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Abstract

This paper presents a modified LM test of spatial error components, which is shown

to be robust against distributional misspecifications and spatial layouts. The proposed

test differs from the LM test of Anselin (2001) by a term in the denominators of the

test statistics. This term disappears when either the errors are normal, or the variance

of the diagonal elements of the product of spatial weights matrix and its transpose is

zero or approaches to zero as sample size goes large. When neither is true, as is often

the case in practice, the effect of this term can be significant even when sample size

is large. As a result, there can be severe size distortions of the Anselin’s LM test, a

phenomenon revealed by the Monte Carlo results of Anselin and Moreno (2003) and

further confirmed by the Monte Carlo results presented in this paper. Our Monte Carlo

results also show that the proposed test performs well in general.
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1 Introduction.

The spatial error components model proposed by Kelejian and Robinson (1995) provides

a useful alternative to the traditional spatial models with a spatial autoregressive (SAR)

or a spatial moving average (SMA) error process, in particular in the situation where the

range of spatial autocorrelation is constrained to close neighbors, e.g., spatial spillovers in

the productivity of infrastructure investments (Kelejian and Robinson, 1997; Anselin and

Moreno, 2003). Anselin (2001) derived an LM test for spatial error components based

on the assumptions that the errors are normally distributed. Anselin and Moreno (2003)

conducted Monte Carlo experiments to assess the finite sample behavior of Anselin’s test

and to compare it with other tests such as the GMM test of Kelejian and Robinson (1995)

and Moran’s (1950) I test, and found that none seems to perform satisfactorily in general.

While Anselin and Moreno (2003) recognized that the LM test for spatial error components

of Anselin (2001) is sensitive to distributional misspecifications and the spatial layouts, it is

generally unclear on the exact cause of it and how this normal-theory based test performs

under alternative distributions for the errors and under different spatial layouts.

In this paper, we present a modified LM test of spatial error components, which is shown

to be robust against distributional misspecifications and spatial layouts. We show that the

proposed test differs from the LM test of Anselin (2001) by a term in the denominator of

the test statistic. This term disappears when either the errors are normal, or the variance

of the diagonal elements of the product of spatial weights matrix and its transpose is zero

or approaches to zero as sample size goes large. When neither is true, as is often the case in

practice, we show that (i) if the elements of the weights matrix are fixed, this term poses a

large sample effect in the sense that without this term Anselin’s LM test does not converge

to a correct level as sample size goes large; and (ii) if the elements of the weights matrix

depend on sample size, this term poses a significant finite sample effect in the sense that

without this term Anselin’s LM test can have a large size distortion which gets smaller very

slowly as sample size gets large.

Anselin and Bera (1998), Anselin (2001) and Florax and de Graaff (2004) provide ex-

cellent reviews on tests of spatial dependence in linear models. Section 2 introduces the

spatial error components model and describes the existing test. Section 3 introduces a ro-
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bust LM test for spatial error components. Section 4 presents Monte Carlo results. Section

5 concludes the paper.

2 The Spatial Error Components Model

The spatial error components (SEC) model proposed by Kelejian and Robinson (1995)

takes the following form:

Yn = Xnβ + un with un =Wnνn + εn (1)

where Yn is an n× 1 vector of observations on the response variable, Xn is an n× k matrix
containing the values of explanatory (exogenous) variables, β is a k× 1 vector of regression
coefficients, Wn is an n × n spatial weights matrix, νn is an n × 1 vector of errors that
together with Wn incorporates the spatial dependence, and ε is an n× 1 vector of location
specific disturbance terms. The error components νn and εn are assumed to be independent,

with independent and identically distributed (iid) elements of mean zero and variances σ2ν

and σ2ε , respectively. So, in this model the null hypothesis of no spatial effect can be either

H0 : σ
2
ν = 0, or θ = σ2ν/σ

2
ε = 0. The alternative hypothesis can only be one-sided as σ

2
ν is

non-negative, i.e., Ha : σ
2
ν > 0, or θ > 0. Anselin (2001) derived an LM test based on the

assumptions that errors are normally distributed. The test is of the form

LMSEC =
ũInWnW

I
nũn/σ̃

2
ε − T1n

(2T2n − 2
nT

2
1n)

1
2

(2)

where σ̃2ε = 1
n ũ
I
nũn, ũn is the vector of OLS residuals, T1n = tr(WnW

I
n) and T2n =

tr(WnW
I
nWnW

I
n). Under H0, the positive part of LMSEC converges to that of N(0, 1).

This means that the above one sided test can be carried out as per normal. Alternatively,

if the squared version LM2
SEC is used, the reference null distribution of the test statistic for

testing this one sided test is a chi-square mixture. See Verbeke and Molenberghs (2003) for

a detailed discussion on tests where the parameter value under the null hypothesis falls on

the boundary of parameter space.

Anselin and Moreno (2003) provide Monte Carlo evidence for the finite sample perfor-

mance of LMSEC and find that LMSEC can be sensitive to distributional misspecifications

and spatial layouts. Our Monte Carlo results given in Section 4 reinforce this point. How-

ever, the exact cause of this sensitivity is not clear, and also not clear is whether this

3
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sensitivity is of finite sample nature or large sample nature. The following heuristic argu-

ments may help us gain some insights on these issus, and may shed light on the general way

of robustifying the LM test given above, if necessary.

Note that σ̃2ε =
1
n ũ
I
nũn =

1
nu
I
nMnun, where Mn = In−Xn(X InXn)X In and In is an n×n

identity matrix. The statistic in (2) can be rewritten as

LMSEC =
ũInWnW

I
nũn − T1nσ̃2ε

σ̃2ε(2T2n − 2
N T

2
1n)

1
2

∼ u
I
nMn(WnW

I
n − 1

nT1nIn)Mnun

σ2ε(2T2n − 2
nT

2
1n)

1
2

,

where ∼ denotes asymptotic equivalence. It follows from Lemma A.1 that under H0,

E(LMSEC) ≈
tr(WnW

I
nMn)− n−k

n T1n

(2T2n − 2
nT

2
1n)

1
2

W= 0, and (3)

Var(LMSEC) ≈
κε

n
i=1 c

2
n,ii + 2tr(C

2
n)

2T2n − 2
nT

2
1n

W= 1, (4)

where Cn =Mn(WnW
I
n− 1

nT1nIn)Mn, {cn,ii} are the diagonal elements of Cn, and κε is the
excess kurtosis of εi. This shows the mean and variance of LMSEC are both different from

their nominal values. The intriguing questions are: (i) how big these differences can be, (ii)

whether these differences shrink as n gets large, and (iii) what causes such differences.

Using Lemma A.3, one can easily see that tr(WnW
I
nMn)− n−k

n T1n = O(1), and tr(C
2
n) =

T2n − 1
nT

2
1n +O(1). It follows that

E(LMSEC) = O((T2n − T 21n/n)−
1
2 ), and

Var(LMSEC) = 1 +
κε

n
i=1 c

2
n,ii

2T2n − 2
nT

2
1n

+O((T2n − T 21n/n)−1).

Hence, the mean bias (of LMSEC) depends on the magnitude of (T2n − 1
nT

2
1n)
− 1
2 , and the

variance bias depends on the magnitude of both (T2n − 1
nT

2
1n)
−1 and κε

n
i=1 c

2
n,ii. As n

gets large, (T2n − 1
nT

2
1n)
− 1
2 and (T2n − 1

nT
2
1n)
−1 shrink, but κε n

i=1 c
2
n,ii/(T2n − 1

nT
2
1n) may

not, leaving a permanent bias in variance, due to a non-zero κε (non-normality) and a non-

zero 1
n

n
i=1 c

2
n,ii (non-zero variability in the diagonal elements of WnW

I
n); see next section

for formal results. In summary, LMSEC has to be corrected for its general validity, and a

natural way to correct LMSEC is to find out the mean and variance of the quadratic form

uInCnun and then normalize.2

2This is along the idea of Konenker (1981), and the resulted tests are robust against distributional

misspecifications. A related problem, not considered in this paper, is to develop LM tests that are robust

against local misspecification as in Bera and Yoon (1993), Bera et al. (2001), etc.

4
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3 Robust LM Test for Spatial Error Components

We now present a robustified version of the LM test statistic given in (2). The following

basic regularity conditions are necessary for studying the asymptotic behavior of the test

statistics.

Assumption 1: The innovations {εi} are iid with mean zero, variance σ2ε , and excess
kurtosis κε. Also, the moment E|εi|4+η exists for some η > 0.

Assumption 2: The elements wn,ij of Wn are at most of order h
−1
n uniformly for

all i and j, with the rate sequence {hn}, bounded or divergent but satisfying hn/n → 0 as

n → ∞. The sequence {Wn} are uniformly bounded in both row and column sums. As
normalizations, the diagonal elements wn,ii = 0, and j wn,ij = 1 for all i.

Assumption 3: The elements of the n× k matrix Xn are uniformly bounded for all n,
and limn→∞ 1

nX
I
nXn exists and is nonsingular.

The Assumption 1 corresponds to one assumption of Kelejian and Prucha (2001) for

their central limit theorem of linear-quadratic forms. Assumption 2 corresponds to one

assumption in Lee (2004a) which identifies the different types of spatial dependence. Typ-

ically, one type of spatial dependence corresponds to the case where each unit has a fixed

number of neighbors such as the Rook or Queen contiguity and in this case hn is bounded,

and the other type of spatial dependence corresponds to the case where the number of neigh-

bors each spatial unit has grows as n goes to infinity, such as the case of group interaction.

In this case hn is divergent. To limit the spatial dependence to a manageable degree, it is

thus required that hn/n→ 0 as n→∞.

Theorem 1: If Wn, {εi} and Xn of Model (1) satisfy the Assumptions 1-3, then a
robust LM test statistic for testing H0 : σ

2
ν = 0 vs Ha : σ

2
ν > 0 takes the form

LM∗SEC =
ũInWnW

I
nũn/σ̃

2
ε − S1n

(κ̃εS2n + S3n)
1
2

(5)

where S1n =
n
n−k tr(WnW

I
nMn), S2n = i a

2
n,ii with {an,ii} being the diagonal elements of

An =Mn(WnW
I
n − 1

nS1nIn)Mn, S3n = 2tr(A
2
n), and κ̃ε is the excess sample kurtosis of ũn.

Under H0, (i) the positive part of LM
∗
SEC converges to that of N(0, 1), and (ii) LM

∗
SEC is

asymptotically equivalent to LMSEC when κε = 0.

