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a b s t r a c t

This paper motivates and introduces a two-stage method of estimating diffusion processes based on
discretely sampled observations. In the first stage we make use of the feasible central limit theory
for realized volatility, as developed in [Jacod, J., 1994. Limit of random measures associated with the
increments of a Brownian semiartingal. Working paper, Laboratoire de Probabilities, Universite Pierre
et Marie Curie, Paris] and [Barndorff-Nielsen, O., Shephard, N., 2002. Econometric analysis of realized
volatility and its use in estimating stochastic volatility models. Journal of the Royal Statistical Society.
Series B, 64, 253–280], to provide a regression model for estimating the parameters in the diffusion
function. In the second stage, the in-fill likelihood function is derived by means of the Girsanov theorem
and then used to estimate the parameters in the drift function. Consistency and asymptotic distribution
theory for these estimates are established in various contexts. The finite sample performance of the
proposedmethod is compared with that of the approximate maximum likelihoodmethod of [Aït-Sahalia,
Y., 2002. Maximum likelihood estimation of discretely sampled diffusion: A closed-form approximation
approach. Econometrica. 70, 223–262].

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

For many years, continuous time models have enjoyed a
great deal of success in finance (Merton, 1990) as well as wide
applications in economics (e.g., Dixit (1993)). Correspondingly,
there has been growing interest in estimating continuous systems
using econometric methods with discrete data.
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also thank Yacine Aït-Sahalia, Yongmiao Hong, Chung-ming Kuan, Andy Lo, and
Neil Shephard, and seminar participants at the First Symposium on Econometric
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of Econometric Society, and the First Finance Summer Camp at Singapore
Management University for helpful discussions. Phillips gratefully acknowledges
visiting support from the School of Economics at SingaporeManagementUniversity,
and support from a Kelly Fellowship at the University of Auckland Business School
and from the NSF under Grant No. SES 04-142254. Yu gratefully acknowledges
financial support from the Ministry of Education AcRF Tier 2 fund under Grant No.
T206B4301-RS.
∗ Corresponding author.
E-mail addresses: peter.phillips@yale.edu (P.C.B. Phillips), yujun@smu.edu.sg

(J. Yu).

Many models used in finance for modelling asset prices can be
written in terms of a diffusion process as

dXt = µ(Xt; θ1)dt + σ(Xt; θ2)dBt , (1)

where Bt is a standard Brownian motion, σ(Xt; θ2) is a known
diffusion function, µ(Xt; θ1) is a known drift function, and θ =
(θ1, θ2)

′ is a vector of k1 + k2 unknown parameters. Note that
we isolate the vector of parameters θ2 in the diffusion function
from θ1 for reasons which will be clear below. The attractions of
the Ito calculus make it easy to work with processes generated
by diffusions like (1) and as a result these processes have been
usedwidely in finance tomodel asset prices, including stock prices,
interest rates, and exchange rates.
From an econometric standpoint, the estimation problem is

to estimate θ from observed data, which are typically recorded
discretely at (∆, 2∆, . . . , n∆∆(≡ T )) over a certain time interval
[0, T ], where ∆ is the sampling interval and T is the time span of
the data. For example, if Xt is recorded as the annualized interest
rate and observed monthly (weekly or daily), we have ∆ =

1/12 (1/52 or 1/250). Typically, T can be as large as 50 for US
Treasury Bills, but is generally much smaller for data from swap

0304-4076/$ – see front matter© 2008 Elsevier B.V. All rights reserved.
doi:10.1016/j.jeconom.2008.12.006
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markets. Also, due to time-of-day effects and possibly othermarket
microstructure frictions, it is commonly believed that intra-day
data do not completely follow diffusion models such as (1). As a
result, daily and lower frequencies are most frequently used to
estimate continuous timemodels. However, Barndorff-Nielsen and
Shephard (2002) and Bollerslev and Zhou (2002) recently showed
how to use information from intra-day data to estimate continuous
time stochastic volatility models.
A large class of estimation methods is based on the likelihood

function derived from the transition probability density of discrete
sampling and then resorts to long span asymptotic theory (i.e. T →
∞). Except for a few cases, the transition probability density does
not have a closed form expression and hence the exact maximum
likelihood (ML) method based on the likelihood function for the
discretely sampled data is not directly available. In the financial
econometrics literature, interest in obtaining estimators which
approximate or approach ML estimators has been growing, in
view of the natural attractiveness of maximum likelihood and its
asymptotic properties. Several alternative methods of this type
have been developed in recent years. See Phillips and Yu (in press-
a) for a survey of various alternativemethods and the discussion of
their advantages and drawbacks.
The main purpose of the present paper is to propose an

alternative method of estimating diffusion processes of the form
given by model (1) from discrete observations and to establish
asymptotic properties by resorting to both the long span (i.e. T →
∞) and in-fill asymptotics (i.e.∆→ 0). The estimation procedure
involves two steps. In the first step, we propose to use a quadratic
variation type estimator of θ2. In the second step, an approximate
in-fill likelihood function is maximized to obtain a ML estimator of
θ1. This method has several advantages over the existing method.
First, it is not dependent on finding an appropriate auxiliarymodel.
Second, it does not require simulations or polynomial expansions
and hence is straightforward to implement. Third, it decomposes
the optimization problem into two smaller scale optimization
problems, making the approach computationally more attractive.
Finally, experience with the procedure both in simulations and
empirical applications indicates that the method works well in
finite samples.
The paper is organized as follows: Section 2 reviews the

literature on the ML estimation of diffusion processes and
motivates the approach. Section 3 introduces the new method
and Section 4 derives the asymptotic properties of the estimates.
Section 5 presents someMonte Carlo evidence. Section 6 discusses
the case of microstructure noises and Section 6 concludes. Proofs
are provided in the Appendix.

2. Literature review and motivation

2.1. Literature review

2.1.1. Transition probability density based approaches
As explained above, a large class of estimationmethods is based

on the likelihood function derived from the transition probability
density of the discretely sampled data. Suppose p(Xi∆|X(i−1)∆, θ) is
the transition probability density. The Markov property of model
(1) implies the following log-likelihood function for the discrete
sample

`TD(θ) =

n∆∑
i=2

log(p(Xi∆|X(i−1)∆, θ)). (2)

Under regularity conditions, the resulting estimator is consistent,
asymptotically normally distributed and asymptotically efficient
(Billingsley, 1961). Unfortunately, except for a few cases, the
transition density does not have a closed form expression and

hence the exact ML method based on the likelihood function
of the discrete sample is not a practical procedure. In the
financial econometrics literature, interest in finding estimators
that approach ML estimators in some quantifiable sense has been
growing and many alternative methods have been developed
in recent years. For example, Lo (1988) suggested calculating
the transition probability density by solving a partial differential
equation numerically. Nowman (1997) suggested an approach
which assumes that the conditional volatility remains unchanged
over the unit intervals so that he can approximate the transition
density using a Gaussian method. Yu and Phillips (2001) used
the stoping time technique to develop an exact Gaussian method.
Pedersen (1995) and Brandt and Santa-Clara (2002) advocated
an approach which calculates the transition probability density
using simulation with some auxiliary points between each pair of
consecutive observations introduced. This method is also closely
related to the Bayesian MCMC method proposed by Elerian et al.
(2001) and Eraker (2001). A drawback of these simulation-based
approaches is that the corresponding computational cost will
inevitably be high.
As an important alternative to these numerical and simulated

MLmethods, Aït-Sahalia (2002) proposed to approximate the tran-
sition probability density of diffusions using analytical expan-
sions via Hermite polynomials. Before obtaining the closed-form
expansions, a Lamperti transform is performed on the continuous
time model so that the diffusion function becomes a constant.
After that one then obtains a Hermite polynomial expansion
of the transition density of the transformed variable around the
normal distribution. Aït-Sahalia (1999) implemented the approxi-
mateMLmethod and documents its good performance. As it is typ-
ically tedious and error prone to derive the Hermite expansion by
hand, Aït-Sahalia (2002) suggested using symbolic softwares, such
asMATHEMATICA.
Apart from these likelihood-based approaches, numerous

alternative methods are available. We simply refer readers to the
book by Prakasa Rao (1999a) for a review of many alternative
approaches.

