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Abstract We show how to obtain coherent structural-form (SF) exclusion
restrictions using the reduced-form (RF) parameter ratios. It will be shown that
an over-identified SF corresponds to a group of regressors sharing the same RF
ratio value; those regressors should be excluded jointly from the SF. If there
is no group structure, then the SF is just-identified; in this case, however, it is
no longer clear which regressor should be excluded. Hence, just-identified SF’s
are more arbitrary than over-identified SF’s in terms of exclusion restrictions.
This is in stark contrast to the notion that the former is less arbitrary than the
latter, because the former excludes fewer regressors. We formalize these points,
and then suggest to find the number of modes in the estimated RF ratios as a
way to find groups in the ratios. For this purpose, an informal graphical method
using a kernel nonparametric method and a formal modality test are employed.
An empirical example with selling price in a residential real estate market and
duration on the market as two endogenous variables is provided.
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1 Introduction

Consider the following two structural form (SF) equations:

SF1 : y1 = α1y2 + x′
1β1 + x′

cγ1 + u1, α1 �= 0
SF2 : y2 = α2y1 + x′

2β2 + x′
cγ2 + u2, α2 �= 0

(1)

where y1 and y2 are the endogenous variables, xj is a kj ×1 exogenous regressor
vector, j = 1, 2, such that x1 and x2 share no common elements, xc is a kc × 1
exogenous regressor vector common to the two SF’s, u1 and u2 are error terms,
and αj, βj, and γj are parameters j = 1, 2. By exogeneity, we mean zero correla-
tion with the error terms. If α1α2 = 1, then the system is singular; otherwise the
system can be solved for the reduced forms (RF).

The model (1) occurs frequently in economics: for instance,

ex1: y1 is price, and y2 is quantity transacted;
ex2: y1 is unemployment duration, and y2 is new job wage;
ex3: y1 is husband labor supply, and y2 is wife labor supply.

Assuming that the rank condition for identification holds (see Lee and Kimhi
(2005) for a new look at the identification issue in simultaneous equations), if
x1 (x2) is a scalar with a non-zero coefficient, then y2 (y1) is ‘just-identified’;
otherwise, if x1 (x2) has multiple components with non-zero coefficients, then y2
(y1) is ‘over-identified’. Exclusion restrictions that x1 and x2 share no common
elements are necessary in identifying the SF’s. Although exclusion restrictions
are supposedly provided by the economic theory behind (1), in practice, usually
the underlying economic theory gives little guideline on what to exclude and
whether to exclude one or multiple variables. For (1), researchers often choose
a single variable to exclude in a rather arbitrary way, and then examine whether
to exclude more variables with some over-identification tests.

There are two types of decisions involved in the exclusion restrictions for (1)
(hence, two types of arbitrariness):

GROUPING: Which variables to remove jointly (two groups of variables are
needed);

ASSIGNING: Which group to remove from which equation.

For instance, in ex3, the exogenous regressors could be characteristics of the
husband, wife, and some local economic conditions relevant to labor demand.
In this case, we might use the husband characteristics for x1, the wife charac-
teristics for x2, and the local economic conditions for xc, because xc is likely
to affect both y1 and y2; this is grouping and assigning done together. In this
example, the two decisions are fairly easy to make, but there are cases where
they are not as in the following.

In testing empirically the trade protection theory of Grossman and Helpman
(1994), Goldberg and Maggi (1999) derived one equation (Eq. (2) in p. 1139),
obtained by maximizing a joint surplus function with respect to tariff. The equa-
tion includes three endogenous variables: tariff, ‘import-demand elasticity’, and
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‘import-penetration ratio’. Goldberg and Maggi argued that the import-demand
elasticity should be on the left-hand side and then proceeded. But why this has
to be the case is far from obvious. In this single equation with three endog-
enous variable case, both decisions—grouping and assigning—are ambiguous,
with the economic theory suggesting hardly anything. The same equation was
further used in Eicher and Osang (2002). Instead of using arbitrary SF’s, some
researchers choose to avoid SF’s altogether. For instance, Russo et al. (2000)
examine relationship between job vacancy duration and the number of appli-
cations arrived. Although these two variables are likely to be simultaneously
related, Russo et al. (2000) could not come up with plausible exclusion restric-
tions, which prompted them to estimate only the RF’s.

For this kind of situations where the economic theory fails to provide which
SF should be formed with what exclusion restriction, between the two decisions
of grouping and assigning, this paper will show that there exists an empirically
constructive way to do the grouping using only the RF estimates; this paper,
however, will offer little for the assigning.

The main idea is examining the ratios of the two RF estimates (and then
making linear combinations of the two RF’s to recover the SF’s). We will say
that two exogenous regressors belong to the same group if their RF ratios are
the same, and call an exogenous regressor a “loner” if it does not belong to any
group. As will be shown later, the RF ratios satisfy the following:

• First, if both SF’s are over-identified, then there are two groups and a
loner/loners in the RF ratios.

• Second, if one SF is over-identified and the other SF is just-identified, then
there are only one group and a loner/loners.

• Third, if both SF’s are just-identified, then there are only loners.

Hence, examining the RF ratios provide valuable information for the grouping
part of the exclusion restrictions. As for the assigning part, there is no clear-cut
rule to apply. But we will provide some practical answers, if not the solutions,
through an empirical illustration.

