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Multimodal Code Search

Shaowei Wang

Abstract

Today’s software is large and complex, consisting of millions of lines of code. New

developers of a software project always face significant challenges in finding code

related to their development or maintenance tasks (e.g., implementing features, fix-

ing bugs and adding new features). In fact, research has shown that developers typi-

cally spend more time on locating and understanding code than modifying it. Thus,

we can significantly reduce the cost of software development and maintenance by

reducing the time to search and understand code relevant to a software development

or maintenance task. In order to reduce the time of searching and understanding

relevant code, many code search techniques are proposed.

For different circumstances, the best form of inputs (i.e., queries) users can pro-

vide to search for a piece of code of interest may differ. During development, devel-

opers usually like to search a piece of code implementing certain functionality for

reuse by expressing their queries in free-form texts (i.e., natural language). After

deployment, users might report bugs to an issue tracking system. For these bug re-

ports, developers would benefit from an automated tool that can identify buggy code

from the descriptions of the symptoms of the bugs. During maintenance, develop-

ers may notice that some pieces of code with a particular structure are potentially

buggy. A code search technique that allows users to specify the code structure using

a query language may be the best choice. In another scenario, developers may have

found some buggy code examples and they would like to locate other similar code

snippets containing the same problem across the entire system. In this case, a code

search technique that takes as input known buggy code examples is the best choice.

During testing, suppose developers have execution traces of a suite of test cases,



they might want to use these execution traces as input to search the buggy code.

Developers may also like to provide feedback to the code search engine to improve

results. From the above examples, we could see that there is a need for multimodal

code search which allows users to express their needs in multiple input forms and

processes different inputs with different strategies. This will make their search more

convenient and effective.

In this dissertation, we propose a multimodal code search engine, which em-

ploys novel techniques that allow developers to effectively find code elements of

interest by processing developers’ inputs in various input forms including free-form

texts, an SQL-like domain-specific language, code examples, execution traces, and

user feedback. In the multimodal code search engine, we utilize program analysis,

data mining, and machine learning techniques to improve the code search accuracy.

Our evaluations show that our approaches improve over state-of-the-art approaches

significantly.



Table of Contents

1 Introduction 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Thesis Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Literature Review 6

2.1 Code Search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Concern Localization . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3 Program Dependence Graph, Its Construction and Usages . . . . . . 9

2.4 Active Learning for Software Engineering . . . . . . . . . . . . . . 9

2.5 Fault Localization . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3 Version History, Similar Report, and Structure: Putting Them Togeth-

er for Improved Bug Localization 13

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.2 Preliminaries and Example . . . . . . . . . . . . . . . . . . . . . . 17

3.2.1 Bug Reports . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.2.2 Text Pre-processing . . . . . . . . . . . . . . . . . . . . . . 18

3.2.3 Motivating Example . . . . . . . . . . . . . . . . . . . . . 19

3.3 Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.3.1 Overall Framework of AmaLgam . . . . . . . . . . . . . . 22

3.3.2 Version History Component . . . . . . . . . . . . . . . . . 23

3.3.3 Similar Report Component . . . . . . . . . . . . . . . . . . 24

i



3.3.4 Structure Component . . . . . . . . . . . . . . . . . . . . . 26

3.3.5 Composer Component . . . . . . . . . . . . . . . . . . . . 27

3.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.4.1 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.4.2 Evaluation Metrics . . . . . . . . . . . . . . . . . . . . . . 29

3.4.3 Research Questions . . . . . . . . . . . . . . . . . . . . . . 30

3.4.4 Experiment Results . . . . . . . . . . . . . . . . . . . . . . 31

3.4.5 Threats to Validity . . . . . . . . . . . . . . . . . . . . . . 35

3.5 Conclusion and Future Work . . . . . . . . . . . . . . . . . . . . . 37

4 Code Search via Topic-Enriched Dependence Graph Matching 38

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.2.1 Program Dependence Graph . . . . . . . . . . . . . . . . . 41

4.2.2 Topic Modeling . . . . . . . . . . . . . . . . . . . . . . . . 43

4.2.3 Graph Reachability . . . . . . . . . . . . . . . . . . . . . . 43

4.3 Proposed Framework . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.4 Query Language . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.5 Query Processing Engine . . . . . . . . . . . . . . . . . . . . . . . 48

4.5.1 Query Graph Construction . . . . . . . . . . . . . . . . . . 49

4.5.2 Graph Matching . . . . . . . . . . . . . . . . . . . . . . . 50

4.6 Empirical Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.6.1 Scalability Evaluation . . . . . . . . . . . . . . . . . . . . 56

4.6.2 Case Studies . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.7 Conclusion and Future Work . . . . . . . . . . . . . . . . . . . . . 61

5 AutoQuery: Automatic Construction of Dependency Queries for Code

Search 62

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.2 Overall Framework . . . . . . . . . . . . . . . . . . . . . . . . . . 65

ii



5.3 PDGs Generation Engine . . . . . . . . . . . . . . . . . . . . . . . 66

5.3.1 Code Extension . . . . . . . . . . . . . . . . . . . . . . . . 68

5.4 Query Generation Engine . . . . . . . . . . . . . . . . . . . . . . . 78

5.4.1 Mine Simple Maximal Common Subgraph . . . . . . . . . 79

5.4.2 Recover Textual Information . . . . . . . . . . . . . . . . . 79

5.4.3 Construct Query from Enriched Subgraphs . . . . . . . . . 83

5.4.4 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.5 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.5.1 Experimental Settings . . . . . . . . . . . . . . . . . . . . 84

5.5.2 Experiment Results . . . . . . . . . . . . . . . . . . . . . . 87

5.6 Conclusion and Future Work . . . . . . . . . . . . . . . . . . . . . 96

6 Search-Based Fault Localizaiton 98

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

6.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

6.2.1 Spectrum Based Fault Localization . . . . . . . . . . . . . 100

6.2.2 Search-based Algorithms . . . . . . . . . . . . . . . . . . . 101

6.3 Fault Localization Measures . . . . . . . . . . . . . . . . . . . . . 105

6.3.1 Tarantula . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

6.3.2 Ochiai . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

6.3.3 Association Measures . . . . . . . . . . . . . . . . . . . . 106

6.3.4 Examples and Motivation . . . . . . . . . . . . . . . . . . 108

6.4 Search-Based Composition Engine . . . . . . . . . . . . . . . . . . 110

6.4.1 Training Phase . . . . . . . . . . . . . . . . . . . . . . . . 110

6.4.2 Deployment Phase . . . . . . . . . . . . . . . . . . . . . . 115

6.5 Empirical Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . 116

6.5.1 Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

6.5.2 Evaluation Results . . . . . . . . . . . . . . . . . . . . . . 119

6.5.3 Threats to Validity . . . . . . . . . . . . . . . . . . . . . . 129

iii



6.6 Conclusion and Future Work . . . . . . . . . . . . . . . . . . . . . 130

7 Active Code Search: Incorporating User Feedback to Improve Code

Search Relevance 131

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

7.2 Portfolio & Active Code Search . . . . . . . . . . . . . . . . . . . 134

7.2.1 Portfolio . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

7.2.2 Active Code Search Paradigm . . . . . . . . . . . . . . . . 136

7.2.3 Normalized Discounted Cumulative Gain . . . . . . . . . . 137

7.3 Approach Overview . . . . . . . . . . . . . . . . . . . . . . . . . . 139

7.4 Refinement Engine . . . . . . . . . . . . . . . . . . . . . . . . . . 141

7.4.1 Update Query Representation . . . . . . . . . . . . . . . . 143

7.4.2 Reorder Results Block . . . . . . . . . . . . . . . . . . . . 147

7.4.3 Parameter Tuning . . . . . . . . . . . . . . . . . . . . . . . 148

7.4.4 Cache Processor . . . . . . . . . . . . . . . . . . . . . . . 149

7.5 Empirical Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . 150

7.5.1 Experimental Settings . . . . . . . . . . . . . . . . . . . . 150

7.5.2 Evaluation Results . . . . . . . . . . . . . . . . . . . . . . 152

7.5.3 Threats to Validity . . . . . . . . . . . . . . . . . . . . . . 158

7.6 Conclusion and Future Work . . . . . . . . . . . . . . . . . . . . . 159

8 Conclusion and Future Work 160

iv



List of Figures

1.1 Overview of Multimodal Code Search . . . . . . . . . . . . . . . . 3

3.1 An Eclipse’s Bug Report and the Buggy Source Code Files Corre-

sponding to it . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.2 Recent Commit Logs Prior to the Reporting of Bug Report 76138 . 20

3.3 An Older Eclipse’s Bug Report and the Buggy Source Code Files

Corresponding to It . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.4 The Overall Framework of AmaLgam . . . . . . . . . . . . . . . . 22

3.5 Example Bug Report and Source Code File . . . . . . . . . . . . . 27

3.6 Impact of Varying the Value of k on AmaLgam in Terms of MAP . . 34

3.7 Impact of Varying the Value of k on AmaLgam in terms of MRR . . 35

3.8 Impact of Varying the Value of b on AmaLgam in terms of MAP . . 36

3.9 Impact of Varying the Value of b on AmaLgam in terms of MRR . . 36

4.1 Sample PDG. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.2 Our Code Search Overview. . . . . . . . . . . . . . . . . . . . . . 44

4.3 Components in Query Processor. . . . . . . . . . . . . . . . . . . . 49

4.4 Converting User Queries to Query Graphs. We use the “|” separator

to specify the different node types that could be assigned to N1 and

N2. The correspondences between the node types in a user query

and those in the query graph are shown. . . . . . . . . . . . . . . . 50

4.5 PES Construction Process . . . . . . . . . . . . . . . . . . . . . . . 52

4.6 UnpromisingRemoval Procedure . . . . . . . . . . . . . . . . . . . 53

v



4.7 Answer Set Composition . . . . . . . . . . . . . . . . . . . . . . . 55

5.1 Overall Framework . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.2 An Example Code Snippet of Switch-case Condition . . . . . . . . 72

5.3 An example of code snippet . . . . . . . . . . . . . . . . . . . . . 74

5.4 Compilable code extended from a code snippet . . . . . . . . . . . 77

5.5 Query Generation Example . . . . . . . . . . . . . . . . . . . . . . 84

5.6 Results (y-axis) vary as the number of code fragments (x-axis) in-

crease . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.7 AutoQuery vs. UserQuery: Precision per Task . . . . . . . . . . . . 91