5
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Proof: Proof of the theorem needs the four lemmas given in Appendix. We have

LM∗SEC =
ũInWnW

I
nũn/σ̃

2
ε − S1n

(κ̃εS2n + S3n)
1
2

=
ũInWnW

I
nũn − σ̃2εS1n

σ2ε(κεS2n + S3n)
1
2

· σ
2
ε(κεS2n + S3n)

1
2

σ̃2ε(κ̃εS2n + S3n)
1
2

and ũInWnW
I
nũn − σ̃2εS1n = ũIn(WnW

I
n − 1

nS1nIn)ũn = uInMn(WnW
I
n − 1

nS1nIn)Mnun =

uInAnun. Under H0, the elements of un are iid, we have E(uInAnun) = σ2εtr(An) = 0. By

Assumption 1 and Lemma A.1 in Appendix and noticing that the matrix An is symmetric,

we have Var(uInAnun) = σ4ε(κεS2n+S3n). Now, Assumption 2 ensures that the elements of

WnW
I
n are uniformly of order h

−1
n , and Lemma A.2 shows that Mn is uniformly bounded

in both row and column sums. It follows from Lemma A.4(iii) that 1
nS1n = O(h−1n ).

Assumption 2 and Lemma A.4 lead to that {WnW
I
n} are uniformly bounded in both row

and column sums. Thus, {WnW
I
n− 1

nS1nIn} are uniformly bounded in both row and column
sums. Finally, Lemma A.4(i) gives that {An} are uniformly bounded in both row and

column sums. It follows that the central limit theorem of linear-quadratic forms of Kelejian

and Prucha (2001) is applicable, which gives

ũInWnW
I
nũn − σ̃2εS1n

σ2ε(κεS2n + S3n)
1
2

D−→ N(0, 1).

Now, it is easy to show that under H0 σ̃
2
ε

p−→ σ2ε and that κ̃ε
p−→ κε.

3 Thus,

σ2ε(κεS2n + S3n)
1
2

σ̃2ε(κ̃εS2n + S3n)
1
2

p−→ 1.

This finishes the proof of Part (i).

For Part (ii), it suffices to show that S1n ∼ T1n and S3n ∼ 2T2n − 2
nT

2
1n. The former

follows from Lemma A.3(i), i.e., S1n =
n
n−k tr(WnW

I
nMn) = tr(WnW

I
n) + O(1). For the

latter, write An =MnA
o
nMn, where A

o
n =WnW

I
n − 1

nS1nIn. We have

tr(A2n) = tr(MnA
o
nMnMnA

o
nMn)

= tr[(AonMn)
2]

= tr((Aon)
2) +O(1) by Lemma A.3(iii)

3Let ε∗n = (In −Mn)εn. Then ũn = εn − ε∗n. The 2nd and 4th sample moments of ũn become 1
n ũ
I
nũn =

1
nε
I
nεn− 1

nε
∗I
n ε
∗
n and

1
n (ũn@ ũn)I(ũn@ ũn) = 1

n (εn@ εn)I(εn@ εn)+ 4
n (εn@ ε∗n)I(εn@ ε∗n)+ 1

n (ε
∗
n@ ε∗n)I(ε∗n@

ε∗n)− 4
n (εn @ εn)I(εn @ ε∗n) + 2

n (εn @ εn)I(ε∗n @ ε∗n)− 4
n (εn @ ε∗n)I(ε∗n @ ε∗n), where @ denotes the Hadamard

product. As the elements of In −Mn are O(n
−1) (Assumption 3), all the terms involving ε∗n are op(1).

6
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= tr[(WnW
I
n −

1

n
S1nIn)(WnW

I
n −

1

n
S1nIn)] +O(1)

= tr(WnW
I
nWnW

I
n)−

2

n
S1ntr(WnW

I
n) +

1

n2
S21ntr(In) +O(1)

= T2n − 1
n
T 21n +O(1),

which shows that S3n = 2tr(A
2
n) = 2T2− 2

nT
2
1+O(1). Q.E.D.

From Theorem 1 we see that when n is large LM∗SEC differs from LMSEC essentially by a

term κ̃εSn2 in the denominators of the test statistics. This term becomes (asymptotically)

negligible when κε = 0, which occurs when ε is normal. This is because S2n =
n
i=1 a

2
ii ≤

n
i=1

n
j=1 a

2
ij =

1
2S3n. When κε W= 0, which typically occurs when ε is non-normal, κ̃ε =

Op(1). In this case it becomes unclear whether κ̃εS2n is also asymptotically negligible. The

key is the relative magnitudes of S2n and S3n, which depend on many factors. The following

corollary summarizes the detailed results.

Corollary 1: Under the assumptions of Theorem 1, we have

(i) If hn is bounded, then S2n ∼ S3n;
(ii) If hn →∞ as n→∞, then S2n = O(n/h2n) and S3n = O(n/hn);
(iii) 1

nS2n ∼ σ2n(r) ≡ 1
n

n
i=1(rn,i − r̄n)2, where r̄n = n

i=1 rn,i with {rn,i} being the
diagonal elements of WnW

I
n.

Proof: For (i) and (ii), note that the elements of WnW
I
n− 1

nS1nIn are at most of order

O(h−1n ) uniformly. By Lemma A.4 (iii), the elements of An are also at most of order O(h−1n )

uniformly as {Mn} are uniformly bounded in both row and column sums. This leads to

S2n = O(n/h
2
n). Furthermore, as An itself is uniformly bounded in both row and column

sums (see the proof of Theorem 1), Lemma A.4 (iii) shows that the elements of A2n are at

most of order O(h−1n ) uniformly. This shows that S3n = O(n/hn).

To prove (iii), note that Wn is row normalized. We have
1
nS1n ∼ 1

nT1n =
1
ntr(WnW

I
n) =

1
n

n
i=1 rn,i = r̄n. From Lemma A.3 (vi) we have

1

n
S2n =

1

n

n

i=1

a2ii ∼
1

n

n

i=1

(WnW
I
n −

1

n
S1nIn)ii

2

∼ 1

n

n

i=1

(rn,i − r̄n)2 ≡ σ2n(r), (6)

which completes the proof of Corollary 1.

The results of Corollary 1 lead to some important conclusions. Firstly, when hn is

bounded, S2n ∼ S3n. Hence, if κε W= 0, the asymptotic variance of LMSEC will be larger

7
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than 1, leading to over-rejections of null hypothesis when errors are nonnormal. This point

is confirmed by the Monte Carlo results given in Table 1 and, in particular, Table 3a, where

we see that the empirical coverage of the LMSEC test under non-normal errors increases

with n, reaching to around {24%, 21%, 15%} when n = 1512 (Table 3a, dgp=3) for tests of
nominal levels {10%, 5%, 1%}. In contrast, the LM∗SEC test performs very well in general.

Secondly, when hn increases with n, S3n is generally of higher order in magnitude than

S2n. Hence, as n increases S3n eventually becomes the dominate term in the denominator of

the test statistic LM∗SEC, and LM
∗
SEC would eventually behave like LMSEC even when there

exists excess kurtosis or non-normality in general. However, a detailed examination shows

that the finite sample difference between LM∗SEC and LMSEC could still be large even when

the sample size is very large. Taking, for example, hn = n
0.25, we have S2n = O(n

0.5) and

S3n = O(n
0.75). It follows that with κ̃ε being Op(1) the excess kurtosis may have significant

impact on the variance and hence on the test statistic even when n is very large. The

Monte Carlo simulation results given in Table 4a indeed confirm this point, where we see

huge size distortions of LMSEC in the cases of non-normal errors. Although the magnitude

of size distortion seems decreasing as n increases the empirical sizes of LMSEC can still be

around {16%, 11%, 6%} corresponding to nominal sizes {10%, 5%, 1%} even when n is 1500
(Table 4a, dgp=3). Taking another example with hn = n

0.75, we have S2n = O(n
−0.5) and

S3n = O(n
0.25). Apparently under this situation, the impact of the κ̃εS2n term is negligible.

However, as shown in Corollary 2 and confirmed by the Monte Carlo results in Table 4c,

the finite sample bias in the mean of LMSEC starts to have a much bigger impact which

distorts greatly the null distribution of LMSEC, making the test severely under-sized.
4

Thirdly and perhaps more importantly, the result (iii) of Corollary 1 shows that the

variance σ2n(r) (variability in general) of the diagonal elements of WnW
I
n plays a key role

in the behavior of the test statistics. When σ2n(r) = 0 or σ
2
n(r) → 0 as n → ∞, LMSEC ∼

LM∗SEC. When σ2n(r) W= 0 even when n is large, LMSEC may differ from LM∗SEC, and

as n goes large the difference may grow (as in the case where hn is bounded and errors

4Note that one spatial layout leading to hn = n
δ, 0 < δ < 1, is the so-called group interaction (see, e.g.,

Lee, 2007). In this case hn corresponds to the average group size. If δ = 0.25, for example, then there are

many groups but each group contains only a few members although the number of units in each group grows

with n. If δ = 0.75, however, then there are a few groups, but each group contains many members.

8
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are nonnormal), or may shrink (as in the case where hn is unbounded and the errors are

nonnormal). It is interesting to note that in the framework of spatial contiguity the ith

diagonal element rn,i of WnW
I
n is the reciprocal of the number of neighbors the ith spatial

unit has; and that in the framework of group interaction, rn,i is the reciprocal of the size of

the ith group. Hence, in these situations, the variability of {rn,i} boils down to whether the
number of neighbors or whether the group size varies across the spatial units, and whether

these variations disappear as the sample size goes large.

We close this section by formalizing the heuristic arguments given in Section 2 regarding

the biases in the mean and variance of LMSEC, which complements Corollary 1 for a more

detailed understanding on why the existing LM test often under-performs.

Corollary 2: Under the assumptions of Theorem 1, (i) E(LMSEC) = −O((hn/n)
1
2 ),

and (ii) Var(LMSEC) = 1+κεO(h
−1
n )−O(hn/n), where the three big O terms are all positive.

Proof: The numerator of E(LMSEC) given in (3) is tr(WnW
I
nMn)− n−k

n T1n =
k
nT1n −

tr[(X InXn)−1(X InWnW
I
nXn)] = −O(1) as the two k×k matrices 1nX InXn and 1

nX
I
nWnW

I
nXn

are either positive definite or positive semidefinite, and both have uniformly bounded el-

ements. From the proof of Theorem 1, T2n − 1
nT

2
1n = O(n/hn) and is strictly positive.

