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Abstract 

This paper studies continuous monitoring of nearest neighbor (NN) queries over sliding 
window streams. According to this model, data points continuously stream in the system 
and they are considered valid only while they belong to a sliding window that contains (i) 
the W most recent arrivals (count-based), or (ii) the arrivals within a fixed interval W 
covering the most recent timestamps (time-based). The task of the query processor is to 
constantly maintain the result of long running NN queries among the valid data. We 
present two processing techniques that apply to both count-based and time-based windows. 
The first one adapts conceptual partitioning, the best existing method for continuous NN 
monitoring over update streams, to the sliding window model. The second technique 
reduces the problem to skyline maintenance in the distance-time space and pre-computes 
the future changes in the NN set. We analyze the performance of both algorithms, and 
extend them to variations of NN search. Finally, we compare their efficiency through a 
comprehensive experimental evaluation. The skyline-based algorithm achieves lower CPU 
cost, at the expense of slightly larger space overhead. 
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1. INTRODUCTION 

Given a set of points P in a multi-dimensional space, the nearest neighbor (NN) of a query point 

q is the point in P that is closest to q. Similarly, the kNN set of q consists of the k points in P 

with the smallest distances from q (usually according to the Euclidean metric). The first 

techniques for NN retrieval considered static queries and data (e.g., [H84, RKV95, HS99]). Later 

work focused on moving NN queries in client-server architectures (e.g., [ZL01, ZZP+03, SR01, 

TP03]). In this setting, the goal is to provide, in addition to the current result, information about 

its validity in order to reduce the number of future re-computations (when the client/query 

moves). Other existing methods, return all the query results up to a future timestamp, assuming 

that the query and the data objects move linearly with known velocity [TP03, BJKS06].  

 The above techniques deal with the efficient processing of a single snapshot query since they 

report the NN set at the query time, possibly with some validity information, or generate future 

results based on predictive features (e.g., velocity vectors of queries or data objects). On the 

other hand, continuous monitoring assumes a central server that collects the current locations of 

data objects, and continuously updates the results of multiple long-running queries. Processing 

usually takes place in main-memory, in order to provide fast answers in an on-line fashion, and 

attempts to minimize factors such as the CPU or communication cost (as opposed to I/O 

overhead). 

 Continuous monitoring of spatial queries is becoming increasingly important due to the wide 

availability of inexpensive and compact positioning devices, the evolution of mobile 

communications and the need for improved location-based services. Consequently, several 

techniques (reviewed in Section 2.1) have been recently developed for continuous NN queries. 

These methods assume update streams where an object issues an update if and only if it moves 
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to a new location. The server processes the stream of position updates and incrementally 

maintains the NNs of numerous queries. Objects that do not issue updates are assumed to be at 

the last reported positions.   

 This paper, on the other hand, studies kNN monitoring over sliding windows, assuming the 

append-only data stream model [BBD+02]. In this context, each data item is valid only while it 

belongs to a sliding window. We consider the two most common versions of windows: a time-

based window contains all data that arrived within a fixed interval W covering the most recent 

timestamps, whereas a count-based window contains the W most recent data items 

(independently of when they arrived). Even though some existing methods for update streams 

can be extended to sliding windows (by treating new points as object insertions and points 

falling outside the window as deletions), we show that the first-in-first-out deletion order that is 

particular to this setting allows for faster NN monitoring. 

 In general, sliding windows are used to restrict the temporal scope of query processing in the 

absence of explicit deletions. As an application example, consider a set of sensors taking 

measurements of their surrounding environment and reporting their coordinates to a central 

server when they detect some particular event. Imposing a sliding window on the stream of 

reports excludes old events from consideration. Depending on the application domain, NN 

monitoring in this setting may be used for wild animal tracking, intrusion detection, etc. As an 

instance of kNN monitoring over a time-based sliding window, assume a set of sensors in a 

forest that report their location whenever they detect an animal passing by (using motion, 

temperature measurements, etc). In this scenario, a user may want to continuously monitor the k 

closest animals to his/her location. Old reports correspond to obsolete animal positions; only the 

ones received within the last W time units (e.g., 30 seconds) are taken into account.  
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 Continuous kNN processing is not restricted to the spatial domain, but can be utilized in other 

problems with a multi-dimensional aspect. As an example of a count-based window application, 

assume a user that subscribes a query (i.e., a set of keywords) to a web-based news agency (e.g., 

CNN, Reuters). The agency reports to the user the k closest matches among the last W news 

articles. Typically, each article is represented as a point in some space, where its Euclidean 

distance from the query defines its similarity; i.e., the problem is essentially a continuous NN 

search in the mapped space1. An article ceases to be among the results (i) if it is replaced by a 

better (i.e., more similar to the query) and more recent one, or (ii) when W news articles arrive 

after its publication. A similar problem can be defined in terms of time-based windows, e.g., the 

server may continuously report the closest matches among the articles published within the last 

24 hours. In this example, each article received at the server corresponds to a new distinct data 

item, for which there are no further updates.  

 This paper presents and compares two techniques for NN monitoring over sliding windows, 

covering both count-based and time-based windows, arbitrary k, and static or moving queries. 

The first one adapts conceptual partitioning [MHP05], the best existing method for NN 

monitoring over update streams, to the sliding window model. The second technique reduces the 

problem to skyline maintenance in the distance-time space and partially pre-computes future 

changes in the NN sets. The skyline-based algorithm achieves lower CPU cost, at the expense of 

slightly larger space overhead.  

 The rest of the paper is organized as follows. Section 2 surveys related work. Section 3 

presents the index and book-keeping structures used by our algorithms. Section 4 extends 

conceptual partitioning to the sliding window model, while Section 5 describes the skyline-based 

                                                           
1  Dimensionality reduction techniques are commonly applied to decrease the number of dimensions, so 
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method. Section 6 provides an analysis of the proposed techniques, and Section 7 extends them 

to other NN query types. Section 8 experimentally compares our algorithms and, finally, Section 

9 concludes the paper with directions for future work. 

2. RELATED WORK 

Section 2.1 reviews previous work on continuous monitoring of spatial queries, focusing mostly 

on conceptual partitioning due to its relevance to our work. Section 2.2 presents existing 

techniques for skyline computation in database systems and discusses the relation between 

skylines and NN queries.  

2.1 Continuous Monitoring of Spatial Queries 

Assuming static range queries over moving objects (i.e., in update streams), Q-index [PXK+02] 

uses an R-tree [G84, BKSS90] at the server to index the queries. When updates from moving 

objects arrive, the server probes the R-tree to retrieve the influenced queries. Q-index utilizes the 

concept of safe (i.e., validity) regions to reduce the number of updates. In particular, each object 

p is assigned a circular or rectangular region, such that p needs to issue an update only if it exits 

this area. Kalashnikov et al. [KPH04] show that a grid implementation of Q-index is more 

efficient (than R-trees) for main memory evaluation. MQM [CHC04] and Mobieyes [GL04] 

exploit the object computational capabilities in order to reduce the processing load of the server. 

