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Abstract

Essays on High-Frequency Financial Data Analysis

Yingjie Dong

This dissertation consists of three essays on high-frequency financial data anal-

ysis. I consider intraday periodicity adjustment and its effect on intraday volatility

estimation, the Business Time Sampling (BTS) scheme and the estimation of market

microstructure noise using NYSE tick-by-tick transaction data.

Chapter 2 studies two methods of adjusting for intraday periodicity of high-

frequency financial data: the well-known Duration Adjustment (DA) method and

the recently proposed Time Transformation (TT) method (Wu (2012)). I examine

the effects of these adjustments on the estimation of intraday volatility using the

Autoregressive Conditional Duration-Integrated Conditional Variance (ACD-ICV)

method of Tse and Yang (2012). I find that daily volatility estimates are not sen-

sitive to intraday periodicity adjustment. However, intraday volatility is found to

have a weaker U-shaped volatility smile and a biased trough if intraday periodicity

adjustment is not applied. In addition, adjustment taking account of trades with zero

duration (multiple trades at the same time stamp) results in deeper intraday volatility

smile.

Chapter 3 proposes a new method to implement the Business Time Sampling

(BTS) scheme for high-frequency financial data using a time-transformation func-

tion. The sampled BTS returns have approximately equal volatility given a target

average sampling frequency. My Monte Carlo results show that the Tripower Re-

alized Volatility (TRV) estimates of daily volatility using the BTS returns produce

smaller root mean-squared error than estimates using returns based on the Calendar



Time Sampling (CTS) and Tick Time Sampling (TTS) schemes, with and without

subsampling. Based on the BTS methodology I propose a modified ACD-ICV esti-

mate of intraday volatility and find that this new method has superior performance

over the Realized Kernel estimate and the ACD-ICV estimate based on sampling by

price events.

Chapter 4 proposes new methods to estimate the noise variance of high-frequency

stock returns using differences of subsampling realized variance estimates at two or

multiple time scales. Noise-variance estimates are compared and the new proposed

estimates perform the best in reporting lower mean error and root mean-squared

error. This chapter shows significant estimation error of noise-variance estimates

when transactions are selected at too high or too low frequencies. For a typical New

York Stock Exchange stock, the noise-to-signal ratio is around 0.005% in the period

from 2010 to 2013.
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Chapter 1 Introduction

High-frequency financial data analysis has experienced vast and fast develop-

ment over the past several years due to the rapid development of the theoretical

methods and easier access to data. Applications of high-frequency data analysis

are vast and important. For example, Andersen et al. (2013) point out that high-

frequency data analysis provides a more accurate risk assessment in the financial

risk measurement and risk management, treating both portfolio-level and asset-level

analysis.

In high-frequency financial data analysis, we can model all transactions avail-

able or model a thinned point process which is defined by a subset of the transaction

arrival times with specific characteristics. For example, by modeling the transaction

durations, Engle and Russell (1998) estimate the arrival rate of traders using the

Autoregressive Conditional Duration (ACD) model. In contrast, by modeling the

price durations, Engle and Russell (1998) estimate the conditional instantaneous

volatility using the ACD estimate and Tse and Yang (2012) estimate the conditional

integrated volatility using the Autoregressive Conditional Duration-Integrated Con-

ditional Variance (ACD-ICV) estimate. The price durations are calculated based

on the price events which are obtained when the absolute price/logarithmic price

change is bigger than or equal to the predetermined threshold value δ .

A well known problem in analyzing high-frequency financial data is the stylized

fact of intraday periodicity: trading activities are usually higher at the beginning

and close of the trading day than around lunch time, which is mainly due to opening

auctions and closing effect separately. This trading pattern induces the average

transaction duration and the average intraday volatility to exhibit an inverted U-
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shape over the trading day. Moreover, in Chapter 3, we provide empirical evidence

of the difference of the intraday periodicity in trading activity from that in volatility.

To adjust for the intraday periodicity, we suggest using the Time Transforma-

tion (TT) method which is investigated in Wu (2012) and Chapter 2 and Chapter

3 in this dissertation. The idea of the TT method is that, with the help of a time-

transformation function, we can switch all transactions between the calendar time

and the diurnally transformed time easily. If the time-transformation function is

constructed properly, all sampled transactions will be evenly spread out on the diur-

nally transformed time (the meaning of “evenly” will be different based on different

economic issues). For example, in Chapter 2, to adjust for intraday periodicity in

trading activity, we construct the time-transformation function using the number of

transactions. As a result, all transactions on the diurnally transformed time will be

evenly spread out over the trading day. In Chapter 3, to adjust for intraday volatil-

ity periodicity, we construct the time-transformation function using the estimated

intraday integrated volatility. Thus all sampled durations with the same length on

the diurnally transformed time will have approximately equal integrated volatility.

Using the inverse of the time transformation function, we can obtain transactions

with equal volatility increments at a pre-specified sampling frequency, which corre-

sponds to the Business Time Sampling (BTS) scheme. There are many advantages

of the TT method, as we mentioned in Chapter 2 and Chapter 3.

Applications of the TT method are wide and interesting. Specifically, in Chap-

ter 2, we investigate the effects of intraday trading activity periodicity adjustments

on the intraday volatility estimation using the ACD-ICV method of Tse and Yang

(2012). One of a superior feature of the ACD-ICV estimate for the intraday volatil-

ity estimation is that we can make use of data outside the period of interest, based on

an autoregressive price duration assumption. We find that daily volatility estimates

are not sensitive to intraday periodicity adjustment. However, our findings tend

to support the intraday periodicity adjustment for the intraday volatility estimation

(eg. 30-min). In Chapter 3, using the TT method, we implement the Business Time
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Sampling (BTS) scheme at high sampling frequency (eg. 3-min or 5-min). We then

investigate two applications of the BTS scheme: testing whether a logarithmic price

process is a time-changed Brownian motion after correcting for the drift and price

jumps (which is related to the no-arbitrage condition) and estimating the integrated

volatility using the high-frequency BTS returns or BTS durations. We find that the

log-price process of the investigated NYSE stocks can be considered as a time-

changed Brownian motion with drift and price jumps and the Gaussian distribution

assumption describes the BTS returns better than returns obtained from the Calen-

dar Time Sampling (CTS) scheme and Tick Time Sampling (TTS) scheme. Due to

better iid Gaussian property, BTS transactions performs better than CTS and TTS

transactions in estimating intraday integrated volatility by reporting smaller root

mean-squared error (RMSE). This observation is interesting since we lose around

half of observations when implementing the BTS scheme with subsampling. We

also propose a modified ACD-ICV estimate by modeling the BTS durations and

show its superiority over the Realized Kernel estimate and the ACD-ICV estimate

by modeling price durations.

In high-frequency data analysis, we also have the market microstructure noise

problem due to the presence of the bid ask spread, price discreteness and asymmetric

information of traders, among other reasons. Wide literature are developed to in-

vestigate the noise properties and the noise effect in High-frequency financial data

analysis. In Chapter 4, we show the negative cross-correlation between the noise

and latent returns. We propose new noise-variance estimates by using difference

of subsampling realized variance estimates. We compare different noise-variance

estimates in our Monte Carlo simulation study and find that our proposed noise-

variance estimates performs the best by reporting the mean error (ME) and root

mean-squared error (RMSE) most closely to zero. Empirically we find the noise-

to-signal ratio (NSR) is around 0.005% for the NYSE stocks in recent years. This

is largely smaller in compare with magnitude estimated in previous literature. For

example, Hansen and Lunde (2006) report that the NSR is below 0.1% for DJIA
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stocks in year 2000. The magnitude of microstructure noise variance provide very

helpful information to high-frequency traders and market regulators. For example,

Hasbrouck (1993) points out that it is a good measure of market quality and can be

used to evaluate brokers performance or to determine markets or regulatory struc-

tures under which transaction costs are minimized. The small magnitude of the NSR

suggests that it is important to consider the cross-correlation between the noise and

latent returns when researchers investigate the noise properties.
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Chapter 2 Intraday Periodicity Adjustments

of Transaction Duration and Their

Effects on High-frequency Volatil-

ity Estimation

2.1 Introduction

A well known problem in analyzing high-frequency financial data is the stylized

fact of intraday periodicity: trading activities are usually higher at the beginning and

close of the trading day than around lunch time. This trading pattern induces the

average transaction duration to exhibit an inverted U-shape over the trading day.

Andersen and Bollerslev (1997) point out that volatility over different intervals of

the same calendar-time length at different times of the daymay differ due to their

differences in trading activities.

Recognizing the empirical fact of duration clustering, Engle and Russell (1998)

introduce the Autoregressive Conditional Duration (ACD) model. They propose to

correct for the intraday duration periodicity prior to fitting the ACD model to the

data. Specifically, they apply the Duration Adjustment (DA) method to adjust for

transaction duration as

x̃i+1 =
xi+1

φ(ti)
, (2.1.1)

where ti is the calendar time of occurrence of the ith trade, xi+1 = ti+1− ti is the

duration of the (i+1)th trade in calendar time, x̃i+1 is the diurnally adjusted duration

6



of the (i+ 1)th trade and φ(·) is the diurnal adjustment factor with its argument

usually taken as the calendar time ti.

Recently Wu (2012) proposes a new method to correct for intraday periodic-

ity, which will be called the Time Transformation (TT) method in this paper. The

theoretical underpinning of the TT method is that if there were no intraday differ-

ences in trading activities, we would expect the transactions to be evenly spread

out throughout the trading day. Under the TT method a time-transformation func-

tion is determined using empirical data so that the transactions are evenly observed

throughout the day under the transformed time.

To assess the empirical implications of these adjustment methods, we study their

effects on daily and intraday volatility estimations. Following the method proposed

by Tse and Yang (2012) for the estimation of high-frequency volatility, called the

Autoregressive Conditional Duration-Integrated Conditional Variance (ACD-ICV)

method, we examine the effects of the use of the DA and TT methods to adjust

for intraday transaction durations on the estimation of intraday volatility. Our find-

ings are as follows. First, for the estimation of daily volatility, whether or not the

durations are diurnally adjusted makes little difference. Second, to estimate intra-

day volatility, correcting for intraday periodicity using either the DA or TT method

produces more prominent U-shaped volatility smiles than not adjusting for intra-

day periodicity. Third, deeper intraday volatility smile is observed if the duration

adjustment treats multiple trades with the same time stamp as separate trades (i.e.,

data with zero duration are retained). Fourth, intraday volatility smile has a biased

trough if intraday periodicity adjustment is not applied. The balance of this paper is

as follows. Section 2 outlines the DA and TT methods. Section 3 summarizes the

ACD-ICV method for estimating intra-day volatility. Section 4 reports the empirical

results. Section 5 concludes.
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2.2 Diurnal adjustment for intraday periodicity

2.2.1 The Duration Adjustment (DA) Method

The DA method involves adjusting the raw duration using a diurnal factor to

obtain the diurnally adjusted duration, as given in Eq. (1). To specify the diur-

nal factor φ(·) many studies use the regression method with linear spline or cubic

spline method proposed by Engle and Russell (1998).While there are quite a few

variations in the literature in the estimation of φ(·), we follow the method proposed

by Bauwens and Giot (2000), for which the focus is on estimating the expected

duration conditional on the time of the day. The details of the procedure are sum-

marized in Appendix A.1.

The DA method has some important drawbacks (see also Wu (2012)). First,

the average duration in each interval is a local measure. There is a choice between

taking longer intervals (so that there are more observations in each interval) versus

shorter intervals (so that the knots are more precisely located). Second, given a

raw duration, it is not clear which time point within the interval should be taken to

evaluate the diurnal factor. As the diurnal-factor function takes an inverted U-shape,

if the start time of the interval is taken for adjustment, which is the usual practice,

the adjustment may be understated for trades before lunch time and overstated for

trades after lunch time.1 Hence, a systematic bias may be introduced in the diurnal

adjustment.

2.2.2 The Time Transformation (TT) Method

We now briefly outline the TT method. Let t denote the calendar time and t̃

denote the corresponding diurnally transformed time (in seconds from the begin-

1The phenomenon of an inverted U-shape diurnal-factor function may be due to market partici-
pants’ different trading purposes at different periods. Market participants tend to trade heavily when
the market is open due to the opening auctions. They trade more heavily near the end of the day due
to the closing effect, closing their positions before the market closes.
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ning of trade). In the context of the New York Stock Exchange (NYSE), as one

trading day has 6.5 h (23,400 s), 0 ≤ t ≤ 23,400. We denote Q(t) as the empirical

average proportion of trades in a day up to time t and define the diurnally trans-

formed time (̃t) = 23,400Q(t). Conversely, given a diurnally transformed time (̃t),

the corresponding calendar time is t = Q−1((̃t)/23,400), where Q−1(·) is the in-

verse function of Q(·). Appendix A.2 provides more details for the computation of

Q(·).

Given any two calendar-time points ti < t j, the diurnally adjusted duration be-

tween these two time points t̃ j − t̃i = 23,400[Q(t j)−Q(ti)]. Likewise, given any

two diurnally transformed time points t̃i < t̃ j, the corresponding duration in calen-

dar time is

Q−1
(

t̃ j

23400

)
−Q−1

(
t̃i

23400

)
. (2.2.1)

There are some advantages of the TT method over the DA method. First, the

Q(·) function is easy to compute and it depends on all data in the sample. Second,

the definition of diurnally adjusted duration is natural. This removes the ambiguity

in the choice of the time point within the transaction interval for the application

of the diurnal factor. Third, the switch between calendar time and diurnally ad-

justed time can be performed easily. This facilitates simulation using models in

one measure of duration (e.g., ACD model for diurnally adjusted duration) to draw

implications for the market in another measure of time (e.g., implications for the

market in calendar time). Recently, Dionne et al. (2009) suggest using the simu-

lation method to estimate the intraday value at risk (IVaR).While the time interval

specified may be in calendar time, the duration model estimated may be for diur-

nally adjusted data. The TT method will be convenient to use as the calendar time

and diurnally adjusted time can be easily converted from one another.

9



2.3 Diurnal adjustment and intraday volatility esti-

mation

To examine the empirical implications of the methods of adjusting for intraday

periodicity we consider the effects of these adjustments on the estimation of intraday

volatility.2 We use the ACD-ICV method for estimating high-frequency volatility

proposed by Tse and Yang (2012), and compare the volatility estimates when the

data are (a) not adjusted for intraday periodicity, (b) adjusted for intraday periodicity

using the TT method, and (c) adjusted for intraday periodicity using the DA method.

In what follows we first briefly summarize the ACD-ICV method, after which we

report the empirical results on the NYSE data.

2.3.1 The ACD-ICV Method

The ACD-ICV method samples observations from transaction data based on a

threshold price range δ . A price event is said to occur if the logarithmic stock

price first moves by an amount δ or more, whether upwards or downwards. The

waiting time for the price event to occur is called the price duration. Let t0 be the

beginning time of a period, and t1, t2, · · ·, tN be subsequent times of occurrence of

price events, so that the price duration of the ith trade is xi = ti− ti−1. The integrated

conditional variance (ICV) over the interval (t0, tN), which may be one trading day

or a subinterval of a trading day, is given by

ICV = δ
2

N−1

∑
i=0

ti+1− ti
ψi+1

, (2.3.1)

where εi = xi/ψi are assumed to be i.i.d. standard exponential. Estimates of ψi

are then substituted into Eq. (3), resulting in the ACD-ICV estimate of the vari-

2Research on intraday movements of equity prices has recently attracted much interest due to
its implications for market participants such as day traders and market makers, as illustrated by the
works of Giot (2005), Dionne et al. (2009), and Liu and Tse (2013).
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ance in the interval (t0, tN). In this paper we use the power ACD (PACD) model of

Fernandes and Grammig (2006) to estimate the conditional duration.

2.3.2 Three Intraday Volatility Estimates

We consider three alternative ways of estimating daily or intraday volatility us-

ing the ACD-ICV method. First, we compute the price duration using unadjusted

calendar time, and call this the raw duration. We estimate the PACD model using the

raw duration, with resulting estimates of ψi denoted by ψ̂i and the ICV computed

as

ICV = δ
2

N−1

∑
i=0

xi+1

ψ̂i+1
= δ

2
N−1

∑
i=0

ti+1− ti
ψ̂i+1

. (2.3.2)

We call this method M1, which uses raw duration without diurnal adjustment.

Next, we take account of intraday periodicity using the TT method and compute the

diurnalized duration as

x̃i+1 = t̃i+1− t̃i. (2.3.3)

We estimate the PACD model using the TT diurnalized duration, with resulting

estimates of ψi denoted by ψ̂i and the ICV computed as

ICV = δ
2

N−1

∑
i=0

x̃i+1

ψ̃i+1
= δ

2
N−1

∑
i=0

t̃i+1− t̃i
ψ̃i+1

. (2.3.4)

We call this method M2, which uses diurnalized duration based on the TT

method. Finally, we denote the diurnally adjusted duration using the DA method

by x̆i, which is given by

x̆i+1 =
ti+1− ti
φ(tM

i )
=

xi+1

φ(tM
i )

(2.3.5)

where tM
i = (ti + ti+1)/2 is the mid-point of the interval (ti, ti+1).3 We estimate the

PACD model using the diurnalized duration computed from the DA method, with

3Most studies in the literature evaluate the diurnal factor φ(·) at the starting point ti of the interval.
As our average price duration is around 5 min, it may be more appropriate to take the mid-point.We
will report the robustness of our empirical results when the starting value of the interval is used to
evaluate the diurnal factor instead.
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resulting estimates of ψi denoted by ψ̆i and the ICV computed as

ICV = δ
2

N−1

∑
i=0

x̆i+1

ψ̆i+1
= δ

2
N−1

∑
i=0

ti+1− ti
ψ̆i+1φ(tM

i )
. (2.3.6)

We call this method M3, which uses diurnalized duration based on the DA

method.

2.4 Empirical results

The transaction data used in this paper are extracted and compiled from the

NYSE Trade and Quote (TAQ) Database provided through the Wharton Research

Data Services. We select ten stocks from the component stocks of the S&P500 in-

dex. Data from the Consolidated Trade (CT) file, including the date, trading time,

price and number of shares traded are extracted for each stock, over the period Jan-

uary 3, 2005 through December 31, 2007. We drop some abnormal trading days

that may contaminate the results. These include trading days with first trade after

11:00 or last trade before 13:30. The data are then filtered before the empirical anal-

ysis.We delete entries with corrected trades, i.e., trades with a correction indicator.

Only data with a regular sale condition and code E and F are selected.4

2.4.1 Description of the NYSE Transaction Data

Table 2.1 presents some summary statistics of the selected stocks. Trades with

the same time stamp can be treated as separate trades or one trade, and we report

summary statistics for both assumptions.5 It can be seen that all stocks in our sample

are very actively traded. The number of transactions per day ranges from 4746 to

8264 and the average duration per trade ranges from 2.83 s to 4.93 s, when multiple

trades are treated as one trade. On the other hand, when multiple trades are treated

4These screening procedures were adopted from Barndorff-Nielsen et al. (2009).

5When there are multiple trades at the same stamped time, we calculate the price at the stamped
time as the average of the prices weighted by trade volume.
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as separate trades, the average number of transactions per day increases substan-

tially and ranges from 7360 to 14,591, while the average duration per trade ranges

from 1.6 s to 3.18 s. The LjungCBox statistics strongly support serial correlation

in durations, whether or not they are adjusted for intraday periodicity (using the TT

method).6 Nonetheless, the LjungCBox statistics are smaller for TT adjusted du-

rations versus raw durations, and for data without zero durations versus with zero

durations.

Figure 2.1 plots the total number of trades of IBMat each second from 9:30 to

16:00 over all trading days in the sample, withmultiple trades treated as separate

trades. It can be seen that there is significant intraday periodicity: the number of

trades at each second has a clear U-shape. Figure 2.2 plots the average trade dura-

tions from9:30 to 16:00,with smoothing performed using cubic spline. It can be seen

that the average trade duration as a function of calendar time exhibits an inverted U-

shape.7 Figure 2.3 presents the plots of the diurnally transformed time t̃ against the

calendar time t for the IBMstock. The solid line is the plot of 23,400Q(t), computed

by treatingmultiple trades as separate trades. Thus, if there was no intraday period-

icity, 23,400Q(t) should follow the 45 degree line.8 Note that the Q(t) function

constructed is strictly monotonically increasing, so that t and t̃ form a one-to-one

correspondence.

Figure 2.4 plots the smoothed average duration by time of the day using the TT

adjusted data. There is little intraday variation in the average duration (note the

scales on the vertical axis), which shows that intraday periodicity has been largely

removed. We plot the TT adjusted durations over a selection of three days from

the sample period in Figure 2.5. It can be seen that there is still duration clustering

6This is in contrast to Wu (2012) who cleaned the data to get rid of zero durations. Also, Wu
(2012) used a shorter sample for their empirical study.

7To save space, only the graphs for IBM are presented. Results for other stocks are very similar,
and they are not presented here.

8The vertical axis in Figure 2.3 is converted from second to transformed time from 9:30 to 16:00
for ease of reference.
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for the data, suggesting that intraday periodicity and duration clustering are two

separate phenomena. While TT adjustment can get rid of intraday periodicity, the

adjusted data are still subject to duration clustering, possibly due to the lag effects in

absorbing market news. This supports the modeling of the (adjusted and unadjusted)

durations using the ACD models.

2.4.2 Empirical Estimates of Daily and Intraday Volatility

We compute the daily volatility estimates of the 10 selected stocks in our sample

using the three methods: M1, M2 and M3.We report in detail the case when M2 is

based on the convention that multiple trades are treated as separate trades (i.e., with

zero durations) and M3 is based on the convention that multiple trades are treated

as one trade (i.e., without zero durations). Table 2.2 reports the results for the daily

volatility estimates, giving themean of each estimate, and themean absolute devia-

tion (MAD) and the root mean-squared deviation (RMSD) between pairs of daily

estimates. The daily volatility estimates are expressed in annualized return stan-

dard deviation in percentage. The results show that the daily volatility estimates of

the three methods are very similar. In terms of the MAD, the differences between

M2 and M3 (i.e., two methods with adjustment for intraday periodicity) are very

small (less than 0.1% for all stocks except CVX). The differences betweenM1 ver-

susM2 andM1 versusM3are, however, slightly higher, but still less than 0.22% for

all stocks. The results based on RMSD give similar conclusion.

To investigate the effects of diurnal adjustment on intraday volatility we consider

half-hour intervals from 9:30 through 16:00. Figure 2.6 plots the average intraday

volatility estimates over all trading days for all 10 stocks, with the mid-point of

each half-hour interval identified in the x-axis.9 It can be seen that M2 and M3,

which correct for intraday periodicity, are quite close to each other. However, the

volatility estimated for the last half-hour is higher for the TT method (M2) than the

9To the best of our knowledge, this is the first documentation of intraday volatility estimates over
half-hour intervals.
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DA method (M3) for all stocks. Both M2 and M3 have more prominent intraday

volatility smile (a deeper U-shape) than the volatility estimate with no periodicity

correction (M1). Furthermore, while the lowest intraday volatility for M2 and M3

occurs between 12:45 and 13:15, the lowest intraday volatility for M1 occurs at

13:45 for almost all stocks. As the average duration curve in Figure 2.2 peaks

around 13:00, the intraday volatility curve using M1 appears to be biased.10 These

findings have important implications for research on IVaR.

To examine the robustness of the results, we vary the treatment of multiple trades

for M2 and M3, as well as the evaluation of the diurnal factor φ(·). First, when the

same treatment of multiple trades is applied to the two periodicity adjustment meth-

ods, their results are very similar and almost undistinguishable. Thus, the difference

in the average volatility at the close of the market is due to the treatment of multiple

trades rather than the choice of the method of adjustment. Second, if we evalu-

ate φ(·) in M3 at the starting point of the interval rather than the mid-point, M2 is

found to have a slightly deeper volatility smile than M3, even when the same treat-

ment of multiple trades is applied. Thus, M3 is not insensitive to the choice of the

time point of correction. This is an important drawback of the M3 method and is

generally overlooked in the literature.

2.5 Conclusion

In this paper we investigate the use of two methods in dealing with intraday pe-

riodicity of high-frequency stock price data, the Duration Adjustment (DA) method

and the Time Transformation (TT) method, for the estimation of intraday volatility.

The DA method diurnally adjusts the raw durations by estimating a diurnal factor

φ(·), while the TT method transforms the calendar time to the diurnally adjusted

time from which adjusted duration is calculated.

Our empirical results show that whether or not the duration data are adjusted

10This bias is observed in all 10 stocks in our study.
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for intraday periodicity has little impact on the daily volatility estimates using the

ACD-ICV method. However, we document a clear regular intraday volatility smile,

which shows a more prominent U-shape when the duration data are corrected for

intraday periodicity than when it is not. An important issue in the implementation

of the adjustment is how multiple trades at the same time stamp are treated. Intra-

day volatility smiles are more prominent if multiple trades are treated as separate

trades rather than one trade, regardless of the method of adjustment. Thus, deleting

observations with zero duration dampens the effects of intraday periodicity and may

lead to under-estimated intraday volatility in periods of high trading activities.

