes tight 

restrictions on the time series representation of Y. However, recent experience with the 

estimation of New Keynesian DSGE models has cast some doubt on this notion and triggered 

a more careful assessment. Lack of identification is documented in papers by Beyer and 

Farmer (2004) and Canova and Sala (2005). The former paper provides an algorithm to 

construct families of observationally equivalent linear rational expectations models, whereas 

the latter paper compares the informativeness of different estimators with respect to key 

structural parameters in a variety of DSGE models. 

The delicate identification problems that arise in rational expectations models can be 

illustrated in a simple example adopted from Lubik and Schorfheide (2006). Consider the 

following two models, in which y t is the observed endogenous variable and u t is an 

unobserved shock process. In model 1, the u t 's are serially correlated:  

 

In model 2 the shocks are serially uncorrelated, but we introduce a backward-looking term 

y t−1 on the right-hand side to generate persistence:  
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For both specifications, the law of motion of y t is  

 

Under restrictions on the parameter spaces that guarantee uniqueness of a stable rational 

expectations solution
3
 we obtain the following relationships between ψ and the structural 

parameters:  

 

In model 1 the parameter α is not identifiable, and in model 2, the parameters α and  

are not separately identifiable. Moreover, models 1 and 2 are observationally equivalent. 

The likelihood functions of 1 and 2 have ridges that can cause serious problems for 

numerical optimization procedures. The calculation of a valid confidence set is challenging 

since it is difficult to trace out the parameter subspace along which the likelihood function is 

constant. 

While Bayesian inference is based on the likelihood function, even a weakly informative 

prior can introduce curvature into the posterior density surface that facilitates numerical 

maximization and the use of MCMC methods. Consider model 1. Here θ = [ρ, α]′ and the 

likelihood function can be written as . Straightforward manipulations of 

the Bayes theorem yield  

 

 

Thus the prior distribution is not updated in directions of the parameter space in which the 

likelihood function is flat. This is of course well known in Bayesian econometrics; see Poirier 

(1998) for a discussion. 

It is difficult to detect directly identification problems in large DSGE models, since the 

mapping from the vector of structural parameters θ into the state–space representation that 

determines the joint probability distribution of Y is highly non-linear and typically can only 

be evaluated numerically. The posterior distribution is well defined as long as the joint prior 

distribution of the parameters is proper. However, lack of identification provides a challenge 

for scientific reporting, as the audience typically would like to know what features of the 

posterior are generated by the prior rather than the likelihood. A direct comparison of priors 

and posteriors can often provide valuable insights about the extent to which data provide 

information about the parameters of interest. 

                                                           

3
 To ensure determinacy we impose α > 1 in 1 and and in 2. 
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3.3. Priors 

As indicated in our previous discussion, prior distributions will play an important role in the 

estimation of DSGE models. They might downweigh regions of the parameter space that are 

at odds with observations not contained in the estimation sample Y. They might also add 

curvature to a likelihood function that is (nearly) flat in some dimensions of the parameter 

space and therefore strongly influence the shape of the posterior distribution.
4
 While, in 

principle, priors can be gleaned from personal introspection to reflect strongly held beliefs 

about the validity of economic theories, in practice most priors are chosen based on some 

observations.  

For instance, Lubik and Schorfheide (2006) estimate a two-country version of the model 

described in Section 2. Priors for the autocorrelations and standard deviations of the 

exogenous processes, the steady-state parameters γ
(Q)

, π
(A)

, and r 
(A)

, as well as the standard 

deviation of the monetary policy shock, are quantified based on regressions run on pre-

(estimation)-sample observations of output growth, inflation, and nominal interest rates. The 

priors for the coefficients in the monetary policy rule are loosely centered around values 

typically associated with the Taylor rule. The prior for the parameter that governs price 

stickiness is chosen based on microevidence on price setting behavior provided, for instance, 

in Bils and Klenow (2004). To fine-tune the prior distribution, in particular the distribution of 

shock standard deviations, it is often helpful to simulate the prior predictive distribution for 

various sample moments and check that the prior does not place little or no mass in a 

neighborhood of important features of the data. Such an occurrence would suggest that the 

model is incapable of explaining salient data properties. A formalization of such a prior 

predictive check can be found in Geweke (2005).  

Table 2 lists the marginal prior distributions for the structural parameters of the DSGE model, 

that we will use in the subsequent analysis. These priors are adopted from Lubik and 

Schorfheide (2006).  For convenience, it is assumed that all parameters are a priori 

independent. In applications in which the independence assumption is unreasonable one 

could derive parameter transformations, such as steady rate ratios, autocorrelations, or 

relative volatilities, and specify independent priors on the transformed parameters, which 

induce dependent priors for the original parameters. As mentioned before, rational 

expectations models can have multiple equilibria. While this may be of independent interest 

we do not pursue this direction in this paper. Hence, the prior distribution is truncated at the 

boundary of the determinacy region. Prior to the truncation the distribution specified in Table 

2 places about 2% of its mass on parameter values that imply indeterminacy. The parameters 

ν (conditional on κ) and 1/g only affect the second-order approximation of the DSGE model. 

 

 

                                                           
4
 The role of priors in DSGE model estimation is markedly different from the role of priors in VAR estimation. 

In the latter case priors are essentially used to reduce the dimensionality of the econometric model and hence the 

sampling variability of the parameter estimates. 
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3.4. The Road Ahead 

Throughout this paper we are estimating and evaluating versions of the DSGE model 

presented in Section 2 based on simulated data. Table 1 provides a characterization of the 

model specifications and data sets.  

Model 1 is the benchmark specification of the DSGE model in which monetary policy 

follows an interest-rate rule that reacts to the output gap. 1(L) is approximated by a linear 

rational expectations system, whereas 1(Q) is solved with a second-order perturbation 

method. In 2(L) we replace the output gap in the interest-rate feedback rule by output 

growth. 3 and 4 are identical to 1(L), except that in one case we impose that the 

prices are nearly flexible (κ = 5) and in the other case the central bank does not respond to 

output (ψ2 = 0). In 5(L) we replace the log-linearized consumption Euler equation by an 

equation that includes lagged output on the right-hand side. Loosely speaking, this 

specification can be motivated with a model in which agents derive utility from the difference 

between individual consumption and the overall level of consumption in the previous period.  

 

TABLE 1 Model specifications and data sets  

1(L) Benchmark Model with output gap rule, consists of Eqs. (21)–(26), solved by first-order 

approximation. 

1(Q) Benchmark Model with output gap rule, consists of Eqs. (21)–(26), solved by second-order 

approximation. 

2(L) DSGE Model with output growth rule, consists of Eqs. (21)–(26), however, Eq. (24) is replaced by Eq. 

(27), solved by first-order approximation. 

3(L) Same as 1(L), except that prices are nearly flexible: κ = 5. 

4(L) Same as 1(L), except that central bank does not respond to the output gap: ψ2 = 0. 

5(L) Same as 1(L), except in first-order approximation Eq. (29)is replaced by 

with h = .95. 

D1(L) 80 observations generated with 1(L) 

D 1(Q) 80 observations generated with 1(Q) 

D 2(L) 80 observations generated with 2(L) 

D 5(L) 80 observations generated with 5(L) 

 

Conditional on parameter vectors reported in Tables 2 and 3 we generate four data sets with 

80 observations each. We use the labels D1(L), D1(Q), D2(L), and D5(L) to denote data sets 

generated from 1(L), 1(Q), 2(L), and 5(L), respectively. By and large, the values 

for the DSGE model parameters resemble empirical estimates obtained from post-1982 U.S. 

data. The sample size is fairly realistic for the estimation of monetary DSGE model. Many 

industrialized countries experienced a high inflation episode in the 1970s that ended with a 

disinflation in the 1980s. Subsequently, the level and the variability of inflation and interest 

rates have been fairly stable, so that it is not uncommon to estimate constant coefficient 

DSGE models based on data sets that begin in the early 1980s. 
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TABLE 2 Prior distribution and DGPs—linear analysis (Sections 4 and 5)  

      Prior   

Name Domain Density Para (1) Para (2) DGP D 1(L), D 2(L), D 5(L) 

τ 
+
  Gamma 2.00 .50 2.00 

κ 
+
  Gamma .20 .10 .15 

ψ1  
+
  Gamma 1.50 .25 1.50 

ψ2  
+
  Gamma .50 .25 1.00 

ρ R  [0, 1) Beta .50 .20 .60 

ρ G  [0, 1) Beta .80 .10 .95 

ρ Z  [0, 1) Beta .66 .15 .65 

r 
(A)

  
+
  Gamma .50 .50 .40 

π
(A)

  
+
  Gamma 7.00 2.00 4.00 

γ
(Q)

   Normal .40 .20 .50 

100 σ R  
+
  InvGamma .40 4.00 .20 

100 σ G  
+
  InvGamma 1.00 4.00 .80 

100 σ Z  
+
  InvGamma .50 4.00 .45 

Notes: Paras (1) and (2) list the means and the standard deviations for Beta, Gamma, and Normal distributions; 

the upper and lower bound of the support for the Uniform distribution; s and ν for the Inverse Gamma 

distribution, where p G (σ | ν, s) σ
−ν−1

 e 
−ν s 2/2σ2. 

The effective prior is truncated at the boundary of the 

determinacy region. 

Notes: Paras (1) and (2) list the means and the standard deviations for Beta, Gamma, and Normal distributions; 

the upper and lower bound of the support for the Uniform distribution; s and ν for the Inverse Gamma 

distribution, where p G (σ | ν, s) σ−ν−1 e −ν s 2/2σ2. The effective prior is truncated at the boundary of the 

determinacy region.  

 

TABLE 3 Prior distribution and DGP—Nonlinear analysis (Section 6)  

      Prior   

Name Domain Density Para (1) Para (2) DGP D 1(Q) 

τ 
+
  Gamma 2.00 .50 2.00 

κ 
+
  Gamma .30 .20 .33 

ψ1  
+
  Gamma 1.50 .25 1.50 

ψ2  
+
  Gamma .50 .25 .125 

ρ R  [0, 1) Beta .50 .20 .75 

ρ G  [0, 1) Beta .80 .10 .95 

ρ Z  [0, 1) Beta .66 .15 .90 

r 
(A)

  
+
  Gamma .80 .50 1.00 

π
(A)

  
+
  Gamma 4.00 2.00 3.20 

γ
(Q)

   Normal .40 .20 .55 

100σ R  
+
  InvGamma .30 4.00 .20 

100 σ G  
+
  InvGamma .40 4.00 .60 

100 σ Z  
+
  InvGamma .40 4.00 .30 

ν [0, 1) Beta .10 .05 .10 

1/g  [0, 1) Beta .85 .10 .85 

Notes: See Table 2. Parameters ν and 1/g only affect the second-order accurate solution of the DSGE model. 

Notes: See Table 2. Parameters ν and 1/g only affect the second-order accurate solution of the DSGE model. 
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Section 4 illustrates the estimation of linearized DSGE models under correct specification, 

that is, we construct posteriors for 1(L) and 2(L) based on the data sets D1(L) and  

D2(L). Section 5 considers model evaluation techniques. We begin with posterior predictive 

checks in Section 5.1, which are implemented based on 1(L) for data sets D1(L) (correct 

specification of DSGE model) and D5(L) (misspecification of the consumption Euler 

equation). In Section 5.2 we proceed with the calculation of posterior model probabilities for 

specifications 1(L), 3(L), and 4(L) conditional on the data set D1(L). Subsequently in 

Section 5.3 we compare 1(L) to a vector autoregressive specification using D1(L) (correct 

specification) and D5(L) (misspecification). Finally, in Section 6 we study the estimation of 

DSGE models solved with a second-order perturbation method. We compare posteriors for 

1(Q) and 1(L) conditional on D1(Q). 

