
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and
Information Systems School of Computing and Information Systems

6-2007

Continuous Nearest Neighbor Queries over Sliding Windows Continuous Nearest Neighbor Queries over Sliding Windows

Kyriakos MOURATIDIS
Singapore Management University, kyriakos@smu.edu.sg

Dimitris Papadias
Hong Kong University of Science and Technology

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

 Part of the Databases and Information Systems Commons, and the Numerical Analysis and Scientific

Computing Commons

Citation Citation
MOURATIDIS, Kyriakos and Papadias, Dimitris. Continuous Nearest Neighbor Queries over Sliding
Windows. (2007). IEEE Transactions on Knowledge and Data Engineering. 19, (6), 789-803.
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/204

This Journal Article is brought to you for free and open access by the School of Computing and Information
Systems at Institutional Knowledge at Singapore Management University. It has been accepted for inclusion in
Research Collection School Of Computing and Information Systems by an authorized administrator of Institutional
Knowledge at Singapore Management University. For more information, please email cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F204&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/145?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F204&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/147?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F204&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/147?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F204&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

Continuous Nearest Neighbor Queries over Sliding Windows

Kyriakos Mouratidis Dimitris Papadias
School of Information Systems

Singapore Management University
80 Stamford Road, Singapore 178902

kyriakos@smu.edu.sg

Department of Computer Science and Engineering
Hong Kong University of Science and Technology

Clear Water Bay, Hong Kong
dimitris@cse.ust.hk

Abstract

This paper studies continuous monitoring of nearest neighbor (NN) queries over sliding
window streams. According to this model, data points continuously stream in the system
and they are considered valid only while they belong to a sliding window that contains (i)
the W most recent arrivals (count-based), or (ii) the arrivals within a fixed interval W
covering the most recent timestamps (time-based). The task of the query processor is to
constantly maintain the result of long running NN queries among the valid data. We
present two processing techniques that apply to both count-based and time-based windows.
The first one adapts conceptual partitioning, the best existing method for continuous NN
monitoring over update streams, to the sliding window model. The second technique
reduces the problem to skyline maintenance in the distance-time space and pre-computes
the future changes in the NN set. We analyze the performance of both algorithms, and
extend them to variations of NN search. Finally, we compare their efficiency through a
comprehensive experimental evaluation. The skyline-based algorithm achieves lower CPU
cost, at the expense of slightly larger space overhead.

Index Items: J.9.a Location-dependent and sensitive, H.2.4.k Spatial databases, H.2.4.h Query
processing.
Additional Keywords: Nearest neighbors, Data Streams, Sliding Windows.

To appear in IEEE Transactions on Knowledge and Date Engineering (TKDE).

Contact Author:
Dimitris Papadias
Department of Computer Science and Engineering
Hong Kong University of Science and Technology
Clear Water Bay, Hong Kong

Office: ++852-23586971 http://www.cs.ust.hk/~dimitris/
Fax: ++852-23581477 E-mail: dimitris@cs.ust.hk

 1

1. INTRODUCTION

Given a set of points P in a multi-dimensional space, the nearest neighbor (NN) of a query point

q is the point in P that is closest to q. Similarly, the kNN set of q consists of the k points in P

with the smallest distances from q (usually according to the Euclidean metric). The first

techniques for NN retrieval considered static queries and data (e.g., [H84, RKV95, HS99]). Later

work focused on moving NN queries in client-server architectures (e.g., [ZL01, ZZP+03, SR01,

TP03]). In this setting, the goal is to provide, in addition to the current result, information about

its validity in order to reduce the number of future re-computations (when the client/query

moves). Other existing methods, return all the query results up to a future timestamp, assuming

that the query and the data objects move linearly with known velocity [TP03, BJKS06].

 The above techniques deal with the efficient processing of a single snapshot query since they

report the NN set at the query time, possibly with some validity information, or generate future

results based on predictive features (e.g., velocity vectors of queries or data objects). On the

other hand, continuous monitoring assumes a central server that collects the current locations of

data objects, and continuously updates the results of multiple long-running queries. Processing

usually takes place in main-memory, in order to provide fast answers in an on-line fashion, and

attempts to minimize factors such as the CPU or communication cost (as opposed to I/O

overhead).

 Continuous monitoring of spatial queries is becoming increasingly important due to the wide

availability of inexpensive and compact positioning devices, the evolution of mobile

communications and the need for improved location-based services. Consequently, several

techniques (reviewed in Section 2.1) have been recently developed for continuous NN queries.

These methods assume update streams where an object issues an update if and only if it moves

 2

to a new location. The server processes the stream of position updates and incrementally

maintains the NNs of numerous queries. Objects that do not issue updates are assumed to be at

the last reported positions.

 This paper, on the other hand, studies kNN monitoring over sliding windows, assuming the

append-only data stream model [BBD+02]. In this context, each data item is valid only while it

belongs to a sliding window. We consider the two most common versions of windows: a time-

based window contains all data that arrived within a fixed interval W covering the most recent

timestamps, whereas a count-based window contains the W most recent data items

(independently of when they arrived). Even though some existing methods for update streams

can be extended to sliding windows (by treating new points as object insertions and points

falling outside the window as deletions), we show that the first-in-first-out deletion order that is

particular to this setting allows for faster NN monitoring.

 In general, sliding windows are used to restrict the temporal scope of query processing in the

absence of explicit deletions. As an application example, consider a set of sensors taking

measurements of their surrounding environment and reporting their coordinates to a central

server when they detect some particular event. Imposing a sliding window on the stream of

reports excludes old events from consideration. Depending on the application domain, NN

monitoring in this setting may be used for wild animal tracking, intrusion detection, etc. As an

instance of kNN monitoring over a time-based sliding window, assume a set of sensors in a

forest that report their location whenever they detect an animal passing by (using motion,

temperature measurements, etc). In this scenario, a user may want to continuously monitor the k

closest animals to his/her location. Old reports correspond to obsolete animal positions; only the

ones received within the last W time units (e.g., 30 seconds) are taken into account.

 3

 Continuous kNN processing is not restricted to the spatial domain, but can be utilized in other

problems with a multi-dimensional aspect. As an example of a count-based window application,

assume a user that subscribes a query (i.e., a set of keywords) to a web-based news agency (e.g.,

CNN, Reuters). The agency reports to the user the k closest matches among the last W news

articles. Typically, each article is represented as a point in some space, where its Euclidean

distance from the query defines its similarity; i.e., the problem is essentially a continuous NN

search in the mapped space1. An article ceases to be among the results (i) if it is replaced by a

better (i.e., more similar to the query) and more recent one, or (ii) when W news articles arrive

after its publication. A similar problem can be defined in terms of time-based windows, e.g., the

server may continuously report the closest matches among the articles published within the last

24 hours. In this example, each article received at the server corresponds to a new distinct data

item, for which there are no further updates.

 This paper presents and compares two techniques for NN monitoring over sliding windows,

covering both count-based and time-based windows, arbitrary k, and static or moving queries.

The first one adapts conceptual partitioning [MHP05], the best existing method for NN

monitoring over update streams, to the sliding window model. The second technique reduces the

problem to skyline maintenance in the distance-time space and partially pre-computes future

changes in the NN sets. The skyline-based algorithm achieves lower CPU cost, at the expense of

slightly larger space overhead.

 The rest of the paper is organized as follows. Section 2 surveys related work. Section 3

presents the index and book-keeping structures used by our algorithms. Section 4 extends

conceptual partitioning to the sliding window model, while Section 5 describes the skyline-based

1 Dimensionality reduction techniques are commonly applied to decrease the number of dimensions, so

 4

method. Section 6 provides an analysis of the proposed techniques, and Section 7 extends them

to other NN query types. Section 8 experimentally compares our algorithms and, finally, Section

9 concludes the paper with directions for future work.

2. RELATED WORK

Section 2.1 reviews previous work on continuous monitoring of spatial queries, focusing mostly

on conceptual partitioning due to its relevance to our work. Section 2.2 presents existing

techniques for skyline computation in database systems and discusses the relation between

skylines and NN queries.