5.8 AutoQuery vs. UserQuery: Recall per Task . . . . . . . . . . . . . 91

5.9 AutoQuery vs. UserQuery: F-measure per Task . . . . . . . . . . . 92

5.10 AutoQuery vs. UserQuery: Efficiency . . . . . . . . . . . . . . . . 92

5.11 Two Complex Code Fragments Example Containing 19 lines . . . . 94

5.12 Two Complex Code Fragments Example Containing 10 lines . . . . 95

6.1 Example of block-hit program spectra . . . . . . . . . . . . . . . . 101

6.2 Simulated Annealing: Pseudocode . . . . . . . . . . . . . . . . . . 103

6.3 Genetic Algorithm: Pseudocode . . . . . . . . . . . . . . . . . . . 104

6.4 Sample block-hit spectrum - No. 2 . . . . . . . . . . . . . . . . . . 109

6.5 Training Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

6.6 Deployment Phase . . . . . . . . . . . . . . . . . . . . . . . . . . 113

6.7 Accuracies of SA versus Baseline Approaches . . . . . . . . . . . . 121

6.8 Accuracies of GARandom versus Baseline Approaches . . . . . . . . 121

6.9 Accuracies of of GAEnhanced versus Baseline Approaches . . . . . . 122

6.10 Accuracies of of GAEnhanced versus SA . . . . . . . . . . . . . . . 122

7.1 Active Code Search: Overall Structure . . . . . . . . . . . . . . . . 140

7.2 Refinement Engine Component . . . . . . . . . . . . . . . . . . . . 141

7.3 Improvement of Portfolioactive over Portfoliooriginal in terms of NDCG152

vi



7.4 Improvement of Portfolioactive with structural scores over Portfolioactive

without structural scores in terms of NDCG . . . . . . . . . . . . . 156

7.5 NDCGs of Portfolioactive with parameter tuning versus Portfolioactive

without parameter tuning . . . . . . . . . . . . . . . . . . . . . . . 157

vii



List of Tables

3.1 Comparison of Our Approach to State-of-The-Art Bug Localization

Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.2 Dataset Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.3 Comparison among AmaLgam, TFIDF-DHbPd, BugLocator, BLUiR,

and BLUiR+ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.1 DQLT Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.2 Performance Comparison (in seconds) . . . . . . . . . . . . . . . . 56

5.1 Inference Heuristics . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.2 The Results of Lists UT , UF , UV , and EX . . . . . . . . . . . . . 75

5.3 Illustration of our type inference process . . . . . . . . . . . . . . . 76

5.4 Programs Analyzed in this Study . . . . . . . . . . . . . . . . . . . 86

5.5 AutoQuery vs. UserQuery: Precision, Recall, and F-measure . . . . 88

5.6 AutoQuery vs. UserQuery: Number of Winning Queries . . . . . . 91

6.1 Definitions of Association Measures. A and B are the two vari-

ables. P (A) and P (B) correspond to the probabilities of A and B

respectively. Other notations follow standard notations from prob-

ability and statistics: P (A) is the probability of not A; P (A,B) is

the joint probability of A and B; P (A|B) and P (B|A) are condi-

tional probabilities. . . . . . . . . . . . . . . . . . . . . . . . . . . 107

6.2 Dataset Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

viii



6.3 Means and Standard Deviations of Percentages of Inspected Blocks

(Smaller is Better) . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

6.4 Proportion of bugs localized when 10% of the code is investigated

(PBL) and average percentage of basic blocks investigated for all

bugs to be localized (ABB), when the amount of training data is

varied from 10% to 90%. The remaining data is used for testing. . . 123

6.5 Bug Categories . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

6.6 The comparison of our approach(GAFPEnhanced), Tarantula, Ochiai

and Information Gain in terms of the average percentage of ele-

ments inspected to find all bugs. . . . . . . . . . . . . . . . . . . . 125

7.1 List of queries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

7.2 Portfoliooriginal vs. Portfolioactive: Wins and Loses . . . . . . . . . 155

7.3 The three sample cases where Portfolioactive improves the NDCG

of the search results the most . . . . . . . . . . . . . . . . . . . . . 155

7.4 Comparison of Portfoliooriginal and Portfolioactive in terms of ND-

CG for different Kf . . . . . . . . . . . . . . . . . . . . . . . . . . 156

ix



Acknowledgments

My dissertation did not come forth fully-formed, but is the result of continual sup-

port and encouragement by those in my professional life. First of all, I would like

to thank my advisors, Prof. Lo and Prof. Jiang, for their sustained guidance and

support throughout the learning, research and writing process. My growth as a re-

searcher, would have been impossible without their unceasing patience and effort.

I would like to thank my collaborators and lab mates have not only been pivotal in

helping to develop, evaluate, and publish my work, but also gave valuable sugges-

tions when I needed them most. I also would like to thank my committee members

for their commitment to see me through the doctoral process, as well as for their

excellent feedback and guidance. Finally, I would like to thank the reviewers of the

conferences/journals where I have submitted papers to for their constructive com-

ments to improve my dissertation.

x



Chapter 1

Introduction

1.1 Motivation

Millions of open source and industrial software systems have been developed and

deployed. The development of new systems can benefit from reusable knowledge

hidden in many existing systems if developers can search through existing code

and find relevant pieces of code. Furthermore, development is only a start of the

lifecycle of a project; more work needs to be done during maintenance. New fea-

tures need to be integrated and bugs would need to be fixed. Studies show that many

code changes (e.g., feature additions, bug fixes, code refactorings) are widely spread

across the whole system [108], which increases the difficulty of finding all relevant

code. This case is even worse for legacy applications, which is often referred as

“legacy crisis” [94]. Since both development and maintenance of software systems

require constant search through various code bases and documents, we can reduce

development and maintenance costs by helping developers to find and understand

the source code in which they are interested more effectively and efficiently.

In information retrieval area, there is a type of search called multimodal search,

which uses different methods to get relevant results [19]. It could use different kinds

of search, such as search by keywords, search by concept, search by example, etc.

Multimodal search engine uses different inputs of different nature and methods of

1



search to achieve more accurate results. There are also engines that leverage user

feedback and evaluation to improve search effectiveness and produce more relevant

results.

In software engineering area, users need to search code via different forms of

inputs (i.e., queries) for different purposes. During development, developers usu-

ally like to search for a piece of code implementing certain functionality for reuse

by expressing their queries in free-form texts (i.e., natural language). After deploy-

ment, users might report bugs to an issue tracking system. For these bug reports,

developers would benefit from an automated tool that can identify buggy code from

the descriptions of the symptoms of the bugs. During maintenance, developers may

notice that some pieces of code with a particular structure are potentially buggy.

A code search technique that processes SQL-like domain-specific language queries

may be the best choice as it allows users to specify the code structure with the query

language. In another scenario, developers may have found some buggy code exam-

ples and they would like to locate other similar code snippets containing the same

problem across the entire system. In this case, a code search technique that takes

as input known buggy code examples is the best choice. During testing, suppose

developers have execution traces of a suite of test cases, they might want to use

these execution traces as input to search the buggy code. Sometimes, developers

may would like to provide feedback to the code search engine to improve the search

results. From the above examples, we could see that searching by one type of input

is not sufficient. There is a need for a multimodal code search engine which allows

users to express their needs in multiple input forms and is able to process user inputs

in different forms using different search strategies.

1.2 Thesis Overview

In this dissertation, we propose a multimodal code search engine, which employs

novel techniques that allow developers to effectively find code elements of inter-

2



Code Search Engine

How to implement quick sort in 
Java

Free Text

Topics: malloc;
Nodes: func A, func B, var C, var D;
Relations: C dataDepends A, D 
dataDepends B, D isFieldOf C;
Targets: D

Dependence Query Language

Code Example
Execution Traces

User Feedback

Query                     Feedback
1. ReadFile()
2. ReadLine()
3. …                              …

Figure 1.1: Overview of Multimodal Code Search

est by processing various developers’ input forms with different search strategies.

The input forms could be free-form texts, an SQL-like domain-specific language,

code examples, execution traces, and user feedback. We present an overview of

multimodal code search in Figure 1.1.

Specifically, this dissertation makes the following contributions by proposing

code search techniques that process various kinds of input:

• Free-form texts We propose a new technique named Amalgam that integrates

information about similar bug report, historical information in the version

control system, the structural information of bug reports and source code to

locate buggy source code files from bug reports [105]. Our experimental

results show that Amalgam outperforms the state-of-the-art technique (i.e.,

BLUiR+ [92]).

• SQL-like domain-specific language We propose an SQL-like domain-

specific query language that not only allows developers to specify their search

3



targets in a specialized graph query language, but also in a free-form format

describing desired topics [106]. The query language allows users to specify

their search targets in both high level and low level. The results show that our

approach improves the state-of-the-art technique significantly.

• Code examples We propose a new technique named AutoQuery that can au-

tomatically construct dependency queries from a set of code snippets [110].

We realize AutoQuery by the following major steps: firstly, code snippets

(that are not necessarily compilable) are converted into program dependence

graphs (PDGs); secondly, a new graph mining solution is built to return com-

mon properties in the PDGs; thirdly, the common structures are converted to

dependency queries, which are used to retrieve results by using a dependence-

based code search technique.

• Execution traces Many fault localization measures have been proposed to

identify buggy program elements by analyzing failing and successful test cas-

es. However, no single fault localization measure completely outperforms

others: a measure that is more accurate in localizing some bugs in some pro-

grams is less accurate in localizing other bugs in other programs. We pro-

pose to compose existing spectrum-based fault localization measures into a

more improved measure [111]. Our experimental results demonstrate that

our compositional measure improves the existing fault localization measure

significantly.

• User feedback We present an active approach to incorporate users’ opinions

on results from a code search engine to refine result lists: as a user forms an

opinion about one result, our technique takes this opinion as feedback and

leverages it to re-order the results to make truly relevant results appear earlier

in the list [109].

The remainder of this dissertation is organized as follows: Chapter 2 discusses

4



related work. Chapter 3 elaborates the details of Amalgam. Chapter 4 elaborates

how we integrate topic models and dependence graphs to improve the search accu-

racy with Dependency Query Language (DQL). Chapter 5 presents how to address

the weaknesses of DQL-based query search by directly processing code examples

as input. Chapter 6 presents the search-based compositional fault localization tech-

nique. Chapter 7 describes how we use user feedback to improve search results.

Finally, Chapter 8 summarizes the contributions of the dissertation and presents

future work.
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Chapter 2

Literature Review

In this section, we describe closely related studies on code search, concern local-

ization, program dependence graphs, active learning for software engineering and

fault localization.

2.1 Code Search

Currently, there are many code search approaches proposed to help users find rele-

vant code. Some of them take textual information as input to search code. McMillan

et al. propose Portfolio that takes natural language descriptions as input and outputs

a list of functions or code fragments along with the corresponding call graphs [77].

McMillan et al. propose a novel approach to detect similar Java applications and

evaluate it on a large repository of Java applications [76]. Thung et al. improve

McMillan et al.’s work by utilizing software tags [103]. Chan et al. propose an

approach to help developers find usages of API methods provided only simple text

phrases. They use an efficient graph search algorithm to return an optimal con-

nected subgraph that matches the user’s query [13]. Grechanik et al. propose an

approach called Exemplar to find highly relevant software projects from large code

base [24]. Exemplar takes a description containing high level concepts written in

natural language as an input and outputs a list of applications implementing these
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concepts. Haiduc et al. propose a code search tool namely Refoqus [27] that is able

to predict the quality of a textual query for further query reformulation. Refoqus

takes a query from a developer and returns ranked results along with the quality of

the query to the developer. If the quality is low, Refoqus recommends a strategy to

reformulate the query for better results. Different from above works, we integrate

the dependency among program elements of source code with text information to

refine the code search results in Chapter 4 and Chapter 5.