2.1.2. Approaches based on realized volatility and in-fill likelihood
When the transition probability density does not have a closed

form expression but Xt is observed continuously over [0, T ], an
alternative method can be used to estimate diffusion models. We
now introduce and motivate the approach.
When the diffusion term is known (i.e. σ(Xt; θ2) = σ(Xt))

and so does not depend on any unknown parameters, one can
construct the exact continuous record log-likelihood via the
Girsanov theorem (e.g., (Liptser and Shiryaev, 2000) as follows.

`IF (θ1) =

∫ T

0

µ(Xt; θ1)
σ 2(Xt)

dXt −
1
2

∫ T

0

µ2(Xt; θ1)
σ 2(Xt)

dt.

Lánska (1979) established the consistency and asymptotic normal-
ity of the continuous record ML estimator of θ1 when T →∞ un-
der a certain set of regularity conditions.
The assumptions of a known diffusion function and the

availability of a continuous time record are not realistic in financial
and other applications. Motivated by the fact that the drift and
diffusion functions are of different orders (Bandi and Phillips, 2003,
2007), we argue that there can be advantages to estimating the
diffusion parameters separately from the drift parameters. For
example, when σ(Xt; θ2) = θ2, i.e., the diffusion function is an
unknown constant, a two-stage approach can be used to estimate
the model. First, θ2 can be estimated directly by the realized
volatility function, i.e.,

θ̂2 =

√
[X∆]T
T

, (3)
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Fig. 1. Standardized realized volatility against the number of daily observations
used to calculate the realized volatility. The daily data are simulated from the
Vasicek model dXt = 0.6(0.09− Xt )dt + 0.06dBt .

where [X∆]T =
∑n∆
i=2(Xi∆ − X(i−1)∆)

2. This is because model (1)
implies that

(dXt)2 = θ22dt, ∀t,

and hence

[X]T =
∫ T

0
(dXt)2 =

∫ T

0
θ22dt = Tθ

2
2 ,

where [X]T is the quadratic variation of X , which can be
consistently estimated by [X∆]T as ∆ → 0. As a result, θ̂2
should be a very good estimate of θ2 when ∆ is small, which
is typically the case for interest rate data. Indeed, in the special
case where the drift term is zero and the diffusion term is
an unknown constant, the exact discrete model (Phillips, 1972)
for the data is Xi∆ − X(i−1)∆ = θ2

(
Bi∆ − B(i−1)∆

)
and so the

maximum likelihood estimator is trivially θ̂2 (see also Aït-Sahalia
et al. (2005)). Although this correspondence clearly does not apply
to more general specifications, it seems likely that when ∆ is
small the two estimators will be close to each other. Second,
the following logarithmic continuous record likelihood function of
model (1),

`IF (θ1) =

∫ T

0

µ(Xt; θ1)

σ 2(Xt; θ̂2)
dXt −

1
2

∫ T

0

µ2(Xt; θ1)

σ 2(Xt; θ̂2)
dt,

may be approximated by the in-fill likelihood function

`AIF (θ1) =

n∆∑
i=2

µ(X(i−1)∆; θ1)

θ̂22

(Xi∆ − X(i−1)∆)

−
∆

2

n∆∑
i=2

µ2(X(i−1)∆; θ1)

θ̂22

, (4)

which is in turn maximized with respect to θ1. Because θ1 is es-
timated by ML and θ̂2 is close to an MLE, the two-stage proce-
dure may be interpreted as a form of profile ML estimation. This
two-stage approach is closely related to the method proposed by
Florens-Zmirou (1989), where a contrast function instead of the
logarithmic in-fill likelihood function was used in the second step.
To better appreciate the quality of approximation of [X∆]T to

[X]T , we simulate daily data from the Vasicek model

dXt = 0.6(0.09− Xt)dt + 0.06dBt , (5)

Fig. 2. Standardized realized volatility against the number of daily observations
used to calculate the realized volatility. The daily data are simulated from the
Vasicek model dXt = 0.6(0.09− Xt )dt + 0.12dBt .

Fig. 3. Standardized realized volatility against the number of weekly observations
used to calculate the realized volatility. The weekly data are simulated from the
Vasicek model dXt = 0.6(0.09− Xt )dt + 0.06dBt .

and plot the standardized realized volatility, [X∆]T/T , against the
number of daily observations used to calculate [X∆]T . Quadratic
variation theory implies that as ∆ → 0, [X∆]T/T

a.s.
→ σ 2. It is

clear from Fig. 1 that although [X∆]T/T is quite erratic initially but
quickly settles down around σ 2. It seems that with only 30–35
observations one can get a good estimate of σ 2. We then increase
the volatility rate from 0.06 to 0.12 and decrease the sampling
frequency from daily to weekly. Results are plotted in Figs. 2
and 3, respectively. It clear that the conclusion about the rapid
convergence of [X∆]T/T is quite robust to these changes.
When the diffusion term is only knownup to a scalar factor, that

is when

dXt = µ(Xt; θ1)dt + θ2f (Xt)dBt , (6)

the above two-stage method is easily modified. First, θ22 can be
estimated by

θ̂22 =
[X∆]T

∆
n∆∑
i=2
f 2(X(i−1)∆)

. (7)
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Table 1
Simulation results under the CIRmodel, dXt = 0.3(0.09−Xt )dt+0.06

√
XtdBt , based on 1000 replications. Mean and SD stand for the average and standard deviation across

1000 replications, respectively.

∆ T Method κ = 0.3 µ = 0.09 σ = 0.06
Mean SD Mean SD×100 Mean SD×100

1/12 20 MLE .5417 .2832 .0898 1.3848 .0603 .2841
Yoshida .5265 .2832 .0898 1.3785 .0598 .2779
Proposed .5265 .2663 .0898 1.3785 .0597 .2793

1/12 15 MLE .6350 .3610 .0903 1.8937 .0604 .3232
Yoshida .6133 .3355 .0904 1.9611 .0597 .3150
Proposed .6133 .3355 .0904 1.9611 .0596 .3198

1/52 20 MLE .5075 .2582 .0906 1.3467 .0601 .1332
Yoshida .5045 .2552 .0906 1.3470 .0600 .1326
Proposed .5045 .2552 .0906 1.3470 .0600 .1347

1/52 10 MLE .7154 .4390 .0925 2.4234 .0601 .2035
Yoshida .7069 .4306 .0924 2.3301 .0600 .2020
Proposed .7069 .4306 .0924 2.3301 .0600 .2024

1/250 20 MLE .5268 .2725 .0898 1.3176 .0600 .0617
Yoshida .5260 .2718 .0898 1.3179 .0600 .0617
Proposed .5260 .2718 .0898 1.3179 .0600 .0634

1/250 10 MLE .7533 .4737 .0904 1.9306 .0601 .0874
Yoshida .7519 .4714 .0903 1.9283 .0600 .0877
Proposed .7519 .4714 .0903 1.9283 .0600 .0891

Second, the following approximate logarithmic in-fill likelihood
function can then be maximized with respect to θ1 (denoting the
resulting estimator by θ̂1)