While the DA method is widely used in the literature, the TT method has several

clear advantages. The theoretical motivation of the TT method is quite intuitive and

its empirical implementation is straightforward. Also, the results of the DA method

are not robust to the point of evaluation of the diurnal factor. For studies that require

simulating duration data, such as for the estimation of intraday value at risk, the TT

method is simple to use.
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Table 2.1: Summary statistics of stocks

CVX GE IBM JNJ JPM PFE PG T WMT XOM

Number of days 748 748 748 747 747 747 748 740 748 748

Multiple trades at the same time treated as separate trades

Number of transactions (million) 7.709 7.107 5.919 5.498 6.544 6.305 5.598 5.647 6.280 10.914

Avg transactions per day 10306 9501 7913 7360 8760 8440 7484 7631 8396 14591

Avg duration (second) 2.27 2.46 2.96 3.18 2.67 2.77 3.13 3.07 2.79 1.60

Multiple trades at the same time treated as one trade

Number of transactions (million) 4.898 4.492 4.006 3.807 4.109 4.352 3.721 3.512 4.289 6.181

Avg transactions per day 6548 6005 5356 5096 5501 5826 4975 4746 5735 8264

Avg duration (second) 3.57 3.90 4.37 4.59 4.25 4.02 4.70 4.93 4.08 2.83

Table 2.2: Results of daily volatility estimation

Mean Daily ICV MAD RMSD

Stock M1 M2 M3 M1-M2 M1-M3 M2-M3 M1-M2 M1-M3 M2-M3

CVX 19.1913 19.2013 19.2085 0.1845 0.0969 0.1013 0.2513 0.1296 0.1389

GE 12.3780 12.3861 12.3822 0.1159 0.0720 0.0483 0.1722 0.1126 0.0691

IBM 14.7162 14.7506 14.7408 0.1058 0.0787 0.0376 0.1382 0.1069 0.0497

JNJ 11.1155 11.1476 11.1371 0.0839 0.0618 0.0286 0.1080 0.0800 0.0377

JPM 16.3696 16.3481 16.3473 0.2148 0.1562 0.0635 0.2988 0.2224 0.0863

PFE 16.1752 16.2178 16.2047 0.0962 0.0778 0.0295 0.1181 0.0966 0.0373

PG 12.8189 12.8722 12.8547 0.1021 0.0799 0.0313 0.1275 0.1014 0.0405

T 16.0181 16.0427 16.0366 0.1518 0.0963 0.0712 0.2302 0.1522 0.1025

WMT 14.9632 15.0001 14.9904 0.0894 0.0629 0.0389 0.1146 0.0813 0.0498

XOM 17.9755 17.9809 17.9752 0.1744 0.0881 0.0923 0.2236 0.1158 0.1170

Notes: Volatility is annualized standard deviation in percentage. MAD is mean
absolute deviation. RMSD is Root mean-squared deviation. M1 uses raw duration
without diurnal adjustment. M2 uses diurnalized duration based on the TT method.
M3 uses diurnalized duration based on the DA method.
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Figure 2.1: Number of trades at each second over all trading days.
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Figure 2.2: Smoothed average duration by time of the day over all trading days.
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Figure 2.3: Diurnally transformed time versus calendar time.
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Figure 2.4: Smoothed average TT adjusted duration by time of the day over all trading days.
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Figure 2.5: TT adjusted durations over 3 days in sample period.
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Figure 2.6: Intraday volatility calculated using M1, M2 and M3.
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Figure 2.6 (continue): Intraday volatility calculated using M1, M2 and M3.
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Chapter 3 Business Time Sampling Scheme

and Its Application

3.1 Introduction

In high-frequency financial data analysis, researchers usually do not use all

available data but would select a subgrid of transactions. To choose the subgrid,

two issues have to be considered: selecting the sampling scheme and choosing the

target average sampling frequency. Three sampling schemes are commonly used

in the literature: Calendar Time Sampling (CTS), Tick Time Sampling (TTS) and

Business Time Sampling (BTS). Under the CTS scheme, transactions are selected

by regularly spaced calendar time, such as every 5 sec/min. The TTS scheme se-

lects transactions with regularly spaced number of ticks, e.g., every 5 or 10 ticks.

The BTS transactions are often selected to ensure approximately equal volatility for

the returns over each interval. Thus, the CTS and TTS schemes are implemented

based on explicit criteria (i.e., regular calendar-time length or number of ticks, re-

spectively). In contrast, the BTS scheme depends on the unobserved volatility. As a

result, the CTS and TTS schemes have been used widely in the literature, while the

BTS scheme is used less frequently.

The BTS scheme possesses some desirable properties for high-frequency finan-

cial data analysis. In particular, it yields independently and identically distributed

(iid) normal returns for a semimartingale price process even when there is lever-

age ffect.1 In contrast, the calendar-time returns may not be iid normal even if the

1Dambis (1965) and Dubins and Schwartz (1965) show that a process compiled from a continu-

22



price process is a continuous local martingale.2 The assumption of iid Gaussian

returns is required for the Gaussian-likelihood approach (Nowman (1997)) and sev-

eral widely used integrated volatility estimates, including the multipower variation

(MPV) estimate of Barndorff-Nielsen et al. (2006), the quantile realized volatil-

ity (QRV) method of Christensen et al. (2010) and the nearest neighbor truncation

method of Andersen et al. (2011) and Andersen et al. (2012). Thus, the importance

of sampling returns that are iid Gaussian cannot be over-emphasized. Furthermore,

the BTS scheme is useful for thinning the empirical price process, mitigating the

effects of market microstructure noise.

The BTS scheme dates back to Dacorogna et al. (1993), Zhou (1998), and Pe-

ters and de Vilder (2006). Andersen et al. (2007) and Andersen et al. (2010) find

that the normalized daily and weekly returns sampled in financial time, defined by

equidistant increments of the realized volatility, accord well with the standard nor-

mal distribution. To sample the time points, they use a sequential method to include

intraday returns until the cumulative squared returns exceeds the average daily or

weekly realized volatility. In this paper we propose a new method to implement the

BTS scheme. We use a time-transformation function to obtain the BTS time points,

where the time-transformation function is computed based on intraday integrated

volatility estimates.

We test the semi-martingale hypothesis on the BTS returns of 40 stocks selected

from the New York Stock Exchange (NYSE). We further explore the use of the BTS

scheme in estimating intraday volatility. First, we consider the Realized Volatility

(RV) estimates for daily integrated volatility when the returns are sampled using the

BTS, CTS and TTS schemes. Using the Tripower Realized Volatility (TRV) esti-

mates of Barndorff-Nielsen et al. (2006), our Monte Carlo simulation shows that the

TRV estimates (with and without subsampling) using the BTS returns provide the

smallest root mean-squared error (RMSE). Second, we modify the Autoregressive

ous local martingale with equal quadratic-variation increments is a Brownian motion.

2This may be due to the leverage effect or varying volatility.
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Conditional Duration-Integrated Conditional Volatility (ACD-ICV) method of Tse

and Yang (2012), making use of the BTS scheme. Our modified ACD-ICV estima-

tor performs better than the Realized Kernel (RK) estimates (Barndorff-Nielsen et

al. (2008)) and the method of Tse and Yang (2012) based on price-event sampling.

The rest of this paper is as follows. Section 2 outlines our proposed implemen-

tation of the BTS scheme. Section 3 reports some empirical results on testing the

semi-martingale hypothesis. In Section 4 we outline the estimation methods of daily

volatility examined in this paper. We report the results of our Monte Carlo study in

Section 5 and draw conclusions in Section 6. The Appendix provides further details

of the jump detection procedure and computation of the BT time transformation

function. Some additional results can be found in the accompanying supplementary

material.

3.2 Intraday Periodicity and the BTS Scheme

3.2.1 Intraday Periodicity Patterns in Volatility and Trading Ac-

tivity

To adjust for the intraday periodicity of transaction activity, Tse and Dong

(2014) use a time transformation function computed by pooling all transactions over

all trading days in the sample. The time-transformation function Q(t) at calendar

time t (in sec) of the trading day is computed as the empirical proportion of the

number of trades up to time t over all trading days.3 The diurnally transformed

time t̃ for the calendar-time point t is defined by t̃ = 23400Q(t) and the diurnally

transformed duration for the period between calendar time points ti and t j(t j > ti) is

t j > ti. In this paper we adopt this approach to implement the BTS scheme.

Although the time-transformation function proposed by Tse and Dong (2014)

can address the issue of intraday periodicity of transaction activity, it may not be

3As there are 6.5 hours of trades in a trading day for the NYSE, t = 0,1, · · ·,23400. Q(t) is an
increasing function of t, with Q(0) = 0 and Q(23400) = 1.
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appropriate for BT sampling if volatility and transaction activity exhibit different

intraday periodicity patterns. Figure 3.1 presents the intraday periodicity in volatil-

ity and trading activity of the stock JP Morgan (JPM) from January 2010 to April

2013. Figure 1A plots the means of the 1-min intraday realized volatilities over

all trading days in the sample period, expressed in annualized standard deviation

in percent, while Figure 1B plots the total number of transactions at each second

from 09:30 to 16:00 over all trading days in the sample. We observe that the re-

alized volatility at the beginning of the trading day is approximately two to three

times larger than that near the end of the trading day. In contrast, the number of

transactions at the end of the trading day is two to three times larger than that in

the morning. This finding is quite regular across other stocks in our sample, which

shows that intraday periodicity patterns in volatility and trading activity are quite

different.4 Thus, TTS returns in the morning will have larger volatility than those

in the afternoon. In contrast, by construction BTS returns will have nearly constant

volatility over the whole trading day.

3.2.2 Implementing the Business Time Sampling (BTS) Scheme

To implement the BTS scheme we propose to compute the time-transformation

function Q(t) using intraday integrated volatility estimated by a jump-robust method.

The inverse function Q−1(t) is then used to obtain BTS transactions at a given tar-

get average sampling frequency. We outline our proposed method to obtain the BTS

transactions as follows. Let Xt be the stock price process and Yt = logXt be the log-

price process, sampled at calendar time points t1 < t2 < · · ·< tn. We denote the full

grid containing all observed points by G = {t1, t2, · · · , tn} and any arbitrary subgrid

of G by H . If t j ∈H , then t j,− and t j,+ denote the preceding and following ele-

ments of t j in H , respectively. We define |H | as the number of time increments in

an arbitrary grid |H |, so that |H |= (number of points in grid H )−1.

Let T denote the calendar-time length in seconds aggregated over all trading

4Results for other stocks can be found in the supplementary material.
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days in the sample. Thus, for m trading days we have T = 23400m: Consider

a sequence of estimated intraday integrated volatility Vk,k = 1, · · · ,K for K con-

secutive time intervals over the period (0,T ], with the end point in each time in-

terval represented by tk, for k = 1, · · · ,K.5 Denote the collection of points tk,k =

0, · · · ,K(t0 = 0) by HV and define Nt0 = 0 and Ntk = ∑
k
i=1Vi for k = 1, · · · ,K. The

time-transformation function is calculated as Q(tk) = Ntk/NtK , for tk ∈ HV ,k =

0,1, · · · ,K. Q(t) at any calendar-time point t can then be computed using a cubic

interpolation that preserves monotonicity in t.6 The diurnally transformed time cor-

responding to calendar time t is denoted by t̃, with t̃ = T Q(t). Conversely, given a

diurnally transformed time t̃, the corresponding calendar time is t = Q−1(t̃/T ).

To sample a sequence of calendar-time points with BTS duration h, we take

equally spaced diurnally transformed BT points t̃ j, j = 0, · · · ,L, with t̃ j− t̃ j−1 = h

and L = [T/h]. Then t j = Q−1(t̃ j/T ), j = 0, · · · ,L are the required correspond-

ing calendar-time points for the BTS scheme.7 The return over each BT sampled

interval will then have approximately equal volatility.

Figure 3.2 presents the time-transformation functions for stock JPM based on

intraday trading activity and volatility. These functions are computed by merging

the data over the complete sample period, resulting in representative one-day time-

transformation functions.8 Note that the two transformation functions exhibit dif-

ferent intraday patterns, with the compression of diurnally transformed time during

market open more prominent for volatility than for trading activity.

5 Here tk are calendar-time points which need not to be regularly spaced. We outline the detailed
steps in calculating Vk and tk, for k = 1, · · · ,K, in the Appendix. In this paper we use the Tripower
Realized Volatility (TRV) method of Barndorff-Nielsen et al. (2006) to calculate Vk.

6We use the Matlab command pchip in this paper.

7Denote the collection of t j , for j = 0,1, · · · ,L by H0. Empirically, there may be no transaction at
the selected time point t j , which means t j /∈ G . Instead of creating transactions using the previous-
tick method, we select the nearest transaction after time t j , i.e., at t∗j = {min{ti}|ti ∈ [t j,−, t j) for
t j,−, t j ∈H0 and ti ∈ G }, j = 1, · · · ,L. The collection of t∗j are the final BTS transaction calendar
time points and we denote them by HV . If there is no transaction lying within the time interval
selected, then no transaction t∗j is selected from that time interval.

8We use the Matlab command pchip in this paper.
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3.3 Testing the Semi-martingale Hypothesis using BTS

Returns

As discussed above, BTS returns are iid normal for a semi-martingale price

process even when there is leverage and/or feedback effect, whereas the CTS returns

may not be iid normal even if the price process is a continuous local martingale. We

now examine empirically the behavior of the BTS returns following the study of

Andersen et al. (2010).

3.3.1 The Semi-martingale Hypothesis

Let rk =Ytk−Ytk−1 be the jump-adjusted returns over the time interval (tk−1, tk).9

If the log-price follows a jump-diffusion process with no leverage and volatility

feedback, rk standardized by the integrated volatility will follow a standard normal

distribution, i.e.,

rk(∫ tk
tk−1

σ2(τ)dτ

) ∼ N(0,1), k = 1,2, · · · , (3.3.1)

where σ(·) is the instantaneous volatility function. The above result, however, will

not hold if σ(·) exhibits correlation over time (feedback effect) or with the log-price

innovation (leverage effect). On the other hand, if the jump-adjusted returns are

sampled over business time (financial time) so that over each business-time interval

t̃k−1, t̃k, we have

t̃k = in f
s>t̃k−1

{∫ s

t̃k−1

σ
2(τ)dτ > σ̄

2
}

(3.3.2)

9We assume Yt has been jump adjusted. The jump-adjustment procedure can be found in the
Appendix.
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for a given volatility threshold σ̄2, then the jump-adjusted returns r̃k over the business-

time intervals (r̃k−1, r̃k) satisfy

r̃k

σ̄
∼ N(0,1),k = 1,2, · · · . (3.3.3)

To sample a sequence of BTS returns, Andersen et al. (2010) include intraday re-

turns until the cumulative squared 5-min returns exceed a threshold, defined as the

average daily or weekly realized volatility in calendar time (ABFN method here-

after). They report improved accuracy of the normal approximation under this sam-

pling scheme.

3.3.2 Empirical Results of the Tests

To examine empirically the performance of our proposed BTS method versus

the ABFN method, we use data of the top 40 market-capitalization stocks from the

NYSE in 2010. We extract the tick-by-tick transaction data of these stocks from the

TAQ database from January, 2010 to April, 2013. To clean the raw data, we follow

the steps described in Tse and Dong (2014). Using the sequential jump-detection

procedure of Andersen et al. (2010), we investigate cases of jumps over different

sampling intervals and sampling schemes.10 We test the normality assumption of

the drift-corrected and jump-adjusted BTS returns. For each trading day, all BTS

returns with jumps are deleted and the jump-adjusted daily or weekly BTS returns

are then computed by summing remaining consecutive jump-adjusted BTS returns.

We apply the Lilliefors test for normality to the jump-adjusted daily and weekly

BTS returns and the returns obtained by the ABFN method. The results are reported

in Table 1.
10Details of the selected stocks and results of the jump tests can be found in the supplementary

material for which sampling frequencies of 1 min, 5 min and 10 min are used. When the sampling
frequency is equal to 1 min, more than 12 stocks report jump proportions with values exceeding
10% under all sampling schemes. This suggests that sampling frequency which is too high (such as
1 min) may render misleading results when they are used for jump detection using the method of
Andersen et al. (2010).
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It can be seen that the BTS method improves the normality approximation of

the standardized return distribution over the ABFN method. While the results for

the weekly data are similar for the two methods, the BTS sampling scheme for the

daily data restores normality for several stocks.

3.4 Estimation of Integrated Volatility

We now examine the use of the BTS scheme for estimating intraday volatility.

We consider two methods of estimating daily volatility: Realized Volatility (RV)

method and Autoregressive Conditional Duration-Integrated Conditional Volatility

(ACD-ICV) method. The literature on RV estimation has grown tremendously since

its inception. In this paper we select the Tripower Realized Volatility (TRV) esti-

mate of Barndorff-Nielsen et al. (2006) for its robustness to price jumps. We com-

pare the performance of the TRV estimates when returns are sampled by BTS, CTS

and TTS schemes, with and without subsampling. With the same estimator used,

the performance of the estimates is differentiated by the sampling method. We also

consider the use of the ACD-ICV approach, with some modifications based on the

BTS methodology.

3.4.1 Realized Volatility Estimation using BTS Returns

For a given subgrid H, the TRV estimate is computed as11

VT = ξ
−3
2
3

[|H |−1

∑
i=2
|ri,−|

2
3 |ri|

2
3 |ri,+|

2
3

]
, (3.4.1)

where ri = Yi,+−Yi for Yi,+,Yi ∈H and ξk = 2
k
2 Γ((k+ 1)/2)/Γ(1/2) for k > 0,

with Γ(·) denoting the gamma function.12 For the CTS scheme, the previous-tick

11ri here is used generically for CTS, TTS and BTS returns.

12There is an alternative finite-sample adjustment term |H |/(|H |−2) for equation (3.4.1). This
adjustment, however, uses the sample mean and may be downward biased when the intraday volatil-
ity exhibits strong asymmetry. Empirically, the intraday volatility at the beginning time of the trad-
ing day is much higher than that in other time periods, as shown in Figure 3.1. Thus, we adjust the
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method is adopted when there is no transaction at the selected time point. For the

TTS scheme, the number of subsampling grids S is selected to ensure that each

subgrid has transactions at the target sampling frequency. To implement the sub-

sampling method under the BTS scheme, we select BTS transactions with the sam-

pling frequency being twice the average transaction duration. Subsampling is then

implemented to obtain subgrids at the target sampling frequency.

3.4.2 The Modified ACD-ICV Method

Tse and Yang (2012) propose the ACD-ICV method to estimate daily and in-

traday volatility by modeling the price durations parametrically. Their simulation

results show that the ACD-ICV method performs better than other methods (such

as the Realized Kernel (RK) method of Barndorff-Nielsen et al. (2008)). The ACD-

ICV method samples observations from the observed transaction data based on a

pre-specified price threshold δ . Suppose HPE = {t0, t1, t2, · · · , tN} is the selected

price events and the ith price duration is xi = ti− ti−1, i = 1, · · · ,N. Let Φi denote

the information set upon the price event at time ti. Denote ψi+1 = E(xi+1|Φi) as the

conditional expectation of the price duration and assume that the standardized du-

rations εi = xi/ψi, i = 1, · · · ,N are iid positive random variables with mean of unity.

Given the information Φi at time ti, the conditional instantaneous return variance

per unit time at time t > ti, denoted by σ2(t|Φi), is

σ
2(t|Φi) =

δ 2

ψi+1
λ

(
t− ti
ψi+1

)
, (3.4.2)

where λ (·) is the hazard function of εi. Assuming εi to be iid standard exponential

distributed, the integrated conditional variance (ICV) over time period [tn1, tn2+1] is

calculated as

ICV = δ
2

n2

∑
i=n1

[
ti+1− ti

ψi+1

]
. (3.4.3)

finite-sample bias by adding the term |r2,−|
2
3 |r2|

2
3 |r2,+|

2
3 in equation (3.4.1). Our simulation results

confirm the better performance of this adjustment.
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The conditional expectation of the price durations ψi can be estimated by various

methods, such as the ACD method of Engle and Russell (1998) or the Augmented

ACD method of Fernandes and Grammig (2006).

In this paper, we modify the ACD-ICV method in two ways. First, instead of

modeling the durations of the price events obtained by the threshold δ , we model

the BTS durations with the BTS returns sampled as in Section 2. Second, we replace

δ 2 in equation (3.4.1) by an estimate of the mean volatility over each sampled BTS

return. Suppose there are K BTS returns over m trading days, and the estimated

integrated volatility over these m trading days is equal to Vm. Then each BTS return

has an approximately constant integrated volatility of VD =Vm/K. Instead of using

δ 2 as an approximation of the integrated volatility of each price event as in Tse and

Yang (2012), we use VD to replace δ 2 in equation (3.4.1) to obtain a new ACD-ICV

estimate.

Thus, for the ACD-ICV approach we consider three variations of estimates. We

first estimate the daily integrated volatility using the ACD-ICV method as in Tse

and Yang (2012) and denote this method by ME1. We then replace δ 2 by VD,

which is the integrated volatility estimated using TRV with subsampling at 3-min

sampling frequency. We call this method ME2.13 Finally, we sample data using the

BTS scheme (not by price events) and repeat the computation as in ME2, which is

called ME3. We compare the daily volatility estimates using the ACD-ICV methods

against the RK method.14

13Note that for ME1 and ME2, the returns are sampled by price events and the ACD models are
fitted to diurnally transformed durations using the time-transformation function based on the number
of trades.

14The RK method is selected for comparison due to its superior performance among the RV esti-
mators (see Barndorff-Nielsen et al. (2008)). To calculate the bandwidth of the RK method, we use
the subsampling realized volatility estimator and 3-min TTS returns. For the ACD-ICV methods, all
results in this paper are based on conditional duration models fitted using the power ACD (PACD)
model (see Fernandes and Grammig (2006)).
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3.5 Monte Carlo Study

We conduct a Monte Carlo (MC) study to examine the performances of differ-

ent intraday volatility estimates. Our MC set-up draws upon other models in the

literature.

3.5.1 Simulation Models

We consider five simulation models, which are summarized in Table 2. Model

MD1 and MD2 are the Heston models (Aı̈t-Sahalia and Mancini (2008) with some

modifications) with high and low volatility, respectively. MD3 is the two-factor

afine stochastic volatility model with an intraday U-shape pattern (Hasbrouck (1999)

and Andersen et al. (2012)). MD4 is a deterministic volatility set-up (Tse and Yang

(2012)). Finally, MD5 is MD1 with price jumps.

For all set-ups above, we set the initial price to 60 and the initial value of σ

to 30%. We introduce sparsity of trade to the data by simulating exponentially

distributed calendar-time transaction durations.15 We first simulate transactions sec

by sec and then generate exponentially distributed transaction durations with mean

equal to 5 sec, 10 sec and 20 sec, respectively. For simplicity we only investigate iid

market microstructure noise with constant noise-signal ratio (NSR). Based on the

findings in Dong and Tse (2014), we consider cases with NSR = 0.005%, 0.01% and

0.02%. We introduce a 0.01 price rounding error in all simulations. The intraday

duration periodicity is adjusted by the time-transformation method in Tse and Dong

(2014) before we fit all price durations and BTS durations to the ACD model. Each

model is simulated over 60 trading days, with the simulation repeated 1000 times.

15Sparsity occurs as empirically transactions are not observed sec by sec. Inactive stocks typically
have more sparse transactions.

32



3.5.2 Simulation Results

We first report our results on the TRV estimates. For each model set-up sam-

pling frequencies of 1, 2, 3, 5 and 10 min are considered. We compute TRV based

on the CTS, TTS and BTS returns, with and without subsampling. All results can

be found in the supplementary material. The BTS returns perform the best in re-

porting generally smaller root mean-squared error (RMSE), especially for methods

with no subsampling. When the subsampling method is used, the RMSE decreases

significantly. Generally the BTS scheme still performs the best and its advantage is

especially significant for MD3 and MD4 when there is intraday volatility periodic-

ity in the simulated price process.16 Under all sampling schemes, the TRV estimates

suffer from the market microstructure noise problems when the NSR is large, result-

ing in high mean error (ME) at high sampling frequency. When sparsity and NSR

are both low, high sampling frequency at 1 min interval produces the lowest RMSE.

Overall, the BTS returns outperform the CTS and TTS returns in estimating the

integrated volatility. To save space we present only the results for the BTS scheme

with subsampling in Table 3. Table 4 summarizes the average difference in RMSE

of the CTS and TTS schemes versus the BTS scheme over all model and parameter

set-ups, with subsampling, in both absolute and relative terms. It can be seen that

better intraday volatility estimates can be obtained by adopting the BTS scheme

when the TRV method is used.

We now turn to the results of the ACD-ICV method. Table 5 and Table 6 report

the ME and RMSE of the RK and the ACD-ICV estimates for MD1 and MD5,

respectively. Results for other models can be found in the supplementary material.17

The RK method performs quite well for the unbiasedness property, reporting small

16When there is intraday volatility periodicity the BTS returns resemble more closely to normal
distribution than the CTS and TTS returns.

17For the ACD-ICV method, ME1 and ME2 sometimes report rather large estimation errors for
the first two days of the simulation, which is probably due to the starting values of the estimated
conditional expected durations of the fitted PACD model of the price durations. Hence, we drop the
first two days for these two methods when calculating ME and RMSE.
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ME for all models except MD5 (model with price jump). ME1 reports quite big

absolute ME and RMSE values among all the sampling frequencies considered and

it often performs worse than the RK method except for MD5.18 In contrast, the

modified ACD-ICV methods, ME2 and ME3, report quite small ME and RMSE.

ME3 consistently reports smaller RMSE than ME2 except for few cases in MD3

and MD5 at the 3-min and 5-min sampling frequencies. Moreover, ME2 varies

more across different sampling frequencies. This demonstrates the superiority of

the BTS durations over the price durations when they are fitted to the ACD model

to estimate the integrated volatility. The better performance of ME3 over ME2 is

mainly due to the fact that the BTS scheme performs better in yielding returns with

constant volatility compared against the ACD-ICV method using the price events.

Our modified ACD-ICV method ME3 consistently produces lower RMSE over

all models and parameter set-ups than the RK estimates. Its performance is robust

over a wide range of sampling frequencies of up to 15 min. It also outperforms

the TRV estimates with subsampling, except possibly for MD5, in which case their

performances are comparable.19

3.6 Conclusion

We propose an easy-to-use time-transformation method to implement the BTS

scheme at a prespecified average sampling frequency. Using 40 stocks from the

NYSE, we perform normality test to the jump-adjusted daily and weekly BTS re-

turns. Our results show that stock prices can be considered discrete observations

from a continuous-time jump-diffusion process. The BTS scheme performs better

18This is in contrast to the findings in Tse and Yang (2012), which shows the superiority of the
ACD-ICV method over the RK method via simulation using sec-by-sec transactions (sparsity of 1
sec). The poor performance of ME1 is mainly due to the transaction sparsity, since using σ2 as the
proxy for integrated volatility over one price event becomes unreliable when transactions are sparse.
Supporting evidence is provided in our simulation study that the RMSE of ME1 increases when
observed transactions are more sparse.

19MD5 is a model with price jumps, and the TRV method is constructed to be robust to price
jumps.
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than the CTS and TTS schemes in yielding iid Gaussian returns, and it also performs

better than the CTS and TTS schemes in estimating daily integrated volatility using

the TRV method, with and without subsampling. We also show the superiority of

the BTS durations over the price durations in estimating the daily integrated volatil-

ity using the ACD-ICV method. Our modified ACD-ICV estimate, ME3, which

models the high-frequency BTS durations using the ACD model, performs the best

in reporting smaller RMSE values.

Finally, we note that there are other possible applications of the BTS scheme.

For example, we can estimate the conditional instantaneous volatility or intraday in-

tegrated volatility (such as over 30-min intervals) by modeling the high-frequency

BTS durations using the ACD model. Moreover, using a method similar to that in

obtaining BTS returns, we can obtain transactions with approximately equal quar-

ticity increments. The conditional instantaneous quarticity or integrated quarticity

can be estimated further by modeling clustering of the corresponding durations us-

ing the ACD model.
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Table 3.1: Test of normality hypothesis for no-jump returns of 40 NYSE stocks

ABFN BTS

5% 1% 5% 1%

Daily 12 5 6 4

Weekly 3 1 4 0

Notes: The figures are the numbers of stocks (out of 40) for which the normality hypothesis at
the 5% and 1% levels of significance are rejected based on the Lilliefors test implemented for daily
and weekly jump-adjusted returns, 2010-2013. The returns are constructed over 5-min sampling
frequency using the method of Andersen et al. (2010) (ABFN) and the method proposed in this
paper (BTS). The total number of trading days of each stock ranges from 830 to 853.