In short, the goal of this paper is to show how to build SF’s empirically
from the RF’s, avoiding the arbitrariness involved in SF exclusion restrictions
to some extent. Being able to build SF’s with the information in the RF’s is
advantageous, for we can construct the RF’s better using various specification
tests. The idea of learning about SF specifications using the RF is not new; see,
for instance, Maasoumi (1990) and Spanos (1990). But, in the literature, there
has been no discussion on avoiding arbitrary exclusion restrictions in the way
we will do in this paper.

Although we will deal with linear simultaneous equations, our approach is
also good for simultaneous equations with limited dependent variables where
the two endogenous variables are fully observed in a subset of the data. One
example is ‘simultaneous tobit’ which is appropriate for ex2 and ex3 above when
one endogenous variable is censored (duration in ex2 and wife labor supply in
ex3); see Blundell and Smith (1994), Lee (1995), and the references therein.
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The rest of the paper is organized as follows. Section 2 introduces informally
our main idea of examining RF ratios to avoid grouping arbitrariness. Section 3
formalizes our idea and lays out ‘modality’-based procedures to detect groups
in the RF ratios. Section 4 provides an empirical example using a real estate
market data set; how to avoid assigning arbitrariness is discussed here as well,
albeit limitedly. Section 5 draws conclusions.

2 Implications of exclusion restrictions on RF ratios

Define
θ ≡ 1 − α1α2.

Assuming α1α2 �= 1, solve the SF’s in (1) for the RF’s:

y1 = 1
θ

{
x′

1β1 + x′
c(γ1 + α1γ2) + x′

2α1β2 + u1 + α1u2
}

, (2)

y2 = 1
θ

{
x′

2β2 + x′
c(γ2 + α2γ1) + x′

1α2β1 + u2 + α2u1
}

�⇒ RF1: y1 = w′η1 + v1 and RF2: y2 = w′η2 + v2, (3)

defining w, η1, η2, v1, and v2 appropriately such that w is the system exogenous
regressor vector, η1 and η2 are the RF parameters, vj’s are the RF error terms.

From (2) and (3), the ratios of the coefficients of RF1 and RF2 corresponding
to x1 is α−1

2 , and the ratios for x2 is α1; as for xc, the ratios can be anything.
Hence, we get the following structure on the RF ratios:

x1 : α−1
2 , x2 : α1, xc : possibly all different. (4)

Thus, examining the ratios of RF1 and RF2 is informative for learning about
the SF exclusion restrictions. In the following, we examine various possibilities
of (4) assuming that there are six exogenous regressors w1, . . . , w6. The number
six is only to simplify exposition; no loss of generality here.

2.1 Two groups and some loners

Suppose that the ratios of the RF coefficients are

0.5, 0.5, 3, 3, 10, 20. (5)

Then, owing to (4), the first group (w1, w2) must be in one SF, the second group
(w3, w4) in the other SF, and the third (w5, w6) in both. Depending on the value
of γ1 and γ2, some variables in xc may show ratios close to 0.5 or 3. But so long
as they are not exactly 0.5 nor 3, we should be able to get a grouping like (5) in
large enough samples.
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Turning to assigning, if we have a prior knowledge that (w1, w2) should
be excluded from SF1, then the following SF’s are obtained from two linear
combinations of the RF’s in (3):

y1 − 0.5y2 = . . . no (w1, w2) and y1 − 3y2 = . . . no (w3, w4) (6)

�⇒ y1 = 0.5y2+, . . . no (w1, w2) and y2 = 1
3

y1+, . . . no (w3, w4). (7)

Hence, α1 = 0.5 and α2 = 1/3 in (1). Equations (7) show that it is wrong to
start with a SF excluding, for instance, w1 and w3 together. Excluding (w1, w2)

from SF1 is equivalent to solving the first equation in (6) for y1, not for y2 ; if
we exclude (w1, w2) from SF2, we would solve the first equation for y2.

2.2 One group and some loners

Suppose, instead of (5), we have the following RF ratios:

0.5, 0.5, 3, 10, 20, 30. (8)

In this case, (w1, w2) should be removed together from a SF that is over-
identified, and one variable out of (w3, . . . , w6) should be removed from the
other SF that is just-identified. Differently from (5), however, now it is not clear
at all which one to choose among w3, . . . , w6. In this sense, just-identified SF’s
are more arbitrary than over-identified SF’s, although the former may look less
restrictive excluding only a single variable than the latter. Depending on the
arbitrary choice of a single variable to exclude, the just-identified SF parameter
will be different.

Suppose we exclude (w1, w2) from SF1 and w6 from SF2. Then we get the
following SF’s:

y1 − 0.5y2 = . . . no (w1, w2) and y1 − 30y2 = … no w6

�⇒ y1 = 0.5y2+, . . . no (w1, w2) and y2 = 1
30

y1+, . . . no w6.
(9)

2.3 All loners

Now suppose we have
0.5, 1, 3, 10, 20, 30 (10)

with no group whatsoever. In this case, we can obtain two just-identified SF’s
by removing any two variables. Depending on which ones are removed in (10),
the SF coefficients will be different.
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Suppose we remove w1 and w2 to get

y1 − 0.5y2 = . . . no w1 and y1 − y2 = . . . no w2
�⇒ y1 = 0.5y2+, . . . no w1 and y1 = 1 · y2+, . . . no w2.