`AIF (θ1) =

n∆∑
i=2

µ(X(i−1)∆; θ1)

θ̂22 f 2(X(i−1)∆)
(Xi∆ − X(i−1)∆)

−
∆

2

n∆∑
i=2

µ2(X(i−1)∆; θ1)

θ̂22 f 2(X(i−1)∆)
. (8)

Thismethod is applicable tomany popular interest ratemodels,
including those proposed by Vasicek (1977), Cox et al. (1985) (CIR
hereafter), and Ahn and Gao (1999). It is also closely related to the
method proposed by Yoshida (1992). In particular, instead of using
the estimator in (7), Yoshida (1992) used the following estimator
for θ22 :

θ̃22 =
1
T

n∆∑
i=2

(Xi∆ − X(i−1)∆)2

f 2(X(i−1)∆)
. (9)

Also,Yoshida (1992) suggested using an iterative procedure to
construct a better estimate of θ22 (denoted by θ̃

2
2 ). Under the

conditions of ∆ → 0, T → ∞, and ∆2T → 0, Yoshida
(1992) derived limiting normal distributions for

√
n∆(θ̃22 − θ

2
2 )

and
√
T (θ̂1 − θ1). Since

√
n∆/
√
T =
√
1/∆ → ∞, the diffusion

parameter enjoys a faster rate of convergence. Unfortunately,
requiring the diffusion function to be either a constant or known
up to a scalar function limits applicability and the procedures
proposed by Florens-Zmirou (1989) and Yoshida (1992) cannot be
implemented with more general diffusion processes.
The restriction on the diffusion term regarding parameter

dependencewas somewhat ‘‘relaxed’’ in Hutton andNelson (1986)
who based estimation on the following first order condition of the
logarithmic quasi-likelihood function:∫ T

0

∂µ(Xt; θ)/∂θ
σ 2(Xt; θ)

dXt −
1
2

∫ T

0

∂µ2(Xt; θ)/∂θ
σ 2(Xt; θ)

dt = 0.

Although their model seems to allow for a more flexible diffusion
function, it requires that the drift term share the same set
of parameters as the diffusion term. This assumption is too
restrictive for practical applications. Moreover, although this one-
stage estimation approach is easy to implement, the estimation is
mainly based on the drift function and hence leads to inferior finite
sample properties, aswewill showbelow in the context of a simple
example.

2.2. Motivation

Our two-stage method is in line with methods proposed by
Florens-Zmirou (1989) andYoshida (1992). That is, in the first
stage, we estimate the parameters in the diffusion functions
based on the realized volatility, a quantity which consistently
estimates the quadratic variation under very mild conditions. In
the second step, by assuming the diffusion function to be known,
we derive and approximate the logarithmic in-fill likelihood
function. To motivate the two-step approach, we consider two
simple examples.

2.2.1. Example 1
In the first example, we consider estimating the following CIR

model

dXt = κ(µ− Xt)dt + σ
√
XtdBt , (10)

using the exact ML method based on the transition probability
density and the two-stage method discussed in Section 2.1.
The natural estimator of σ based on realized volatility is

σ̂ =

√√√√√ [X∆]T

∆
n∆∑
i=1
X(i−1)∆

. (11)

Moreover, since θ1 = (κ, µ)′, the logarithmic in-fill likelihood is,
n∑
i=1

κ(µ− X(i−1)∆)(Xi∆ − X(i−1)∆)
σ̂ 2X(i−1)∆

−
∆

2

n∑
i=1

κ2(µ− X(i−1)∆)2

σ̂ 2X(i−1)∆
. (12)

CIR (1985) showed that the distribution of X(t+∆) conditional
on X(t) is non-central chi-squared, χ2[2cX(t), 2q + 2, 2λ(t)],
where c = 2κ/(σ 2(1 − e−κ∆)), λ(t) = cr(t)e−κ∆, q =
2κµ/σ 2 − 1, and the second and third arguments are the degrees
of freedom and non-centrality parameters, respectively. This
transition probability density is used to calculate the likelihood
function and to obtain the exact ML estimates.
Table 1 reports some results obtained from aMonte Carlo study

where we compare three estimationmethods: exact ML, Yoshida’s
methodwhich estimates σ by (9), and the proposedmethodwhich
estimates σ by (11). We vary both the sampling frequencies and
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Table 2
Simulation results under dXt = 0.1dt + 0.1dBt based on 1000 replications. Mean and variance are calculated across 1000 replications, respectively.

∆ T True value of α = 0.1
RV ML QML
Mean Variance×100 Mean Variance×100 Mean Variance×100

1/12 20 .1013 .0224 .1054 .0266 .0954 .469
1/52 20 .1003 .00488 .1013 .00514 .1005 .5121
1/250 20 .1000 .0011 .1002 .0011 .0992 .518

time spans. Note that the parameters and the sampling frequencies
are all set to empirically reasonable values. In all cases, the two
two-stage methods are almost identical. This is not surprising
as the two methods differ only in the first stage. Moreover, the
two-stage methods perform comparably with the ML method.
Even in the case where very coarsely sampled data (∆ = 1/12)
are available, the two-stage method works quite well. In most
cases the two-stage methods perform slightly better than the ML
method. In light of Phillips and Yu (2005), the observed bias in
the estimates of κ are the result of the near unit root problem.
The observation that the two-stage method is not dominated by
ML is quite remarkable, as the data generating process is based
on the transition probability density on which ML itself is based.
An interesting side result to emerge from this simulation is that
the two-stage method is able to reduce the finite sample bias and
variance in κ in all cases, even though the reductions are small.

2.2.2. Example 2
The model in the second example is taken from Hutton and

Nelson (1986)

dXt = αdt + αdBt . (13)

Although this model is generally not well suited to interest
rate data, the feature that the drift and diffusion functions share
the same parameter provides a nice framework to investigate
the relative performance of the estimation method based on the
diffusion only, against that based on the drift only and that based
on the drift and diffusion jointly.
The first method is based on the realized volatility and hence

only uses the diffusion term to estimate the model. It is easy to
show that

α̂1 =

√
[X∆]T
T

.

The second method is based on the transition probability
density given by

Xi∆|X(i−1)∆ ∼ N(X(i−1)∆ + α∆, α2∆).

Clearly thismethod uses information both in the drift and diffusion
functions. Denote the resulting estimate by α̂2. Note that this
estimator is equivalent to the MLE of the discretized model via the
Euler approximation.
The third method was proposed by Hutton and Nelson (1986).

It uses mainly information in the drift function and is based
on maximization of the following logarithmic quasi-likelihood
function∫ T

0
α−2dXt −

∫ T

0
α−1dt.

As a result, the estimate has the following analytical expression:

α̂3 =
XT
T
.

Table 2 reports results obtained from a Monte Carlo study
where we compare the three estimation methods with different
sampling frequencies. In all cases, the two-stage method and

ML perform much better than QML; and, most remarkably, the
two-stage method performs better than ML (and hence the Euler
method). Just as in example 1, the fact that the simple two-stage
method outperforms ML in finite samples is surprising. Moreover,
the better performance of the first and second methods clearly
reflects the order difference in the drift and diffusion functions.