36



Ta
bl

e
3.

2:
S

um
m

ar
y

of
si

m
ul

at
io

n
m

od
el

s

M
od

el
C

od
e

D
es

cr
ip

tio
n

of
M

od
el

D
es

cr
ip

tio
n

of
M

od
el

P
ar

am
et

er
s

H
es

to
n

M
od

el
(h

ig
h

vo
la

til
ity

)
M

D
1

d
lo

g
X
(t
)
=

( µ
−

σ
2
(t
)

2

)
dt

+
σ
(t
)d

W
1
(t
),

dσ
2
(t
)
=

κ(
α
−

σ
2
(t
))

dt
+

γσ
(t
)d

W
2
(t
).

µ
=

0.
05

,κ
=

5,
α
=

0.
25

,γ
=

0.
5

an
d

co
rr(

dW
1
(t
),

dW
2
(t
))

=
−

0.
5.

H
es

to
n

M
od

el
(l

ow
vo

la
til

ity
)

M
D

2
S

am
e

as
M

D
1.

α
=

0.
04

,a
ll

re
m

ai
ni

ng
pa

ra
m

et
er

s
sa

m
e

as
M

D
1.

Tw
o-

fa
ct

or
af

fin
e

st
oc

ha
st

ic
vo

la
til

ity
m

od
el

w
ith

U
-s

ha
pe

in
tr

ad
ay

vo
la

til
ity

pa
tt

er
n

M
D

3
d

lo
g

X
(t
)
=

σ u
(t
)σ

sv
(t
)d

W
1
(t
),

σ
2 sv
(t
)
=

σ
2 1
(t
)
+

σ
2 2
(t
),

dσ
2 1
(t
)
=

κ 1
[θ

1
−

σ
2 1
(t
)]

dt
+

η 1
σ 1

(t
)d

W
21
(t
),

dσ
2 2
(t
)
=

κ 2
[ θ

2
−

σ
2 2
(t
)]

dt
+

η 2
σ 2

(t
)d

W
22
(t
),

σ u
(t
)
=

C
+

A
e−

at
+

B
e−

b(
1−

t)
,t

∈
[0
,1
].

κ 1
=

0.
6,

κ 2
=

0.
1,

θ 1
=

0.
09

, θ
2
=

0.
04

, η
1
=

0.
2,

η 2
=

0.
1,

ρ 1
=

C
or

r(
dW

1
(t
),

dW
21
(t
))

=
0.

9,
an

d
ρ 2

=
C

or
r(

dW
1
(t
),

dW
22
(t
))
=

−
0.

4.
A
=

0.
75

,B
=

0.
25

,
C
=

0.
88

92
91

98
,a
=

10
an

db
=

10
.

D
et

er
m

in
is

tic
vo

la
til

ity
m

od
el

w
ith

U
-s

ha
pe

in
tr

ad
ay

vo
la

til
ity

pa
tt

er
n

M
D

4
d

lo
g

X
(u
)
=

σ
(u
)d

W
(u
),

σ
(u
)
=

σ
(t
,τ
)
=

σ 1
(t
) σ

2
( τ
),

w
he

re
t

is
th

e
da

y
of

tr
ad

e
an

d τ
is

th
e

in
tr

ad
ay

tim
e.σ

1
(t
)

re
pr

es
en

ts
th

e
av

er
ag

e
vo

la
til

ity
of

da
yt
an

d
σ 2

(τ
)

ca
pt

ur
es

in
tr

ad
ay

va
ri

at
io

ns
at

tim
e τ

of
ea

ch
tr

ad
in

g
da

y.

σ 1
(t
)
=

20
%

fo
rt
=

1
w

ith
σ 1

(t
)

in
cr

ea
si

ng
lin

ea
rl

y
int

ov
er

20
da

ys
to

re
ac

h
30

%
.

It
th

en
re

m
ai

ns
le

ve
lf

or
th

e
ne

xt
20

da
ys

an
d

de
cr

ea
se

s
lin

ea
rl

y
int

to
20

%
ov

er
20

da
ys

.σ 2
(τ
)

is
co

m
pu

te
d

as
in

T
se

an
d

Y
an

g
(2

01
2)

us
in

g
th

e
IB

M
tic

k-
by

-t
ic

k
tr

an
sa

ct
io

n
d

at
a

in
20

12
.

M
D

1
w

ith
pr

ic
e

ju
m

ps
M

D
5

d
lo

g
X
(t
)
=

( µ
−

σ
2
(t
)

2

)
dt

+
σ
(t
)d

W
1
(t
)
+

J(
t)

dP
(t
),

dσ
2
(t
)
=

κ(
α
−

σ
2
(t
))

dt
+

γσ
(t
)d

W
2
(t
).

P
(t
)

is
a

P
oi

ss
on

pr
oc

es
s

w
ith

co
ns

ta
nt

m
ea

n
su

ch
th

at
on

av
er

ag
e

on
e

pr
ic

e
ju

m
p

ha
pp

en
s

ev
er

y
tw

o
si

m
ul

at
ed

tr
ad

in
g

da
ys

.
J(

t)
re

fe
rs

to
th

e
si

ze
of

th
e

co
rr

es
po

nd
in

g
di

sc
re

te
ju

m
ps

in
th

e
lo

g-
pr

ic
e

pr
oc

es
s

w
ith

J(
t)
∼

N
(0
.0

2,
0.

00
4)

,w
ith

re
m

ai
ni

ng
se

t-
up

th
e

sa
m

e
as

M
D

1.

37



Table 3.3: ME and RMSE of daily volatility using the TRV method with subsampling under the BTS scheme

Sparsity NSR Model ME RMSE
1-min 2-min 3-min 5-min 10-min 1-min 2-min 3-min 5-min 10-min

5-sec 0.005% MD1 -0.4286 0.0470 0.0031 0.0004 -0.1777 1.3869 1.7228 2.1610 2.8165 4.0975
MD2 -0.4321 -0.0500 -0.0513 -0.0338 -0.1309 0.9964 1.1706 1.4665 1.9242 2.7797
MD3 -0.4435 0.0200 0.0123 -0.0019 -0.1916 1.2425 1.5657 1.9431 2.5511 3.6823
MD4 -0.2403 -0.0913 0.0126 0.0055 -0.2069 1.0574 1.3723 1.6849 2.2278 3.2164
MD5 -0.0687 0.6282 0.7732 1.0940 1.6463 1.4163 2.0196 2.5587 3.4485 5.2161

0.01% MD1 0.3382 0.4486 0.2625 0.1532 -0.1142 1.3520 1.76462.1562 2.8077 4.0850
MD2 0.0786 0.2172 0.1192 0.0675 -0.0884 0.9049 1.1831 1.4608 1.9152 2.7695
MD3 0.3291 0.4002 0.2555 0.1439 -0.1301 1.2126 1.6016 1.9521 2.5460 3.6734
MD4 0.5904 0.3128 0.2734 0.1532 -0.1474 1.1809 1.4043 1.7059 2.2373 3.2230
MD5 0.7280 1.0331 1.0365 1.2492 1.7128 1.5989 2.1671 2.63913.4936 5.2306

0.02% MD1 1.8463 1.2523 0.7789 0.4499 0.0126 2.2762 2.1053 2.2506 2.8148 4.0590
MD2 1.0802 0.7479 0.4603 0.2651 -0.0059 1.4503 1.3864 1.5109 1.9145 2.7529
MD3 1.7862 1.1644 0.7397 0.4265 -0.0167 2.1440 1.9166 2.0542 2.5558 3.6603
MD4 2.2616 1.1036 0.7889 0.4437 -0.0291 2.4966 1.7643 1.8609 2.2798 3.2357
MD5 2.2713 1.8503 1.5649 1.5559 1.8424 2.7080 2.6518 2.87533.5982 5.2587

10-sec 0.005% MD1 -0.9375 -0.0435 -0.0307 -0.0333 -0.1880 1.6335 1.8357 2.1600 2.8457 4.1021
MD2 -0.8123 -0.1034 -0.0778 -0.0560 -0.1417 1.2304 1.2500 1.4735 1.9394 2.7833
MD3 -0.8436 -0.0958 -0.0423 -0.0340 -0.2088 1.4854 1.6584 1.9742 2.5751 3.7013
MD4 -0.5797 -0.2436 -0.0830 -0.0584 -0.2432 1.2715 1.4404 1.7121 2.2547 3.2308
MD5 -0.5986 0.5429 0.7290 1.0637 1.6334 1.5659 2.0991 2.5573 3.4711 5.2171

0.01% MD1 0.0713 0.3397 0.2356 0.1224 -0.1251 1.3501 1.85612.1611 2.8355 4.0856
MD2 -0.1345 0.1520 0.1010 0.0460 -0.0992 0.9467 1.2544 1.4661 1.9323 2.7757
MD3 0.1028 0.2815 0.2097 0.1090 -0.1529 1.2390 1.6800 1.9774 2.5686 3.6909
MD4 0.3144 0.1905 0.1929 0.0949 -0.1830 1.1801 1.4321 1.7293 2.2613 3.2356
MD5 0.4190 0.9362 0.9980 1.2244 1.6968 1.5275 2.2311 2.63633.5126 5.2337

0.02% MD1 2.0479 1.1137 0.7770 0.4235 -0.0051 2.5005 2.12852.2661 2.8358 4.0650
MD2 1.1815 0.6675 0.4586 0.2426 -0.0175 1.5885 1.4198 1.5277 1.9301 2.7608
MD3 1.9622 1.0222 0.7158 0.3933 -0.0340 2.3465 1.9448 2.0766 2.5855 3.6804
MD4 2.1082 1.0387 0.7207 0.3933 -0.0644 2.4205 1.7728 1.8823 2.2997 3.2520
MD5 2.4111 1.7259 1.5437 1.5352 1.8277 2.8718 2.6669 2.87723.6225 5.2623

20-sec 0.005% MD1 -1.9043 -0.4650 -0.1715 -0.1586 -0.3052 2.5154 1.9081 2.3632 2.8884 4.1176
MD2 -1.4513 -0.3972 -0.1718 -0.1551 -0.2189 1.8465 1.3232 1.6142 1.9728 2.8010
MD3 -1.7349 -0.4945 -0.1976 -0.1617 -0.3245 2.2880 1.7421 2.0996 2.6517 3.7326
MD4 -1.3673 -0.5413 -0.2730 -0.2261 -0.3586 1.9372 1.6463 1.8101 2.3044 3.2759
MD5 -1.5684 0.0539 0.6149 0.9467 1.5263 2.3452 2.0185 2.7000 3.4925 5.2178

0.01% MD1 -0.7727 0.0595 0.0795 -0.0012 -0.2474 1.8388 1.8658 2.3619 2.8691 4.1079
MD2 -0.6930 -0.0470 -0.0025 -0.0515 -0.1798 1.3436 1.2747 1.6111 1.9649 2.7898
MD3 -0.6715 0.0110 0.0681 -0.0090 -0.2678 1.6684 1.6857 2.1131 2.6393 3.7245
MD4 -0.3601 -0.0577 0.0292 -0.0623 -0.3056 1.4354 1.5473 1.7854 2.3140 3.2870
MD5 -0.4358 0.5872 0.8854 1.1072 1.5868 1.8245 2.1169 2.7876 3.5323 5.2285

0.02% MD1 1.4062 1.0834 0.5790 0.3089 -0.1229 2.2543 2.19422.4346 2.8722 4.0765
MD2 0.7467 0.6389 0.3302 0.1612 -0.0953 1.4646 1.4674 1.6470 1.9576 2.7740
MD3 1.3598 0.9923 0.5629 0.2802 -0.1573 2.1106 1.9812 2.2102 2.6445 3.7064
MD4 1.6100 0.9172 0.6508 0.2535 -0.1811 2.1813 1.8069 1.9153 2.3599 3.2984
MD5 1.7450 1.6299 1.4063 1.4237 1.7176 2.5623 2.6474 3.01913.6372 5.2592

Notes: ME and RMSE are of the annualized standard deviation in percentage. The average true daily integrated volatilityis around 40% for MD1, 27% for
MD2, 36% for MD3, 28% for MD4 and 40% for MD5. MD1 and MD2 are theHeston model at different volatility level. MD3 is the two-factor stochastic
volatility model with intraday volatility periodicity. MD4 is the deterministic volatility model with intraday volatility periodicity and MD5 is the Heston
model (MD1) with price jumps. The first column indicates the average duration of the observed simulated transactions. The sampling frequency of the BTS
scheme equals to twice the average transaction duration.
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Table 3.4: Comparison of RMSE of TRV estimate under different sampling schemes with subsampling

1-min 2-min 3-min 5-min 10-min

Avg. RMSE (CTS-BTS) 0.3043 0.1666 0.1891 0.2215 0.1926
Avg. RMSE (CTS-BTS)/BTS (%) 17.8262 9.8515 9.6493 8.8626 5.7456

Avg. RMSE (TTS-BTS) -0.0237 0.1261 0.1721 0.2240 0.2072
Avg. RMSE (TTS-BTS)/BTS (%) -0.1011 7.9977 9.0710 9.1005 6.2101

Notes: RMSE is the root-mean squared error of daily volatility estimation annualized standard deviation in
percentage. The sampling frequency of the BTS scheme equals to twice the average transaction duration.
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Figure 3.1: Intraday volatility and trading activity of JPM, 2010/01-2013/04.
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Figure 3.2: Time-transformation functions for JPM.
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Chapter 4 A Study on Market Microstruc-

ture Noise

4.1 Introduction

The presence of market microstructure noise is a well-known phenomenon in

financial markets and causes problems in high-frequency financial data analysis.

Analysis of market microstructure noise properties is important for both high-frequency

traders and market makers. Hasbrouck (1993) defines pricing error as the difference

between the logarithmic observed transaction prices and the latent efficient prices.

He points out that pricing error is a good measure of market quality and can be

used to evaluate broker’s performance or determine markets or regulatory structures

under which transaction costs are minimized.

Various papers investigate the influence of microstructure noise in high-frequency

financial data on volatility estimates of asset returns. For example, Andersen et al.

(2000) demonstrate the bias introduced by the microstructure noise in the average

realized volatility (RV) using the volatility signature plot. Andersen et al. (2001a,

2001b, 2003) and Barndorff-Nielsen and Shephard (2002a, 2002b) suggest using

5-min to 20-min sampling frequencies to alleviate the microstructure noise effect

in estimating asset return volatility. Aı̈t-Sahalia et al. (2005) suggest sampling a

continuous-time process as often as possible. Andersen et al. (2011) and Ghysels

and Sinko (2011) investigate the influence of the microstructure noise on volatil-

ity forecasting. Diebold and Strasser (2013) investigate the correlation structure of

microstructure noise between latent asset returns and explore the application of the
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microstructural information to volatility estimation.

Hansen and Lunde (2006) investigate the empirical properties of microstructure

noise using transaction prices and bid-ask quotes of 30 Dow Jones Industrial Av-

erage (DJIA) stocks. They find the noise to be correlated with the efficient price.

They also use the noise-to-signal ratio (NSR) to characterize the magnitude of the

noise and find NSR to be below 0.1% for DJIA transaction data in 2000.1 Zhou

(1996), Zhang et al. (2005), Hansen and Lunde (2006), Oomen (2006a) and Bandi

and Russell (2008), among others, use NSR to characterize the mean squared-error

(MSE) properties of realized variance estimates, which is then used to obtain the

optimal sampling frequencies. Awartani et al. (2009) test the impact of the mi-

crostructure noise on volatility estimates by comparing realized volatilities com-

puted at different sampling frequencies. They also test the hypothesis that the noise

variance is independent of the chosen sampling frequencies by comparing estimated

microstructure-noise variance at different sampling frequencies. Ubukata and Oya

(2009) assume the noise covariance depends on the calendar time and examine

the degree of dependence in microstructure noise by testing the cross- and auto-

covariance estimates using the multiplication of two adjacent returns. Jacod et al.

(2013) assume the noise covariance to be dependent on the number of transactions

and estimate the arbitrary order of moments and joint moments of the microstructure

noise using the pre-averaging method. All four papers aforementioned assume the

influence of the cross correlation between the noise and asset returns at all sampling

frequencies to be negligible when estimating the noise variance or auto-covariance.

In this paper we show that sampling at either very high or very low frequen-

cies renders unreliable noise-variance estimates. First, noise is correlated with la-

tent stock return at high sampling frequency, and its influence is not negligible.

Second, we find the noise-variance estimates to have large estimation error for

samples at low sampling frequencies. To alleviate these problems, we propose a

1NSR is defined as the ratio of microstructure-noise variance to daily stock return realized vari-
ance.
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microstructure-noise variance estimator using subsampling realized variance at two

different sampling frequencies. For this estimate, we can sample returns at two suit-

able frequencies, without necessarily using tick-by-tick returns or returns at 20-min

or 30-min frequencies, as commonly used in the literature. In doing this, we can

mitigate the estimation error introduced by too high or too low sampling frequen-

cies. In practice, we suggest sampling transactions at moderately high frequencies,

such as 1 min or 2 min.

We further propose an estimate using subsampling realized variance at multiple

time scales. At each time point we calculate the subsampling realized variance at

sampling frequencies centering around it. We then estimate the noise variance using

the difference of weighted average subsampling realized variances. An advantage

of this estimate is that we can utilize information at multiple time scales, rather than

only two time scales. We show that this estimate has smaller variance than the one

using two time scales.

We compare different noise-variance estimates using Monte Carlo simulation

study and find that our proposed multi-scale estimates have smaller mean error

(ME) and root mean-squared error (RMSE). Using this estiamte, we find that the

NSR is around 0.005% for most of the selected New York Stock Exchange (NYSE)

transaction data from 2010 to 2013. This is significantly smaller than the estimate of

0.1% reported by Hansen and Lunde (2006) for the DJIA transaction data in 2000.

Differences in the calculated noise variances stem from different sources. First, we

use different noise-variance estimates from those in Hansen and Lunde (2006). We

show that our methods tend to be more reliable, as demonstrated by our Monte Carlo

study. Second, the time span between the two data set is large. O’Hara (2015) point

out that due to technological developments and regulatory policy changes, spreads

are smaller now because a lot of high frequency trading is based on intermarket

arbitrage.2

2Such as the changes in the U.S. Regulation Alternative Trading Systems in 2000 and the Regu-
lation National Market System in 2007.
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The rest of the paper is organized as follows. Section 2 outlines some assump-

tions of the latent price process and the microstructure noise. We also describe

five noise-variance estimates in this section. In Section 3 we characterize the mi-

crostructure noise properties of the selected NYSE stocks. We conduct a Monte

Carlo study in Section 4 to compare different noise-variance estimates. We report

estimated NSR of selected NYSE stocks in Section 5 and draw conclusions in Sec-

tion 6. The asymptotic distributions of the noise-variance estimates are derived in

the Appendix.

4.2 Microstructure Noise-Variance Estimates

4.2.1 Realized Variance Estimates

Let {Xt} denote a latent efficient log-price process in continuous time and {Yt}

denote the observed log-price process. Following Hasbrouck (1993), the noise

process is {εt}, with εt = Yt −Xt . We define the full grid containing all sampled

time points (in sec) by G = {t0, t1, t2, · · ·, tn} and any subgrid of G by H .3 If

ti ∈H , let ti− and ti+ denote the preceding and following elements of ti in H ,

respectively. Let |H | be the number of time increments in subgrid H , so that

|H |= (number of points in subgrid H )− 1. The realized volatility of a generic

process Z (Z = Y or X) on H is given by

[Z,Z]H = ∑
ti, ti−∈H

(Zti−Zti−)
2. (4.2.1)

Empirically we only observe Yt , while the presence of the microstructure noise εt

influences the stock return volatility estimates. To alleviate the noise effect, trans-

3In practical applications, transactions can be sampled under different sampling schemes, such as
Tick Time Sampling (TTS) and Calendar Time Sampling (CTS) schemes. Under the TTS scheme,
transactions are sampled by ticks and the full grid consists of all time stamps of observed transac-
tions. Under the CTS scheme time stamps are selected based on calendar time and the previous-tick
method is implemented to account for time stamps without observations. For more information of
different sampling schemes, including the Business Time Sampling scheme, please refer to Dong
and Tse (2014).
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actions are often sampled at low sampling frequencies, such as 5 min or 20 min.

A drawback of using one subgrid H at low sampling frequencies is that we lose

information given the full grid G . Zhang et al. (2005) propose the subsampling

method to make use of all available observations in G . Given K subgrids, realized

volatility RV k
K are computed in subgrids G k

K for k = 1, · · ·,K, where

G k
K = {tk−1, tk−1+K, tk−1+2K, · · ·, tk−1+(mk

K−1)K} (4.2.2)

and mk
K =max{z∈N : tk−1+(z−1)K ≤ tn}.4 The integrated volatility is then estimated

using all RV k
K . Thus, the subsampling method makes use of all available observa-

tions in G , as G =
⋃K

k=1 G k
K . For a generic process Z under subgrid G k

K , we define

the intraday return over the interval [ti−, ti] as rti,K,Z = Zti−Zti−K , where ti ∈ G k
K .

We now postulate the following assumption for the efficient price process {Xt}.

Assumption 1. The efficient log-price {Xt} follows the Itô process dXt = µtdt +

σtdWt .

Under assumption 1, the integrated volatility of the price process over [t0, tn] is

IV =
∫ tn

t0 σ2
s ds. According to standard arguments, the mean drift of the price pro-

cess has negligible impact on the analysis of very high-frequency data. Thus, with-

out loss of generality we assume µt = 0. For simplicity we do not consider price

jumps, although our results are still valid for a general semimartingale process. For

example, Jacod and Shiryaev (2003) provide the uniform convergence property of

realized volatility to the quadratic variation for the general càdlàg adapted semi-

martingale process.

4Note that ti− = ti−K and ti+ = ti+K for any time point ti ∈ G k
K . Higher sampling frequency goes

with smaller value of K. When sampling frequency decreases, K increases and mk
K decreases.
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The realized variance (Andersen et al. (2001a, 2001b, 2003)) in subgrid G k
K is

RV k
K = ∑

ti∈G k
K

(Yti−Yti−)
2

= ∑
ti∈G k

K

(
rti,K,X + εti− εti−

)2

= ∑
ti∈G k

K

(rti,K,X)
2 + ∑

ti∈G k
K

(
εti− εti−

)2
+2 ∑

ti∈G k
K

rti,K,X
(
εti− εti−

)
.

and the bias of RV k
K is

E
[
RV k

K− IV
]
= E


 ∑

ti∈G k
K

(
εti− εti−

)2


+2E


 ∑

ti∈G k
K

rti,K,X
(
εti− εti−

)

 . (4.2.3)

The subsampling realized volatility estimate of Zhang et al. (2005) is

RV K =
1
K

K

∑
k=1

RV k
K, (4.2.4)

and the bias of RV K is

E
[
RV K− IV

]
=

1
K

E


 ∑

ti∈G k
K ,k=1,···,K

(
εti− εti−

)2


+ 2

K
E


 ∑

ti∈G k
K ,k=1,···,K

rti,K,X
(
εti− εti−

)

 .

(4.2.5)

We further make the following two assumptions about the noise process {εt}

and the latent log-price {Xt}.

Assumption 2. The noise process {εt} is covariance stationary with mean 0, and

auto-covariance function π(s)≡ E
(
εtiεti−s

)
for any ti, ti−s ∈ G and s ∈ Z.

Assumption 3. The cross-covariance function between the noise process {εt} and

the latent log-price process {Xt} is stationary with ρ(s,w) ≡ E
[
εti+s(Xti−Xti−w)

]
,

for ti+s, ti, ti−w ∈ G , s ∈ 0∪N and w ∈ N. Moreover, the microstructure noise does

not predict future latent log-price returns. That is, E
[
εti−w−s(Xti−Xti−w)

]
= 0 for

ti−w−s, ti, ti−w ∈ G , and s,w ∈ N.
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Based on Assumptions 1-3, from equations (4.2.3) and (4.2.5), we have

E
[
RV k

K− IV
]
= 2mk

K [π(0)−π(K)+ρ(0,K)] (4.2.6)

and

E
[
RV K− IV

]
= 2mK [π(0)−π(K)+ρ(0,K)] , (4.2.7)

where mK = ∑
K
k=1 mk

K/K. By Cauchy-Schwarz inequality, π(0)− π(K) is always

non-negative. Thus, the bias of the realized variance, with or without subsampling,

is negative only when ρ(0,K) < −[π(0)− π(K)]. Hence, RV k
K and RV K under-

estimate IV only when the cross-correlation between the microstructure noise and

latent returns is negative.

Zhou (1996) proposes a subsampling first-order auto-correlation RV estimator

to alleviate the bias introduced by the microstructure noise. We denote this estimate

by RV KA, which is defined as

RV KA =
1
K

K

∑
k=1

RV k
KA, (4.2.8)

where

RV k
KA = RV k

K +2Ak
K (4.2.9)

and

Ak
K =

mk
K

mk
K−1 ∑

ti∈G k
K

(Yti+−Yti)(Yti−Yti−). (4.2.10)

We also define AK as

AK =
1
K

K

∑
k=1

Ak
K. (4.2.11)
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Under Assumptions 1-3, the bias of RV k
KA is

E
[
RV k

KA− IV
]
= 2mk

K[π(K)−π(2K)+ρ(K,K)] (4.2.12)

and the bias of RV KA is

E
[
RV KA− IV

]
= 2mK[π(K)−π(2K)+ρ(K,K)]. (4.2.13)

If the noises are iid so that π(s) = 0 for all s 6= 0, the bias of RV k
KA reduces to

2mk
Kρ(K,K) and the bias of RV KA reduces to 2mKρ(K,K). Furthermore, if the

noise process is independent of the latent return, (i.e., π(s) = 0 for all s 6= 0 and

ρ(s,w) = 0 for all s and w), we have E[RV k
K−IV ] = 2mk

Kπ(0) and E[RV k
KA−IV ] = 0.

As E
[
RV k

KA

]
= E

[
RV k

K
]
+2E

[
Ak

K
]
, we also have E[Ak

K] =−mk
Kπ(0).

4.2.2 Estimating the Noise Variance

Hansen and Lunde (2006) propose to estimate the microstructure noise variance

π(0) (denoted by ω2 for simplicity) by

ω̂
2 =

RV k
K− IV
2mk

K
, (4.2.14)

They select RV k
KA as an unbiased estimator of IV and use tick-by-tick transactions to

compute RV k
K and RV k

KA in their empirical analysis. In addition, instead of estimating

the noise variance at one time scale using RV k
K , they also calculate the noise variance

at two time scales. The noise variance is computed using the difference of the

realized variance at two different frequencies K1 and K2, with K2 fixed at 30 min.

Thus, they estimate the noise variance by

ω̌
2 =

RV k1
K1
−RV k2

K2

2(mk1
K1
−mk2

K2
)
, (4.2.15)
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where K2 is selected to render 30-min sampling frequency (mk2
K2

= 13 for the NYSE).