2.1 Continuous Monitoring of Spatial Queries

Assuming static range queries over moving objects (i.e., in update streams), Q-index [PXK+02]

uses an R-tree [G84, BKSS90] at the server to index the queries. When updates from moving

objects arrive, the server probes the R-tree to retrieve the influenced queries. Q-index utilizes the

concept of safe (i.e., validity) regions to reduce the number of updates. In particular, each object

p is assigned a circular or rectangular region, such that p needs to issue an update only if it exits

this area. Kalashnikov et al. [KPH04] show that a grid implementation of Q-index is more

efficient (than R-trees) for main memory evaluation. MQM [CHC04] and Mobieyes [GL04]

exploit the object computational capabilities in order to reduce the processing load of the server.

In SINA [MXA04], the server continuously updates the reported results by performing a spatial

join between moving objects and queries in three phases: (i) the hashing phase receives

information about moving objects and queries and generates positive updates, (ii) the

invalidation phase is performed every T timestamps or when the memory is full, and reports

that the documents can be indexed effectively.

 5

negative updates, (iii) the joining phase, triggered after the invalidation phase, joins the contents

of the main-memory with those of the disk, generating both positive and negative updates.

 The aforementioned methods focus on range query monitoring, and their extension to NN

search is either impossible or non-trivial. Henceforth, we discuss algorithms that target explicitly

NN processing. Koudas et al. [KOTZ04] describe DISC, a technique for e-approximate kNN

queries over streams of multi-dimensional points. The returned kth NN lies at most e distance

units farther from q than the actual kth NN of q. DISC partitions the space with a regular grid of

granularity such that the maximum distance between any pair of points in a cell is at most e. To

avoid keeping all arriving data in the system, the server maintains only K points for each cell c.

An exact kNN search in the retained points corresponds to an approximate ekNN answer over the

original dataset provided that k ≤ K. DISC indexes the data points with a B-tree that uses a

space-filling curve mechanism to facilitate fast updates and query processing. The authors show

how to adjust the index to: (i) use the minimum amount of memory in order to guarantee a given

error bound e, or (ii) achieve the best possible accuracy, given a fixed amount of memory. DISC

can process both snapshot and continuous ekNN queries.

 Yu et al. [YPK05] propose a method, hereafter referred to as YPK-CNN, for continuous

monitoring of exact kNN queries in update streams. All objects are assumed to fit in main

memory and are indexed with a regular grid of cells with size δ×δ. The server does not process

updates as they arrive, but directly applies the changes to the grid. When a continuous query q is

evaluated for the first time, a two step NN search technique retrieves its result. The initial step

visits the cells inside an iteratively enlarged square R around the cell cq covering q until k objects

are found. Figure 2.1a, shows an example of a single NN query where the first candidate NN is

p1 with distance d from q; p1 is not necessarily the actual NN since there may be objects (e.g., p2)

 6

in cells outside R with distance smaller than d. To retrieve such objects, the second step searches

in the cells intersecting the square search region (SR) centered at cq with side length 2⋅d+δ, and

determines the actual kNN set of q therein. In Figure 2.1a, the server processes p1 up to p5 and

returns p2 as the actual NN. The accessed cells appear shaded. To maintain the result in

subsequent timestamps, it computes the current distance dmax of the previous NN that moved

furthest from q, and retrieves the new NN set by searching in all cells intersecting the square

centered at cq with side length 2⋅dmax+δ.

2. d
+
δ

(a) NN search in YPK-CNN (b) Update handling in SEA-CNN
Figure 2.1: YPK- and SEA-CNN examples

SEA-CNN [XMA05] focuses exclusively on monitoring the NN changes, without including a

module for the first-time evaluation of an arriving query q (i.e., it assumes that the initial result is

available). The server indexes moving objects with a regular grid. The answer region of a query

q is defined as the circle with center q and radius best_dist, where best_dist is the distance of the

current kth NN. Book-keeping information is stored in the cells that intersect the answer region of

q to indicate this fact. When updates arrive at the system, the server determines a circular search

region SR around q and computes the new kNN set of q therein.

 To determine the radius r of SR, SEA-CNN distinguishes the following cases: (i) If some of

the current NNs move within the answer region or some outer objects enter the answer region,

 7

the server sets r=best_dist and processes all objects falling in the answer region in order to

retrieve the new NN set. (ii) If any of the current NNs moves out of the answer region, then r =

dmax (where dmax is the distance of the furthest previous NN), and the NN set is computed among

the objects lying in SR. Assume that in Figure 2.1b the current NN p2 issues an update reporting

its new location p′2. The server sets r=dmax=dist(p′2,q), determines the cells intersecting SR (these

cells appear shaded), collects the corresponding objects (p1 up to p7), and retrieves the new NN

p1. (iii) Finally, if the query q moves to a new location q′, the server sets r = best_dist+dist(q,q′),

and computes the new kNN set of q by processing all the objects that lie in the circle centered at

q′ with radius r.

 CPM [MHP05] is the state of the art NN monitoring method for update streams. It assumes

the same system architecture and indexing and book-keeping structures as YPK-CNN and SEA-

CNN. When a query q arrives at the system, the server computes its initial result by organizing

the cells into conceptual (hyper) rectangles based on their proximity to q. Each rectangle rect is

defined by a direction and a level number. The direction is U, D, L, or R (for up, down, left and

right), and the level number indicates how many rectangles are between rect and q. Figure 2.2a

illustrates the conceptual partitioning of the space around the cell c4,3 of q in our running

example. If mindist(c,q) is the minimum possible distance between any object in cell c and q, the

NN search considers the cells in ascending mindist(c,q) order.

 In particular, CPM initializes an empty heap H and inserts (i) the cell of q with key equal to 0,

and (ii) the level zero rectangles for each direction DIR, with key mindist(DIR0,q). Then, it starts

de-heaping entries iteratively. If the de-heaped entry is a cell, it examines the objects inside and

updates accordingly the list best_NN of the closest NNs found so far. If the de-heaped entry is a

rectangle DIRlvl, it inserts into H (i) each cell c∈DIRlvl with key mindist(c,q) and (ii) the next

 8

level rectangle DIRlvl+1 with key mindist(DIRlvl+1,q). The algorithm terminates when the next

entry in H (corresponding either to a cell or a rectangle) has key greater than the distance

best_dist of the kth NN found. It can be easily verified that the server processes only the cells that

intersect the circle with center at q and radius equal to best_dist. This is the minimal set of cells

to visit in order to guarantee correctness. In Figure 2.2a, the search processes the shaded cells,

and returns p2 as the result.

D0

D1

D2

U2

U0

U1

U3

R2R1R0
L0L1L2L3

q

p1

p2

c4,3

(0,0)

best_dist

(a) NN search (b) Update handling

Figure 2.2: CPM examples

The encountered cells constitute the influence region of q, and only updates therein can affect the

current result. When updates arrive for these cells, then CPM monitors how many objects enter

or leave the circle centered at q with radius best_dist. If the outgoing objects are more than the

incoming ones, then the result has to be computed from scratch. Otherwise, the new NN set of q

can be inferred by the previous result and the update information, without accessing the grid at

all. Consider the example of Figure 2.2b, where p2 and p3 move to positions p'2 and p'3,

respectively. Object p3 moves closer to q than the previous best_dist and, therefore, CPM

replaces the outgoing NN p2 with the incoming p3. The evaluation of [MHP05] confirms that

CPM is significantly faster than YPK- and SEA-CNN for all tested problem settings. Section 4

discusses its adaptation to sliding windows.

 9

2.2 Skyline Queries

Assume that in Figure 2.3a we have a set of hotels, and for each hotel we store its price (y axis)

and category (x axis, 1 means one star, etc). The skyline contains the most interesting hotels p1,

p2 and p3, i.e., the ones that are not dominated by another hotel on both dimensions. For

example, p2 dominates p4, p7, p8, p9, and p10 because it is cheaper and at the same time it belongs

to a higher (or at least the same) category. In other words, p2 is preferable (to p4, p7, p8, p9, p10)

according to any preference function which is increasingly monotone on the x and decreasingly

monotone on the y axis. Similar examples can be given for skylines that minimize/maximize any

combination of dimensions. Skyline computation has received considerable attention in

relational databases [BKS01, TEO01] and web information systems [BGZ04]. Lin et al.