3. A two-stage method

The estimation procedure discussed in Section 2.1 is not directly
applicable to general diffusions such as model 1, as it requires
either a constant diffusion function or separability of the scalar
parameter from the reminder of the diffusion function. As a result,
we have to provide amore general two-step procedure to estimate
a diffusion process in the form of model (1)). In particular, in the
first step we propose to estimate the parameters in the diffusion
function by using the feasible central limit theorem for realized
volatility derived by Jacod (1994) and popularized by Barndorff-
Nielsen and Shephard (2002).
Assume that Xt is observed at a gird of discrete times

t = ∆, 2∆, . . . ,M∆∆
(
=
T
K

)
, (M∆ + 1)∆, . . . ,

2M∆∆
(
=
2T
K

)
, . . . , n∆∆(=T ),

where n∆ = KM∆ with K being a fixed and positive integer, T
is the time span of the data, ∆ is the sampling frequency, and
M∆ = O(n∆). This particular construction allows for the non-
overlapping K sub-samples

((k− 1)M∆ + 1)∆, . . . , kM∆∆, where k = 1, . . . , K ,

so that each sub-sample has M∆ observations over the interval
((k − 1) TK , k

T
K ]. For example, if ten years of weekly observed

interest rates are available and we split the data into ten blocks,
then T = 10, ∆ = 1/52, M∆ = 52, K = 10. The total number
of observations is 520 and the number of observations contained
in each block is 52. The first limit in Box I follows by virtue of the
definition of quadratic variation, while the second limit in Box I
is the central limit theorem (CLT) which is due to Jacod (1994)
and Barndorff-Nielsen and Shephard (2002), and the third limit in
Box I involves a finite sample correction on the asymptotic theory
(Barndorff-Nielsen and Shephard, 2005). It is shown in the latter
reference that the third limit in Box I has a better finite sample
performance than that the second limit in Box I.
Although in this paper we only use the realized volatility to

estimate the quadratic variation, other realized power variations,
such as realized absolute variation, can be used in the same
way. For the theoretical development of general realized power
variations,we refer readers to the articles by Barndorff-Nielsen and
Shephard (2003) and Barndorff-Nielsen et al. (2006).
Based on the CLT i.e., the second limit in Box I, θ2 can be

estimated in the first stage by running a (nonlinear) least squares
regression of the standardized realized volatility

M∆∑
i=2
(X(k−1)M∆+i∆ − X(k−1)M∆+(i−1)∆)

2

rk
(14)
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As∆→ 0, n∆ = T
∆
→∞ andM∆ →∞, so that

M∆∑
i=2

(X(k−1)M∆+i∆ − X(k−1)M∆+(i−1)∆)
2 p
→[X]k TK − [X](k−1) TK ,

and
M∆∑
i=2
(X(k−1)M∆+i∆ − X(k−1)M∆+(i−1)∆)

2
− ([X]k TK − [X](k−1) TK )

rk
d
→N(0, 1),

log
(M∆∑
i=2
(X(k−1)M∆+i∆ − X(k−1)M∆+(i−1)∆)

2
− log([X]k TK − [X](k−1) TK )+

1
2 s
2
k

)
sk

d
→N(0, 1),

where

rk =

√√√√2
3

M∆∑
i=2

(X(k−1)M∆+i∆ − X(k−1)M∆+(i−1)∆)4

and

sk = max


√√√√√√ r2k

(
M∆∑
i=2
(X(k−1)M∆+i∆ − X(k−1)M∆+(i−1)∆)2)2

,

√
2
M∆


for k = 1, . . . , K .

Box I.

θ̂2 = argmin
θ2
Q∆ (θ2),

where

Q∆ (θ2) = ∆
K∑
k=1


M∆∑
i=2

{
(X(k−1)M∆+i∆ − X(k−1)M∆+(i−1)∆)

2
− σ 2

(
X(k−1)M∆+(i−1)∆; θ2

)
∆
}

rk


2

Box II.

on the standardized diffusion function

([X]k TK − [X](k−1) TK )

rk
=

(∫ k TK
(k−1) TK

σ 2 (Xt; θ2) dt
)

rk
(15)

'

M∆∑
i=2
σ 2
(
X(k−1)M∆+(i−1)∆; θ2

)
∆

rk
(16)

for k = 1, . . . , K . Denote the resulting estimator of θ2 by θ̂2. In fact,
we can write θ̂2 as the extremum estimator as in Box II. A similar
regression in standardized log levels of realized volatility can be
run using the third limit in Box I.
This approach provides a more general estimation procedure

than those designed to estimate models with a constant diffusion
or a scalar parameter in the diffusion function. Hence this approach
substantially generalizes themethod ofFlorens-Zmirou (1989) and
the method of Yoshida (1992) to a much wider class of diffusion
processes. Indeed, when K = 1, the least squares regression
above is equivalent to minimizing the squared difference between
the terms given by Eqs. (14) and (15), which yields exactly the
expression of the estimator (7) when the diffusion term is known
up to the scalar factor.

In the second stage, the approximate log-likelihood function is
maximized with respect to θ1 (denoting the resulting estimator
by θ̂1)

`AIF (θ1) =

n∆∑
i=2

µ(X(i−1)∆; θ1)

σ 2(X(i−1)∆; θ̂2)
(Xi∆ − X(i−1)∆)

−
∆

2

n∆∑
i=2

µ2(X(i−1)∆; θ1)

σ 2(X(i−1)∆; θ̂2)
. (17)

4. Asymptotic results

The asymptotic theory of a slightly different two-stage estima-
tor in the multivariate case was obtained in Yoshida (1992) for
models whose diffusion term is known up to a constant (matrix)
factor, where both infill and long span asymptotics are employed
both for the diffusion anddrift parameter estimators. In this section
we first derive the asymptotic theory for the same class of (scalar)
models but only resort to long span asymptotics for the drift pa-
rameter asymptotic theory. We then investigate the asymptotic
properties of the estimators proposed in Section 3 for model (1)
whose diffusion function has a general form.
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4.1. Scalar parameter in the diffusion function

To highlight the differences between our approach and Yoshida
(1992), we first assume the data are generated according to the
following stochastic differential equation:

dXt = µ(Xt; θ∗1 )dt + θ
∗

2 f (Xt)dBt . (18)

Denote θ22 by τ and θ
∗2
2 by τ

∗. Both µ(·; θ1) and f (·) are time-
homogeneous,B-measurable functions onD = (l, u)with−∞ ≤
l < u ≤ ∞, where B is the σ -field generated by Borel sets onD .
τ is estimated by τ̂ defined by Eq. (7); θ1 is estimated by θ̂1, the
maximizer of Eq. (8).
To prove consistency of τ̂ in a diffusion process with a constant

diffusion term (i.e. f (Xt) = 1), Florens-Zmirou (1989) assumed
∆→ 0, T →∞, and∆2T → 0. The same set of assumptionswere
employed by Yoshida (1992) to deal with the diffusion process for
more general, but still known, f (Xt). In this paper, using the theory
of Jacod (1994) and Barndorff-Nielsen and Shephard (2002), we
show that the condition of an infinite time span of data (i.e. T →
∞) is not needed to develop the asymptotic theory for τ̂ , thereby
extending the asymptotic results of Yoshida (1992) in a significant
way.
We list the following conditions.

Assumption 1. Equation [X]t − τ
∫ t
0 f
2(Xs)ds = 0 has a unique

solution at τ ∗ > 0 ∀t > 0.

Assumption 2. infx∈J f 2(x) > 0, where J is a compact subset of the
range of the process.

Assumption 3.
∫ t
0 µ

2(Xs; θ1)ds <∞∀t <∞.

Remark 4.1. Assumption 1 is an identification condition and
Assumption 2 is a bounding positivity condition on the volatility
function. Assumption 3 ensures weak convergence of the error
process from the Euler approximation to the diffusion process
(Jacod and Protter, 1998).