4. ESTIMATION OF LINEARIZED DSGE MODELS 

We will begin by describing two algorithms that can be used to generate draws from the 

posterior distribution of θ and subsequently illustrate their performance in the context of 

models 1(L)/ D 1(L) and 2(L)/ D 2(L). 

4.1. Posterior Computations 

We consider an RWM algorithm and an IS algorithm to generate draws from the posterior 

distribution of θ. Both algorithms require the evaluation of (θ | Y)p(θ). The computation of 

the non-normalized posterior density proceeds in two steps. First, the linear rational 

expectations system is solved to obtain the state transition equation (33). If the parameter 

value θ implies indeterminacy (or non-existence of a stable rational expectations solution), 

then (θ | Y)p(θ) is set to zero. If a unique stable solution exists, then the Kalman filter
5
 is 

used to evaluate the likelihood function associated with the linear state–space system (33) 

and (38). Since the prior is generated from well-known densities, the computation of p(θ) is 

straightforward.  

The RWM algorithm belongs to the more general class of Metropolis–Hastings algorithms. 

This class is composed of universal algorithms that generate Markov chains with stationary 

distributions that correspond to the posterior distributions of interest. A first version of such 

an algorithm had been constructed by Metropolis et al. (1953) to solve a minimization 

problem and was later generalized by Hastings (1970). Chib and Greenberg (1995) provide 

an excellent introduction to Metropolis–Hastings algorithms. The RWM algorithm was first 

                                                           
5
 Since according to our model st is stationary, the Kalman filter can be initialized with the unconditional 

distribution of st. To make the estimation in Section 4 comparable to the DSGE-VAR analysis presented in 

Section 5.3 we adjust the likelihood function to condition on the first four observations in the sample: (θ | Y)/

(θ | y 1,…,y 4). These four observations are later used to initialize the lags of a VAR. 
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used to generate draws from the posterior distribution of DSGE model parameters by 

Schorfheide (2000).
6
 

Random-Walk Metropolis (RWM) Algorithm 

1. Use a numerical optimization routine to maximize ln (θ | Y) + ln p(θ). Denote the posterior mode by ϴ. 

2. 
Let  be the inverse of the Hessian computed at the posterior mode ϴ. 

3. 
Draw θ

(0)
 from or directly specify a starting value. 

4. 

For s = 1,…,n sim, draw ϴ from the proposal distribution . The jump from θ
(s−1)

 is 

accepted (θ
(s)

 = ϴ) with probability min{1, r(θ
(s−1)

,ϴ | Y)} and rejected (θ
(s)

 = θ
(s−1)

) otherwise. Here  

 

5. 
Approximate the posterior expected value of a function h(θ) by . 

 

Under fairly general regularity conditions, e.g., Walker (1969), Crowder (1988), and Kim 

(1998), the posterior distribution of θ will be asymptotically normal. The algorithm constructs 

a Gaussian approximation around the posterior mode and uses a scaled version of the 

asymptotic covariance matrix as the covariance matrix for the proposal distribution. This 

allows for an efficient exploration of the posterior distribution at least in the neighborhood of 

the mode. 

The maximization of the posterior density kernel is carried out with a version of the BFGS 

quasi-Newton algorithm, written by Chris Sims for the maximum likelihood estimation of a 

DSGE model conducted in Leeper and Sims (1994). The algorithm uses a fairly simple line 

search and randomly perturbs the search direction if it reaches a cliff caused by nonexistence 

or non-uniqueness of a stable rational expectations solution for the DSGE model. Prior to the 

numerical maximization we transform all parameters so that their domain is unconstrained. 

This parameter transformation is only used in Step 1 of the RWM algorithm. The elements of 

the Hessian matrix in Step 2 are computed numerically for various values of the increment 

dθ. There typically exists a range for dθ over which the derivatives are stable. As dθ 

approaches zero the numerical derivatives will eventually deteriorate owing to inaccuracies in 

                                                           
6
 This version of the algorithm is available in the user-friendly DYNARE (2005) package, which automates the 

Bayesian estimation of linearized DSGE models and provides routines to solve DSGE models with higher-order 

perturbation methods.  



 

the evaluation of the objective function. While Steps 1 and 2 are not necessary for the 

implementation of the RWM algorithm, they are often helpful.

The RWM algorithm generates a sequence of dependent draws 

of θ that can be averaged to approximate posterior moments. Geweke (

regularity conditions that guarantee the conve

Metropolis–Hastings algorithms to the posterior distribution of interest and the convergence 

of to the posterior expectations 

DeJong et al. (2000) used an IS algorithm to calculate posterior moments of the parameters of 

a linearized stochastic growth model. The idea of the algorithm is based on the identity 

Draws from the posterior density 

reweighted by the importance ratio 

posterior moment of interest. Hammersley and Handscomb (

propose this method and Geweke (

particular version of the IS algorithm used subsequently is of the following form.

Importance Sampling (IS) Algorithm

1. Use a numerical optimization routine to maximize ln

2. 
Let be the inverse of the Hessian computed at the posterior mode 

3. Let q(θ) be the density of a multivariate 

freedom. 

4. For s = 1,…,n sim generate draws 

5. 
Compute s  = (θ

(s)
 | Y) p(θ

6. 
Approximate the posterior expected value of a function 

 

The accuracy of the IS approximation depends on the similarity between posterior kernel and 

importance density. If the two are equal, then the importance weights 

averages independent draws to approximate the posterior expectations of interest. If the 

importance density concentrates its mass in a region of the parameter space in which the 
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the evaluation of the objective function. While Steps 1 and 2 are not necessary for the 

implementation of the RWM algorithm, they are often helpful. 

The RWM algorithm generates a sequence of dependent draws from the posterior distribution 

 that can be averaged to approximate posterior moments. Geweke (1999a

regularity conditions that guarantee the convergence of the Markov chain generated by 

Hastings algorithms to the posterior distribution of interest and the convergence 

to the posterior expectations [h(θ) | Y]. 

used an IS algorithm to calculate posterior moments of the parameters of 

a linearized stochastic growth model. The idea of the algorithm is based on the identity 

Draws from the posterior density p(θ | Y) are replaced by draws from the density 

reweighted by the importance ratio p(θ | Y)/q(θ) to obtain a numerical approximation of the 

posterior moment of interest. Hammersley and Handscomb (1964) were among the first to 

propose this method and Geweke (1989) provides important convergence results. The 

particular version of the IS algorithm used subsequently is of the following form.

Importance Sampling (IS) Algorithm 

Use a numerical optimization routine to maximize ln (θ | Y) + ln p(θ). Denote the posterior mode by 

be the inverse of the Hessian computed at the posterior mode ϴ. 

) be the density of a multivariate t-distribution with mean ϴ, scale matrix 

generate draws θ
(s)

 from q(θ). 

(θ
(s)

)/q(θ
(s)

) and . 

Approximate the posterior expected value of a function h(θ) by 

The accuracy of the IS approximation depends on the similarity between posterior kernel and 

importance density. If the two are equal, then the importance weights ws are constant and one 

averages independent draws to approximate the posterior expectations of interest. If the 

importance density concentrates its mass in a region of the parameter space in which the 

the evaluation of the objective function. While Steps 1 and 2 are not necessary for the 

from the posterior distribution 

1999a, 2005) reviews 

rgence of the Markov chain generated by 

Hastings algorithms to the posterior distribution of interest and the convergence 

used an IS algorithm to calculate posterior moments of the parameters of 

a linearized stochastic growth model. The idea of the algorithm is based on the identity  

 

) are replaced by draws from the density q(θ) and 

) to obtain a numerical approximation of the 

were among the first to 

ortant convergence results. The 

particular version of the IS algorithm used subsequently is of the following form. 

). Denote the posterior mode by . 

, and ν degrees of 

. 

The accuracy of the IS approximation depends on the similarity between posterior kernel and 

are constant and one 

averages independent draws to approximate the posterior expectations of interest. If the 

importance density concentrates its mass in a region of the parameter space in which the 
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posterior density is very low, then most of the ws’s will be much smaller than 1/n sim and the 

approximation method is inefficient. We construct a Gaussian approximation of the posterior 

near the mode, scale the asymptotic covariance matrix, and replace the normal distribution 

with a fat-tailed t-distribution to implement the algorithm. 

4.2. Simulation Results for 1( L )/D1( L ) 

We begin by estimating the log-linearized output gap rule specification M1(L) based on data 

set D1(L). We use the RWM algorithm (c 0 = 1, c = 0.3) to generate 1 million draws from the 

posterior distribution. The rejection rate is about 45%. Moreover, we generate 200 

independent draws from the truncated prior distribution. Figure 1 depicts the draws from the 

prior as well as every 5,000th draw from the posterior distribution in two-dimensional scatter 

plots. We also indicate the location of the posterior mode in the 12 panels of the figure. A 

visual comparison of priors and posteriors suggests that the 80 observations sample contains 

little information on the risk-aversion parameter τ and the policy rule coefficients ψ1 and ψ2. 

There is, however, information about the degree of price-stickiness, captured by the slope 

coefficient κ of the Phillips-curve relationship (30). Moreover, the posteriors of steady-state 

parameters, the autocorrelation coefficients, and the shock standard deviations are sharply 

peaked relative to the prior distributions. The lack of information about some of the key 

structural parameters resembles the empirical findings based on actual observations.  

There exists an extensive literature on convergence diagnostics for MCMC methods such as 

the RWM algorithm. An introduction to this literature can be found, for instance, in Robert 

and Casella (1999).  These authors distinguish between convergence of the Markov chain to 

its stationary distribution, convergence of empirical averages to posterior moments, and 

convergence to iid sampling. While many convergence diagnostics are based on formal 

statistical tests, we will consider informal graphical methods in this paper. More specifically, 

we will compare draws and recursively computed means from multiple chains. 

 

We run four independent Markov chains. Except for τ and ψ2, all parameters are initialized at 

their posterior mode values. The initial values for (τ, ψ2) are (3.0,.1), (3.0, 2.0), (.4,.1), and 

(.6, 2.0), respectively. As before, we set c = 0.3, generate 1 million draws for each chain, and 

plot every 5,000th draw of (τ, ψ2) in Figure 2. Panels (1, 1) and (1, 2) of the figure depict 

posterior contours at the posterior mode. Visual inspection of the plots suggests that all four 

chains, despite the use of different starting values, converge to the same (stationary) 

distribution and concentrate in the high-posterior density region. Figure 3 plots recursive 

means for the four chains. Despite different initializations, the means converge in the long 

run.  
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FIGURE 1 Prior and posterior – Model M1(L), Data D1(L). The panels depict 200 draws 

from prior and posterior distributions. Intersections of solid lines signify posterior mode 

values. 
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FIGURE 2 Draws from multiple chains – Model M1(L), Data D1(L). Panels (1, 1) and (1, 2): 

contours of posterior density at “low” and “high” mode as function of τ and ψ2. Panels (2, 1) 

to (3, 2): 200 draws from four Markov chains generated by the Metropolis Algorithm. 

Intersections of solid lines signify posterior mode values. 
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FIGURE 3 Recursive means from multiple chains – Model M1(L), Data D1(L). Each line 

corresponds to recursive means (as a function of the number of draws) calculated from one of 

the four Markov chains generated by the Metropolis Algorithm. 

