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Abstract

In this article we propose a new multivariate generalized autoregressive conditional heteroscedasticity
(MGARCH) model with time-varying correlations. We adopt the vech representation based on the conditional
variances and the conditional correlations. Whereas each conditional-variance term is assumed to follow a
univariate GARCH formulation, the conditional-correlation matrix is postulated to follow an autoregressive
moving average type of analog. Our new model retains the intuition and interpretation of the univariate
GARCH model and yet satisfies the positive-definite condition as found in the constant-correlation and Baba-
Engle-Kraft-Kroner models. We report some Monte Carlo results on the finite-sample distributions of the
maximum likelihood estimate of the varying-correlation MGARCH model. The new model is applied to some
real data sets.

KEY WORDS: BEKK model, Constant correlation, Maximum likelihood estimate, Monte Carlo method,
Multivariate GARCH model, Varying correlation

1. INTRODUCTION

After the success of the autoregressive conditional heteroscedasticity (ARCH) model and the generalized
ARCH (GARCH) model in describing the time-varying variances of economic data in the univariate case,
many researchers have extended these models to multivariate dimension. Applications of the multivariate
GARCH (MGARCH) models to financial data have been numerous. For example, Bollerslev (1990) studied
the changing variance structure of the exchange rate regime in the European Monetary System, assuming the
correlations to be time invariant. Kroner and Claessens (1991) applied the models to calculate the optimal debt
portfolio in multiple currencies. Lien and Luo (1994) evaluated the multiperiod hedge ratios of currency
futures in a MGARCH framework. Karolyi (1995) examined the international transmission of stock returns
and volatility, using different versions of MGARCH models. Baillie and Myers (1991) estimated the optimal
hedge ratios of commodity futures and argued that these ratios are nonstationary. Gourieroux (1997, chap. 6)
presented a survey of several versions of MGARCH models. See also Bollerslev et al. (1992) and Bera and
Higgins (1993) for surveys on the methodology and applications of GARCH and MGARCH models.

Bollerslev et al. (1988) provided the basic framework for a MGARCH model. They extended the GARCH
representation in the univariate case to the vectorized conditional-variance matrix. Their specification follows
the traditional autoregressive moving average time series analog. This vech representation is very general, and
it involves a large number of parameters. Empirical applications require further restrictions and
simplifications. A useful member of the vech-representation family is the diagonal form. Under the diagonal
form, each variance-covariance term is postulated to follow a GARCH-- type equation with the lagged



variance-covariance term and the product of the corresponding lagged residuals as the rightside variables in
the conditional-(co)variance equation.

It is often difficult to verify the condition that the conditional-variance matrix of an estimated MGARCH
model is positive definite. Engle et al. (1984) presented the necessary conditions for the conditional-variance
matrix to be positive definite for a bivariate ARCH model. Extensions of these results to more general models
are, however, intractable. Furthermore, such conditions are often very difficult to impose during the
optimization of the log-likelihood function. Bollerslev (1990) suggested a constant-correlation MARCH (CC--
MGARCH) model that can overcome these difficulties. He pointed out that under the assumption of constant
correlations, the maximum likelihood estimate (MLE) of the correlation matrix is equal to the sample
correlation matrix. As the sample correlation matrix is always positive definite, the optimization will not fail
as long as the conditional variances are positive. In addition, when the correlation matrix is concentrated out
of the log-likelihood function further simplification is achieved in the optimization.

Because of its computational simplicity, the CC-MGARCH model is widely used in empirical research.
However, although the constant-correlation assumption provides a convenient MARCH model for estimation,
many studies find that this assumption is not supported by some financial data. Thus, there is a need to extend
the MGARCH models to incorporate time-varying correlations and yet retain the appealing feature of
satisfying the positive-definite condition during the optimization.

Engle and Kroner (1995) proposed a class of MGARCH model called the BEKK (named after Baba, Engle,
Kraft, and Kroner) model. The motivation is to ensure the condition of a positive-definite conditional-variance
matrix in the process of optimization. Engle and Kroner provided some theoretical analysis of the BEKK
model and related it to the vech-representation form. Another approach examines the conditional variance as a
factor model. The works by Diebold and Nerlove (1989), Engel and Rodrigues (1989), and Engle et al. (1990)
are along this line. One disadvantage of the BEKK and factor models is that the parameters cannot be easily
interpreted, and their net effects on the future variances and covariances are not readily seen. Bera et al.
(1997) reported that the BEKK model does not perform well in the estimation of the optimal hedge ratios.
Lien et al. (2001) reported difficulties in getting convergence when they used the BEKK model to estimate the
conditional-variance structure of spot and futures prices.

In this article we propose a new MGARCH model with time-varying correlations. Basically we adopt the vech
representation. The variables of interest are, however, the conditional variances and conditional correlations.
We assume a vech-diagonal structure in which each conditional-variance term follows a univariate GARCH
formulation. The remaining task is to specify the conditional-correlation structure. We apply an autoregressive
moving average type of analog to the conditional-correlation matrix. By imposing some suitable restrictions
on the conditional-correlation-matrix equation, we construct a MGARCH model in which the conditional--
correlation matrix is guaranteed to be positive definite during the optimization. Thus, our new model retains
the intuition and interpretation of the univariate GARCH model and yet satisfies the positive-definite
condition as found in the constant-- correlation and BEKK models.