Theorem 4.1 (Asymptotics of theDiffusion Parameter Estimate). Sup-
pose Assumptions 1 and 2 hold, τ̂

p
→ τ ∗ as ∆ → 0. If, in addition,

Assumption 3 holds,

∆−1/2(τ̂ − τ ∗)
d
→

√
2
∫ T
0 τ
∗f 2(Xs)dWs∫ T

0 f
2(Xs)ds

where Wt is a Brownian motion which is independent of Xt .

Remark 4.2. With a different estimate for τ , we substantially
improve the results of Yoshida (1992), who derived asymptotic
properties of the diffusion estimate assuming that ∆ → 0 and
T →∞, by only requiring in Theorem4.1 that∆→ 0. Our result is
not surprising and confirms the intuition that when the sampling
interval goes to zero, the sample path within a finite time span,
no matter how short, can perfectly reveal the quadratic variation
of the process (see, for example, Merton (1980)) at least over that
time span.

To establish the asymptotic properties of the drift parameter
estimate, we follow Yoshida (1992) closely. In particular, we first
list the following conditions.

Assumption 4. θ1 ∈ Θ1 where the parameter spaceΘ1 ⊂ RK1 is a
compact set with θ∗1 ∈ Int(Θ1).

Assumption 5. Both µ(·; θ1) and f (·) functions are twice contin-
uously differentiable. As a result, for any compact subset J of the
range of the process, we have the following two conditions:
(i) (Lipschitz condition) There exists a constant L1 so that

|µ(x; θ∗1 )− µ(y; θ
∗

1 )| + θ
∗

2 |f (x)− f (y)| ≤ L1|x− y|,

for all x and y in J .
(ii) (Growth condition) There exists a constant L2 so that

|µ(x; θ∗1 )| + θ
∗

2 |f (x)| ≤ L2|1+ x|,

for all x and y in J .

Assumption 6. Define the scale measure of Xt by

s(x; θ) = exp
(
−2

∫ x

c

µ(y; θ1)
τ f 2(y)

dy
)
,

where c is a generic constant. We assume the following conditions
hold∫ u

c
s(x; θ)dx =

∫ c

l
s(x; θ)dx = ∞,

and∫ u

l

1
s(x; θ)τ f 2(x)

dx = A(θ) <∞.

Assumption 7. For arbitrary p ≥ 0,

sup
t
E(|Xt |p) <∞.

Assumption 8. Define the following function

θ1 → Y (θ1; τ ∗) =
∫
µ(x, θ1)
τ ∗f 2(x)

(
µ(x, θ∗1 )−

1
2
µ(x, θ1)

)
πθ (dx)

and assume function Y (·; τ ∗) has the uniquemaximum at θ1 = θ∗1 ,
where πθ is defined in Remark 4.4.

Assumption 9. For fixed θ1, the derivatives ∂ lµ(x; θ1)/∂xl and
∂ lf (x)/∂xl (l = 1, 2) exist and they are continuous in x. For fixed x,
∂ lµ(x; θ1)/∂θ l1 exist. Moreover,

|∂ lµ(x; θ1)/∂xl|, |∂ lf (x)/∂xl|, |∂ lµ(x; θ1)/∂θ l1| ≤ C(1+ |x|)
C ,

for l = 0, 1, 2.

Assumption 10. The matrix

Φ =

∫
∂µ(x; θ∗1 )
∂θ>1

(τ ∗f 2(x))−1
∂µ(x; θ∗1 )
∂θ1

πθ (dx) (19)

is positive definite.

Remark 4.3. Under Assumption 5, these exists a solution process
for the stochastic differential equation and the solution is unique.

Remark 4.4. Under Assumption 6, the process Xt is ergodic with
an invariant probability measure that has density

πθ (x) =
1

A(θ)s(x; θ)τ f 2(x)
,

for x ∈ (l, u) with respect to Lebesque measure on (l, u), where
A(θ) and s(x; θ) are defined in Assumption 6. We further assume
that X0 ∼ πθ∗ so that Xt is a stationary process with Xt ∼ πθ∗ .
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Theorem 4.2 (Asymptotics of the Drift Parameter Estimates). Let
θ̂1 = argmaxθ1∈Θ1T

−1 log `AIF (θ1) with `AIF (θ1) given by Eq. (8).

Suppose Assumptions 1–10 hold, θ̂1
p
→ θ∗1 as ∆→ 0 and T → ∞.

If, in addition,∆2T → 0,

T 1/2(θ̂1 − θ∗1 )
d
→N(0,Φ−1),

whereΦ is given in Eq. (19).

4.2. General diffusions

Nowweconsider the general casewhere Florens-Zmirou (1989)
and Yoshida (1992) are not applicable. Suppose data are generated
from the following stochastic differential equation

dXt = µ(Xt; θ∗1 )dt + σ(Xt; θ
∗

2 )dBt , (20)

where θ1 ∈ Θ1 ⊂ RK1 and θ2 ∈ Θ2 ⊂ RK2 . Both µ(·, θ1)
and σ(·; θ2) are time-homogeneous, B-measurable functions on
D = (l, u) with −∞ ≤ l < u ≤ ∞, where B is the σ -field
generated by Borel sets onD . θ2 is estimated by regressing (14) on
(15), giving the extremum estimator in Box II; θ1 is estimated by
θ̂1, defined by Eq. (17).
As in the scalar factor parameter case, we show that an infinite

time span (i.e. T → ∞) is not needed to develop the asymptotic
theory for θ̂2.
Some additional assumptions are required, given the nonlinear

dependence of the diffusion σ(Xt; θ2) on θ2 . Also we have to
modify some earlier Assumptions listed in Section 4.1.

Assumption 1′. The equation

[X]t −
∫ t

0
σ 2(Xs; θ2)ds =

∫ t

0
σ 2(Xs; θ∗2 )ds

−

∫ t

0
σ 2(Xs; θ2)ds = 0 (21)

has a unique solution at θ∗2 , ∀t > 0.

Assumption 2′. infx∈J σ 2(x; θ∗2 ) > 0, where J is a compact subset
of the range of the process.

Assumption 4′. θ1 ∈ Θ1, θ2 ∈ Θ2, where parameter spaces
Θ1 ⊂ Rk1 and Θ2 ⊂ Rk2 are compact set with θ∗1 ∈ Int(Θ1) and
θ∗2 ∈ Int(Θ2).

Assumption 5′. Both µ(·; θ1) and σ(·; θ2) functions are twice
continuously differentiable. As a result, for any compact subset J of
the range of the process, we have the following two conditions:
(i) (Lipschitz condition) There exists a constant L1 so that

|µ(x; θ∗1 )− µ(y; θ
∗

1 )| + |σ(x; θ
∗

2 )− σ(y; θ
∗

2 )| ≤ L1|x− y|,

for all x and y in J .
(ii) (Growth condition) There exists a constant L2 so that

|µ(x; θ∗1 )| + |σ(x; θ
∗

2 )| ≤ L2|1+ x|,

for all x and y in J .

Assumption 6′. Define the scale measure of Xt by

s(x; θ) = exp
(
−2

∫ x

c

µ(y; θ1)
σ 2(y; θ2)

dy
)
,

where c is a generic constant. We assume the following condition
holds∫ u

c
s(x; θ)dx =

∫ c

l
s(x; θ)dx = ∞,

and∫ u

l

1
s(x; θ)σ 2(x; θ2)

dx = A(θ) <∞.

Assumption 8′. Define the following function

θ1 → Y (θ1; θ∗2 ) =
∫

µ(x, θ1)
σ 2(x; θ∗2 )

(
µ(x, θ∗1 )−

1
2
µ(x, θ1)

)
πθ∗(dx)

and assume Y (·; θ∗2 ) has the unique maximum at θ1 = θ
∗

1 .