 

We generate another set of 1 million draws using the IS algorithm with ν = 3 and c = 1.5. As 

for the draws from the RWM algorithm, we compute recursive means. Since neither the IS 

nor the RWM approximation of the posterior means are exact, we construct standard error 

estimates. For the importance sampler we follow Geweke (1999b), and for the Metropolis 
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chain we use Newey-West standard error estimates, truncated at 140 lags.
7
 In Figure 4 we 

plot (recursive) confidence intervals for the RWM and the IS approximation of the posterior 

means. For most parameters the two confidence intervals overlap. Exceptions are, for 

instance, κ, r 
(A)

, ρ g, and σ g. However, the magnitude of the discrepancy is generally small 

relative to, say, the difference between the posterior mode and the estimated posterior means. 

 

 
 

FIGURE 4 RWM algorithm vs. Importance Sampling – Model M1(L), Data D1(L). Panels 

depict posterior modes (solid), recursively computed 95% bands for posterior means based on 

the metropolis algorithm (dotted) and the importance sampler (dashed). 

 

                                                           
7
 It is not guaranteed that the Newey–West standard errors are formally valid.  



 

4.3 A Potential Pitfall: Simulation Results for 

We proceed by estimating the output growth rule version 

80 observations generated from this model (Data Set 

output gap version, the M2(L) posterior has (at least) two modes. One of the modes, which 

we label the “high” mode, 
(h

p(θ)] is equal to −175.48. The second 

and attains the value −183.23. The first two panels of Figure 

normalized posterior density as a function of 

respectively. Panel (1, 1) is constructed by setting 

contours for τ  [0, 3] and ψ2 

(l)
 values. Similarly, Panel (1, 2) is obtained by exploring the shape of the posterior as a 

function of τ and ψ2, fixing the other parameters at their respective 

intersection of the solid lines in panels (1, 1), (2, 1), and (3, 1) signify the low mode, whereas 

the solid lines in the remaining panels indicate the location of the high mode. The two modes 

are separated by a deep valley which is caused by complex eigenvalues of the state trans

matrix.  

 

As in Section 4.2 we generate 1 million draws each for model 

that were initialized at the following values for (

2.0). The remaining parameters were initialized at 

and 4).
8
 We plot every 5,000th draw of 

to (3, 2). Unlike in Panels (1, 1) and (1, 2), the remaining parameters are not fixed at their 

and 
(h)

 values. It turns out that Chains 1 and 3 explore the posterior distribution locally in 

the neighborhood of the low mode, whereas Chains 2 and 4 move through the posterior 

surface near the high mode. Given the configuration of the RWM algorithm the likelih

crossing the valley that separates the two modes is so small that it did not occur. The 

recursive means associated with the four chains are plotted in Figure 

limit points, corresponding to the two posterior modes. While each chain appears to be stable, 

it only explores the posterior in the neighborhood of one of the modes.

 

 

                                                          
8
 The covariance matrices of the proposal distributions are obtained from the Hessians associated with the 

respective modes.  
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4.3 A Potential Pitfall: Simulation Results for M2( L )/D2( L ) 

We proceed by estimating the output growth rule version M2(L) of the DSGE model based on 

80 observations generated from this model (Data Set D2(L)). Unlike the posterior for the 

) posterior has (at least) two modes. One of the modes, which 

h)
, is located at τ = 2.06 and ψ2 = .97. The value of ln

−175.48. The second (“low”) mode, 
(l)

, is located at τ = 1.44 and 

−183.23. The first two panels of Figure 5 depict the contours of the non

normalized posterior density as a function of τ and ψ2 at the low and the high mode, 

respectively. Panel (1, 1) is constructed by setting θ =  
(l)

 and then graphing posterior 

  [0, 2.5], keeping all other parameters fixed at their respective 

values. Similarly, Panel (1, 2) is obtained by exploring the shape of the posterior as a 

, fixing the other parameters at their respective 
(h)

 values. The 

lines in panels (1, 1), (2, 1), and (3, 1) signify the low mode, whereas 

the solid lines in the remaining panels indicate the location of the high mode. The two modes 

are separated by a deep valley which is caused by complex eigenvalues of the state trans

As in Section 4.2 we generate 1 million draws each for model M2 from four Markov chains 

that were initialized at the following values for (τ; ψ2): (3.0; .1), (3.0; 2.0), (.4;

2.0). The remaining parameters were initialized at the low (high) mode for Chains 1 and 3 (2 

We plot every 5,000th draw of τ and ψ2 from the four Markov chains in Panels (2, 1) 

to (3, 2). Unlike in Panels (1, 1) and (1, 2), the remaining parameters are not fixed at their 

values. It turns out that Chains 1 and 3 explore the posterior distribution locally in 

the neighborhood of the low mode, whereas Chains 2 and 4 move through the posterior 

surface near the high mode. Given the configuration of the RWM algorithm the likelih

crossing the valley that separates the two modes is so small that it did not occur. The 

recursive means associated with the four chains are plotted in Figure 6. They exhibit two 

limit points, corresponding to the two posterior modes. While each chain appears to be stable, 

it only explores the posterior in the neighborhood of one of the modes. 

                   

covariance matrices of the proposal distributions are obtained from the Hessians associated with the 

) of the DSGE model based on 

)). Unlike the posterior for the 

) posterior has (at least) two modes. One of the modes, which 

.97. The value of ln [ (θ | Y) 

1.44 and ψ2 = .81 

depict the contours of the non-

at the low and the high mode, 

and then graphing posterior 

ng all other parameters fixed at their respective 

values. Similarly, Panel (1, 2) is obtained by exploring the shape of the posterior as a 

values. The 

lines in panels (1, 1), (2, 1), and (3, 1) signify the low mode, whereas 

the solid lines in the remaining panels indicate the location of the high mode. The two modes 

are separated by a deep valley which is caused by complex eigenvalues of the state transition 

from four Markov chains 

.1), (3.0; 2.0), (.4; .1), and (.6; 

de for Chains 1 and 3 (2 

from the four Markov chains in Panels (2, 1) 

to (3, 2). Unlike in Panels (1, 1) and (1, 2), the remaining parameters are not fixed at their 
(l)

 

values. It turns out that Chains 1 and 3 explore the posterior distribution locally in 

the neighborhood of the low mode, whereas Chains 2 and 4 move through the posterior 

surface near the high mode. Given the configuration of the RWM algorithm the likelihood of 

crossing the valley that separates the two modes is so small that it did not occur. The 

hey exhibit two 

limit points, corresponding to the two posterior modes. While each chain appears to be stable, 

covariance matrices of the proposal distributions are obtained from the Hessians associated with the 
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FIGURE 5 Draws from multiple chains – Model M2(L), Data D2(L). Panels (1, 1) and (1, 2): 

contours of posterior density at “low” and “high” mode as function of τ and ψ2. Panels (2, 1) 

to (3, 2): 200 draws from four Markov chains generated by the metropolis algorithm. 

Intersections of solid lines signify “low” (left panels) and “high” (right panels) posterior 

mode values. 
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FIGURE 6 Recursive means from multiple chains – Model M2(L), Data D( L). Each line 

corresponds to recursive means (as a function of the number of draws) calculated from one of 

the four Markov chains generated by the metropolis algorithm. 

 

We explored various modifications of the RWM algorithm by changing the scaling factor c 

and by setting the off-diagonal elements of to zero. Nevertheless, 1,000,000 draws were 

insufficient for the chains initialized at the low mode to cross over to the neighborhood of the 

high mode. Two remarks are in order. First, extremum estimators that are computed with 

numerical optimization methods suffer from the same problem as the Bayes estimators in this 

example. One might find a local rather than the global extremum of the objective function. 

Hence, it is good practice to start the optimization from different points in the parameter 

space to increase the likelihood that the global optimum is found. Similarly, in Bayesian 

computation it is helpful to start MCMC methods from different regions of the parameter 

space, or vary the distribution q(θ) in the importance sampler. Second, in many applications 

as well as in this example there exists a global mode that dominates the local modes. Hence 

an exploration of the posterior in the neighborhood of the global mode might still provide a 

good approximation to the overall posterior distribution. All subsequent computations are 

based on the output gap rule specification of the DSGE model. 

 



 

4.4 Parameter Transformations for 

Macroeconomists are often interested in posterior distributions of parameter transformations 

h(θ) to address questions such as what fraction of the variation in output growth is caused by 

monetary policy shocks, and what happens to output and inflation in response to a monetary 

policy shock. Answers can be obtained from the moving average representation associated 

with the state space model composed of (

decompositions in the remainder of this subsection.

 

Fluctuations of output growth, inflation, and nominal interest rate in the DSGE model are due 

to three shocks: technology growth shocks, government spending shocks, and monetary 

policy shocks. Hence variance decompositions of the endogenous variables lie i

dimensional simplex, which can be depicted as a triangle in 

draws from the prior distribution (left panels) and 200 draws from the 

of the variance decompositions of output growth and inflation. The posterior draws are 

obtained by converting every 5,000th draw generated with the RWM algorithm. The corners 

Z, G, and R of the triangles correspond to decomposition

explain 100% of the variation, respectively. 

 

FIGURE 7 Prior and posterior variance decompositions 

panels depict 200 draws from prior and posterior distributions arranged on a 3

simplex. The three corners (Z,G,R) correspond to 100% of the variation being due to the 

shocks z, t, g, t, and R, t, respectively.
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4.4 Parameter Transformations for M1( L )/D1( L ) 

Macroeconomists are often interested in posterior distributions of parameter transformations 

such as what fraction of the variation in output growth is caused by 

monetary policy shocks, and what happens to output and inflation in response to a monetary 

policy shock. Answers can be obtained from the moving average representation associated 

e state space model composed of (33) and (38). We will focus on variance 

tions in the remainder of this subsection. 

Fluctuations of output growth, inflation, and nominal interest rate in the DSGE model are due 

to three shocks: technology growth shocks, government spending shocks, and monetary 

policy shocks. Hence variance decompositions of the endogenous variables lie i

dimensional simplex, which can be depicted as a triangle in 
2
. In Figure 7

draws from the prior distribution (left panels) and 200 draws from the posterior (right panels) 

of the variance decompositions of output growth and inflation. The posterior draws are 

obtained by converting every 5,000th draw generated with the RWM algorithm. The corners 

of the triangles correspond to decompositions in which the shocks 

explain 100% of the variation, respectively.  

FIGURE 7 Prior and posterior variance decompositions – Model M1(L), Data 

panels depict 200 draws from prior and posterior distributions arranged on a 3

simplex. The three corners (Z,G,R) correspond to 100% of the variation being due to the 

respectively. 

Macroeconomists are often interested in posterior distributions of parameter transformations 

such as what fraction of the variation in output growth is caused by 

monetary policy shocks, and what happens to output and inflation in response to a monetary 

policy shock. Answers can be obtained from the moving average representation associated 

). We will focus on variance 

Fluctuations of output growth, inflation, and nominal interest rate in the DSGE model are due 

to three shocks: technology growth shocks, government spending shocks, and monetary 

policy shocks. Hence variance decompositions of the endogenous variables lie in a three-

7 we plot 200 

posterior (right panels) 

of the variance decompositions of output growth and inflation. The posterior draws are 

obtained by converting every 5,000th draw generated with the RWM algorithm. The corners 

s in which the shocks z, g, and R 

 

), Data D1(L). The 

panels depict 200 draws from prior and posterior distributions arranged on a 3-dimensional 

simplex. The three corners (Z,G,R) correspond to 100% of the variation being due to the 
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Panels (1, 1) and (2, 1) indicate that the prior distribution of the variance decomposition is 

informative in the sense that it is not uniform over the simplex. For instance, the output gap 

policy rule specification 1 implies that the government spending shock does not affect 

inflation and nominal interest rates. Hence all prior and posterior draws concentrate on the 

R − Z edge of the simplex. While the prior mean of the fraction of inflation variability 

explained by the monetary policy shock is about 40%, a 90% probability interval ranges from 

0 to 95%. A priori about 10% of the variation in output growth is due to monetary policy 

shocks. A 90% probability interval ranges from 0 to 20%. The data provide additional 

information about the variance decomposition. The posterior distribution is much more 

concentrated than the prior. The probability interval for the contribution of monetary policy 

shocks to output growth fluctuations shrinks to the range from 1 to 4.5%. The posterior 

probability interval for the fraction of inflation variability explained by the monetary policy 

shock ranges from 15 to 37%. 