[LYWL05], Tao and Papadias [TP06] propose methods for skyline monitoring over sliding

windows. The skyline maintenance is performed by an in-memory incremental algorithm, which

discards records that cannot participate in the skyline until their expiration.

x-category

y-price

p

o
1
2

3

4

5

6

7

8

9

10

skyline

1

p
2

p
10

p
8

p
4

p
7

p
9

p
3

p
5

p
6

1 2 3 4 5

 x-category

y-price

p

o
1
2

3

4

5

6

7

8

9

10

1

p
2

p
10

p
8

p
4

p
7

p
9

p
3

p
5

p
6

1 2 3 4 5

2-skyband

(a) Skyline (b) 2-skyband

Figure 2.3: Skyline and skyband examples

Skylines are closely related to NN search. In particular, it can be easily shown that the first NN

(i.e., p2 in Figure 2.3a) of point (5,0) always belongs to the skyline. Based on this observation,

the method of [KRR02] applies a NN algorithm on point (5,0) to retrieve p2. Then, it prunes all

the points in the shaded area of Figure 2.3a since they are dominated by p2 (and, therefore, they

 10

are not part of the skyline). The remaining space is split into two partitions based on the

coordinates of p2 and the process is repeated recursively. Papadias et al. [PTFS05] propose an

improved algorithm based on incremental NN computation, which is optimal in terms of I/O

accesses.

 Motivated by the fact that the NN always belongs to the skyline, we follow the opposite

direction, i.e., we use skyline maintenance to monitor NN results. Since the skyline corresponds

to single NN retrieval (whereas we are interested in kNNs), we adopt the concept of k-skyband

[PTFS05]. Specifically, the k-skyband contains the points that are dominated by at most k-1

other ones. According to this definition, the skyline is a special instance of the skyband, where

k=1. In Figure 2.3b, the 2-skyband consists of all points (p1, ..., p6) in the shaded region. The

next section illustrates how to exploit k-skybands (in a transformed space) for efficiently

maintaining kNNs over sliding windows.

3. PRELIMINARIES

Assuming a two-dimensional space, each tuple p of the input stream has the form <p.id, p.x, p.y,

p.t>, where p.id is a unique identifier for p, p.x and p.y are its x and y coordinates, and p.t is its

arrival time. Stream records are treated as points and, thus, in the rest of the paper the terms

tuple, point, and record are used interchangeably. Since in real-world systems processing takes

place at discrete timestamps, multiple points may arrive/expire in the same processing cycle. Our

discussion focuses on this general scenario2, but the proposed algorithms apply without

modification to the case where points stream in/expire one by one.

 Similar to existing monitoring approaches (e.g., [KOTZ04, YPK05, XMA05, MHP05]), we

2 The same assumption underlies the previous NN monitoring techniques (e.g., [YPK05, XMA05]), as
well as most data stream management systems (e.g., [CCC+02, LMT+05]).

 11

use a regular grid to index the valid data because a more complicated access method (e.g., a main

memory R-tree) is very expensive to maintain dynamically. The extent of each cell on every

dimension is δ, so that cell ci,j at column i and row j (starting from the low-left corner of the

workspace) contains all valid points with x coordinate in the range [i⋅δ, (i+1)⋅δ) and y coordinate

in the range [j⋅δ, (j+1)⋅δ). Conversely, given a point p with coordinates (p.x, p.y), its covering

cell can be determined (in constant time) as ci,j, where i= ⎣p.x/δ⎦ and j= ⎣p.y/δ⎦.

 Furthermore, it is important to provide an efficient mechanism for evicting expiring data. In

both versions of the sliding window (i.e., count-based and time-based), the points are evicted in a

first-in-first-out manner, since W contains the most recent ones. Therefore, all the valid point

positions are stored in a single list. The new arrivals are placed at the end of the list, and the

points that fall out of the window are discarded from the head of the list. Each cell contains a list

of pointers to the corresponding (valid) points, as shown in Figure 3.1. Since insertions and

deletions to a cell also occur in a fist-in-first-out fashion, each operation on the content list takes

O(1) time.

Figure 3.1: Index and book-keeping data structures

The running queries q are stored in a query table QT. QT maintains for each q a unique identifier

q.id, its coordinates q.x and q.y, the number of NNs required q.k, and its current result

 12

q.best_NN. The distance of the kth point in q.best_NN (referred to as q.best_dist) implicitly

defines the influence region of q. To restrict the scope of the kNN maintenance algorithms, each

cell c is associated with an influence list ILc that contains an entry for each query q whose

influence region intersects c. Since the query influence regions change dynamically, ILc is

organized as a hash-table on the query identifiers for supporting fast search, insertion and

deletion operations.

 We propose two monitoring algorithms: the first one adapts CPM to sliding windows,

whereas the second utilizes the concept of k-skyband. In order to demonstrate the relation

between k-skybands and kNN in the context of append-only streams, we use the example of

Figure 3.2a where the server monitors a 2NN query q over ten valid points. The horizontal axis

denotes the expiration time of points and the vertical dimension indicates their distance from q.

Assuming that there are no further arrivals, we can predict all future results. The 2NN set at time

0 is {p1,p2}. When p1 expires at time 1, it is replaced by p4. At time 2, p4 expires and the result

becomes {p2,p3}. Similarly, at time 3, the 2NN set is {p5,p3}. Finally, at time 4, p6 replaces p5.

The important observation is that the points that appear in the result at some time are the ones

that belong to the 2-skyband in the distance-time space. The skyband records in our example are

shown solid in Figure 3.2b (which is similar to Figure 2.3b, except for the meaning of the axes).

 expiration-time

distance from q

p

o
1
2

3

4

5

6

7

8

9

10

1

p
2

p
10

p
8

p
4

p
7

p
9

p
3

p
5

p
6

1 2 3 4 5

 expiration time

distance from q

p

o
1
2

3

4

5

6

7

8

9

10

1

p
2

p
10

p
8

p
4

p
7

p
9

p
3

p
5

p
6

1 2 3 4 5

(a) Point lifespans (b) 2-skyband

Figure 3.2: Transformation of a 2NN query into a 2-skyband in the distance-time space

 13

Lemma: Given the expiration time of all valid points in the system, and assuming that there are

no further arrivals, the points that will appear in the result of a kNN query q in the future are

exactly the ones that belong to the k-skyband in the distance (from q) - expiration time space.

 Proof: Consider a point p that belongs to some (future) kNN result. Then, there exists some

time instance when p has a larger distance than (is dominated by) at most k-1 other valid points.

Therefore, p is part of the k-skyband. Conversely, consider that p belongs to the k-skyband in the

distance-time space. This implies that there are at most k-1 other points with distance lower than

that of p and expire after p. Thus, there exists some time instance when p is one of the kNNs of

query q.

 The validity of the above lemma is independent of the dimensionality; i.e., the skyband is

always computed in the two-dimensional distance-time space even if the data dimensionality is

higher than 2. The lemma, however, assumes that there are no point arrivals. In Section 5, we

present an algorithm that extends it to the sliding window context; it maintains the k-skyband

dynamically and utilizes it to continuously report NN results as old points expire and new ones

enter the system. The reduction from kNN to k-skyband monitoring applies to both kinds of

sliding windows (i.e., count-based and time-based ones) because in both cases the expiration

order is the same as the arrival order. Moreover, it extends to general data indexes, even though

we focus on regular grids (for the reasons explained in the beginning of the section). Before

introducing the skyband-based algorithm, we discuss the adaptation of CPM to sliding windows

in the next section.