Empirically, same as ω̂2 in equation (4.2.14), they compute RV k1
K1

using tick-by-tick

trading prices. On the other hand, Oomen (2006b) and Ubukata and Oya (2009)

propose to use the first-order auto-covariance of asset returns to estimate the noise

variance as follows

ω̃
2 =−Ak

K

mk
K
. (4.2.16)

It is interesting to note that if RV k
KA is selected as IV in equation (4.2.14), ω̂2 is

identical to ω̃2.

One drawback of the noise-variance estimates aforementioned is that there is

estimation error when we sample transactions at too high frequencies. We show in

our empirical study that the microstructure noise is negatively correlated with high-

frequency latent asset returns. The cross correlation between the noise and latent

returns will distort the estimates, especially when the magnitude of the noise vari-

ance is small. In view of this, we will not use tick-by-tick transactions to calculate

ω̂2, ω̌2 and ω̃2, respectively, in equations (4.2.14)-(4.2.16). However, when we se-

lect transactions sparsely and only use transactions in one subgrid, there is heavy

loss of information. To deal with this problem, we propose to utilize all available

transactions using subsampling method. We modify the noise-variance estimate ω̂2

in equation (4.2.14) and consider the noise-variance estimate

ω̂
2(K) =

RV K− IV
2mK

. (4.2.17)

For simplicity, we denote this estimate by M1. The following proposition states the

property of M1.

Proposition 1. Suppose the efficient log-price {Xt} is an Itô process satisfying

Assumption 1 and the microstructure noise process is {εt}, where εt = Yt−Xt . The

observed log-price {Yt} is related to {Xt} and {εt} through Yt = Xt + εt , the noise

{εt} is iid with E(εt) = 0. Furthermore, assume {εt} and {Xt} to be independent,
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with E(ε4
t )< ∞. As n→ ∞, for M1, we have

√
n
(
ω̂

2(K)−E(ε2
t )
∣∣X
) L→ N

(
0,E(ε4

t )
)
. (4.2.18)

The proof of proposition 1 is in the Appendix.5 Note that empirically we need to

use some unbiased and consistent estimate ÎV to approximate IV for M1.

Furthermore, we also find that there is obvious estimation error when we sample

transactions at too low frequencies. We find RV K of a typical NYSE stock decreases

when sampling frequency decreases. The mean RV K at low sampling frequency is

significantly smaller than the mean Realized Kernel (RK) estimate, where the RK

method is noise-robust. Thus, we do not recommend using RV K at low sampling

frequency, such as 30-min, to investigate the noise property. Instead, we suggest to

estimate the noise variance using difference of RV Ki , for i = 1,2, with K1 6= K2, at

moderately high sampling frequencies, such as 1 min or 2 min. This will helps to

alleviate problems introduced by either too high or too low sampling frequencies.

We modify the noise-variance estimate ω̌2 in equations (4.2.15) and consider the

following noise-variance estimate

ω̌
2(K1,K2) =

RV K1−RV K2

2(mK1−mK2)
, (4.2.19)

where we do not necessarily select Ki, for i = 1,2, at one tick sampling frequency

or low sampling frequency such as 30 min. For simplicity, we denote this estimate

by M2.6 The following proposition states the properties of M2.

Proposition 2. Under the same assumptions as in Proposition 1. As n→ ∞, for M2

with K1 6= K2, we have

√
n
(
ω̌

2(K1,K2)−E(ε2
t )
∣∣X
) L→ N

(
0,E(ε4

t )+
2K1K2

(K2−K1)2

(
E(ε2

t )
)2
)
. (4.2.20)

5We treat K as fixed in the paper.

6Zhang et al. (2005) also suggest to estimate the noise variance using M2, but they fix K1 at one
tick sampling frequency.
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The proof of proposition 2 is in the Appendix. Note that theoretically M2 always

report larger estimation variance than M1. However, in implementation, we need to

select an unbiased IV estimate ÎV for M1, and the estimation error introduced by

ÎV will further distort the estimated noise variance. In contrast, for M2, the latent

integrated volatility is included implicitly in RV K2 and the estimation error of RV Ki ,

for i = 1,2, may even be mitigated when we do the subtraction. We investigate M1

and M2 in our Monte Carlo and empirical study and show the better performance

of M2 than M1.

We further modify ω̃2 in equation (4.2.16) using the subsampling method and

estimate the noise variance via

ω̃
2(K) =−AK

mK
. (4.2.21)

We denote this estimate by M3. The properties of M3 can be found in Section 3.2

of Ubukata and Oya (2009).

Instead of estimating the noise variance only at one or two time scales using M1

and M2, we may estimate the noise variance using subsampling realized variance

at multiple time scales. Now we compute the noise variance based on subsampling

realized variance at sampling frequencies centering around K or Ki, for i= 1,2. That

is, we estimate RV K+lq, for l = −L, · · ·,L, with L,q ∈ N,7 and define the weighted

average of subsampling realized variance as

RV K,L,q =
L

∑
l=−L

(K + lq)RV K+lq

(2L+1)K
. (4.2.22)

The new noise-variance estimator is then given by

ω̂
2(K,L,q) =

RV K,L,q− ÎV
2mK

. (4.2.23)

We call this estimate M1A. The following proposition states the properties of M1A.

7In the paper, we use q = 1 tick under the TTS scheme and q = 10 sec under the CTS scheme.
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Proposition 3. Under the same assumptions as in Proposition 1, as n→ ∞, for

M1A, we have

√
n
(
ω̂

2(K,L,q)−E(ε2
t )
∣∣X
) L→ N

(
0,E(ε4

t )−
2L

2L+1
(
E(ε2

t )
)2
)
. (4.2.24)

Compared with M1, M1A has smaller variance. Furthermore, we can calculate

the noise variance using

ω̌
2(K1,K2,L,q) =

RV K1,L,q−RV K2,L,q

2(mK1−mK2)
. (4.2.25)

For simplicity, we call this estimate M2A. The following proposition states the prop-

erties of M2A.

Proposition 4. Under the same assumptions as in Proposition 1, as n→∞, for M2A

with K1 6= K2, we have

√
n
(
ω̌

2(K1,K2,L,q)−E(ε2
t )
∣∣X
)

L→ N
(

0,E(ε4
t )+

1
2L+1

(
−2L+

2K1K2

(K2−K1)2

)(
E(ε2

t )
)2
)
.

(4.2.26)

The proof of the propositions 3 and 4 can be found in the Appendix.

Asymptotically, compared with M2, M2A has smaller error variance for all

L > 0. Although theoretically M1A has smaller error variance than M2A, as we dis-

cussed before, empirically ÎV may distort M1A. We investigate the performances of

M1A and M2A in our Monte Carlo and empirical study and show the superiority of

M2A. Our noise-variance estimates M1A and M2A share some similarities to the

multi-scale approach of Zhang (2006), although we use different weighting func-

tions here. Zhang’s (2006) estimator has the form 〈X̂ ,X〉(n) = ∑
M
i=1 αiRV Ki where

{αi}, i = 1, · · ·,M, are selected so that 〈X̂ ,X〉(n) is asymptotically unbiased and has

optimal convergence rate of n−1/4, with

M

∑
i=1

αi = 1 and
M

∑
i=1

αi(n+1−Ki)

Ki
= 0. (4.2.27)
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Here {αi}, i = 1, · · ·,M, take negative values for some i. In contrast, the weights in

our estimates are always positive. While the MSRV method is proposed to estimate

the realized volatility with optimal convergence rate of n−1/4, our estimators are

proposed to estimate the noise variance with smaller estimation error.

We list all five noise-variance estimates in Table 1 for ease of comparison.

4.3 Characterizing Noise Properties using Volatility

Signature Plot

Bandi and Russell (2006) point out that the noise associated with transactions

is quite different from noise associated with quotes, due to their different forma-

tion mechanisms. Different markets, sampling methodologies and price measure-

ments may render different noise properties as well. In this paper we investigate the

properties of the noise associated with the NYSE transaction prices. We use the

subsampling realized variance RV K and subsampling first-order auto-correlation

bias-corrected realized variance RV KA to calculate the volatility signature plots.

We use the NYSE transaction data from January 2010 to April 2013 of the top

40 market-capitalization stocks (as of 2010) with data compiled from the WRDS

TAQ database. To clean the raw data, we follow the steps described in Tse and

Dong (2014). When there are multiple transactions at the same time stamp, we use

the average price weighted by trading volume.

In Figure 1, we present the volatility signature plot using the mean RV K aver-

aged over all trading days for stock JPM.8 Under the TTS scheme, the number of

subsamples K is determined such that at each trading day the mean sampling dura-

tion of each subgrid is approximately equal to the values specified in the x-axis of

the figure.9 We compute the daily volatility using the noise-robust Realized Kernel

8To save space we only provide calculated results of JPM under the TTS scheme. Results for
other stocks as well as under the CTS scheme are available in our online Appendix.

9Based on this setting, the number of subsamples K will vary across trading days for a fixed
value in the x-axis. For example, the average transaction duration may be 5 sec in one day and 20
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(RK) method of Barndorff-Nielsen et al. (2008) and plot mean RK estimate in the

figure.10 The confidence interval of the volatility level is also provided using the

method described in Hansen and Lunde (2006) but we use RK as the conditionally

unbiased estimate of IV .

Figure 1 shows the impact of different sampling frequencies on RV K . When the

sampling frequency is high, (i.e., small average transaction duration and small num-

ber of subgrids), mean RV K significantly deviates from mean RK.11 This coincides

with the findings in the literature that the microstructure noise distorts the realized

variance estimate at high sampling frequency. However, we observe even more sig-

nificant deviation of mean RV K from mean RK at low sampling frequency. When

the average transaction duration is above 20 min, RV K lies below the lower volatility

confidence bound for all stocks investigated. This is in contrast with results in the

literature that the realized volatility stabilizes at low sampling frequency because of

the mitigated influence of noise variance. Thus, selecting the sampling frequency is

an important issue when RV K is used to estimate the microstructure-noise variance.

A very small variation of RV K will result in very different NSR estimates.12

We further report volatility signature plots of RV K and RV KA averaged over

all trading days for JPM in Figure 2, focusing on sampling frequencies below 5

min.13 At ultra high sampling frequencies, for 30 out of 40 stocks RV K increases

sec in another. At the 1-min target average sampling duration, we need to sample every 12 ticks
and every 3 ticks separately on these two days. Sensitivity of RV K to the sampling frequency in
our latter analysis tends to support this setting under the TTS scheme, which is superior to sampling
transactions by the same number of ticks over all trading days.

10Barndorff-Nielsen et al. (2009) suggest to use RV K at 15-min sampling frequency to calculate
the bandwidth of the realized kernel. In contrast, based on the results in this section, throughout
this paper we use RV K at 3-min sampling frequency under the TTS scheme to calculate the RK
bandwidth.

11Specifically, RV K of 8 stocks cross the upper confidence bound and RV K of 3 stocks cross the
lower confidence bound at 5 sec sampling frequency for the 40 stocks under the TTS scheme.

12Empirically when we sample transactions at low sampling frequencies, the sampled transac-
tions at subgrid H = {t1, · · ·, th} may not cover 6.5 hours. We adjust this problem by multiplying
RV k

K to 23400/(th− t1) at each subgrid G k
K and then compute the adjusted subsampling realized vari-

ance RV KA∗ . The RV KA∗ volatility signature plots in Figure 1 suggest similar results, although the
difference between RV KA∗ and RK is smaller.

13We only provide RV K and RV KA of JPM under the TTS scheme. Results for other stocks as well
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as the sampling frequency decreases and for more than half of the stocks mean

RV K is smaller than mean RK. This provides direct empirical evidence of the neg-

ative cross-correlation between the microstructure noise and the latent transaction

returns. The negative correlation is also suggested by Hansen and Lunde (2006)

but they use quotation data and cointegration analysis. Although RV KA varies a lot

across different stocks at ultra high sampling frequencies, they stabilize after 1-min

sampling frequency. Specifically, at 1-min sampling frequency mean RV KA are of-

ten very close to the mean RK. Thus, we treat the microstructure noise as iid when

the sampling frequency is lower than 1-min.

4.4 Simulation Study

We conduct a Monte Carlo (MC) study to compare the performances of all five

microstructure noise-variance estimates M1, M1A, M2, M2A and M3 across differ-

ent sampling frequencies.

4.4.1 Simulation Setup

The setup of our simulation is similar to that implemented in Tse and Yang

(2012), with minor modifications. We assume the following price generation pro-

cess (Heston (1993)):

d logXt =

(
µ− σ2

t
2

)
dt +σtdW1t ,

dσ
2
t = κ(α−σ

2
t )dt + γσtdW2t ,

with µ = 0.05, κ = 5, α = 0.04 (the long run annualized daily standard deviation

is around 20%), and γ = 0.5. The correlation coefficient between the two Brownian

motions W1t and W2t equals to−0.5. We generate simulated transactions with initial

value of X0 = log(60) and σ0 = 10%. We introduce sparsity to the simulated trans-

as under the CTS scheme are available in our online Appendix.
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actions and consider three cases for which the average transaction duration (sparsity

parameter) equals 5 sec, 10 sec and 20 sec. To obtain the sparse transactions, we

first simulate transactions sec by sec and irregularly spaced transactions are then

obtained based on an exponential distribution with mean equal to the sparsity pa-

rameter. We consider iid microstructure noise with constant NSR, with NSR = 0,

0.001%, 0.01% and 0.1%. A price rounding error of 0.01 is introduced to the simu-

lated price process. We do 1000 simulation runs for each model with 1000 trading

days for each simulation run.

4.4.2 Simulation Results

For M2 and M2A, we select K1 at 1-min sampling frequency and select K2 at

2-min, 3-min, 5-min, 10-min and 30-min sampling frequencies. For M1, M1A and

M3, we estimate the noise variance at 1-min, 3-min, 5-min, 10-min and 30-min

sampling frequencies. For M1 and M1A, we use RK as an unbiased estimate of IV.

For M1A and M2A, we use L = 2, q = 1 tick under the TTS scheme and L = 2,

q = 10 sec under the CTS scheme. NSR is calculated at each simulation run based

on the estimated noise variance and the true daily integrated volatility. We use

RV KA∗ instead of RV K to calculate the noise variance. Tables 2-6 report the ME and

RMSE of the NSR estimates using simulated prices with different sparsity and NSR

parameters under the CTS and TTS schemes. NSR in the first columns of the tables

are the target NSR fixed for the simulated noise process. True NSR in the second

column are the realized NSR incorporating the price rounding error. One cent price

rounding error boosts NSR up by 0.0016%-0.0019%.

Among all five noise variance estimates, M2 and M2A perform the best in re-

porting ME and RMSE closest to zero across all sampling frequencies investigated.

They are also more robust than M1, M1A and M3 across different sampling fre-

quencies, and their superiority is especially significant at low sampling frequencies.

High sampling frequency is preferred, as long as the iid noise assumption is satis-

fied. M2A performs better than M2 with generally smaller RMSE, which is con-
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sistent with the propositions in Section 2. Under the CTS scheme, M2 sometimes

report smaller RMSE in comparison to M2A when transactions are more sparse and

NSR is big. This may be due to errors introduced by the previous-tick method. We

also estimate the noise variance using RV K instead of RV KA∗ for M1, M1A, M2 and

M2A and find that all estimates exhibit obvious bias, as well as larger RMSE.14 In

sum, our results suggest that M2 and M2A with RV KA∗ provide the best estimates

of the market microstructure noise variance.

We present the RV K and RV KA volatility signature plots of one simulation run

under the CTS and TTS schemes in Figure 3 with a sparsity parameter of 10 sec

and NSR of 0.01%.15 The mean true integrated volatility and mean RK are pro-

vided in the figure as well. We construct the confidence band based on true daily

integrated volatility. Under the TTS scheme, RV KA performs very well in getting rid

of the noise effect in volatility estimation. However, RV KA under the CTS scheme

sometimes lie above the upper confidence bound. This suggests that the previous-

tick method may introduce noise that is autocorrelated or cross-correlated with the

latent returns. The autocorrelation of noise is more obvious when the NSR param-

eter or the sparsity parameter is big. In contrast, the noise introduced by the price

rounding error tends to be independent. Mean RV K is very close to mean RK at all

sampling frequencies in our simulation study. This is in contrast to the findings in

our empirical analysis, which suggests that the Heston model may not describe the

empirical trading prices very well.

4.5 Empirical Estimates of Noise-to-Signal Ratio

We estimate NSR of the 40 NYSE stocks using M2 and M2A and compare

their results against the M1, M1A and M3 methods. We calculate NSR using M2

and M2A at 1-min versus 2-min sampling frequencies, and M1, M1A and M3 at

14Results are available in the online Appendix.

15We present volatility signature plots of all cases in the online Appendix.
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1-min sampling frequency. For M1, M1A, M2 and M2A, we use RV KA∗ instead

of RV K to calculate the noise variance, with all estimates implemented under the

TTS scheme. For M1 and M1A, we use RK as the unbiased estimate of IV. The

results are reported in Table 7. Using M2 and M2A, we find all stocks have very

small NSR, except for MMM, which reports negative figures. Specifically, 32 out

of 39 stocks report NSR with positive values below 0.006% and only C and BAC

report NSR with values above 0.01%. The estimated NSR is much smaller than

that reported in the literature. For example, Hansen and Lunde (2006) report that

NSR is slightly below 0.1%. M2A reports smaller NSR than M2 for 37 out of 39

stocks (MMM is not take into account). NSR estimated using M2 and M2A are

quite different from those obtained using M1, M1A and M3.

We further check the robustness of all five noise-variance estimates by imple-

menting them at different sampling frequencies. We calculate NSR using M2 and

M2A at 1-min versus 3-min sampling frequencies, and M1, M1A and M3 at 2-min

sampling frequency. The results are reported in Table 8. For M2 and M2A, NSR

increases slightly and there are still 29 (30) out of 40 stocks for M2 (M2A) with

NSR below 0.006%. Only C, BAC and PG report NSR with values above 0.01%.

In contrast, NSR calculated from M1, M1A and M3 change significantly across dif-

ferent sampling frequencies. Only 3 (4) stocks report negative NSR for M1 (M1A)

at 1-min sampling frequency but 20 (21) out of 40 stocks report negative NSR at

2-min sampling frequency. For M3, 29 out of 40 stocks report negative NSR at

1-min sampling frequency but only 3 stocks report negative NSR at 2-min sampling

frequency. We also estimate NSR using M2 and M2A at 1-min versus 30-min sam-

pling frequency and using M1, M1A and M3 at 30-min sampling frequencies.16 All

NSR estimates are very different from the results in Tables 7 and 8. Specifically,

the estimated NSR generally increase by more than 5 times for M2 and M2A, and

increase or decrease by more than 50 times for M1, M1A and M3. This finding

is interesting since in our simulation study all noise variance estimates report very

16We report these results in our online Appendix.
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good unbiasedness property across different sampling frequencies. Finally, we cal-

culate NSR using M2A at 1-min versus 2-min sampling frequencies by every 100

trading days. We report mean NSR by averaging across all 40 stocks in Figure 4.

NSR tends to vary over time and is quite high during the period around 2010.

4.6 Conclusion

We investigate the noise properties of NYSE high-frequency trading prices. Se-

lecting the sampling frequency of the subsampled realized variance RV K is impor-

tant for the noise-variance estimation. For the selected NYSE stocks in 2010 to

2013, the microstructure noise is negatively correlated with the latent asset returns

at high sampling frequencies, while at low sampling frequencies RV K always de-

crease when the sampling frequency decreases. Specifically, RV K at low sampling

frequencies, such as 20 min, is significantly different from the Realized Kernel es-

timate. This observation is largely neglected in the literature, leading researchers to

favor using low sampling frequency to alleviate the influence of noise.

We propose two noise-variance estimates M2 and M2A using the difference of

subsampled realized variance at two or multiple time scales. We compare five noise-

variance estimates using Monte Carlo study and our proposed estimates perform the

best in reporting lower ME and RMSE. To estimate noise variance, high sampling

frequency is preferred whenever the noise can be recognized as iid. In practice, we

suggest sampling transactions at moderately high frequencies, such as 1 min or 2

min. We estimate NSR using transaction data for NYSE stocks. The estimated NSR

of the selected stocks is around 0.005% from 2010 to 2013. The magnitude of NSR

is so small that it is delicate to investigate the microstructure noise properties. For

example, we cannot ignore the cross correlation between the microstructure noise

and latent asset returns when investigating the auto-covariance of the microstructure

noise.
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Table 4.1: Summary of Noise-variance Estimators

Model Notation Noise-variance Estimator Description of Estimator

M1 ω̂2(K)
RV K − ÎV

2m̄K
RV K = 1

K

∑K
k=1RV k

K ,
RV k

K =
∑

ti∈Gk
K
(Yti − Yti−)

2,

m̄K =
∑K

k=1m
k
K/K and mk

K = |Gk
K |.

We use the Realized Kernel method as the
unbiased estimate of IV .

M1A ω̂2(K1, L, q)
RV K,L,q − ÎV

2m̄K
RV K,L,q =

∑L
l=−L

(K+lq)RV K+lq

(2L+1)K , and R̄V K ,
m̄K same as M1.

M2 ω̌2(K1,K2)
RV K1 −RV K2

2(m̄K1 − m̄K2)
See M1.

M2A ω̌2(K1,K2, L, q)
RV K1,L,q −RV K2,L,q

2(m̄K1 − m̄K2)
See M1A.

M3 ω̃2(K) −AK

m̄K
AK = 1

K

∑K
k=1A

k
K ,

Ak
K =

mk
K

mk
K−1

∑
ti∈Gk

K
(Yti+ − Yti)(Yti − Yti−)

and m̄K same as M1
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Table 4.7: Empirical NSR estimates of 40 stocks

Stock M1 M1A M2 M2A M3 Stock M1 M1A M2 M2A M3

XOM 0.2972 0.2930 0.5029 0.4960 -0.0064 WMT 0.2355 0.2277 0.5263 0.5149 -0.1030

GE 0.5212 0.5152 0.4886 0.4802 0.6004 CVX 0.3698 0.3630 0.5871 0.5752 0.0130

IBM 0.2693 0.2564 0.3867 0.3613 -0.0020 JNJ 0.1845 0.1754 0.4032 0.3872 0.0036

T 0.2868 0.2840 0.3627 0.3674 0.2493 PG 0.6135 0.6030 0.8816 0.8675 -0.1380

JPM 0.0746 0.0716 0.1920 0.1874 -0.0848 WFC 0.0664 0.0614 0.1301 0.1228 -0.1325

KO 0.2998 0.2844 0.5412 0.5177 -0.0616 PFE 0.8523 0.8461 0.8729 0.8687 0.7280

C 6.6461 6.6515 6.6944 6.7040 6.4090 BAC 1.3697 1.3570 1.3009 1.2862 1.2926

SLB 0.2674 0.2627 0.6321 0.6234 -0.0776 MRK 0.1250 0.1148 0.3596 0.3467 -0.0834

PEP 0.1241 0.1115 0.4619 0.4405 -0.0808 VZ 0.3542 0.3438 0.4722 0.4566 0.0779

COP 0.0228 0.0193 0.2058 0.2022 -0.1118 GS 0.0852 0.0731 0.2469 0.2249 -0.1996

MCD 0.3643 0.3552 0.5448 0.5329 -0.0541 OXY 0.0442 0.0326 0.2834 0.2647 -0.0949

ABT 0.0630 0.0478 0.3865 0.3594 -0.0306 UTX 0.0095 -0.0062 0.1866 0.1599 -0.0745

UPS 0.1935 0.1808 0.3133 0.2965 -0.1725 F 0.8649 0.8334 0.8804 0.8490 0.7480

DIS 0.0863 0.0731 0.2690 0.2475 -0.1160 MMM -0.0482 -0.0587 -0.2615 -0.2750 -0.4081

CAT 0.1926 0.1860 0.3940 0.3829 -0.1038 FCX 0.0844 0.0803 0.3373 0.3316 -0.1640

USB 0.1119 0.1034 0.1958 0.1846 -0.1161 MO 0.6505 0.6323 0.6575 0.6415 0.6197

AXP 0.1364 0.1247 0.3629 0.3443 -0.1685 BA 0.1011 0.0863 0.2494 0.2266 -0.0593

MDT -0.1473 -0.1652 0.1268 0.0999 -0.1946 HD 0.1580 0.1480 0.2880 0.2714 -0.0663

CVS 0.1418 0.1266 0.3214 0.3060 -0.2244 EMC 0.2081 0.1979 0.2875 0.2760 0.0010

HAL 0.1610 0.1550 0.3816 0.3714 -0.2182 PNC -0.0275 -0.0442 0.1436 0.1237 -0.2051

Notes: NSR is calculated under the TTS scheme. We use RV KA∗ at 1-min sampling frequency for M1, M1A and M3 and at

1-min versus 2-min sampling frequencies for M2 and M2A, 2010-2013. The figures are after multiplying by 104.

Table 4.8: Empirical NSR estimates of 40 stocks

Stock M1 M1A M2 M2A M3 Stock M1 M1A M2 M2A M3

XOM 0.0907 0.0892 0.5752 0.5692 0.3990 WMT -0.0583 -0.0627 0.6827 0.6728 0.3820

GE 0.5462 0.5430 0.4562 0.4493 0.3183 CVX 0.1509 0.1496 0.7141 0.7040 0.5450

IBM 0.1533 0.1490 0.5312 0.5114 0.3096 JNJ -0.0310 -0.0333 0.4323 0.4189 0.2086

T 0.2176 0.2076 0.5249 0.5253 0.2154 PG 0.3460 0.3392 1.2490 1.2362 0.8999

JPM -0.0427 -0.0442 0.2606 0.2563 0.0802 WFC 0.0003 -0.0022 0.2682 0.2617 0.0476

KO 0.0561 0.0490 0.7099 0.6889 0.3749 PFE 0.8315 0.8250 0.9664 0.9595 0.7558

C 6.6024 6.6021 6.8326 6.8438 6.6471 BAC 1.4376 1.4340 1.3812 1.3670 1.2417

SLB -0.0981 -0.0990 0.7098 0.7029 0.4719 MRK -0.1073 -0.1138 0.4026 0.3890 0.1065

PEP -0.2117 -0.2158 0.5357 0.5190 0.1754 VZ 0.2354 0.2299 0.5818 0.5684 0.3848

COP -0.1564 -0.1598 0.2467 0.2419 0.0638 GS -0.0712 -0.0739 0.3712 0.3540 0.1843

MCD 0.1830 0.1772 0.7008 0.6893 0.4434 OXY -0.1975 -0.2018 0.3366 0.3204 0.1108

ABT -0.2576 -0.2609 0.4102 0.3920 0.0259 UTX -0.1623 -0.1687 0.2001 0.1765 -0.0408

UPS 0.0731 0.0642 0.4730 0.4547 0.2207 F 0.8486 0.8408 0.9296 0.8978 0.7625

DIS -0.0922 -0.0971 0.3561 0.3387 0.0934 MMM 0.1462 0.1389 0.5025 0.4867 0.0652

CAT -0.0088 -0.0109 0.4832 0.4742 0.3172 FCX -0.1709 -0.1732 0.4380 0.4317 0.2816

USB 0.0278 0.0214 0.3044 0.2948 0.0622 MO 0.6420 0.6273 0.7331 0.7146 0.5607

AXP -0.0958 -0.1004 0.4848 0.4699 0.2070 BA -0.0389 -0.0464 0.3121 0.2912 0.0714

MDT -0.4139 -0.4222 0.2299 0.2060 -0.1801 HD 0.0325 0.0288 0.4033 0.3906 0.1910

CVS -0.0372 -0.0520 0.5898 0.5692 0.1723 EMC 0.1295 0.1208 0.4177 0.4039 0.1494

HAL -0.0606 -0.0623 0.4530 0.4451 0.3109 PNC -0.2050 -0.2152 0.2382 0.2186 -0.0751

Notes: NSR is calculated under the TTS scheme. We use RV KA∗ at 2-min sampling frequency for M1, M1A and M3 and at

1-min versus 3-min sampling frequencies for M2 and M2A, 2010-2013. The figures are after multiplying by 104.
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Figure 4.1: RV K and RV KA∗ volatility signature plot for IBM under the TTS scheme, 2010-2013.