4.5. Empirical Applications 

There is a rapidly growing empirical literature on the Bayesian estimation of DSGE models 

that applies the techniques described in this paper. The following incomplete list of 

references aims to give an overview of this work. Preceding the Bayesian literature are papers 

that use maximum likelihood techniques to estimate DSGE models. Altug (1989) estimates 

Kydland and Prescott’s (1982) studies the macroeconomic effects of taxation in an estimated 

business cycle model. Leeper and Sims (1994) and Kim (2000) estimated DSGE models that 

are usable for monetary policy analysis. 

Canova (1994), DeJong et al. (1996), and Geweke (1999a) proposed Bayesian approaches to 

calibration that do not exploit the likelihood function of the DSGE model and provide 

empirical applications that assess business cycle and asset pricing implications of simple 

stochastic growth models. The literature on likelihood-based Bayesian estimation of DSGE 

models began with work by Landon-Lane (1998), DeJong et al. (2000), Schorfheide (2000), 

and Otrok (2001). DeJong et al. (2000) estimate a stochastic growth model and examine its 

forecasting performance, Otrok (2001) fits a real business cycle with habit formation and 

time-to-build to the data to assess the welfare costs of business cycles, and Schorfheide 

(2000) considers cash-in-advance monetary DSGE models. DeJong and Ingram (2001) study 

the cyclical behavior of skill accumulation, whereas Chang et al. (2002) estimate a stochastic 

growth model augmented with a learning-by-doing mechanism to amplify the propagation of 

shocks. Chang and Schorfheide (2003) study the importance of labor supply shocks and 

estimate a home-production model. Fernández-Villaverde and Rubio-Ramírez (2004) use 

Bayesian estimation techniques to fit a cattle–cycle model to the data. 

Variants of the small-scale New Keynesian DSGE model presented in Section 2 have been 

estimated by Rabanal and Rubio-Ramírez (2005a, b) for the U.S. and the Euro Area. Lubik 

and Schorfheide (2004) estimate the benchmark New Keynesian DSGE model without 

restricting the parameters to the determinacy region of the parameter space. Schorfheide 

(2005) allows for regime-switching of the target inflation level in the monetary policy rule. 

Canova (2004) estimates a small-scale New Keynesian model recursively to assess the 
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stability of the structural parameters over time. Galí and Rabanal (2005) use an estimated 

DSGE model to study the effect of technology shocks on hours worked. Large-scale models 

that include capital accumulation and additional real and nominal frictions along the lines of 

Christiano et al. (2005) have been analyzed by Smets and Wouters (2003, 2005) both for the 

U.S. and the Euro Area. Models similar to Smets and Wouters (2003) have been estimated by  

Laforte (2004), Onatski and Williams (2004), and Levin et al. (2006) to study monetary 

policy. Many central banks are in the process of developing DSGE models along the lines of 

Smets and Wouters (2003) that can be estimated with Bayesian techniques and used for 

policy analysis and forecasting. 

Bayesian estimation techniques have also been used in the open economy literature. Lubik 

and Schorfheide (2003) estimate the small open economy extension of the model presented in 

Section 2 to examine whether the central banks of Australia, Canada, England, and New 

Zealand respond to exchange rates. A similar model is fitted by Del Negro (2003) to Mexican 

data. Justiniano and Preston (2004) extend the empirical analysis to situations of imperfect 

exchange rate passthrough. Adolfson et al. (2004) analyze an open economy model that 

includes capital accumulation as well as numerous real and nominal frictions. Lubik and 

Schorfheide (2006), Rabanal and Tuesta (2006), and de Walque and Wouters (2004) have 

estimated multicountry DSGE models. 

 

5. MODEL EVALUATION 

In Section 4 we discussed the estimation of a linearized DSGE model and reported results on 

the posterior distribution of the model parameters and variance decompositions. We tacitly 

assumed that model and prior provide an adequate probabilistic representation of the 

uncertainty with respect to data and parameters. This section studies various techniques that 

can be used to evaluate the model fit. We will distinguish the assessment of absolute fit from 

techniques that aim to determine the fit of a DSGE model relative to some other model. The 

first approach can be implemented by a posterior predictive model check and has the flavor 

of a classical hypothesis test. Relative model comparisons, on the other hand, are typically 

conducted by enlarging the model space and applying Bayesian inference and decision theory 

to the extended model space. Section 5.1 discusses Bayesian model checks, Section 5.2 

reviews model posterior odds comparisons, and Section 5.3 describes a more elaborate model 

evaluation based on comparisons between DSGE models and VARs. 

5.1. Posterior Predictive Checks 

Predictive checks as a tool to assess the absolute fit of a probability model have been 

advocated, for instance, by Box (1980). A probability model is considered as discredited by 

the data if one observes an event that is deemed very unlikely by the model. Such model 

checks are controversial from a Bayesian perspective. Methods that determine whether actual 

data lie in the tail of a model's data distribution potentially favor alternatives that make 

unreasonably diffuse predictions. Nevertheless, posterior predictive checks have become a 



31 

 

valuable tool in applied Bayesian analysis though they have not been used much in the 

context of DSGE models. An introduction to Bayesian model checking can be found, for 

instance, in books by Gelman et al. (1995), Lancaster (2004), and Geweke (2005). 

Let Y 
rep 

be a sample of observations of length T that we could have observed in the past or 

that we might observe in the future. We can derive the predictive distribution of Y 
rep 

given 

the current state of knowledge:  

 

Let h(Y) be a test quantity that reflects an aspect of the data that we want to examine. A 

quantitative model check can be based on Bayesian p-values. Suppose that the test quantity is 

univariate, non-negative, and has a unimodal density. Then one could compute probability of 

the tail event by  

 

where {x ≥ a} is the indicator function that is 1 if x ≥ α and zero otherwise. A small tail 

probability can be viewed as evidence against model adequacy. 

Rather than constructing numerical approximations of the tail probabilities for univariate 

functions h(·), we use a graphical approach to illustrate the model checking procedure in the 

context of model M1(L). We use the following data transformations: the correlation between 

inflation and lagged interest rates, lagged inflation and current interest rates, output growth 

and lagged output growth, and output growth and interest rates. To obtain draws from the 

posterior predictive distribution of h(Y 
rep 

) we take every 5,000th parameter draw of θ
(s)

 

generated with the RWM algorithm, simulate a sample Y 
rep 

of 80 observations
9
 from the 

DSGE model conditional on θ
(s)

, and calculate h(Y 
rep 

).  

We consider two cases: in the case of no mis-specification, depicted in the left panels of 

Figure 8, the posterior is constructed based on data set D1(L), whereas under mis-

specification, illustrated in the two right panels of Figure 8, the posterior is obtained from 

data set D5(L). Each panel of the figure depicts 200 draws from the posterior predictive 

distribution in bivariate scatter plots. Moreover, the intersections of the solid lines indicate 

the actual values h(Y). Since D1(L) was generated from model M1(L), whereas D5(L) was not, 

we would expect the actual values of h(Y) to lie further in the tails of the posterior predictive 

distribution in the right panels than in the left panels. Indeed a visual inspection of the plots 

provides some evidence in which dimensions M1(L) is at odds with data generated from a 

model that includes lags of output in the household's Euler equation. The observed 

autocorrelation of output growth in D5(L) is much larger and the actual correlation between 

                                                           
9
 To obtain draws from the unconditional distribution of y t we initialize s 0 = 0 and generate 180 observations, 

discarding the first 100.  
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output growth and interest rates is much lower than the draws generated from the posterior 

predictive distribution.  

 

FIGURE 8 Posterior predictive check for Model M1(L). We plot 200 draws from the 

posterior predictive distribution of various sample moments. Intersections of solid lines 

signify the observed sample moments. 

 

5.2. Posterior Odds Comparisons of DSGE Models 

The Bayesian framework is naturally geared toward the evaluation of relative model fit. 

Researchers can place probabilities on competing models and assess alternative specifications 

based on their posterior odds. An excellent survey on model comparisons based on posterior 

probabilities can be found in Kass and Rafterty (1995). For concreteness, suppose in addition 

to the specification 1(L) we consider a version of the New Keynesian model, denoted by 

3(L) in which prices are nearly flexible, that is, κ = 5. Moreover, there is a model 4(L), 

according to which the central bank does not respond to output at all and ψ2 = 0. If we are 

willing to place prior probabilities π i, 0 on the three competing specifications then posterior 

model probabilities can be computed by  

 

 
The key object in the calculation of posterior probabilities is the marginal data density 

p(Y |  i ), which is defined in (39). 

 

Posterior model probabilities can be used to weigh predictions from different models. In 

many instances, researchers take a shortcut and use posterior probabilities to justify the 



 

selection of a particular model specification. All subsequent analysis is then conditioned on 

the chosen model. It is straightforward to verify that under a 0

attached to choosing the wrong model is one), the optimal decision is t

posterior probability model. This 0

which the researcher believes that all the important models are included in the analysis. 

However, even in situations in which all the mode

selection of the highest posterior probability model has some desirable properties. It has been 

shown under various regularity conditions, e.g., Phillips (

and Rubio-Ramírez (2004), that posterior odds (or their large sample approximations) 

asymptotically favor the DSGE model that is closest to the ‘true’ data generating process in 

the Kullback-Leibler sense. Moreover, since the log

 

 

where ln p(Y | ) can be interpreted as a predictive score (Good, 

comparison based on posterior odds captures the relative one

performance. The practical difficulty in implementing posterior od

computation of the marginal data density. We will subsequently consider t

approaches: Geweke’s (1999b

(2001) algorithm. 

 

Harmonic mean estimators are based on the identity 

 

where f(θ) has the property that 

the choice of f(θ) an obvious estimator is 

 

 

where θ
(s)

 is drawn from the posterior 

efficient, f(θ) should be chosen so that the summands are of equal magnitude. Geweke 

(1999b) proposed to use the density of a tr
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selection of a particular model specification. All subsequent analysis is then conditioned on 

the chosen model. It is straightforward to verify that under a 0–1 loss function (the loss 

attached to choosing the wrong model is one), the optimal decision is to select the highest 

posterior probability model. This 0–1 loss function is an attractive benchmark in situations in 

which the researcher believes that all the important models are included in the analysis. 