In SINA [MXA04], the server continuously updates the reported results by performing a spatial 

join between moving objects and queries in three phases: (i) the hashing phase receives 

information about moving objects and queries and generates positive updates, (ii) the 

invalidation phase is performed every T timestamps or when the memory is full, and reports 

                                                                                                                                                                                           
that the documents can be indexed effectively.  
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negative updates, (iii) the joining phase, triggered after the invalidation phase, joins the contents 

of the main-memory with those of the disk, generating both positive and negative updates. 

 The aforementioned methods focus on range query monitoring, and their extension to NN 

search is either impossible or non-trivial. Henceforth, we discuss algorithms that target explicitly 

NN processing. Koudas et al. [KOTZ04] describe DISC, a technique for e-approximate kNN 

queries over streams of multi-dimensional points. The returned kth NN lies at most e distance 

units farther from q than the actual kth NN of q. DISC partitions the space with a regular grid of 

granularity such that the maximum distance between any pair of points in a cell is at most e. To 

avoid keeping all arriving data in the system, the server maintains only K points for each cell c. 

An exact kNN search in the retained points corresponds to an approximate ekNN answer over the 

original dataset provided that k ≤ K. DISC indexes the data points with a B-tree that uses a 

space-filling curve mechanism to facilitate fast updates and query processing. The authors show 

how to adjust the index to: (i) use the minimum amount of memory in order to guarantee a given 

error bound e, or (ii) achieve the best possible accuracy, given a fixed amount of memory. DISC 

can process both snapshot and continuous ekNN queries. 

 Yu et al. [YPK05] propose a method, hereafter referred to as YPK-CNN, for continuous 

monitoring of exact kNN queries in update streams. All objects are assumed to fit in main 

memory and are indexed with a regular grid of cells with size δ×δ. The server does not process 

updates as they arrive, but directly applies the changes to the grid. When a continuous query q is 

evaluated for the first time, a two step NN search technique retrieves its result. The initial step 

visits the cells inside an iteratively enlarged square R around the cell cq covering q until k objects 

are found. Figure 2.1a, shows an example of a single NN query where the first candidate NN is 

p1 with distance d from q; p1 is not necessarily the actual NN since there may be objects (e.g., p2) 
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in cells outside R with distance smaller than d. To retrieve such objects, the second step searches 

in the cells intersecting the square search region (SR) centered at cq with side length 2⋅d+δ, and 

determines the actual kNN set of q therein. In Figure 2.1a, the server processes p1 up to p5 and 

returns p2 as the actual NN. The accessed cells appear shaded. To maintain the result in 

subsequent timestamps, it computes the current distance dmax of the previous NN that moved 

furthest from q, and retrieves the new NN set by searching in all cells intersecting the square 

centered at cq with side length 2⋅dmax+δ.  

2. d
+
δ

  

(a) NN search in YPK-CNN (b) Update handling in SEA-CNN  
Figure 2.1: YPK- and SEA-CNN examples 

SEA-CNN [XMA05] focuses exclusively on monitoring the NN changes, without including a 

module for the first-time evaluation of an arriving query q (i.e., it assumes that the initial result is 

available). The server indexes moving objects with a regular grid. The answer region of a query 

q is defined as the circle with center q and radius best_dist, where best_dist is the distance of the 

current kth NN. Book-keeping information is stored in the cells that intersect the answer region of 

q to indicate this fact. When updates arrive at the system, the server determines a circular search 

region SR around q and computes the new kNN set of q therein.  

 To determine the radius r of SR, SEA-CNN distinguishes the following cases: (i) If some of 

the current NNs move within the answer region or some outer objects enter the answer region, 
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the server sets r=best_dist and processes all objects falling in the answer region in order to 

retrieve the new NN set. (ii) If any of the current NNs moves out of the answer region, then r = 

dmax (where dmax is the distance of the furthest previous NN), and the NN set is computed among 

the objects lying in SR. Assume that in Figure 2.1b the current NN p2 issues an update reporting 

its new location p′2. The server sets r=dmax=dist(p′2,q), determines the cells intersecting SR (these 

cells appear shaded), collects the corresponding objects (p1 up to p7), and retrieves the new NN 

p1. (iii) Finally, if the query q moves to a new location q′, the server sets r = best_dist+dist(q,q′), 

and computes the new kNN set of q by processing all the objects that lie in the circle centered at 

q′ with radius r.  

 CPM [MHP05] is the state of the art NN monitoring method for update streams. It assumes 

the same system architecture and indexing and book-keeping structures as YPK-CNN and SEA-

CNN. When a query q arrives at the system, the server computes its initial result by organizing 

the cells into conceptual (hyper) rectangles based on their proximity to q. Each rectangle rect is 

defined by a direction and a level number. The direction is U, D, L, or R (for up, down, left and 

right), and the level number indicates how many rectangles are between rect and q. Figure 2.2a 

illustrates the conceptual partitioning of the space around the cell c4,3 of q in our running 

example. If mindist(c,q) is the minimum possible distance between any object in cell c and q, the 

NN search considers the cells in ascending mindist(c,q) order.  

 In particular, CPM initializes an empty heap H and inserts (i) the cell of q with key equal to 0, 

and (ii) the level zero rectangles for each direction DIR, with key mindist(DIR0,q). Then, it starts 

de-heaping entries iteratively. If the de-heaped entry is a cell, it examines the objects inside and 

updates accordingly the list best_NN of the closest NNs found so far. If the de-heaped entry is a 

rectangle DIRlvl, it inserts into H (i) each cell c∈DIRlvl with key mindist(c,q) and (ii) the next 
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level rectangle DIRlvl+1 with key mindist(DIRlvl+1,q). The algorithm terminates when the next 

entry in H (corresponding either to a cell or a rectangle) has key greater than the distance 

best_dist of the kth NN found. It can be easily verified that the server processes only the cells that 

intersect the circle with center at q and radius equal to best_dist. This is the minimal set of cells 

to visit in order to guarantee correctness. In Figure 2.2a, the search processes the shaded cells, 

and returns p2 as the result.   