4. CPM ON SLIDING WINDOWS

CPM applies to the sliding window model by considering that the expiring points move infinitely

far away from any query. However, several improvements of the update handling module are

 14

possible. The first-time result of a query q is produced with the NN computation algorithm of

CPM, in the way discussed in Section 2.1. The processed cells constitute the influence region,

and receive an entry for q in their influence lists. If best_dist is the distance of the kth NN, the

current result can change only due to point arrivals and expirations in the circle centered at q and

radius equal to best_dist. Assume that, in the current processing cycle, a set Pins of points arrive

at the system, while a set Pdel of existing ones expire. Before processing the updates, we initialize

for each query q (i) a list q.in_list with maximum capacity of k entries to store the best incoming

records3, and (ii) a counter of outgoing NNs q.out_count=0. For each point p∈Pins, we insert (a

pointer to) p into the content list of the corresponding cell c. Next, we traverse the influence list

ILc. For every query q∈ILc, we compare dist(p,q) with q.best_dist. If dist(p,q) ≤ q.best_dist, then

p is treated as an incoming point and is inserted into q.in_list. Note that q.in_list maintains only

the k best incomers, since we do not need more than that in any case. Concerning the expirations,

for each record p∈Pdel, we delete it from its cell c, and traverse the influence list ILc. For every

q∈ILc, we check whether p belongs to the current result q.best_NN. If p∈q.best_NN we delete p

from q.best_NN and increase q.out_count by one. The next step of the algorithm is to determine

the new results. For each query q, if q.in_list contains at least as many points as q.out_count,

then the result consists of the k best points in q.best_NN ∪ q.in_list. Otherwise (if q.in_list has

fewer entries than q.out_count), the result of q is computed from scratch with the CPM NN

search algorithm described in Section 2.1.

 Consider the example of Figure 4.1a, where the result of a 3NN query q consists of records p1,

p2 and p3 (the existing points appear hollow). Assume that p4 and p5 arrive at the system (new

points appear solid), while p1 and p2 expire. Current NNs p1 and p2 are expunged from the

3 The list q.in_list is a temporary data structure, which is discarded after update handling terminates.

 15

system, yielding q.out_count=2. On the other hand, arriving records p4 and p5 have distance less

than best_dist, and are inserted into q.in_list. Since the number of incoming points is equal to

q.out_count, we merge q.in_list with the remaining NNs (i.e., p3) and form the new result

best_NN={p5,p4,p3}. Even though best_dist changes, we do not update the influence lists of the

cells that no longer influence q (i.e., the shaded cells that do not intersect the inner circle). The

influence lists are updated only after a NN computation from scratch, as discussed next. This

lazy approach does not affect the correctness of the algorithm because potential insertions (or

deletions) in these cells are simply ignored (upon comparison with the new best_dist).

q

p3

Influence region

p4

p5

p6

(a) Pins={p4,p5}, Pdel={p1,p2} (b) Pins={p6}, Pdel={p3}

Figure 4.1: Update handling examples

Assume that in the next processing cycle Pins={p6} and Pdel={p3}, as shown in Figure 4.1b. Point

p6 has larger distance than best_dist and, thus, it is simply inserted into its cell. The expiring NN

p3 yields q.out_count=1. Since there are no incoming points, the result of q has to be computed

from scratch. The new NN set contains p4, p5 and p6. Its influence region contains the cells

intersecting the circle centered at q with radius equal to the new best_dist=dist(p6,q). The final

step of the algorithm is to remove q from the influence list of all cells (i.e., the shaded cells

outside the outer circle in Figure 4.1b) that no longer influence q (recall from Figure 4.1a that the

lists of these cells were not updated during the previous update handling). The updating

 16

procedure starts with the entries that remain4 in H after the termination of the NN computation,

and continues in a way similar to the NN search, but instead of processing the contents of the

encountered cells, we simply delete q from their influence lists. The update terminates when de-

heaping the first cell c whose ILc does not contain q; the remaining cells do not contain q in their

lists since their mindist is guaranteed to be higher than or equal to mindist(c,q). The complete

CPM algorithm for the sliding window model is illustrated in Figure 4.2. The influence list

updating procedure is performed in lines 19-26.

CPM
1. In every processing cycle do
2. Pins = set of arriving points; Pdel = set of expiring points
3. For each query q in QT
4. Set q.out_count=0, and initialize an empty list q.in_list of size k
5. For each point p in Pins
6. Insert p into the content list of the corresponding cell c
7. For each q in ILc
8. If dist(p,q)≤q.best_dist, insert p into q.in_list
9. For each point p in Pdel
10. Delete p from the content list of the corresponding cell c
11. For each q in ILc
12. If p ∈ q.best_NN
13. Delete p from q.best_NN, and set q.out_count = q.out_count + 1
14. For each query q
15. If the number of points in q.in_list is greater than or equal to q.out_count
16. Set q.best_NN = the k best points in q.best_NN ∪ q.in_list, and q.best_dist = the distance of the kth NN
17. Else // the NN set of q has to be re-computed
18. Perform kNN computation from scratch, and set H = the search heap after the NN search termination
19. Repeat
20. Get the next entry of H
21. If it is a cell entry <c, mindist(c,q)>
22. If there is an entry for q in the influence list of c, remove it
23. Else, go to line 14 and continue with the next query //i.e., the influence list updating is complete
24. Else // it is a rectangle entry <DIRlvl, mindist(DIRlvl,q)>
25. For each cell c in DIRlvl, insert <c, mindist(c,q)> into H
26. Insert <DIRlvl+1, mindist(DIRlvl+1,q)> into H
27. Report changes to the client

Figure 4.2: The sliding window version of CPM algorithm

When a query q is terminated, we delete it from the query table and remove it from all the

influence lists in the grid. The latter task is performed in a way similar to lines 19-26. Query

4 Some cells and rectangles are en-heaped, even though their distance exceeds best_dist. These entries are
not de-heaped during the result computation, and reside in the search heap H after the NN retrieval.

 17

movement is handled as a deletion followed by a new query insertion.

5. SKYBAND KNN MONITORING

The Skyband NN (SNN) algorithm exploits the skyband in order to avoid computation from

scratch when some NNs expire. Consider, for instance, a 2NN query q and the records of Figure

5.1a, shown as intervals in the two-dimensional distance-time space. The number in the

parenthesis corresponds to the dominance counter (DC) of each point p, i.e., the number of

points with smaller distance (to q) that arrive after5 p. At time 0, the result of the 2NN query

contains p2 and p3, whereas the 2-skyband contains p2, p3, p5, p7. At time 3, p9 arrives, and

expires after all other points in the system. It follows that (i) p9 is not dominated by any point

(i.e., p9.DC = 0), and (ii) all the points p with dist(p,q) ≥ dist(p9,q) are dominated by p9.

Therefore, the dominance counters of p5, p3, p7 increase by one, i.e., p5.DC=1 and p3.DC = p7.DC

= 2. Consequently, p3 and p7 are removed from the 2-skyband at time 3. The updated 2-skyband,

shown in Figure 5.1b, contains p2, p9 and p5. The new 2NN set consists of the two elements in

the skyband with the smallest distances (i.e., p2 and p9). After the expiration of p2 (at time 5) the

result changes to {p9, p5}.

(a) Point p9 arrives (b) The new 2-skyband

Figure 5.1: Skyband maintenance

5 In both count-based and time-based windows the arrival order is the same as the expiration order.

 18

In general, the monitoring of future results is reduced to a k-skyband maintenance task. SNN

restricts the skyband maintenance for a query q to points falling inside its influence region.

Specifically, the initial kNN set of q is retrieved by the NN computation module of CPM. The

retrieved points are inserted into q.skyband, which contains entries of the form <p.id, dist(p,q),

p.DC> in ascending order of dist(p,q). Then, SNN scans q.skyband, and for each point p it

computes p.DC. To speed up the dominance counter computation, the arrival time of every

processed element of q.skyband is stored into a balanced tree BT sorted in descending order.

Thus, p.DC is simply the number of points that precede p in BT (since the NNs are processed in

ascending distance order, these points are preferable to p in terms of both distance and expiration

time). Each internal node in BT contains the cardinality of the sub-tree rooted at that node so that

the computation of each dominance counter takes O(logk) time. After the dominance counter

computation, BT is discarded and the q.skyband contains exactly k elements; q.best_dist is the

distance of the kth element. The above procedure takes in total O(k·logk) time.