Figure 4.2: RV K and RV KA volatility signature plot for IBM under the TTS scheme, 2010-2013.

70



Figure 4.3: RV K and RV KA volatility signature plot of one simulation run,
sparsity = 10-sec and NSR = 0.01%.
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Figure 4.4: Average estimated NSR across 40 stocks over every 100 days, 2010-2013.
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Chapter 5 Conclusion

My dissertation focuses on High-frequency financial data analysis using NYSE

tick-by-tick transaction data. I investigate the intraday periodicity adjustment and its

effect on intraday volatility estimation using the Time Transformation (TT) method

in Chapter 2. In Chapter 3, I investigate the implementation and applications of the

Business Time Sampling (BTS) scheme for high-frequency financial data. Specif-

ically, I test the semi-martingale hypothesis using BTS returns and estimate the

Integrated Volatility using either BTS returns or BTS durations. In Chapter 4, I

investigate the market microstructure noise properties of typical NYSE stocks. I

also propose two new microstructure noise-variance estimates in this chapter and

estimate the Noise-to-signal Ratio (NSR) of NYSE stocks in period from 2010 to

2013.

In Chapter 2, I compare the Time Transformation (TT) method with the Dura-

tion Adjustment (DA) method. Advantages of the TT method over the DA method

include its intuitive theoretical underpinning, its easier implementation, its easiness

to switch between calendar time and diurnally adjusted time, among others. I then

focus on adjusting the intraday periodicity in trading activity using the TT method

and investigating effects of the adjustment on the estimation of intraday volatil-

ity. Our empirical results show that whether or not the duration data are adjusted

for intraday periodicity has little impact on the daily volatility estimates using the

ACD-ICV method. However, I document a clear regular intraday volatility smile,

which shows a more prominent U-shape when the duration data are corrected for

intraday periodicity than when it is not. I also show that multiple trades should be

treated carefully in high-frequency financial data analysis by showing the different
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intraday volatility smiles when multiple trades are treated differently. Specifically,

I show the intraday volatility smiles are more prominent when multiple trades are

treated as separate trades.

Chapter 3 focuses on the intraday periodicity adjustment in volatility, which cor-

responds to the Business Time Sampling (BTS) scheme. I propose an easy-to-use

time-transformation method to implement the BTS scheme and investigate applica-

tions of the BTS scheme. Using 40 typical NYSE stocks, I perform normality test

to the jump-adjusted daily and weekly BTS returns. The computed results show

that stock prices can be considered as discrete observations from a continuous-time

jump-diffusion process. The BTS scheme performs better than the CTS and TTS

schemes in yielding iid Gaussian returns, and it also performs better than the CTS

and TTS schemes in estimating daily integrated volatility using the TRV method,

with and without subsampling. I also show the superiority of the BTS durations over

the price durations in estimating the daily integrated volatility using the Autoregres-

sive Conditional Duration-Integrated Conditional Variance (ACD-ICV) method. I

compare different Integrated Volatility estimates in the Monte Carlo simulation

study, including the Tripower Realized Variance estimate, the Realized Kernel esti-

mate, the original and modified ACD-ICV estimate. The modified ACD-ICV esti-

mate, ME3, which models the high-frequency BTS durations using the ACD model,

performs the best in reporting smaller RMSE values.

In Chapter 4, I investigate the noise properties of NYSE high-frequency trans-

action prices. I show the negative cross-correlation between the noise and stock

returns. Selecting the sampling frequency is important to the microstructure noise-

variance estimation. I then propose two noise-variance estimates M2 and M2A

using difference of subsampling realized variance at two or multiple time scales.

In the Monte Carlo simulation study, the new estimates performs better than other

estimates by reporting lower ME and RMSE. Empirically the noise-to-signal ratio

(NSR) are very small and 0.005% is a good approximate of the NSR for a typical

NYSE stock in periods from 2010 to 2013.
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Appendix A Appendix of Chapter 2

A.1 Implementation of the Duration Adjustment Method

We divide each trading day (9:30-16:00) into 14 intervals, with the first and last

intervals being 15 min each and all others being 30 min each. Let the number of

trading days in the data set be T and the number of trades in the kth time interval

on day i be Nik, where i = 1, · · ·,T and k = 1, · · ·,14. For the purpose of computing

Nik, we may take multiple trades at the same time stamp as one trade or separate

trades. Denote Jk as the number of seconds in the kth time interval. When multiple

trades at the same time stamp are taken as one trade, we have Nik = ∑
Jk
j=1 1(Nik j>0),

where 1(Nik j > 0) is the indicator function taking value 1 when Nik j > 0 and 0

otherwise, with Nik j being the number of trades at the jth second in the kth interval

on the ith trading day. However, when multiple trades at the same time stamp are

taken as separate trades, we have Nik = ∑
Jk
j=1 Nik j. For the kth time interval, the

average number of trades over all trading days is computed as Nk = (∑T
i=1 Nik/T ).

We then calculate the average trade duration in the kth time interval as xk = Jk/Nk.

Let tk be the mid-point of the kth time interval. We set the diurnal factor at the mid-

point of each time interval to be equal to the standardized average trade duration of

the interval so that φ(tk) = xk/
(
∑

14
k=1 xk

)
. Finally, the diurnal factor function φ(t) is

calculated using the cubic spline smoothing with φ(tk) as the knots, for k = 1, · · ·,14.
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A.2 Implementation of the Time Transformation Method

Let t = 0,1, · · ·,23400 denote the times 9:30:00, 9:30:01, · · ·, 16:00:00 in sec-

onds, and let nt denote the number of trades at time t aggregated over all days, for

t = 1, · · ·,23400. For the purpose of computing nt , we may take multiple trades

at the same time stamp as one trade or separate trades. We compute Nt = ∑
t
i=1 ni,

for t = 1, · · ·,23400. The time-transformation function Q(t) is then computed as

Q(t) = Nt/N23400, for t = 1, · · ·,23400, so that t̃ = 23400Q(t) = 23400Nt/N23400,

where t̃ is the diurnally transformed time corresponding to calendar time t.
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Appendix B Appendix of Chapter 3

B.1 Jump Detection Procedure

We remove price jumps using the sequential jump-adjustment procedure of An-

dersen et al. (2010) with some minor modifications. The test statistic Zt for day t is

computed as

Zt =
√
|Ht |

[
lnVRt− lnVBt

((µ−4
1 +2µ

−2
1 −5)QTtBV−2

t )
1
2

]
, (B.1.1)

where µ1 =
√

2/π , VRt is the realized volatility, VBt is the realized bipower volatility

and QTt is the realized tripower quarticity, and Ht is the grid on day t. The realized

tripower quarticity QTt is computed as

QTt =
1
|Ht |

[
µ
−3
4
3

|Ht |−1

∑
j=2
|ri,−|

4
3 |ri|

4
3 |ri,+|

4
3

]
, (B.1.2)

where ri = Yi,+−Yi for Yi,+,Yi ∈Ht and µ 4
3
= 2

2
3 Γ(7/6)/Γ(1/2). Under the con-

dition of no jumps, Zt is approximately standard normal. At the significance level

α , a jump is considered to be significant if Zt > z1−α , where zα is the α-quantile of

the standard normal distribution. When Zt > z1−α , we delete the return that has the

maximum absolute value among all returns and repeat the jump test again for the

remaining returns. This recursive procedure stops when Zt ≤ z1−α .
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B.2 Computation of the BT Transformation Function

To compute the BT transformation function Q(tk)=Ntk/NtK , where Ntk =∑
k
i=1Vi

for k = 1, · · · ,K, we need to calculate the intraday integrated volatility Vi. To allevi-

ate the effects of market microstructure noise and price jumps we adopt the Tripower

Realized Volatility (TRV) method of Barndorff-Nielsen et al. (2006). Suppose there

are S subsampling grids and the sth subgrid is denoted by Hs. Under subgrid Hs,

for trading day d, denote its consecutive returns by {r(s)d,1,r
(s)
d,2,r

(s)
d,3, · · · ,r

(s)
d,ns
}. We

define

V (s)
T d,i = ξ

−3
2
3
|r(s)d,i−1|

2
3 |r(s)d,i |

2
3 |r(s)d,i+1|

2
3 ,

for i = 2, · · · ,ns− 1, where ξk = 2
k
2 Γ((k+ 1)/2)/Γ(1/2) for k > 0 and Γ(·) is the

gamma function. Moreover, V (s)
T d,1 = V (s)

T d,2 and V (s)
T d,ns

= V (s)
T d,ns−1. Since the es-

timate V (s)
T d,i may have large fluctuations, we group every g V (s)

T d,i together to ob-

tain the estimated intraday integrated volatility at 10-min average sampling fre-

quency. Thus, the pth intraday integrated volatility on day d under subgrid Hs

is V (s)
d,p = ∑

pg
i=p(g−1)+1V (s)

T d,i. The corresponding end point of V (s)
d,p is the end point of

r(s)d,pg and is denoted by t(s)d,p. Finally, the estimated pth intraday integrated volatil-

ity Vd,p and its corresponding end point td,p can be obtained by taking the average

over all subsamples. That is, Vd,p =
1
S ∑

S
s=1V (s)

d,p and td,p = 1
S ∑

S
s=1 t(s)d,p. Vd,p and td,p

pooled over all m trading days form VK for k = 1, · · · ,K and HV , respectively, for the

computation of the time-transformation function Q(t). The number of subsamples

S is selected to obtain subgrids of approximately 1-min sampling frequency.
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B.3 Supplementary Material

B.3.1 Intraday Periodicity and the BTS Scheme

We examine the intraday periodicity in volatility and trading activity of the top

40 stocks (by market capitalization as of 2010) from the NYSE from January 2010

to April 2013. We calculate the squared 1-min calendar-time returns on each trad-

ing day and take the average at each 1-min time interval over all trading days in the

sample period. These series are treated as 1-min intraday realized volatility esti-

mates, which are plotted on the left-hand column of Figure B.1 (realized volatility

is reported in annualized standard deviation in percent). We also calculate the to-

tal number of transactions at each sec from 09:30 to 16:00 over all trading days,

which are plotted on the right-hand column of Figure B.1. The intraday periodicity

in volatility are quite different from that in trading activity, which shows that we

cannot use the TTS scheme to approximate the BTS scheme.

In Table B.1 we report the proportion of detected jumps at different sampling

frequencies under different sampling schemes using the sequential jump-detection

procedure of Andersen et al. (2010). We investigate cases when the sampling fre-

quency is equal to 1 min, 5 min or 10 min. We also calculate the proportion of

trading days for which we reject the normality assumption at the 5% significance

level for the CTS, TTS and BTS returns at different sampling frequencies with jump

adjustment. Table B.2 presents the results for the returns with jumps deleted using

the sequential method of Andersen et al. (2010) at the significance level of 1%.

Table B.3 reports the results for the returns without jump adjustment.

B.3.2 Simulation Results for the Integrated Volatility Estimates

Tables B.4-B.9 provide the mean error (ME) and root mean-squared error (RMSE)

of the daily integrated volatility estimates using the TRV method with and without

subsampling under different sampling schemes. Table B.9 is the same as Table 4 of
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the paper. Tables B.10-B.12 report the ME and RMSE of the RK and the ACD-ICV

estimates for MD2, MD3 and MD4.
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Table B.1: Proportion of detected jumps

1-min 5-min 10-min
Stock CTS TTS BTS CTS TTS BTS CTS TTS BTS

XOM 4.70 2.55 1.91 4.67 3.90 2.77 7.36 5.84 4.73
WMT 18.10 8.79 7.35 5.78 3.81 4.38 8.16 5.87 5.36
GE 20.54 21.15 26.07 10.58 8.41 5.95 10.82 8.23 6.42
CVX 3.49 1.68 1.93 4.41 3.13 3.07 6.64 5.94 4.86
IBM 5.99 1.80 2.71 4.66 3.46 3.75 6.51 5.42 4.62

JNJ 16.62 9.88 4.78 5.55 4.57 4.00 7.59 6.42 5.41
T 21.87 20.54 25.55 9.13 7.68 5.12 9.77 6.82 6.60
PG 17.33 9.33 4.99 5.82 4.54 4.18 7.95 6.06 5.33
JPM 8.50 3.66 3.57 4.92 3.23 3.22 7.50 5.33 4.70
WFC 17.96 10.43 6.87 6.06 4.65 3.47 7.68 5.61 4.73

KO 17.93 11.03 7.46 6.70 4.21 4.18 7.79 6.06 5.46
PFE 19.62 20.48 26.02 12.96 11.13 9.28 10.02 9.09 6.90
C 8.50 6.15 7.96 8.92 8.60 8.44 10.56 10.05 8.60
BAC 21.83 22.43 22.01 12.91 11.50 12.97 12.59 8.41 6.82
SLB 2.75 1.44 1.91 4.59 3.27 3.13 6.68 5.66 4.41

MRK 22.29 15.45 11.96 6.44 5.44 4.24 8.50 6.17 5.78
PEP 18.00 8.97 5.72 6.15 4.71 4.07 7.03 5.98 5.19
VZ 23.07 17.65 17.31 7.50 5.90 4.86 8.64 6.97 5.80
COP 8.27 4.38 2.83 5.04 3.46 3.26 7.32 5.21 4.40
GS 6.50 1.49 2.86 4.93 3.81 3.34 7.56 5.76 5.05

MCD 10.11 3.94 4.07 5.13 3.80 3.89 7.17 5.89 5.00
OXY 5.93 1.92 2.58 4.78 3.78 3.29 6.94 5.52 4.30
ABT 19.87 12.64 8.45 5.97 4.62 4.05 7.78 6.21 5.68
UTX 10.33 3.12 3.39 5.44 3.41 3.48 7.57 5.23 5.46
UPS 12.64 3.64 3.41 5.35 4.34 3.79 6.63 5.73 5.02

F 19.73 20.02 27.25 13.73 10.46 7.08 11.92 8.82 6.80
DIS 17.89 9.75 7.61 5.19 4.44 4.51 7.62 6.15 5.57
MMM 9.17 2.66 2.89 4.99 3.68 3.50 7.39 6.45 5.06
CAT 3.62 1.65 2.25 4.74 3.40 3.43 6.79 5.06 4.35
FCX 5.90 2.46 2.63 4.21 2.94 2.99 6.62 5.29 4.55

USB 21.82 15.96 13.08 7.95 4.96 4.32 8.39 5.83 4.89
MO 20.09 20.12 26.06 11.25 9.36 7.33 10.90 7.76 7.14
AXP 12.20 4.24 3.61 4.45 3.55 3.39 7.90 5.30 4.33
BA 10.05 2.72 3.14 4.59 4.24 3.54 7.64 6.03 5.12
MDT 23.52 12.86 10.32 6.67 5.25 4.10 7.60 6.23 5.87

HD 17.39 9.08 8.20 5.40 4.59 4.78 7.58 5.99 5.72
CVS 24.02 13.18 12.58 6.64 4.29 5.09 7.47 6.38 6.26
EMC 22.96 18.22 20.48 7.57 6.19 4.86 8.81 6.60 5.62
HAL 8.03 2.78 3.41 4.66 3.75 3.30 6.73 5.96 5.00
PNC 13.63 3.21 3.14 5.28 3.64 3.34 7.43 5.40 5.23

Notes: The figures in the table are the proportions of detected jumps in percentage, 2010-2013.
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Table B.2: Rejection proportion of the normality hypothesis for no-jump returns under different sampling schemes

1-min 5-min 10-min
Stock CTS TTS BTS CTS TTS BTS CTS TTS BTS

XOM 93.86 86.04 81.95 18.41 12.64 8.06 7.46 6.14 4.57
WMT 99.76 99.76 98.44 43.08 25.27 17.45 13.36 7.34 5.90
GE 100.00 100.00 99.88 82.55 72.80 67.51 35.42 29.72 21.18
CVX 89.33 78.19 68.23 13.36 7.62 5.86 6.46 5.86 3.52
IBM 83.49 76.39 41.93 13.25 12.65 4.82 7.95 4.34 5.42

JNJ 99.40 98.80 97.11 39.16 29.28 15.66 14.10 8.55 6.39
T 100.00 100.00 99.88 75.93 67.39 53.31 30.45 24.19 17.81
PG 100.00 98.80 97.11 36.58 25.27 14.92 11.43 8.67 5.54
JPM 99.04 95.43 92.18 27.08 16.61 8.42 10.35 6.74 6.14
WFC 99.88 99.18 97.54 45.02 31.18 21.57 15.24 10.43 6.57

KO 99.53 98.48 97.30 42.32 32.59 18.05 13.83 9.50 7.62
PFE 100.00 100.00 100.00 87.22 82.65 71.51 39.39 35.52 26.73
C 99.65 97.89 94.61 57.21 47.71 45.37 46.89 42.56 39.79
BAC 100.00 100.00 99.88 83.35 77.37 69.75 47.48 37.63 30.25
SLB 85.09 75.70 48.71 15.73 11.03 5.52 6.81 5.99 3.17

MRK 100.00 99.65 98.94 55.10 48.30 30.13 18.52 13.48 10.32
PEP 99.53 98.36 96.72 37.98 29.43 13.13 11.72 9.73 3.87
VZ 100.00 100.00 99.88 60.96 50.06 32.24 23.21 17.35 10.67
COP 96.13 91.91 84.64 22.30 16.65 12.19 9.61 6.57 4.57
GS 82.53 68.00 24.15 13.60 11.96 4.92 7.98 5.74 2.70

MCD 98.59 95.90 92.73 27.67 20.16 9.38 11.37 9.50 5.75
OXY 85.93 83.70 51.35 15.36 13.72 5.74 8.09 6.45 4.22
ABT 99.77 99.41 98.71 47.13 36.34 21.22 16.30 13.95 6.57
UTX 97.30 94.49 84.41 25.56 20.28 7.27 11.61 8.80 5.16
UPS 97.66 95.08 90.04 24.03 19.58 8.21 12.19 9.26 3.40

F 100.00 100.00 100.00 87.22 78.90 73.97 43.85 34.11 27.67
DIS 99.77 99.53 98.59 41.85 30.13 18.52 13.13 8.91 7.39
MMM 96.48 91.44 79.72 21.57 15.94 7.15 6.69 7.85 4.69
CAT 89.21 75.73 49.71 17.00 10.67 5.04 6.92 6.21 3.05
FCX 89.33 74.44 59.55 16.30 10.90 7.62 8.80 5.16 4.81

USB 100.00 99.77 99.41 55.69 45.13 29.66 20.87 14.07 9.14
MO 100.00 100.00 99.88 86.64 77.96 64.13 39.39 30.60 23.24
AXP 98.71 96.37 92.26 25.21 18.76 11.84 10.08 6.68 5.04
BA 97.77 93.67 81.83 26.73 20.28 6.10 12.78 9.15 3.52
MDT 100.00 100.00 98.94 48.71 36.74 19.72 15.75 12.56 6.92

HD 100.00 99.65 98.36 41.15 32.24 18.29 13.83 10.67 7.16
CVS 99.88 99.53 99.06 49.41 35.33 18.78 13.73 12.09 8.22
EMC 100.00 100.00 99.77 65.65 54.40 35.29 22.51 18.41 9.96
HAL 96.37 92.03 85.58 22.51 14.42 8.44 8.56 6.21 3.63
PNC 98.12 93.20 83.24 24.74 17.82 6.45 9.73 8.22 5.75

Notes: The normality test is implemented for the high-frequency returns (2010-2013) without jumps and the significancelevel is 5%.
The figures are in percentage of proportion of the trading days that reject the normality hypothesis. Total number of trading days of
each stock investigated in our paper ranges from 830 to 853.
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Table B.3: Rejection proportion of the normality hypothesis for returns under different sampling schemes

1-min 5-min 10-min
Stock CTS TTS BTS CTS TTS BTS CTS TTS BTS

XOM 94.22 86.76 81.35 19.37 13.48 10.35 7.58 7.82 5.05
WMT 99.76 99.64 98.19 41.16 25.99 20.34 13.24 8.78 6.26
GE 100.00 100.00 99.88 81.95 73.16 68.83 34.54 28.52 22.86
CVX 88.86 76.79 68.93 15.24 8.21 7.62 7.74 6.80 4.69
IBM 85.54 77.59 43.01 14.34 13.01 7.23 9.04 4.70 6.14

JNJ 99.64 98.80 97.11 35.66 29.52 18.19 15.18 9.88 7.23
T 100.00 100.00 99.88 75.69 67.51 53.91 31.17 24.79 17.21
PG 100.00 98.68 96.99 36.46 25.27 16.49 12.64 10.47 7.22
JPM 99.04 95.67 92.78 27.20 17.45 9.99 11.31 7.22 6.86
WFC 99.88 99.30 97.30 43.26 32.36 23.56 14.54 11.84 8.21

KO 99.30 98.48 97.30 42.91 32.12 20.28 15.01 9.96 9.61
PFE 100.00 100.00 100.00 85.93 81.48 72.10 39.16 35.05 27.67
C 99.65 97.89 94.61 57.91 47.36 46.66 47.01 43.26 40.33
BAC 100.00 100.00 99.88 83.35 77.61 70.11 47.13 36.46 31.77
SLB 84.51 74.77 49.88 14.91 11.85 6.22 8.22 6.10 4.23

MRK 100.00 99.65 98.83 54.87 48.30 31.07 19.11 14.42 11.02
PEP 99.53 98.36 96.37 38.69 30.83 14.42 12.08 10.43 4.57
VZ 100.00 100.00 99.77 61.55 49.59 33.65 24.74 17.47 11.72
COP 96.01 91.79 85.23 22.63 16.88 14.07 10.20 6.45 5.63
GS 82.06 68.00 25.32 14.89 12.08 6.10 8.91 6.57 3.40

MCD 98.71 95.66 92.61 27.08 20.75 11.14 13.01 10.32 6.33
OXY 86.28 83.59 50.53 16.41 14.42 7.03 8.68 7.15 4.81
ABT 99.77 99.53 98.24 45.25 34.94 23.09 15.94 13.60 6.33
UTX 96.95 94.72 84.64 26.03 19.93 8.91 12.31 9.50 6.21
UPS 97.54 94.37 90.15 25.79 21.10 8.91 12.43 9.14 3.75

F 100.00 100.00 100.00 86.75 78.90 75.03 42.09 34.82 28.02
DIS 99.77 99.53 98.83 40.56 30.95 21.92 13.13 9.96 7.97
MMM 96.25 90.74 80.66 22.86 17.23 8.44 8.44 9.14 5.28
CAT 89.45 74.79 51.00 18.87 11.72 5.74 8.79 6.45 3.87
FCX 89.10 74.33 60.02 17.82 11.37 8.44 9.03 4.92 5.63

USB 100.00 99.77 99.30 54.63 44.20 30.60 20.63 14.30 10.79
MO 100.00 100.00 100.00 86.75 76.44 64.48 38.10 29.54 23.56
AXP 98.83 96.37 92.61 26.85 18.64 13.48 11.49 7.97 6.45
BA 97.42 93.32 81.59 26.38 20.98 7.85 12.78 8.91 4.92
MDT 100.00 100.00 99.18 48.83 35.80 20.89 16.08 12.68 7.75

HD 100.00 99.53 98.71 41.74 29.54 20.16 15.36 10.20 7.97
CVS 100.00 99.41 99.06 48.00 33.80 21.01 14.67 11.38 7.98
EMC 100.00 100.00 99.88 64.95 53.81 37.05 21.10 18.41 10.67
HAL 96.01 91.21 85.23 23.56 14.77 10.32 9.61 7.74 4.92
PNC 97.89 93.08 82.30 25.09 16.53 7.85 11.14 9.26 7.85

Notes: The normality test is implemented for the high-frequency returns (2010-2013) without jump adjustment and the significance
level is 5%. The figures are in percentage of proportion of thetrading days that reject the normality hypothesis. Total number of trading
days of each stock investigated in our paper ranges from 830 to 853.
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Table B.4: ME and RMSE of daily volatility estimates using the TRV method without subsampling under the CTS scheme

Sparsity NSR Model ME RMSE
1-min 2-min 3-min 5-min 10-min 1-min 2-min 3-min 5-min 10-min

5-sec 0.005% MD1 0.2765 0.0018 -0.1603 -0.4215 -0.9202 1.8804 2.6007 3.1602 4.0590 5.8376
MD2 0.0356 -0.0846 -0.1627 -0.3037 -0.6353 1.2804 1.7714 2.1589 2.7816 3.9611
MD3 0.3045 0.0713 -0.0585 -0.2489 -0.7224 1.7884 2.4828 3.0502 3.9652 5.6334
MD4 0.4156 0.2356 0.1679 0.0247 -0.4923 1.9250 2.7166 3.3612 4.2869 5.7800
MD5 0.7956 0.7680 0.8243 0.9138 0.9625 2.1969 2.9971 3.67514.7167 6.7030

0.01% MD1 1.0475 0.3853 0.0949 -0.2659 -0.8453 2.1758 2.6506 3.1766 4.0599 5.8367
MD2 0.5479 0.1720 0.0076 -0.2041 -0.5874 1.4343 1.7973 2.1677 2.7840 3.9615
MD3 1.0395 0.4387 0.1845 -0.1021 -0.6511 2.0729 2.5383 3.0736 3.9702 5.6359
MD4 1.1810 0.6181 0.4212 0.1775 -0.4130 2.2297 2.7762 3.3845 4.2916 5.7746
MD5 1.5738 1.1545 1.0821 1.0711 1.0411 2.6187 3.1405 3.75954.7610 6.7240