D0

D1

D2

U2

U0

U1

U3

R2R1R0
L0L1L2L3

q

p1

p2

c4,3

(0,0)

best_dist

  
(a) NN search (b) Update handling 

Figure 2.2: CPM examples 

The encountered cells constitute the influence region of q, and only updates therein can affect the 

current result. When updates arrive for these cells, then CPM monitors how many objects enter 

or leave the circle centered at q with radius best_dist. If the outgoing objects are more than the 

incoming ones, then the result has to be computed from scratch. Otherwise, the new NN set of q 

can be inferred by the previous result and the update information, without accessing the grid at 

all. Consider the example of Figure 2.2b, where p2 and p3 move to positions p'2 and p'3, 

respectively. Object p3 moves closer to q than the previous best_dist and, therefore, CPM 

replaces the outgoing NN p2 with the incoming p3. The evaluation of [MHP05] confirms that 

CPM is significantly faster than YPK- and SEA-CNN for all tested problem settings. Section 4 

discusses its adaptation to sliding windows.  
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2.2 Skyline Queries 

Assume that in Figure 2.3a we have a set of hotels, and for each hotel we store its price (y axis) 

and category (x axis, 1 means one star, etc). The skyline contains the most interesting hotels p1, 

p2 and p3, i.e., the ones that are not dominated by another hotel on both dimensions. For 

example, p2 dominates p4, p7, p8, p9, and p10 because it is cheaper and at the same time it belongs 

to a higher (or at least the same) category. In other words, p2 is preferable (to p4, p7, p8, p9, p10) 

according to any preference function which is increasingly monotone on the x and decreasingly 

monotone on the y axis. Similar examples can be given for skylines that minimize/maximize any 

combination of dimensions. Skyline computation has received considerable attention in 

relational databases [BKS01, TEO01] and web information systems [BGZ04]. Lin et al. 

[LYWL05], Tao and Papadias [TP06] propose methods for skyline monitoring over sliding 

windows. The skyline maintenance is performed by an in-memory incremental algorithm, which 

discards records that cannot participate in the skyline until their expiration. 
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(a) Skyline (b) 2-skyband 

Figure 2.3: Skyline and skyband examples 

Skylines are closely related to NN search. In particular, it can be easily shown that the first NN 

(i.e., p2 in Figure 2.3a) of point (5,0) always belongs to the skyline. Based on this observation, 

the method of [KRR02] applies a NN algorithm on point (5,0) to retrieve p2. Then, it prunes all 

the points in the shaded area of Figure 2.3a since they are dominated by p2 (and, therefore, they 
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are not part of the skyline). The remaining space is split into two partitions based on the 

coordinates of p2 and the process is repeated recursively. Papadias et al. [PTFS05] propose an 

improved algorithm based on incremental NN computation, which is optimal in terms of I/O 

accesses.  

 Motivated by the fact that the NN always belongs to the skyline, we follow the opposite 

direction, i.e., we use skyline maintenance to monitor NN results. Since the skyline corresponds 

to single NN retrieval (whereas we are interested in kNNs), we adopt the concept of k-skyband 

[PTFS05]. Specifically, the k-skyband contains the points that are dominated by at most k-1 

other ones. According to this definition, the skyline is a special instance of the skyband, where 

k=1. In Figure 2.3b, the 2-skyband consists of all points (p1, ..., p6) in the shaded region. The 

next section illustrates how to exploit k-skybands (in a transformed space) for efficiently 

maintaining kNNs over sliding windows.   

3. PRELIMINARIES 

Assuming a two-dimensional space, each tuple p of the input stream has the form <p.id, p.x, p.y, 

p.t>, where p.id is a unique identifier for p, p.x and p.y are its x and y coordinates, and p.t is its 

arrival time. Stream records are treated as points and, thus, in the rest of the paper the terms 

tuple, point, and record are used interchangeably. Since in real-world systems processing takes 

place at discrete timestamps, multiple points may arrive/expire in the same processing cycle. Our 

discussion focuses on this general scenario2, but the proposed algorithms apply without 

modification to the case where points stream in/expire one by one.  

 Similar to existing monitoring approaches (e.g., [KOTZ04, YPK05, XMA05, MHP05]), we 

                                                           
2 The same assumption underlies the previous NN monitoring techniques  (e.g., [YPK05, XMA05]),  as 
well as most data stream management systems (e.g., [CCC+02, LMT+05]). 
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use a regular grid to index the valid data because a more complicated access method (e.g., a main 

memory R-tree) is very expensive to maintain dynamically. The extent of each cell on every 

dimension is δ, so that cell ci,j at column i and row j (starting from the low-left corner of the 

workspace) contains all valid points with x coordinate in the range [i⋅δ, (i+1)⋅δ) and y coordinate 

in the range [j⋅δ, (j+1)⋅δ). Conversely, given a point p with coordinates (p.x, p.y), its covering 

cell can be determined (in constant time) as ci,j, where i= ⎣p.x/δ⎦  and j= ⎣p.y/δ⎦.  

 Furthermore, it is important to provide an efficient mechanism for evicting expiring data. In 

both versions of the sliding window (i.e., count-based and time-based), the points are evicted in a 

first-in-first-out manner, since W contains the most recent ones. Therefore, all the valid point 

positions are stored in a single list. The new arrivals are placed at the end of the list, and the 

points that fall out of the window are discarded from the head of the list. Each cell contains a list 

of pointers to the corresponding (valid) points, as shown in Figure 3.1. Since insertions and 

deletions to a cell also occur in a fist-in-first-out fashion, each operation on the content list takes 

O(1) time.  

 
Figure 3.1: Index and book-keeping data structures 

The running queries q are stored in a query table QT. QT maintains for each q a unique identifier 

q.id, its coordinates q.x and q.y, the number of NNs required q.k, and its current result 
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q.best_NN. The distance of the kth point in q.best_NN (referred to as q.best_dist) implicitly 

defines the influence region of q. To restrict the scope of the kNN maintenance algorithms, each 

cell c is associated with an influence list ILc that contains an entry for each query q whose 

influence region intersects c. Since the query influence regions change dynamically, ILc is 

organized as a hash-table on the query identifiers for supporting fast search, insertion and 

deletion operations. 

 We propose two monitoring algorithms: the first one adapts CPM to sliding windows, 

whereas the second utilizes the concept of k-skyband. In order to demonstrate the relation 

between k-skybands and kNN in the context of append-only streams, we use the example of 

Figure 3.2a where the server monitors a 2NN query q over ten valid points. The horizontal axis 

denotes the expiration time of points and the vertical dimension indicates their distance from q. 

Assuming that there are no further arrivals, we can predict all future results. The 2NN set at time 

0 is {p1,p2}. When p1 expires at time 1, it is replaced by p4. At time 2, p4 expires and the result 

becomes {p2,p3}. Similarly, at time 3, the 2NN set is {p5,p3}. Finally, at time 4, p6 replaces p5. 

The important observation is that the points that appear in the result at some time are the ones 

that belong to the 2-skyband in the distance-time space. The skyband records in our example are 

shown solid in Figure 3.2b (which is similar to Figure 2.3b, except for the meaning of the axes). 
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(a) Point lifespans (b) 2-skyband  

Figure 3.2: Transformation of a 2NN query into a 2-skyband in the distance-time space 
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Lemma: Given the expiration time of all valid points in the system, and assuming that there are 

no further arrivals, the points that will appear in the result of a kNN query q in the future are 

exactly the ones that belong to the k-skyband in the distance (from q) - expiration time space.  