The plan of the rest of the article is as follows. In Section 2 we describe the construction of the varying-
correlation MGARCH model. As in other MGARCH models, the new model can be estimated by use of the
MLE method. Some Monte Carlo results on the finite-sample distributions of the MLE of the varying-
correlation MGARCH model are reported in Section 3. Section 4 describes some illustrative examples of the
new model that use some real data sets. These are the exchange rate data, national stock market price data, and
sectoral stock price data. The new model is compared against the CC-MGARCH model and the BEKK model.
It is found that the new model compares favorably against the BEKK model. Extending the constant-
correlation model to allow for time-varying correlations provides some interesting empirical results. The



estimated conditional-correlation path provides a time history that would be lost in a constant-correlation
model. Finally, we give some concluding remarks in Section 5.

2. A VARYING-CORRELATION MGARCH MODEL

Consider a multivariate time series of observations { y, }, =1, ..., T, with K elements each, so that

Vi=Ow ---» Yxr)'- We assume that the observations are of zero (or known) mean. This assumption simplifies
the discussions without straining the notations. Additional parameters would be required to represent the
conditional-mean equation in the complete model if the mean were unknown. Under certain conditions, the
MLE of the parameters in the conditional-mean equation is asymptotically uncorrelated with the MLE of the
parameters of the conditional-variance equation. Under such circumstances, we may treat y, as pre-filtered
observations [see Bera and Higgins (1993) for further discussions]. Otherwise, the parameter vector has to be
augmented to take account of the parameters in the unknown conditional mean.

The conditional variance of y, is assumed to follow the time-varying structure given by
Var (y, 1®r1) = Q, (D

where @, is the information set at time 7. We denote the variance elements of (), by o’ gnfori=1,..., K and
the covariance elements by o0, where 1 < i < j < K. Denoting D; as the K x K diagonal matrix where the ith
diagonal element is o;, we let B,= D! v.. Thus, B,is the standardized residual and is assumed to be serially
independently distributed with mean zero and variance matrix @, = { p;}. Of course, @, is also the correlation
matrix of y,. Furthermore, Q, = D, &, D..

To specify the conditional variance of y,, we adopt the vech-diagonal formulation initiated by Bolerslev et al.
(1988). Thus, each conditional-variance term follows a univariate GARCH (p, g) model given by the equation

[ q
2 _ 2 2
it w; + z &J'.Tru—f'_ i—h + ZBIM-‘H_:—M’
=1 =1 i=1,...,K 2)

. P ] .
where w;, o, and B, are nonnegative, and = @ T 2k B 1,fori=1, ..., K

Note that we may allow (p, g) to vary with i so that (p, g) should be regarded as the generic order of the
univariate GARCH process. Researchers adopting the vech-diagonal form typically assume that the above
equation also applies to the conditional-covariance terms in which o’ is replaced by o, and }} i« replace by y;,
Yifor 1 <i<j< K. We shall deviate from this approach, however. Specifically, we shall focus on the
conditional-correlation matrix and adopt an autoregressive moving average analog on this matrix. Thus, we
assume that the time varying conditional-correlation matrix @, is generated from the recursion

I,=(1—6,—6,)+6,I,_ +6,V_ 3)

= { p; } is a (time-invariant) K x K positive definite parameter matrix with unit diagonal elements and W1
is a K x K matrix whose elements are functions of the lagged observations of y,. The functional form of W41
will be specified below. The parameters 0, and 8, are assumed to be non-negative with the additional
constraint that 0, + 6, < 1. Thus, B, is a weighted average of @, B, ;, and

Ye:1. Hence, if We1 and Bl are well-defined correlation matrices (i.e., positive definite with unit diagonal
elements), B, will also be a well-defined correlation matrix.



It can be observed that W is analogous to yz,-,,_l in the univariate GARCH(1, 1) model. However, as [, is a
standardized measure, we also require W1 to depend on the (lagged) standardized residuals @,. Denoting ¥,=
{ W}, we propose to consider the following specification for Wei:

M
ZH=J EJ’.:—M 'Ej.:—.fr

w{j. —1 =

! ] 5 J v
V’(ELL EF.:—:»}{E;:LI E}.a—n}’ 1<i<j<K 4)

Thus, P«1 is the sample correlation matrix of { &, , ..., @,y }. We define E, ; as the K x M matrix given by
E.; =@, ..., 8.).If B, is the K x K diagonal matrix where the ith diagonal element is

M 2 12 .
(a1 € ion) ori=1, ..., K, we have

— p-! rop-l
Vi, =B EE_ B, )
Note that when M = 1, W1 is identically equal to the matrix of unity. Updating the conditional-correlation
matrix with respect to the matrix of unity is of course not meaningful. Thus, taking first-order lag for the
formulation of W1 is not sufficient. Indeed, M = K is a necessary condition for W1 to be positive definite.
When positive-definiteness is satisfied, W1 is a well-defined correlation matrix. Thus, the condition M > K

will be imposed subsequently. In particular, in all of the computations reported in this article we assume
M=K.

Equation (3) is analogous to the univariate GARCH equation, with the additional restriction that the sum of
the coefficients is equal to 1. Indeed, @, involves updating the conditional-correlation matrix with respect to
the latest conditional-correlation matrix [, ; and a sample estimate of the conditional-correlation matrix based
on the recent M standardized residuals. We shall call the model specified by (2), (3), and (5) the varying-
correlation MGARCH (VCMGARCH) model.