0.02% MD1 2.5583 1.1484 0.6060 0.0384 -0.6950 3.2620 2.91863.2798 4.0837 5.8387
MD2 1.5586 0.6783 0.3466 -0.0004 -0.4867 2.1291 1.9585 2.2235 2.7988 3.9643
MD3 2.4829 1.1694 0.6695 0.1853 -0.5064 3.1055 2.7979 3.1751 4.0007 5.6464
MD4 2.6748 1.3745 0.9285 0.4797 -0.2590 3.3024 3.0429 3.4905 4.3217 5.7700
MD5 3.0965 1.9223 1.5958 1.3815 1.1966 3.8041 3.5453 3.97434.8697 6.7727

10-sec 0.005% MD1 -0.2079 -0.1010 -0.1970 -0.4394 -0.9293 1.8557 2.5940 3.1417 4.0793 5.8419
MD2 -0.2901 -0.1496 -0.1914 -0.3297 -0.6460 1.3079 1.7686 2.1641 2.7849 3.9646
MD3 -0.1525 -0.0152 -0.1067 -0.2822 -0.7214 1.7672 2.4800 3.0529 3.9676 5.6270
MD4 0.0570 0.1687 0.1243 -0.0020 -0.5132 1.8638 2.7000 3.3345 4.2761 5.7746
MD5 0.3063 0.6868 0.7751 0.8785 0.9542 2.0505 2.9700 3.66404.7304 6.6935

0.01% MD1 0.5875 0.2843 0.0584 -0.2834 -0.8549 1.9722 2.6322 3.1550 4.0786 5.8397
MD2 0.2392 0.1065 -0.0200 -0.2281 -0.5947 1.3340 1.7817 2.1696 2.7857 3.9646
MD3 0.5998 0.3509 0.1382 -0.1391 -0.6520 1.8899 2.5251 3.0705 3.9718 5.6282
MD4 0.8420 0.5530 0.3749 0.1514 -0.4360 2.0561 2.7543 3.3594 4.2797 5.7719
MD5 1.1028 1.0782 1.0365 1.0340 1.0280 2.3484 3.1071 3.74844.7752 6.7165

0.02% MD1 2.1353 1.0514 0.5703 0.0207 -0.7064 2.9200 2.86953.2476 4.0969 5.8447
MD2 1.2704 0.6162 0.3200 -0.0283 -0.4953 1.9108 1.9282 2.2218 2.7940 3.9630
MD3 2.0703 1.0814 0.6230 0.1480 -0.5064 2.7838 2.7605 3.1571 3.9975 5.6322
MD4 2.3616 1.3139 0.8782 0.4572 -0.2889 3.0457 3.0102 3.4572 4.3033 5.7685
MD5 2.6595 1.8532 1.5518 1.3425 1.1787 3.4399 3.5026 3.95944.8790 6.7581

20-sec 0.005% MD1 -3.3631 -0.6075 -0.4036 -0.4887 -0.9360 3.8969 2.6448 3.1505 4.0686 5.8363
MD2 -2.3761 -0.4721 -0.3109 -0.3650 -0.6672 2.7582 1.8149 2.1613 2.7968 3.9626
MD3 -3.0192 -0.4931 -0.2803 -0.3365 -0.7559 3.5111 2.5065 3.0455 3.9633 5.6222
MD4 -2.2453 -0.2437 -0.0441 -0.0970 -0.5295 2.9432 2.6686 3.2973 4.2452 5.7747
MD5 -2.9017 0.1677 0.5882 0.8210 0.9329 3.6002 2.8912 3.6233 4.7002 6.6668

0.01% MD1 -2.5819 -0.2065 -0.1414 -0.3367 -0.8616 3.2493 2.6054 3.1512 4.0667 5.8367
MD2 -1.8555 -0.2040 -0.1397 -0.2630 -0.6202 2.3096 1.7829 2.1573 2.7960 3.9652
MD3 -2.2787 -0.1109 -0.0339 -0.1870 -0.6846 2.9148 2.4815 3.0467 3.9625 5.6224
MD4 -1.4825 0.1513 0.2138 0.0542 -0.4511 2.4112 2.6634 3.3044 4.2466 5.7679
MD5 -2.1231 0.5701 0.8544 0.9801 1.0126 3.0148 2.9675 3.6960 4.7462 6.6840

0.02% MD1 -1.0765 0.5809 0.3751 -0.0345 -0.7144 2.2851 2.7121 3.2132 4.0855 5.8370
MD2 -0.8510 0.3208 0.2058 -0.0558 -0.5176 1.6202 1.8455 2.1936 2.8055 3.9647
MD3 -0.8468 0.6410 0.4596 0.1059 -0.5399 2.0605 2.6001 3.1160 3.9837 5.6253
MD4 -0.0140 0.9322 0.7264 0.3574 -0.2999 1.9210 2.8273 3.3794 4.2665 5.7655
MD5 -0.6113 1.3614 1.3800 1.2937 1.1634 2.2695 3.2667 3.8906 4.8464 6.7261

Notes: ME and RMSE are of the annualized standard deviation in percentage. The average true daily integrated volatilityis around 40% for MD1, 27% for
MD2, 36% for MD3, 28% for MD4 and 40% for MD5. MD1 and MD2 are theHeston model at different volatility level. MD3 is the two-factor stochastic
volatility model with intraday volatility periodicity. MD4 is the deterministic volatility model with intraday volatility periodicity and MD5 is the Heston
model (MD1) with price jumps. The first column indicates the average duration of the observed simulated transactions.
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Table B.5: ME and RMSE of daily volatility estimates using the TRV method without subsampling under the TTS scheme

Sparsity NSR Model ME RMSE
1-min 2-min 3-min 5-min 10-min 1-min 2-min 3-min 5-min 10-min

5-sec 0.005% MD1 -0.0486 -0.1645 -0.2494 -0.3872 -0.7403 1.8625 2.5866 3.1463 4.0825 5.7765
MD2 -0.1811 -0.1996 -0.2175 -0.2841 -0.4918 1.2959 1.7819 2.1579 2.7673 3.9429
MD3 0.0039 -0.0570 -0.1106 -0.1906 -0.5129 1.7806 2.4898 3.0538 3.9685 5.6190
MD4 0.1888 0.1297 0.1188 0.0329 -0.4067 1.9010 2.7056 3.3554 4.2846 5.7511
MD5 0.4782 0.6140 0.7428 0.9141 1.1668 2.1260 2.9674 3.64604.7036 6.7239

0.01% MD1 0.7339 0.2245 0.0067 -0.2307 -0.6617 2.0412 2.6161 3.1551 4.0850 5.7784
MD2 0.3416 0.0613 -0.0456 -0.1785 -0.4425 1.3667 1.7910 2.1604 2.7716 3.9465
MD3 0.7511 0.3136 0.1357 -0.0418 -0.4377 1.9593 2.5286 3.0682 3.9741 5.6182
MD4 0.9657 0.5185 0.3762 0.1855 -0.3297 2.1335 2.7575 3.3737 4.2903 5.7488
MD5 1.2671 1.0047 1.0037 1.0713 1.2440 2.4692 3.0959 3.72834.7519 6.7487

0.02% MD1 2.2705 0.9999 0.5199 0.0797 -0.5061 3.0350 2.83993.2403 4.1106 5.7844
MD2 1.3618 0.5754 0.2949 0.0255 -0.3415 1.9848 1.9264 2.2147 2.7907 3.9514
MD3 2.2102 1.0523 0.6249 0.2517 -0.2942 2.9013 2.7589 3.1564 4.0050 5.6265
MD4 2.4765 1.2806 0.8859 0.4938 -0.1747 3.1497 3.0070 3.4744 4.3188 5.7457
MD5 2.8118 1.7841 1.5249 1.3856 1.4003 3.5912 3.4727 3.93864.8604 6.8042

10-sec 0.005% MD1 -0.5513 -0.4358 -0.4229 -0.4977 -0.7675 1.9652 2.6115 3.1903 4.0962 5.7850
MD2 -0.5171 -0.3709 -0.3367 -0.3680 -0.5283 1.3995 1.8032 2.1732 2.7816 3.9376
MD3 -0.4485 -0.3124 -0.2851 -0.3108 -0.5679 1.8592 2.4968 3.0428 3.9461 5.6049
MD4 -0.1800 -0.0730 -0.0693 -0.0616 -0.4648 1.9217 2.6951 3.3350 4.2743 5.7368
MD5 -0.0295 0.3201 0.5488 0.8034 1.0889 2.0870 2.9066 3.6022 4.7083 6.6976

0.01% MD1 0.2402 -0.0316 -0.1606 -0.3406 -0.6884 1.9384 2.6018 3.1851 4.0928 5.7898
MD2 0.0083 -0.1051 -0.1642 -0.2665 -0.4801 1.3320 1.7881 2.1664 2.7813 3.9387
MD3 0.2973 0.0694 -0.0347 -0.1637 -0.4923 1.8616 2.5004 3.0480 3.9496 5.6056
MD4 0.5982 0.3241 0.1942 0.0931 -0.3855 2.0131 2.7150 3.3394 4.2780 5.7357
MD5 0.7636 0.7256 0.8171 0.9617 1.1642 2.2608 3.0008 3.67234.7540 6.7198

0.02% MD1 1.7754 0.7654 0.3623 -0.0240 -0.5335 2.6930 2.7658 3.2418 4.1063 5.7931
MD2 1.0314 0.4247 0.1824 -0.0597 -0.3832 1.7660 1.8755 2.2016 2.7902 3.9396
MD3 1.7599 0.8255 0.4637 0.1362 -0.3446 2.5947 2.6714 3.1171 3.9706 5.6138
MD4 2.0993 1.1072 0.7104 0.4038 -0.2292 2.8749 2.9169 3.4103 4.3015 5.7338
MD5 2.3110 1.5311 1.3481 1.2733 1.3218 3.2132 3.3351 3.86314.8561 6.7649

20-sec 0.005% MD1 -1.5467 -0.9622 -0.7993 -0.7283 -0.8956 2.4372 2.7904 3.2566 4.1020 5.7768
MD2 -1.1788 -0.7181 -0.5846 -0.5050 -0.5812 1.7536 1.9349 2.2284 2.8114 3.9478
MD3 -1.3682 -0.8045 -0.6200 -0.5249 -0.6819 2.2428 2.6222 3.0947 3.9504 5.6025
MD4 -0.9199 -0.4870 -0.3398 -0.2635 -0.5557 2.0994 2.7426 3.3502 4.2524 5.7214
MD5 -1.0317 -0.2025 0.1975 0.5500 1.0047 2.3152 2.9314 3.5707 4.6778 6.6831

0.01% MD1 -0.6734 -0.5496 -0.5349 -0.5673 -0.8201 2.0228 2.6981 3.2233 4.0895 5.7779
MD2 -0.5992 -0.4502 -0.4083 -0.3976 -0.5312 1.4378 1.8645 2.1985 2.8037 3.9450
MD3 -0.5402 -0.4180 -0.3659 -0.3737 -0.6084 1.8843 2.5502 3.0716 3.9442 5.6023
MD4 -0.0651 -0.0843 -0.0740 -0.1068 -0.4749 1.8923 2.7042 3.3363 4.2478 5.7139
MD5 -0.1532 0.2071 0.4649 0.7054 1.0816 2.1046 2.9532 3.6154 4.7125 6.7001

0.02% MD1 1.0071 0.2600 -0.0057 -0.2514 -0.6661 2.2303 2.7010 3.2216 4.0919 5.7790
MD2 0.5209 0.0848 -0.0555 -0.1874 -0.4308 1.4791 1.8496 2.1860 2.7981 3.9492
MD3 1.0538 0.3486 0.1407 -0.0751 -0.4653 2.1461 2.5794 3.0836 3.9558 5.6056
MD4 1.5600 0.7092 0.4478 0.2065 -0.3182 2.4765 2.8021 3.3664 4.2579 5.7108
MD5 1.5316 1.0172 1.0014 1.0215 1.2331 2.6637 3.1626 3.75844.7917 6.7416

Notes: ME and RMSE are of the annualized standard deviation in percentage. The average true daily integrated volatilityis around 40% for MD1, 27% for
MD2, 36% for MD3, 28% for MD4 and 40% for MD5. MD1 and MD2 are theHeston model at different volatility level. MD3 is the two-factor stochastic
volatility model with intraday volatility periodicity. MD4 is the deterministic volatility model with intraday volatility periodicity and MD5 is the Heston
model (MD1) with price jumps. The first column indicates the average duration of the observed simulated transactions.
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Table B.6: ME and RMSE of daily volatility estimates using the TRV method without subsampling under the BTS scheme

Sparsity NSR Model ME RMSE
1-min 2-min 3-min 5-min 10-min 1-min 2-min 3-min 5-min 10-min

5-sec 0.005% MD1 -0.7386 -0.0642 0.0913 0.1680 0.1851 1.9218 2.4472 2.9922 3.9446 5.6809
MD2 -0.6463 -0.1267 -0.0021 0.0488 0.0874 1.3902 1.6765 2.0488 2.6698 3.8747
MD3 -0.6402 -0.1384 0.0125 0.1026 0.1165 1.7261 2.1962 2.6836 3.4978 5.0122
MD4 -0.3995 -0.2969 -0.2174 -0.0985 -0.0731 1.4002 1.8229 2.1778 2.7810 3.9711
MD5 -0.4117 0.3786 0.6509 1.0585 1.7189 1.9117 2.5964 3.2405 4.3322 6.4623

0.01% MD1 0.1085 0.3520 0.3439 0.3142 0.2626 1.8267 2.5061 3.0464 3.9573 5.6974
MD2 -0.0949 0.1486 0.1742 0.1869 0.1258 1.2590 1.7014 2.0785 2.7004 3.8801
MD3 0.1551 0.2208 0.2532 0.2680 0.1935 1.6491 2.2327 2.69673.5108 5.0458
MD4 0.3948 0.1199 0.0535 0.0674 -0.0045 1.4381 1.8333 2.2001 2.8060 4.0164
MD5 0.4446 0.8077 0.9476 1.2144 1.7896 1.9562 2.7180 3.33574.3813 6.4896

0.02% MD1 1.7358 1.1392 0.8667 0.6163 0.3780 2.5885 2.7845 3.2021 4.0384 5.7294
MD2 0.9993 0.6754 0.5228 0.3796 0.2312 1.6857 1.8834 2.16142.7484 3.8905
MD3 1.7085 1.0048 0.7713 0.5630 0.3422 2.4225 2.4853 2.84863.5908 5.0948
MD4 1.9701 0.9155 0.6078 0.3855 0.1686 2.4677 2.1045 2.33522.8921 4.0595
MD5 2.1045 1.6356 1.4884 1.5421 1.9414 2.9157 3.1288 3.58054.5353 6.5625

10-sec 0.005% MD1 -1.1362 -0.2800 -0.0021 0.1282 0.1350 2.1189 2.4638 2.9893 3.9077 5.6843
MD2 -0.9108 -0.2736 -0.0638 0.0594 0.0915 1.5407 1.6856 2.0465 2.6697 3.8474
MD3 -1.0175 -0.3829 -0.1136 0.0598 0.0812 1.9128 2.2274 2.6643 3.4810 5.0171
MD4 -0.7556 -0.5138 -0.3702 -0.2073 -0.1186 1.5765 1.8882 2.2048 2.8001 3.9377
MD5 -0.8024 0.1483 0.5708 0.9862 1.7288 2.0396 2.5735 3.2257 4.2856 6.4519

0.01% MD1 -0.2648 0.1410 0.2729 0.3009 0.2069 1.8299 2.47313.0344 3.9613 5.6767
MD2 -0.3312 -0.0040 0.1217 0.1688 0.1481 1.2977 1.6873 2.0651 2.6968 3.8538
MD3 -0.2125 0.0277 0.1589 0.2442 0.1779 1.6604 2.2178 2.7075 3.5036 5.0578
MD4 0.0357 -0.0954 -0.0744 -0.0169 -0.0381 1.4169 1.8405 2.2106 2.8133 3.9915
MD5 0.0877 0.6132 0.8651 1.1572 1.7822 1.9288 2.6727 3.31084.3771 6.4703

0.02% MD1 1.4171 0.9876 0.8335 0.6269 0.3334 2.3837 2.7309 3.1873 4.0413 5.7200
MD2 0.7940 0.5659 0.4916 0.3681 0.2306 1.5695 1.8326 2.17142.7429 3.8912
MD3 1.3803 0.8448 0.7130 0.5402 0.3251 2.2088 2.4267 2.83893.5947 5.1065
MD4 1.6123 0.7335 0.4714 0.3079 0.1404 2.2035 2.0324 2.29722.8741 4.0367
MD5 1.7771 1.4778 1.4441 1.5273 1.9046 2.6918 3.0593 3.56804.5321 6.5540

20-sec 0.005% MD1 -1.5495 -0.6087 -0.2302 0.0096 -0.0024 2.4113 2.5365 3.0181 3.9089 5.6326
MD2 -1.1726 -0.4957 -0.2067 -0.0391 -0.0072 1.7383 1.7595 2.0742 2.6700 3.8550
MD3 -1.4348 -0.6843 -0.3349 -0.0682 0.0042 2.2082 2.3088 2.7062 3.4933 4.9995
MD4 -1.1779 -0.8037 -0.6032 -0.3917 -0.2569 1.9163 2.0454 2.2940 2.8240 3.9595
MD5 -1.1827 -0.1329 0.3770 0.8899 1.5604 2.2991 2.6091 3.2144 4.3198 6.4341

0.01% MD1 -0.6885 -0.1516 0.0716 0.1681 0.0729 1.9918 2.4967 3.0271 3.9504 5.6821
MD2 -0.5947 -0.1963 -0.0180 0.0570 0.0278 1.4211 1.7180 2.0724 2.6869 3.8598
MD3 -0.6264 -0.2355 -0.0294 0.1117 0.0690 1.8182 2.2514 2.7065 3.5107 5.0339
MD4 -0.4162 -0.3635 -0.3065 -0.2071 -0.1711 1.5767 1.9369 2.2577 2.8166 3.9762
MD5 -0.3131 0.3306 0.7023 1.0783 1.6439 2.0171 2.6669 3.3037 4.3704 6.5018

0.02% MD1 0.9673 0.7576 0.6773 0.4931 0.2356 2.1770 2.6631 3.1650 4.0161 5.7011
MD2 0.5051 0.4091 0.3836 0.3007 0.1155 1.4548 1.8036 2.15002.7316 3.8792
MD3 0.9340 0.6284 0.5359 0.4205 0.2121 2.0075 2.3824 2.80643.5834 5.1012
MD4 1.1059 0.5034 0.3007 0.1720 0.0337 1.9364 2.0141 2.31492.8809 4.0862
MD5 1.3600 1.2454 1.3184 1.4304 1.7997 2.4864 2.9726 3.54234.5144 6.5563

Notes: ME and RMSE are of the annualized standard deviation in percentage. The average true daily integrated volatilityis around 40% for MD1, 27% for
MD2, 36% for MD3, 28% for MD4 and 40% for MD5. MD1 and MD2 are theHeston model at different volatility level. MD3 is the two-factor stochastic
volatility model with intraday volatility periodicity. MD4 is the deterministic volatility model with intraday volatility periodicity and MD5 is the Heston
model (MD1) with price jumps. The first column indicates the average duration of the observed simulated transactions.
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Table B.7: ME and RMSE of daily volatility estimates using the TRV method with subsampling under the CTS scheme

Sparsity NSR Model ME RMSE
1-min 2-min 3-min 5-min 10-min 1-min 2-min 3-min 5-min 10-min

5-sec 0.005% MD1 0.2968 0.0332 -0.1110 -0.3157 -0.7328 1.3470 1.8355 2.2431 2.9109 4.1736
MD2 0.0464 -0.0588 -0.1266 -0.2462 -0.4917 0.9051 1.2467 1.5296 1.9877 2.8346
MD3 0.2855 0.0506 -0.0949 -0.3215 -0.8718 1.2761 1.7448 2.1428 2.7859 3.9621
MD4 0.3617 0.1186 -0.0331 -0.3395 -1.1888 1.3787 1.8834 2.3030 2.9214 3.9184
MD5 0.8233 0.8215 0.8752 0.9928 1.1545 1.7400 2.3406 2.85833.6844 5.2112

0.01% MD1 1.0698 0.4202 0.1473 -0.1607 -0.6541 1.6907 1.8630 2.2249 2.8801 4.1466
MD2 0.5617 0.1989 0.0455 -0.1427 -0.4400 1.0791 1.2513 1.5122 1.9659 2.8164
MD3 1.0234 0.4194 0.1516 -0.1723 -0.7967 1.5991 1.7737 2.1267 2.7559 3.9334
MD4 1.1287 0.5029 0.2245 -0.1830 -1.1079 1.7312 1.9213 2.2907 2.8879 3.8802
MD5 1.6017 1.2112 1.1359 1.1498 1.2340 2.2173 2.4900 2.93263.7154 5.2177

0.02% MD1 2.5864 1.1887 0.6611 0.1485 -0.4973 2.9151 2.14542.2829 2.8455 4.0972
MD2 1.5734 0.7087 0.3868 0.0631 -0.3363 1.8739 1.4190 1.5412 1.9392 2.7833
MD3 2.4694 1.1504 0.6410 0.1240 -0.6466 2.7515 2.0426 2.1817 2.7200 3.8799
MD4 2.6275 1.2649 0.7371 0.1286 -0.9467 2.9351 2.2114 2.3560 2.8479 3.8090
MD5 3.1305 1.9841 1.6540 1.4628 1.3917 3.5031 2.9285 3.14493.7972 5.2348

10-sec 0.005% MD1 -0.1986 -0.0693 -0.1605 -0.3369 -0.7443 1.3738 1.8617 2.2630 2.9232 4.1799
MD2 -0.2806 -0.1265 -0.1592 -0.2615 -0.5001 0.9729 1.2699 1.5451 1.9959 2.8382
MD3 -0.1666 -0.0480 -0.1414 -0.3473 -0.8851 1.3000 1.7749 2.1625 2.7984 3.9685
MD4 0.0062 0.0435 -0.0719 -0.3596 -1.1973 1.3743 1.9063 2.3208 2.9327 3.9241
MD5 0.3180 0.7174 0.8221 0.9677 1.1403 1.5978 2.3272 2.85303.6881 5.2092

0.01% MD1 0.5931 0.3192 0.0976 -0.1820 -0.6660 1.4841 1.8743 2.2426 2.8932 4.1538
MD2 0.2478 0.1332 0.0129 -0.1578 -0.4484 0.9771 1.2632 1.5277 1.9745 2.8199
MD3 0.5889 0.3225 0.1055 -0.1991 -0.8103 1.4141 1.7890 2.1445 2.7689 3.9401
MD4 0.7929 0.4314 0.1863 -0.2033 -1.1160 1.5752 1.9329 2.3062 2.8995 3.8864
MD5 1.1170 1.1088 1.0847 1.1244 1.2191 1.9286 2.4652 2.92593.7205 5.2165

0.02% MD1 2.1409 1.0900 0.6120 0.1277 -0.5098 2.5611 2.12842.2948 2.8594 4.1057
MD2 1.2809 0.6472 0.3555 0.0481 -0.3451 1.6459 1.4147 1.5539 1.9481 2.7873
MD3 2.0635 1.0573 0.5956 0.0964 -0.6603 2.4335 2.0308 2.1953 2.7352 3.8878
MD4 2.3179 1.1985 0.6992 0.1084 -0.9546 2.6907 2.2043 2.3668 2.8602 3.8159
MD5 2.6775 1.8878 1.6048 1.4370 1.3775 3.1293 2.8890 3.13603.8034 5.2342

20-sec 0.005% MD1 -3.3553 -0.5888 -0.3606 -0.4217 -0.7800 3.7019 2.0158 2.3321 2.9616 4.2012
MD2 -2.3673 -0.4691 -0.2902 -0.3118 -0.5229 2.6247 1.3902 1.5939 2.0268 2.8530
MD3 -3.0215 -0.5208 -0.3260 -0.4202 -0.9125 3.3293 1.8981 2.2234 2.8353 3.9885
MD4 -2.2783 -0.3384 -0.2228 -0.4241 -1.2220 2.7230 1.9950 2.3731 2.9674 3.9414
MD5 -2.8934 0.1894 0.6246 0.8867 1.1063 3.3754 2.2727 2.8414 3.6921 5.2141

0.01% MD1 -2.5748 -0.1880 -0.0983 -0.2653 -0.7011 2.9972 1.9304 2.2952 2.9308 4.1765
MD2 -1.8486 -0.2026 -0.1163 -0.2079 -0.4711 2.1414 1.3196 1.5647 2.0046 2.8359
MD3 -2.2816 -0.1378 -0.0753 -0.2710 -0.8380 2.6767 1.8243 2.1903 2.8057 3.9609
MD4 -1.5119 0.0588 0.0394 -0.2671 -1.1411 2.1076 1.9520 2.3457 2.9330 3.9030
MD5 -2.1120 0.5936 0.8898 1.0450 1.1849 2.7219 2.3378 2.9036 3.7237 5.2218

0.02% MD1 -1.0688 0.6032 0.4232 0.0452 -0.5451 1.8517 2.0081 2.3156 2.8965 4.1306
MD2 -0.8447 0.3238 0.2298 -0.0002 -0.3675 1.3346 1.3489 1.5690 1.9776 2.8039
MD3 -0.8505 0.6145 0.4210 0.0258 -0.6879 1.6498 1.9103 2.2098 2.7699 3.9106
MD4 -0.0426 0.8431 0.5573 0.0443 -0.9808 1.4504 2.1023 2.3809 2.8916 3.8335
MD5 -0.5983 1.3892 1.4158 1.3596 1.3408 1.8062 2.6532 3.0935 3.8061 5.2409

Notes: ME and RMSE are of the annualized standard deviation in percentage. The average true daily integrated volatilityis around 40% for MD1, 27% for
MD2, 36% for MD3, 28% for MD4 and 40% for MD5. MD1 and MD2 are theHeston model at different volatility level. MD3 is the two-factor stochastic
volatility model with intraday volatility periodicity. MD4 is the deterministic volatility model with intraday volatility periodicity and MD5 is the Heston
model (MD1) with price jumps. The first column indicates the average duration of the observed simulated transactions.
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Table B.8: ME and RMSE of daily volatility estimates using the TRV method with subsampling under the TTS scheme

Sparsity NSR Model ME RMSE
1-min 2-min 3-min 5-min 10-min 1-min 2-min 3-min 5-min 10-min

5-sec 0.005% MD1 -0.0517 -0.1758 -0.2597 -0.4047 -0.7809 1.3130 1.8416 2.2588 2.9293 4.1866
MD2 -0.1824 -0.1986 -0.2244 -0.3025 -0.5233 0.9132 1.2584 1.5419 1.9989 2.8422
MD3 -0.0293 -0.1394 -0.2269 -0.4029 -0.9162 1.2428 1.7475 2.1521 2.7986 3.9739
MD4 0.1113 -0.0348 -0.1454 -0.4131 -1.2243 1.3307 1.8849 2.3105 2.9296 3.9347
MD5 0.4782 0.6174 0.7243 0.8982 1.1101 1.6043 2.2772 2.81823.6622 5.1995