 The skyband maintenance algorithm handles only points p with dist(p,q) less than or equal to

the q.best_dist after the previous NN computation from scratch. When such a point arrives at the

system, it is inserted into q.skyband increasing its cardinality. The first k points of the skyband

constitute the q.best_NN (in accordance with the CPM terminology), which is not stored

explicitly. The dominance counter of all points with distance higher than dist(p,q) is increased by

1 and the ones whose counter reaches k are evicted. Regarding deletions, the element p of

q.skyband with the earliest arrival time (i.e., the one expiring first) belongs to the current result,

as can be shown by contradiction. Specifically, if the expiring point p was not in the current

result, then all the k NNs would dominate p since they have smaller distance and expire later.

Thus, p could not belong to the k-skyband. Returning to the maintenance procedure, when a

 19

point expires, it is removed and the first k elements of the updated q.skyband are reported as the

new q.best_NN. Note that the deleted p does not dominate any other point, and therefore the

dominance counters of the remaining elements in q.skyband are not affected.

 The SNN algorithm is illustrated in Figure 5.2. An important remark concerns the situation

where the skyband contains fewer than k points. This happens when some NNs expire and the

recent arrivals were not inserted into the skyband (because their distance was larger than

q.best_dist). In such cases, we have to compute the result from scratch and form a new skyband.

The pseudo-code of Figure 5.2 handles this case in lines 18-20.

SNN
1. In every processing cycle do
2. Pins = set of arriving points; Pdel = set of expiring points
3. For every point p in Pins
4. Insert p into the content list of the corresponding cell c
5. For each q in ILc
6. If dist(p,q)≤q.best_dist // the distance of the kth NN after the last computation from scratch
7. Insert p into q.skyband and set p.DC=0
8. For each point p' in q.skyband with dist(p',q) ≥ dist(p,q)
9. p'.DC=p'.DC+1
10. If p'.DC=k evict p' from q.skyband
11. For every point p in Pdel
12. Delete p from the content list of the corresponding cell c
13. For each q in ILc
14. If p∈q.best_NN, delete p from q.skyband
15. For each query q whose skyband has changed
16. If q.skyband has at least k elements
17. q.best_NN = the first k elements of q.skyband
18. Else // q.skyband has fewer than k elements
19. Perform kNN computation from scratch
20. Form q.skyband and compute dominance counters therein
21. Report changes to the client

Figure 5.2: The SNN algorithm

SNN is expected to be faster than CPM, since it involves less frequent calls to the NN search

algorithm. For instance, consider the example of Figure 4.1b, where p6 arrives and p3 expires at

the same processing cycle. As discussed in Section 4, in this scenario CPM re-computes the

query from scratch. SNN, on the contrary, avoids the NN search overhead. Since dist(p6,q) is less

than dist(p1,q) (i.e., the best_dist after the last re-computation from scratch - see Figure 4.1a),

 20

SNN inserts p6 into the skyband, and directly reports it as the third NN when p3 is deleted. On

the other hand, the space requirements of SNN are higher than CPM, since it maintains the

skyband (which is a superset of the current NN set) of each query. In the next section we

analytically compare the performance and space requirements of the proposed algorithms.

6. PERFORMANCE ANALYSIS

Similar to previous approaches in the literature [KPH04, MHP05, XMA05, YPK05], we assume

that (i) the average data cardinality at each timestamp is N, (ii) the valid positions are uniformly

distributed in a unit two-dimensional workspace, and (iii) the stream rate is, on the average, r

points per processing cycle. If δ is the cell extent per axis, the total number of cells is (1/δ) 2 and

each cell contains on the average N·δ 2 points. According to [MHP05], the running time of the

kNN computation module (involved in both CPM and SNN) is Tcomp=O(C·logC + C·N·δ 2·logk).

The quantity C corresponds to the number of cells intersecting the influence region of a query

and it holds that C = O(⎡k/(N·δ 2)⎤). The term O(C·logC) is due to heap operations (en-

heaping/de-heaping cells and conceptual rectangles), and the term O(C·N·δ 2·logk) is due to

updates of q.best_NN with encountered points, assuming that q.best_NN is implemented as a red-

black tree.

 Concerning the maintenance cost of CPM, in every processing cycle, r new points arrive at

the system, while r old ones expire. Hence, the grid update time is O(r). Each cell receives r·δ 2

insertions and r·δ 2 deletions. Therefore, the influence region of a query q is affected by 2·C·r·δ 2

events. The time required to check whether the corresponding points belong to the current result

is O(C·r·δ 2) (by comparing with q.best_dist). Among them, k·r/N new points are considered for

insertion into q.best_NN, and k·r/N old ones are deleted from it; the total cost for updating

 21

q.best_NN is O(k·r·logk/N). Note that for uniform data distribution, the number of insertions in

the influence region of q equals the number of deletions therein. Therefore, the number of

incoming points equals the number of outgoing ones, and CPM does not invoke the kNN

computation from scratch. In this case, the time complexity of CPM for a processing cycle is

TCPM = O(r + Q·(C·r·δ 2 + k·r·logk/N)), where Q is the number of running queries.

 For SNN, the index update cost is the same as for CPM (i.e., O(r)). Also, the number of the

arriving (expiring) points in the cells intersecting the influence region of a query q is O(C·r·δ 2).

Initially (after the application of the kNN computation module), the skyband contains k elements.

Among the inserted (deleted) points, O(k·r/N) have distance less than q.best_dist and have to be

included in (excluded from) the skyband. An insertion to q.skyband requires O(k) time, because

we have to retain the order (according to distance), and at the same time update the dominance

counters of the entries with distance higher than that of the new point. Each deletion also has

O(k) cost. Similar to CPM, according to the uniformity assumption, the k-skyband contains

exactly k elements, and SNN does not resort to computations from scratch. In summary, the total

running time is TSNN=O(r + Q·(C·r·δ 2 + k2·r/N)) for each processing cycle.

 Finally, we analyze the memory requirements of the proposed methods. The index has O(N +

N + Q·C) size, where O(N), O(N) and O(Q·C) are the amounts of storage required for the N valid

points, for N pointers (in the content lists of the cells), and for the influence lists of the Q queries.

Each query table entry for CPM has size O(2 + 2·k), for storing the query coordinates and the

tuple <p.id, dist(p,q)> for every point p in the result. For SNN, each entry of QT takes up O(2 +

3·k), since in addition to the identifier and the distance, q.skyband also contains the dominance

counters of the points. Recall that SNN does not need to explicitly store q.best_NN, because the

result set consists of the first k entries of q.skyband. Summarizing, the space requirements of

 22

CPM and SNN are SCPM=O(N + Q·(C + d + 2·k)) and SSNN=O(N + Q·(C + d + 3·k)), respectively.

 In summary, for uniform data the result updating of CPM is more efficient than the skyband

maintenance of SNN (with time complexities O(k·r·logk/N) and O(k2·r/N) per query,

respectively). For non-uniform data, however, SNN is expected to be faster than CPM because

the latter one resorts more frequently to kNN computation from scratch. This is also verified by

our experiments. Concerning the space overhead, SNN uses more memory than CPM because (i)

the q.skyband stores additional information about the dominance counters, and (ii) in practice,

the k-skyband may contain more than k entries. The performance of both algorithms depends on

the cell side-length δ. Large cells minimize the time spent on heap operations, but lead to

unnecessary processing of points that are outside the influence region (but fall in cells that

intersect the influence region). Large δ also implies lower space consumption, because queries

are affected by fewer cells, and the cell influence lists take up less memory. The running time of

the proposed techniques increases with k, Q, N, and r. The same holds for the space

consumption, with the exception of r.

7. OTHER NN QUERY TYPES

In this section we extend the proposed algorithms to variations of NN search. In particular, we

describe the monitoring of constrained and aggregate nearest neighbor queries. A constrained

NN query q specifies a region of interest and requests the NNs of q therein [FSAA01]. Consider

for instance the example of Figure 7.1, where the user requests the NN of q among the points

that have higher x and y coordinates than q (i.e., the region of interest is the striped area). CPM

and SNN can be easily adapted to monitor constrained NNs over sliding windows. The

difference is that during the initial NN set computation, we en-heap only cells and conceptual

 23

rectangles that intersect the region of interest, and process only points that fall inside it.