Assuming normality, y, |® 1 ~ MO, D, B, D, ) so that (ignoring the constant term) the conditional log-
likelihood ¢, of the observation y, is given by

I . | I

1 , 1,

t,==3zm[DI,D,| ==y, D' Dy, (6)
1 o 1

== zhiL]= 33 el —yD Dy, (D)
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from which we can obtain the log-likelihood function of the sample as ¢ = Y= & Here the log-likelihood
function is conditional on B, ¥, and y, being fixed. These assumptions have no effects on the asymptotic
distribution of the MLE. Denoting 0 = (w1, a1, ., 0, Pit, ---v s Prgs @25 -, Brgs P12s ---- 5 Pr-1k > 01, 02) as the
parameter vector of the model, the MLE of 0 is obtained by maximizing € with respect to 6. We shall denote
this value by B.

For parameter parsimony, (p, g) is usually taken to be of low order. For p = ¢ = 1, the total number of
parameters in the VC-MGARCH model is 3K + K(K + 1) / 2 + 2. In comparison, an unrestricted BEKK(1 , 1)
model has K(K +1) /2 + 2K? parameters. For example, for K = 2, 3, and 4, the number of parameters in the
VC-MGARCH model is 9, 14, and 20, respectively, whereas that for the BEKK model is 11, 24, and 42,
respectively. The number of parameters in the VC-MGARCH model always exceeds that of the constant-
correlation model by 2, because of the parameters 0, and 0,. Indeed the CC-MGARCH model is nested within
the VCMGARCH model under the restrictions 6; = 6, = 0.

The conditions 0 < 0;, 6, < 1, and 6, + 6, < 1 pose some problems in the optimization. One way to get around

this difficulty is through transformation. For example, we may define 6, = ( ATJ(THAT+ "i: for i = 2, where A;
and A; are unrestricted parameters. The log-likelihood function may be initially optimized with respect to A; ,
A2, and other parameters of interest. The optimization is then shifted to the original vector 6 when convergence



with respect to A; , A,, and other parameters has been achieved. This technique is used in the computations
reported in this article.

3. SOME MONTE CARLO RESULTS

Research on the asymptotic theory of conditional heteroscedasticity models has been lagging behind their
empirical applications. Weiss (1986), Pantula (1989), Bollerslev and Wooldridge (1992), Lee and Hansen
(1994), Lumsdaine (1996), and Ling and Li (1997b) investigated the asymptotic distribution of the quasi-MLE
(QMLE) of the univariate ARCH/GARCH models. Sufficient conditions for consistency and asymptotic
normality have been established. Recently, Ling and McAleer (2000) examined the asymptotic distribution of
a class of vector ARMA-GARCH models. They established conditions for strict stationarity and ergodicity
and proved the consistency and asymptotic normality of the QMLE under some mild moment conditions.
Although the models considered by Ling and McAleer are quite general, the CCGARCH framework is
adopted, and time-varying conditional correlation is not allowed. An extension of the results by Ling and
McAleer to the VC-MGARCH model will be interesting. This, however, is beyond the scope of this article.

An interesting issue for empirical applications concerns the properties of the MLE of the conditional
heteroscedasticity models in small and moderate samples. In the univariate case, Engle et al. (1985) and
Lumsdaine (1995) examined the small sample properties of the MLE of the ARCH and GARCH models. In
this section we report some results on the small sample properties of the MLE of the VC-MGARCH model
based on a small-scale Monte Carlo experiment. It is not our intention to provide a comprehensive Monte
Carlo study of the MLE. We shall focus our interest on the small-sample bias and mean squared error only.
The reliability of the inference concerning the model parameters will not be examined. Our results, however,
will provide some preliminary evidence with respect to the small-sample properties of the MLE of the
VCMGARCH model.

We consider bivariate VC-MGARCH models in which the conditional-variance equations are given by

o= w oo, By . i=1,2, ()
with

p,=(1—0,—0,)p+8,p,_, +6,4_,, (9)
where ,_, is specified as

2 €, €y
i:&r_l — Eﬁ—l 1. =<2, 1—h ) {I{]}

1,||-'III (Ei=] Ef. —h ]I (Ei= 1 Ei —h }

withe, = v, Jjo, fori=1.2.

We consider four experimental setups. The true parameter values of the data-generating processes of these
experiments, labelled E1 through E4, are given in Tables 1 and 2. Observations {y,}, are generated from these
models assuming the errors are normally distributed. We consider 7 = 500, 1,000, and 1,500. The MLEs are
calculated for each generated sample. Using Monte Carlo samples of 1,000 runs, we estimate the bias and
mean squared error (MSE) of the MLE. All calculations reported in this section and the next are coded in
GAUSS.



Table 1. Estimated Bias and MSE of the MLE of Bivarate VC-MGARCH(7.1) Modeils

Experiment: ET Experimeni: E2
Parameters True value Sample size Bias MSE True value Sample size Bias MSE
[N 4 500 0807 D687 4 500 1166 0993
1.000 0363 0194 1,000 L0487 0273
1.500 D266 0116 1.500 0328 0157
o, 8 500 =0135 0033 8 500 -.0183 .0043
1.000 = 0056 00z 1.000 =.0070 0016
1.500 = 0046 0008 1.500 =.0050 0010
B4 .15 500 =.0oo7 0013 15 500 L0005 0017
1.000 =.0005 0006 1,000 =.0010 .pooa
1.500 D005 0004 1.500 =.0004 0005
iy 2 500 0313 0095 2 500 0364 .0118
1.000 0132 0031 1.000 0123 0040
1.500 D076 o7 1.500 JD0B9 0024
g T 500 = 0170 0062 T 500 =.0230 .0079
1.000 -0094 0023 1.000 =.0075 L0031
1.500 =0043 0015 1,500 =.,0047 0018
B 2 500 =.0018 0023 2 500 L0011 0030
1.000 0013 0010 1,000 -.0003 .0013
1.500 =.0005 20008 1.500 =.0005 0009
o T 500 =001 0028 2 500 =.000a 0077
1.000 =0027 0084 1.000 =.0012 0034
1.500 D010 0009 1,500 L0001 D022
iy 8 500 =008 004 8 500 -.0358 .0181
1.000 =0080 0023 1,000 =.0184 -D0BS
1.500 D011 0004 1,500 =.0111 D029
[ A 500 = 0006 0008 A 500 L0043 0016
1.000 = 0064 0014 1,000 0023 .Dooa
1.500 D005 0003 1.500 L0011 0004

NOTE: See Equations (8). (2), and (10) for the dala-gensraling processes.