 Proof: Consider a point p that belongs to some (future) kNN result. Then, there exists some 

time instance when p has a larger distance than (is dominated by) at most k-1 other valid points. 

Therefore, p is part of the k-skyband. Conversely, consider that p belongs to the k-skyband in the 

distance-time space. This implies that there are at most k-1 other points with distance lower than 

that of p and expire after p. Thus, there exists some time instance when p is one of the kNNs of 

query q. 

 The validity of the above lemma is independent of the dimensionality; i.e., the skyband is 

always computed in the two-dimensional distance-time space even if the data dimensionality is 

higher than 2. The lemma, however, assumes that there are no point arrivals. In Section 5, we 

present an algorithm that extends it to the sliding window context; it maintains the k-skyband 

dynamically and utilizes it to continuously report NN results as old points expire and new ones 

enter the system. The reduction from kNN to k-skyband monitoring applies to both kinds of 

sliding windows (i.e., count-based and time-based ones) because in both cases the expiration 

order is the same as the arrival order. Moreover, it extends to general data indexes, even though 

we focus on regular grids (for the reasons explained in the beginning of the section). Before 

introducing the skyband-based algorithm, we discuss the adaptation of CPM to sliding windows 

in the next section.  

4. CPM ON SLIDING WINDOWS 

CPM applies to the sliding window model by considering that the expiring points move infinitely 

far away from any query. However, several improvements of the update handling module are 
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possible. The first-time result of a query q is produced with the NN computation algorithm of 

CPM, in the way discussed in Section 2.1. The processed cells constitute the influence region, 

and receive an entry for q in their influence lists. If best_dist is the distance of the kth NN, the 

current result can change only due to point arrivals and expirations in the circle centered at q and 

radius equal to best_dist. Assume that, in the current processing cycle, a set Pins of points arrive 

at the system, while a set Pdel of existing ones expire. Before processing the updates, we initialize 

for each query q (i) a list q.in_list with maximum capacity of k entries to store the best incoming 

records3, and (ii) a counter of outgoing NNs q.out_count=0. For each point p∈Pins, we insert (a 

pointer to) p into the content list of the corresponding cell c. Next, we traverse the influence list 

ILc. For every query q∈ILc, we compare dist(p,q) with q.best_dist. If dist(p,q) ≤ q.best_dist, then 

p is treated as an incoming point and is inserted into q.in_list. Note that q.in_list maintains only 

the k best incomers, since we do not need more than that in any case. Concerning the expirations, 

for each record p∈Pdel, we delete it from its cell c, and traverse the influence list ILc. For every 

q∈ILc, we check whether p belongs to the current result q.best_NN. If p∈q.best_NN we delete p 

from q.best_NN and increase q.out_count by one. The next step of the algorithm is to determine 

the new results. For each query q, if q.in_list contains at least as many points as q.out_count, 

then the result consists of the k best points in q.best_NN ∪ q.in_list. Otherwise (if q.in_list has 

fewer entries than q.out_count), the result of q is computed from scratch with the CPM NN 

search algorithm described in Section 2.1.  

 Consider the example of Figure 4.1a, where the result of a 3NN query q consists of records p1, 

p2 and p3 (the existing points appear hollow). Assume that p4 and p5 arrive at the system (new 

points appear solid), while p1 and p2 expire. Current NNs p1 and p2 are expunged from the 

                                                           
3 The list q.in_list is a temporary data structure, which is discarded after update handling terminates. 
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system, yielding q.out_count=2. On the other hand, arriving records p4 and p5 have distance less 

than best_dist, and are inserted into q.in_list. Since the number of incoming points is equal to 

q.out_count, we merge q.in_list with the remaining NNs (i.e., p3) and form the new result 

best_NN={p5,p4,p3}. Even though best_dist changes, we do not update the influence lists of the 

cells that no longer influence q (i.e., the shaded cells that do not intersect the inner circle). The 

influence lists are updated only after a NN computation from scratch, as discussed next. This 

lazy approach does not affect the correctness of the algorithm because potential insertions (or 

deletions) in these cells are simply ignored (upon comparison with the new best_dist).   

 

q

p3

Influence region

p4

p5

p6

 
(a) Pins={p4,p5}, Pdel={p1,p2} (b) Pins={p6}, Pdel={p3}  

Figure 4.1: Update handling examples 

Assume that in the next processing cycle Pins={p6} and Pdel={p3}, as shown in Figure 4.1b. Point 

p6 has larger distance than best_dist and, thus, it is simply inserted into its cell. The expiring NN 

p3 yields q.out_count=1. Since there are no incoming points, the result of q has to be computed 

from scratch. The new NN set contains p4, p5 and p6. Its influence region contains the cells 

intersecting the circle centered at q with radius equal to the new best_dist=dist(p6,q). The final 

step of the algorithm is to remove q from the influence list of all cells (i.e., the shaded cells 

outside the outer circle in Figure 4.1b) that no longer influence q (recall from Figure 4.1a that the 

lists of these cells were not updated during the previous update handling). The updating 
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procedure starts with the entries that remain4 in H after the termination of the NN computation, 

and continues in a way similar to the NN search, but instead of processing the contents of the 

encountered cells, we simply delete q from their influence lists. The update terminates when de-

heaping the first cell c whose ILc does not contain q; the remaining cells do not contain q in their 

lists since their mindist is guaranteed to be higher than or equal to mindist(c,q). The complete 

CPM algorithm for the sliding window model is illustrated in Figure 4.2. The influence list 

updating procedure is performed in lines 19-26.  

CPM 
1. In every processing cycle do  
2.    Pins = set of arriving points; Pdel = set of expiring points 
3.    For each query q in QT 
4.       Set q.out_count=0, and initialize an empty list q.in_list of size k  
5.    For each point p in Pins  
6.       Insert p into the content list of the corresponding cell c 
7.       For each q in ILc  
8.          If dist(p,q)≤q.best_dist, insert p into q.in_list 
9.    For each point p in Pdel  
10.       Delete p from the content list of the corresponding cell c 
11.       For each q in ILc  
12.          If p ∈ q.best_NN   
13.             Delete p from q.best_NN, and set q.out_count = q.out_count + 1 
14.    For each query q 
15.       If the number of points in q.in_list is greater than or equal to q.out_count  
16.          Set q.best_NN = the k best points in q.best_NN  ∪ q.in_list, and q.best_dist = the distance of the kth NN 
17.       Else // the NN set of q has to be re-computed 
18.          Perform kNN computation from scratch, and set H = the search heap after the NN search termination 
19.          Repeat  
20.             Get the next entry of H 
21.             If it is a cell entry <c, mindist(c,q)> 
22.                If there is an entry for q in the influence list of c, remove it 
23.                Else, go to line 14 and continue with the next query //i.e., the influence list updating is complete    
24.             Else // it is a rectangle entry <DIRlvl, mindist(DIRlvl,q)> 
25.                For each cell c in DIRlvl, insert <c, mindist(c,q)> into H 
26.                Insert <DIRlvl+1, mindist(DIRlvl+1,q)> into H 
27.    Report changes to the client 

Figure 4.2: The sliding window version of CPM algorithm 

When a query q is terminated, we delete it from the query table and remove it from all the 

influence lists in the grid. The latter task is performed in a way similar to lines 19-26. Query 

                                                           
4 Some cells and rectangles are en-heaped, even though their distance exceeds best_dist. These entries are 
not de-heaped during the result computation, and reside in the search heap H after the NN retrieval. 
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movement is handled as a deletion followed by a new query insertion.  