There are also some code search code engines allowing users to query with

structural information. Martin et al. propose Program Query Language (PQL) [73].

This query language allows users to specify patterns specifying series of method

invocations on an object. A static analysis is first performed to locate candidate

program points. The candidate program points are later instrumented. User queries

are matched dynamically when the instrumented program is run. Wang et al. [106]

propose a semantic dependence search engine that integrates both textual informa-

tion and structural information from source code and can retrieve code fragments

based on queries that describe both topics and dependencies. S6 is a code search

engine that maps high-level queries into a subset of relevant code fragments by us-

ing a set of user-guided program transformations [86]. S6 allows a user to query

with textual information and additional low-level details, such as data types.

There are other techniques that accept a code example and return other similar

code examples [55, 57]. These techniques are often based on code clone mining [39,

42, 49, 91]. A code clone is a specialized form of code search, i.e., searching for

multiple code segments that are similar to one another. There are a few studies on

recommendation of code examples [36, 69, 100, 101, 124]. These techniques work

at the level of API invocations, while our approach also handles other program

elements (e.g., branches, variables, assignments). There are many other specialized

code search techniques: Program slicing first proposed in [114] is also a form of

code search; the focus is to find code elements that affect or are dependent on a

given variable, Maule et al. propose an approach to recommend code elements that
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are affected by a change in a database schema [75], Wang et al. propose an approach

to find strings that need to be changed to support internationalization [113], etc.

These techniques are designed to search code impacted by some particular factors

(e.g., a change in code, a given variable), while our approach allows users to search

code with particular functionalities, concepts or structure properties.

2.2 Concern Localization

Concern localization refers to the process of linking textual descriptions to corre-

sponding source code files. Concern localization may also be referred to as feature

location [12, 116], concept assignment, bug localization [16, 125], or trace recov-

ery [47, 117] in different contexts.

Antoniol et al. [5] apply both a probabilistic and a vector space model to recover

links between source code units and free text documents (such as manual pages or

requirements). Marcus and Maletic [71] use Latent Semantic Indexing (LSI) for

a similar purpose. The underlying assumption is that programmers use meaning-

ful words for code units, and these words capture application-specific knowledge.

Therefore, IR techniques can help to link concerns expressed in natural language

with code units. Different from their work, we combine the information from source

code, historical similar bug report, and version control system to perform more ac-

curate bug localization in Chapter3.

A few hybrid approaches that combine information retrieval (IR) techniques

with dynamic/static program analysis or other techniques have been proposed. For

example, Zhao et al. [123] present a two-phase approach to feature location, which

first applies an IR technique to identify an initial set of feature-code-units links,

and then enriches the initial links by exploring the program call graph. Poshyvanyk

and Marcus [83] use Formal Concept Analysis (FCA) to group LSI-based feature

location results according to common topics. In Chapter 7, we leverage active learn-

ing to dynamically refine the results based on users’ feedback to improve existing
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approaches.

2.3 Program Dependence Graph, Its Construction

and Usages

Program dependence graphs was proposed by Horwitz and Reps [37]. Data and

control dependencies can be detected more accurately with better pointer analysis

and string analysis algorithms. Many studies propose new algorithms for point-

er analysis [29, 54] and string analysis [21]. In Chapter 5, we generate program

dependence graphs from code fragments. We address the challenge of generating

PDGs from non-compilable code fragments.

PDGs have been utilized by many past studies. Komondoor and Horwitz use

PDGs for detecting duplicated code, aka. clones [53]. Baah et al. build a prob-

abilistic PDG and use it to localize bugs in programs given a set of failing and

correct executions [10]. In this work, we focus on the usage of PDGs for automatic

construction of queries for dependence-based code search.

2.4 Active Learning for Software Engineering

Several existing studies in software engineering also employ active learning. Li et

al. use active and semi-supervised learning for defect prediction [58]. They address

the problem of the lack of historical defect data for software modules. They propose

an active sample selection method to pick the most helpful modules to be analyzed

for defects. A semi-supervised learner is then used to learn a classification model

from the selected small sample of defect data. Lucia et al. propose an approach that

adds an active learning layer on top of existing clone-based bug detection tools to

increase the true positive rate [66]. They conduct their experiment on three large

programs (Linux Kernel, Eclipse, and ArgoUML) and demonstrate significant im-

provements. Hayes et al. use the standard Rocchio algorithm to improve the quality
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of requirement tracing techniques which infer links between two textual documents,

e.g., high level to low level requirements with relevance feedback [31].

2.5 Fault Localization

Recently, there have been many studies on fault localization and automated debug-

ging. There are even different ways to categorize these studies. Based on the data

used in the approaches, fault localization techniques can be classified into spectrum-

based and model-based.

Spectrum-based fault localization techniques always use program spectra, which

are program traces or abstractions of program traces that represent program runtime

behaviors in certain ways, to correlate program elements (e.g., statements, basic

blocks, functions, and components) with program failures, often with the help of

statistical analyses.

Many spectrum-based fault localization techniques [15, 45, 60, 65, 87, 120]

take as inputs two sets of spectra, one for successful executions and the other for

failed executions, and report candidate locations where root causes of program fail-

ures (i.e., faults) may reside. Given a failed program spectrum and a set of cor-

rect spectra, Renieris and Reiss present a fault localization tool WHITHER [87]

that compares the failed execution to the nearest correct execution and reports the

most suspicious locations in the program. Zeller and Hildebrandt propose a tech-

nique called Delta Debugging that can simplify and isolate failure-inducing inputs

in a binary-search-like fashion [121]. Zeller applies Delta Debugging to search for

the minimum state differences between a failed execution and a successful execu-

tion that may cause the failure [120]. Cleve and Zeller also extended the work

by incorporating a search capability for cause transitions, namely locations in the

program where new relevant variables become a failure cause, in their tool called

AskIgor [15]. Liblit et al. propose a technique to search for predicates whose true

evaluation correlates with failures [60]. Chao et al. extend the work by incorpo-
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rating information on the outcomes of multiple predicate evaluations in a program

run in their tool called SOBER [65]. Artzi et al. propose a directed test generation

technique to provide enough test cases for fault localization techniques [7]. They

evaluate their approach by using Ochiai. Artzi et al. also extend Tarantula for de-

bugging web applications [8]. Their proposed approach employs a mapping that

maps parts of an output to parts of the program generating it. This mapping is very

effective for HTML pages since they are rich structures. However, it is unlikely to

be effective for a program that produces simple structures or even a single number

– the code responsible for producing this output might be the entire program.

Other spectrum-based techniques [25, 41, 98, 122] only use failed executions as

the input and systematically alter the program structure or program runtime states to

locate faults. Zhang et al. [122] search for faulty program predicates by switching

the states of program predicates at runtime. Sterling and Olsson use the concept of

program chipping [98] to automatically remove parts of a program so that the part

that contributes to the failure may become more apparent. While their tool, Chip-

perJ, works on syntax trees for Java programs, Gupta et al. [25] work on program

dependency graphs and use the intersection of forward and backward program s-

lices to reduce the sizes of failure-relevant code for further inspection. Jeffrey et al.

use a value profile based approach to rank program statements according to their

likelihood of being faulty [41]. As these techniques need to alter program states,

in general they are more heavyweight than many of those presented in the previous

paragraph.

We summarize the main differences between our works and existing works in

terms of five input forms as follows: 1. In terms of free-form texts, we are the first to

integrate information about similar bug report, historical information in the version

control system, the structural information of bug reports and source code together to

perform bug localization, while the existing works only involve at most two kinds

of information. 2. In terms of SQL-like domain-specific language, we integrate

topic mode and dependency among program elements to search code, while the
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past works use topic model or dependency among program elements separately. 3.

In terms of code examples, compared with the existing works which require users

to format query in SQL-like domain-specific language manually, we take input as

code examples to construct SQL-like domain-specific language automatically. 4.

In terms of execution traces, different from the past works which use individual

measure or combine measure heuristically, we use genetic algorithm to get a near

optimal combination of 22 fault localization measures to perform fault localization.

5. In terms of user feedback, we are the first to make use of user feedback to refine

code search results with active learning.
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Chapter 3

Version History, Similar Report, and

Structure: Putting Them Together

for Improved Bug Localization

3.1 Introduction

Software systems are often plagued with bugs. To improve the reliability of sys-

tems, developers often allow users to submit bug reports to bug tracking systems.

Unfortunately the number of these reports is often too large for developers to handle

manually in a timely manner. Anvik et al. cited a Mozilla triager that mentioned

“Everyday, almost 300 bugs appear that need triaging. This is far too much for

Mozilla programmers to handle” [6]. One of the most time consuming task to re-

solve a bug report is to find the buggy files that are responsible for a reported bug.

A system may contains thousands or more files and often only one or a few of these

files need to be changed to fix a bug. For example, Lucia et al. analyzed 374 bugs

from Rhino, AspectJ and Lucene and found that 84-93% of the bugs reside in 1-2

source code files [68]. Thus, localizing the buggy files is like finding one or two

needles in a big haystack.

To address the above mentioned challenge a number of studies have proposed
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ways to identify buggy program files given a bug report. Many of these approaches

are information retrieval-based and they work by computing similarities between

a reported bug and the source code files [85, 92, 97, 125]. The source code files

are then ranked based on their similarities to a reported bug. In this work, we are

particularly interested in three recent approaches, we highlight each of them below.

Sisman and Kak leverage version history data for bug localization [97]. Their

approach makes use of history data to compute the probability that a file is buggy.

They also compute a similarity score between the file and a bug report. The prob-

ability and the similarity scores are then added up, and the resulting score is used

to rank source code files (see [97]). They propose various variants of similarity and

the best performing one is named TFIDF-DHbPd.

Zhou et al. leverage similarities among bug reports for bug localization [125].

Given a new bug report, their approach, named BugLocator, finds files that are fixed

to resolve similar older bug reports. Based on the similarity of the new and older

bug reports, and the number of files that are fixed in each of the older bug reports,

their proposed approach computes a bugginess score (referred to as SimiScore) for

each source code file. They also compute a similarity score between a file and a bug

report (referred to as rVSMScore). Weighted SimiScore and rVSMScore scores are

then added, and the resulting score is used to rank source code files.

To measure similarity between a bug report and a file, Saha et al. propose an

approach named BLUiR which leverages the structure of a bug report and a source

code file [92]. A bug report has many fields (description and summary) and a file

has many parts (class names, method names, variable names, and comments). They

thus transform a bug report and a file into structured documents and employ struc-

tured information retrieval. In structured information retrieval, the textual contents

of each field in a bug report and each part of a source code file are considered sepa-

rately. Each field of a bug report is compared to each part of a source code file, and

a similarity score is computed for each comparison. The sum of these scores is then

used to rank source code files. Saha et al. also creates an extension of BLUiR, we
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Table 3.1: Comparison of Our Approach to State-of-The-Art Bug Localization
Techniques

Approach Version
History

Similar
Report

Structure

TFIDF-DHbPd [97] Yes No No

BugLocator [125] No Yes No

BLUiR [92] No No Yes

BLUiR+ [92] No Yes Yes

Our Approach Yes Yes Yes

refer to as BLUiR+, which integrates similar report information into BLUiR, in the

same manner as BugLocator integrates SimiScore into rVSMScore.