(11)

Imagine that w1 is a policy variable which can be controlled to attain some
target level of y1 or y2. The y1 − 0.5y2 equation simply shows that we cannot hit
the two targets (y1 and y2) freely with one “tool” w1: no matter how we choose
w1, still y1 and y2 will maintain the relationship y1 − 0.5y2 because w1 is absent
in the y1 −0.5y2 equation. This seems rather trivial; it would be more interesting
to see the relationship y1 − 0.5y2 between y1 and y2 being undisturbed even
if we control multiple tools, which will be the case if the tools are removable
together. That is, viewed from the RF’s, over-identified SF’s are meaningful while
just-identified SF’s are not. Put it differently, removing one regressor can be
always done with a linear combination of the y1 and y2 RF as in

y1 + λy2 = w′(η1 + λη2) + v1 + λv2,

which is thus trivial, whereas removing multiple regressors with a single linear
combination requires a group structure in the RF ratios, which is thus nontrivial.

2.4 One group only without any loner

Suppose we have
0.5, 0.5, 0.5, 0.5, 0.5, 0.5 :

only one group without any loners. In this case, the only possible linear combi-
nation of y1 and y2 is y1 − 0.5y2 to yield “no exogenous-variable relation”

y1 − 0.5y2 = v1 − 0.5v2. (12)

If we try to get two SF’s out of this, the only way is solving this single equation
twice for y1 and y2, respectively, which then yields the following singular system
with α1α2 = 1:

y1 = 0.5y2 + v1 − 0.5v2 and y2 = 2y1 + (v2 − 2v1).

Note that the correlation coefficient between the two SF error terms is −1.
Analogously to the remarks after (11), this singular system is interesting in that
no matter how we control all exogenous variables, still we cannot change the
structural relationship y1 − 0.5y2 in the singular system. Equation (12) can be
viewed as an ‘equilibrium (or stable)’ relationship between y1 and y2: regardless
of the w variables, y1 and y2 will maintain (12).

In fact, the concept of singular relationship can be applied also to (8) above.
Suppose we are not sure of the assigning decisions in (8). Then the only sensible
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thing to do in (8) is to remove w1 and w2 and present the result as

y1 − 0.5y2 = · · · no (w1, w2), . . . + v1 − 0.5v2 (13)

without trying to solve this for y1 nor for y2. This display depicts a ‘conditionally
(on w3, . . . , w6) stable relationship’ between y1 and y2, showing that, even if we
control the two exogenous variables w1 and w2, we cannot hit the two targets
y1 and y2 freely. This is because the two control variables affect y1 and y2 in the
(proportionally) same way. If we solve (13) twice first for y1 and then for y2, we
will get two singular SF’s. Singular SF’s are not useless; we just have to take “one
half” of them and interpret it as a stable relation between the response variables
that is invariant to certain regressor changes.

3 Formal procedures

3.1 Identification of groups

Instead of starting with the SF’s (1) with exclusion restriction explicit, consider
the SF’s with the system regressors w (of dimension k × 1) and no exclusion
restrictions:

y1 = α1y2 + w′δ1 + u1 and y2 = α2y1 + w′δ2 + u2,

where δ1 and δ2 are the SF parameters. Solve these for y1 and y2 to get, under
(1 − α1α2 =) θ �= 0,

y1 = w′η1 + v1 and y2 = w′η2 + v2 where

η1 = δ1 + α1δ2

θ
, η2 = δ2 + α2δ1

θ
, v1 = u1 + α1u2

θ
, v2 = u2 + α2u1

θ
.

Let

w = (w1, . . . , wk)′, δ1 = (δ11, . . . , δ1k)′, δ2 = (δ21, . . . , δ2k)′

η1 = (η11, . . . , η1k)′ and η2 = (η21, . . . , η2k)′.

For an element wj of w, we have

η1j = δ1j + α1δ2j

θ
and η2j = δ2j + α2δ1j

θ
.

We examine three cases in the following: (η1j = 0, η2j = 0), (η1j �= 0, η2j = 0),
and (η1j �= 0, η2j �= 0). For the last case, we look at two elements wj and wj′ of
w to examine their RF ratios.

Firstly, suppose η1j = η2j = 0. Both η1j and η2j being zero implies both δ1j
and δ2j being zero (and vice versa), which can be seen by solving the preceding
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display for δ1j and δ2j. That is, plug δ1j = η1jθ − α1δ2j from the η1j equation into
the η2j equation to get

η2j = δ2j + α2(η1jθ − α1δ2j)

θ
= δ2j + α2η1j �⇒ δ2j = η2j − α2η1j

�⇒ δ1j = η1jθ − α1(η2j − α2η1j) = η1j − α1η2j.

Hence, any component wj with η1j = η2j = 0 is irrelevant to the simultaneous
system and should be discarded. This is feasible as η1j and η2j are identified; if
necessary, redefine w after removing such components. From now on, assume
that wj should be at least in one SF to ignore the case η1j =η2j =0(⇐⇒δ1j =δ2j =0).

Secondly, suppose η1j �= 0 and η2j = 0. That is,

(a) : δ1j + α1δ2j �= 0 but (b) : δ2j + α2δ1j = 0.

There are three subcases to consider:

(i) : (δ1j = 0, δ2j �= 0), (ii) : (δ1j �= 0, δ2j = 0), (iii) : (δ1j �= 0, δ2j �= 0).