El and E2 represent models with higher volatility persistence (as measured by o; + 3;), and E3 and E4
represent models with lower volatility persistence. The selected values of p in the experiments are .2 and .7. It
can be seen from the Monte Carlo results that the biases of the MLE are generally quite small. The bias
decreases with the sample size, although in some cases not steadily. Likewise, the same is true for the MSE.
Overall, for the sample sizes and models considered, the bias and MSE appear to be small. In the next section,
we illustrate the application of the VC-MGARCH model with some real data sets.

4. SOME ILLUSTRATIVE EXAMPLES

We examine three sets of financial data, denoted by DSI, DS2, and DS3. DS1 consists of two exchange rate
(versus U.S. dollar) series, namely, the deutsche mark (D) and the Japanese yen (J). These series represent
2,131 daily observations from January 1990 through June 1998. DS2 covers the stock market indices of the
Hong Kong and the Singapore markets. We use the Hang Seng Index (H) for the Hong Kong market and the
SES Index (S) for the Singapore market. There are 1,942 daily (closing) prices for each series, covering the
period from January 1990 through March 1998. DS3 consists of three sectoral price indices of the Hong Kong
stock market. These are the Finance (F), Properties (P), and Utilities (U) sectors. Each series includes 2,440
daily observations covering the period from October 1990 through August 2000. DS1 was downloaded from
the website of the Federal Reserve Bank of New York. DS2 was compiled from various issues of the Stock
Exchange of Singapore Journal. Some adjustments were made to account for the differences in the holidays of
the two exchanges. DS3 was downloaded from Datastream.

Figures 1 through 3 present the plots of the seven series in the three data sets. In Figure 1 the Japanese yen (Y)
series have been rescaled for easy presentation. This is similarly done for the Hang Seng Index (H) series in
Figure 2. We can see that the exchange rates of the Deutsche mark and the Japanese yen generally moved in
tandem against the U.S. dollar during the sample period. As expected, the three sectoral indices in the Hong
Kong stock market moved quite closely together. This is especially true for the Finance and Properties
Indices. In contrast, the Utilities Index was quite sluggish in the mid-1990s, whereas the Finance and
Properties Indices underwent a bull run during this period. It is quite clear from Figure 2 that the national
stock markets of Hong Kong and Singapore experienced different phases of bulls and bears. The general
impression is that Hong Kong has a more volatile market compared with Singapore.
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Figure 1. Exchange Rates of Deutsche Mark and Japanese Yen. Figure 2. National Stock Market Indices. Figure 3. Hang Seng Sectoral Indices.

Table 2. Estimated Bias and MSE of the MLE of Bivariate VC-MGARCH(1,7) Modeils

Experiment: E3 Experiment: E4
Parameters True value Sample size Bias MSE True value Sample size Bias MSE
y A4 500 0293 0148 4 500 0315 0188
1,000 L0137 0oe2 1,000 0114 0088
1.500 0090 0037 1.500 0051 0052
oy 5 500 -0131 0092 5 500 -.0181 0108
1.000 —.0077 0036 1.000 —.00E7 0051
1.500 =.0053 0022 1.500 =.0025 0031
By 3 500 =.0050 0037 3 500 =.0032 0042
1.000 =.0007 0017 1.000 =0019 0021
1,500 0003 0011 1,500 =022 0015
by 2 500 0197 0087 2 500 0219 0081
1,000 0089 0026 1,000 0109 0032
1,500 0054 0016 1,500 L0089 0024
oy 5 500 =.0291 0216 5 500 =.0352 0268
1.000 -0125 0090 1.000 -.0188 0110
1.500 —.0083 0054 1.500 —.0089 0074
Ba 2 500 -.0028 0030 2 500 -.0008 0034
1.000 =.0017 0014 1.000 0016 0017
1.500 0001 0009 1.500 0021 0013
il T 500 0011 0064 2 500 0002 0139
1,000 0014 0025 1.000 0007 0068
1,500 =.0003 0015 1,500 0001 0041
oy B 500 -.0026 0034 B 500 -0137 0055
1.000 =.0015 0014 1.000 =.0035 0023
1.500 =.0011 0010 1.500 -.0058 0016
o 3 500 —.0048 0018 3 500 0035 0023
1,000 - 00189 0009 1,000 -.0009 0010
1,500 - 0006 0006 1,500 0019 0007

NOTE: See Equalions (8), (8), and (10) for the dala-gensraling processes.