0.01% MD1 0.7340 0.2171 0.0021 -0.2481 -0.7017 1.4892 1.8218 2.2209 2.8926 4.1580
MD2 0.3415 0.0625 -0.0507 -0.1984 -0.4712 0.9629 1.2311 1.5114 1.9728 2.8230
MD3 0.7199 0.2349 0.0223 -0.2529 -0.8404 1.4171 1.7349 2.1186 2.7628 3.9436
MD4 0.8908 0.3555 0.1154 -0.2555 -1.1430 1.5773 1.8896 2.2835 2.8914 3.8950
MD5 1.2689 1.0131 0.9879 1.0568 1.1894 1.9802 2.3968 2.87923.6887 5.2048

0.02% MD1 2.2717 0.9948 0.5212 0.0635 -0.5444 2.6235 2.03192.2421 2.8465 4.1057
MD2 1.3660 0.5791 0.2948 0.0090 -0.3670 1.6798 1.3472 1.5159 1.9382 2.7879
MD3 2.1836 0.9759 0.5173 0.0456 -0.6897 2.4897 1.9411 2.1421 2.7169 3.8877
MD4 2.4054 1.1268 0.6331 0.0588 -0.9813 2.7283 2.1318 2.3233 2.8417 3.8208
MD5 2.8163 1.7964 1.5130 1.3722 1.3472 3.2105 2.7970 3.06983.7630 5.2200

10-sec 0.005% MD1 -0.5516 -0.4487 -0.4361 -0.5224 -0.8358 1.4790 1.9039 2.2990 2.9580 4.2085
MD2 -0.5129 -0.3793 -0.3494 -0.3808 -0.5574 1.0656 1.3125 1.5773 2.0197 2.8519
MD3 -0.4819 -0.3884 -0.4015 -0.5122 -0.9712 1.3894 1.8081 2.1963 2.8303 3.9928
MD4 -0.2505 -0.2400 -0.2896 -0.5027 -1.2683 1.4059 1.9158 2.3326 2.9460 3.9521
MD5 -0.0248 0.3341 0.5398 0.7829 1.0467 1.5891 2.2287 2.7879 3.6465 5.1956

0.01% MD1 0.2364 -0.0451 -0.1707 -0.3643 -0.7566 1.3765 1.8287 2.2422 2.9157 4.1797
MD2 0.0132 -0.1109 -0.1730 -0.2760 -0.5052 0.9300 1.2483 1.5338 1.9901 2.8323
MD3 0.2681 -0.0040 -0.1493 -0.3617 -0.8952 1.3166 1.7460 2.1455 2.7892 3.9618
MD4 0.5300 0.1618 -0.0235 -0.3432 -1.1865 1.4605 1.8814 2.2906 2.9031 3.9119
MD5 0.7703 0.7409 0.8070 0.9428 1.1259 1.7564 2.3086 2.83523.6692 5.2007

0.02% MD1 1.7736 0.7541 0.3566 -0.0494 -0.5989 2.2414 1.9473 2.2272 2.8581 4.1262
MD2 1.0392 0.4206 0.1775 -0.0671 -0.4010 1.4356 1.3033 1.5124 1.9480 2.7963
MD3 1.7329 0.7567 0.3539 -0.0612 -0.7437 2.1514 1.8708 2.1337 2.7332 3.9052
MD4 2.0392 0.9541 0.5017 -0.0268 -1.0242 2.4452 2.0641 2.3026 2.8455 3.8372
MD5 2.3202 1.5468 1.3390 1.2604 1.2850 2.8184 2.6578 3.00243.7363 5.2146

20-sec 0.005% MD1 -1.5456 -0.9755 -0.8101 -0.7508 -0.9624 2.1294 2.1667 2.4446 3.0322 4.2458
MD2 -1.1754 -0.7228 -0.5899 -0.5349 -0.6353 1.5498 1.5021 1.6784 2.0747 2.8870
MD3 -1.3862 -0.8709 -0.7288 -0.7174 -1.0831 1.9469 2.0256 2.3181 2.8971 4.0378
MD4 -0.9656 -0.6310 -0.5652 -0.6721 -1.3640 1.7472 2.0611 2.4288 3.0082 3.9960
MD5 -1.0312 -0.1876 0.1763 0.5540 0.9132 1.9665 2.2887 2.7769 3.6325 5.1833

0.01% MD1 -0.6723 -0.5651 -0.5403 -0.5906 -0.8826 1.5976 1.9994 2.3519 2.9801 4.2153
MD2 -0.5942 -0.4507 -0.4112 -0.4286 -0.5833 1.1564 1.3784 1.6107 2.0385 2.8665
MD3 -0.5574 -0.4809 -0.4722 -0.5639 -1.0070 1.4725 1.8769 2.2341 2.8474 4.0056
MD4 -0.1095 -0.2245 -0.2953 -0.5106 -1.2820 1.4410 1.9525 2.3592 2.9575 3.9539
MD5 -0.1518 0.2245 0.4473 0.7158 0.9933 1.6700 2.2787 2.7934 3.6475 5.1874

0.02% MD1 1.0095 0.2420 -0.0044 -0.2698 -0.7231 1.7813 1.9083 2.2582 2.9023 4.1593
MD2 0.5272 0.0861 -0.0554 -0.2161 -0.4775 1.1592 1.2928 1.5381 1.9830 2.8277
MD3 1.0376 0.2876 0.0374 -0.2591 -0.8542 1.7195 1.8116 2.1543 2.7751 3.9461
MD4 1.5196 0.5736 0.2358 -0.1903 -1.1188 2.0884 1.9865 2.3133 2.8833 3.8762
MD5 1.5376 1.0383 0.9871 1.0383 1.1526 2.2818 2.4775 2.90553.7002 5.1988

Notes: ME and RMSE are of the annualized standard deviation in percentage. The average true daily integrated volatilityis around 40% for MD1, 27% for
MD2, 36% for MD3, 28% for MD4 and 40% for MD5. MD1 and MD2 are theHeston model at different volatility level. MD3 is the two-factor stochastic
volatility model with intraday volatility periodicity. MD4 is the deterministic volatility model with intraday volatility periodicity and MD5 is the Heston
model (MD1) with price jumps. The first column indicates the average duration of the observed simulated transactions.
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Table B.9: ME and RMSE of daily volatility using the TRV method with subsampling under the BTS scheme

Sparsity NSR Model ME RMSE
1-min 2-min 3-min 5-min 10-min 1-min 2-min 3-min 5-min 10-min

5-sec 0.005% MD1 -0.4286 0.0470 0.0031 0.0004 -0.1777 1.3869 1.7228 2.1610 2.8165 4.0975
MD2 -0.4321 -0.0500 -0.0513 -0.0338 -0.1309 0.9964 1.1706 1.4665 1.9242 2.7797
MD3 -0.4435 0.0200 0.0123 -0.0019 -0.1916 1.2425 1.5657 1.9431 2.5511 3.6823
MD4 -0.2403 -0.0913 0.0126 0.0055 -0.2069 1.0574 1.3723 1.6849 2.2278 3.2164
MD5 -0.0687 0.6282 0.7732 1.0940 1.6463 1.4163 2.0196 2.5587 3.4485 5.2161

0.01% MD1 0.3382 0.4486 0.2625 0.1532 -0.1142 1.3520 1.76462.1562 2.8077 4.0850
MD2 0.0786 0.2172 0.1192 0.0675 -0.0884 0.9049 1.1831 1.4608 1.9152 2.7695
MD3 0.3291 0.4002 0.2555 0.1439 -0.1301 1.2126 1.6016 1.9521 2.5460 3.6734
MD4 0.5904 0.3128 0.2734 0.1532 -0.1474 1.1809 1.4043 1.7059 2.2373 3.2230
MD5 0.7280 1.0331 1.0365 1.2492 1.7128 1.5989 2.1671 2.63913.4936 5.2306

0.02% MD1 1.8463 1.2523 0.7789 0.4499 0.0126 2.2762 2.1053 2.2506 2.8148 4.0590
MD2 1.0802 0.7479 0.4603 0.2651 -0.0059 1.4503 1.3864 1.5109 1.9145 2.7529
MD3 1.7862 1.1644 0.7397 0.4265 -0.0167 2.1440 1.9166 2.0542 2.5558 3.6603
MD4 2.2616 1.1036 0.7889 0.4437 -0.0291 2.4966 1.7643 1.8609 2.2798 3.2357
MD5 2.2713 1.8503 1.5649 1.5559 1.8424 2.7080 2.6518 2.87533.5982 5.2587

10-sec 0.005% MD1 -0.9375 -0.0435 -0.0307 -0.0333 -0.1880 1.6335 1.8357 2.1600 2.8457 4.1021
MD2 -0.8123 -0.1034 -0.0778 -0.0560 -0.1417 1.2304 1.2500 1.4735 1.9394 2.7833
MD3 -0.8436 -0.0958 -0.0423 -0.0340 -0.2088 1.4854 1.6584 1.9742 2.5751 3.7013
MD4 -0.5797 -0.2436 -0.0830 -0.0584 -0.2432 1.2715 1.4404 1.7121 2.2547 3.2308
MD5 -0.5986 0.5429 0.7290 1.0637 1.6334 1.5659 2.0991 2.5573 3.4711 5.2171

0.01% MD1 0.0713 0.3397 0.2356 0.1224 -0.1251 1.3501 1.85612.1611 2.8355 4.0856
MD2 -0.1345 0.1520 0.1010 0.0460 -0.0992 0.9467 1.2544 1.4661 1.9323 2.7757
MD3 0.1028 0.2815 0.2097 0.1090 -0.1529 1.2390 1.6800 1.9774 2.5686 3.6909
MD4 0.3144 0.1905 0.1929 0.0949 -0.1830 1.1801 1.4321 1.7293 2.2613 3.2356
MD5 0.4190 0.9362 0.9980 1.2244 1.6968 1.5275 2.2311 2.63633.5126 5.2337

0.02% MD1 2.0479 1.1137 0.7770 0.4235 -0.0051 2.5005 2.12852.2661 2.8358 4.0650
MD2 1.1815 0.6675 0.4586 0.2426 -0.0175 1.5885 1.4198 1.5277 1.9301 2.7608
MD3 1.9622 1.0222 0.7158 0.3933 -0.0340 2.3465 1.9448 2.0766 2.5855 3.6804
MD4 2.1082 1.0387 0.7207 0.3933 -0.0644 2.4205 1.7728 1.8823 2.2997 3.2520
MD5 2.4111 1.7259 1.5437 1.5352 1.8277 2.8718 2.6669 2.87723.6225 5.2623

20-sec 0.005% MD1 -1.9043 -0.4650 -0.1715 -0.1586 -0.3052 2.5154 1.9081 2.3632 2.8884 4.1176
MD2 -1.4513 -0.3972 -0.1718 -0.1551 -0.2189 1.8465 1.3232 1.6142 1.9728 2.8010
MD3 -1.7349 -0.4945 -0.1976 -0.1617 -0.3245 2.2880 1.7421 2.0996 2.6517 3.7326
MD4 -1.3673 -0.5413 -0.2730 -0.2261 -0.3586 1.9372 1.6463 1.8101 2.3044 3.2759
MD5 -1.5684 0.0539 0.6149 0.9467 1.5263 2.3452 2.0185 2.7000 3.4925 5.2178

0.01% MD1 -0.7727 0.0595 0.0795 -0.0012 -0.2474 1.8388 1.8658 2.3619 2.8691 4.1079
MD2 -0.6930 -0.0470 -0.0025 -0.0515 -0.1798 1.3436 1.2747 1.6111 1.9649 2.7898
MD3 -0.6715 0.0110 0.0681 -0.0090 -0.2678 1.6684 1.6857 2.1131 2.6393 3.7245
MD4 -0.3601 -0.0577 0.0292 -0.0623 -0.3056 1.4354 1.5473 1.7854 2.3140 3.2870
MD5 -0.4358 0.5872 0.8854 1.1072 1.5868 1.8245 2.1169 2.7876 3.5323 5.2285

0.02% MD1 1.4062 1.0834 0.5790 0.3089 -0.1229 2.2543 2.19422.4346 2.8722 4.0765
MD2 0.7467 0.6389 0.3302 0.1612 -0.0953 1.4646 1.4674 1.6470 1.9576 2.7740
MD3 1.3598 0.9923 0.5629 0.2802 -0.1573 2.1106 1.9812 2.2102 2.6445 3.7064
MD4 1.6100 0.9172 0.6508 0.2535 -0.1811 2.1813 1.8069 1.9153 2.3599 3.2984
MD5 1.7450 1.6299 1.4063 1.4237 1.7176 2.5623 2.6474 3.01913.6372 5.2592

Notes: ME and RMSE are of the annualized standard deviation in percentage. The average true daily integrated volatilityis around 40% for MD1, 27% for
MD2, 36% for MD3, 28% for MD4 and 40% for MD5. MD1 and MD2 are theHeston model at different volatility level. MD3 is the two-factor stochastic
volatility model with intraday volatility periodicity. MD4 is the deterministic volatility model with intraday volatility periodicity and MD5 is the Heston
model (MD1) with price jumps. The first column indicates the average duration of the observed simulated transactions. The sampling frequency of the BTS
scheme equals to twice the average transaction duration.

96



Ta
bl

e
B

.1
0:

M
E

an
d

R
M

S
E

of
da

ily
vo

la
til

ity
es

tim
at

es
of

th
e

R
K

an
d

A
C

D
-I

C
V

m
et

ho
ds

fo
r

M
od

el
M

D
2

M
E

R
M

S
E

S
pa

rs
ity

N
S

R
R

K
A

C
D

-I
C

V
A

vg
.

sa
m

pl
in

g
fr

eq
ue

nc
y

(A
C

D
-I

C
V

)
RK

A
C

D
-I

C
V

A
vg

.
sa

m
pl

in
g

fr
eq

ue
nc

y
(A

C
D

-I
C

V
)

1-
m

in
3-

m
in

5-
m

in
10

-m
in

15
-m

in
1-

m
in

3-
m

in
5-

m
in

10
-m

in
15

-m
in

5-
se

c
0.

00
5%

-0
.0

55
4

M
E

1
-3

.7
33

4
-2

.1
77

3
-1

.6
81

5
-1

.1
07

5
-0

.8
02

3
1.

56
58

M
E

1
4.

26
42

2.
69

16
2.

30
84

2.
11

26
2.

14
77

M
E

2
-0

.0
28

2
-0

.0
87

4
-0

.0
89

3
-0

.0
09

3
0.

09
75

M
E

2
1.

61
14

1.
41

6
7

1.
50

23
1.

77
61

1.
98

21
M

E
3

-0
.1

10
1

-0
.0

08
7

0.
13

70
0.

23
80

0.
42

72
M

E
3

0.
88

00
0.

94
94

1
.1

54
2

0.
97

45
1.

07
77

0.
01

%
-0

.0
41

7
M

E
1

-2
.1

70
6

-1
.2

20
9

-0
.9

42
7

-0
.6

03
0

-0
.3

95
3

1
.5

67
2

M
E

1
2.

78
92

1.
86

87
1.

76
55

1.
85

71
2.

02
31

M
E

2
0.

09
31

0.
04

77
0.

05
56

0.
14

25
0.

25
51

M
E

2
1.

51
81

1.
36

01
1.

4
70

5
1.

75
90

1.
99

84
M

E
3

0.
06

29
0.

16
09

0.
30

26
0.

40
80

0.
59

97
M

E
3

0.
84

33
0.

92
61

1.
1

34
7

1.
00

27
1.

13
78

0.
02

%
-0

.0
14

7
M

E
1

1.
10

40
0.

56
97

0.
39

23
0.

30
11

0.
33

63
1.

57
03

M
E

1
1.

85
11

1.
46

01
1.

51
44

1.
77

20
2.

03
00

M
E

2
0.

34
25

0.
33

09
0.

35
46

0.
45

34
0.

58
03

M
E

2
1.

41
40

1.
37

08
1.

5
04

5
1.

80
71

2.
08

64
M

E
3

0.
40

75
0.

49
79

0.
63

77
0.

75
00

0.
94

53
M

E
3

0.
89

02
0.

98
84

1.
2

06
7

1.
15

71
1.

33
36

10
-s

ec
0.

00
5%

-0
.0

75
1

M
E

1
-7

.1
36

2
-3

.9
15

7
-2

.9
62

6
-1

.9
99

8
-

1.
51

56
1.

79
37

M
E

1
7.

73
12

4.
39

33
3.

48
15

2.
75

13
2.

55
19

M
E

2
-0

.0
46

7
-0

.1
53

1
-0

.1
66

1
-0

.1
06

6
0.

00
51

M
E

2
2.

00
58

1.
55

8
6

1.
57

98
1.

79
72

2.
00

45
M

E
3

-0
.1

57
4

-0
.1

86
0

-0
.0

31
4

0.
12

58
0.

31
50

M
E

3
1.

07
52

0.
98

08
1.

08
17

1.
00

54
1.

08
42

0.
01

%
-0

.0
59

9
M

E
1

-5
.7

28
4

-3
.1

38
0

-2
.3

71
1

-1
.5

90
0

-1
.1

78
1

1
.7

95
4

M
E

1
6.

29
67

3.
62

46
2.

92
15

2.
42

86
2.

34
37

M
E

2
0.

09
23

0.
00

09
-0

.0
10

5
0.

05
78

0.
17

12
M

E
2

1.
85

01
1.

48
89

1.
53

12
1.

77
70

2.
00

51
M

E
3

0.
01

75
-0

.0
08

3
0.

14
97

0.
29

92
0.

49
06

M
E

3
1.

02
74

0.
93

57
1.

06
61

1.
02

07
1.

13
04

0.
02

%
-0

.0
29

4
M

E
1

-3
.1

35
0

-1
.6

69
6

-1
.2

83
0

-0
.8

36
3

-0
.5

82
2

1
.7

98
3

M
E

1
3.

73
27

2.
25

14
2.

00
41

1.
95

72
2.

07
64

M
E

2
0.

40
40

0.
30

22
0.

30
28

0.
38

49
0.

49
83

M
E

2
1.

67
09

1.
42

63
1.

5
19

3
1.

80
24

2.
05

52
M

E
3

0.
36

54
0.

34
08

0.
49

23
0.

64
66

0.
84

19
M

E
3

1.
03

12
0.

96
39

1.
1

16
5

1.
14

87
1.

30
71

20
-s

ec
0.

00
5%

-0
.1

07
8

M
E

1
-1

1.
35

29
-6

.1
90

8
-4

.7
30

6
-3

.1
88

0-2
.4

82
1

2.
08

38
M

E
1

12
.1

41
0

6.
73

22
5.

24
91

3.
82

80
3.

30
78

M
E

2
-0

.1
40

9
-0

.3
07

3
-0

.3
39

3
-0

.2
90

6
-0

.1
96

0
M

E
2

2.
68

34
1.

84
20

1.
77

30
1.

90
61

2.
06

70
M

E
3

-0
.2

60
2

-0
.3

61
0

-0
.2

60
7

-0
.1

04
8

0.
08

67
M

E
3

1.
76

42
1.

16
4

5
1.

24
05

1.
08

45
1.

11
95

0.
01

%
-0

.0
90

7
M

E
1

-1
0.

16
62

-5
.6

34
4

-4
.2

92
3

-2
.8

84
1

-2
.2

18
7

2.
08

56
M

E
1

10
.9

46
0

6.
15

76
4.

79
93

3.
53

72
3.

08
41

M
E

2
0.

02
36

-0
.1

48
2

-0
.1

79
6

-0
.1

28
0

-0
.0

24
6

M
E

2
2.

57
16

1.
74

8
6

1.
69

04
1.

85
63

2.
03

94
M

E
3

-0
.0

82
3

-0
.1

82
1

-0
.0

79
3

0.
07

40
0.

26
68

M
E

3
1.

71
19

1.
09

65
1.

19
38

1.
06

46
1.

13
48

0.
02

%
-0

.0
57

1
M

E
1

-8
.3

62
6

-4
.5

73
2

-3
.4

20
9

-2
.2

87
6

-1
.7

30
4

2
.0

89
3

M
E

1
9.

07
08

5.
07

68
3.

93
82

3.
00

69
2.

70
36

M
E

2
0.

36
23

0.
17

67
0.

15
15

0.
21

06
0.

31
81

M
E

2
2.

40
80

1.
64

06
1.

6
13

3
1.

83
01

2.
03

90
M

E
3

0.
27

31
0.

17
57

0.
28

78
0.

43
00

0.
62

47
M

E
3

1.
67

65
1.

06
23

1.
2

12
3

1.
12

94
1.

25
90

N
ot

es
:

M
E

an
d

R
M

S
E

ar
e

of
th

e
an

nu
al

iz
ed

st
an

da
rd

de
vi

at
io

n
i

n
pe

rc
en

ta
ge

.
M

D
2

is
th

e
H

es
to

n
m

od
el

an
d

th
e

av
er

ag
e

tr
ue

da
i

ly
in

te
gr

at
ed

vo
la

til
ity

is
ar

ou
nd

27
%

.
M

E
1

is
th

e
A

C
D

-I
C

V
m

e
th

od
in

T
se

an
d

Y
an

g
(2

01
2)

.
M

E
2

is
M

E
1

w
ith

δ2
re

pl
ac

ed
by

V
D

,t
he

in
te

gr
at

ed
vo

la
til

ity
es

tim
at

ed
us

in
g

T
R

V
w

ith
su

bs
ampl
in

g
at

3-
m

in
sa

m
pl

in
g

fr
eq

ue
nc

y.
M

E
3

is
M

E
2

w
ith

sa
m

pl
ed

du
ra

tio
ns

co
m

pu
te

d
fr

om
B

T
S

re
tu

rn
s.

A
ll

A
C

D
m

od
el

s
ar

e
fit

te
d

to
di

ur
na

lly
tr

an
sf

or
m

ed
du

ra
tio

nsus
in

g
th

e
tim

e-
tr

an
sf

or
m

at
io

n
fu

nc
tio

n
ba

se
d

on
th

e
nu

m
be

r
of

tr
ad

es
as

in
T

se
an

d
D

on
g

(2
01

4)
.

97



Ta
bl

e
B

.1
1:

M
E

an
d

R
M

S
E

of
da

ily
vo

la
til

ity
es

tim
at

es
of

th
e

R
K

an
d

A
C

D
-I

C
V

m
et

ho
ds

fo
r

M
od

el
M

D
3

M
E

R
M

S
E

S
pa

rs
ity

N
S

R
R

K
A

C
D

-I
C

V
A

vg
.

sa
m

pl
in

g
fr

eq
ue

nc
y

(A
C

D
-I

C
V

)
RK

A
C

D
-I

C
V

A
vg

.
sa

m
pl

in
g

fr
eq

ue
nc

y
(A

C
D

-I
C

V
)

1-
m

in
3-

m
in

5-
m

in
10

-m
in

15
-m

in
1-

m
in

3-
m

in
5-

m
in

10
-m

in
15

-m
in

5-
se

c
0.

00
5%

-0
.0

98
5

M
E

1
-5

.1
43

0
-2

.9
82

1
-2

.2
66

5
-1

.6
53

1
-1

.5
05

8
2.

15
10

M
E

1
5.

27
78

3.
17

97
2.

54
94

2.
34

07
2.

63
93

M
E

2
-0

.1
39

2
-0

.0
76

4
-0

.0
11

0
-0

.0
77

9
-0

.2
10

5
M

E
2

1.
15

46
1.

09
77

1.
16

27
1.

70
15

2.
23

57
M

E
3

-0
.1

27
8

-0
.0

43
7

0.
04

64
0.

24
87

0.
40

09
M

E
3

1.
10

12
1.

10
52

1
.0

15
1

1.
01

86
1.

15
64

0.
01

%
-0

.0
78

4
M

E
1

-2
.8

99
7

-1
.6

47
2

-1
.2

27
8

-0
.9

58
1

-0
.9

32
0

2
.1

52
9

M
E

1
3.

11
70

1.
95

93
1.

68
27

1.
95

62
2.

37
15

M
E

2
0.

10
41

0.
17

34
0.

23
89

0.
14

67
0.

03
40

M
E

2
1.

13
43

1.
08

15
1.

1
76

5
1.

74
29

2.
22

03
M

E
3

0.
12

13
0.

20
33

0.
29

58
0.

49
98

0.
64

96
M

E
3

1.
06

59
1.

11
91

1.
0

28
7

1.
08

39
1.

25
89

0.
02

%
-0

.0
38

9
M

E
1

1.
73

84
0.

86
18

0.
65

99
0.

29
37

0.
09

12
2.

15
69

M
E

1
2.

03
70

1.
33

84
1.

30
60

1.
81

57
2.

24
71

M
E

2
0.

60
48

0.
67

00
0.

73
49

0.
60

94
0.

52
08

M
E

2
1.

21
57

1.
23

70
1.

3
52

5
1.

90
15

2.
31

72
M

E
3

0.
61

52
0.

69
92

0.
79

30
1.

00
00

1.
14

25
M

E
3

1.
18

17
1.

23
74

1.
2

19
5

1.
35

86
1.

57
73

10
-s

ec
0.

00
5%

-0
.1

40
0

M
E

1
-9

.8
05

4
-5

.3
83

5
-4

.0
50

9
-2

.9
24

4
-

2.
49

36
2.

46
29

M
E

1
9.

90
38

5.
51

36
4.

23
08

3.
38

37
3.

26
61

M
E

2
-0

.3
04

5
-0

.2
41

4
-0

.1
77

9
-0

.3
02

4
-0

.3
83

8
M

E
2

1.
26

64
1.

16
00

1.
20

53
1.

80
27

2.
23

80
M

E
3

-0
.2

86
1

-0
.2

25
6

-0
.1

29
5

0.
08

59
0.

23
11

M
E

3
1.

07
27

1.
35

10
1.

25
77

1.
02

75
1.

17
93

0.
01

%
-0

.1
17

6
M

E
1

-7
.5

21
4

-4
.2

76
9

-3
.2

26
4

-2
.3

62
3

-2
.0

37
1

2
.4

64
9

M
E

1
7.

64
49

4.
42

90
3.

44
21

2.
92

56
2.

94
15

M
E

2
-0

.0
50

9
0.

01
08

0.
07

31
-0

.0
56

4
-0

.1
36

5
M

E
2

1.
20

23
1.

11
52

1.
18

56
1.

79
91

2.
21

39
M

E
3

-0
.0

34
4

0.
02

67
0.

12
46

0.
34

14
0.

48
29

M
E

3
1.

01
01

1.
29

65
1.

21
93

1.
06

21
1.