Subcase (i) contradicts (b), and thus can be ignored. Subcase (ii) implies none in
(a) and α2 = 0 in (b). Subcase (iii) implies α1 �= −δ1j/δ2j in (a) and α2 = −δ2j/δ1j
in (b). Subcases (ii) and (iii) can be summed up as α2 = −δ2j/δ1j; α1 �= −δ1j/δ2j
is non-informative because α1α2 �= 1 has been already assumed. In view of this,
one of the two actions may be taken: one is following (ii) to assign wj to SF1
and verify later α2 = 0, and the other is keeping wj in both SF’s and verify
later α2 = −δ2j/δ1j. The latter action is more general, but the former may be
adopted if there are not enough exclusion restrictions available at the end, or
if wj should accompany some other variables in assigning. When η1j = 0 and
η2j �= 0, the main finding can be summed up as α1 = −δ1j/δ2j, and analogous
actions may be taken.

Thirdly, consider now only the components of w with η1j �= 0 and η2j �= 0.
Pick two such components, say j and j′, to form the ratios ρj = η1j/η2j and
ρj′ = η1j′/η2j′ . Suppose ρj = ρj′ :

δ1j + α1δ2j

δ2j + α2δ1j
= δ1j′ + α1δ2j′

δ2j′ + α2δ1j′

⇐⇒ (δ1j + α1δ2j)(δ2j′ + α2δ1j′) = (δ1j′ + α1δ2j′)(δ2j + α2δ1j)

⇐⇒ δ1jδ2j′ + α1δ2jδ2j′ + α2δ1jδ1j′ + α1α2δ1j′δ2j

= δ1j′δ2j + α1δ2jδ2j′ + α2δ1jδ1j′ + α1α2δ1jδ2j′

⇐⇒ δ1jδ2j′ + α1α2δ1j′δ2j = δ1j′δ2j + α1α2δ1jδ2j′ .

If δ1j = 0 (and thus necessarily δ2j �= 0), then the last equation becomes δ1j′δ2jθ =
0 �⇒ δ1j′ = 0. If δ2j = 0 (and thus necessarily δ1j �= 0), then we get δ1jδ2j′θ =
0 �⇒ δ2j′ = 0. In short, for two elements wj and wj′ with η1j �= 0, η2j �= 0,
η1j′ �= 0, and η2j′ �= 0, if the RF ratios η1j/η2j and η1j′/η2j′ are equal, then one
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element excluded from a SF implies the other excluded from the same SF. The RF
ratios carry only the common measurement units for y1 and y2; as the ratios are
not affected by any regressor measurement units, they are comparable “pure
numbers” not subject to measurement unit manipulation.

Some remarks are in order for the second case above. Firstly, if α2 = 0 due
to δ1j �= 0 and δ2j = 0, then there will be no more simultaneity although the
endogeneity problem can be still present through the correlation between u1
and u2; an analogous statement can be made for α1 = 0 due to δ1j = 0 and
δ2j �= 0. Secondly, in either subcase (ii) or (iii)—(i) was ruled out already—
wj cannot be used as an instrument for the α -parameters. Thirdly, testing for
Ho : (η1j �= 0, η2j = 0) or Ho : (η1j = 0, η2j �= 0) could be difficult as the hypoth-
eses involve both simple and composite components. Given the way hypotheses
are tested in practice (i.e., only rejecting a null hypothesis makes sense), relying
on the third case (η1j �= 0, η2j �= 0) seems sensible.

The remainder of this subsection recasts the third case above using matrices;
we owe this part to a referee. On one hand, this matrix-based exposition looks
more elegant, and on the other hand, it may facilitate generalization for more
than two SF’s although we do not pursue this possibility in this paper.

Define

y ≡ (y1, y2)
′, u ≡ (u1, u2)

′,

	 ≡
[

1 −α1
−α2 1

]
, 
 ≡

[
δ11, . . . , δ1k
δ21, . . . , δ2k

]
, � ≡ 	−1
, and v ≡ 	−1u.

to get the SF’s and RF’s:

	y = 
w + u �⇒ y = 	−1
w + 	−1u = �w + v.

Pick the last two elements of w to define

w∗ ≡ (wk−1, wk)′, w−∗ ≡ (w1, . . . , wk−2)
′, and � = (�−∗, �∗)

where the last 2 × 2 submatrix �∗ is

�∗ ≡ 1
θ

[
1 α1
α2 1

]
·
[

δ1,k−1 δ1k
δ2,k−1 δ2k

]
.

If the RF ratio for the (k − 1)th element is the same as the RF ratio for the kth
element, then the first and second rows are linearly dependent, which implies
det(�∗) = 0, which in turn implies

det

([
δ1,k−1 δ1k
δ2,k−1 δ2k

])
= δ1,k−1δ2k − δ1kδ2,k−1 = 0.

Hence if δ1,k−1 = 0, then δ1k = 0 because δ2,k−1 �= 0: wk−1 and wk are excluded
together from SF1. Analogously, if δ2k = 0, then δ2,k−1 = 0 because δ1k �= 0:
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wk−1 and wk are excluded together from SF2. Therefore, the RF ratio for the
(k − 1)th element being the same as the RF ratio for the kth element implies
that wk and wk−1 should be excluded jointly if they are to be excluded from
any SF. If the (k − 2)th element of w also has the same RF ratio, then we can
apply the same logic to the (k − 2)th and kth elements. Hence, the exclusion
restriction applies jointly to all components of w that share the same RF ratio.

3.2 Modality tests for RF-ratio groups

Turning to how to implement the above procedure in practice, suppose the RF’s
have been estimated and the regressors with zero coefficients in both RF’s have
been removed as they are irrelevant. What we should look for in the RF ratios is
“close numbers” as we have only estimates, not the true ratios. With estimates,
close numbers mean bunching up of numbers. As bunching increases the fre-
quency of RF ratios around some points, this feature may be best detected by
modality tests when the RF ratios are taken as data points.