Thus the result in (i) follows. For (ii), as T1n ∼ S1n (Lemma A.3(i)), Cn ∼ An, and thus
n
i=1 c

2
ii = O(n/h

2
n) > 0 (Corollary 1). Now, letting C

o
n =WnW

I − 1
nT1nIn, we have,

tr(C2n) = tr(MnC
o
nMnC

o
n)

= tr(ConMnC
o
n)− tr[(X InXn)−1(X InConMnC

o
nXn)]

= tr(Con
2)− tr[(X InXn)−1(X InCon2Xn)]− tr[(X InXn)−1(X InConMnC

o
nXn)]

= T2n − 1
n
T 21n −O(1),

because the two k × k matrices 1
nX
I
nC

o
n
2Xn and

1
nX
I
nC

o
nMnC

o
nXn are both positive semi-

definite and have uniformly bounded elements. The result in (ii) thus follows.

It turns out that the results given in Corollary 2 are rather indicative on the finite

sample behavior of LMSEC. First, there is a sizable downward bias in the mean of LMSEC,

which shrinks with n but the speed of shrinkage can be quite slow when hn is of order close

to n. For example, when hn = n
0.75, the bias in mean = −O((hn/n) 12 ) = −O(n−0.125) (see,

9

Appeared in:  Regional Science and Urban Economics, 2010, 40, 299-310. 



e.g., Table 4c). Second, there is a bias in the variance of LMSEC, which can be permanent

and upward when hn is bounded, sizable and upward when hn is unbounded but small, and

sizable and downward when hn is unbounded and big. For example, when hn is bounded,

the bias = O(1) if errors are nonnormal (see, e.g., Table 3a); when hn = n0.25 the bias

= O(h−1n ) = O(n−0.25) when errors are nonnormal (see Table 4a); when hn = n0.75 the bias

= −O(hn/n) = −O(n−0.25), irrespective of the error distributions (see Table 4c).

4 Monte Carlo Results

The finite sample performance of the test statistics introduced in this paper is evaluated

based on a series of Monte Carlo experiments under a number of different error distribu-

tions and a number of different spatial layouts. Comparisons are made between the newly

introduced test LM∗SEC and the existing LMSEC of Anselin (2001) to see the improvement of

the new tests in the situations where there is a distributional misspecification. The Monte

Carlo experiments are carried out based on the following data generating process:

Yi = β0 +X1iβ1 +X2iβ2 + ui,

where X1i’s are drawn from 10U(0, 1) and X2i’s are drawn from 5N(0, 1) + 5. Both are

treated as fixed in the experiments. The parameters β = {5, 1, 0.5}I and σ = 1. Seven

different sample sizes are considered for each combination of error distributions and spatial

layouts. Each set of Monte Carlo results (each row in the table) is based on 10,000 samples.

Spatial Weight Matrix. Three general spatial layouts are considered in the Monte

Carlo experiments. The first is based on Rook contiguity, the second is based on Queen

contiguity and the third is based on the notion of group interactions.

The detail for generating the Wn matrix under rook contiguity is as follows: (i) allocate

symbolically the n spatial units indexed by {1, 2, · · · , n} randomly into a lattice of f×m(≥ n)
squares, (ii) let Wij = 1 if the unit j is in a square which is on immediate left, or right, or

above, or below the square which contains the unit i, otherwise Wij = 0, i, j = 1, · · · , n, to
form an n×n matrix, and (iii) divide each element of this matrix by its row sum to giveWn.

So, under Rook contiguity there are 4 neighbors for each of the inner units, 3 for a unit on

the edge, and 2 for a corner unit. The Wn matrix under Queen contiguity can be generated
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in a similar way as that under rook contiguity, but with additional neighbors which share

a common vertex with the unit of interest. In this case a inner unit has 8 neighbors, an

edge unit has 5, and a corner unit has 3. Thus the variability of the number of neighbors

is greater under Queen than under Rook contiguity. For irregular spatial contiguity, the

variation in number of neighbors is greater.

For both regular Rook and Queen spatial layouts, whether f is fixed makes a difference.

Thus, we consider two cases: (i) f = 5, and (ii) f = m. It is easy to show that for spatial

units arranged in a regular f×m lattice, Rook contiguity leads to σ2n(r) defined in (5) as

nσ2n(r) =
f+m+ 2

6fm

2

+ 2
1

12
− m+ f+ 2

6fm

2

(k + f− 4) + 4 1

4
− m+ f+ 2

6fm
. (7)

With n = fm, it is easy to see that, if f is fixed, then m = O(n) and σ2n(r) = O(1) for f > 2;

if both f and m go large as n → ∞, then σ2n(r) = o(1). Thus the case of either f > 2 or

m > 2 fixed leads to a permanent variablity in {rn,i}, whereas the case of neither f nor m
fixed leads to a temporary or finite sample variability in {rn,i} which disappears as n→∞.
Similarly, under Queen contiguity, we have

nσ2n(r) =
9(f+m)− 14

60fm

2

(f− 2)(m− 2) + 2 3

40
− 9(f+m)− 14

60fm

2

(f+m− 4)

+4
5

24
− 9(f+m)− 14

60fm
, (8)

which gives σ2n(r) = O(1) when either k > 2 or m > 2 is fixed, and σ2n(r) = o(1) when

neither f nor m is fixed.

To generate the Wn matrix according to the group interaction scheme, suppose we have

f groups of sizes {m1,m2, · · · ,mf}. Define Wn = diag{Wj/(mj − 1), j = 1, · · · , f}, a matrix
formed by placing the submatricesWj along the diagonal direction, whereWj is an mj×mj

matrix with ones on the off-diagonal positions and zeros on the diagonal positions. Note

that n = f
j=1mj . We consider three different methods of generating the group sizes.

The first is that the group size is a constant across the groups and with respect to the

sample size n, i.e., m1 = m2 = · · · = mf = m, where m is free of n. In this case increasing

n means having more groups of the same size m. The second is that the group size changes

across the groups but not with respect to the sample size n. In this case, increasing n means

having more groups of sizesm1 orm2, · · ·. The third method is the most complicated one and
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is described as follows: (a) calculate the number of groups according to f = Round(n6), and

the approximate average group size m = n/f, (b) generate the group sizes (m1,m2, · · · ,mf)

according to a discrete uniform distribution from m/2 to 3m/2, (c) adjust the group sizes

so that f
j=1mj = n, and (d) define W = diag{Wj/(mj − 1), j = 1, · · · , f} as described

above. In our Monte Carlo experiments, we choose 6 = 0.25, 0.50, and 0.75, representing

respectively the situations where (i) there are few groups and many spatial units in a group,

(ii) the number of groups and the sizes of the groups are of the same magnitude, and (iii)

there are many groups of few elements in each. Clearly, the first method leads to σ2n(r) = 0,

the second method leads to σ2n(r) = O(1), and the third method leads to σ
2
n(r) = o(1). In

all spatial layouts described above, only the last one gives hn unbounded with hn = n
1−6.

Error Distributions. The reported Monte Carlo results correspond to the following

four error distributions: (i) standard normal, (ii) mixture normal, (iii) log-normal, and (iv)

chi-square, where (ii)-(iv) are all standardized to have mean zero and variance one, and

(i)-(iii) correspond to those used in Kelejian and Prucha (1999) and Anselin and Moreno

(2003). The standardized normal-mixture variates are generated according to

ui = ((1− ξi)Zi + ξiτZi)/(1− p+ p ∗ τ2)0.5,

where ξ is a Bernoulli random variable with probability of success p and Zi is standard

normal independent of ξ. The parameter p in this case also represents the proportion of

mixing the two normal populations. In our experiments, we choose p = 0.05, meaning

that 95% of the random variates are from standard normal and the remaining 5% are from

another normal population with standard deviation τ . We choose τ = 5, or 10 to simulate

the situation where there are gross errors in the data. The standardized lognormal random

variates are generated according to

ui = [exp(Zi)− exp(0.5)]/[exp(2)− exp(1)]0.5.

This gives an error distribution that is both skewed and leptokurtic. The normal mix-

ture gives an error distribution that is still symmetric like normal but leptokurtic. The

standardized chi-square random variates are generated in a similar fashion. Other non-

normal distributions, such as normal-gamma mixture, are also considered and the results

are available from the author upon request.
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Size of the Tests. Tables 1-4 summarize the empirical sizes of the two tests. The

results in Table 1 correspond to Rook or Queen contiguity with f fixed at 5. In this case, hn

is bounded, σ2n(r) = O(1) as shown in (7) and (8), and κ̃ = Op(1) if errors are nonnormal,

resulting in κ̃S2n ∼ S3n. This means that the difference between the two tests may not
vanish as n goes large. Monte Carlo results in Table 1 indeed show that when errors are non-

normal, the null distribution of the LMSEC (except the mean) diverges away from N(0, 1)

as n increases; in contrast, the null distribution of LM∗SEC converges to N(0, 1). Comparing

the results in Table 1b with the results in Table 1a, we see that the null performance of

LMSEC gets poorer because in this case σ
2
n(r) is larger. This is not the case for the new

test LM∗SEC. It is interesting to note that LM
∗
SEC seems perform better than LMSEC even

when the errors are drawn from a normal population. The results reported in Table 2 also

correspond to Rook or Queen contiguity but with f = m =
√
n. In this case σ2n(r) = o(1) as

shown in (7) and (8), and hence the term κ̃S2n is negligible relative to S3n when n is large,

and the two statistics should behave similarly. The results confirm this theoretical finding

although the comparative advantage seems go to the new statistic.

The results reported in Table 3 correspond to group interaction spatial layout with

group sizes fixed at {2, 3, 4, 5, 6, 7} for Table 3a, and at 5 for Table 3b. In these situations,
increasing n means having more groups of the same sizes, and thus hn is bounded. The first

case gives σ2n(r) = O(1) where our theory predicts that the variance of LMSEC has a bias

of order O(1). Indeed, the results in Table 3a show that when errors are non-normal, the

LMSEC test can perform quite badly with its variance and empirical sizes increasing with n

quite rapidly and being far above their nominal levels. In contrast, the LM∗SEC test performs

very well in all situations. The second case gives σ2n(r) = 0. As our theory predicted, the

results given in Table 3b confirm that LMSEC performs well when n is large.

The results given in Table 4 correspond to group interaction again, but this time the

group size varies across groups and increases with n, which results in an unbounded hn.