However, even in situations in which all the models under consideration are misspecified, the 

selection of the highest posterior probability model has some desirable properties. It has been 

shown under various regularity conditions, e.g., Phillips (1996) and Fernández

, that posterior odds (or their large sample approximations) 

or the DSGE model that is closest to the ‘true’ data generating process in 

Leibler sense. Moreover, since the log-marginal data density can be rewritten as 

) can be interpreted as a predictive score (Good, 1952) and the model 

comparison based on posterior odds captures the relative one-step-ahead predictive 

performance. The practical difficulty in implementing posterior odds comparisons is the 

computation of the marginal data density. We will subsequently consider two numerical 

1999b) modified harmonic mean estimator and Chib and Jeliazkov's 

Harmonic mean estimators are based on the identity  

) has the property that t f(θ) dθ = 1 (see Gelfand and Dey, 1994)

) an obvious estimator is  

is drawn from the posterior p(θ | Y). To make the numerical approximation 

) should be chosen so that the summands are of equal magnitude. Geweke 

proposed to use the density of a truncated multivariate normal distribution, 

selection of a particular model specification. All subsequent analysis is then conditioned on 

1 loss function (the loss 

o select the highest 

1 loss function is an attractive benchmark in situations in 

which the researcher believes that all the important models are included in the analysis. 

ls under consideration are misspecified, the 

selection of the highest posterior probability model has some desirable properties. It has been 

and Fernández-Villaverde 

, that posterior odds (or their large sample approximations) 

or the DSGE model that is closest to the ‘true’ data generating process in 

marginal data density can be rewritten as  

 

and the model 

ahead predictive 

ds comparisons is the 

wo numerical 

or and Chib and Jeliazkov's 

 

). Conditional on 

 

). To make the numerical approximation 

) should be chosen so that the summands are of equal magnitude. Geweke 

uncated multivariate normal distribution,  

 



 

Here and V θ are the posterior mean and covariance matrix computed from the output of the 

posterior simulator, d is the dimension of the parameter vector, 

function of a χ
2
 random variable with 

θ is in fact normal then the summands in (49) are approximately constant. Chib and Jeliazkov 

(2001) use the following equality as the basis for their estimator of the marginal data density: 

 

The equation is obtained by rearranging the Bayes theorem and has to hold for all 

the numerator can be easily computed, the denominator requires a numerical approximation. 

Thus,  

where we replaced the generic θ

Algorithm denote the probability of moving from 

 

where r(θ, ϴ | Y) was in the description of the algorithm. Moreover, let 

proposal density for the transition from 

approximated by  

 

where are sampled draws from the posterior distribution with the RWM algorithm 

and are draws from 

 

We first use Geweke's harmonic mean estimator to approximate the marginal data density 

associated with M1(L)/D1(L). The results are 

data densities recursively (as a function of the number of MCMC draws) for the four chains 

that were initialized at different starting values as discussed in Section 4. For the output gap 

rule all four chains lead to estimates of ar

Geweke's versus Chib and Jeliazkov's approximation of the marginal data density for the 

output gap rule specification. A 

converge to the same limit point. However, the modified harmonic mean estimator appears to 

be more reliable if the number of simulations is small. 
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are the posterior mean and covariance matrix computed from the output of the 

is the dimension of the parameter vector, is the cumulative density 

random variable with d degrees of freedom, and τ  (0, 1). If the posterior of 

 is in fact normal then the summands in (49) are approximately constant. Chib and Jeliazkov 

use the following equality as the basis for their estimator of the marginal data density: 

The equation is obtained by rearranging the Bayes theorem and has to hold for all 

the numerator can be easily computed, the denominator requires a numerical approximation. 

where we replaced the generic θ in (51) by the posterior mode . Within the RWM 

Algorithm denote the probability of moving from θ to ϴ by  

) was in the description of the algorithm. Moreover, let q(θ,

proposal density for the transition from θ to . Then the posterior density at the mode can be 

are sampled draws from the posterior distribution with the RWM algorithm 

are draws from q( ,θ | Y) given the posterior mode value 

harmonic mean estimator to approximate the marginal data density 

). The results are summarized in Figure 9. We calculate marginal 

data densities recursively (as a function of the number of MCMC draws) for the four chains 

that were initialized at different starting values as discussed in Section 4. For the output gap 

rule all four chains lead to estimates of around −196.7. Figure 10 provides 

Geweke's versus Chib and Jeliazkov's approximation of the marginal data density for the 

output gap rule specification. A visual inspection of the plot suggests that both estimators 

converge to the same limit point. However, the modified harmonic mean estimator appears to 

be more reliable if the number of simulations is small.  

are the posterior mean and covariance matrix computed from the output of the 

is the cumulative density 

(0, 1). If the posterior of 

 is in fact normal then the summands in (49) are approximately constant. Chib and Jeliazkov 

use the following equality as the basis for their estimator of the marginal data density:  

 
The equation is obtained by rearranging the Bayes theorem and has to hold for all θ. While 

the numerator can be easily computed, the denominator requires a numerical approximation. 

 

ithin the RWM 

 

(θ,  | Y) be the 

. Then the posterior density at the mode can be 

 

are sampled draws from the posterior distribution with the RWM algorithm 

. 

harmonic mean estimator to approximate the marginal data density 

. We calculate marginal 

data densities recursively (as a function of the number of MCMC draws) for the four chains 

that were initialized at different starting values as discussed in Section 4. For the output gap 

provides a comparison of 

Geweke's versus Chib and Jeliazkov's approximation of the marginal data density for the 

visual inspection of the plot suggests that both estimators 

converge to the same limit point. However, the modified harmonic mean estimator appears to 
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FIGURE 9 Data densities from multiple chains – Model M1(L), Data D1(L). For each Markov 

chain, log marginal data densities are computed recursively with Geweke’s modified 

harmonic mean estimator and plotted as a function of the number of draws. 

 

FIGURE 10 Geweke vs. Chib–Jeliazkov data densities – Model M1(L), Data D1(L). Log 

marginal data densities are computed recursively with Geweke's modified harmonic mean 

estimator as well as the Chib–Jeliazkov estimator and plotted as a function of the number of 

draws. 
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FIGURE 10 Geweke vs. Chib–Jeliazkov data densities – Model M1(L), Data D1(L). Log 

marginal data densities are computed recursively with Geweke's modified harmonic mean 

estimator as well as the Chib–Jeliazkov estimator and plotted as a function of the number of 

draws. 

Based on data set D1(L) we also estimate specification M3(L) in which prices are nearly 

flexible and specification M4(L) in which the central bank does not respond to output. The 

model comparison results are summarized in Table 4. The marginal data density associated 

with M3(L) is −245.6, which translates into a Bayes factor (ratio of posterior odds to prior 

odds) of approximately e 
49

 in favor of M1(L). Hence, data set D1(L) provides very strong 

evidence against flexible prices. Given the fairly concentrated posterior of κ depicted in 

Figure 1 this result is not surprising. The marginal data density of model M4(L) is equal to 

−201.9 and the Bayes factor of model M1(L) versus model M4(L) is ‘only’ e 
5
. The DSGE 

model implies that when actual output is close to the target flexible price output, inflation will 

also be close to its target value. Vice versa, deviations of output from target coincide with 

deviations of inflation from its target value. This mechanism makes it difficult to identify the 

policy rule coefficients and imposing an incorrect value for ψ2 is not particularly costly in 

terms of fit. 

TABLE 4 Log marginal data densities based on D1(L)  

Specification ln p(Y | M) Bayes factor versus M1(L) 

Benchmark model M1(L) −196.7 1.00 

Model with nearly flexible prices M3(L) −245.6 exp[48.9] 

No policy reaction to output M4(L) −201.9 exp[5.2] 

Notes: The log marginal data densities for the DSGE model specifications are computed based on Geweke's 

(1999a) modified harmonic mean estimator.  
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5.3. Comparison of a DSGE Model with a VAR 

The notion of potential misspecification of a DSGE model can be incorporated in the 

Bayesian framework by including a more general reference model M0 into the model set. A 

natural choice of reference model in dynamic macroeconomics is a VAR, as linearized DSGE 

models, at least approximately, can be interpreted as restrictions on a VAR representation. 

The first step of the comparison is typically to compute posterior probabilities for the DSGE 

model and the VAR, which can be used to detect the presence of misspecifications. Since the 

VAR parameter space is generally much larger than the DSGE model parameter space, the 

specification of a prior distribution for the VAR parameter requires careful attention. Possible 

pitfalls are discussed in Sims (2003). A VAR with a prior that is very diffuse is likely to be 

rejected even against a misspecified DSGE model. In a more general context this 

phenomenon is often called Lindley's paradox. We will subsequently present a procedure that 

allows us to document how the marginal data density of the DSGE model changes as the 

cross-coefficient restrictions that the DSGE model imposes on the VAR are relaxed. 

 

If the data favor the VAR over the DSGE model then it becomes important to investigate 

further the deficiencies of the structural model. This can be achieved by comparing the 

posterior distributions of interesting population characteristics such as impulse response 

functions obtained from the DSGE model and from a VAR representation that does not 

dogmatically impose the DSGE model restrictions. We will refer to the latter benchmark 

model as DSGE-VAR and discuss an identification scheme that allows us to construct 

structural impulse response functions for the vector autoregressive specification against 

which the DSGE model can be evaluated. Building on work by Ingram and Whiteman (1994) 

the DSGE-VAR approach of Del Negro and Schorfheide (2004) was designed to improve 

forecasting and monetary policy analysis with VARs. The framework has been extended to a 

model evaluation tool in Del Negro et al. (2006) and used to assess the fit of a variant of the 

Smets and Wouters (2003) model. 

 

To construct a DSGE-VAR we proceed as follows. Consider a vector autoregressive 

specification of the form  

 

 
 

Define the k × 1 vector x t  = [1, y t−1′,…, y t−p ′]′, the coefficient matrix Φ = [Φ0, Φ1,…, Φ p ]′, 

the T × n matrices Y and U composed of rows yt′ and ut′, and the T × k matrix X with rows xt′. 

Thus the VAR can be written as Y = X Φ + U. Let be the expectation under DSGE 

model and define the autocovariance matrices  

 

 
 

A VAR approximation of the DSGE model can be obtained from restriction functions that 

relate the DSGE model parameters to the VAR parameters,  

 

 
 

This approximation is typically not exact because the state–space representation of the 

linearized DSGE model generates moving average terms. Its accuracy depends on the number 

of lags p, and the magnitude of the roots of the moving average polynomial. We will 
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document below that four lags are sufficient to generate a fairly precise approximation of the 

model M1(L).
10

 

 

In order to account for potential misspecification of the DSGE model it is assumed that there 

is a vector θ and matrices Φ
∆
 and Σ

∆
 such that the data are generated from the VAR in (55) 

with the coefficient matrices  

 

 
 

The matrices Φ
∆
 and Σ

∆
 capture deviations from the restriction functions Φ (θ) and Σ (θ). 

Bayesian analysis of this model requires the specification of a prior distribution for the DSGE 

model parameters, p(θ), and the misspecification matrices. Rather than specifying a prior in 

terms of Φ
∆
 and Σ

∆
 it is convenient to specify it in terms of Φ and Σ conditional on θ. We 

assume  

 

 
 

where W denotes the inverted Wishart distribution.
11

 The prior distribution can be 

interpreted as a posterior calculated from a sample of λ T observations generated from the 

DSGE model with parameters θ; see Del Negro and Schorfheide (2004). It has the property 

that its density is approximately proportional to the Kullback–Leibler discrepancy between 

the VAR approximation of the DSGE model and the Φ-Σ VAR, which is emphasized in Del 

Negro et al. (2006). λ is a hyperparameter that scales the prior covariance matrix. The prior is 

diffuse for small values of λ and shifts its mass closer to the DSGE model restrictions as λ → 

∞. In the limit the VAR is estimated subject to the restrictions (56). The prior distribution is 

proper provided that λ T ≥ k + n.  