 In Figure 7.1, the algorithm en-heaps rectangles U0, U1, U2, R0, R1, and R2, it processes the

shaded cells, and it returns p3 as the result. Note that the un-constrained NN of q is point p2, but

it is not encountered because its cell is not visited. On the other hand, point p4 is processed, but

ignored because it falls outside the (constrained) region of interest. Concerning the monitoring of

result changes, neither CPM nor SNN require modifications. The de-heaped cells (appearing

shaded in Figure 7.1) receive an entry for q in their influence lists, and only updates therein are

monitored.

q

p2

p4

p3

best
_dist

U2

R2

U0

U1

R0 R1

Figure 7.1: A constrained NN search example

Another interesting variant is the aggregate nearest neighbor query (ANN). Given a set of query

points Q = {q1,q2, ...,qn} and a data point p, the aggregate distance adist(p,Q) is defined as a

function f over the individual distances dist(p,qi) between p and each point qi∈Q. The result of

the ANN query is the point p that minimizes adist(p,Q). Papadias et al. [PTMH05] propose

algorithms for snapshot ANN queries on static datasets when f is a monotonically increasing6

function over the individual distances dist(p,qi). Under the same assumption (i.e., monotonicity

of f), both CPM and SNN extend to ANN monitoring over sliding windows. In the following, we

focus on the sum, max and min aggregate functions, as they are the most commonly used ones.

6 A function f is monotonically increasing iff: xi ≥ x'i ∀i implies that f(x1, …,xn) ≥ f(x'1,…,x'n).

 24

 Consider n users at locations q1, q2, ..., qn and f=sum. The aggregate NN minimizes adist(p,Q)

= ∑qi∈Q dist(p,qi), i.e., the sum of distances that the users have to travel in order to meet at the

position of p. Similarly, if f=max, the ANN query reports the point p that minimizes the

maximum distance that any user has to travel to reach p. In turn, this leads to the earliest time

that all users will arrive at the location of p (assuming that they move with the same speed).

Finally, if f=min, the result is the point p which is closest to any user, i.e., p has the smallest

adist(p,Q) = min qi∈Q dist(p,qi).

 To extend our algorithms to continuous ANN monitoring, we have to use a different

partitioning of the space (than that of simple NN queries). Consider the example of Figure 7.2a,

where Q = {q1,q2,q3}. The partitioning applies to the space around the minimum bounding

rectangle M of Q, as shown in the figure. Given a rectangle rect, the function amindist(rect,Q) =

fqi∈Q mindist(rect,qi) is a lower bound of the distance adist(p,Q) for any point p in rect. Due to

the monotonicity of f, the amindist of the conceptual rectangles in a direction is increasing with

their level number. This property allows for the application of the conceptual partitioning

methodology to compute the first-time result.

(a) Conceptual partitioning (b) Processing when f = sum

Figure 7.2: An ANN search example

 25

The ANN search initially en-heaps the cells c intersecting M with key amindist(c,Q), and the

level zero rectangles for each direction DIR with key amindist(DIR0,Q). Then, it starts de-

heaping entries iteratively. If the de-heaped entry is a cell c, then the algorithm computes

adist(p,Q) for every p inside c, and updates the list best_NN of the best points found so far. It

also inserts q into the influence list ILc. If the entry is a conceptual rectangle, then it en-heaps the

corresponding cells and the next level rectangle in the same direction, with keys equal to their

amindist. The procedure terminates when the next entry in the heap has key equal to or greater

than the distance best_dist of the kth ANN found.

 Returning to our running example and letting f = sum, the ANN search en-heaps all the cells

falling in M, U0, D0, and L0, and de-heaps the ones appearing shaded in Figure 7.2b. It processes

points p1, p2 and p3, and returns p2 as the result. The monitoring of the ANN set upon point

arrivals and expirations is the same as in Sections 4 and 5 for CPM and SNN, respectively. The

only difference is that now the measure of interest is the aggregate distance of the points. In the

case of SNN, this implies that the k-skyband is computed and maintained in the aggregate

distance-time space.

 The algorithms also apply to max and min ANN query monitoring, by defining

amindist(rect,Q) and adist(p,Q) accordingly. Consider Figures 7.3a and 7.3b, where f = max and

f = min, respectively. The ANN search processes the shaded cells and returns p2 as the result in

both cases. Note that for f = max it visits the cells that overlap with the intersection of all circles

with centers at qi and radii equal to best_dist, because these cells have amindist(c,Q) < best_dist

and could potentially contain points with lower aggregate distance than best_dist. For the same

reason, when f = min, it processes the cells that overlap with at least one of the circles with

centers at qi and radii equal to best_dist.

 26

 The number n of query points in Q may be large, and computing the aggregate distance of

points (cells) may be very expensive because it requires calculation of n Euclidean distances

(mindist functions). Depending on the definition of f, some points (cells) can be pruned without

computing all these n distances. For example, assume that f = sum. If while computing adist(p,Q)

(amindist(c,Q)) the sum of distances calculated so far exceeds the current best_NN, then point p

(cell c) can be immediately pruned (without considering the remaining points in Q). Similarly,

when f = max, if the distance of point p (mindist of cell c) from one of the query points is already

larger than best_NN, then p (c) can be safely excluded from consideration without wasting

further computations for the exact value of amindist. On the other hand, in the case of min, such

an optimization is not possible.

(a) f = max (b) f = min
Figure 7.3: ANN search examples for f = max and f = min

8. EXPERIMENTAL EVALUATION

In this section we experimentally evaluate CPM and SNN. Sections 8.1 and 8.2 study their

performance for NN and ANN monitoring, respectively. In both cases, the input stream is

created by randomly choosing points from a real dataset of 1,314,620 two-dimensional points,

corresponding to endpoints of streets in Los Angeles (available at www.rtreeportal.org). The

 27

dataset is normalized to cover a unit workspace (i.e., [0,1]×[0,1]). We assume count-based

windows with size N between 100K and 1M records. During each timestamp, r new points arrive

at the system. In our NN monitoring experiments (Section 8.1), we use two sets of queries; in

UNI, queries are uniformly distributed in the workspace, while in SKW, they are randomly

drawn from our real dataset (i.e., they follow the same distribution as the stream points). In

Section 8.2, each ANN query consists of n points uniformly distributed in a square. The square

covers area Aq, and its location is randomly chosen in the workspace. The simulation length is

100 timestamps. Table 8.1 summarizes the parameters under investigation, along with their

ranges and default values. In each experiment we vary a single parameter, while setting the

remaining ones to their default values. The asterisk next to a description indicates that it is used

only in the ANN experiments. For all simulations we use a Pentium 3.2 GHz CPU with 1 GByte

memory.

Parameter Default Range
Number of valid points (N) 100K 100, 300, 500, 700, 1000 (K)
Arrival rate (r) 1K 0, 10, 30, 50, 70, 100 (K)
Number of queries (Q) 1K 1, 2, 3, 4, 5 (K)
Number of NNs (k) 16 1, 4, 16, 64, 256
Area of ANN query (Aq) * 4% 1%, 2%, 4%, 8%, 16%
Number of points in ANN query (n) * 16 4, 8, 16, 32, 64

Table 8.1: System parameters

8.1 Nearest Neighbor Monitoring

In this section we focus on monitoring of conventional NN queries. First, we study the effect of

the grid granularity on CPM and SNN for the default settings (i.e., N=100K, r=1K, Q=1K,

k=16). For UNI queries (Figure 8.1a) we experiment on grids with 102 up to 1002 cells, while for

SKW (Figure 8.1b) we reach up to 4502 because the optimal granularity7 is much higher than

7 Optimal here refers to the granularity that leads to the lowest CPU cost for the default parameters.

 28

UNI. We plot the overall running time in seconds, in logarithmic scale. The best performance for

both algorithms is achieved with a 50×50 grid for UNI, and a 330×330 one for SKW. The

optimal grid granularity for SKW is much finer, because SKW queries follow the data

distribution and the cells around them contain many points. In both cases, a very fine grid is

expensive because of the heap operations on the cells, whereas a sparse one leads to unnecessary

processing of points outside the query influence regions. For the remaining experiments, we use

the respective optimal granularities for UNI and SKW.