Although the theory predicts that the two tests should behave similarly when n is large

and the results indeed show some signs of convergence in size, the LMSEC can still perform

badly even when n = 1500, in particular when hn is either small (e.g., there are many small

groups) or large (e.g., there are a few large groups). In contrast, the proposed test LM∗SEC
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performs very well in general. Table 4a corresponds to f = n0.75(hn = n0.25), i.e., there

are many small groups. As the theory predicted, the bias in mean of LMSEC is small, but

the bias in variance (upward) can be large when errors are non-normal, resulting an overall

poor performance of LMSEC when errors are non-normal. This point is clearly shown by the

Monte Carlo results in Table 4a. Table 4b corresponds f = n0.5(hn = n
0.5). As hn becomes

larger, the effect of downward mean bias of LMSEC starts to show. Also, when n is not

large, the downward bias term in the variance of LMSEC overtakes the upward bias term,

making the overall variance of LMSEC being smaller than 1 and the empirical frequencies

of rejection lower than the nominal levels. Table 4c corresponds f = n0.25(hn = n
0.75), i.e.,

there are a few large groups. In this case, the downward biases in the mean and variance of

LMSEC become more severe, resulting in the empirical frequencies of rejection much lower

than the nominal levels. As n increases, the convergence of LMSEC to N(0, 1) is very slow.

In contrast, the overall performance of LM∗SEC is quite acceptable, except that the heavy

spatial dependence causes the distribution LM∗SEC being flatter in far tails than N(0, 1).

Power of the proposed test. The Monte Carlo results given above show that the

null distribution of LMSEC depends very much on the error distribution and on the spatial

layouts and can be far from the nominal distribution, namely N(0, 1), even when sample size

is large. This means that LMSEC is generally invalid unless one is certain that the errors

are normally distributed. In contrast, the null distribution of LM∗SEC is generally quite

close to N(0, 1), hence should be recommended for practical applications. One issue left is

the power of the test. Given the non-robust nature and poor finite sample performance of

LMSEC, it is only necessary to investigate the power property of the proposed test. As seen

from the Monte Carlo results given above, the empirical sizes of LM∗SEC at the 10% nominal

level are most stable, thus the power study will be carried at the 10% nominal size.

Table 5a reports the empirical powers of the proposed test under Rook and Queen spatial

contiguity, and Table 5b reports the results under group interaction. Some observations are

in order: (i) power increases as σv increases from 0, (ii) power decreases as the degree of

spatial dependence increases (Table 5a, Rook vs Queen; and Table 5b, δ = .25 vs δ = .5

and .75), (iii) variation in group sizes does not affect much on the power (Table 5a, f = 5

vs f =
√
n; Table 5b, panel 1 vs panel 2), and (iv) power increases sharply with n.

14

Appeared in:  Regional Science and Urban Economics, 2010, 40, 299-310. 



5 Conclusions and Discussions

A modified LM test of spatial error components is proposed, which is shown to be robust

against non-normality and spatial layout. Monte Carlo results show that the proposed test

performs very well in general and clearly outperforms the existing LM test. It is shown that

the variation in the diagonal elements of WnW
I
n (reciprocals of group sizes in case of group

interaction) plays a key role in the robustness of the LM test. When this variation is zero or

approaches to zero as n goes large, the existing test is robust asymptotically, but otherwise it

is not. However, our results show that even when the existing test is asymptotically robust,

its finite sample performance can be quite sensitive to error distributions and spatial layouts.

In contrast, the proposed test performs well in all situations. It is interesting to note that

the proposed test statistic is free of the skewness measure, showing that skewness of the

error distribution does not affect the asymptotic behavior of the LM tests.

Naturally, one may think that the same idea may be applied to a closely related but

more popular models, such as the linear regression with a SAR or SMA error process, to

obtain a robust LM test. However, it turns out that the LM test for this model is already

asymptotically robust against the distributional misspecifications. This follows either from

the results of Kelejian and Prucha (2001), or can be seen directly as follows. Burridge’s

(1980) LM test against either a SAR or SMA error in linear models is of the form:

LMBUR =
n√
Tn

ũInWnũn
ũInũn

=
n√
Tn

uInMnWnMnun
uInMnun

∼ u
I
nMnWnMnun√

Tnσ2ε
,

where ũn is again the OLS residuals and Tn = tr(W
I
nWn +W

2
n). This shows that LMBUR

has a similar structure as LMSEC, but with Wn in place of WnW
I
n − 1

nT1nIn and MnWnMn

in place of Cn. The key difference is that the diagonal elements ofWn are all zero, but those

ofWnW
I
n− 1

nT1nIn are not necessarily so. As a result, E(LMBUR) ≈ 0 and Var(LMBUR) ≈ 1
for n large, irrespective of the error distributions. Similar phenomenon may be observed

for other models such as the linear regression models with a SAR lag, or more generally

with a SARAR(p, q) (Kelejian and Prucha, 2001) or SARMA(p, q) (Anselin, 2001) effect.

A general and important issue left is the finite sample dependence of these LM tests on the

spatial layouts. While the issue of finite sample corrections is important and can be handled

along the same idea, the scope of it is quite wide and a separate future work is necessary.
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Appendix: Some Useful Lemmas

Lemma A.1 (Lee, 2004a, p. 1918): Let vn be an n×1 random vector of iid elements with
mean zero, variance σ2v, and finite excess kurtosis κv. Let An be an n dimensional square

matrix. Then E(vInAnvn) = σ2vtr(An) and Var(v
I
nAnvn) = σ4vκv

n
i=1 a

2
n,ii + σ4vtr(AnA

I
n +

A2n), where {an,ii} are the diagonal elements of An.

Lemma A.2 (Lee, 2004a, p. 1918): Suppose that the elements of the n× k matrix Xn
are uniformly bounded; and limn→∞ 1

nX
I
nXn exists and is nonsingular. Then the projectors

Pn = Xn(X
I
nXn)

−1X In and Mn = In −Xn(X InXn)−1X In are uniformly bounded in both row
and column sums.

Lemma A.3 (Lemma A.9, Lee, 2004b): Suppose that An represents a sequence of n×n
matrices that are uniformly bounded in both row and column sums. The elements of the

n×k matrix Xn are uniformly bounded; and limn→∞ 1
nX
I
nXn exists and is nonsingular. Let

Mn = In −Xn(X InXn)−1X In. Then

(i) tr(MnAn) = tr(An) +O(1)

(ii) tr(AInMnAn) = tr(A
I
nAn) +O(1)

(iii) tr[(MnAn)
2] = tr(A2n) +O(1), and

(iv) tr[(AInMnAn)
2] = tr[(MnA

I
nAn)

2] = tr[AInAn)2] +O(1)

Furthermore, if an,ij = O(h
−1
n ) for all i and j, then

(v) tr2(MnAn) = tr
2(An) +O(

n
hn
), and

(vi) n
i=1[(MnAn)ii]

2 = n
i=1(an,ii)

2 +O(h−1n ),

where (MnAn)ii are the diagonal elements of MnAn, and an,ii the diagonal elements of An.

Lemma A.4 (Kelejian and Prucha, 1999; Lee, 2002): Let {An} and {Bn} be two
sequences of n× n matrices that are uniformly bounded in both row and column sums. Let
Cn be a sequence of conformable matrices whose elements are uniformly O(h

−1
n ). Then

(i) the sequence {AnBn} are uniformly bounded in both row and column sums,
(ii) the elements of An are uniformly bounded and tr(An) = O(n), and

(iii) the elements of AnCn and CnAn are uniformly O(h
−1
n ).
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Table 1a. Empirical Means, SDs and Sizes of the Tests, Rook Contiguity, f = 5∗

Anselin’s Test Proposed Test
dgp n Mean SD 10% 5% 1% Mean SD 10% 5% 1%
1 20 -0.2552 0.8854 0.0541 .0255 .0047 -0.0061 1.1108 .1284 .0811 .0280

50 -0.1949 0.9508 0.0668 .0327 .0069 -0.0015 1.0363 .1158 .0624 .0182
100 -0.1333 0.9784 0.0797 .0408 .0092 -0.0001 1.0226 .1098 .0606 .0157
200 -0.1149 0.9971 0.0845 .0440 .0100 -0.0026 1.0204 .1085 .0577 .0148
500 -0.0639 0.9899 0.0880 .0435 .0080 0.0133 0.9998 .1057 .0529 .0105
1000 -0.0384 1.0064 0.0968 .0506 .0105 0.0136 1.0113 .1089 .0555 .0126
1500 -0.0358 0.9994 0.0916 .0485 .0130 0.0073 1.0026 .1002 .0533 .0148

2 20 -0.2512 0.8399 0.0440 .0177 .0021 -0.0013 1.0224 .1115 .0650 .0178
50 -0.1952 1.0170 0.0814 .0496 .0171 -0.0017 0.9642 .0994 .0591 .0179
100 -0.1186 1.0746 0.0906 .0544 .0206 0.0136 0.9606 .0912 .0518 .0171
200 -0.1126 1.0959 0.0952 .0562 .0201 -0.0003 0.9491 .0842 .0460 .0140
500 -0.0949 1.1261 0.1093 .0626 .0196 -0.0158 0.9678 .0902 .0476 .0100
1000 -0.0401 1.1499 0.1185 .0711 .0225 0.0112 0.9879 .0946 .0513 .0132
1500 -0.0249 1.1613 0.1266 .0737 .0219 0.0154 0.9968 .0977 .0513 .0117

3 20 -0.2586 0.8531 0.0468 .0193 .0037 -0.0109 1.0391 .1180 .0682 .0194
50 -0.1981 0.9962 0.0797 .0458 .0158 -0.0058 0.9873 .1052 .0608 .0191
100 -0.1286 1.0269 0.0873 .0531 .0203 0.0046 0.9678 .0970 .0553 .0198
200 -0.1253 1.0685 0.0944 .0574 .0199 -0.0095 0.9687 .0931 .0542 .0179
500 -0.0641 1.1399 0.1173 .0700 .0259 0.0107 0.9870 .0995 .0528 .0168
1000 -0.0614 1.1851 0.1250 .0787 .0307 -0.0067 0.9916 .0989 .0544 .0162
1500 -0.0361 1.2124 0.1365 .0840 .0319 0.0043 0.9920 .1007 .0532 .0151

4 20 -0.2533 0.8763 0.0524 .0256 .0045 -0.0036 1.0883 .1286 .0782 .0274
50 -0.2120 0.9612 0.0719 .0372 .0101 -0.0192 1.0205 .1050 .0621 .0202
100 -0.1139 0.9962 0.0901 .0465 .0127 0.0197 1.0181 .1169 .0647 .0200
200 -0.1203 1.0025 0.0847 .0480 .0113 -0.0078 1.0036 .1016 .0565 .0151
500 -0.0762 1.0096 0.0910 .0465 .0121 0.0007 0.9997 .1019 .0513 .0134
1000 -0.0639 1.0217 0.0982 .0524 .0115 -0.0120 1.0076 .1036 .0555 .0126
1500 -0.0426 1.0124 0.0939 .0495 .0118 0.0005 0.9971 .0976 .0516 .0117