The above three approaches presented leverage different sources of information

– see Table 3.1. Sisman and Kak’s approach uses version history but neither related

reports nor structure. Zhou et al.’s approach uses related reports but neither version

history nor structure. Saha et al. approach uses both related reports and structure

(i.e., for BLUiR+) but does not use version history. Thus, none of these approach-

es combine version history, related reports, and structure together. Based on this

observation, in this work, we combine these three together, and investigate if the

resulting approach works better. To do so, we combine a bug prediction technique

used in Google, with the works of Zhou et al. and Saha et al. The bug prediction

technique computes the probability of a file to be buggy based on historical data in

a version control system. We then have a solution that puts together version history,

similar report, and structure. We name our approach AmaLgam, which stands for

Automated Localization of Bug using Various Information. The way AmaLgam

combines historical information is different from that of Sisman and Kak in the

following respects:

1. Our approach uses a well-tested bug prediction formula that is used in Google

and it takes into consideration the effect of change burst [56].
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2. Sisman and Kak consider the complete version history to compute a proba-

bility. Our approach only considers very recent version history and totally

discards historical information that are more than k days away from the time

a new bug report is submitted.

3. Sisman and Kak simply sums up the probability of a file to be buggy and the

similarity of a bug report to the file. Our approach assigns weights that govern

the contribution of the probability of a file to be buggy (computed by the bug

prediction technique) and the similarity of a bug report to a file (computed by

integrating BugLocator and BLUiR).

The contributions in this chapter are as follows:

1. We are the first to put together version history, similar reports and structure

for bug localization. Past bug localization studies have only used one or two

of these information sources. We have evaluated our approach on more than

3,000 bug reports from four open source projects: AspectJ, Eclipse, SWT,

and ZXing. Our experiments show that we can achieve an MAP of 0.33, 0.35,

0.62, and 0.41 for each of the four projects, respectively.

2. The MAP scores of our proposed approach improve on those of Saha et al.

(i.e., BLUiR+) that put together similar reports and structure by an average

of 12.5%. The MAP scores of our proposed approach improve on those of

BLUiR and Zhou et al. (BugLocator) by an average of 16.4% and 24.4%,

respectively. Comparing with the reported results of the history-aware bug

localization solution of Sisman and Kak (TFIDF-DHbPd), which was only

evaluated on AspectJ bug reports from the iBugs dataset, our approach im-

proves the MAP score by 46.1%.

The structure of the remainder of the chapter is as follows. In Section 3.2, we

first present preliminary information on bug reports and a motivating example. We

elaborate the details of our approach in Section 3.3. We describe our experimental
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setup and results in Section 3.4. We finally conclude and mention future work in

Section 3.5.

3.2 Preliminaries and Example

In this section, we first describe some preliminary information on bug reports. We

then outline some text pre-processing steps that are applied to the bug reports. Fi-

nally, we show an example to illustrate why it is useful to consider version history,

similar report, and structure.

3.2.1 Bug Reports

A bug report is a document submitted by users to describe an error that they expe-

rience when they use a system. A bug report contains a number of fields; we are

particularly interested in four of them, namely bug identifier (id), the date a bug re-

port was submitted (open date), the summary of the error (summary), and the more

detailed description of the error (description).

We present a bug report from Eclipse in Figure 3.1, The bug report can be down-

loaded from Eclipse’s Bugzilla1. The identifier of this bug report is 76138 and it

describes a problem with the ant editor which does not follow a display setting. The

bug id provides a reference number that can be used to identify commits in version

control systems that fix it, c.f. [125]. The open date helps us to identify other bug

reports that are submitted a number of days prior to bug 76138. The summary and

description fields help us to understand the error that the user experienced.

A bug localization tool takes as input a bug report and returns the potentially

buggy files. The corresponding buggy Java files for the bug report shown in Fig-

ure 3.1, which are identified by checking the corresponding bug fixing commits, are

AntEditor.java and AntEditorSourceViewerConfiguration.java.

1https://bugs.eclipse.org/bugs/show_bug.cgi?id=76138
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Bug ID 76138 

Open date 2004-10-12 21:53:00 

Summary Ant editor not following tab/space setting on shift 

right 

Description This is from 3.1 M2.  I have Ant->Editor->Display tab 

width set to 2, insert spaces for tab when typing" 

checked. I also have Ant->Editor->Formatter->Tab size 

set to 2, and "Use tab character instead of spaces 

_unchecked_. 

Now when I open a build.xml and try to do some 

indentation, everything works fine according to the 

above settings, except when I highlight a block and 

press tab to indent it.  It's the tab character instead 

of 2 spaces that's inserted in this case. 

Fixed Files org.eclipse.ant.internal.ui.editor.AntEditor.java 

org.eclipse.ant.internal.ui.editor.AntEditorSourceView

erConfiguration.java 

 

   

  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1: An Eclipse’s Bug Report and the Buggy Source Code Files Correspond-
ing to it

3.2.2 Text Pre-processing

An information-retrieval based bug localization technique usually performs three

pre-processing steps: text normalization, stopword removal, and stemming. The

goal of the text pre-processing steps is to break a bug report or a source code file

into terms that can then be analyzed by an information retrieval technique. In the

pre-processing step, some compound words (e.g., program identifiers) are broken

into parts, and some related words are mapped to the same term. We briefly describe

these three pre-processing steps below.

First, text normalization is performed which involves the removal of punctu-

ation marks, tokenization (i.e., extraction of words from paragraphs or identifiers

from source code), and identifier splitting. During this step, when a source code is

processed, it is converted into an Abstract Syntax Tree (AST) and using this tree,

identifiers are identified. These identifiers are split into its constituent words follow-

ing Camel Case splitting [5]. For example the identifier “getMethodName” is split

into “get”, “Method”, and “name”. In this study, both the split words and the full

identifier name are kept. For example, for the class name “AntEditorSourceView-

erConfiguration”, which is one of the buggy files corresponding to the bug report
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shown in Figure 3.1, we convert it to 6 words: “ant”, “editor”, “source”, “view-

er”, “configuration” and the full identifier name “AntEditorSourceViewerConfigu-

ration”.

Second, we remove stopwords such as “on”, “the”, “are”, “is”, and so on. These

stopwords carry little meaning. Finally, we perform stemming which reduces in-

flected or derived words into a common root form. For example the word “reading”

and “reads” are reduced to the root form “read”. By doing this, similar words are

represented using the same term. We use the standard Porter Stemmer [82] to per-

form this stemming step.2

3.2.3 Motivating Example

A traditional IR-based bug localization approach usually first performs text pre-

precessing on a query (a bug report) and the documents in a corpus (source code

files). Then, a similarity score between the query and each of the documents are

computed based on a particular information retrieval technique (e.g., TFIDF, LDA,

LSI, etc), e.g., [85]. From Figure 3.1, we note that the buggy source code file names

share a number of common words with the summary and description of the bug re-

port, i.e., “ant” and “editor”. Based on these common words, a traditional IR-based

bug localization approach would try to link the bug report with the source code files.

In this section, we highlight how version history, similar reports, and structure can

be used to improve the accuracy of traditional IR-based bug localization techniques.

Version History. There are lots of historical data of changes to source code files

that are stored in a version control system during program evolution. This histor-

ical data can be used to improve bug localization performance. Kim et al. found

that bugs happen in bursts, and not in isolation [50]. The files responsible for a

bug recently are more likely to be responsible for other bugs in the near future.

Figure 3.2 presents the commit logs of Eclipse before bug 76138 occurred. We

2http://tartarus.org/martin/PorterStemmer/
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could see that the class files “AntEditor.java” and “AntEditorSourceViewerConfigu-

ration.java”, which were responsible for bug 76138, were also responsible for other

bugs that happen prior to the reporting of bug 76138 (they are highlighted in bold).

‘AntEditor.java” is fixed just one day prior to the reporting of bug 76138 and “An-

tEditorSourceViewerConfiguration.java” is fixed just 7 days prior to the reporting

of bug 76138. Thus, we that historical data can be used to better locate bug.
 

 

--------------------- 

hash:3532306 

author:darins 

commit_date:2004-10-12 04:28:35 +0000  

message:Bug 76051 - Navigation to property resource or file 

 

M ant/org.eclipse.ant.ui/Ant 

Editor/org/eclipse/ant/internal/ui/editor/AntEditor.java 

--------------------- 

hash:3d1a68b 

author:darins 

commit_date:2004-10-07 01:02:22 +0000  

message:Bug 50583 - Patternsets, path and fileset hovering (F2) 

 

M ant/org.eclipse.ant.ui/Ant 

Editor/org/eclipse/ant/internal/ui/editor/AntEditorSourceViewerCon

figuration.java 

A ant/org.eclipse.ant.ui/Ant 

Editor/org/eclipse/ant/internal/ui/editor/text/AntInformationProvider

.java 

    

Figure 3.2: Recent Commit Logs Prior to the Reporting of Bug Report 76138

Similar Reports. User often submit many similar bug reports that correspond to

different errors that affect the same buggy program elements. For example, Fig-

ure 3.3 shows an older report with identifier 503033, which was reported 9 months

before bug report 76138. Note that this report shares the common words “ant” and

“editor” with bug report 76138. Bug report 50303 was fixed on March 17, 2004

and was re-fixed on March 18, 2004 and “AntEditor.java” was modified on both

times. By analyzing bug report 50303, we can get a hint on the files that need to be

changed to fix bug 76138. From the example, we could see that similar reports can

be used to locate bugs.

3https://bugs.eclipse.org/bugs/show_bug.cgi?id=50303
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Bug ID 50303 

Open date 2004-01-20 20:55 

Summary Ant Editor outline "Link with Editor" 

Description Similar to the Java Editor it would be a nice 

enhancement to have a "Link with  

Editor" toggle button for the Ant Editor outline page. 

FixedFiles org.eclipse.ant.internal.ui.editor.AntEditor.java 

7 other files 

 

   

  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

--------------------- 

hash:3532306 

author:darins 

commit_date:2004-10-12 04:28:35 +0000  

message:Bug 76051 - Navigation to property resource or file 

 

M ant/org.eclipse.ant.ui/Ant 

Figure 3.3: An Older Eclipse’s Bug Report and the Buggy Source Code Files Cor-
responding to It

Structure. Bug reports and source code files have structure. Bug reports have sev-

eral fields including the summary and the description. Source code files can be

split into class names, method names, variable names, and comments. This struc-

tural information can be leveraged for bug localization. Traditional IR-based bug

localization approaches compute the similarity between a bug report and the entire

contents of a source code file (which contains a class name, many variable names,

and many comments). For localizing the bug report in Figure 3.3, the class names

contain the most important terms. Unfortunately, the impact of the terms “ant”

and “editor” in the class names would be weakened by other tokens, which would

make the performance poor. Structural information could be used to overcome this

problem by computing the similarities of a query against different fields (e.g., class,

method, variable, comment) in a source code file separately and summing up those

similarities. In this way, the tokens “ant” and “editor” would have stronger impact

to the overall similarity. Thus, we conjecture that structure can be used to locate

bugs.