5. SKYBAND KNN MONITORING 

The Skyband NN (SNN) algorithm exploits the skyband in order to avoid computation from 

scratch when some NNs expire. Consider, for instance, a 2NN query q and the records of Figure 

5.1a, shown as intervals in the two-dimensional distance-time space. The number in the 

parenthesis corresponds to the dominance counter (DC) of each point p, i.e., the number of 

points with smaller distance (to q) that arrive after5 p. At time 0, the result of the 2NN query 

contains p2 and p3, whereas the 2-skyband contains p2, p3, p5, p7. At time 3, p9 arrives, and 

expires after all other points in the system. It follows that (i) p9 is not dominated by any point 

(i.e., p9.DC = 0), and (ii) all the points p with dist(p,q) ≥ dist(p9,q) are dominated by p9. 

Therefore, the dominance counters of p5, p3, p7 increase by one, i.e., p5.DC=1 and p3.DC = p7.DC 

= 2. Consequently, p3 and p7 are removed from the 2-skyband at time 3. The updated 2-skyband, 

shown in Figure 5.1b, contains p2, p9 and p5. The new 2NN set consists of the two elements in 

the skyband with the smallest distances (i.e., p2 and p9). After the expiration of p2 (at time 5) the 

result changes to {p9, p5}. 

  
(a) Point p9 arrives (b) The new 2-skyband  

Figure 5.1: Skyband maintenance  

                                                           
5 In both count-based and time-based windows the arrival order is the same as the expiration order.  
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In general, the monitoring of future results is reduced to a k-skyband maintenance task. SNN 

restricts the skyband maintenance for a query q to points falling inside its influence region. 

Specifically, the initial kNN set of q is retrieved by the NN computation module of CPM. The 

retrieved points are inserted into q.skyband, which contains entries of the form <p.id, dist(p,q), 

p.DC> in ascending order of dist(p,q). Then, SNN scans q.skyband, and for each point p it 

computes p.DC. To speed up the dominance counter computation, the arrival time of every 

processed element of q.skyband is stored into a balanced tree BT sorted in descending order. 

Thus, p.DC is simply the number of points that precede p in BT (since the NNs are processed in 

ascending distance order, these points are preferable to p in terms of both distance and expiration 

time). Each internal node in BT contains the cardinality of the sub-tree rooted at that node so that 

the computation of each dominance counter takes O(logk) time. After the dominance counter 

computation, BT is discarded and the q.skyband contains exactly k elements; q.best_dist is the 

distance of the kth element. The above procedure takes in total O(k·logk) time.  

 The skyband maintenance algorithm handles only points p with dist(p,q) less than or equal to 

the q.best_dist after the previous NN computation from scratch. When such a point arrives at the 

system, it is inserted into q.skyband increasing its cardinality. The first k points of the skyband 

constitute the q.best_NN (in accordance with the CPM terminology), which is not stored 

explicitly. The dominance counter of all points with distance higher than dist(p,q) is increased by 

1 and the ones whose counter reaches k are evicted. Regarding deletions, the element p of 

q.skyband with the earliest arrival time (i.e., the one expiring first) belongs to the current result, 

as can be shown by contradiction. Specifically, if the expiring point p was not in the current 

result, then all the k NNs would dominate p since they have smaller distance and expire later. 

Thus, p could not belong to the k-skyband. Returning to the maintenance procedure, when a 
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point expires, it is removed and the first k elements of the updated q.skyband are reported as the 

new q.best_NN. Note that the deleted p does not dominate any other point, and therefore the 

dominance counters of the remaining elements in q.skyband are not affected.  

 The SNN algorithm is illustrated in Figure 5.2. An important remark concerns the situation 

where the skyband contains fewer than k points. This happens when some NNs expire and the 

recent arrivals were not inserted into the skyband (because their distance was larger than 

q.best_dist). In such cases, we have to compute the result from scratch and form a new skyband. 

The pseudo-code of Figure 5.2 handles this case in lines 18-20.  

SNN  
1. In every processing cycle do  
2.    Pins = set of arriving points; Pdel = set of expiring points 
3.    For every point p in Pins  
4.       Insert p into the content list of the corresponding cell c 
5.       For each q in ILc  
6.          If dist(p,q)≤q.best_dist  // the distance of the kth NN after the last computation from scratch 
7.             Insert p into q.skyband and set p.DC=0 
8.             For each point p' in q.skyband with dist(p',q) ≥ dist(p,q) 
9.                p'.DC=p'.DC+1  
10.                If p'.DC=k evict p' from q.skyband 
11.    For every point p in Pdel  
12.       Delete p from the content list of the corresponding cell c 
13.       For each q in ILc  
14.          If p∈q.best_NN, delete p from q.skyband 
15.    For each query q whose skyband has changed 
16.       If q.skyband has at least k elements 
17.          q.best_NN = the first k elements of q.skyband 
18.       Else // q.skyband has fewer than k elements 
19.          Perform kNN computation from scratch 
20.          Form q.skyband and compute dominance counters therein 
21.   Report changes to the client 

Figure 5.2: The SNN algorithm 

SNN is expected to be faster than CPM, since it involves less frequent calls to the NN search 

algorithm. For instance, consider the example of Figure 4.1b, where p6 arrives and p3 expires at 

the same processing cycle. As discussed in Section 4, in this scenario CPM re-computes the 

query from scratch. SNN, on the contrary, avoids the NN search overhead. Since dist(p6,q) is less 

than dist(p1,q) (i.e., the best_dist after the last re-computation from scratch - see Figure 4.1a), 
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SNN inserts p6 into the skyband, and directly reports it as the third NN when p3 is deleted. On 

the other hand, the space requirements of SNN are higher than CPM, since it maintains the 

skyband (which is a superset of the current NN set) of each query. In the next section we 

analytically compare the performance and space requirements of the proposed algorithms. 