CPM SNN

10 20 30 40 50 60 70 80 90 1002 2 2 2 2 2 2 2 2 2

CPU time (sec)

Number of cells
1

10

100

2 2 2 2 2 2 2 2 2 2

CPU time (sec)

Number of cells
0.1

1

10

100

10 50 90 130 170 210 250 290 330 370 410 450
2 2

(a) UNI (b) SKW
Figure 8.1: CPU time versus grid granularity

In Figure 8.2 we vary N from 100K to 1M, and set the arrival rate r to N/100 tuples per

timestamp (i.e., during each timestamp, 1% of the data points are replaced by new ones). As

shown in Figures 8.2a and 8.2b, the running time increases with N. SNN is more than two times

faster than CPM for both UNI and SKW. Over the 100 timestamps of the simulation, for UNI

(SKW), CPM computes a query from scratch 12.9 (13.6) times on the average, versus only 4.4

(4.9) for SNN. An interesting observation, which is apparent in all experiments, is that both

algorithms are slower for UNI. This happens because in UNI the queries are more likely to lie far

away from their NNs (as they follow different distribution from the data), and NN search en-

heaps/de-heaps many cells before retrieving the results.

 29

CPM SNN

0

2

4

6

8

10

12

100K 300K 500K 700K 1000K

CPU time (sec)

N

 100K 300K 500K 700K 1000K

CPU time (sec)

N
0

0.5

1

1.5

2

2.5

3

3.5

4

(a) UNI (b) SKW

Figure 8.2: CPU time versus number of valid points N (r = N/100)

Next, we set N=100K and vary r between 0 and 100K, i.e., 0% up to 100% of the valid points are

replaced per timestamp. Figures 8.3a and 8.3b show the running time versus r for UNI and SKW,

respectively. The number next to each measurement is the average number of NN computations

from scratch (during the 100 timestamps of the simulation) per query. The performance degrades

with r, because a larger arrival rate causes more frequent re-computations and higher index

update cost. SNN is better than CPM, except for r = N (i.e., 100K) and SKW queries. In this

case, even though SNN performs fewer re-computations, it is slower than CPM, because (i) NN

search is relatively cheap for SKW (as the NNs are found close to the queries), and (ii) the cost

of updating the skybands and the dominance counters is high (in every timestamp, k insertions

and k deletions take place in each of them). Note that for r = 0 the algorithms have the same cost,

since they both retrieve the initial result of each query, and do not perform any further

computation (there are no data insertions/deletions in the subsequent timestamps).

 In order to study the effect of the query cardinality, we vary Q between 1K and 5K, and plot

the running time for UNI and SKW in figures 8.4a and 8.4b, respectively. The CPU cost of both

methods scales linearly with Q, and SNN is the best algorithm. Similar to the data cardinality

(Figure 8.2), the performance gap increases with Q, verifying the better scalability of SNN to

large problems.

 30

CPM SNN

r

CPU time (sec)

0

5

10

15

20

25

30

35

40

45

0 10K 30K 50K 70K 100K

1

40

46.8

47.8

50.3

51.4

6.5

11.8

12.6

18.6

19.5

computations from scratch per query
for 100 timestamps

r

CPU time (sec)

0 10K 30K 50K 70K 100K
0

5

10

15

20

25

1

39.8

46.6

48.5

51.2

52.1

6.7

12.1

11.4

19.1

20.6
computations from scratch per query

for 100 timestamps

(a) UNI (b) SKW

Figure 8.3: CPU time versus arrival rate r

CPM SNN

0

2

4

6

8

10

12

14

16

18

20

1K 2K 3K 4K 5K

CPU time (sec)

Q

 1K 2K 3K 4K 5K

CPU time (sec)

Q
0

1

2

3

4

5

6

7

(a) UNI (b) SKW

Figure 8.4: CPU time versus query cardinality Q

 Figures 8.5a and 8.5c show the processing time versus the number k of NNs for UNI and

SKW. The influence region of the queries and, consequently, the number of processed

cells/points increases with k, implying higher NN retrieval and maintenance overhead for both

methods. SNN is faster in all cases and, since it performs fewer re-computations than CPM, its

degradation with k is smaller. Figures 8.5b and 8.5d illustrate the corresponding space

requirements. SNN consumes only a few KBytes more space than CPM. A larger k implies

longer influence lists and, thus, higher memory consumption for both methods. The numbers

appearing above the measurements for SNN correspond to the average cardinality of the

skybands in the system. Interestingly, SNN maintains very few extra points.

 31

CPM SNN
CPU time (sec)

k
0

5

10

15

20

25

30

35

40

1 4 16 64 256

Space (MBytes)

k
0

1

2

3

4

5

6

1 4 16 64 256

1.2 4.9
18.5

70.3

267.5

k-skyband cardinality

(a) UNI - CPU time (b) UNI - Space

CPU time (sec)

k
0

5

10

15

20

25

30

1 4 16 64 256

Space (MBytes)

k
0

1

2

3

4

5

6

1 4 16 64 256

1.2 4.8
18.2

69.1

266.1

k-skyband cardinality

(c) SKW - CPU time (d) SKW - Space

Figure 8.5: Performance versus number k of NNs

8.2 Aggregate Nearest Neighbor Monitoring

In this section, we evaluate our methods for ANN monitoring. We focus on sum and max

aggregate functions. The results for min were very similar to sum and, thus, omitted. First, we

fine-tune the grid granularity, similar to Figure 8.1. The best grid size is 140×140 for sum and

80×80 for max; we use this granularity for all following experiments. Figure 8.6 shows the CPU

time versus the area Aq of the minimum bounding rectangle of the queries (using the default

settings for the remaining parameters, i.e., N=100K, r=1K, Q=1K, k=16). We vary Aq from 1%

to 16% of the total workspace area. For small Aq, the points of each query are close to each other,

leading to small influence regions. When Aq is larger, ANN retrieval and maintenance considers

more cells/data points. SNN is 2.5 - 3 times better than CPM for both f = sum and f = max. Both

methods are faster for max, because the optimization for aggregate distance calculation

(presented in the last paragraph of Section 7) saves more computations than for sum.

 32

CPM SNN
CPU time (sec)

0

500

1000

1500

2000

2500

1% 2% 4% 8% 16%

Aq

CPU time (sec)

Aq
0

100

200

300

400

500

600

700

1% 2% 4% 8% 16%
(a) f = sum (b) f = max

Figure 8.6: CPU time versus area of query MBR Aq

Figure 8.7 studies the effect of n (i.e., the number of points in each query). Aggregate distance

calculations (for points and cells) are more expensive for larger n, leading to higher ANN

computation and maintenance costs. Since the advantage of SNN over CPM is the reduced

number of ANN retrievals from scratch, their difference grows as k (and, consequently, the cost

per ANN retrieval) increases.

CPM SNN
CPU time (sec)

n
0

200

400

600

800

1000

1200

1400

1600

4 8 16 32 64

CPU time (sec)

n
0

100

200

300

400

500

600

700

4 8 16 32 64
(a) f = sum (b) f = max
Figure 8.7: CPU time versus number of points in query n

Figure 8.8a (8.8b) shows the CPU time versus k for f = sum (f = max). The performance of both

algorithms degrades with k, because the influence regions grow. SNN is faster in all cases. Its

difference from CPM increases for larger k because, similar to Figure 8.7, NN computations

become more costly.