Table 3 provides a summary of the descriptive statistics of the data. The summary statistics refer to those of
the differences of the logarithmic series (expressed as a percentage). It can be seen that all differenced
logarithmic series exhibit excess kurtosis (compared with the normal distribution) in the unconditional
distribution. Whereas the exchange rate data (DS1) demonstrate no evidence of serial correlation, the stock
return data (DS2 and DS3) show significant serial correlation, as suggested by the Q, statistics. The Q,
statistics show that there is serial correlation in the conditional variance for all data sets, and GARCH-type
modeling may be required. In the subsequent analysis, we apply MGARCH models to the data sets.
Autoregressive filters are used for the conditional mean equations. Thus, the following conditional-mean
equations are considered:

Table 3. Summary Statistics of the Differenced Loganthmic Series of Various Data Sets

Variable (Code) Mean Std. dev.  Minimum  Maximum  Std. skewness  Std. kurtosis Q,(20) Q2(20) No. of obs.

A: Forex market data (DS1), 90/1-88/6

Deutsche mark (D) 0025 B746 =2.8963 3.1030 3715 16.6655 21.9957 4642324 2121

Japanese yen (J) =0023 B£750 -4.5228 3.2269 =5.5384 334012 276373 1125759 213
B: Stock market data (D52), 90/1-98/3

Hong Kong (H) o721 1.7093  =14.7347 17.2471 =.0533 1202852 36.6618 759.7676 1942

Singapore (S) =.0010 1.0768 =7.7236 B.7867 =1.6643 85.7543 116.8250 B46.2872 1942
C: Hang Seng sectoral indices data {DS3), 90/10-00/8

Finance (F) 1055 18196 =17.6854 18.0011 =2.7550 109.8381 57.6920 986.0076 2440

Froperties (F) 0561 2.1585  =14.2738 20.6846 5.5556 88.3062 93.1470 986.3667 2440

Ltilities (L) D667 16940 —14.4889 16.6176 6.6282 921913 425415 609.1001 2440

NOTE: (20} is the Bex-Pieres ponmanteau siatisic of the differenced logarithmic series based on the autocomelalion cosl’ cents up 1o order 20, Simiary, Q2(20) is the potmantes
statistic of the 3qu&‘Eﬂ differenced Ioganilhmlc Series_
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where Z, |®x1~ N (0, Q,). The types of MGARCH model we consider are the CC-MGARCH(1, 1) model, the
VC-MGARCH(1, 1) model, and the BEKK(1, 1) model. The parameters of the conditional-mean and
conditional-variance equations are estimated simultaneously with the use of MLE assuming normality.

We fit the CC-MGARCH(1, 1) model to the data sets, using Bolerslev’s (1990) algorithm. The results are
summarized in Table 4. The standard errors reported are calculated using the robust QMLE covariance matrix
of the parameters. It can be seen that the estimates of a, B, and p are statistically significant at the 5% level for
all data sets. In comparison, the exchange rate data have the highest intensity of persistence in volatility as

measured by @+ B . With respect to the correlation coefficients, the returns of the national stock markets of
Hong Kong and Singapore have the lowest correlation. In contrast, the correlations between the various
sectoral indices of the Hong Kong stock market are the highest.

Table 5. Estimation Results of the Varying-Correlation Models: VC-MGARCH(1.,1)

Variable n d, b, by b, ] a B f, fl, Correlations
A: Forex market data (D51)
D 0013 0513 0055 9376 .0504 9705 0158 ppy =6292
(0136)  (.0198) (0030)  (.0141)  (.0088)  (.0081)  (.0046) (.0457)
J —.0011 0494 0103 9314 0473
{.0155) (.0219) (.0070) (.0303)  (.0180)
B: National Stock Market data (D52)
H L1342 0629 715 .B035 1246 9570 0312 s =A4829
(.0282)  (.0241) (0723)  (.0513)  (.0301)  (.0138)  (.0099) (0772)
S 0312 1641 0874 7273 1872
(0168)  (.0261) (0267)  (.0B05)  (.0471)
C: Hang Seng sectoral indices data (DS3)
F 1401 0744 0552 1128 8617 0993 9743 0132 pre =.B256
(0321)  (0164)  (.0156) (0388)  (.0300)  (.0215)  (.0069)  (.0033) (.0236)
P .0885 .1338 0407 —.0275 —.0202 .0982 .BB22 .0908 Pry =.7453
(.0336)  (.0165)  (.0147)  (0137)  (0122)  (.0806)  (.0209)  (.0155) (.0283)
V] 0617 0732 —.0394 1508 8209 1204 Pey =.7884
(0290)  (.0171) (.0150) (.0393)  (.0284)  (.0198) (.0258)

MOTE: The parameter estimates are the MLE assuming normality. The ° gures in parentheses are the standard emors. They are calculated using the robust OMLE covariance matrix of the
parameters.

Table 5 summarizes the estimation results of the VC-MGARCH(1, 1) models for the three data sets. Again, it
can be seen that the estimates of a, 3, and p are statistically significant at the 5% level for all data sets. In
addition, al estimates of 6, and 0, are statistically significant at the 5% level, indicating that the correlations
are significantly time varying. We note that the intensity of the volatility persistence remains approximately
unchanged compared with the CC-MGARCH models. Indeed, incorporating time-varying correlations does
not have much effect on the estimates of a and . The estimates of p in the varying-correlation models are al
larger than the corresponding estimates of p in the constant-correlation models. This, however, does not imply
that the correlations are on average higher in the varying-correlation model. It should be noted that the time-
invariant component of the conditional correlation coefficient in the VC-MGARCH(1, 1) model is
(1-6,-0,)p. A comparison of the correlations in the two models will be provided below.