 

The joint posterior density of VAR and DSGE model parameters can be conveniently 

factorized as  

 

 
 

The λ-subscript indicates the dependence of the posterior on the hyperparameter. It is 

straightforward to show, e.g., Zeller (1971), that the posterior distribution of Φ and Σ is also 

of the inverted Wishart normal form:  

 

 

                                                           
10

 In principle one could start from a VARMA model to avoid the approximation error. The posterior 

computations, however, would become significantly more cumbersome.  
11

 Ingram and Whiteman (1994) constructed a VAR prior from a stochastic growth model to improve the 

forecast performance of the VAR. However, their setup did not allow for the computation of a posterior 

distribution for θ. 
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where and are the given by  

 
 

Hence the larger the weight λ of the prior, the closer the posterior mean of the VAR 

parameters is to Φ (θ) and Σ (θ), the values that respect the cross-equation restrictions of the 

DSGE model. On the other hand, if λ = (n + k)/T, then the posterior mean is close to the OLS 

estimate (X′X)
−1

 X′Y. The marginal posterior density of θ can be obtained through the 

marginal likelihood 

  

 
 

A derivation is provided in Del Negro and Schorfheide (2004). The paper also shows that in 

large samples the resulting estimator of θ can be interpreted as a Bayesian minimum distance 

estimator that projects the VAR coefficient estimates onto the subspace generated by the 

restriction functions (56). 

 

Since the empirical performance of the DSGE-VAR procedure crucially depends on the 

weight placed on the DSGE model restrictions, it is important to consider a data-driven 

procedure to determine λ. A natural criterion for the choice of λ in a Bayesian framework is 

the marginal data density  

 
For computational reasons we restrict the hyperparameter to a finite grid Λ. If one assigns 

equal prior probability to each grid point then the normalized p λ(Y)'s can be interpreted as 

posterior probabilities for λ. Del Negro et al. (2006) emphasize that the posterior of λ 

provides a measure of fit for the DSGE model: high posterior probabilities for large values of 

λ indicate that the model is well specified and a lot of weight should be placed on its implied 

restrictions. Define  

 
If p λ(Y) peaks at an intermediate value of λ, say between 0.5 and 2, then a comparison 

between DSGE-VAR( ) and DSGE model impulse responses can yield important insights 

about the misspecification of the DSGE model. 



 

An impulse response function comparison require

the context of the VAR. So far, the VAR given in (55) has been specified in terms of reduced 

form disturbances u t. According to the DSGE model, the one

are functions of the structural shocks 

 

 

Σtr is the Cholesky decomposition of 

based on the likelihood function associated with (55). Del Negro and Schorfheide (

proposed to construct Ω as follows. Let 

according to the DSGE model. Using a QR factorization, the initial response of 

structural shocks can be can be uniquely decomposed into 

 

where Σ tr (θ) is lower triangular and 

the VAR, on the other hand, is given by 

 

 

To identify the DSGE-VAR, we maintain the triangularization of its covariance matrix 

replace the rotation Ω in (65) with the function 

matrix is chosen so that in absence of misspecification the DSGE's and the DSGE

impulse responses to all shocks approximately coincide. To the extent that misspecification is 

mainly in the dynamics, as opposed to the covariance matrix of innovations, the identification 

procedure can be interpreted as matching, at least qualitatively, the short

VAR with those from the DSGE model. The estimation of the DSGE

implemented as follows. 

MCMC Algorithm for DSGE

1. Use the RWM algorithm to generate dra

2. Use Geweke's modified harmonic mean estimator to obtain a numerical approximation of 

3. For each draw θ
(s)

 generate a pair 

Moreover, compute the orthonormal matrix 

 

We now implement the DSGE

data. All the results reported subsequently are based on a DSGE

first step of our analysis is to construct a posterior distribution for the parameter 

assume that λ lies on the grid Λ

grid point. For λ = ∞ the misspecification matrices 

VAR by imposing the restrictions 

 

Table 5 reports log marginal data densities for the DSGE

D1(L) and D5(L). The first row reports the marginal data density associated with the state 

space representation of the DSGE model, whereas the second row corresponds to 
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An impulse response function comparison requires the identification of structural shocks in 

the context of the VAR. So far, the VAR given in (55) has been specified in terms of reduced 

According to the DSGE model, the one-step-ahead forecast errors 

are functions of the structural shocks t, which we represent by  

is the Cholesky decomposition of Σ, and Ω is an orthonormal matrix that is not identifiable 

based on the likelihood function associated with (55). Del Negro and Schorfheide (

 as follows. Let A 0(θ) be the contemporaneous impact of 

according to the DSGE model. Using a QR factorization, the initial response of 

structural shocks can be can be uniquely decomposed into  

) is lower triangular and Ω (θ) is orthonormal. The initial impact of 

the VAR, on the other hand, is given by  

VAR, we maintain the triangularization of its covariance matrix 

 in (65) with the function Ω (θ) that appears in (64). The rotation 

absence of misspecification the DSGE's and the DSGE

impulse responses to all shocks approximately coincide. To the extent that misspecification is 

mainly in the dynamics, as opposed to the covariance matrix of innovations, the identification 

re can be interpreted as matching, at least qualitatively, the short-run responses of the 

VAR with those from the DSGE model. The estimation of the DSGE-VAR can be 

MCMC Algorithm for DSGE-VAR 

Use the RWM algorithm to generate draws θ
(s)

 from the marginal posterior distribution 

Use Geweke's modified harmonic mean estimator to obtain a numerical approximation of 

generate a pair Φ
(s)

, Σ
(s)

, by sampling from the W − N distribution. 

Moreover, compute the orthonormal matrix Ω
(s)

 = Ω (θ) as described above.

We now implement the DSGE-VAR procedure for 1(L) based on artificially generated 

data. All the results reported subsequently are based on a DSGE-VAR with 

first step of our analysis is to construct a posterior distribution for the parameter 

 lies on the grid Λ = {.25,.5,.75, 1, 5, ∞} and assign equal probabilities to each 

 the misspecification matrices Φ
∆
 and Σ

∆
 are zero and we estimate the 

VAR by imposing the restrictions Φ = Φ (θ) and Σ = Σ (θ). 

reports log marginal data densities for the DSGE-VAR as a function of 

). The first row reports the marginal data density associated with the state 

space representation of the DSGE model, whereas the second row corresponds to 

s the identification of structural shocks in 

the context of the VAR. So far, the VAR given in (55) has been specified in terms of reduced 

ahead forecast errors u t 

 

 is an orthonormal matrix that is not identifiable 

based on the likelihood function associated with (55). Del Negro and Schorfheide (2004) 

) be the contemporaneous impact of t on y t 
according to the DSGE model. Using a QR factorization, the initial response of y t to the 

 

) is orthonormal. The initial impact of t on y t in 

 

VAR, we maintain the triangularization of its covariance matrix Σ and 

) that appears in (64). The rotation 

absence of misspecification the DSGE's and the DSGE-VAR's 

impulse responses to all shocks approximately coincide. To the extent that misspecification is 

mainly in the dynamics, as opposed to the covariance matrix of innovations, the identification 

run responses of the 

VAR can be 

from the marginal posterior distribution p λ(θ | Y). 

Use Geweke's modified harmonic mean estimator to obtain a numerical approximation of p λ(Y). 

distribution. 

) as described above. 

) based on artificially generated 

VAR with p = 4 lags. The 

first step of our analysis is to construct a posterior distribution for the parameter λ. We 

} and assign equal probabilities to each 

are zero and we estimate the 

VAR as a function of λ for data sets 

). The first row reports the marginal data density associated with the state 

space representation of the DSGE model, whereas the second row corresponds to the DSGE-
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VAR(∞). If the VAR approximation of the DSGE model were exact, then the values in the 

first and second row of Table 5 would be identical. For data set D1(L), which has been 

directly generated from the state space representation of 1(L), the two values are indeed 

quite close. Moreover, the marginal data densities are increasing as a function of λ, indicating 

that there is no evidence of misspecification and that it is best to dogmatically impose the 

DSGE model restrictions.  

 

TABLE 5 Log marginal data densities for 1(L) DSGE-VARs  

Specification D1(L) D5(L) 

DSGE Model -196.66 -245.62 

DSGE-VAR λ = ∞ -196.88 -244.54 

DSGE-VAR λ = 5.00 -198.87 -241.95 

DSGE-VAR λ = 1.00 -206.57 -238.59 

DSGE-VAR λ = .75 -209.53 -239.40 

DSGE-VAR λ = .50 -215.06 -241.81 

DSGE-VAR λ = .25 -231.20 -253.61 

Notes: See Table 4. 

 

With respect to data set D5(L) the DSGE model is misspecified. This misspecification is 

captured in the inverse U-shape of the marginal data density function, which is representative 

for the shapes found in empirical applications in Del Negro and Schorfheide (2004) and Del 

Negro et al. (2006). The value λ = 1.00 has the highest likelihood. The marginal data 

densities drop substantially for λ ≥ 5 and λ ≤ 0.5. In order to assess the nature of the 

misspecification for D5(L) we now turn to the impulse response function comparison.  

In principle, there are three different sets of impulse responses to be compared: responses 

from the state–space representation of the DSGE model, the λ = ∞ and the λ =  DSGE-

VAR. Moreover, these impulse responses can either be compared based on the same 

parameter values θ or their respective posterior estimates of the DSGE model parameters. 

Figure 11 depicts posterior mean impulse responses for the state–space representation of the 

DSGE model as well as the DSGE-VAR(∞). In both cases we use the same posterior 

distribution of θ, namely, the one obtained from the DSGE-VAR(∞). The discrepancy 

between the posterior mean responses (solid and dashed lines) indicates the magnitude of the 

error that is made by approximating the state–space representation of the DSGE model by a 

fourth-order VAR. Except for the response of output to the government spending shock, the 

DSGE and DSGE-VAR(∞) responses are virtually indistinguishable, indicating that the 

approximation error is small. The (dotted) bands in Figure 11depict pointwise 90% 

probability intervals for the DSGE-VAR(∞) and reflect posterior parameter uncertainty with 

respect to θ.  
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FIGURE 11 Impulse responses, DSGE, and DSGE-VAR(λ = ∞) – Model 1(L), Data 

D5(L). DSGE model responses computed from state–space representation: posterior mean 

(solid); DSGE- VAR(λ = ∞) responses: posterior mean (dashed) and pointwise 90% 

probability bands (dotted). 
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To assess the misspecification of the DSGE model we compare posterior mean responses of 

the λ = ∞ (dashed) and (solid) DSGE-VAR in Figure 12. Both sets of responses are 

constructed from the posterior of θ. The (dotted) 90% probability bands reflect uncertainty 

with respect to the discrepancy between the λ = ∞ and responses. A brief description of the 

computation can clarify the interpretation. For each draw of θ from the DSGE-VAR 

posterior we compute the and the λ = ∞ response functions, calculate their differences, and 

construct probability intervals of the differences. To obtain the dotted bands in the figure, we 

take the upper and lower bound of these probability intervals and shift them according to the 

posterior mean of the λ = ∞ response. Roughly speaking, the figure answers the question: to 

what extent do the estimates of the VAR coefficients deviate from the DSGE model 

restriction functions Φ (θ) and Σ (θ). The discrepancy, however, is transformed from the Φ–

Σ space into impulse response functions because they are easier to interpret. 

 

FIGURE 12 Impulse responses, DSGE-VAR(λ = ∞), and DSGE-VAR(λ = 1) – Model M1(L), 

Data D5(L). DSGE-VAR(λ = ∞) posterior mean responses (dashed), DSGE-VAR(λ = 1) 

posterior mean responses (solid). Pointwise 90% probability bands (dotted) signify shifted 

probability intervals for the difference between λ = ∞ and λ = 1 responses. 