An informal way to detect modality is a graphical analysis: estimate the den-
sity of the RF ratios nonparametrically and see the number and locations of
the modes. A formal way to detect modality is employing a multimodality test.
Several tests for modality have appeared in the literature as can be seen, for
instance, in Cheng and Hall (1998). Among them, the Silverman (1981) test
seems to be the easiest to implement, which is described in the following and
will be used later in our empirical section. The test is a no stranger to economists,
as it has been used for ‘income convergence’ in Bianchi (1997), Kang and Lee
(2005), Zhu (2005) and so on. Note that the so-called ‘clustering’, ‘discrimina-
tion’, and ‘classification’ methods in the statistics literature are not appropriate
in finding group structure in the RF ratios as these methods would assign each
ratio to a group whereas we desire to isolate only one or two groups without
disturbing “loners”.

Consider a sample y1, . . . , yN from a density f . In testing for ‘Ho: µ modes’
versus ‘Ha: more than µ modes’ for µ = 1, 2, . . ., define the ‘µ-critical band-
width’

hcrit ≡ inf{h : f̂ (yo, h) has at most µ modes},
where f̂ (yo, h) ≡ 1

Nh

∑

i

φ

(
yi − yo

h

)
;

h is a ‘bandwidth’ converging to 0 as N → ∞, and φ is the N(0, 1) density play-
ing the role of ‘kernel’ (weight) in the kernel nonparametric density estimator
f̂ (yo, h) of f at y = yo. Due to φ, as Silverman (1981) proves, it holds that

f̂ (yo, h) has more than µ modes iff h < hcrit.

The main idea is that if hcrit is “large”, then the Ho is rejected, because it takes a
“deliberate” over-smoothing with the large hcrit to get only µ (or fewer) modes.
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The p-value for this test can be obtained by a bootstrap from the data: sample
w∗

1, . . . , w∗
N with replacement from y1, . . . , yN and get

y∗
i = w̄∗ + w∗

i − w̄∗ + hcritεi

{1 + (hcrit/sy)2}1/2
, where εi’s iid N(0, 1)

and s2
y = 1

N − 1

∑

i

(yi − ȳ)2,

to see whether

f̂ ∗(yo, hcrit) ≡ 1
N · hcrit

∑

i

φ

(
y∗

i − yo

hcrit

)

has more than µ modes or not. Repeating this, say B times, the bootstrap
p-value is B−1 ∑B

j=1 1[h∗
crit,j > hcrit] where 1[A] = 1 if A holds and 0 otherwise

and h∗
crit,j is the µ-critical bandwidth for the jth pseudo sample. Equivalently,

the p-value is

1
B

B∑

j=1

1[f̂ ∗(yo, hcrit) has more than µ modes in the jth pseudo sample].

A few remarks are given in the remainder of this subsection for the Silver-
man’s test in general (the first and second remarks below) and its application
to RF ratios in particular (the third).

Firstly, if h gets too small, then f̂ (yo, h) becomes too jagged showing (mis-
leadingly) too many modes; at the extreme, every observation may be taken as
a mode. This means that the Silverman’s test will break down for large values of
µ. This problem with the Silverman’s test has been avoided in the literature by
proceeding sequentially: start with µ versus more than µ modes, µ = 1, 2, . . . ,
to proceed to µ + 1 only if µ modes are rejected; otherwise stop to conclude µ

modes. This sequential procedure will be also adopted in the empirical example
below.

Secondly, Hall and York (2001) suggest two ways to minor-modify the Silv-
erman’s test, after showing that it systematically under-rejects. Between the
two, the simpler is replacing B−1 ∑B

j=1 1[h∗
crit,j > hcrit] with B−1 ∑B

j=1 1[h∗
crit,j >

hcrit1.13] for nominal level 5% test, which makes the p-value smaller (and thus
the test rejects more easily). The number 1.13 comes from equation (4.1) of Hall
and York (2001). This modification will be also used in our empirical analysis.

Thirdly, RF ratios can be formed in two different ways: e.g., η1j/η2j or η2j/η1j.
So long as η1j �= 0 and η2j �= 0, which one is used does not matter, because
bunching of numbers in one way is equivalent to bunching of numbers in the
other way. But a caution is in order in regard to outliers. Suppose there are
outliers in η1j/η2j, j = 1, 2, . . .. Then in the reverse ratios, those outliers will
gather around zero; this applies even to two outliers at the opposite ends, one
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positive and one negative. That is, “false” modes may be found at the tails or
at zero. In fact, this problem occurs because either η2j 
 0 or η1j 
 0. Variables
with this feature fall in the second case of the preceding subsection, and they
should not be considered in the RF ratio comparison.

4 An empirical analysis: price and duration

4.1 Data and RF estimation to find groups

This section provides an empirical illustration. We are interested in two vari-
ables in a residential real estate market: first, the percentage discount (DISC)
of the selling price (SP) relative to the initial listing price (LP) which is approx-
imately 100 × ln(LP/SP), and second, the duration (T) of the property on the
market until sale. LP and SP are measured in $1,000, and T is measured in days.
DISC and T are simultaneously related and depend on the characteristics of
the house, its surroundings, the real estate broker, and etc. If a property’s list
price is higher (which tends to accompany a larger sales discount), then it might
attract fewer potential buyers and thus take longer to sell. On the other hand,
if the property has stayed on the market for a longer period, its seller might be
more likely to offer a larger discount in order to make a deal.