We also estimate the BEKK(1, 1) model defined by the conditional-variance equation
=[fn ‘iz I n iz En 82 r En 8n @1 22 ' ’ ayy &yz
2 (0 fz:) (0 "3:)+ (Hzl 5'11) ey (Hzt g::) * (ﬂ'z] ﬂ'z:) €16 (ﬂ'z] f":z)' (12)
This equation is for the bivariate case. The trivariate model is similarly defined. Tables 6 and 7 summarize the
estimation results. It is found that all off-diagonal elements of the GARCH (i.e., g;) and ARCH (i.e., a;;) terms

of the conditional-variance equations are insignificant. Thus, Table 7 represents the diagonal BEKK(1, 1)
models.



As the CC-MGARCH(1, 1) model is nested within the VCMGARCH (1, 1) model, ignoring the extension
would induce model misspecification. We now proceed to examine the model diagnostics of the estimated
models. Table 8 summarizes the maximized log-likelihood value 4LF5 and a battery of diagnostic tests for the
fitted models. The constant-correlation assumption is tested using a Lagrange multiplier test (LMC) based on
the estimates of the CC-MGARCH(1, 1) model and the likelihood ratio (LR) test based on the estimates of the
VC-MGARCH(1, 1) model. LMC is the Lagrange multiplier test suggested by Tse (2000) for the assumption
of (joint) constant correlation in a MGARCH model. It is asymptotically distributed as x°z, where R = K (K -
1)/2, under the null. From part A of Table 8 we can see that the constant-correlation assumption is rejected for
all data sets at the 5% level of significance. In part B of Table 8 we present the likelihood ratio statistic LR,
which tests for the restriction Hy : 6; = 8,= 0. It can be seen that the constant-correlation assumption is
rejected for all data sets at any conventional level of significance.

To further test for misspecification in the MGARCH models we adopt the regression-based diagnostics
suggested by Wooldridge (1990, 1991). The methodology developed by Wooldridge applies to a wide class of
possible misspecification. Here we focus on the problem of misspecification in the conditional
heteroscedasticity. As shown by Wooldridge, the suggested tests are robust to departure from distributional
assumptions that are not being tested. Since our main concern is misspecification in the conditional variance,
we use the squared standardized residuals and the cross-products of the squared standardized residuals as the
indicators.

We first consider tests based on the squared standardized residuals. We denote ", as the estimate of the
standardized residual @, and 6%, as the estimated conditional variance of Vir. We define

M = (ff'l. —1® ‘?{_--'—1‘ s Ef':. = ) s the vector of indicator variables and Vgoz,-, as the gradient vector of 02,-, with
respect to 0 evaluated at "0. Denoting (Vgoz,-,)/ Aoz,-, as V(fcr'z,-,, we regress each element of “A;, on focr'z,-, to
obtain the Q-element residuals “r;. Finally, we regress unity on the vector of Q regressors “¢;,'r;;, where “¢;, =
“BI12;- 1. We calculate W;(Q) =T - SSR, where SSR is the sum of squares of the residuals of the last
regression. If there is no model misspecification, Wii(Q) is asymptotically distributed as XZQ.

The preceding diagnostic statistic can be calculated for the cross-products of the standardized residuals from
different equations as tests for pairwise correlations. Specifically, we define

- - - ()
“ie = (€& Ej =12 Eia—2€j—2r -+ + € —pEj, ,—g} 1V, ", as the gradient vector of ¢;, = B;, @} - “p;, with

respect to 0 evaluated at "0. We regress each element of “A;; on V, 0, to obtain the Q-element residuals “r;; and
then regress unity on the Q regressors “¢;;,"r;,, where ¢, = "B, "0, - ;. We define the test statistic as W;(Q)
=T -SSR for | <i <j < K, which is asymptotically distributed as x’, when there is no misspecification.

Table 6. Estimation Results of the Conditional-Mean Equations of the
BEKKi1.1) Models

Variable [ b, &b, o, b,
A: Forex market dafa (DS1)
D — 0017 0472
(.0128) {.0207)
J —.0052 0524

(.0134) {.0215)
B: National Stock Market data (DS2)

H 1188 0574
(.0299) {.0269)
s 0270 1574

(.0186) (.0262)
C: Hang Seng sectoral indices data (DS3)

F 1354 0720 0507
(.0305) {.0184) (.0159)
P 0804 1305 0402  —0279  —.0214
{.0325) {0169) (.0151) (0137) (.0133)
u 0701 0723 —.0483
{0322) {.0263) (0172)

MOTE: The parameter estimates are the MLE assuming normality. The * gures in parentheses
are the standard errors. They are calculated using the robust OMLE covariance matrix of the
parameters.



We apply the W statistics to the MGARCH models with Q = 4. From the results in Table 8 we can see that
both the CC-MGARCH and the VC-MGARCH models pass the diagnostic checks of the W statistics. Indeed,
the W statistics of the two models are quite similar. As the constant-correlation assumption is not supported by
the LMC and the LR statistics, one might expect the W statistics of the CC-MGARCH model to be significant.
The fact that this is not the case may be an indication of loss in power when the test has no specific

alternative. As for the BEKK model, most diagnostics are insignificant, with the exception of W11 in DS3. It
is noted that the CC-MGARCH model has the lowest log-likelihood for all models. The VC-MGARCH model
has the highest log-likelihood for DS2 and DS3, and the BEKK model has the highest log-likelihood for DS1.
Based on penalized likelihood criteria such as the AIC, VC-MGARCH is the preferred model for DS2 and
DS3, and BEKK is the preferred model for DS1.