∗The n spatial units are randomly placed on a lattice of f×m squares.

dgp1=normal, dgp2=normal mixture(τ = 10, p = 0.05), dgp3=lognormal, dgp4=chi-squared(df=3).
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Table 1b. Empirical Means, SDs and Sizes of the Tests, Queen Contiguity, f = 5∗

Anselin’s Test Proposed Test
dgp n Mean SD 10% 5% 1% Mean SD 10% 5% 1%
1 20 -0.5543 0.6913 .0189 .0089 .0018 0.0120 1.1381 .1299 .0924 .0441

50 -0.3213 0.8662 .0475 .0262 .0082 -0.0029 1.0362 .1139 .0691 .0276
100 -0.2562 0.9330 .0628 .0349 .0107 -0.0002 1.0253 .1124 .0681 .0238
200 -0.1735 0.9793 .0761 .0399 .0110 0.0019 1.0240 .1114 .0621 .0189
500 -0.1092 0.9893 .0845 .0432 .0117 0.0107 1.0082 .1055 .0583 .0150
1000 -0.0853 0.9890 .0890 .0457 .0109 0.0036 0.9989 .1060 .0555 .0145
1500 -0.0823 0.9903 .0898 .0462 .0113 -0.0142 0.9964 .1031 .0547 .0129

2 20 -0.5627 0.6953 .0175 .0070 .0012 -0.0038 1.0550 .1248 .0820 .0307
50 -0.3175 0.9750 .0708 .0427 .0162 -0.0009 0.9800 .1056 .0675 .0244
100 -0.2649 1.0840 .0840 .0520 .0220 -0.0079 0.9633 .0962 .0570 .0223
200 -0.1637 1.1503 .1025 .0643 .0262 0.0085 0.9664 .0938 .0532 .0186
500 -0.1167 1.1792 .1176 .0719 .0243 0.0021 0.9684 .0952 .0519 .0116
1000 -0.0838 1.2209 .1291 .0804 .0286 0.0040 0.9987 .1007 .0547 .0144
1500 -0.0681 1.2278 .1335 .0863 .0296 0.0001 1.0026 .1031 .0554 .0138

3 20 -0.5558 0.7032 .0208 .0084 .0011 0.0066 1.0780 .1271 .0841 .0370
50 -0.3218 0.9259 .0597 .0361 .0135 -0.0050 0.9837 .1039 .0646 .0241
100 -0.2656 1.0171 .0732 .0452 .0174 -0.0099 0.9689 .0978 .0567 .0226
200 -0.1799 1.1241 .0974 .0612 .0246 -0.0056 0.9968 .0968 .0600 .0222
500 -0.1250 1.2040 .1216 .0764 .0308 -0.0102 0.9886 .1015 .0560 .0167
1000 -0.0955 1.2372 .1330 .0859 .0337 -0.0025 0.9828 .0996 .0558 .0138
1500 -0.0888 1.2869 .1394 .0911 .0384 -0.0133 0.9968 .1002 .0543 .0155

4 20 -0.5558 0.6889 .0178 .0080 .0013 0.0070 1.1046 .1285 .0860 .0399
50 -0.3259 0.8918 .0545 .0303 .0103 -0.0083 1.0317 .1082 .0674 .0287
100 -0.2621 0.9370 .0644 .0359 .0104 -0.0065 0.9956 .1054 .0629 .0217
200 -0.1689 0.9973 .0814 .0453 .0138 0.0066 1.0125 .1077 .0636 .0195
500 -0.1288 1.0082 .0875 .0488 .0142 -0.0091 1.0000 .1020 .0577 .0169
1000 -0.0825 1.0190 .0963 .0509 .0130 0.0062 1.0026 .1073 .0571 .0137
1500 -0.0558 1.0247 .1019 .0541 .0156 0.0121 1.0050 .1088 .0582 .0162

∗The n spatial units are randomly placed on a lattice of f×m squares.

dgp1=normal, dgp2=normal mixture(τ = 10, p = 0.05), dgp3=lognormal, dgp4=chi-squared(df=3).
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Table 2a. Empirical Means, SDs and Sizes of the Tests, Rook Contiguity, f = m∗

Anselin’s Test Proposed Test
dgp n Mean SD 10% 5% 1% Mean SD 10% 5% 1%
1 52 -0.3575 0.8954 .0456 .0227 .0041 0.0007 1.0987 .1298 .0794 .0280

72 -0.2155 0.9602 .0707 .0350 .0090 0.0050 1.0597 .1194 .0715 .0222
102 -0.1358 0.9741 .0810 .0421 .0098 -0.0006 1.0206 .1100 .0625 .0171
152 -0.1155 0.9787 .0823 .0411 .0075 -0.0030 1.0007 .1037 .0540 .0123
232 -0.0873 0.9880 .0834 .0447 .0095 -0.0062 0.9980 .1006 .0547 .0123
322 -0.0383 1.0032 .0958 .0498 .0104 0.0175 1.0085 .1056 .0567 .0128
392 -0.0639 0.9955 .0895 .0460 .0100 -0.0174 0.9990 .0977 .0515 .0119

2 52 -0.3546 0.8840 .0471 .0208 .0028 0.0035 1.0106 .1127 .0675 .0189
72 -0.2112 1.0039 .0794 .0491 .0172 0.0064 0.9615 .1001 .0611 .0174
102 -0.1435 1.0727 .0905 .0544 .0232 -0.0074 0.9526 .0886 .0515 .0189
152 -0.0982 1.1033 .0995 .0626 .0240 0.0124 0.9624 .0903 .0539 .0185
232 -0.0951 1.1076 .1028 .0614 .0213 -0.0128 0.9882 .0921 .0509 .0153
322 -0.0612 1.0895 .1082 .0597 .0187 -0.0050 0.9941 .0989 .0509 .0146
392 -0.0318 1.0787 .1088 .0625 .0168 0.0139 0.9976 .1008 .0546 .0123

3 52 -0.3556 0.8998 .0502 .0264 .0053 0.0021 1.0398 .1150 .0730 .0249
72 -0.2206 0.9827 .0765 .0427 .0145 -0.0003 0.9863 .1053 .0632 .0199
102 -0.1237 1.0340 .0936 .0569 .0215 0.0115 0.9716 .0996 .0604 .0206
152 -0.1092 1.0686 .1011 .0596 .0203 0.0030 0.9700 .0980 .0545 .0178
232 -0.0623 1.1088 .1116 .0679 .0270 0.0172 0.9905 .1033 .0579 .0200
322 -0.0887 1.0851 .1052 .0655 .0247 -0.0286 0.9766 .0958 .0560 .0179
392 -0.0649 1.1092 .1099 .0687 .0270 -0.0169 1.0000 .1001 .0591 .0189

4 52 -0.3540 0.8962 .0492 .0228 .0050 0.0042 1.0770 .1260 .0785 .0270
72 -0.2230 0.9522 .0668 .0356 .0099 -0.0031 1.0215 .1092 .0638 .0194
102 -0.1460 0.9800 .0817 .0420 .0112 -0.0110 1.0015 .1046 .0569 .0155
152 -0.1083 0.9990 .0884 .0462 .0128 0.0043 1.0006 .1029 .0587 .0154
232 -0.0758 1.0009 .0912 .0490 .0113 0.0052 0.9965 .1030 .0554 .0135
322 -0.0518 1.0085 .0951 .0499 .0104 0.0039 1.0030 .1042 .0545 .0115
392 -0.0405 1.0063 .0951 .0483 .0135 0.0060 1.0008 .1021 .0518 .0144

∗The n spatial units are randomly placed on a lattice of f×m squares.

dgp1=normal, dgp2=normal mixture(τ = 10, p = 0.05), dgp3=lognormal, dgp4=chi-squared(df=3).
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Table 2b. Empirical Means, SDs and Sizes of the Tests, Queen Contiguity, f = m∗

Anselin’s Test Proposed Test
dgp n Mean SD 10% 5% 1% Mean SD 10% 5% 1%
1 52 -0.4613 0.7557 .0277 .0136 .0034 0.0142 1.1079 .1306 .0858 .0379

72 -0.3936 0.8373 .0398 .0201 .0055 -0.0010 1.0419 .1128 .0714 .0279
102 -0.3157 0.9107 .0549 .0301 .0076 -0.0038 1.0216 .1124 .0672 .0237
152 -0.1847 0.9669 .0749 .0408 .0105 0.0111 1.0134 .1121 .0643 .0198
232 -0.1285 0.9641 .0787 .0405 .0105 -0.0026 0.9837 .1025 .0554 .0158
322 -0.1000 0.9897 .0882 .0447 .0088 -0.0055 1.0006 .1052 .0555 .0122
392 -0.0722 1.0030 .0930 .0462 .0089 0.0056 1.0105 .1092 .0561 .0126

2 52 -0.4941 0.7753 .0253 .0101 .0017 -0.0298 1.0220 .1180 .0708 .0240
72 -0.3931 0.9389 .0566 .0354 .0138 0.0012 0.9892 .1044 .0686 .0269
102 -0.3188 1.0812 .0786 .0499 .0230 -0.0062 0.9792 .0979 .0611 .0266
152 -0.1891 1.1445 .0985 .0627 .0261 0.0051 0.9650 .0961 .0545 .0192
232 -0.1024 1.1558 .1197 .0760 .0285 0.0200 0.9893 .1075 .0624 .0185
322 -0.1197 1.1282 .1066 .0655 .0236 -0.0218 0.9885 .0955 .0540 .0157
392 -0.0765 1.1091 .1097 .0642 .0221 0.0010 0.9879 .0977 .0515 .0161

3 52 -0.4730 0.7733 .0280 .0140 .0030 -0.0035 1.0339 .1231 .0754 .0283
72 -0.3983 0.9043 .0514 .0316 .0106 -0.0049 1.0027 .1028 .0668 .0283
102 -0.3061 1.0278 .0703 .0453 .0187 0.0059 0.9957 .1007 .0645 .0271
152 -0.1932 1.1029 .0955 .0600 .0237 0.0036 0.9815 .1012 .0588 .0221
232 -0.1178 1.1370 .1080 .0684 .0278 0.0059 0.9783 .1007 .0567 .0183
322 -0.0974 1.1449 .1076 .0657 .0264 -0.0017 0.9782 .0965 .0540 .0179
392 -0.0798 1.1433 .1126 .0722 .0292 -0.0013 0.9841 .1026 .0598 .0185