Alternatively to DISC, we may consider using SP as an endogenous variable.
But applying Least Squares Estimation of SP on LP with the data set to be
described below, we obtained (t values in (·))

ln SP = 0.09
(1.68)

+ 0.97
(87.0)

· ln LP, R2 = 0.97; (14)

that is, most of SP is explained by LP with the slope coefficient almost equal to
1. Taking −100{ln(SP) − ln(LP)} as the response variable, we explain the small
unexplained part of SP. The reason for using log-transformation for LP and SP,
as well as for T in the estimation that follows, is to remove the asymmetry in
the variables and potential heteroskedasticity.

A data set of size 467 was collected from the Multiple Listing Service of
the State College District in Pennsylvania for the year 1991. State College is a
small college town with the permanent population of about 50,000. The houses
sold during the year were sampled and their duration since the first listing was
recorded. The following is a list of exogenous variables available: years built
minus 1,900 (YR), number of rooms (ROOM), number of bathrooms (BATH),
dummy for heating by electricity (ELEC), property tax in $1,000 (TAX), dummy
for spring listing (L1), dummy for summer listing (L2), dummy for fall listing
(L3), sale month interest rate (RATE), dummy for sale by a big broker (BIGS),
and the number of houses on the market in the month when the house is listed
(SUPPLY). Also lot-size that is highly correlated with ROOM was available
but not used, for the variable has too many missings. The summary statistics are
given in Table 1.
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Table 1 Summary statistics Variables Mean SD Min LQ Med UQ Max

T 188.20 149.70 1.00 92.00 133.00 239.00 851.00
SP 114.86 57.70 19.00 78.40 97.50 134.00 400.00
LP 124.11 64.90 26.00 82.50 104.50 142.50 418.00
BATH 2.02 0.67 1.00 1.50 2.00 2.50 4.50
ELEC 0.52 0.50 0.00 0.00 1.00 1.00 1.00
ROOM 7.09 1.70 3.00 6.00 7.00 8.00 12.00
TAX 1.38 0.65 0.11 0.93 1.22 1.59 4.52
YR 73.03 15.09 21.00 63.00 77.00 86.00 91.00
L1 0.29 0.45 0.00 0.00 0.00 1.00 1.00
L2 0.31 0.46 0.00 0.00 0.00 1.00 1.00
L3 0.19 0.39 0.00 0.00 0.00 0.00 1.00
BIGS 0.78 0.42 0.00 1.00 1.00 1.00 1.00
RATE 9.33 0.32 8.50 9.24 9.47 9.58 9.64
SUPPLY 62.41 19.27 38.00 48.00 56.00 90.00 91.00

Table 2 Reduced form
estimation

RF1 for DISC RF2 for ln T RF1/RF2
Est. (t-value) Est. (t-value)

1 4.51 (0.29) −1.158 (−0.58) −3.9
BATH −3.21 (−1.46) 0.011 (0.04) −306.1
BATH2 0.94 (1.83) 0.017 (0.24) 55.8
ELEC 2.62 (3.34) 0.184 (2.45) 14.2
ROOM −0.29 (−0.99) −0.036 (−1.08) 8.1
TAX −5.69 (−1.79) −0.593 (−1.90) 9.6
TAX2 0.72 (1.11) 0.109 (1.62) 6.6
YR −0.24 (−2.11) −0.002 (−0.27) 144.1
L1 −2.71 (−2.48) −0.288 (−2.74) 9.4
L2 −3.96 (−3.72) −0.275 (−2.29) 14.4
L3 −2.35 (−2.29) −0.169 (−1.21) 13.9
lnLP 8.85 (3.36) 0.592 (2.73) 15.0
BIGS −12.93 (−1.51) −0.318 (−0.66) 40.6
BIGSYR 0.14 (1.27) 0.003 (0.48) 46.1
RATE −1.22 (−0.97) 0.448 (2.87) −2.7
SUPPLY 0.05 (2.39) 0.003 (1.16) 20.1
R2 (s) 0.18 (6.95) 0.11 (0.75)

Estimating the RF’s for DISC and ln T, we get Table 2 where the asymptotic
variances were estimated in the usual heteroskedasticity-robust way. Table 2
reveals that the two variables, BATH and YR, could be those variables with
their RF1 coefficients non-zero and RF2 coefficients zero. We can keep the
two variables in both SF’s, but as shown below, BATH2 will be assigned to a
SF. Hence if we are to assign BATH and BATH2 together, then the right SF
is SF1 as the second case in Sect. 3.1 suggests. Assigning BATH to SF1 means
that, again according to the second case in Sect. 3.1, we are entertaining the
possibility of α2 = 0 at this early stage.

The following is the RF ratios in the last column of Table 2 in the increasing
order except BATH and YR:



352 M. Lee, P. Chang

1 RATE TAX2 ROOM L1 TAX L3
−3.9 −2.7 6.6 8.1 9.4 9.6 13.9

ELEC L2 lnLP SUPPLY BIGS BIGSYR BATH2

14.2 14.4 15.0 20.1 40.6 46.1 55.8

Figure 1 shows two kernel nonparametric density estimates for these ratios
over the domain [−4, 56], with the left panel somewhat under-smoothed and the
right panel somewhat over-smoothed. The figures point out either two modes
(at about 10 and 45) or just one at about 10.