3.3 Approach

In this section, we first describe our overall framework named AmaLgam. We then

present each of the four main components of AmaLgam.
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3.3.1 Overall Framework of AmaLgam

Figure 3.4 presents the overall framework of AmaLgam. AmaLgam takes as input a

bug report to be localized (new bug report), a set of source code files of the system

for which the bug report is submitted (source code files), a history of commits made

to the system as stored in a version control system (version history data), and a set

of older bug reports stored in a bug tracking system (bug repository).

The inputs are processed by the three components of AmaLgam namely: ver-

sion history component, similar report component, and structure component. The

version history component makes use of version history information to rank files.

The similar report component makes use of older reports in bug repository to rank

files. The structure component makes use of the structure of bug reports and source

code files to rank files. The three components each output a suspiciousness score

for each source code file. These three sets of suspiciousness scores are then input to

the composer component which produces the final ranked files.

1:Version History 
Component

Suspiciousness 

2:Similar Report
Component

Suspiciousness 

Source Code 
Files

Version History 
Data

New Bug 
Report

3:Structure 
Component

Suspiciousness 
Bug Repository

Suspiciousness 
Scores

Ranked Files
Suspiciousness 

Scores
4:Composer
Component

Suspiciousness 
Scores

Figure 3.4: The Overall Framework of AmaLgam
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3.3.2 Version History Component

For the version history component, we make use of studies on bug prediction whose

goal is to predict which files are likely to be buggy in the future, e.g., [50, 84].

Kim et al. propose BugCache which predicts future bugs by maintaining a rela-

tively short list of most fault-prone program entities [50]. Rahman et al. propose

a cheaper algorithm which only sorts files based on the number of bug fixing com-

mits that touch each of them [84]. Rahman et al. show that this simple and cheap

approach achieves almost the same performance as BugCache. Google’s develop-

ers have adapted the simple algorithm proposed by Rahman et al to predict bugs on

their large systems [56]. The resulting algorithm is simple and fast. Thus, we decide

to adapt this well-tested bug prediction algorithm of Google as our version histo-

ry component. We briefly describe how we adapt this algorithm in the following

paragraphs.

The algorithm takes as input commit logs and outputs a list of files with their

suspiciousness scores. It first identifies relevant bug-fixing commits. The relevant

bug fixing commits are identified by following two rules:

1. The commit log must match the following regular expression regex: (. ∗

fix.∗)|(. ∗ bug.∗). This regular expression matches that all commit logs con-

taining the word “fix” or “bug”.

2. The commit must be made in the past k days

We modify Google’s approach by including the second requirement [56]. Our

experience shows that including older bug-fixing commits does not affect perfor-

mance much and even can slightly decrease performance. Also, it is computational-

ly cheaper to only consider recent commits. The parameter k can be set empirically.

By default, we set k to 15. The algorithm analyzes these relevant commits and

assigns a suspiciousness score to each source file f using the following equation:
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scoreH(f, k, R) =
∑

c∈R∧f∈c

1

1 + e12(1−((k−tc)/k))
(3.1)

In the above equation, R refers to the set of relevant commits and tc is the number

of days that has elapsed between a commit c and the input bug report. The output

of this algorithm is a set of suspiciousness scores, one for each file. We denote

the suspiciousness score of file f assigned by the version history component as

SuspH(f).

Example: Consider the input bug report in Figure 3.1 and the two commit logs in

Figure 3.2 with identifiers 3532306 and 3d1a68b. For simplicity sake, let us as-

sume that there are no other commit logs. We illustrate how Equation 3.1 is used to

compute the suspiciousness scores of the files AntEditor.java and AntEditorSource-

ViewerConfiguration.java. As both commits contain the word “bug” and they are

committed within 15 days before the bug report 76138 was submitted (i.e., Oct 12,

2004, at 21:53:00), they are considered to be relevant bug fixing commits. The val-

ue of (k-tc)/k for commit 3532306 is 0.95 (since the commit was made around 17

hours, i.e., 0.7 day, before the time bug report 76138 was submitted). Thus, the

suspiciousness score for AntEditor.java is 1.82. The suspiciousness score of An-

tEditorSourceViewerConfiguration.java can be computed in a similar way and it is

0.009.

3.3.3 Similar Report Component

For our similar report component, we adapt BugLocator [125], in particular the

algorithm that computes SimiRank scores. We describe briefly how we use this

algorithm in the following paragraphs.

The algorithm takes in an input bug report and older bug reports that have been

fixed in the bug repository. It then measures the similarity of the input bug report

to the older fixed bug reports. Based on the similarity scores of the bug reports

and the number of files that are modified to fix each bug report, we compute a
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suspiciousness score for each source code file.

To measure the similarity of two bug reports, the following steps are followed.

First, each bug report is represented by their constituent pre-processed terms. Con-

sidering the universe of all terms as {t1, . . . , tn}, we can compute for a bug report

b, a vector
−→
b :

−→
b = tfb(t1)idf(t1), tfb(t2)idf(t2), . . . , tfd(tn)idf(tn)

In the above formula, tfb(ti) corresponds to the number of times term ti appears

in bug report b, idf(ti) corresponds to the reciprocal of the number of documents

that contain term ti. Given vector representations of two bug reports
−→
b1 and

−→
b2,

their similarity can be measured by computing the standard cosine similarity [11]

of their vector representations.

To compute a suspiciousness score for source code file f , we use the following

equation:

scoreR(f, b, B) =
∑

b′∈{b′|b′∈B∧f∈b′.F ix}

sim(b, b′)

|b′.F ix|
(3.2)

In the above equation, b is the input bug report, B is the set of older fixed bug

reports, sim(b, b′) is the similarity of bug reports b and b′, b′.F ix is the set of files

that are modified to fix bug report b′, and |b′.F ix| is the size of set b′.F ix. The

output of this algorithm is a set of suspiciousness scores, one for each file. In this

component, we do not enforce a similarity threshold following what Zhou et al. did

in their work [125]. We take all older bug reports to compute the suspiciousness

score. We denote the suspiciousness score of file f assigned by the similar report

component as SuspR(f).

Example: Consider the input bug report shown in Figure 3.1 and the older bug

report in Figure 3.3. For simplicity sake, let us assume that there are no other bug

reports in the bug repository. We would like to illustrate how Equation 3.2 is used

25



to compute the suspiciousness scores of files AntEditor.java. Let us assume for

simplicity sake the similarity of the two bug reports is 0.15. The suspiciousness

score of AntEditor.java iss computed as: 0.15/8 = 0.01875.

3.3.4 Structure Component

For the structure component we use BLUiR [92] which performs structured retrieval

for bug localization. For completeness, we briefly describe BLUiR in the following

paragraphs.

BLUiR breaks a bug report into 2 parts: summary and description. It breaks

a source code file into 4 parts: class names, method names, variable names, and

comments. Each of these parts can be converted into a vector following a procedure

similar to the one described in Section 3.3.3. The suspiciousness score of a source

code file f given an input bug report b can then be computed as:

scoreS(f, b) =
∑
fp∈f

∑
bp∈b

sim(fp, bp)

where fp is a part of file f , bp is a field in bug report b, and sim(fp, bp) is the

cosine similarity of the vector representations of fp and bp. The output of the struc-

ture component is a set of suspiciousness scores, one for each file. We denote the

suspiciousness score of the file f assigned by the structure component as SuspS(f).

Example: Consider a bug report and a file shown in Figure 3.5. After pre-

processing, the terms in the summary field of the bug report are: “bug”, “average”,

and “function”. The terms in the description field of the bug report are: “us”, “aver-

age”, “function”, “measure”, “class”, “comput”, “got”, “wrong”, and “result”. The

term in the class name of the file is “measure”. The term in the method name of

the file is “average”. The terms in the variable names of the file are “list”, “sum”,

and “d”. The set of terms in the comments of the file is Ø. Based on these two

fields of the bug report and these four parts of the source code file, we can compute

a suspiciousness score which would be a sum of 6 similarity scores.
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Bug summary:  bug in average function 

 

Bug description: When I used the average function in measure class 

to compute average, I got a wrong result. 

 

Fixed file: 

public class Measure{ 

 static double average(double[] lists){ 

  double sum = 0; 

  for(double d : lists) 

   sum += d; 

  return sum; 

 } 

} 

 

Figure 3.5: Example Bug Report and Source Code File

3.3.5 Composer Component

This component processes the 3 sets of suspiciousness scores output by the first 3

components of AmaLgam and computes a set of final suspiciousness scores. The

composer component first combines the scores output by the structure component

and the similar report component for a file f , as follows:

SuspS,R(f) = (1− a)× SuspS(f) + a× SuspR(f)

The value of a can be empirically determined. Saha et al. have also tried to

combine standard BLUiR with similar report data and they set the value of a to be

0.2. We use the same value of a. The impact of various a on the effectiveness of

incorporating similar report information has been shown in Zhou et al.’ work [125].

Based on SuspSR we compute the final suspiciousness score of f as follows:

SuspS,R,H(f) =

(1− b)× SuspS,R(f) + b× SuspH(f), ifSuspS,R(f) > 0

0, otherwise
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In the above equation, we set the final suspiciousness score to 0, if SuspS,R(f)

is 0. We do this since we observe that the likelihood of a file to be relevant to

a bug report is very small if SuspS,R(f) is 0. The value of b can be empirically

determined. By default, we set this value to 0.3.

In the end, the composer component sorts all source code files based on their

final suspiciousness scores and this ranked list of files is the output of AmaLgam.

Example: Suppose, the SuspS,R scores of 3 files are {f1 = 0.2, f2 = 0.1, f3 = 0

} and the SuspH scores of the 3 files are {f1 = 0.1, f2 = 0.5, f3 = 0.9 }. Since

the SuspS,R score of f3 is 0, then the final suspiciousness score of f3 is still 0 even

though its SuspH is large. Thus, the final suspiciousness scores are f1 = 0.17,

f2 = 0.22, f3 = 0.

3.4 Experiments

In this section, we first describe the dataset that we use to evaluate our approach.

Next, we describe our evaluation metrics, followed by our research questions. Fi-

nally, we describe our experimental results which answer the research questions.