Assumption 9′. For fixed θ1, the derivatives ∂ lµ(x; θ1)/∂xl and
∂ lσ(x; θ2)/∂xl (l = 1, 2) exist and they are continuous in x. For
fixed x, ∂ lµ(x; θ1)/∂θ l1 and ∂

lσ(x; θ2)/∂θ l2 exist. Moreover,

|∂ lµ(x; θ1)/∂xl|, |∂ lσ(x; θ2)/∂xl|, |∂ lµ(x; θ1)/∂θ l1|,

|∂ lσ(x; θ2)/∂θ l2| ≤ C(1+ |x|)
C ,

for l = 0, 1, 2.

Assumption 10′. The matrices

Φ1 =

∫
∂µ(x; θ∗1 )
∂θ1

σ−2(x; θ∗2 )
∂µ(x; θ∗1 )
∂θ ′1

πθ (dx)

and
∫ t

0

∂σ 2
(
Xs; θ∗2

)
∂θ2

∂σ 2
(
Xs; θ∗2

)
∂θ ′2

ds (22)

are positive definite and
∫ t
0 σ

4
(
Xs; θ∗2

)
ds > 0 for all t > 0.

Theorem 4.3. (Asymptotics of the Diffusion Parameter Estimate):
Suppose Assumptions 1′–10′ hold. Then, θ̂2

p
→ θ∗2 as∆→ 0 and

∆−1/2
(
θ̂2 − θ

∗

2

)
d
→

 K∑
k=1

∫ k TK
(k−1) TK

∂σ 2(Xs;θ∗2 )
∂θ2

∂σ 2(Xs;θ∗2 )
∂θ ′2

ds∫ k TK
(k−1) TK

σ 4
(
Xs; θ∗2

)
ds


−1

×

 K∑
k=1

√
2
∫ k TK
(k−1) TK

∂σ 2(Xs;θ∗2 )
∂θ2

σ 2
(
Xs; θ∗2

)
dWs∫ k TK

(k−1) TK
σ 4
(
Xs; θ∗2

)
ds

 ,
where Wt is a Brownian motion which is independent of Xt .

Theorem 4.4 (Asymptotics of the Drift Parameter Estimate). Let
θ̂1 = argmax T−1 log `AIF (θ1)with `AIF (θ1) given by Eq. (17). Suppose
Assumptions 1′ − 10′ hold, then θ̂1

p
→ θ∗1 as ∆→ 0 and T → ∞.

If, in addition,∆2T → 0,

T 1/2(θ̂1 − θ∗1 )
d
→N(0,Φ−11 ),

whereΦ1 is given in Eq. (22).

5. Monte Carlo results

To examine the performance of the proposed procedure, we
estimate the following model for short-term interest rates due to
Chan et al. (1992, CKLS hereafter),

dXt = κ(µ− Xt)dt + σX
γ
t dBt , (23)

with κ = 0.6, µ = 0.09, σ = 0.06, γ = 0.5. We choose
γ = 0.5 so that the true model becomes a CIR model which
enables an exact data simulation. The parameters are estimated
from 10 years of daily data (2500 observations). The experiment
is replicated 1000 times to get the means and standard errors for
each estimate. Two estimation methods are employed to estimate
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Table 3
Simulation results under the CKLS model, dXt = κ(µ− Xt )dt + σX

γ
t dBt , based on 1000 samples of 2500 daily observations. True values for κ ,µ, σ , γ are 0.6, 0.09, 0.06, 0.5.

Mean and SD stand for the average and standard deviation across 1000 replications, respectively.

AML Two-Stage method
K = 2 K = 10 K = 20 K = 50 K = 100
Level Log Level Log Level Log Level Log Level Log

γ Mean .4901 .5326 .5326 .4994 .4992 .4981 .4954 .4971 .4927 .4933 .4921
SD .1044 .5117 .5117 .1343 .1295 .1191 .1136 .1353 .1104 .1407 .1110

σ Mean .0604 .1562 .1562 .0628 .0628 .0612 .0612 .0589 .0603 .0588 .0602
SD .0157 .4754 .4754 .0235 .0235 .0177 .0177 .0190 .0167 .0202 .0169

κ Mean 1.072 1.070 1.070 1.073 1.073 1.073 1.073 1.073 1.073 1.070 1.070
SD .5447 .5399 .5399 .5417 .5417 .5417 .5417 .5416 .5415 .5418 .5417

µ Mean .0901 .0902 .0902 .0902 .0902 .0902 .0902 .0902 .0902 .0902 .0902
SD .0097 .0094 .0094 .0094 .0094 .0094 .0094 .0094 .0094 .0094 .0094

the model: the approximate ML method of Aït-Sahalia (2002) and
the proposed two-stage method. For the two-stage method, we
implement it based on both levels and log levels, respectively.
To use the two-stage methods, the number of subsamples has
to be chosen. There is a trade-off between a large K and a
small K . On the one hand, since K determines the number of
observations used for the nonlinear regression, a larger K will
generate more variation in [X]k TK − [X](k−1) TK across subsamples
and hence provide more accurate estimation of the parameters in
the diffusion function.1 On the other hand, if K is too big, M∆ will
be too small for

∑M∆
i=2(X(k−1)M∆+i∆−X(k−1)M∆+(i−1)∆)

2 to provide a
good approximation to [X]k TK − [X](k−1) TK , as Figs. 1–3 suggested.
In the Monte Carlo study, we choose various values for K , namely
2, 10, 20, 50 and 100. These values correspond to 1250, 250, 125,
50 and 25 forM∆, respectively.
The simulation results are reported in Table 3. Several

interesting results emerge from this table. First, the simulation
results clearly indicate a trade-off between a large K and a small
K . When K is 2, the variance is big for the two parameters in the
diffusion function, indicating that the nonlinear least regression
does not lead to accurate estimation to the diffusion parameters.
The performance of the procedure improves substantially when
K ≥ 10. However, when K is large, a further increase in K
fails to improve the finite sample performance. For example, for
the two-stage method based on log-levels, the variances of the
two diffusion parameters are slightly larger when K = 100
than those when K = 50. Second, the estimation of parameters
in the drift function does not seem to be dependent on the
diffusion parameters in any critical way. This is because the
information matrix for the diffusion parameters is orthogonal to
that for the drift parameters in the CKLS model. Thirdly, when a
reasonable value for K is used, the quadratic variations are well
estimated. Not surprisingly, therefore, our estimates are close to
the approximateMLmethod of Aït-Sahalia (2002). Finally, we note
that the two-stage method based on log levels has better finite
sample performances than that based on levels, especially when
K is large (and hence M∆ is small), consistent with the finding in
Barndorff-Nielsen and Shephard (2005).

6. Microstructure contamination

Direct application of the two-stage method proposed above
requires that Xt be observed. This assumption may be too strong
for ultra high frequency data because of the presence of various
market microstructure effects which contaminate Xt with noise,
producing bias and inconsistency in realized volatility estimates.
As a consequence, our two-stage procedure has to be modified

1 We thank a referee for pointing this out to us.

in order to produce consistent estimates of the parameters in the
diffusion function.
Suppose the noise is orthogonal to Xt and independent and

identically distributed over the grid (∆, 2∆, . . . , n∆∆), i.e.

Yi∆ = Xi∆ + ei∆, (24)

and

ei∆⊥ej∆, ∀i 6= j and ei∆⊥Xi∆, ∀i, (25)

with zero mean E (ei∆) = 0 and finite variance E
(
e2i∆
)
= σ 2,∀i.