Conducting Silverman’s (1981) modality test with bootstrap repetition num-
ber 5,000, we obtained the p-value 0.303 for ‘Ho: 1 mode’ versus ‘Ha: more
than 1 modes’ when the level 5% modification in Hall and York (2001) was
applied. This formal test fails to reject unimodality (i.e., only one group in the
RF ratios). But given the apparent bimodality in the figures, we also tested for
‘Ho: 2 modes’ versus ‘Ha: more than 2 modes’ to obtain the p-value 0.238. The
test does not seem to have much power with the small number of ratios (only
14 with two ratios excluded). We will show our analyses for two groups as well
as for one group only.

Although it is hard to put down the cutoff points exactly, two groups accord-
ing to the figures are:

“Long Group”: (6.6, 8.1, 9.4, 9.6, 13.9, 14.2, 14.4, 15.0)
for (TAX2, ROOM, L1, TAX, L3, ELEC, L2, lnLP)

Fig. 1 Kernel ratio–density estimates



Choosing exclusion restrictions with reduced-form estimates 353

“Short Group”: (40.6, 46.1, 55.8) for (BIGS, BIGSYR, BATH2)

If we go a little conservative, we might shorten the list as well. Our discussion in
the preceding sections was done with the population parameters; grouping with
estimates based on a sample of N = 467 cannot be as clear-cut. A nonlinear
Wald test for the null hypothesis that the RF ratios are the same in the first
and second groups gave the test statistic 4.19 (p-value 0.90 under 9 degrees of
freedom). Thus, the null hypothesis is easily accepted.

4.2 Two-group estimation after assignment

At this stage, we can proceed two ways. One is to accept two groups in the
preceding subsection and go on to assignment. The other is to accept only one
group (the long group with the global mode) and present a linear combination
of two RF’s free of the variables in the group; as already mentioned, we call this
‘a singular SF’ because we get only one SF which may be solved for y1 and y2
to result in two SF’s that are singular. This subsection presents our two group
analysis, whereas the one group analysis and further remarks are provided in
the next subsection. Note that, in the one-group analysis, we may pick up a
loner as in (8) and (9) to do assigning. But because there is no clue for which
loner to pick, we settle for a singular SF. For estimation in the following, we
used the generalized method of moment (GMM) estimator stacking the two
vector moment conditions E(u1w) = 0 and E(u1w) = 0; the estimator was
implemented by slightly modifying a two-period panel data GMM program in
Lee (2002).

Given the two groups, we need to assign each group to a SF. There are a
couple of clues. Firstly, (14) provides a clue: as the coefficient of lnLP is near
one, it is more plausible not to have lnLP in the DISC SF1, which assigns the
long group to SF2. Secondly, as already noted, if we want to assign BATH and
BATH2 together to a single SF, the right SF is SF1 on the account of BATH.
Table 3 is the result from these assignment. Thirdly, when these assignments
get reversed, implausible SF estimates are obtained in Table 4 as discussed in
the following paragraph. In an earlier version of this paper, we used smaller
groups: only L2, L3, and lnLP for the long group, and only BIGS and BIGSYR
for the short group. The ensuing estimation results, which are available from
the authors upon request, are not much different from those using the above
two groups with far more variables.

Table 4 looks implausible in a number of aspects. Firstly, regarding the esti-
mates of α1 and α2 which are of our main interest, the estimates in Table 3 are
‘stable’ (|α1α2| = 0.42 < 1) while the estimates in Table 4 are not (|α1α2| =
1.30 > 1). Secondly, the assigned regressors in Table 4 look all insignificant,
while this is not the case in Table 3. Thirdly, COR(u1, u2) 
 −1 in Table 4,
which is a concern.

Making the wrong assignment decision can have two consequences. One is
having ineffective instruments for the endogenous regressor, since irrelevant
variables are used as instruments. The other is omitted variable bias because
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Table 3 SF under right
assignment

SF1 for DISC SF2 for ln T
Est. (t-value) Est. (t-value)

ln T 12.4 (6.13)
DISC 0.034 (1.60)
1 18.1 (1.20) −1.07 (−0.86)
BATH −1.81 (−1.08)
BATH2 0.53 (1.22)
ELEC 0.120 (1.65)
ROOM −0.017 (−1.15)
TAX −0.244 (−1.09)
TAX2 0.039 (0.90)
YR −0.23 (−3.26) 0.0052 (1.57)
L1 −0.162 (−1.87)
L2 −0.190 (−1.81)
L3 −0.109 (−1.64)
lnLP 0.346 (1.46)
BIGS −9.42 (−1.69)
BIGSYR 0.11 (1.58)
RATE −5.85 (−3.57) 0.441 (4.01)
SUPPLY 0.019 (1.01) 0.0011 (0.51)

SD(uj) 8.62 0.68
COR(u1, u2) = −0.89

Table 4 SF under reverse
assignment

SF1 for DISC SF2 for ln T
Est. (t-value) Est. (t-value)

ln T 18.6 (1.49)
DISC 0.070 (6.29)
1 10.0 (0.30) −0.810 (−0.74)
BATH 0.078 (1.06)
BATH2 −0.020 (−0.85)
ELEC −0.79 (−0.30)
ROOM 0.08 (0.16)
TAX 0.59 (0.07)
TAX2 0.03 (0.02)
YR −0.15 (−2.89) 0.013 (2.93)
L1 0.71 (0.18)
L2 1.33 (0.34)
L3 0.87 (0.37)
lnLP −2.54 (−0.30)
BIGS 0.312 (0.99)
BIGSYR −0.003 (−0.99)
RATE −7.97 (−1.28) 0.458 (4.42)
SUPPLY 0.01 (0.26) −0.001 (−1.05)

SD(uj) 12.40 0.68
COR(u1, u2) = −0.99

the relevant variables are wrongly excluded. If the wrongly excluded variables
are not correlated with the other regressors in the SF, then the omitted variable
bias will disappear but the error term variance will increase. Comparing the
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error term standard deviations in Tables 3 and 4, the latter problem seems to
occur in Table 4.