6. PERFORMANCE ANALYSIS 

Similar to previous approaches in the literature [KPH04, MHP05, XMA05, YPK05], we assume 

that (i) the average data cardinality at each timestamp is N, (ii) the valid positions are uniformly 

distributed in a unit two-dimensional workspace, and (iii) the stream rate is, on the average, r 

points per processing cycle. If δ is the cell extent per axis, the total number of cells is (1/δ) 2 and 

each cell contains on the average N·δ 2 points. According to [MHP05], the running time of the 

kNN computation module (involved in both CPM and SNN) is Tcomp=O(C·logC + C·N·δ 2·logk). 

The quantity C corresponds to the number of cells intersecting the influence region of a query 

and it holds that C = O(⎡k/(N·δ 2)⎤). The term O(C·logC) is due to heap operations (en-

heaping/de-heaping cells and conceptual rectangles), and the term O(C·N·δ 2·logk) is due to 

updates of q.best_NN with encountered points, assuming that q.best_NN is implemented as a red-

black tree. 

 Concerning the maintenance cost of CPM, in every processing cycle, r new points arrive at 

the system, while r old ones expire. Hence, the grid update time is O(r). Each cell receives r·δ 2 

insertions and r·δ 2 deletions. Therefore, the influence region of a query q is affected by 2·C·r·δ 2 

events. The time required to check whether the corresponding points belong to the current result 

is O(C·r·δ 2) (by comparing with q.best_dist). Among them, k·r/N new points are considered for 

insertion into q.best_NN, and k·r/N old ones are deleted from it; the total cost for updating 
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q.best_NN is O(k·r·logk/N). Note that for uniform data distribution, the number of insertions in 

the influence region of q equals the number of deletions therein. Therefore, the number of 

incoming points equals the number of outgoing ones, and CPM does not invoke the kNN 

computation from scratch. In this case, the time complexity of CPM for a processing cycle is 

TCPM = O(r + Q·(C·r·δ 2 + k·r·logk/N)), where Q is the number of running queries. 

 For SNN, the index update cost is the same as for CPM (i.e., O(r)). Also, the number of the 

arriving (expiring) points in the cells intersecting the influence region of a query q is O(C·r·δ 2). 

Initially (after the application of the kNN computation module), the skyband contains k elements. 

Among the inserted (deleted) points, O(k·r/N) have distance less than q.best_dist and have to be 

included in (excluded from) the skyband. An insertion to q.skyband requires O(k) time, because 

we have to retain the order (according to distance), and at the same time update the dominance 

counters of the entries with distance higher than that of the new point. Each deletion also has 

O(k) cost. Similar to CPM, according to the uniformity assumption, the k-skyband contains 

exactly k elements, and SNN does not resort to computations from scratch. In summary, the total 

running time is TSNN=O(r + Q·(C·r·δ 2 + k2·r/N)) for each processing cycle.      

 Finally, we analyze the memory requirements of the proposed methods. The index has O(N + 

N + Q·C) size, where O(N), O(N) and O(Q·C) are the amounts of storage required for the N valid 

points, for N pointers (in the content lists of the cells), and for the influence lists of the Q queries. 

Each query table entry for CPM has size O(2 + 2·k), for storing the query coordinates and the 

tuple <p.id, dist(p,q)> for every point p in the result. For SNN, each entry of QT takes up O(2 + 

3·k), since in addition to the identifier and the distance, q.skyband also contains the dominance 

counters of the points. Recall that SNN does not need to explicitly store q.best_NN, because the 

result set consists of the first k entries of q.skyband. Summarizing, the space requirements of 
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CPM and SNN are SCPM=O(N + Q·(C + d + 2·k)) and SSNN=O(N + Q·(C + d + 3·k)), respectively. 

 In summary, for uniform data the result updating of CPM is more efficient than the skyband 

maintenance of SNN (with time complexities O(k·r·logk/N) and O(k2·r/N) per query, 

respectively). For non-uniform data, however, SNN is expected to be faster than CPM because 

the latter one resorts more frequently to kNN computation from scratch. This is also verified by 

our experiments. Concerning the space overhead, SNN uses more memory than CPM because (i) 

the q.skyband stores additional information about the dominance counters, and (ii) in practice, 

the k-skyband may contain more than k entries. The performance of both algorithms depends on 

the cell side-length δ. Large cells minimize the time spent on heap operations, but lead to 

unnecessary processing of points that are outside the influence region (but fall in cells that 

intersect the influence region). Large δ also implies lower space consumption, because queries 

are affected by fewer cells, and the cell influence lists take up less memory. The running time of 

the proposed techniques increases with k, Q, N, and r. The same holds for the space 

consumption, with the exception of r. 

7. OTHER NN QUERY TYPES 

In this section we extend the proposed algorithms to variations of NN search. In particular, we 

describe the monitoring of constrained and aggregate nearest neighbor queries. A constrained 

NN query q specifies a region of interest and requests the NNs of q therein [FSAA01]. Consider 

for instance the example of Figure 7.1, where the user requests the NN of q among the points 

that have higher x and y coordinates than q (i.e., the region of interest is the striped area). CPM 

and SNN can be easily adapted to monitor constrained NNs over sliding windows. The 

difference is that during the initial NN set computation, we en-heap only cells and conceptual 
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rectangles that intersect the region of interest, and process only points that fall inside it.  

 In Figure 7.1, the algorithm en-heaps rectangles U0, U1, U2, R0, R1, and R2, it processes the 

shaded cells, and it returns p3 as the result. Note that the un-constrained NN of q is point p2, but 

it is not encountered because its cell is not visited. On the other hand, point p4 is processed, but 

ignored because it falls outside the (constrained) region of interest. Concerning the monitoring of 

result changes, neither CPM nor SNN require modifications. The de-heaped cells (appearing 

shaded in Figure 7.1) receive an entry for q in their influence lists, and only updates therein are 

monitored.  

q

p2

p4

p3

best
_dist

U2

R2

U0

U1

R0 R1

 
Figure 7.1: A constrained NN search example   

Another interesting variant is the aggregate nearest neighbor query (ANN). Given a set of query 

points Q = {q1,q2, ...,qn} and a data point p, the aggregate distance adist(p,Q) is defined as a 

function f over the individual distances dist(p,qi) between p and each point qi∈Q. The result of 

the ANN query is the point p that minimizes adist(p,Q). Papadias et al. [PTMH05] propose 

algorithms for snapshot ANN queries on static datasets when f is a monotonically increasing6 

function over the individual distances dist(p,qi). Under the same assumption (i.e., monotonicity 

of f), both CPM and SNN extend to ANN monitoring over sliding windows. In the following, we 

focus on the sum, max and min aggregate functions, as they are the most commonly used ones.   