Table 7. Estimation Results of the Conditional-Variance Equations of the BEKK( 1.1) Models

Cn Ciz Cia Caz Caa Cas 9n Qa2 Jaa a4 zz 8aa

A: Forex market data (DS1)

0618 0403 0863 8715 a728 2103 1973
(0138)  (.0094) (.0228) (.0053)  (.0093) (.0178)  (.0307)
B: National Stock market data (DS2)
3488 0988 2589 9195 8789 8215 4083
(.0699)  (.0286) (.0428) (.0187)  (.0303) (.0338)  (.0531)
C: Hang seng sectoral indices data (D53)
1316 —.0938 —. 1487 —.174 —.1812 —.2528 8654 9552 9548 2309 2709 2561
(0250)  (.0313)  (.0458) (.0358) (0486)  (.1525) (.0D6O)  (.0109)  (.03B2)  (.0183)  (.0297)  (.0B76)

WOTE: The parameter estimates are the MLE assuming mormality. The " gures in parentheses are the standard errors. They are calculated using the robust OMLE covariance matrix of
the parameters.

Table 8. Diagnostic Checks for Various Models

National Hang Seng
Forex market stock markets sectoral indices
Tests DS1: D-J Ds2: H-S DS3: F-P-U
A: CC-MGARCH(1.1) model
LF —1878.23 —4128.73 —7374.26
LMC 49138" 10.3442° 8.3589"
W, (4) 47921 3.9518 6.4373
Wi, (4) 3.8319 1.0694 4.9579
Wiq(4) 5.8914
Wiz (4) 76383 5.2031 5.0129
Wiq(4) 7.5183
Wha(4) 7.6974
B: VC-MGARCH(1,1) mode!
LF —1855.80 —4088.90 —7293.40
LR 44 8504% 79.6608" 161.7632°
W, (4) 47263 3.8607 7.0386
Wo(4) 38157 1.0672 5.0164
Was(4) 5.9008
Wi, (4) 69215 2.0592 5.2156
Wia(4) 7.7455
W (4) 6.9466
C: BEKK(1.1) model
LF —1851.15 —4104.45 —7324.24
W, (4) 44679 4.0134 12.2758"
Wy (4) 3.8566 T4T7 6.6085
Wiy (4) 7.8584
Wiz(4) 71350 5.5407 5775
Wiq(4) 1.2633
Wy (4) 1.2316

NOTE: W,-); [#) s Wooldridge's (1991) regression-based diagnostic statistic computed from
the standardized residuals of varables i and j based on indicator variables up to lag 4. The
indices are according to the order of the coded variables. Thus, Wia(4) in the system (F-P-
U} s Weyyid). LF is the maximized log-likelihood value. LMC is the Lagrange multiplier test
statistic for constant correlation due to Tse (2000). It is approximately distributed as «t'12 for a
bivariate system and .lg for the frivariate system when the correlations are time-imvariant. LR
is the likelihood ratio statistic for Hy: 8 = #2 =0 in the VC-MGARCH(1. 1) modal.

*Signi’ cance at the 5% level.



Table 9. Summary Statistics of the Standardized Residuals of Vanous Models

Vanable (Code) Mean Std. dev.  Minimum  Maxdmum  Std. skewness  Sid. kurfosis  Q,(20) Q,120) No. of abs.

A: CC-MGARCH(1.1) mode!
Forex market data (DS1)

Deutsche mark (D) =0001 9995 —4.9758 4.1334 =1.3760 103514 16.83589 14.7136 213

Japanese yen (J) 0004 9984 =5.6404 4.1482 =11.0287 27 B389 181773 11.6364 213
National Stock Market data (DS2)

Hong Kong (H) =.0387 8991 —8.2506 48277 =9.1688 444817 22.9629 7.0862 1942

Singapore (S) =.0343 1.0000 —6.3858 56050 =.4382 334205 31.5455  11.1104 1942
Hang Seng sectoral indices data (DS3)

Finance (F) =0047 9993 =6.2435 43125 =22710 204027 185158 21.3844 2440

Properties (F) =0026 9092 =6.6961 42048 =34370 222583 36.4885 18.2433 2440

Utilities (U) 0054 9995 =7.2480 44854 =3.9386 27 B04E 254859 108179 2440

B: VC-MGARCH(1.1) model
Forex market data (DS1)

Deutsche mark (D) =0019 8976 =5.1997 4.0989 =1.5961 106562 16.8138 13.6033 213

Japanese yen (J) =003 1.0015 =5.6539 4.1495 =11.0059 27 8081 191706 11.6673 213
National Stock Market data (DS2)

Hong Kong (H) =482 1.0019 —B.4556 45876 =9.7967 46.5185 25.6588 7.3562 1942

Singapore (S) =0410 1.0086 —6.4275 56201 —=3672 334772 32.0569 11.1440 1942
Hang Seng sectoral indices data (DS3)

Finance (F) =0271 1.0012 —6.4599 43445 =2.1722 20.8953 17.6054 25.0739 2440

Properties (F) =0207 1.0034 =7.2261 40554 =36343 232231 366489 13.4232 2440

Utilities (U) 0155 8975 =7.5899 43811 =4 2861 286450 25.2002 9.0371 2440

C: BEKK(1.1) model
Forex market data (DS1)

Deutsche mark (D) 0030 8932 =5.0577 40577 =1.5112 105148 16.6838 15.1533 213

Japanese yen (J) =0007 8954 =5.8277 41335 -=11.5370 284453 19.5022 12.5101 213
MNational Stock Market data (DS2)