3.4.1 Dataset

We use the same dataset used by Zhou et al. and Saha et al. to evaluate BugLocator

and BLUiR respectively [92, 125]. This dataset contains a total of 3,379 bug reports

from four popular open source projects, AspectJ, Eclipse, SWT, and ZXing. For

each bug report, the dataset also provides information on files that were modified

to fix the bug. The AspectJ bug reports originate from the iBugs benchmark [16]

which was also used by Sisman and Kak to evaluate their approach [97]. Table 3.2

describes the dataset in more detail. For our version history component, we collect

commit logs from the Git repositories of those four projects.
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Table 3.2: Dataset Details
Project Description Period #Fixed Bugs #Source Files

AspectJ Aspect-oriented extension
of Java

07/2002-10/2010 286 6485

Eclipse Open source IDE 10/2004-03/2011 3075 12863

SWT Open source widget toolk-
it

10/2004-04/2010 98 484

ZXing Barcode image processing
library for Android plat-
form

03/2010-09/2010 20 391

3.4.2 Evaluation Metrics

To measure the effectiveness of the proposed bug localization approach, we use the

following metrics:

• Top-N Rank (Hit@N): This metric calculates the number of bug reports

where one of the buggy files appears in the top N (i.e., 1, 5, or 10) ranked

files. Given a bug report, if at least one of its buggy files is in the top N re-

sults, we consider that the bug is successfully located. The higher the value

of this metric is, the better the performance of an approach is.

• Mean Average Precision (MAP): MAP is the most commonly used IR met-

ric to evaluate ranking approaches. It takes the ranks of all buggy files into

consideration, instead of only the first one. MAP is computed by taking the

mean of the average precision scores across all queries. The average precision

of a single query is computed as:

AP =
M∑
k=1

P (k)× pos(k)

number of positive instances
,

where k is a rank in the returned ranked files, M is the number of ranked files

and pos(k) indicates whether the kth file is a buggy file or not. P (k) is the

precision at a given top k files and is computed as follows:

P (k) =
#buggy files

k
.
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• Mean Reciprocal Rank (MRR): The reciprocal rank for a query is the re-

ciprocal of the position of the first buggy file in the returned ranked files.

MRR is the mean of the reciprocal ranks over a set of queries Q and it can be

computed by following equation:

MRR =
1

|Q|

|Q|∑
i=1

1

ranki

where ranki is the position of the first buggy file in the returned ranked files

for the first query in Q.

3.4.3 Research Questions

Research Question 1 How effective is AmaLgam for bug localization?

To answer this research question, we apply AmaLgam to the four sets of bug re-

ports in our dataset. We then evaluate the returned ranked lists and compute Hit@N,

MAP, and MRR to characterize the effectiveness of AmaLgam.

Research Question 2 Does AmaLgam outperform other bug localization tech-

niques?

AmaLgam combines 3 state-of-the-art approaches: TFIDF-DHbPd by Sisman

and Kak [97], BugLocator by Zhou et al. [125], and BLUiR by Saha et al. [92].

TFIDF-DHbPd is the best performing variant of the approach proposed by Sisman

and Kak. Saha et al. also tried to compose similar report information in the same

way as Zhou et al. We refer to this variant of BLUiR as BLUiR+. We would

like to investigate whether and to what extent AmaLgam outperforms these existing

state-of-the-art approaches. We compare the results of AmaLgam with the results

reported in past papers [92, 97, 125].

Research Question 3 How does the performance of AmaLgam vary for various

settings of parameters k and b?

AmaLgam accepts 3 parameters: k, a, and b. The setting of parameter a follows
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the setting used by Saha et al. [92] which actually follows the setting used by Zhou

et al. [125]. In this research question, we would like to investigate the effect of

varying the other two parameters of k and b. k is a parameter of the version history

component which determines the number of days for which we cache the history. b

is a parameter of the composer component that determines the contribution of the

history-based suspiciousness score (SuspH).

3.4.4 Experiment Results

The following subsections describe our experimental results which answer the three

research questions.

RQ1: Effectiveness of AmaLgam

To answer the RQ1, we measure the effectiveness of AmaLgam in terms of the met-

rics we listed in Section 3.4.2. Table 3.3 presents the results for all programs. For

127 (44.4%) AspectJ bug reports, AmaLgam successfully locates a buggy source

code file in the top 1 ranked file. For 187 (65.4%) AspectJ bugs, at least one buggy

source code file is among the top 5 ranked files. For 209 (73.1%) AspectJ bugs, at

least one buggy source code file is among the top 10 ranked files. In terms of MAP

and MRR, AmaLgam achieves a score of 0.33 and 0.45, respectively.

For Eclipse, 1060 (34.5%) and 1775 (57.7%) bugs could be localized by in-

specting top 1 and 5 ranked files, respectively. Also, 2059 (67.0%) bugs could be

localized when only the top 10 ranked files are inspected. The scores of MAP and

MRR that AmaLgam gets for Eclipse are 0.35 and 0.45, respectively. For SWT, 61

(62.2%) bugs have a buggy file at the top 1 ranked file. Also, 80 (81.6%) and 88

(89.8%) bugs are successfully localized when only the top 5 and 10 ranked files are

inspected, respectively. AmaLgam gets MAP and MRR scores of 0.62 and 0.71, re-

spectively. For ZXing, AmaLgam is able to localize 8 (40.0%), 13 (65.0%), and 14

(70%) bugs when only the top 1, 5 and 10 ranked files are inspected, respectively. In
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Table 3.3: Comparison among AmaLgam, TFIDF-DHbPd, BugLocator, BLUiR,
and BLUiR+

Project Approach Hit@1 Hit@5 Hit@10 MAP MRR

AspectJ

AmaLgam 127 (44.4%) 187 (65.4%) 209 (73.1%) 0.33 0.54

TFIDF-DHbPd N/A N/A N/A 0.23 N/A

BugLocator 88 (30.8%) 146 (50.1%) 170 (59.4%) 0.22 0.41

BLUiR 92 (32.2%) 146 (51.0%) 173 (60.5%) 0.24 0.41

BLUiR+ 97 (33.9%) 150 (52.4%) 176 (61.5%) 0.25 0.43

Eclipse

AmaLgam 1060 (34.5%) 1775 (57.7%) 2059 (67.0%) 0.35 0.45

BugLocator 896 (29.1%) 1653 (53.8%) 1925 (62.6%) 0.30 0.41

BLUiR 952 (31.0%) 1636 (53.2%) 1933 (62.9%) 0.32 0.42

BLUiR+ 1013 (32.9%) 1729 (56.2%) 2010 (65.4%) 0.33 0.44

SWT

AmaLgam 61 (62.2%) 80 (81.6%) 88 (89.8%) 0.62 0.71

BugLocator 39 (39.8%) 66 (67.3%) 81 (62.6%) 0.45 0.53

BLUiR 54 (55.1%) 75 (76.5%) 85 (86.7%) 0.56 0.65

BLUiR+ 55 (56.1%) 75 (76.5%) 86 (87.8%) 0.58 0.66

ZXing

AmaLgam 8 (40.0%) 13 (65.0%) 14 (70.0%) 0.41 0.51

BugLocator 8 (40.0%) 12 (60.0%) 14 (70.0%) 0.44 0.50

BLUiR 8 (40.0%) 13 (65.0%) 14 (70.0%) 0.38 0.49

BLUiR+ 8 (40.0%) 13 (65.0%) 14 (70.0%) 0.39 0.49
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terms of MAP and MRR, AmaLgam achieves a score of 0.41 and 0.51, respectively.

We also explore the results manually. In most cases, amalgam performs better

than BLUIR+, which demonstrates that our version history component could help to

locate the buggy files at most cases. However, in few case, version history compo-

nent could bring some noise to the final results. For example, when locating the bug-

gy files for bug report 36234 in dataset AspectJ, BlUIR+ could find the buggy file

org.aspectj.tools.ajc.Main.java after inspecting 4 results. However AmaLgam needs

to inspect 6 results to locate the buggy file. This is because version history com-

ponent scores two files org.aspectj.ajdt.internal.core.builder.AjBuildConfig.java and

org.aspectj.ajdt.internal.core.builder.AjState.java with high scores as they were very

frequently modified in the past 15 days before the bug report 36234 was submitted,

even they were not related to bug 36234.

RQ2: AmaLgam VS. Other Bug Localization Approaches

Table 3.3 also compares the results of AmaLgam with those of TFIDF-DHbPd,

BugLocator, and two versions of BLUiR (BLUiR and BLUiR+) in terms of Hit@1,

Hit@5, Hit@10, MAP and MRR. Sisman and Kak only evaluates TFIDF-DHbPd

using the AspectJ bug reports from the iBugs benchmark. They also did not compute

Hit@N or MRR. Thus, in the table, we only show the MAP score of TFIDF-DHbPd

for AspectJ. Our approach improve on their approach’s MAP score on AspectJ bug

reports by 46.1%.

AmaLgam outperforms BugLocator with respect to all metrics for AspectJ, E-

clipse, and SWT bug reports. Both techniques have the same performance in terms

of Hit@1, Hit@5, and Hit@10 for ZXing. For ZXing, AmaLgam improves BugLo-

cator in terms of MRR, bug marginally loses to BugLocator in terms of MAP. On

average, AmaLgam improves the MAP and MRR scores of BugLocator by 24.4%

and 19.3%, respectively.

Comparing AmaLgam with BLUiR and BLUiR+, we could note that AmaLgam

consistently outperforms BLUiR and BLUiR+ in terms of MAP and MRR for all
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programs. The Hit@N scores of AmaLgam are better than those of BLUiR and

BLUiR+ for all programs except ZXing. For ZXing, the Hit@N scores of AmaL-

gam are the same with those of BLUiR and BLUiR+. On average, AmaLgam im-

proves the MAP and MRR scores of BLUiR+, which performs better than BLUiR,

by 12.5% and 9.9% respectively. We perform Wilcoxon signed-rank test [115] to

test whether the improvements obtained by AmaLgam over BLUiR+ are significant.

We found that the improvements in terms of MAP and MRR are significant.

RQ3: Effect of Varying k and b

In this study, we select k ∈ {5,10,15,20,25,30,35,40,45,50} and compute MAP and

MRR for all bug reports in our dataset. The results are presented in Figures 3.6

and 3.7.

When k increases from 0 to 15, the MAP and MRR scores increase for all pro-

grams. Increasing the value of k further from 20 to 50 generally does not improve

performance much. For SWT, the MAP and MRR slightly decrease when we in-

crease k from 15 to 50. These results show that there is no need to consider old

history. The most important part of the history is commits in the last 15-20 days.
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Figure 3.6: Impact of Varying the Value of k on AmaLgam in Terms of MAP

Next, we investigate the impact of different values of b on the performance of

AmaLgam. We vary the values of b from 0 to 1 with an interval of 0.1. Figures 3.8
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Figure 3.7: Impact of Varying the Value of k on AmaLgam in terms of MRR

and 3.9 show how the performance of AmaLgam varies due to different b values,

in terms of MAP and MRR. For ZXing, Eclipse and SWT, both MAP and MRR

slightly increase when the value of b is varied from 0 to 0.3; when the value of b is

varied from 0.3 to 1, in general the performance goes down.4 The impact of varying

b values for AspectJ is different from the other programs: the MAP value keeps

increasing when the value of b is varied from 0 to 0.7, remains relatively stable

when b is varied from 0.7 to 0.9, and decreases when b is increased from 0.9 to 1; In

terms of MRR, the performance improves when b is varied from 0 to 0.5, remains

stable when b is varied from 0.5 to 0.7, and decreases when b is varied from 0.7 to

1.0. For three of the four programs, AmaLgam achieves the best performance when

b is 0.3. Averaging across the 4 programs, the performance of AmaLgam remains

relatively stable when we vary b between 0.3-0.4.