4 52 -0.4611 0.7627 .0277 .0133 .0036 0.0138 1.0841 .1292 .0827 .0336
72 -0.3760 0.8622 .0447 .0245 .0069 0.0198 1.0380 .1158 .0747 .0300
102 -0.3240 0.9324 .0568 .0314 .0104 -0.0125 1.0109 .1038 .0628 .0218
152 -0.1912 0.9868 .0782 .0441 .0141 0.0046 1.0052 .1076 .0638 .0212
232 -0.1360 1.0122 .0874 .0489 .0137 -0.0100 1.0107 .1047 .0596 .0188
322 -0.0957 1.0006 .0924 .0477 .0133 -0.0011 0.9948 .1045 .0564 .0156
392 -0.0650 1.0007 .0931 .0485 .0129 0.0127 0.9940 .1028 .0563 .0146

∗The n spatial units are randomly placed on a lattice of f×m squares.

dgp1=normal, dgp2=normal mixture(τ = 10, p = 0.05), dgp3=lognormal, dgp4=chi-squared(df=3).
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Table 3a. Empirical Means, SDs and Sizes of the Tests, Group Interaction
Group sizes = {2, 3, 4, 5, 6, 7} repeated m times, n = 27m∗

Anselin’s Test Proposed Test
dgp m Mean SD 10% 5% 1% Mean SD 10% 5% 1%
1 1 -0.2621 0.9313 .0650 .0363 .0079 0.0117 1.0988 .1367 .0860 .0304

2 -0.1685 0.9739 .0775 .0406 .0111 -0.0074 1.0489 .1144 .0681 .0208
4 -0.1239 0.9882 .0838 .0462 .0104 -0.0071 1.0247 .1054 .0623 .0167
8 -0.0782 0.9890 .0848 .0434 .0119 -0.0046 1.0059 .1001 .0531 .0145
19 -0.0589 0.9911 .0896 .0450 .0106 -0.0069 0.9982 .0994 .0504 .0122
37 -0.0423 1.0038 .0914 .0482 .0115 -0.0030 1.0080 .0987 .0525 .0131
56 -0.0346 0.9911 .0945 .0483 .0110 -0.0035 0.9936 .1001 .0514 .0118

2 1 -0.2913 1.1282 .0850 .0572 .0290 -0.0173 1.1070 .1256 .0863 .0417
2 -0.1470 1.3015 .1137 .0779 .0441 0.0138 1.0439 .1156 .0755 .0378
4 -0.1481 1.4938 .1413 .1040 .0616 -0.0208 1.0194 .1066 .0727 .0328
8 -0.0429 1.6957 .1808 .1402 .0890 0.0166 1.0242 .1171 .0783 .0325
19 -0.0365 1.7564 .2036 .1558 .0984 0.0093 1.0032 .1118 .0695 .0251
37 -0.0546 1.8010 .2120 .1656 .0961 -0.0072 1.0036 .1059 .0625 .0204
56 -0.0124 1.8028 .2247 .1716 .1017 0.0108 0.9943 .1076 .0612 .0185

3 1 -0.2805 1.2401 .1044 .0760 .0447 -0.0077 1.1166 .1309 .0929 .0527
2 -0.1724 1.4587 .1284 .0968 .0605 -0.0067 1.0547 .1151 .0824 .0455
4 -0.1291 1.7277 .1593 .1242 .0779 -0.0044 1.0288 .1105 .0793 .0392
8 -0.0914 2.0160 .1851 .1489 .0993 -0.0040 1.0038 .1091 .0756 .0370
19 -0.0465 2.4965 .2141 .1765 .1292 -0.0003 1.0203 .1105 .0785 .0371
37 -0.0396 2.7348 .2372 .1988 .1404 0.0038 1.0046 .1083 .0755 .0349
56 -0.0242 2.9737 .2439 .2060 .1510 0.0057 1.0107 .1087 .0744 .0362

4 1 -0.2711 1.0474 .0854 .0554 .0239 0.0012 1.1201 .1350 .0932 .0425
2 -0.1546 1.1314 .1104 .0727 .0295 0.0081 1.0667 .1287 .0838 .0301
4 -0.1074 1.1764 .1208 .0795 .0330 0.0091 1.0304 .1174 .0741 .0238
8 -0.0686 1.2178 .1351 .0863 .0372 0.0046 1.0188 .1126 .0663 .0215
19 -0.0537 1.2086 .1327 .0852 .0339 -0.0005 0.9870 .1008 .0591 .0156
37 -0.0385 1.2351 .1459 .0939 .0338 0.0013 0.9980 .1090 .0588 .0139
56 -0.0417 1.2515 .1440 .0889 .0357 -0.0091 1.0065 .1018 .0560 .0160

∗dgp1 = normal, dgp2=normal mixture(τ = 5, p = 0.05), dgp3=lognormal, dgp4=chi-squared(df=3).
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Table 3b. Empirical Means, SDs and Sizes of the Tests, Group Interaction
Group sizes = 5 repeated m times, n = 5m∗

Anselin’s Test Proposed Test
dgp m Mean SD 10% 5% 1% Mean SD 10% 5% 1%
1 5 -0.3704 0.8699 .0500 .0295 .0081 -0.0160 1.0739 .1230 .0793 .0349

10 -0.3109 0.9189 .0587 .0314 .0078 0.0066 1.0359 .1170 .0730 .0259
20 -0.1377 0.9812 .0834 .0461 .0124 0.0009 1.0215 .1110 .0646 .0187
40 -0.1059 0.9870 .0898 .0440 .0111 0.0015 1.0083 .1095 .0596 .0151
100 -0.0642 0.9994 .0944 .0471 .0120 0.0017 1.0078 .1064 .0549 .0143
200 -0.0434 0.9993 .0959 .0503 .0115 0.0027 1.0034 .1042 .0556 .0126
300 -0.0280 0.9970 .0961 .0514 .0116 0.0098 0.9997 .1027 .0551 .0126

2 5 -0.3483 0.8279 .0433 .0231 .0064 0.0112 1.0162 .1140 .0718 .0273
10 -0.3046 0.8822 .0494 .0262 .0054 0.0135 0.9868 .1071 .0631 .0208
20 -0.1457 0.9285 .0703 .0369 .0093 -0.0074 0.9653 .0974 .0530 .0157
40 -0.1053 0.9433 .0753 .0390 .0105 0.0022 0.9630 .0962 .0515 .0142
100 -0.0633 0.9826 .0863 .0449 .0105 0.0026 0.9906 .0980 .0522 .0129
200 -0.0439 0.9818 .0898 .0472 .0117 0.0023 0.9858 .0980 .0512 .0130
300 -0.0447 0.9894 .0943 .0463 .0084 -0.0070 0.9921 .1019 .0501 .0101

3 5 -0.3587 0.8002 .0412 .0211 .0069 -0.0016 0.9780 .1050 .0639 .0257
10 -0.3190 0.8437 .0461 .0257 .0068 -0.0026 0.9406 .0944 .0569 .0198
20 -0.1604 0.8975 .0680 .0397 .0117 -0.0227 0.9325 .0905 .0532 .0187
40 -0.1100 0.9375 .0770 .0452 .0163 -0.0027 0.9566 .0932 .0557 .0201
100 -0.0573 0.9655 .0875 .0505 .0170 0.0087 0.9732 .0974 .0561 .0186
200 -0.0351 0.9880 .0940 .0563 .0187 0.0111 0.9920 .0995 .0615 .0214
300 -0.0340 0.9811 .0926 .0520 .0151 0.0037 0.9837 .0973 .0555 .0162

4 5 -0.3509 0.8535 .0492 .0270 .0079 0.0082 1.0502 .1200 .0799 .0330
10 -0.3094 0.9001 .0529 .0281 .0075 0.0083 1.0115 .1114 .0671 .0230
20 -0.1476 0.9541 .0793 .0448 .0128 -0.0094 0.9929 .1038 .0631 .0191
40 -0.1041 0.9723 .0845 .0442 .0125 0.0033 0.9931 .1044 .0569 .0168
100 -0.0832 0.9917 .0891 .0488 .0126 -0.0174 0.9999 .1022 .0554 .0152
200 -0.0605 1.0075 .0977 .0527 .0138 -0.0144 1.0116 .1060 .0580 .0154
300 -0.0615 0.9836 .0880 .0452 .0106 -0.0238 0.9863 .0944 .0481 .0116

∗dgp1 = normal, dgp2=normal mixture(τ = 5, p = 0.05), dgp3=lognormal, dgp4=chi-squared(df=3).
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Table 4a. Empirical Means, SDs and Sizes of the Tests, Group Interaction
Number of groups f ∝ n.75, Group sizes m ∼ U(.5n.25, 1.5n.25)∗

Anselin’s Test Proposed Test
dgp n Mean SD 10% 5% 1% Mean SD 10% 5% 1%
1 20 -0.1115 0.9529 .0758 .0308 .0018 -0.0015 1.1489 .1405 .0809 .0150

50 -0.0878 0.9946 .0865 .0369 .0056 0.0057 1.0608 .1169 .0608 .0115
100 -0.0758 0.9849 .0879 .0429 .0078 0.0074 1.0176 .1102 .0551 .0120
200 -0.0880 0.9975 .0870 .0449 .0090 -0.0166 1.0148 .1029 .0547 .0127
500 -0.0669 0.9990 .0958 .0489 .0109 -0.0050 1.0071 .1079 .0581 .0135
1000 -0.0597 0.9954 .0890 .0440 .0116 -0.0114 0.9998 .0983 .0493 .0136
1500 -0.0379 0.9968 .0941 .0489 .0106 0.0024 0.9999 .1016 .0544 .0122

2 20 -0.1230 1.3587 .1569 .1167 .0582 -0.0150 1.1944 .1859 .1121 .0108
50 -0.1199 1.9904 .2418 .2051 .1472 -0.0074 1.0853 .1799 .0704 .0048
100 -0.1266 2.3663 .2421 .2097 .1591 -0.0166 1.0398 .1502 .0923 .0182
200 -0.0613 2.1549 .2092 .1708 .1201 0.0037 1.0275 .1119 .0836 .0373
500 -0.0680 1.7972 .1954 .1519 .0918 -0.0023 0.9985 .0988 .0608 .0242
1000 -0.0728 1.4726 .1750 .1195 .0571 -0.0156 0.9886 .0972 .0535 .0145
1500 -0.0415 1.4200 .1697 .1145 .0541 -0.0011 1.0026 .1008 .0573 .0178