 

While the relaxation of the DSGE model restrictions has little effect on the propagation of the 

technology shock, the inflation and 

markedly different. According to the VAR approximation of the DSGE model, inflation 

returns quickly to its steady-state level after a contractionary policy shock. The DSGE

VAR ( ) response of inflation, on the other hand, has a slight hump shape, and the reversion 

to the steady-state is much slower. Unlike in the DSGE

steady-state in period four and stays negative for several periods.

 

In a general equilibrium model a misspecification of the household' decision problem can 

have effects on the dynamics of all the endogenous variables. Rather than looking at the 

dynamic responses of the endogenous variables to the structural shocks, we can also ask to 

what extent are the optimality conditions that the DSGE model imposes satisfied by the 

DSGE-VAR( ) responses. According to the log

and interest rates satisfy the following relationships in response to the shock 

 

Figure 13 depicts the path of the right

monetary policy shock. Based on draws from the joint posterior of the DSGE and VAR

parameters we can first calculate identified VAR responses to obtain the path of output, 

inflation, and interest rate, and in a second step use the DSGE model parameters to calculate 

the wedges in the Euler equation, the price setting equation, and the mo

The dashed lines show the posterior mean responses according to the state

representation of the DSGE model, and the solid lines depict DSGE

three panels of Figure 13 show that both for the DSGE model as well as the DSGE

the three equations are satisfied. The bottom three panels of the figure are based on the 

DSGE-VAR( ), which relaxes the DSGE model restrictions. While the price setting 

relationship and the monetary policy rule restriction seem to be satisfied, at least for the 

posterior mean, Panel (2, 1) indicates a substantial violation of the consumption Euler 

equation. This finding is encouraging for the evaluation strategy since the data set 

indeed generated from a model with a modified Euler equation. 
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While the relaxation of the DSGE model restrictions has little effect on the propagation of the 

technology shock, the inflation and interest rate responses to a monetary policy shock are 

markedly different. According to the VAR approximation of the DSGE model, inflation 

state level after a contractionary policy shock. The DSGE

n, on the other hand, has a slight hump shape, and the reversion 

state is much slower. Unlike in the DSGE-VAR(∞), the interest rate falls below 

state in period four and stays negative for several periods. 

model a misspecification of the household' decision problem can 

have effects on the dynamics of all the endogenous variables. Rather than looking at the 

dynamic responses of the endogenous variables to the structural shocks, we can also ask to 

are the optimality conditions that the DSGE model imposes satisfied by the 

) responses. According to the log-linearized DSGE model output, inflation, 

and interest rates satisfy the following relationships in response to the shock 

depicts the path of the right-hand side of Equations (66) to (68) in response to a 

monetary policy shock. Based on draws from the joint posterior of the DSGE and VAR

parameters we can first calculate identified VAR responses to obtain the path of output, 

inflation, and interest rate, and in a second step use the DSGE model parameters to calculate 

the wedges in the Euler equation, the price setting equation, and the monetary policy rule. 

The dashed lines show the posterior mean responses according to the state–

representation of the DSGE model, and the solid lines depict DSGE-VAR responses. The top 

show that both for the DSGE model as well as the DSGE

the three equations are satisfied. The bottom three panels of the figure are based on the 

h relaxes the DSGE model restrictions. While the price setting 

relationship and the monetary policy rule restriction seem to be satisfied, at least for the 

posterior mean, Panel (2, 1) indicates a substantial violation of the consumption Euler 

is finding is encouraging for the evaluation strategy since the data set 

indeed generated from a model with a modified Euler equation.  

While the relaxation of the DSGE model restrictions has little effect on the propagation of the 

interest rate responses to a monetary policy shock are 

markedly different. According to the VAR approximation of the DSGE model, inflation 

state level after a contractionary policy shock. The DSGE- 

n, on the other hand, has a slight hump shape, and the reversion 

), the interest rate falls below 

model a misspecification of the household' decision problem can 

have effects on the dynamics of all the endogenous variables. Rather than looking at the 

dynamic responses of the endogenous variables to the structural shocks, we can also ask to 

are the optimality conditions that the DSGE model imposes satisfied by the 

linearized DSGE model output, inflation, 

and interest rates satisfy the following relationships in response to the shock R,t:  

 

hand side of Equations (66) to (68) in response to a 

monetary policy shock. Based on draws from the joint posterior of the DSGE and VAR 

parameters we can first calculate identified VAR responses to obtain the path of output, 

inflation, and interest rate, and in a second step use the DSGE model parameters to calculate 

netary policy rule. 

–space 

VAR responses. The top 

show that both for the DSGE model as well as the DSGE-VAR(∞) 

the three equations are satisfied. The bottom three panels of the figure are based on the 

h relaxes the DSGE model restrictions. While the price setting 

relationship and the monetary policy rule restriction seem to be satisfied, at least for the 

posterior mean, Panel (2, 1) indicates a substantial violation of the consumption Euler 

is finding is encouraging for the evaluation strategy since the data set D5(L) was 
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FIGURE 13 Impulse responses, DSGE-VAR(λ = ∞), and DSGE-VAR(λ = 1) – Model M1(L), 

Data D5(L). DSGE model responses: posterior mean (dashed); DSGE-VAR responses: 

posterior mean (solid) and pointwise 90% probability bands (dotted). 

 

While this section focused mostly on the assessment of a single DSGE model, Del Negro et 

al. (2006) use the DSGE-VAR framework also to compare multiple DSGE models. 

Schorfheide (2000) proposed a loss-function-based evaluation framework for (multiple) 

DSGE models that augments potentially misspecified DSGE models with a more general 

reference model, constructs a posterior distribution for population characteristics of interest 

such as autocovariances and impulse responses, and then examines the ability of the DSGE 

models to predict the population characteristics. This prediction is evaluated under a loss 

function and the risk is calculated under an overall posterior distribution that averages the 

predictions of the DSGE models and the reference model according to their posterior 

probabilities. This loss-function-based approach nests DSGE model comparisons based on 

marginal data densities as well as assessments based on a comparison of model moments to 

sample moments, popularized in the calibration literature, as special cases. 
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6. NONLINEAR METHODS 

For a non-linear/nonnormal state–space model, the linear Kalman filter cannot be used to 

compute the likelihood function. Instead, numerical methods have to be used to integrate the 

latent state vector. The evaluation of the likelihood function can be implemented with a 

particle filter, also known as a sequential Monte Carlo filter. Gordon et al. (1993) and 

Kitagawa (1996) are early contributors to this literature. Arulampalam et al. (2002) provide 

an excellent survey. In economics, the particle filter has been applied to analyze the 

stochastic volatility models by Pitt and Shephard (1999) and Kim et al. (1998). Recently 

Fernández-Villaverde and Rubio-Ramírez (2005) use the filter to construct the likelihood for 

DSGE model solved with a projection method. We follow their approach and use the particle 

filter for DSGE model 1 solved with a second-order perturbation method. A brief 

description of the procedure is given below. We use Y 
τ
 to denote the τ × n matrix with rows y 

t ′, t = 1,…, τ. The vector s t has been defined in Section 2.4. 

Particle Filter 

1. Initialization: Draw N particles s0
i
 , i = 1,…,N, from the initial distribution p(s0 | θ).  

By induction, in period t we start with the particles 

 , which approximate . 

2. 
Draw one-step-ahead forecasted particles from . Note that  

 

Hence one can draw N particles from by generating one particle from 

for each i. 

3. Filtering: The goal is to approximate  

 

which amounts to updating the probability weights assigned to the particles . We begin by 

computing the non-normalized importance weights .  

The denominator in (69) can be approximated by  
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Now define the normalized weights  

 

and note that the importance sampler approximates
12

 the updated density .  

4. 

Resampling: We now generate a new set of particles by resampling with replacement N times from 

an approximate discrete representation of given by so that  

 

The resulting sample is in fact an iid sample from the discretized density of p(s t  | Y 
t, 
θ) and hence is 

equally weighted. 

5. Likelihood Evaluation: According to (70) the log likelihood function can be approximated by  

 

 

To compare results from first and second-order accurate DSGE model solutions we simulated 

artificial data of 80 observations from the quadratic approximation of model M1 with 

parameter values reported in Table 3 under the heading D1(Q). In the remainder of this 

section we will refer to these parameters as “true” values as opposed to “pseudotrue” values 

to be defined later. These true parameter values by and large resemble the parameter values 

that have been used to generate data from the log-linear DSGE model specifications. 

However, there are some exceptions. The degree of imperfect competition, ν, is set to 0.1, 

which implies a steady-state markup of 11% that is consistent with the estimates of Basu 

(1995). 1/g is chosen as.85, which implies that the steady-state consumption amounts to 85% 

of output. The slope coefficient of the Phillips curve, κ, is chosen to be.33, which implies less 

price stickiness than in the linear case. The implied quadratic adjustment cost coefficient, , 

is 53.68. We also make monetary policy less responsive to the output gap by setting 

ψ2 = .125. γ
(Q)

, r 
(A)

, and π
(A)

 are chosen as.55, 1.0, and 3.2 to match the average output 

growth rate, interest rate, and inflation between the artificial data and the real U.S. data. 

These values are different from the mean of the historical observations because in the non-

linear version of the DSGE model means differ from steady states. Other exogenous process 

                                                           
12

 The sequential importance sampler (SIS) is a Monte Carlo method which utilized this aspect, but it is well 

documented that it suffers from a degeneracy problem, where after a few iterations, all but one particle will have 

negligible weight. 



 

parameters, ρ g, ρ z, σ R, σ g, and σ

U.S. data. For computational convenience, a measurement error is introduced to each 

measurement equation, whose standard deviation is set as 20% of that of each observation.

6.1 Configuration of the Particle Filter

There are several issues concerning the practical implementation of the particle filter. First, 

we need a scheme to draw from the initial state distribution, 

straightforward to calculate the unconditio

autoregressive representation (33). For the second

transition equation (37) as follows. Decompose 

exogenous processes R, t, t, 

t can be expressed as  

where w t  = [x t−1′, ξ t ′]′. We generate 

(the law of motion for ξ t is linear) and setting 

Second, we have to choose the number of particles. For a good approximation of the 

prediction error distribution, it is desirable to have many particles, especially enough particles 

to capture the tails of p(st  | Y
t 
). Moreover, the number of particles af

the resampling algorithm. If the number of particles is too small, the resampling will not 

work well. In our implementation, the stratified resampling scheme proposed by Kitagawa 

(1996) is applied. It is optimal in terms of variance in the class of unbiased resampling 

schemes. If the measurement errors in the conditional distribution 

particles are needed to obtain an accurate approximation of the likelihood function and to 

ensure that the posterior weights 

application, we found that 40,000 particles 

likelihood given the size of the measurement errors.

Even though the estimation procedure involves extensive random sampling, the particle filter 

can be readily implemented on a good desktop computer. We implement most o

procedure in MATLAB (2005

DSGE model, but it takes too much time to evaluate the likelihood function using the particle 

filter. The filtering step is implemented as FORTRAN mex library, so we can call it as a 

function in MATLAB. Based on a sample of 80 observations we can generate 1,000 draws 

with 40,000 particles in 1 h and 40

with 1 GB RAM. Linear methods are more than 200 times faster: 1,000 draws are generated 

in 24 sec in our Matlab routines and 3

                                                          
13

 Without the measurement error two complications arise: since 

distribution of st is that of a multivariate noncentral 

the computation of p(st  | Yt ) requires the solution of a system of quadratic equations.
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and σ z, are chosen so that the second moments are matched to the 

U.S. data. For computational convenience, a measurement error is introduced to each 

measurement equation, whose standard deviation is set as 20% of that of each observation.