3.4.5 Threats to Validity

Threats to internal validity include experimenter bias. To reduce this threat, we

reuse the bug reports dataset that has been used before to evaluate prior approaches.

Thus, the evaluation is not biased to our approach.

Threats to external validity relate to the generalizability of our findings. To

4The performance slightly increases for ZXing when b is varied from 0.4 to 0.9.
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Figure 3.9: Impact of Varying the Value of b on AmaLgam in terms of MRR

reduce this threat, we have analyzed more than 3,000 bug reports from four popular

projects. Still in the future, we plan to reduce these threats further by analyzing

more bug reports from more projects written in multiple programming languages.

Threats to construct validity refers to the suitability of the set of evaluation met-

rics that we use in this study. Three metrics are used namely Hit@N, MAP, and MR-

R. These metrics are well-known information retrieval metrics and have been used

before to evaluate many past bug localization approaches, e.g., [85, 92, 97, 125].

Thus, we believe there is little threat to construct validity.
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3.5 Conclusion and Future Work

A large number of bug reports are submitted during the evolution of a software

system. For a large system, locating the source code files responsible for a bug is

tedious and expensive. Thus, there is a need to develop a technique that can automat-

ically select these buggy files given a bug report. A number of bug localization tools

have been proposed in recent years. However, the accuracy of these tools still need

to be improved. In this chapter, we propose AmaLgam, a new method for locating

relevant buggy files that combines historical data, similar report, and structural in-

formation to achieve a higher accuracy. We perform a large-scale experiments on

four projects, namely AspectJ, Eclipse, SWT and ZXing to localize more than 3,000

bugs. Compared with the state-of-the-art bug localization approaches, BLUiR+ and

BLUiR, our approach, on average, achieves 12.5% and 16.4% improvements in

terms of mean average precision (MAP). Compared with BugLocator which con-

siders similar reports, our approach, on average, achieves a 24.4% improvement in

terms of MAP. Compared with a history-aware bug localization approach proposed

by Sisman and Kak, our approach achieves a 46.1% improvement in terms of MAP.

In the future, we would like to reduce the threats to external validity further by

applying our approach on more bug reports from various systems. We are also in-

terested integration other bug prediction approaches to AmaLgam. Furthermore, we

want to investigate different ways to combine the scores from the three components

of AmaLgam. We are also interested to use Principal Component Analysis (PCA)

to analyze which component (i.e., version history, similar report, or structure) con-

tributes the most to the final results.
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Chapter 4

Code Search via Topic-Enriched

Dependence Graph Matching

4.1 Introduction

In many software projects, developing the first release of a system is often not the

end. New features would need to be integrated; bugs would need to be fixed. It has

been studied that the cost of maintenance activities is often much larger than the cost

of developing the first release. Some studies estimate that the software maintenance

cost is as high as 90% of the total software cost [18]. This is especially the case for

legacy applications, which is often referred as “legacy crisis” [94].

In software maintenance activities, programmers need to modify a code base,

either to fix bugs or to insert additional functionalities. Finding relevant code snip-

pets is hard especially if it has been a long time since the code has been maintained,

if the original developers have left the company, if the code base is large, or if the

system is developed by many people and the relevant code snippets are dispersed in

various locations.

To find relevant code fragments, a developer may employ a search utility that

comes with their operating systems (e.g., Windows Explorer), or their favorite IDEs

(e.g., Eclipse, Visual Studio). However, often the functionality provided by these
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tools is not sufficient due to several reasons. First, these tools can only look for

exact matches of strings, but a user might not know the exact query for the tools.

Second, a code base is not simply text; it is text with structure and semantics; such

information is implicit and these standard search tools are unable to capture user

queries that involve dependence relations among various program elements. Third,

these tools are not able to capture relevant code snippets that are spread in different

program locations; one would need to do repeated search with various queries to

find all answers.

To address these limitations, a number of studies have proposed the use of nat-

ural language processing techniques to find relevant code. Hill et al. [34] have pro-

posed a novel approach that automatically extracts natural language phrases from

source code identifers and categorizes the phrases and search results in a hierarchy.

Marcus et al. [72] use information retrieval techniques to find concept locations in

software. With natural language processing techniques, a user no longer need to

specify exact identifier names for search.

There are also other studies that allow users to specify rich queries involving the

specification of the dependencies among program elements of interest [32]. These

dependencies are often expressed in terms of control and data dependencies. A

recent approach by Wang et al. is also able to capture transitive dependencies [112].

This allows code snippets located in different classes to be retrieved if they match a

user query. Their approach makes use of advances in graph query techniques in the

database community.

Both kinds of approaches have their disadvantages. Natural language processing

techniques are useful for specifying high-level concepts related to a piece of code,

but cannot easily specify fine-grained relations among particular elements in the

code. On the other hand, dependence based search can quantify relationships among

code elements directly using graph pattern matching, but it often fails to distinguish

code of different high-level concepts but with similar low-level relationship. As

the result, both kinds of techniques may produce numerous false positives during
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search.

In this work, we marry the use of natural language processing and graph query

to realize a code search engine that supports expressive queries including natural

language text and dependence relations. We also improve the speed of the current

state-of-the-art transitive dependence code search engine tool proposed by Wang et

al. [112] by an order of magnitude speedup.

To realize our solution we incorporate a topic modeling engine based on hier-

archical Latent Dirichlet Allocation (hLDA) that is able to learn topics and assign

them to various documents. We also incorporate recent advances in querying la-

belled graphs to alleviate the limitation of the code search engine proposed by Jin

et al. [44]. Our framework accepts user code and processes the structure and the

textual component of the code separately. We convert the user code into a program

dependence graph (PDG) [96]. The textual part is converted into topics and these

topics are assigned to the various nodes in the PDG to create an enriched PDG

(ePDG). Finally, these ePDG are used by our graph query engine to process user

queries. We propose a query language that allows a user to specify an expressive

query including both free-form texts and dependence relations.

We have evaluated our solution on a number of software projects. We inves-

tigate the scalability of our solution and compare it with the approach of Wang et

al. [112] that also handles transitive dependence queries. We investigate the utility

of our approach by presenting some case studies on how our tool could be used

in various settings. We demonstrate the power of both the textual component and

the dependence component of our solution when they are used independently and

together.

The contributions in this chapter are as follows:

1. We propose an engine that incorporates topic modeling for code search. A

user could then search by topics rather than by keywords.

2. We integrate both semantic topic search and dependence search by allowing
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users to specify free-form texts and transitive dependence relations among

program elements of interest.

3. We improve the state-of-the-art code search tool and its graph matching algo-

rithms [112] by one degree of magnitude speed up.

4. We have performed a preliminary study on the scalability of our tool on a

number of cases and demonstrated the power of our search engine in improv-

ing the code search experience by supporting expressive queries.

The structure of this chapter is as follows. In Section 4.2, we describe prelim-

inary information about program dependency graph, topic model and graph reach-

ability. In Section 4.3, we describe our framework that combine and extends the

building block into a holistic solution. In Section 4.4, we describe the detail about

Dependence Query Language with Topic Modelling. Section 4.5, we elaborate our

query processing engine. Section 4.6 describes our experiment and case studies. In

Section 4.7 we conclude our work and point out some interesting future work we

could focus on.

4.2 Preliminaries

In this section, we describe program dependence graph (PDG), topic modeling,

and graph reachability queries. We use these concepts as as building blocks in

our framework. We describe these concepts in layman terms.

4.2.1 Program Dependence Graph

A program dependence graph (PDG) captures all these dependencies, including call

relations. Each node in the graph corresponds to a program element in the code.

Each edge corresponds to either data or control dependence. Program dependence

graph has been shown to represent certain semantic aspects of code and useful for

various purposes [20, 63].
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The corresponding PDG for the following sample code is shown in Fig-

ure 4.1. The solid arrows represent data dependencies among the nodes; the dashed

lines represents control dependencies. As shown in Figure 4.1, we have sever-

al commonly used node types in the PDGs, e.g., call-site for function calls,

control-point-if for if conditions, assignment, statement, etc.

t a g = MALLOC( s i z e o f (TAG ) ) ;

i f ( ! t a g )

r e t u r n XML ERROR NO MEMORY;

tag−>buf = MALLOC( INIT TAG BUF SIZE ) ;

i f ( ! t ag−>buf )

r e t u r n XML ERROR NO MEMORY;

Figure 4.1: Sample PDG.

This piece of code actually contains a bug that may cause potential memory

leaks. Section 4.6 uses the code as one of the sample maintenance tasks to evaluate

our search engine.

There are a number of off-the-shelf tools that are able to automatically extract

program dependence graphs from code. In this work, we use CodeSurfer provided

by GrammaTech [23] to extract PDGs from C code.
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4.2.2 Topic Modeling

Researchers in the data mining, machine learning, and natural language processing

communities have proposed topic modeling as a way to discover semantic concepts

(or topics) from natural language corpora. Given a collection of textual documents,

the goal of topic modeling is to learn a set of topics, each being represented by a set

of words, that characterize the various documents in the collection. Each document

in the collection could then be assigned some probabilities of belonging to each

topic.

In this work, we use Latent Dirichlet allocation (LDA), which takes as input a set

of textual documents and the number of desired topics (50 by default), and outputs a

model consisting of a set of topics where each topic is a set of related words. Then,

the model can be used to associate each query document with a set of topics with

various probabilities. We use the implementation provided by JGibbLDA [81].

4.2.3 Graph Reachability

Graph reachability is to compute whether two arbitrary nodes in a large (directed)

graph are reachable from each other. A node is reachable from another node, if and

only if there is a series of edges in the graph that would connect one node to the

other. Such reachability queries can be used to perform graph pattern matching that

allows transitive, instead of direct, connectivity among nodes in query inputs [14].

A naive algorithm to check reachability is to perform a breadth first search in the

graph starting from one node until we reach the other node. This takes linear time

in terms of node and edge size but would still be computationally expensive when

we consider the reachability among every pair of nodes in the graph or when the

reachability is further restricted by certain constraints on the nodes and the edges.

In this chapter, we use an efficient reachability algorithm [44] to answer an

questions on whether any two nodes in an PDG are reachable via data or control

dependence edges. Also, based on the idea in Cheng et al.’s work [14], we design
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and implement an efficient way to use reachability queries for searching desired

patterns in PDGs (cf. Section 4.5).

4.3 Proposed Framework

Our approach is composed of components for code processing, text processing,

graph enrichment, and query processing. The relations among these components

are shown in Figure 4.2.