3 20 -0.1327 1.3252 .1606 .1144 .0381 -0.0249 1.2033 .1839 .1038 .0108
50 -0.0631 1.7203 .2239 .1778 .1064 0.0235 1.0846 .1698 .0775 .0068
100 -0.0699 2.0036 .2207 .1838 .1239 0.0064 1.0500 .1504 .0921 .0155
200 -0.0738 1.8680 .1814 .1438 .0851 -0.0016 1.0179 .1084 .0728 .0360
500 -0.0586 1.7801 .1731 .1337 .0779 0.0004 1.0056 .1006 .0604 .0242
1000 -0.0394 1.5745 .1695 .1234 .0676 0.0027 0.9955 .1065 .0622 .0236
1500 -0.0426 1.5613 .1634 .1148 .0640 -0.0037 1.0063 .0998 .0612 .0243

4 20 -0.0963 1.0741 .1133 .0591 .0080 0.0129 1.1744 .1616 .0930 .0164
50 -0.0785 1.1981 .1376 .0853 .0274 0.0034 1.0719 .1356 .0720 .0160
100 -0.0668 1.2344 .1416 .0914 .0341 -0.0021 1.0357 .1203 .0662 .0154
200 -0.0559 1.1970 .1345 .0836 .0325 0.0262 1.0172 .1165 .0669 .0191
500 -0.0490 1.1242 .1209 .0706 .0271 0.0064 1.0014 .1069 .0584 .0184
1000 -0.0466 1.0585 .1111 .0604 .0161 0.0021 0.9986 .1065 .0561 .0139
1500 -0.0321 1.0356 .1056 .0596 .0149 0.0078 0.9860 .1022 .0551 .0133

∗dgp1 = normal, dgp2=normal mixture (τ = 10, p = 0.05), dgp3=lognormal, dgp4=chi-squared(df=3).
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Table 4b. Empirical Means, SDs and Sizes of the Tests, Group Interaction
Number of groups f ∝ n.5, Group sizes m ∼ U(.5n.5, 1.5n.5)∗

Anselin’s Test Proposed Test
dgp n Mean SD 10% 5% 1% Mean SD 10% 5% 1%

1 20 -0.3578 0.8713 .0550 .0310 .0084 -0.0099 1.1168 .1317 .0879 .0413
50 -0.2694 0.9177 .0661 .0371 .0107 0.0036 1.0348 .1204 .0764 .0289
100 -0.2032 0.9620 .0748 .0433 .0152 0.0055 1.0271 .1136 .0701 .0256
200 -0.1568 0.9785 .0812 .0473 .0163 0.0173 1.0196 .1135 .0672 .0266
500 -0.1378 0.9859 .0875 .0481 .0150 0.0117 1.0126 .1129 .0672 .0211
1000 -0.1186 0.9792 .0865 .0478 .0130 0.0037 0.9962 .1078 .0628 .0190
1500 -0.1019 0.9933 .0904 .0500 .0156 0.0121 1.0077 .1093 .0627 .0201

2 20 -0.3479 0.8240 .0424 .0200 .0055 0.0034 1.0231 .1178 .0719 .0261
50 -0.2721 0.8545 .0498 .0254 .0075 0.0004 0.9174 .0889 .0515 .0173
100 -0.1958 0.9479 .0668 .0382 .0124 0.0126 0.9334 .0915 .0511 .0165
200 -0.1763 0.9917 .0787 .0448 .0145 -0.0037 0.9428 .0930 .0506 .0157
500 -0.1511 0.9917 .0810 .0437 .0145 -0.0017 0.9696 .0979 .0539 .0167
1000 -0.1151 0.9934 .0866 .0485 .0152 0.0070 0.9778 .1001 .0575 .0183
1500 -0.1457 0.9949 .0836 .0465 .0131 -0.0314 0.9803 .0967 .0524 .0157

3 20 -0.3483 0.8186 .0439 .0236 .0063 0.0023 1.0172 .1128 .0724 .0290
50 -0.2629 0.9016 .0610 .0366 .0131 0.0107 0.9834 .1014 .0651 .0262
100 -0.2082 0.9444 .0704 .0411 .0164 0.0000 0.9567 .0976 .0582 .0223
200 -0.1681 0.9967 .0850 .0517 .0208 0.0058 0.9731 .1023 .0628 .0245
500 -0.1287 1.0011 .0876 .0507 .0201 0.0199 0.9817 .1047 .0612 .0226
1000 -0.1309 0.9993 .0847 .0513 .0168 -0.0078 0.9782 .0989 .0581 .0184
1500 -0.1311 1.0038 .0856 .0510 .0170 -0.0166 0.9800 .0962 .0563 .0188

4 20 -0.3674 0.8465 .0482 .0255 .0071 -0.0217 1.0735 .1225 .0846 .0346
50 -0.2822 0.9108 .0640 .0376 .0115 -0.0106 1.0170 .1125 .0701 .0281
100 -0.2022 0.9465 .0724 .0438 .0151 0.0066 0.9992 .1065 .0651 .0246
200 -0.1703 0.9743 .0811 .0460 .0168 0.0034 1.0039 .1055 .0659 .0250
500 -0.1631 0.9825 .0826 .0462 .0157 -0.0142 1.0038 .1062 .0632 .0210
1000 -0.1172 0.9857 .0842 .0484 .0156 0.0050 0.9993 .1060 .0607 .0198
1500 -0.0974 0.9891 .0898 .0510 .0139 0.0166 1.0004 .1096 .0619 .0188

∗dgp1 = normal, dgp2=normal mixture (τ = 10, p = 0.05), dgp3=lognormal, dgp4=chi-squared(df=3).
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Table 4c. Empirical Means, SDs and Sizes of the Tests, Group Interaction
Number of groups f ∝ n.25, Group sizes m ∼ U(.5n.75, 1.5n.75)∗

Anselin’s Test Proposed Test
dgp n Mean SD 10% 5% 1% Mean SD 10% 5% 1%
1 20 -0.5368 0.6713 .0295 .0173 .0058 -0.0091 1.1024 .1142 .0842 .0488

50 -0.3820 0.8296 .0505 .0306 .0114 0.0042 1.0276 .1109 .0759 .0380
100 -0.4075 0.8141 .0462 .0298 .0123 0.0111 1.0254 .1064 .0740 .0382
200 -0.3466 0.8753 .0554 .0361 .0151 0.0078 1.0199 .1081 .0716 .0361
500 -0.3329 0.8852 .0592 .0355 .0141 -0.0143 0.9965 .1037 .0707 .0315
1000 -0.2914 0.8988 .0602 .0363 .0141 -0.0042 0.9858 .1027 .0665 .0291
1500 -0.3082 0.9051 .0612 .0363 .0136 -0.0214 0.9927 .1063 .0676 .0278

2 20 -0.5235 0.6229 .0206 .0105 .0039 0.0120 1.0058 .1079 .0764 .0386
50 -0.3844 0.7241 .0299 .0164 .0052 0.0011 0.8787 .0893 .0539 .0204
100 -0.4101 0.7467 .0385 .0210 .0063 0.0076 0.9108 .0955 .0624 .0271
200 -0.3544 0.8200 .0457 .0260 .0100 -0.0014 0.9371 .0948 .0606 .0248
500 -0.3084 0.9144 .0640 .0395 .0147 0.0122 0.9700 .1024 .0679 .0270
1000 -0.2966 0.9014 .0621 .0355 .0142 -0.0097 0.9804 .1039 .0668 .0273
1500 -0.2822 0.9016 .0615 .0382 .0142 0.0071 0.9865 .1040 .0659 .0285

3 20 -0.5355 0.6213 .0206 .0126 .0029 -0.0071 1.0021 .1062 .0743 .0396
50 -0.3955 0.7724 .0420 .0227 .0088 -0.0126 0.9426 .0964 .0655 .0276
100 -0.4280 0.7598 .0363 .0225 .0079 -0.0141 0.9385 .0946 .0610 .0288
200 -0.3584 0.8277 .0470 .0282 .0104 -0.0059 0.9522 .0978 .0632 .0273
500 -0.3212 0.9021 .0585 .0368 .0152 -0.0009 0.9611 .0960 .0628 .0277
1000 -0.2884 0.9036 .0598 .0390 .0151 -0.0009 0.9810 .1039 .0639 .0294
1500 -0.2980 0.8884 .0599 .0338 .0136 -0.0103 0.9714 .0992 .0650 .0254

4 20 -0.5366 0.6529 .0246 .0153 .0048 -0.0089 1.0653 .1153 .0810 .0445
50 -0.3940 0.8274 .0489 .0318 .0110 -0.0104 1.0208 .1062 .0758 .0366
100 -0.4217 0.8103 .0437 .0270 .0110 -0.0066 1.0161 .1037 .0749 .0357
200 -0.3442 0.8638 .0537 .0334 .0133 0.0106 1.0043 .1086 .0706 .0333
500 -0.3290 0.8876 .0581 .0362 .0142 -0.0098 0.9927 .1041 .0684 .0311
1000 -0.2892 0.9227 .0636 .0393 .0157 -0.0017 1.0111 .1097 .0697 .0312
1500 -0.3012 0.9028 .0603 .0369 .0142 -0.0137 0.9900 .1041 .0651 .0299

∗dgp1 = normal, dgp2=normal mixture (τ = 10, p = 0.05), dgp3=lognormal, dgp4=chi-squared (df=3).
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Table 5a. Empirical Powers of the Proposed Test, Rook or Queen Contiguity

n = 25 n = 100 n = 225
σv dgp1 dgp2 dgp3 dgp4 dgp1 dgp2 dgp3 dgp4 dgp1 dgp2 dgp3 dgp4

Rook Contiguity, f = 5
0.00 0.129 0.112 0.115 0.119 0.107 0.087 0.098 0.113 0.107 0.082 0.097 0.110
0.25 0.144 0.149 0.136 0.138 0.132 0.124 0.136 0.126 0.143 0.135 0.141 0.140
0.50 0.183 0.253 0.223 0.189 0.239 0.258 0.248 0.228 0.297 0.299 0.308 0.296
0.75 0.249 0.379 0.321 0.261 0.403 0.444 0.452 0.413 0.590 0.580 0.609 0.581
1.00 0.333 0.477 0.446 0.350 0.620 0.637 0.646 0.615 0.849 0.795 0.825 0.849
1.25 0.420 0.564 0.535 0.443 0.795 0.776 0.801 0.791 0.964 0.924 0.928 0.962
1.50 0.513 0.635 0.609 0.527 0.898 0.871 0.886 0.898 0.995 0.976 0.972 0.993
1.75 0.604 0.682 0.679 0.604 0.958 0.926 0.940 0.955 1.000 0.993 0.988 0.999
2.00 0.664 0.723 0.723 0.667 0.981 0.957 0.963 0.978 1.000 0.999 0.994 1.000