In the presence of market microstructure noise such as ei∆, we
observed Yi∆ instead of Xi∆. While the pure noise assumption
(25) lacks realism, as discussed in Phillips and Yu (2006), it is
commonly adopted in the literature as it simplifies identification
and econometric analysis – see, for example, Bandi and Russell
(2005), Hansen and Lunde (2006), Barndorff-Nielsen et al. (2005)
and Zhang et al. (2005). It is easy to show that as ∆ → 0, the
realized volatility quantity

∑M∆
i=2(Y(k−1)M∆+i∆ − Y(k−1)M∆+(i−1)∆)

2

diverges, making estimation in the first stage inconsistent.
To provide a consistent estimate of the quadratic variation

differential [X]k TK − [X](k−1) TK , one can use the realized kernel
estimator of Barndorff-Nielsen et al. (2005), the two-scale
estimator of Zhang et al. (2005), or the multi-scale estimator of
Zhang (2006). While these procedures converge to the quadratic
variation at slower rates than realized volatility in the absence
of microstructure noise, they nonetheless provide consistent
nonparametric estimators of the required quantity and can be
employed to estimate the parameters in the diffusion function
using the nonlinear regression, precisely as used above. Aït-Sahalia
et al. (2006) generalized the two-scale procedure to cover time
dependent noise and this generalization can also be adopted in
the first step of our two-stage method in the same spirit. The
asymptotic properties of the resulting estimator may be extracted
along lines similar to those used here, with consequential changes
in the rate of convergence. The results are obviously of interest and
will provide an approach to continuous system estimation in the
presence of noise. The details will be provided in subsequent work.

7. Concluding remarks

This paper proposes a two-stage method to estimate diffusion
processes in a general form. In the first stage the realized
volatility calculated from a sequence of split samples is regressed
on the corresponding quadratic variation in order to estimate
all the parameters in the diffusion function. Then, conditional
on the resulting consistent estimate of the diffusion, the in-
fill likelihood function approximation of the diffusion process
can be readily constructed. The resulting discrete approximation
produces estimates of all the parameters in the drift function.
Monte Carlo simulations show that the finite sample performance
of the proposed method is very satisfactory and as good
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as conventional maximum likelihood even when the discrete
likelihood can be obtained. One advantage of the proposedmethod
is that a larger scale optimization problem is decomposed into two
smaller scale optimization problems. Although, like other extreme
estimators, our method tends to over estimate the mean reversion
parameter, κ , the numerical attractability of our method makes it
an ideal initial estimate for the jackknife method of Phillips and
Yu (2005) or the simulation-based methods of Phillips and Yu (in
press-b) reduce the finite sample bias in κ .
There exist alternative two-step procedures to estimate diffu-

sion processes. For example, in Bandi and Phillips (2007), nonpara-
metric estimates of the drift and diffusion functions are matched
with the parametric counterparts to provide consistent estimation
of parameters in the drift and in the diffusion, respectively. One
can certainly use our first step estimate (i.e. via realized volatility)
in place of the diffusion estimate (i.e. via kernel functions) in the
procedure of Bandi and Phillips (2007).
The approach can be readily extended to themulti-dimensional

case. Both implementation and asymptotic theory only need trivial
modifications. Since the method separates estimation of the drift
and diffusion functions, it may be a desirable method to use
when the drift but not the diffusion involves certain market
microstructure features.
The two-step approach can be also adapted to deal with the

following diffusion model mixed with jumps:

dXt = µ(Xt; θ1)dt + σ(Xt; θ2)dBt + f (Xt; θ3)dZ
θ3
t ,

where Zθ3t is a Lévy process with parameter θ3. For this model
realized volatility cannot be used to consistently estimate θ2 as it
does not converge to

∫
σ 2(Xt; θ2)dt . However, empirical tripower

variation does converge to
∫
σ 2(Xt; θ2)dt . Barndorff-Nielsen and

Shephard et al. (2006) obtained a central limit theorem for the
tripower variation process when a diffusion process is mixed with
finite activity jumps. Since the in-fill likelihood is readily available
for jump-diffusion processes once the diffusion term is known,
we can adopt the following two-step procedure to estimate the
model: first, use tripower variation to estimate θ2; then, maximize
the approximated in-fill likelihood with respect to θ1 and θ3. The
properties of the resulting estimator will be reported in future
work.

Appendix

Proof of Theorem 4.1. It is known that all diffusion-type pro-
cesses are semi-martingales (Prakasa Rao, 1999b). As a result,
when∆→ 0,

[X∆]T
p
→[X]T = τ ∗

∫ T

0
f 2(Xs)ds,

where the convergence follows from the theory of quadratic
variation for semi-martingales and the equality follows from
Assumption 1.
By Assumption 3, we have

τ̂ =
[X∆]T

n∆∑
i=1
f 2(X(i−1)∆)

p
→

[X]T∫ T
0 f

2(Xs)ds
= τ ∗.

This proves the first part of Theorem 4.1.
Since Xt is a semi-martingale, by Ito’s lemma for semi-

martinagles (Prakasa Rao, 1999b) we have

X2T = [X]T + 2
∫ T

0
Xs−dXs−.

Following Theorem1of Barndorff-Nielsen and Shephard (2002)we
have

∆−1/2([X∆]T − [X]T )
d
→ τ ∗

√
2
∫ T

0
f 2(Xs)dWs, (26)

whereWt is a Brownianmotionwhich is independent of Xt . Hence,

∆−1/2(τ̂ − τ ∗) = ∆−1/2

 [X∆]T
n∆∑
i=1
f 2(X(i−1)∆)

−
[X]T∫ T

0 f
2(Xs)ds



= ∆−1/2
1∫ T

0 f
2(Xs)ds


∫ T
0 f

2(Xs)ds
n∆∑
i=1
f 2(X(i−1)∆)

[X∆]T − [X]T

 . (27)

By Assumption 3,
n∆∑
i=1
f 2(X(i−1)∆)∫ T
0 f

2(Xs)ds

p
→ 1.

By Slutsky’s theorem, Eqs. (26) and (27) imply that

∆−1/2(τ̂ − τ ∗)
d
→ τ ∗

√
2
∫ T
0 f

2(Xs)dWs∫ T
0 f

2(Xs)ds
. (28)

This completes the proof of Theorem 4.1. �

Proof of Theorem 4.2. Obviously, the proposed drift estimator is
in the class of extremum estimators. Hence, one can prove consis-
tency by checking sufficient conditions for extremum estimation
problems. It is convenient here to check the conditions given in
Newey and McFadden (1994, p.2121), namely, compactness, con-
tinuity, uniform convergence, and identifiability.
Compactness of Θ, continuity of T−1 log `AIF (θ1; τ̂ ) and the

identification condition are assured by Assumption 1, Assump-
tion 9 and Assumption 8, respectively. The uniform convergence
of T−1 log `AIF (θ1) to Y (θ1, τ ∗) follows from Proposition 1, Lemma
1 and Lemma 2 in Yoshida (1992). Hence the first part of the theo-
rem is proved.
To show asymptotic normality, we follow Yoshida (1992) by

obtaining the weak convergence of the likelihood ratio random
field,

Z∆,n∆(τ , u) = `AIF (θ
∗

1 + T
−1/2u; τ̂ )/`AIF (θ∗1 ; τ̂ ).

Under the listed conditions, Yoshida (1992) showed that

log Z∆,n∆(τ
∗, u) = u>T−1/2

n∆∑
i=1

∂µ(x; θ∗1 )
∂θ1

1
τ ∗f 2(X(i−1)∆)

×

∫ i∆

(i−1)∆
τ ∗f (x)dWt −

1
2
u>Φu+ ρ∆,n(u), (29)

where ρ∆,n(u)
p
→ 0 andΦ is defined in Eq. (19).