                                                           
6 A function f is monotonically increasing iff: xi ≥ x'i ∀i implies that f(x1, …,xn) ≥ f(x'1,…,x'n). 
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 Consider n users at locations q1, q2, ..., qn and f=sum. The aggregate NN minimizes adist(p,Q) 

= ∑qi∈Q dist(p,qi), i.e., the sum of distances that the users have to travel in order to meet at the 

position of p. Similarly, if f=max, the ANN query reports the point p that minimizes the 

maximum distance that any user has to travel to reach p. In turn, this leads to the earliest time 

that all users will arrive at the location of p (assuming that they move with the same speed). 

Finally, if f=min, the result is the point p which is closest to any user, i.e., p has the smallest 

adist(p,Q) = min qi∈Q dist(p,qi).  

 To extend our algorithms to continuous ANN monitoring, we have to use a different 

partitioning of the space (than that of simple NN queries). Consider the example of Figure 7.2a, 

where Q = {q1,q2,q3}. The partitioning applies to the space around the minimum bounding 

rectangle M of Q, as shown in the figure. Given a rectangle rect, the function amindist(rect,Q) = 

fqi∈Q mindist(rect,qi) is a lower bound of the distance adist(p,Q) for any point p in rect. Due to 

the monotonicity of f, the amindist of the conceptual rectangles in a direction is increasing with 

their level number. This property allows for the application of the conceptual partitioning 

methodology to compute the first-time result.  

  
(a) Conceptual partitioning (b) Processing when f = sum 

Figure 7.2: An ANN search example 
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The ANN search initially en-heaps the cells c intersecting M with key amindist(c,Q), and the 

level zero rectangles for each direction DIR with key amindist(DIR0,Q). Then, it starts de-

heaping entries iteratively. If the de-heaped entry is a cell c, then the algorithm computes 

adist(p,Q) for every p inside c, and updates the list best_NN of the best points found so far. It 

also inserts q into the influence list ILc. If the entry is a conceptual rectangle, then it en-heaps the 

corresponding cells and the next level rectangle in the same direction, with keys equal to their 

amindist. The procedure terminates when the next entry in the heap has key equal to or greater 

than the distance best_dist of the kth ANN found.  

 Returning to our running example and letting f = sum, the ANN search en-heaps all the cells 

falling in M, U0, D0, and L0, and de-heaps the ones appearing shaded in Figure 7.2b. It processes 

points p1, p2 and p3, and returns p2 as the result. The monitoring of the ANN set upon point 

arrivals and expirations is the same as in Sections 4 and 5 for CPM and SNN, respectively. The 

only difference is that now the measure of interest is the aggregate distance of the points. In the 

case of SNN, this implies that the k-skyband is computed and maintained in the aggregate 

distance-time space.  

 The algorithms also apply to max and min ANN query monitoring, by defining 

amindist(rect,Q) and adist(p,Q) accordingly. Consider Figures 7.3a and 7.3b, where f = max and 

f = min, respectively. The ANN search processes the shaded cells and returns p2 as the result in 

both cases. Note that for f = max it visits the cells that overlap with the intersection of all circles 

with centers at qi and radii equal to best_dist, because these cells have amindist(c,Q) < best_dist 

and could potentially contain points with lower aggregate distance than best_dist.  For the same 

reason, when f = min, it processes the cells that overlap with at least one of the circles with 

centers at qi and radii equal to best_dist.   
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 The number n of query points in Q may be large, and computing the aggregate distance of 

points (cells) may be very expensive because it requires calculation of n Euclidean distances 

(mindist functions). Depending on the definition of f, some points (cells) can be pruned without 

computing all these n distances. For example, assume that f = sum. If while computing adist(p,Q) 

(amindist(c,Q)) the sum of distances calculated so far exceeds the current best_NN, then point p 

(cell c) can be immediately pruned (without considering the remaining points in Q). Similarly, 

when f = max, if the distance of point p (mindist of cell c) from one of the query points is already 

larger than best_NN, then p (c) can be safely excluded from consideration without wasting 

further computations for the exact value of amindist. On the other hand, in the case of min, such 

an optimization is not possible.  

  

(a) f = max (b) f = min 
Figure 7.3: ANN search examples for f = max and f = min  

8. EXPERIMENTAL EVALUATION 

In this section we experimentally evaluate CPM and SNN. Sections 8.1 and 8.2 study their 

performance for NN and ANN monitoring, respectively. In both cases, the input stream is 

created by randomly choosing points from a real dataset of 1,314,620 two-dimensional points, 

corresponding to endpoints of streets in Los Angeles (available at www.rtreeportal.org). The 
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dataset is normalized to cover a unit workspace (i.e., [0,1]×[0,1]). We assume count-based 

windows with size N between 100K and 1M records. During each timestamp, r new points arrive 

at the system. In our NN monitoring experiments (Section 8.1), we use two sets of queries; in 

UNI, queries are uniformly distributed in the workspace, while in SKW, they are randomly 

drawn from our real dataset (i.e., they follow the same distribution as the stream points). In 

Section 8.2, each ANN query consists of n points uniformly distributed in a square. The square 

covers area Aq, and its location is randomly chosen in the workspace. The simulation length is 

100 timestamps. Table 8.1 summarizes the parameters under investigation, along with their 

ranges and default values. In each experiment we vary a single parameter, while setting the 

remaining ones to their default values. The asterisk next to a description indicates that it is used 

only in the ANN experiments. For all simulations we use a Pentium 3.2 GHz CPU with 1 GByte 

memory. 

 
Parameter Default Range 
Number of valid points (N) 100K 100, 300, 500, 700, 1000 (K) 
Arrival rate (r) 1K 0, 10, 30, 50, 70, 100 (K) 
Number of queries (Q)  1K 1, 2, 3, 4, 5 (K) 
Number of NNs (k) 16 1, 4, 16, 64, 256 
Area of ANN query (Aq) * 4% 1%, 2%, 4%, 8%, 16% 
Number of points in ANN query (n) * 16 4, 8, 16, 32, 64 

Table 8.1: System parameters 

8.1 Nearest Neighbor Monitoring 

In this section we focus on monitoring of conventional NN queries. First, we study the effect of 

the grid granularity on CPM and SNN for the default settings (i.e., N=100K, r=1K, Q=1K, 

k=16). For UNI queries (Figure 8.1a) we experiment on grids with 102 up to 1002 cells, while for 

SKW (Figure 8.1b) we reach up to 4502 because the optimal granularity7 is much higher than 

                                                           
7 Optimal here refers to the granularity that leads to the lowest CPU cost for the default parameters. 
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UNI. We plot the overall running time in seconds, in logarithmic scale. The best performance for 

both algorithms is achieved with a 50×50 grid for UNI, and a 330×330 one for SKW. The 

optimal grid granularity for SKW is much finer, because SKW queries follow the data 

distribution and the cells around them contain many points. In both cases, a very fine grid is 

expensive because of the heap operations on the cells, whereas a sparse one leads to unnecessary 

processing of points outside the query influence regions. For the remaining experiments, we use 

the respective optimal granularities for UNI and SKW. 