 33

CPM SNN
CPU time (sec)

k
0

500

1000

1500

2000

2500

1 4 16 64 256

CPU time (sec)

k
0

200

400

600

800

1000

1200

1 4 16 64 256
(a) f = sum (b) f = max

Figure 8.8: CPU time versus number k of ANNs

9. CONCLUSION

This paper constitutes the first work addressing the problem of continuous kNN monitoring over

sliding windows. As a first solution, we extend the state-of-the-art NN monitoring algorithm for

update streams (CPM), to the sliding window model. Next, we present SNN, which utilizes a

generalized concept of skybands for maintaining NNs. Both approaches compute the initial

result of each query with an algorithm that processes the minimum number of cells. Only

insertions/deletions within these cells can potentially invalidate the current kNN set. Therefore,

the maintenance of the result considers only point arrivals and expirations therein. The difference

of SNN from CPM is that it maintains a superset of the current result in the form of a k-skyband

in the distance-time space. Both methods apply to time-based and count-based windows.

Moreover, they can be easily adapted to other query types, such as constrained and aggregate

NNs. An extensive experimental evaluation demonstrates that SNN outperforms CPM for all

parameter settings, while consuming a negligible amount of extra space.

 A direction for future work concerns the derivation of cost models for non-uniform data. For

instance, the proposed models could be extended and combined with multi-dimensional

histograms to provide accurate estimations for query optimization (in systems that involve

 34

monitoring of multiple query types). Another interesting direction would be the development of

methods on non-regular grids (recall that all existing methods apply regular grids). In this case,

the partitioning of the data space should take into account the data distribution, which may

change with time. Although non-regular grids complicate query processing, they are expected to

yield performance gains for highly skewed data. Finally, we plan to investigate distance

functions that take into account freshness, in addition to distance; i.e., the data do not expire

when they fall out of the window, but their utility continuously drops with time.

REFERENCES

[BBD+02] Babcock, B., Babu, S., Datar, M., Motwani, R., Widom, J. Models and Issues in Data

Stream Systems. PODS, 2002.

[BGZ04] Balke, W., Gunzer, U., Zheng, J. Efficient Distributed Skylining for Web Information

Systems. EDBT, 2004.

[BJKS06] Benetis, R., Jensen, C., Karciauskas, G., Saltenis, S. Nearest Neighbor and Reverse Nearest

Neighbor Queries for Moving Objects. VLDB Journal, 15(3): 229-250, 2006.

[BKSS90] Beckmann, N., Kriegel, H.P., Schneider, R., Seeger, B. The R*-tree: An Efficient and

Robust Access Method for Points and Rectangles. SIGMOD, 1990.

[BKS01] Borzsonyi, S, Kossmann, D., Stocker, K. The Skyline Operator. ICDE, 2001.

[CCC+02] Carney, D., Çetintemel, U., Cherniack, M., Convey, C., Lee, S., Seidman, G., Stonebraker,

M., Tatbul, N., Zdonik, S. Monitoring Streams - A New Class of Data Management

Applications. VLDB, 2002.

[CHC04] Cai, Y., Hua, K., Cao, G. Processing Range-Monitoring Queries on Heterogeneous Mobile

Objects. MDM, 2004.

[FSAA01] Ferhatosmanoglu, H., Stanoi, I., Agrawal, D., Abbadi, A. Constrained Nearest Neighbor

Queries. SSTD, 2001.

[G84] Guttman, A. R-trees: A Dynamic Index Structure for Spatial Searching, SIGMOD, 1984.

[GL04] Gedik, B., Liu, L. MobiEyes: Distributed Processing of Continuously Moving Queries on

Moving Objects in a Mobile System. EDBT, 2004.

[H84] Henrich, A. A Distance Scan Algorithm for Spatial Access Structures. ACM GIS, 1984.

[HS99] Hjaltason, G., Samet, H. Distance Browsing in Spatial Databases. ACM TODS, 24(2): 265-

318, 1999.

 35

[KOTZ04] Koudas, N., Ooi, B., Tan, K., Zhang, R. Approximate NN queries on Streams with

Guaranteed Error/performance Bounds. VLDB, 2004.

[KPH04] Kalashnikov, D., Prabhakar, S., Hambrusch, S. Main Memory Evaluation of Monitoring

Queries Over Moving Objects. Distributed and Parallel Databases, (15)2:117-135, 2004.

[KRR02] Kossmann, D., Ramsak, F., Rost, S. Shooting Stars in the Sky: an Online Algorithm for

Skyline Queries. VLDB, 2002.

[LMT+05] Li, J., Maier, D., Tufte, K., Papadimos, V., Tucker, P. Semantics and Evaluation

Techniques for Window Aggregates in Data Streams. SIGMOD, 2005.

[LYWL05] Lin, X., Yuan, Y., Wang, W., Lu, H. Stabbing the Sky: Efficient Skyline Computation over

Sliding Windows. ICDE, 2005.

[MHP05] Mouratidis, K., Hadjieleftheriou, M., Papadias, D. Conceptual Partitioning: An Efficient

Method for Continuous Nearest Neighbor Monitoring. SIGMOD, 2005.

[MXA04] Mokbel, M., Xiong, X., Aref, W. SINA: Scalable Incremental Processing of Continuous

Queries in Spatio-temporal Databases. SIGMOD, 2004.

[PTFS05] Papadias, D., Tao, Y., Fu, G., Seeger, B. Progressive Skyline Computation in Database

Systems. ACM TODS, 30(1), 41-82, 2005.

[PTMH05] Papadias, D., Tao, Y., Mouratidis, K., Hui, C. Aggregate Nearest Neighbor Queries in

Spatial Databases. ACM TODS, 30(2), 529-576, 2005.

[PXK+02] Prabhakar, S., Xia, Y., Kalashnikov, D., Aref, W., Hambrusch, S. Query Indexing and

Velocity Constrained Indexing: Scalable Techniques for Continuous Queries on Moving

Objects. IEEE Transactions on Computers, 51(10): 1124-1140, 2002.

[RKV95] Roussopoulos, N., Kelly, S., Vincent, F. Nearest Neighbor Queries. SIGMOD, 1995.

[SR01] Song, Z., Roussopoulos, N. K-Nearest Neighbor Search for Moving Query Point. SSTD,

2001.

[TEO01] Tan, K., Eng, P. Ooi, B. Efficient Progressive Skyline Computation. VLDB, 2001.

[TP03] Tao, Y., Papadias, D. Spatial Queries in Dynamic Environments. ACM TODS, 28(2): 101-

139, 2003.

[TP06] Tao, Y., Papadias, D. Maintaining Sliding Window Skylines on Data Streams. IEEE TKDE,

18(3): 377–391, 2006.

[XMA05] Xiong, X., Mokbel, M., Aref, W. SEA-CNN: Scalable Processing of Continuous K-Nearest

Neighbor Queries in Spatio-temporal Databases. ICDE, 2005.

[YPK05] Yu, X., Pu, K., Koudas, N. Monitoring K-Nearest Neighbor Queries Over Moving Objects.

ICDE, 2005.

[ZL01] Zheng, B., Lee, D. Semantic Caching in Location-Dependent Query Processing. SSTD,

2001.

[ZZP+03] Zhang, J., Zhu, M., Papadias, D., Tao, Y., Lee, D. Location-based Spatial Queries.

SIGMOD, 2003.

 36

Kyriakos Mouratidis is an Assistant Professor at the School of Information Systems, Singa-
pore Management University. He received his BSc degree from the Aristotle University of
Thessaloniki, Greece, and his PhD degree in Computer Science from the Hong Kong Uni-
versity of Science and Technology. His research interests include spatiotemporal databases,
data stream processing, and mobile computing.

Dimitris Papadias is a Professor at the Computer Science and Engineering, Hong Kong Uni-
versity of Science and Technology. Before joining HKUST in 1997, he worked and studied
at the German National Research Center for Information Technology (GMD), the National
Center for Geographic Information and Analysis (NCGIA, Maine), the University of Cali-
fornia at San Diego, the Technical University of Vienna, the National Technical University
of Athens, Queen's University (Canada), and University of Patras (Greece). He has pub-
lished extensively and been involved in the program committees of all major Database Con-
ferences, including SIGMOD, VLDB and ICDE. He is an associate editor of the VLDB
Journal, the IEEE Transactions on Knowledge and Data Engineering, and on the editorial
advisory board of Information Systems.

	Continuous Nearest Neighbor Queries over Sliding Windows
	Citation

	Microsoft Word - TKDE07-0142-0306.R2-Papadias.doc