Rook Contiguity, f =
√
n

0.00 0.131 0.127 0.123 0.125 0.108 0.088 0.100 0.110 0.105 0.084 0.094 0.108
0.25 0.137 0.161 0.150 0.139 0.135 0.121 0.133 0.133 0.140 0.133 0.134 0.146
0.50 0.181 0.266 0.226 0.187 0.231 0.257 0.254 0.225 0.297 0.291 0.308 0.295
0.75 0.253 0.398 0.334 0.265 0.401 0.434 0.459 0.398 0.570 0.551 0.586 0.565
1.00 0.346 0.487 0.438 0.340 0.609 0.621 0.653 0.611 0.832 0.795 0.814 0.830
1.25 0.441 0.568 0.538 0.444 0.791 0.764 0.795 0.777 0.962 0.922 0.926 0.956
1.50 0.516 0.623 0.618 0.537 0.896 0.865 0.881 0.892 0.992 0.973 0.968 0.990
1.75 0.610 0.690 0.676 0.608 0.954 0.921 0.927 0.952 0.999 0.994 0.986 0.999
2.00 0.665 0.725 0.719 0.670 0.983 0.954 0.958 0.979 1.000 0.998 0.992 1.000

Queen Contiguity, f = 5
0.00 0.125 0.125 0.126 0.121 0.105 0.097 0.100 0.110 0.107 0.098 0.100 0.107
0.25 0.126 0.158 0.143 0.135 0.125 0.121 0.125 0.124 0.138 0.124 0.128 0.140
0.50 0.162 0.232 0.193 0.167 0.201 0.213 0.212 0.199 0.255 0.244 0.255 0.246
0.75 0.202 0.311 0.268 0.210 0.317 0.345 0.356 0.331 0.460 0.439 0.470 0.452
1.00 0.273 0.400 0.350 0.278 0.479 0.505 0.528 0.486 0.689 0.650 0.688 0.699
1.25 0.330 0.467 0.424 0.351 0.633 0.633 0.667 0.635 0.863 0.815 0.832 0.855
1.50 0.401 0.522 0.490 0.412 0.763 0.742 0.777 0.761 0.951 0.910 0.912 0.949
1.75 0.457 0.577 0.548 0.478 0.852 0.829 0.852 0.847 0.986 0.960 0.956 0.984
2.00 0.521 0.613 0.613 0.533 0.914 0.880 0.891 0.911 0.996 0.983 0.977 0.995

Queen Contiguity, f =
√
n

0.00 0.121 0.126 0.120 0.125 0.113 0.095 0.100 0.105 0.113 0.090 0.103 0.107
0.25 0.132 0.152 0.141 0.137 0.134 0.123 0.134 0.127 0.139 0.120 0.126 0.128
0.50 0.166 0.234 0.209 0.166 0.201 0.219 0.213 0.191 0.249 0.224 0.243 0.239
0.75 0.208 0.318 0.283 0.214 0.305 0.343 0.352 0.311 0.432 0.407 0.436 0.427
1.00 0.273 0.411 0.357 0.282 0.474 0.499 0.510 0.465 0.665 0.618 0.652 0.657
1.25 0.342 0.473 0.447 0.350 0.606 0.621 0.645 0.607 0.839 0.788 0.808 0.835
1.50 0.414 0.535 0.512 0.422 0.743 0.731 0.752 0.740 0.938 0.892 0.900 0.932
1.75 0.474 0.590 0.560 0.496 0.838 0.808 0.833 0.834 0.978 0.949 0.948 0.976
2.00 0.531 0.623 0.609 0.552 0.900 0.869 0.884 0.895 0.994 0.977 0.971 0.990
∗dgp1 = normal, dgp2=normal mixture (τ = 10, p = 0.05), dgp3=lognormal, dgp4=chi-squared (df=3).
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Table 5b. Empirical Power of the Proposed Test, Group Interaction

n = 25 n = 100 n = 225
σv dgp1 dgp2 dgp3 dgp4 dgp1 dgp2 dgp3 dgp4 dgp1 dgp2 dgp3 dgp4

Group Size = {2 3 5 7 8} for Panel 1; Group Size = 5 for Panel 2
0.00 0.138 0.123 0.128 0.140 0.116 0.116 0.113 0.114 0.103 0.116 0.115 0.113
0.25 0.159 0.173 0.163 0.155 0.148 0.137 0.137 0.148 0.165 0.143 0.145 0.157
0.50 0.209 0.306 0.250 0.216 0.271 0.227 0.246 0.250 0.387 0.217 0.265 0.332
0.75 0.305 0.435 0.371 0.300 0.508 0.377 0.442 0.455 0.738 0.400 0.504 0.653
1.00 0.420 0.534 0.500 0.424 0.750 0.539 0.625 0.694 0.950 0.631 0.728 0.902
1.25 0.529 0.617 0.603 0.532 0.902 0.691 0.778 0.864 0.994 0.832 0.864 0.983
1.50 0.641 0.674 0.685 0.637 0.967 0.808 0.863 0.944 1.000 0.939 0.932 0.998
1.75 0.713 0.728 0.742 0.717 0.990 0.891 0.914 0.979 1.000 0.983 0.964 1.000
2.00 0.780 0.776 0.788 0.777 0.997 0.939 0.941 0.992 1.000 0.996 0.980 1.000
0.00 0.127 0.096 0.100 0.115 0.115 0.078 0.089 0.111 0.106 0.075 0.094 0.110
0.25 0.138 0.146 0.133 0.141 0.146 0.130 0.141 0.140 0.163 0.138 0.152 0.158
0.50 0.193 0.269 0.243 0.196 0.268 0.317 0.315 0.270 0.365 0.409 0.398 0.366
0.75 0.261 0.404 0.353 0.275 0.475 0.564 0.557 0.487 0.686 0.734 0.723 0.691
1.00 0.355 0.517 0.459 0.368 0.699 0.736 0.750 0.700 0.920 0.902 0.907 0.921
1.25 0.453 0.589 0.562 0.470 0.857 0.857 0.868 0.858 0.988 0.969 0.970 0.983
1.50 0.533 0.651 0.632 0.546 0.937 0.923 0.926 0.937 0.998 0.993 0.990 0.998
1.75 0.610 0.696 0.688 0.631 0.975 0.959 0.961 0.974 1.000 0.999 0.996 0.999
2.00 0.674 0.745 0.734 0.679 0.990 0.980 0.977 0.987 1.000 0.999 0.998 1.000

Group sizes ∼ U(.5nδ, 1.5nδ)∗, δ = .25, .5 and .75, respectively, for Panels 3, 4 and 5 below
0.00 0.126 0.195 0.182 0.147 0.111 0.162 0.155 0.122 0.112 0.120 0.121 0.111
0.25 0.152 0.231 0.206 0.170 0.147 0.187 0.173 0.152 0.159 0.145 0.140 0.159
0.50 0.203 0.331 0.286 0.213 0.285 0.267 0.284 0.249 0.394 0.234 0.280 0.340
0.75 0.268 0.428 0.380 0.285 0.522 0.402 0.461 0.469 0.749 0.444 0.533 0.666
1.00 0.353 0.516 0.463 0.390 0.762 0.548 0.645 0.695 0.948 0.683 0.758 0.909
1.25 0.458 0.572 0.540 0.468 0.913 0.687 0.778 0.868 0.995 0.861 0.881 0.988
1.50 0.542 0.622 0.604 0.542 0.972 0.807 0.861 0.948 1.000 0.953 0.944 0.999
1.75 0.610 0.655 0.661 0.613 0.991 0.881 0.913 0.984 1.000 0.988 0.965 1.000
2.00 0.669 0.691 0.708 0.671 0.998 0.934 0.942 0.993 1.000 0.996 0.980 1.000
0.00 0.135 0.117 0.115 0.123 0.117 0.095 0.101 0.105 0.112 0.092 0.103 0.108
0.25 0.145 0.166 0.146 0.145 0.138 0.134 0.136 0.135 0.142 0.139 0.140 0.143
0.50 0.198 0.295 0.246 0.202 0.236 0.267 0.258 0.236 0.274 0.286 0.281 0.269
0.75 0.278 0.430 0.382 0.294 0.386 0.437 0.441 0.388 0.479 0.512 0.518 0.484
1.00 0.390 0.536 0.497 0.398 0.578 0.609 0.617 0.578 0.714 0.712 0.729 0.703
1.25 0.495 0.623 0.598 0.512 0.734 0.728 0.756 0.742 0.863 0.851 0.860 0.862
1.50 0.579 0.683 0.676 0.594 0.845 0.824 0.846 0.849 0.944 0.928 0.935 0.943
1.75 0.664 0.724 0.732 0.668 0.922 0.890 0.902 0.914 0.979 0.966 0.964 0.978
2.00 0.722 0.770 0.771 0.729 0.956 0.928 0.937 0.953 0.992 0.983 0.984 0.993
0.00 0.111 0.096 0.100 0.107 0.108 0.090 0.097 0.107 0.113 0.097 0.094 0.102
0.25 0.127 0.130 0.126 0.124 0.115 0.114 0.113 0.127 0.123 0.118 0.124 0.123
0.50 0.148 0.198 0.175 0.154 0.162 0.186 0.178 0.171 0.176 0.192 0.186 0.181
0.75 0.185 0.270 0.251 0.208 0.223 0.270 0.261 0.235 0.272 0.290 0.286 0.271
1.00 0.242 0.353 0.314 0.263 0.315 0.355 0.356 0.311 0.384 0.397 0.409 0.383
1.25 0.297 0.414 0.375 0.310 0.400 0.443 0.441 0.403 0.503 0.504 0.519 0.488
1.50 0.348 0.458 0.424 0.370 0.480 0.529 0.524 0.479 0.588 0.605 0.608 0.598
1.75 0.401 0.490 0.472 0.416 0.542 0.598 0.588 0.548 0.671 0.683 0.694 0.671
2.00 0.454 0.540 0.518 0.469 0.614 0.646 0.651 0.619 0.743 0.745 0.764 0.749
∗dgp1 = normal, dgp2=normal mixture (τ = 10, p = 0.05), dgp3=lognormal, dgp4=chi-squared (df=3).
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