Hong Kong (H) =0359 8874 =8.4438 43589 =10.3784 48.5443 26.2642 0.8984 1942

Si ngapore (S) =0357 3996 —=B6.5838 55635 =.B8210 335270 33.7282 10.5492 1942
Hang Seng sectoral indices data (DS3)

Finance (F) =0224 8822 =6.6095 40304 =3.2424 25.1857 20.2667 64.4039 2440

Properties (P) =0143 9849 =7.2597 40862 =3.9564 24 4061 36.8795 16.9939 2440

Utilities (U) =0159 8792 =7.6392 45386 =3.5271 33.4623 252280 25.3953 2440

In Table 9 we present the summary statistics of the standardized residuals of the fitted models. It can be seen
that the standardized kurtosis and the Q, statistics have dropped significantly compared with those of the raw
data in Table 3. We note that the O, and Q, statistics are presented here for completeness. As pointed out by Li
and Mak (1994) and Ling and Li (1997a), these statistics are not distributed as x2 under the null of no
misspecification. Although some of the Q; statistics appear to be large, we report that none of the lagged
autocorrelation coefficients are larger than .08 in absolute value. Although most Q statistics seem to be low,
there is an exception for O, in the F series of DS3. This result agrees with the fact that W, in part C of Table 8
is also found to be significant.

To obtain a clearer picture of the time history of the conditional correlations, we plot the time paths of the
conditional correlations based on the VC-MGARCH and BEKK models. The plots are presented in Figures 4-
8. It can be seen from the graphs that the conditional correlations estimated from the VC-MGARCH and
BEKK models follow each other quite closely. However, the paths based on the BEKK model have much
larger variability than those estimated by the VC-MGARCH model. In what follows we describe the
conditional-correlation paths as provided by the VC-MGARCH model in some detail.
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Figure 5. Conditional-Correlation Coefficients of (H, ). N N . .
Figure 4. Conditional-Correlation Coefficients of (D, J). Figure 7. Conditional-Correlation Coefficients of (F, U)

Figure 4 presents the correlations between the deutsche mark and the Japanese yen. Largely, there are two
sub-periods when the conditional correlations of these two currencies were mostly above the average



(constant) level, namely, October 1991 to June 1993 and March 1994 to October 1996. From October 1996 to
June 1998, the conditional correlations were mostly below the average level.

Figure 5 presents an interesting case in which we can see that the conditional correlations between the Hong
Kong and the Singapore stock markets experienced an upward shift. From 1994 onward, the conditional
correlations were mostly above the average level, whereas the reverse was true before 1994. This finding has
important implications for the international diversification of equity portfolios. The increasing conditional
correlation means that the two national markets were becoming more closely integrated and implies that there
are diminishing benefits from international diversification. Using moving windows of unconditional
correlations, Longin and Solnik (1995) showed that there was evidence of increasing correlation between
international stock markets in 1960-1990. Further results were updated by Longin and Solnik (2001). Our
similar finding for the Hong Kong and the Singapore markets is commensurate with the increasing importance
of intra-Asian business in the 1990s. Indeed, in the second half of the 1990s, many companies with business
activities in Hong Kong were listed on the Singapore exchange.

Figures 6-8 show that the pairwise correlations between the three sectors in the Hong Kong stock market are
quite similar. Broadly speaking, the conditional correlations were above average in the sub-periods of 1993-
1994 and mid-1997 to mid-1999. These two sub-periods coincide with the time when the Hong Kong stock
market was experiencing a downturn. In contrast, during the sub-periods of the bull runs from 1995 to mid-
1997 and post-mid-1999, the conditional correlations were below average. At the risk of oversimplification,
this casual observation agrees with the hypothesis that contagion is stronger for negative returns than for
positive returns. In a recent study, Bae et al. (2000) examined the financial contagion among Asian and Latin
American economies with the use of a multinomial logit model. They reported that the evidence of contagion
being stronger for negative returns than for positive returns is mixed. Finally, we note that for the BEKK
model the conditional correlations are quite unstable in some periods.

We shall end this section by stating that it is not our intention to claim that the VC-MGARCH models as
presented here represent the best MARCH models for the data. Other MARCH models could also provide the
conditional-- correlation structure. The VC-MGARCH model, however, does provide a viable alternative that
is relatively easy to estimate. As the examples have illustrated, modeling correlations as a time-varying
structure provides some interesting results that are not obtainable from constant-correlation models.

S. CONCLUSIONS

In this article we propose a new MGARCH model with time-varying correlations. We assume a vech-diagonal
structure in which each conditional-variance term follows a univariate GARCH formulation. The remaining
task is to specify the conditional-correlation structure. We apply an autoregressive moving average type of
analog to the conditional-correlation matrix. By imposing some suitable restrictions on the conditional-
correlation-matrix equation, we construct a MGARCH model in which the conditional-correlation matrix is
guaranteed to be positive definite during the optimization.

We report some Monte Carlo results on the finite-sample distributions of the MLE of the varying-correlation
MGARCH model. It is found that the bias and MSE of the MLE are small for sample sizes of 500 or above.
The new model is applied to three data sets, namely, the exchange rate data, the national stock market data,
and the sectoral price data. The new model is found to pass the model diagnostics satisfactorily and compare
favorably against the BEKK model, whereas the constant-correlation MGARCH model is found to be
inadequate. Extending the constant-correlation model to allow for time-varying correlations provides some
interesting empirical results. In particular, the estimated conditional-correlation path provides an interesting
time history that would not be available in a constant-correlation model.
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