CPM SNN  
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(a) UNI (b) SKW 
Figure 8.1: CPU time versus grid granularity 

In Figure 8.2 we vary N from 100K to 1M, and set the arrival rate r to N/100 tuples per 

timestamp (i.e., during each timestamp, 1% of the data points are replaced by new ones). As 

shown in Figures 8.2a and 8.2b, the running time increases with N. SNN is more than two times 

faster than CPM for both UNI and SKW. Over the 100 timestamps of the simulation, for UNI 

(SKW), CPM computes a query from scratch 12.9 (13.6) times on the average, versus only 4.4 

(4.9) for SNN. An interesting observation, which is apparent in all experiments, is that both 

algorithms are slower for UNI. This happens because in UNI the queries are more likely to lie far 

away from their NNs (as they follow different distribution from the data), and NN search en-

heaps/de-heaps many cells before retrieving the results.   
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Figure 8.2: CPU time versus number of valid points N (r = N/100) 

Next, we set N=100K and vary r between 0 and 100K, i.e., 0% up to 100% of the valid points are 

replaced per timestamp. Figures 8.3a and 8.3b show the running time versus r for UNI and SKW, 

respectively. The number next to each measurement is the average number of NN computations 

from scratch (during the 100 timestamps of the simulation) per query. The performance degrades 

with r, because a larger arrival rate causes more frequent re-computations and higher index 

update cost. SNN is better than CPM, except for r = N (i.e., 100K) and SKW queries. In this 

case, even though SNN performs fewer re-computations, it is slower than CPM, because (i) NN 

search is relatively cheap for SKW (as the NNs are found close to the queries), and (ii) the cost 

of updating the skybands and the dominance counters is high (in every timestamp, k insertions 

and k deletions take place in each of them). Note that for r = 0 the algorithms have the same cost, 

since they both retrieve the initial result of each query, and do not perform any further 

computation (there are no data insertions/deletions in the subsequent timestamps).  

 In order to study the effect of the query cardinality, we vary Q between 1K and 5K, and plot 

the running time for UNI and SKW in figures 8.4a and 8.4b, respectively. The CPU cost of both 

methods scales linearly with Q, and SNN is the best algorithm. Similar to the data cardinality 

(Figure 8.2), the performance gap increases with Q, verifying the better scalability of SNN to 

large problems.  
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Figure 8.3: CPU time versus arrival rate r 
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Figure 8.4: CPU time versus query cardinality Q 

 Figures 8.5a and 8.5c show the processing time versus the number k of NNs for UNI and 

SKW. The influence region of the queries and, consequently, the number of processed 

cells/points increases with k, implying higher NN retrieval and maintenance overhead for both 

methods. SNN is faster in all cases and, since it performs fewer re-computations than CPM, its 

degradation with k is smaller. Figures 8.5b and 8.5d illustrate the corresponding space 

requirements. SNN consumes only a few KBytes more space than CPM. A larger k implies 

longer influence lists and, thus, higher memory consumption for both methods. The numbers 

appearing above the measurements for SNN correspond to the average cardinality of the 

skybands in the system. Interestingly, SNN maintains very few extra points. 
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Figure 8.5: Performance versus number k of NNs 

8.2 Aggregate Nearest Neighbor Monitoring 

In this section, we evaluate our methods for ANN monitoring. We focus on sum and max 

aggregate functions. The results for min were very similar to sum and, thus, omitted. First, we 

fine-tune the grid granularity, similar to Figure 8.1. The best grid size is 140×140 for sum and 

80×80 for max; we use this granularity for all following experiments. Figure 8.6 shows the CPU 

time versus the area Aq of the minimum bounding rectangle of the queries (using the default 

settings for the remaining parameters, i.e., N=100K, r=1K, Q=1K, k=16). We vary Aq from 1% 

to 16% of the total workspace area. For small Aq, the points of each query are close to each other, 

leading to small influence regions. When Aq is larger, ANN retrieval and maintenance considers 

more cells/data points. SNN is 2.5 - 3 times better than CPM for both f = sum and f = max. Both 

methods are faster for max, because the optimization for aggregate distance calculation 

(presented in the last paragraph of Section 7) saves more computations than for sum.     
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Figure 8.6: CPU time versus area of query MBR Aq 

Figure 8.7 studies the effect of n (i.e., the number of points in each query). Aggregate distance 

calculations (for points and cells) are more expensive for larger n, leading to higher ANN 

computation and maintenance costs. Since the advantage of SNN over CPM is the reduced 

number of ANN retrievals from scratch, their difference grows as k (and, consequently, the cost 

per ANN retrieval) increases.   
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Figure 8.7: CPU time versus number of points in query n  

Figure 8.8a (8.8b) shows the CPU time versus k for f = sum (f = max). The performance of both 

algorithms degrades with k, because the influence regions grow. SNN is faster in all cases. Its 

difference from CPM increases for larger k because, similar to Figure 8.7, NN computations 

become more costly.    
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Figure 8.8: CPU time versus number k of ANNs 

9. CONCLUSION 

This paper constitutes the first work addressing the problem of continuous kNN monitoring over 

sliding windows. As a first solution, we extend the state-of-the-art NN monitoring algorithm for 

update streams (CPM), to the sliding window model. Next, we present SNN, which utilizes a 

generalized concept of skybands for maintaining NNs. Both approaches compute the initial 

result of each query with an algorithm that processes the minimum number of cells. Only 

insertions/deletions within these cells can potentially invalidate the current kNN set. Therefore, 

the maintenance of the result considers only point arrivals and expirations therein. The difference 

of SNN from CPM is that it maintains a superset of the current result in the form of a k-skyband 

in the distance-time space. Both methods apply to time-based and count-based windows. 

Moreover, they can be easily adapted to other query types, such as constrained and aggregate 

NNs. An extensive experimental evaluation demonstrates that SNN outperforms CPM for all 

parameter settings, while consuming a negligible amount of extra space.  

 A direction for future work concerns the derivation of cost models for non-uniform data. For 

instance, the proposed models could be extended and combined with multi-dimensional 

histograms to provide accurate estimations for query optimization (in systems that involve 
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monitoring of multiple query types). Another interesting direction would be the development of 

methods on non-regular grids (recall that all existing methods apply regular grids). In this case, 

the partitioning of the data space should take into account the data distribution, which may 

change with time. Although non-regular grids complicate query processing, they are expected to 

yield performance gains for highly skewed data. Finally, we plan to investigate distance 

functions that take into account freshness, in addition to distance; i.e., the data do not expire 

when they fall out of the window, but their utility continuously drops with time.   
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