25
83

0.
02

%
-0

.0
73

6
M

E
1

-4
.0

34
4

-2
.2

01
3

-1
.7

00
3

-1
.3

14
8

-1
.1

93
4

2
.4

68
8

M
E

1
4.

19
91

2.
46

01
2.

07
15

2.
21

43
2.

48
57

M
E

2
0.

45
31

0.
51

78
0.

57
06

0.
43

20
0.

35
84

M
E

2
1.

20
43

1.
20

71
1.

3
15

2
1.

89
37

2.
28

29
M

E
3

0.
46

72
0.

53
20

0.
62

99
0.

84
71

0.
98

77
M

E
3

1.
07

70
1.

34
37

1.
3

16
5

1.
29

03
1.

51
95

20
-s

ec
0.

00
5%

-0
.2

10
0

M
E

1
-1

5.
90

76
-8

.5
82

0
-6

.5
40

9
-4

.6
35

0-3
.8

33
5

2.
85

22
M

E
1

15
.9

98
6

8.
68

73
6.

67
17

4.
93

48
4.

34
61

M
E

2
-0

.6
11

2
-0

.5
50

3
-0

.4
99

9
-0

.6
57

9
-0

.6
96

3
M

E
2

1.
44

45
1.

31
78

1.
34

34
1.

93
01

2.
29

85
M

E
3

-0
.5

83
3

-0
.5

37
4

-0
.4

41
9

-0
.2

24
7

-0
.0

80
4

M
E

3
1.

17
20

1.
44

65
1.

37
53

1.
08

61
1.

21
28

0.
01

%
-0

.1
84

8
M

E
1

-1
4.

32
33

-7
.7

13
3

-5
.8

97
9

-4
.1

97
4

-3
.4

68
6

2.
85

39
M

E
1

14
.4

45
1

7.
82

32
6.

04
00

4.
53

38
4.

03
90

M
E

2
-0

.3
49

9
-0

.2
93

0
-0

.2
48

7
-0

.4
07

3
-0

.4
49

7
M

E
2

1.
34

87
1.

21
93

1.
27

37
1.

87
68

2.
25

33
M

E
3

-0
.3

27
9

-0
.2

79
5

-0
.1

83
3

0.
03

47
0.

17
12

M
E

3
1.

05
70

1.
35

13
1.

28
55

1.
05

19
1.

24
80

0.
02

%
-0

.1
35

4
M

E
1

-1
1.

32
85

-6
.1

74
0

-4
.6

78
3

-3
.3

75
4

-2
.8

06
0

2.
85

81
M

E
1

11
.4

27
6

6.
30

05
4.

85
18

3.
79

87
3.

50
21

M
E

2
0.

15
81

0.
21

38
0.

24
40

0.
09

20
0.

06
34

M
E

2
1.

26
26

1.
18

87
1.

2
91

2
1.

86
50

2.
23

47
M

E
3

0.
18

06
0.

22
96

0.
32

95
0.

54
95

0.
68

22
M

E
3

1.
00

35
1.

31
22

1.
2

79
0

1.
17

17
1.

42
95

N
ot

es
:

M
E

an
d

R
M

S
E

ar
e

of
th

e
an

nu
al

iz
ed

st
an

da
rd

de
vi

at
io

n
i

n
pe

rc
en

ta
ge

.
M

D
3

is
th

e
tw

o-
fa

ct
or

st
oc

ha
st

ic
vo

la
til

ity
m

od
el

w
ith

in
tr

ad
ay

vo
la

til
ity

pe
ri

od
ic

ity
an

d
th

e
av

er
ag

e
t

ru
e

da
ily

in
te

gr
at

ed
vo

la
til

ity
is

ar
ou

nd
36

%
.

M
E

1
is

th
e

A
C

D
-I

C
V

m
et

ho
d

in
T

se
an

d
Y

an
g

(2
01

2)
.

M
E

2
is

M
E

1
w

ith
δ2

re
pl

ac
ed

by
V

D
,

th
e

in
te

gr
at

ed
vo

la
til

ity
es

tim
at

ed
us

in
g

T
R

V
w

ith
su

bs
ampl
in

g
at

3-
m

in
sa

m
pl

in
g

fr
eq

ue
nc

y.
M

E
3

is
M

E
2

w
ith

sa
m

pl
ed

du
ra

tio
ns

co
m

pu
te

d
fr

om
B

T
S

re
tu

rn
s.

A
ll

A
C

D
m

od
el

s
ar

e
fit

te
d

to
di

ur
na

lly
tr

an
sf

or
m

ed
du

ra
tio

ns
us

in
g

th
e

tim
e-

tr
an

sf
or

m
at

io
n

fu
nc

tio
n

ba
se

d
on

th
e

nu
m

be
r

of
tr

a
de

s
as

in
T

se
an

d
D

on
g

(2
01

4)
.

98



Ta
bl

e
B

.1
2:

M
E

an
d

R
M

S
E

of
da

ily
vo

la
til

ity
es

tim
at

es
of

th
e

R
K

an
d

A
C

D
-I

C
V

m
et

ho
ds

fo
r

M
od

el
M

D
4

M
E

R
M

S
E

S
pa

rs
ity

N
S

R
R

K
A

C
D

-I
C

V
A

vg
.

sa
m

pl
in

g
fr

eq
ue

nc
y

(A
C

D
-I

C
V

)
RK

A
C

D
-I

C
V

A
vg

.
sa

m
pl

in
g

fr
eq

ue
nc

y
(A

C
D

-I
C

V
)

1-
m

in
3-

m
in

5-
m

in
10

-m
in

15
-m

in
1-

m
in

3-
m

in
5-

m
in

10
-m

in
15

-m
in

5-
se

c
0.

00
5%

-0
.1

39
2

M
E

1
-4

.3
27

3
-2

.7
90

1
-2

.1
76

1
-1

.4
73

5
-1

.0
74

4
2.

22
87

M
E

1
4.

65
80

3.
15

43
2.

67
55

2.
42

37
2.

50
51

M
E

2
-0

.0
49

5
-0

.0
06

4
0.

03
71

0.
13

88
0.

28
62

M
E

2
1.

56
81

1.
37

39
1

.4
95

9
1.

90
08

2.
26

58
M

E
3

0.
02

41
0.

00
89

0.
07

18
0.

20
14

0.
27

64
M

E
3

1.
05

47
1.

31
15

1.
3

07
9

1.
28

90
1.

37
06

0.
01

%
-0

.1
18

6
M

E
1

-2
.1

93
5

-1
.4

12
1

-1
.1

15
4

-0
.7

54
5

-0
.4

74
9

2
.2

29
9

M
E

1
2.

64
23

1.
91

16
1.

83
35

2.
01

00
2.

26
42

M
E

2
0.

22
14

0.
26

43
0.

29
17

0.
40

40
0.

55
53

M
E

2
1.

45
76

1.
29

03
1.

4
62

1
1.

89
25

2.
27

14
M

E
3

0.
28

04
0.

26
94

0.
33

39
0.

45
96

0.
53

91
M

E
3

1.
04

69
1.

29
00

1.
3

06
8

1.
32

42
1.

41
29

0.
02

%
-0

.0
78

4
M

E
1

2.
66

23
1.

23
71

0.
83

16
0.

54
34

0.
54

93
2.

23
32

M
E

1
3.

01
75

1.
68

87
1.

55
44

1.
86

22
2.

23
16

M
E

2
0.

72
70

0.
76

73
0.

80
13

0.
92

68
1.

08
55

M
E

2
1.

46
77

1.
39

79
1.

5
56

9
2.

01
00

2.
41

60
M

E
3

0.
79

08
0.

78
64

0.
85

47
0.

97
08

1.
06

50
M

E
3

1.
22

55
1.

42
06

1.
4

60
1

1.
53

98
1.

62
84

10
-s

ec
0.

00
5%

-0
.1

96
9

M
E

1
-8

.3
78

4
-4

.9
69

6
-3

.8
43

1
-2

.6
42

5
-

2.
02

80
2.

53
40

M
E

1
8.

66
74

5.
27

11
4.

22
64

3.
33

30
3.

07
82

M
E

2
-0

.1
72

1
-0

.1
33

4
-0

.1
02

7
0.

00
30

0.
14

55
M

E
2

1.
93

51
1.

54
89

1.
61

87
1.

96
70

2.
28

38
M

E
3

-0
.0

68
8

-0
.0

95
7

-0
.0

49
5

0.
06

60
0.

14
38

M
E

3
1.

16
64

1.
18

20
1.

23
76

1.
33

47
1.

40
51

0.
01

%
-0

.1
73

7
M

E
1

-6
.0

01
8

-3
.8

53
9

-2
.9

82
9

-2
.0

53
6

-1
.5

58
6

2
.5

35
4

M
E

1
6.

32
35

4.
16

62
3.

41
31

2.
84

60
2.

76
61

M
E

2
0.

10
70

0.
14

00
0.

17
35

0.
27

46
0.

42
05

M
E

2
1.

65
17

1.
42

34
1.

5
60

7
1.

93
54

2.
29

08
M

E
3

0.
19

25
0.

16
21

0.
21

69
0.

34
01

0.
41

35
M

E
3

1.
12

88
1.

17
14

1.
2

20
3

1.
32

36
1.

41
53

0.
02

%
-0

.1
28

2
M

E
1

-2
.6

72
5

-1
.6

34
8

-1
.3

50
8

-0
.9

71
2

-0
.6

78
1

2
.5

38
2

M
E

1
3.

11
74

2.
11

76
2.

01
49

2.
12

26
2.

33
70

M
E

2
0.

64
70

0.
66

19
0.

68
71

0.
80

54
0.

95
96

M
E

2
1.

62
32

1.
45

29
1.

6
01

7
2.

01
89

2.
40

90
M

E
3

0.
71

04
0.

67
73

0.
73

94
0.

87
77

0.
94

37
M

E
3

1.
25

02
1.

31
62

1.
3

71
7

1.
47

39
1.

60
46

20
-s

ec
0.

00
5%

-0
.2

99
8

M
E

1
-1

3.
32

04
-7

.8
20

0
-6

.1
13

1
-4

.2
41

3-3
.3

20
2

2.
91

02
M

E
1

13
.6

06
6

8.
11

28
6.

44
88

4.
76

99
4.

10
23

M
E

2
-0

.4
12

3
-0

.3
82

5
-0

.3
58

3
-0

.2
55

6
-0

.1
10

6
M

E
2

2.
37

59
1.

85
00

1.
83

92
2.

07
98

2.
34

50
M

E
3

-0
.2

79
1

-0
.3

03
3

-0
.2

78
8

-0
.1

79
5

-0
.1

06
1

M
E

3
1.

55
69

1.
21

35
1.

25
24

1.
35

78
1.

48
59

0.
01

%
-0

.2
74

3
M

E
1

-1
1.

32
75

-6
.8

98
1

-5
.4

31
5

-3
.7

72
1

-2
.9

38
5

2.
91

06
M

E
1

11
.6

50
7

7.
18

67
5.

77
95

4.
33

79
3.

77
89

M
E

2
-0

.1
30

3
-0

.1
05

2
-0

.0
80

9
0.

02
11

0.
16

60
M

E
2

2.
19

32
1.

69
25

1.
75

05
2.

03
15

2.
31

68
M

E
3

-0
.0

11
6

-0
.0

34
3

-0
.0

07
3

0.
09

82
0.

16
84

M
E

3
1.

49
68

1.
13

75
1.

18
47

1.
31

11
1.

45
04

0.
02

%
-0

.2
24

9
M

E
1

-8
.9

18
1

-5
.1

74
1

-4
.0

97
3

-2
.8

88
8

-2
.2

27
9

2
.9

12
2

M
E

1
9.

27
85

5.
49

84
4.

48
87

3.
54

81
3.

22
75

M
E

2
0.

37
52

0.
41

25
0.

44
84

0.
55

75
0.

70
60

M
E

2
2.

23
74

1.
65

79
1.

7
08

8
2.

03
93

2.
38

28
M

E
3

0.
51

57
0.

49
39

0.
52

81
0.

64
25

0.
71

92
M

E
3

1.
53

17
1.

18
82

1.
2

48
4

1.
39

81
1.

54
41

N
ot

es
:

M
E

an
d

R
M

S
E

ar
e

of
th

e
an

nu
al

iz
ed

st
an

da
rd

de
vi

at
io

n
i

n
pe

rc
en

ta
ge

.
M

D
4

is
th

e
de

te
rm

in
is

tic
vo

la
til

ity
m

od
el

w
it

h
in

tr
ad

ay
vo

la
til

ity
pe

ri
od

ic
ity

an
d

th
e

av
er

ag
e

tr
ue

da
il

y
in

te
gr

at
ed

vo
la

til
ity

is
ar

ou
nd

28
%

.
M

E
1

is
th

e
A

C
D

-I
C

V
m

et
ho

d
in

T
se

an
d

Y
an

g
(2

01
2)

.
M

E
2

is
M

E
1

w
ith

δ2
re

pl
ac

ed
by

V
D

,t
he

in
te

gr
at

ed
vo

la
til

ity
es

tim
at

ed
us

in
g

T
R

V
w

ith
su

bs
ampl
in

g
at

3-
m

in
sa

m
pl

in
g

fr
eq

ue
nc

y.
M

E
3

is
M

E
2

w
ith

sa
m

pl
ed

du
ra

tio
ns

co
m

pu
te

d
fr

om
B

T
S

re
tu

rn
s.

A
ll

A
C

D
m

od
el

s
ar

e
fit

te
d

to
di

ur
na

lly
tr

an
sf

or
m

ed
du

ra
tio

ns
us

in
g

th
e

tim
e

-t
ra

ns
fo

rm
at

io
n

fu
nc

tio
n

ba
se

d
on

th
e

nu
m

be
r

of
tr

ad
es

as
in

T
se

an
d

D
on

g
(2

01
4)

.

99



100



101



102



103



104



105



106



107



Appendix C Appendix of Chapter 4

C.1 Asymptotic Properties of the Noise-Variance Es-

timates

Suppose the latent logarithmic price process {Xt} is an Itô process following

Assumption 1 with observed log-price {Yt}. Assume the noise {εt} to be iid with

E(εt) = 0, {εt} and {Xt} to be independent and E(ε4
t )< ∞. Denote the full grid as

G = {t0, t1, · · ·, tn} under the given sampling scheme. Define

M =
1√
n ∑

ti∈G

(
ε

2
ti −E(ε2

t )
)

(C.1.1)

and

NK =
1√
n ∑

ti∈G k
K ,k=1,···,K

εtiεti−K . (C.1.2)

Following the proof of Theorem A.1 in Zhang et al. (2005), (M,NK) are the end

points of martingales with respect to filtration Fi = σ(εt j , j ≤ i,Xt , all t) and the

(discrete-time) predictable quadratic variations are

〈M, M〉= 1
n ∑

ti∈G
Var
(
ε

2
ti −E(ε2

t )|Fti−1
)
= Var(ε2

t ), (C.1.3)

〈NK, NK〉=
1
n ∑

ti∈G k
K ,k=1,···,K

Var
(
εtiεti−K |Fti−1

)
= (E(ε2

t ))
2 +op(1) (C.1.4)
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and

〈M, NK〉=
1
n ∑

ti∈G k
K ,k=1,···,K

Cov
(
ε

2
ti −E(ε2

t ),εtiεti−K |Fti−1
)
= op(1). (C.1.5)

Based on the assumptions, the conditional Lindeberg conditions are satisfied. By the

martingale central limit theorem in Hall and Heyde (1980), (M,NK) are asymptoti-

cally independent normal with respective variance Var(ε2
t ) and (E(ε2

t ))
2. Following

equation (A.23) in Zhang et al. (2005), for fixed K, as n→ ∞, we have

JK ≡
1√
n


 ∑

ti∈G k
K ,k=1,···,K

(
Yti−Yti−K

)2− ∑
ti∈G k

K ,k=1,···,K

(
Xti−Xti−K

)2−2KmKE(ε2
t )

∣∣∣∣∣∣
X




= 2(M−NK)+op(1)

L→ 2N(0,E(ε4
t )).

(C.1.6)

Furthermore, by Theorem 3 of Zhang et al. (2005), we have
(

∑ti∈G k
K

(
Xti−Xti−K

)2

−〈X , X〉) = op(1), where 〈X , X〉 is the quadratic variation of the true return pro-

cess.

We observe that for any two different sampling frequencies K1 and K2, the

(discrete-time) predictable quadratic covariation of NK1 and NK2 is

〈NK1, NK2〉=
1
n ∑

ti∈G k
K1
,k=1,···,K1

Cov(εtiεti−K1
,εtiεti−K2

|Fti−1)

=
E(ε2

t )

n ∑
ti∈G k

K1
,k=1,···,K1

εti−K1
εti−K2

= op(1).

(C.1.7)

As a result, for any K1 < K2, by the martingale central limit theorem in Hall and
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Heyde (1980), we have

(JK1,JK2)
′= 2(M−NK1, M−NK2)

′+op(1)

L→ 2 N


0,




E(ε4
t ) Var(ε2

t )

Var(ε2
t ) E(ε4

t )





 .

(C.1.8)

Proof of Proposition 1. Under the assumptions as in Proposition 1, for the noise-

variance estimate M1, we have

√
n
(
ω̂

2(K)−E(ε2
t )
∣∣X
)
=

√
n

2KmK


 ∑

ti∈G k
K ,k=1,···,K

(
Yti−Yti−K

)2−KIV −2KmKE(ε2
t )

∣∣∣∣∣∣
X




=
n

KmK
(M−NK +op(1))

L→ N
(
0,E(ε4

t )
)
.

(C.1.9)

Proof of Proposition 2. Under the assumptions as in Proposition 2, for the noise-

variance estimate M2, we have

√
n
(
ω̌

2(K1,K2)−E(ε2
t )
∣∣X
)

=

√
n

2(mK1−mK2)


 1

K1


 ∑

ti∈G k
K1
,k=1,···,K1

(
Yti−Yti−K1

)2
−2K1mK1E(ε2

t )




= − 1
K2


 ∑

ti∈G k
K2
,k=1,···,K1

(
Yti−Yti−K2

)2
−2K2mK2E(ε2

t )



∣∣∣∣∣∣
X




=
n

mK1−mK2

(
M−NK1

K1
−M−NK2

K2
+op(1)

)

L→ N
(

0,E(ε4
t )+

2K1K2

(K2−K1)2

(
E(ε2

t )
)2
)
.

(C.1.10)

Note that when K1 < K2, for fixed K2, the variance of ω̌2(K1,K2) increases as K1

increases.

We further consider the asymptotic properties of the noise-variance estimates
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M1A and M2A. Define HK,L,q as

HK,L,q =
L

∑
l=−L

JK+lq = 2
L

∑
l=−L

(M−NK+lq)+op(1).

Using equation (C.1.8), we have

(HK1,L,q,HK2,L,q)
′ L→ 2 N


0,




A, B

B, A





 . (C.1.11)

for all (K1 +Lq) < (K2−Lq), where A = (2L+ 1)E(ε4
t )+ 2L(2L+ 1)Var(ε2

t ) and

B = (2L+1)2Var(ε2
t ).

Proof of Proposition 3. Under the assumptions as in Proposition 3, for the noise-

variance estimate M1A, we have

√
n
(
ω̂

2(K,L,q)−E(ε2
t )
∣∣X
)
=

n
2KmK(2L+1)

(
HK,L,q +op(1)

)

L→ N
(

0,E(ε4
t )−

2L
2L+1

(
E(ε2

t )
)2
)
.

(C.1.12)

Proof of Proposition 4. Under the assumptions as in Proposition 4, for the noise-

variance estimate M2A, we have

√
n
(
ω̌

2(K1,K2,L,q)−E(ε2
t )
∣∣X
)

=
n

2(mK1−mK2)

(
HK1,L,q

K1(2L+1)
− HK2,L,q

K2(2L+1)
+op(1)

)

L→ N
(

0,E(ε4
t )+

1
2L+1

(
−2L+

2K1K2

(K2−K1)2

)(
E(ε2

t )
)2
)
.

(C.1.13)

Comparing equation (C.1.13) with equation (C.1.10), we observe that M2A has

smaller error variance compared with M2. Specifically, for the M2A estimates,

when we use 1-min versus 2-min sampling frequencies and 1-min versus 3-min

sampling frequencies, we have

√
n
(
ω̌

2(K1,2K1,2,q)−E(ε2
t )
) L→ N

(
0,E(ε4

t )
)

(C.1.14)
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and

√
n
(
ω̌

2(K1,3K1,2,q)−E(ε2
t )
) L→ N

(
0,E(ε4

t )−
1
2

E
(
(ε2

t )
)2
)
. (C.1.15)

C.2 Supplementary Material

A Volatility Signature Plot

For transaction data of 40 NYSE stocks from January 2010 to April 2013, we

plot the RV K volatility signature plots under the Tick Time Sampling (TTS) scheme

with sampling frequency ranges from 5-sec to 30-min in Figure C.1 and plot the

RV K and RV KA volatility signature plots under the TTS scheme with sampling fre-

quency ranges from 5-sec to 5-min in Figure C.2. Similar results under the Cal-

endar Time Sampling (CTS) scheme are provided in Figure C.3 and Figure C.4

separately. Figure C.1 and Figure C.3 demonstrate the significant influence of sam-

pling frequency to the Realized Volatility estimation and Figure C.2 and Figure C.4

demonstrate the complicate noise properties when transactions are sampled at high

sampling frequency. Different stocks tend to exhibit different patterns and these

figures suggest that the volatility signature plot is a quite simple but helpful and

powerful tool in high-frequency financial data analysis. We plot the RV K and RV KA

volatility signature plots for the simulated transaction data in Figure C.5, where the

sparsity parameter are equal to 5-sec, 10-sec and 20-sec.

B Noise-to-signal Ratio (NSR) Estimation

Table C.1-C.4 report the mean error (ME) and root mean-squared error (RMSE)

of M1, M1A, M2, M2A and M3 using RV K across different sampling frequencies.

M2 and M2A perform better than M1, M1A and M3 by reporting smaller RMSE

values. M2A again generally outperform M2 by reporting smaller RMSE values.

Compared with cases when RV KA∗ is used, now all noise-variance estimates report

much worse unbiased property and much larger RMSE values. We estimate the
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noise-to-signal ratio (NSR) value of 40 stocks using transaction data. Table C.5

reports the estimated NSR when we sample transactions at 30-min sampling fre-

quency.
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Figure C.1: RV K volatility signature plots under the TTS scheme, 2010-2013.
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Figure C.1 (continue): RV K volatility signature plots under the TTS scheme, 2010-2013.
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Figure C.1 (continue): RV K volatility signature plots under the TTS scheme, 2010-2013.
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Figure C.1 (continue): RV K volatility signature plots under the TTS scheme, 2010-2013.
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Figure C.2: RV K and RV KA volatility signature plots under the TTS scheme, 2010-2013.
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Figure C.2 (continue): RV K and RV KA volatility signature plots under the TTS scheme,
2010-2013.
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Figure C.2 (continue): RV K and RV KA volatility signature plots under the TTS scheme,
2010-2013.
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Figure C.2 (continue): RV K and RV KA volatility signature plots under the TTS scheme,
2010-2013.
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Figure C.3: RV K volatility signature plots under the CTS scheme, 2010-2013.
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Figure C.3 (continue): RV K volatility signature plots under the CTS scheme, 2010-2013.
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Figure C.3 (continue): RV K volatility signature plots under the CTS scheme, 2010-2013.
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Figure C.3 (continue): RV K volatility signature plots under the CTS scheme, 2010-2013.
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Figure C.4: RV K and RV KA volatility signature plots under the CTS scheme, 2010-2013.
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Figure C.4 (continue): RV K and RV KA volatility signature plots under the CTS scheme,
2010-2013.

127



Figure C.4 (continue): RV K and RV KA volatility signature plots under the CTS scheme,
2010-2013.
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Figure C.4 (continue): RV K and RV KA volatility signature plots under the CTS scheme,
2010-2013.
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Figure C.5: Volatility signature plot of one simulation run, Sparsity=5-sec.
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Figure C.5 (continue): Volatility signature plot of one simulation run, Sparsity=10-sec.
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Figure C.5 (continue): Volatility signature plot of one simulation run, Sparsity=20-sec.
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Table C.5: Empirical NSR estimates of 40 stocks

Stock M1 M1A M2 M2A M3 Stock M1 M1A M2 M2A M3

XOM -94.29 -94.29 3.28 3.27 25.79 WMT -94.49 -94.49 3.22 3.21 17.51

GE -69.94 -69.94 2.76 2.75 21.80 CVX -76.54 -76.54 2.79 2.78 11.85

IBM -93.63 -93.64 3.22 3.21 23.48 JNJ -96.01 -96.01 3.22 3.21 33.25

T -97.82 -97.82 3.39 3.39 20.92 PG -120.91 -120.90 4.43 4.42 17.40

JPM -71.99 -71.99 2.35 2.35 11.22 WFC -88.24 -88.24 2.85 2.84 18.44

KO -93.60 -93.60 3.26 3.25 14.65 PFE -85.93 -85.93 3.60 3.59 27.80

C -46.01 -46.03 8.29 8.30 4.98 BAC -47.22 -47.22 2.90 2.89 -2.36

SLB -87.37 -87.37 3.01 3.01 14.12 MRK -102.61 -102.61 3.36 3.35 16.70

PEP -101.42 -101.42 3.32 3.31 17.25 VZ -85.02 -85.02 3.04 3.03 10.83

COP -81.14 -81.14 2.55 2.54 16.42 GS -60.93 -60.93 2.00 1.99 -8.07

MCD -67.26 -67.26 2.49 2.48 7.16 OXY -68.65 -68.65 2.19 2.18 12.01

ABT -89.10 -89.10 2.87 2.85 24.12 UTX -77.10 -77.10 2.43 2.42 14.44

UPS -92.42 -92.42 3.09 3.08 22.43 F -54.46 -54.46 2.61 2.61 13.15

DIS -70.95 -70.95 2.31 2.29 10.47 MMM -125.09 -125.09 3.92 3.91 11.73

CAT -55.09 -55.09 1.91 1.91 2.04 FCX -61.73 -61.74 2.03 2.02 -0.70

USB -75.92 -75.92 2.49 2.48 19.04 MO -90.27 -90.28 3.52 3.51 33.06

AXP -70.32 -70.32 2.34 2.33 2.75 BA -75.59 -75.59 2.47 2.45 5.16

MDT -75.77 -75.77 2.23 2.21 15.35 HD -71.07 -71.07 2.39 2.38 11.48

CVS -82.12 -82.12 2.72 2.70 15.76 EMC -78.01 -78.00 2.67 2.65 20.94

HAL -66.56 -66.55 2.23 2.22 6.65 PNC -77.01 -77.02 2.40 2.39 14.28

Notes: NSR is calculated under the TTS scheme. We use RV KA∗ at 30-min sampling frequency for M1, M1A and M3 and at

1-min versus 30-min sampling frequencies for M2 and M2A, 2010-2013. The figures are after multiplying by 104.
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