Recall that we assigned BATH to SF1 while keeping YR in both SF’s. In
view of the second case in Sect. 3.1, assigning BATH to SF1 implies α2 = 0,
which is not rejected in Table 3. Also, keeping YR in both SF’s, we should have
α2 = −δ2,YR/δ1,YR. Using the estimates in Table 3, the two sides are, respec-
tively, 0.034 and 0.023 = −0.0052/(−0.23): the difference 0.034 − 0.023 = 0.011
is about one half of 0.021 that is the standard deviation of the α2-estimator.
Overall, although we could not present a general analytic approach for assign-
ment, there seem to be enough telltale signs to favor one assignment over the
other.

4.3 One-group singular SF

If we do not want to impose assigning decisions, then we can adopt the single
“strong” long group for the global mode, and take a linear combination of the
two RF’s to exclude all variables in the long group:

DISC − 12.4 × ln T = . . . , no (TAX2, ROOM, L1,…, ln LP), . . . ;

12.4 comes from the ln T coefficient in Table 3. Thus we have

DISC − 12.4 × ln T = only BATH, BATH2, YR, BIGS,

BIGSYR, RATE, SUPPLY, . . . (15)

This means that, although there are many variables that affect DISC and T
separately as shown in the RF’s, only the variables in (15) (or a subset of the
variables) are relevant for DISC-12.4· lnT, for the other variables affect DISC
and lnT in “12.4-proportional way” . The correlation coefficients of u1 and u2
in Tables 3 and 4 are quite high: −0.89 and −0.99, respectively, suggesting that
two SF’s might be one too many.

Further interpreting (15), for instance, no matter how the seller chooses
L1–L3 (when to list) and LP (at how much to list), he will sell the house either
quickly with a small discount or slowly with a large discount. The seller may try
to set the list price higher than usual and offer a big discount to sell the house
quickly. This strategy will not work according to (15) since lnLP is excluded;
the seller may influence either DISC or T, but not both. The seller may then
consider setting lnLP high hoping to get away with a small DISC and small T,
not a large DISC and large T, because (15) holds anyway regardless of ln LP.
But (15) does not tell whether a small DISC and small T or a large DISC and
large T will be the case. If the seller wants to get a definite answer, he needs
another SF. He may then take SF2 in Table 3 where a large ln LP leads to a large
T; that is, a large DISC and large T will be the fate.

Judged by the sign of the estimate for YR in SF1 of Table 3, which is our (15),
a newer house has a negative influence on DISC − 12.4 × ln T: it is sold either
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more slowly or at a lower discount compared with old houses. Also judged
by the sign of the estimate for RATE, when RATE goes up, houses are sold
either more slowly or at a lower discount. In short, without imposing arbitrary
assigning restrictions, it is still possible to make useful inferences regarding
simultaneous structural relationship between the two endogenous variables.

The relationship between sale price and duration in the residential real estate
market is analogous to that between wage and unemployment duration in labor
market. The main difference between the two markets is the presence of list
price in the real estate market; Horowitz (1992) analyzes the role of the list price
in detail with a structural real estate market model under a search framework.
Lancaster (1985) shows that, under certain parameterization, post-unemploy-
ment wage and duration are simultaneously related. Devine and Kiefer (1991)
survey various models in the literature for simultaneous relationships between
the two variables. Addison and Portugal (1989, p. 292) estimate the SF’s to get
various SF estimates depending on model specification and estimation meth-
ods. Their α1 (the effect of duration on wage, both in log) ranges from −0.02 to
−0.23. Their α2 (the effect of wage on duration) ranges from −0.79 to −1.46.
This means that a large (small) duration goes with a small (large) wage, contrary
to the argument that those who wait longer will get higher wages. The labor
market empirical finding more or less agrees with our finding in the housing
market: those who wait will suffer.

5 Conclusions and final remarks

In this paper, we decomposed exclusion restrictions in simultaneous equations
into two: grouping and assigning. Instead of an arbitrary grouping, we showed
how to derive coherent grouping restrictions for structural forms (SF) from the
reduced form (RF) estimate ratios. Finding modes in the RF ratios was pro-
posed as a main way to find group structure in the RF ratios. We also showed
that there is less arbitrariness in over-identified SF exclusion restrictions than
in just-identified SF exclusion restrictions. We proposed singular simultaneous
systems to avoid the assigning arbitrariness. A singular system can be regarded
as a reduction of the RF’s and as a ‘conditionally stable relationship’ between
the endogenous variables. An empirical example where the two dependent vari-
ables are price (discount) and duration in a real estate market was provided.

In this paper, we focused on two-SF systems. Although formally extend-
ing our approach to three or more SF’s is left for future research, it is still
possible to use our proposal when there are more than two SF’s. Suppose y1
has y2, y3, . . . , yJ as the endogenous regressors with coefficients α12, α13, . . . , α1J .
Then (y3, . . . , yJ) can be substituted out with their RF’s to leave only y2 (and y1),
with which α12 can be estimated by our method. Analogously, (y2, y4, . . . , yJ)

can be substituted out to leave only y3 (and y1), with which α13 can be estimated,
and so forth. This is somewhat long-winded, but it shows that our approach is
viable for more than two SF’s as well.
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