From Theorem 4.1, we have, ∀η > 0, that there exists a ∆ and
a positive number c1 such that

P(∆−1/2(τ̂ − τ ∗) > c1) < η/2.

Let τ̂ = τ ∗ +∆1/2M and we have, ∀ε > 0

P(| log Z∆,n∆(τ̂ , u)− log Z∆,n∆(τ
∗, u)| > ε)

= P(∆−1/2(τ̂ − τ ∗) > c1)+ P( sup
|M|≤c1

| log Z∆,n(τ̂ , u)

− log Z∆,n∆(τ
∗, u)| > ε)

< η. (30)
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θ̂2 = argmin
θ2
Q∆ (θ2),

where

Q∆ (θ2) = ∆
K∑
k=1


M∆∑
i=2

{
(X(k−1)M∆+i∆ − X(k−1)M∆+(i−1)∆)

2
− σ 2

(
X(k−1)M∆+(i−1)∆; θ2

)
∆
}

rk


2

Box III.

1
∆3/2

∂Q∆
(
θ∗2
)

∂θ2
= −

2
∆3/2

K∑
k=1

M∆∑
i=2
g∗i ∆

{
(X(k−1)M∆+i∆ − X(k−1)M∆+(i−1)∆)

2
− σ 2

(
X(k−1)M∆+(i−1)∆; θ2

)
∆
}

r2k
∆

= −
2
∆1/2

K∑
k=1

M∆∑
i=2
g∗i
{
(X(k−1)M∆+i∆ − X(k−1)M∆+(i−1)∆)

2
− σ 2

(
X(k−1)M∆+(i−1)∆; θ2

)
∆
}

r2k
∆

Box IV.

Combining Eqs. (29) and (30) proves Proposition 4 of Yoshida
(1992). Similarly, we can obtain Proposition 5 and 6 of Yoshida
(1992) based on τ̂ . Theweek convergence of the likelihood random
field follows these propositions. In particular,

T 1/2(θ̂1 − θ∗1 )
d
→N(0,Φ).

This completes the proof of Theorem 4.2. �

Proof of Theorem 4.3. The argument is briefly sketched here. We
consider the case where the estimate θ̂2 is obtained from the ex-
tremum estimation problem suggested by the first equation in
Box II. A similar argument can be employed in the casewhere stan-
dardized log levels of realized volatility are used in the regression
based on the CLT result suggested by the third limit in Box I.
Observe that, as∆→ 0,

Q∆ (θ2)
p
→Q (θ2)

=

K∑
k=1

{∫ k TK
(k−1) TK

σ 2
(
Xs; θ∗2

)
ds−

∫ k TK
(k−1) TK

σ 2 (Xs; θ2) ds
}2

2
∫ k TK
(k−1) TK

σ 4
(
Xs; θ∗2

)
ds

,

uniformly in θ2, since
M∆∑
i=2

(X(k−1)M∆+i∆ − X(k−1)M∆+(i−1)∆)
2

p
→[X]k TK − [X](k−1) TK =

∫ k TK

(k−1) TK

σ 2
(
Xs; θ∗2

)
ds,

and
M∆∑
i=2

σ 2
(
X(k−1)M∆+(i−1)∆; θ2

)
∆

p
→

∫ k TK

(k−1) TK

σ 2 (Xs; θ2) ds, (31)

uniformly in θ2 ∈ Θ2 in view of the compactness of Θ2 and the
smoothness of σ 2 (Xs; θ2). Next,

r2k
∆
=
2
3∆

M∆∑
i=2

(X(k−1)M∆+i∆ − X(k−1)M∆+(i−1)∆)
4

p
→ 2

∫ k TK

(k−1) TK

σ 4
(
Xs; θ∗2

)
ds, (32)

as in Barndorff-Nielsen and Shephard (2002). Thus, since Q (θ2) is
minimized for θ2 = θ∗2 in view of (21), we have θ̂2

p
→ θ∗2 by a stan-

dard extremum estimator argument.
Next, by a Taylor series argument under the stated smoothness

and positive definiteness assumptions, we have

∆−1/2
(
θ̂2 − θ

∗

2

)
=

 1
∆

∂2Q∆
(
θ̃2

)
∂θ2∂θ

′

2

−1 [ 1
∆3/2

∂Q∆
(
θ∗2
)

∂θ2

]

∼

[
1
∆

∂2Q∆
(
θ∗2
)

∂θ2∂θ
′

2

]−1 [
1
∆3/2

∂Q∆
(
θ∗2
)

∂θ2

]
, (33)

where θ̃2 is on the line segment connecting θ̂2 to θ∗2 and thus sat-
isfies θ̃2→p θ

∗

2 . Setting

g∗i = g
(
X(k−1)M∆+(i−1)∆; θ

∗

2

)
=
∂σ 2

(
X(k−1)M∆+(i−1)∆; θ

∗

2

)
∂θ2

,

we get the equation in Box IV and, in view of Theorem 1 of
Barndorff-Nielsen and Shephard (2002),

1
∆1/2

M∆∑
i=2

g∗i
{
(X(k−1)M∆+i∆ − X(k−1)M∆+(i−1)∆)

2

− σ 2
(
X(k−1)M∆+(i−1)∆; θ2

)
∆
}

d
→
√
2
∫ k TK

(k−1) TK

∂σ 2
(
Xs; θ∗2

)
∂θ2

σ 2
(
Xs; θ∗2

)
dWs (34)

whereWs is a standard Brownian motion independent of Xt . It fol-
lows from (32), (34) and Box IV that

1
∆3/2

∂Q∆
(
θ∗2
)

∂θ2

d
→

K∑
k=1

√
2
∫ k TK
(k−1) TK

∂σ 2(Xs;θ∗2 )
∂θ2

σ 2
(
Xs; θ∗2

)
dWs∫ k TK

(k−1) TK
σ 4
(
Xs; θ∗2

)
ds

. (35)

Next we have

1
∆

∂2Q∆
(
θ∗2
)

∂θ2∂θ
′

2
∼
2
∆

K∑
k=1

M∆∑
i=2
g∗i g
∗′

i ∆
2

r2k
∆
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= 2
K∑
k=1

M∆∑
i=2
g∗i g
∗′

i ∆

r2k
∆

p
→ 2

K∑
k=1

∫ k TK
(k−1) TK

∂σ 2(Xs;θ∗2 )
∂θ2

∂σ 2(Xs;θ∗2 )
∂θ ′2

ds

2
∫ k TK
(k−1) TK

σ 4
(
Xs; θ∗2

)
ds

=

K∑
k=1

∫ k TK
(k−1) TK

∂σ 2(Xs;θ∗2 )
∂θ2

∂σ 2(Xs;θ∗2 )
∂θ ′2

ds∫ k TK
(k−1) TK

σ 4
(
Xs; θ∗2

)
ds

. (36)

Combining (33), (35) and (36) we obtain

∆−1/2
(
θ̂2 − θ

∗

2

)
d
→

 K∑
k=1

∫ k TK
(k−1) TK

∂σ 2(Xs;θ∗2 )
∂θ2

∂σ 2(Xs;θ∗2 )
∂θ ′2

ds∫ k TK
(k−1) TK

σ 4
(
Xs; θ∗2

)
ds


−1

×

 K∑
k=1

√
2
∫ k TK
(k−1) TK

∂σ 2(Xs;θ∗2 )
∂θ2

σ 2
(
Xs; θ∗2

)
dWs∫ k TK

(k−1) TK
σ 4
(
Xs; θ∗2

)
ds

 ,
as stated. �

Proof of Theorem 4.4. The proof follows similar lines to the proof
of Theorem 4.2 and is therefore omitted. �
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