Particle Filter 

There are several issues concerning the practical implementation of the particle filter. First, 

we need a scheme to draw from the initial state distribution, p (s0 | θ). In the linear case, it is 

straightforward to calculate the unconditional distribution of s t associated with the vector 

autoregressive representation (33). For the second-order approximation we rewrite the state 

transition equation (37) as follows. Decompose st  = [x t ′, ξ t ′]′, where ξ t is composed of the 

, and t. The law of motion for the endogenous state variables 

. We generate x 0 by drawing ξ0 from its unconditional distribution 

is linear) and setting x −1 = x, where x is the steady

Second, we have to choose the number of particles. For a good approximation of the 

prediction error distribution, it is desirable to have many particles, especially enough particles 

). Moreover, the number of particles affects the performance of 

the resampling algorithm. If the number of particles is too small, the resampling will not 

work well. In our implementation, the stratified resampling scheme proposed by Kitagawa 

is applied. It is optimal in terms of variance in the class of unbiased resampling 

schemes. If the measurement errors in the conditional distribution p(yt  | st ) are small, more 

particles are needed to obtain an accurate approximation of the likelihood function and to 

ensure that the posterior weights do not assign probability one to a single particle. In our 

application, we found that 40,000 particles were enough to get stable evalu

likelihood given the size of the measurement errors. 

Even though the estimation procedure involves extensive random sampling, the particle filter 

can be readily implemented on a good desktop computer. We implement most o

2005) so that we can exploit the symbolic toolbox to solve the 

DSGE model, but it takes too much time to evaluate the likelihood function using the particle 

filter. The filtering step is implemented as FORTRAN mex library, so we can call it as a 

AB. Based on a sample of 80 observations we can generate 1,000 draws 

h and 40 min (6.0 sec per draw) on the AMD64 3000+ machine 

GB RAM. Linear methods are more than 200 times faster: 1,000 draws are generated 

our Matlab routines and 3 sec in our GAUSS routines. 

                   

Without the measurement error two complications arise: since p(yt  | st ) degenerates to a point

is that of a multivariate noncentral χ2 the evaluation of p(yt  | Yt-1) becomes difficult. Moreover, 

requires the solution of a system of quadratic equations.  

are chosen so that the second moments are matched to the 

U.S. data. For computational convenience, a measurement error is introduced to each 

measurement equation, whose standard deviation is set as 20% of that of each observation.
13

 

There are several issues concerning the practical implementation of the particle filter. First, 
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associated with the vector 
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The law of motion for the endogenous state variables xj, 

 

from its unconditional distribution 

is the steady-state of xt . 

Second, we have to choose the number of particles. For a good approximation of the 

prediction error distribution, it is desirable to have many particles, especially enough particles 

fects the performance of 

the resampling algorithm. If the number of particles is too small, the resampling will not 

work well. In our implementation, the stratified resampling scheme proposed by Kitagawa 

is applied. It is optimal in terms of variance in the class of unbiased resampling 

) are small, more 

particles are needed to obtain an accurate approximation of the likelihood function and to 

do not assign probability one to a single particle. In our 

gh to get stable evaluations of the 

Even though the estimation procedure involves extensive random sampling, the particle filter 

can be readily implemented on a good desktop computer. We implement most of the 

so that we can exploit the symbolic toolbox to solve the 

DSGE model, but it takes too much time to evaluate the likelihood function using the particle 

filter. The filtering step is implemented as FORTRAN mex library, so we can call it as a 

AB. Based on a sample of 80 observations we can generate 1,000 draws 

sec per draw) on the AMD64 3000+ machine 

GB RAM. Linear methods are more than 200 times faster: 1,000 draws are generated 

degenerates to a point-mass and the 

becomes difficult. Moreover, 
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6.2. A Look at the Likelihood Function 

We will begin our analysis by studying profiles of likelihood functions. For brevity, we will 

refer to the likelihood obtained from the first-order (second-order) accurate solution of the 

DSGE model as linear (quadratic) likelihood. It is natural to evaluate the quadratic likelihood 

function in the neighborhood of the true parameter values given in Table 3. However, we 

evaluate the linear likelihood around the pseudo-true parameter values, which are obtained by 

finding the mode of the linear likelihood using 3,000 observations. The parameter values for 

ν and 1/g are fixed at their true values because they do not enter the linear likelihood. Recall 

that we had introduced a reduced-form Phillips curve parameter κ in (32) because ν and 

cannot be identified with the log-linearized DSGE model. 

Figure 14 shows the log-likelihood profiles along each structural parameter dimension. Two 

features are noticeable in this comparison. First, the quadratic log-likelihood peaks around the 

true parameter values, while the linear log-likelihood attains its maximum around the pseudo-

true parameter values. The differences between the peaks are most pronounced for the steady-

state parameters r 
(A)

 and π
(A)

. While in the linearized model steady states and long-run 

averages coincide, they differ if the model is solved by a second-order approximation. For 

some parameters the quadratic log-likelihood function is more concave than the linear one, 

which implies that the non-linear approach is able to extract more information on the 

structural parameters from the data. For instance, it appears that the monetary policy 

parameter such as ψ1 can be more precisely estimated with the quadratic approximation.  

As noted before, the quadratic approximation can identify some structural parameters that are 

unidentifiable under the log-linearized model. g does not enter the linear version of the model 

and hence the log-likelihood profile along this dimension is flat. In the quadratic 

approximation, however, the log-likelihood is slightly sloped in 1/g = c/y dimension. 

Moreover, the linear likelihood is flat for the values of ν and  that imply a constant κ. This is 

illustrated in Figure 15, which depicts the linear and quadratic likelihood contours in ν-  

space. The contours of the linear likelihood trace out iso-κ lines. The right panel of Figure 15 

indicates that the iso-κ lines intersect with the contours of the quadratic likelihood function, 

which suggests that ν and  are potentially separately identifiable. However, our sample of 80 

observations is too short to obtain a sharp estimate of the two parameters. 
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FIGURE 14 Linear vs. quadratic approximations: likelihood profiles. Data Set D1(Q). Likelihood 

profile for each parameter: M1(L)/Kalman filter (dashed) and M1(Q)/particle filter (solid). 40,000 

particles are used. Vertical lines signify true (dotted) and pseudo-true (dashed-dotted) values. 

 

FIGURE 15 Linear vs. quadratic approximations: Likelihood contours. Data set D1(Q). Contours of 

likelihood (solid) for M1(L) and M1(Q). 40,000 particles are used. Large dot indicates true and 

pseudotrue parameter value. κ is constant along dashed lines. 



51 

 

6.3. The Posterior 

We now compare the posterior distributions obtained from the linear and non-linear analysis. 

In both cases we use the same prior distribution reported in Table 3. Unlike in the analysis of 

the likelihood function we now substitute the adjustment cost parameter  with the Phillips-

curve parameter κ in the quadratic approximation of the DSGE model. A beta prior with 

mean.1 and standard deviation 0.05 is placed on ν, which roughly covers micro evidences of 

10–15% markup. Note that 1 − 1/g is the steady-state government spending–output ratio, and 

hence a beta prior with mean 0.85 and standard deviation.1 is used for 1/g. 

 

We use the RWM algorithm to generate draws from the posterior distributions associated 

with the linear and quadratic approximations of the DSGE model. We first compute the 

posterior mode for the linear specification with the additional parameters, ν and 1/g, fixed at 

their true values. After that, we evaluate the Hessian to be used in the RWM algorithm at the 

(linear) mode without fixing ν and 1/g, so that the inverse Hessian reflects the prior variance 

of the additional parameters. This Hessian is used for both the linear and the non-linear 

analysis. We use scaling factors .5 (linear) and .25 (quadratic) to target an acceptance rate of 

about 30%. The Markov chains are initialized in the neighborhood of the pseudo-true and 

true parameter values, respectively. 

 

Figures 16 and 17 depict the draws from prior, linear posterior, and quadratic posterior 

distribution. 100,000 draws from each distribution are generated and every 500th draw is 

plotted. The draws tend to be more concentrated as we move from prior to posterior. While, 

for most of our parameters, linear and quadratic posteriors are quite similar, there are a few 

exceptions. The quadratic posterior mean of ψ1 is larger than the linear posterior mean and 

closer to the true value. The quadratic posterior means for the steady-state parameters r 
(A)

 

and π
(A)

 are also greater than the corresponding linear posterior means, which is consistent 

with the positive difference between “true” and “pseudotrue” values of these parameters.  

 

Now consider the parameter ν that determines the demand elasticity for the differentiated 

products. Conditional on κ this parameter is not identifiable under the linear approximation 

and hence its posterior is not updated. The parameter does, however, affect the second-order 

terms that arise in the quadratic approximation of the DSGE model. Indeed, the quadratic 

posterior of ν is markedly different from the prior as it concentrates around 0.05. Moreover, 

there is a clear negative correlation between κ and ν according to the quadratic posterior. 

Table 6 reports the log marginal data densities for our linear (M1(L)) and quadratic (M1(Q)) 

approximations of the DSGE model based on Data Set D1 (Q). The log marginal likelihoods 

are −416.06 for M1(L) and −408.09 for M1(Q), which imply a Bayes factor of about e 
8
 in 

favor of the quadratic approximation. This result suggests that D1(Q) exhibits nonlinearities 

that can be detected by the likelihood-based estimation methods. Our simulation results with 

respect to linear versus non-linear estimation are in line with the findings reported in 

Fernández-Villaverde and Rubio-Ramírez (2005) for a version of the neoclassical stochastic 

growth model. In their analysis the non-linear solution combined with the particle filter 

delivers a substantially better fit of the model to the data as measured by the marginal data 

density, both for simulated as well as actual data. Moreover, the authors point out that the 

differences in terms of point estimates, although relatively small in magnitude, may have 

important effects on the moments of the model. 
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FIGURE 16 Posterior draws: linear vs. quadratic approximation I. Data set D1(Q). 100,000 

draws from the prior and posterior distributions. Every 500th draw is plotted. Intersections of 

solid and dotted lines signify true and pseudotrue parameter values. 40,000 particles are used. 
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FIGURE 17 Posterior draws: Linear vs. quadratic approximation II. See Figure 16. 

 

 

TABLE 6 Log marginal data densities based on D1(Q)  

Specification ln p(Y | M1) Bayes factor vesus M1(Q) 

Benchmark model, linear solution M1(L) −416.06 exp[7.97] 

Benchmark model, quadratic solution M1(Q) −408.09 1.00 

Notes: See Table 4. 
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7. CONCLUSIONS AND OUTLOOK 

There exists by now a large and growing body of empirical work on the Bayesian estimation 

and evaluation of DSGE models. This paper has surveyed the tools used in this literature and 

illustrated their performance in the context of artificial data. While most of the existing 

empirical work is based on linearized models, techniques to estimate DSGE models solved 

with non-linear methods have become implementable thanks to advances in computing 

technology. Nevertheless, many challenges remain. Model size and dimensionality of the 

parameter space pose a challenge for MCMC methods. Lack of identification of structural 

parameters is often difficult to detect since the mapping from the structural form of the DSGE 

model into a state–space representation is highly non-linear and creates a challenge for 

scientific reporting as audiences are typically interested in disentangling information 

provided by the data from information embodied in the prior. Model misspecification is and 

will remain a concern in empirical work with DSGE models despite continuous efforts by 

macroeconomists to develop more adequate models. Hence it is important to develop 

methods that incorporate potential model misspecification in the measures of uncertainty 

constructed for forecasts and policy recommendations. 
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