Figure 4.2: Our Code Search Overview.

Code and Text Processor Our code processor component takes in source code and

outputs its corresponding Program Dependence Graph (PDG). We use CodeSurfer

to generate PDGs [23]. The nodes in the PDGs are labeled with different program

element types1, and edges between nodes represent control or data dependencies.

Our text processor component takes in source code and outputs a topic model.

The processor first changes each method in the code base into a bag of words. For

each method, we take the name of the method, comments and identifiers in the

method, split some names into word tokens, and remove some keywords and non-

interesting words to form the bag of words. Each bag of words forms a document.

A code base is thus transformed into a set of documents. These documents are then

fed into LDA [81] to produce 50 different topics where each topic is represented by

a set of words.
1 We use the node types defined by CodeSurfer. There are 33 different node types for C/C++,

e.g., function call, expression, etc.
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Graph Enrichment Component. This component takes in the PDGs outputted

by the code processor and the topics outputted by the text processor, and enriches

the PDG nodes with the topics. After the enrichment process, each PDG node

contains not only the type of the program element associated with it, but also a set of

corresponding topics with their associated probabilities. For example, a node in the

PDG could be associated with topic-1 with probability 0.4, topic-2 with probability

0.3, and topic-3 with probability 0.3. And all nodes belonging to the same method

would be associated with the same set of topics and their associated probabilities.

Query Processing Engine. The query processor is the key block in our proposed

approach. It takes in a user query and, based on the enriched PDGs, returns all the

code snippets that match the query. Inside of the query processor, we first transform

a user query in the format of DQLt (cf. Section 4.4) into a graph representation,

which is referred to as a query graph (cf. Section 4.5.1). Then, we search through

the enriched PDGs for program elements that match the query graph and return

search results (cf. Section 4.5.2). As this processor is rather complex, we describe

it in the following two sections.

4.4 Query Language

To help users formulate queries and provide inputs for our code search engine, we

extend the Dependence Query Language (DQL) proposed by Wang et al. [112] with

semantic topics. We refer to the new language as Dependence Query Language with

Topic Modeling (DQLT ). Its syntax is shown in Table 4.1.

DQLT has five parts: topic declaration (topic), node declaration (ndecl), node

description (ndesc), relationship description (rdesc), and targets (target). Topic

specifies the topics related to intended search results and can be any free-form text.

Ndecl declares node variables and their types. Ndesc specifies constraints on de-

clared node variables. Rdesc specifies constraints on the relations among declared

node variables. Target specifies the variables specified in ndecl that are desired
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search targets. When a DQLT query is processed on an enriched PDG, nodes in the

ePDG that match the node variables specified in target and satisfy the constraints

specified in ndecl, ndesc and rdesc would be returned.

Node Declaration. This part of a query is to declare some node variables that will

later be mapped to nodes in an ePDG. Each node variable can have one or more

types (i.e., a disjunction of types); each type can correspond to a kind of code in

the code base (which is mostly in C) and is separated by ‘|’ as defined by tlist.

We consider six different types of node: func, var, assgn, decl, ctrlPoint, and

stmt. A node of type func corresponds to a function invocation in the code. var

corresponds to a variable. assgn corresponds to an assignment. decl corresponds to

a variable or function declaration. ctrlPoint corresponds to a branching condition

that affects code execution paths, e.g., if or while conditions. stmt corresponds

to statements that change control flows, e.g., return, break, etc.

Node Description. This part of the query specifies further constraints on de-

clared node variables (cond and ucond). To specify constraints, developers can

use the following unary operators: contains, inF ile, inFunc, atLine, ofType,

and ofControlType. The operator contains allow developers to specify that a par-

ticular node needs to contain a particular text. The operators inF ile and inFunc

allow developers to specify a node that is located inside a particular file or function

respectively. The operators ofType and ofControlType allow developers to spec-

ify a node of a particular type or to be a control node of a particular type (i.e., for,

while, switch, or if).

Different from DQL, DQLT has a topic operator (similarTopicAs). With this

operator one can specify the topics each node should belong to. Topic modeling

makes it possible to use free-form text in the topic operator as topic modeling tech-

niques can handle imprecise textual queries and relate different words that have

similar meanings.

Relationship Description. This part of the query specifies constraints governing
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query ::= (topic)*; (ndecl)*; (ndesc)*; (rdesc)*; target;

topic ::= string

ndecl ::= tlist id

tlist ::= tlist ‘|’ type | type

type ::= func | var | assgn | decl | ctrlPoint | stmt

ndesc ::= id (cond)*

cond ::= [not] ucond | similarTopicAs string

ucond ::= contains string | inFile string |

inFunc string | atLine number |

ofType string | ofControlType ctype

ctype ::= for | while | switch | if

rdesc ::= id op id

op ::= [oneStep] dependOp | textOp | structOp

dependOp ::= dataDepends | controls | calls

textOp ::= contains

structOp ::= isFieldOf | isElementOf

target ::= (id)*

id ::= string

string ::= (A-Z,a-z,0-9)+

number ::= (0-9)+

Table 4.1: DQLT Syntax
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the relationships between two declared node variables. We have three types of rela-

tionships: dependence operator (dependOp), textual operator (textOp), and struc-

tural operator (structOp).

Dependence operators are used to specify either data dependence, control de-

pendence, or transitive call relationship (i.e., there is a chain of function invoca-

tion from one node to another in the input PDG). They are expressed as opera-

tors: dataDepends, controls, and calls, respectively. Textual operators are used

to specify that the textual content of one node contains (i.e., is a super string) of

that of the other. Structural operators are used to specify that one node is a field of

another (isF ieldOf ), or is an element of another (isElementOf ). For example,

“a.b isF ieldOf a” holds, and “a[b] isElementOf a” also holds.

Targets. This part of a DQLT query specifies the target node variables that would

be returned as the output of the query. This set of variables is a subset of all declared

variables. The declared variables would be matched to nodes in PDG, but only

those specified as a target node variable would be returned. The other nodes serve

as context for more accurate locating of the target nodes. Currently, the output of

our code search engine is a set of line numbers linked to the locations of matching

code fragments.

4.5 Query Processing Engine

Taking a user query and topic-enriched PDGs as input, our query processing engine

goes through two major steps to produce search results: query graph construction

and graph matching. Figure 4.3 illustrates the relations among the components in

the query processing engine, which is a zoom-in of the Query Processor in

Figure 4.2. Query graph construction converts a textual query into a graph represen-

tation. Graph matching locates nodes and edges in the input program dependence

graphs that match the query graph and composes them into search answers. We

describe more details of the query processing engine in the following sub-sections.
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Figure 4.3: Components in Query Processor.

4.5.1 Query Graph Construction

A user query can consist of node declarations, node descriptions, relationship de-

scriptions, and the identifiers of the nodes of interest. We form a graph from this

textual description. Our DQLT language syntax aims to make it intuitive for devel-

opers to specify their queries. The intuitive syntax may not directly correspond to

the underlying program dependence graphs returned by CodeSurfer [23]. The pur-

pose of the query graph construction step is to transform higher levelDQLT queries

into a more low level query graph with nodes, edges, and their labels matching the

PDG representations.

There are three kinds of basic node relations in user queries: N1 calls N2, N1

controlsN2, andN1 dataDependsN2. We describe the constraints on the node types

for each kind of node relations expressed in user queries and how the relations are

converted into query graphs as follows:

1. N1 calls N2. For this kind of node relation, both N1 and N2 must be of type

function in DQLT for a query expression to be valid. This query is converted

into a query graph containing two nodes as shown in Figure 4.4(a).

2. N1 controls N2. For this kind of node relation, N1 must be of type control-

Point, while N2 can be of any one of the types: function, assignment, con-
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Figure 4.4: Converting User Queries to Query Graphs. We use the “|” separator to
specify the different node types that could be assigned to N1 and N2. The corre-
spondences between the node types in a user query and those in the query graph are
shown.

trolPoint, or statement. This query is converted into a query graph containing

two nodes as shown in Figure 4.4(b).

3. N1 dataDepends N2. For this kind of node relation, N1 and N2 can be of any

type except declaration. Figure 4.4(c) shows how the query is converted into

a query graph when N1 is not a function. Figure 4.4(d) shows the query graph

formed when N2 is a function.

4.5.2 Graph Matching

After the above step is done, we have a small query graph and a large enriched PDG.

We want to match the small graph against the big graph.

This task is computationally expensive, especially when we want to enable tran-

sitive (in addition to oneStep) dependence queries. Given a query graph consisting

of n nodes, a naive approach would be to enumerate all possible n-node subgraphs

of the enriched PDG and check if the constraints specified in the query is satisfied
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by each of the subgraph. This would incur a very high cost which is not practical

for our purpose.

To tackle this challenging graph matching problem, we perform some heuristics

to exclude nodes and edges that could not be part of a search result, and break down

the transitive dependence queries into a number of graph reachability queries so

that the state-of-the-art technique in graph reachability can be used to process these

queries.

Our graph matching algorithm is mainly comprised of the three components

previously shown in Figure 4.3. Its high level description is as follows. We first

identify the nodes in the enriched PDG that potentially match each node in the

query graph. We refer to the set of potentially matching nodes as potential node

set (PNS), and denote the PNS for a node n in the query graph as PNSn. We

then identify the set of edges that connect nodes in PNSs and potentially satisfy

the constraints specified in the query graph. We refer to the set of the edges as

potential edge set (PES). We keep these PNSs and PESs in a data structure we refer

to as work list. We further filter away unpromising nodes and edges in PNSs and

PESs that could not be part of a search result. Finally, we compose answer sets

by considering all combinations of the nodes and edges in PNSs and PESs. More

detailed descriptions are as follows.

A) Work List Construction

We take in a query graph and topic-enriched PDGs and convert them into a work

list. This is done by converting each node n and edge e in the query graph to the

corresponding PNSn and PESe.

PNS Construction. Each node in a DQLT query could be specified with its type,

textual description, syntactic restriction, and semantic topics, as defined by tlist,

textOp, ucond, cond, etc. in Table 4.1. These constraints are called unit conditions

and topic conditions of a query. The PNSn for a node n is obtained by getting the

set of nodes satisfying these conditions:
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• For each topic condition for n, we get the top-k methods of that topic (in

terms of probabilities of methods belonging to that topic as returned by a

topic modeling technique). The intersection of the k-method sets of all topic

conditions forms the initial set of methods of interest.

• If no topic condition is set for n, we simply consider all methods in the code

base as the initial set of methods of interest.

• For each node n′ in the PDGs corresponding to each of the method in the

initial set, check whether n′ satisfies all unit conditions set for n. The set of

nodes from the initial method set satisfying all of the unit conditions becomes

the PNSn.

PES Construction. We construct one PES for every edge e in the query graph,

denoted PESe. Each PESe is the set of edges in PDG that connect two nodes in

two different PNSs whose corresponding nodes are connected in the query graph.

The procedure of constructing PESs is shown in Figure 4.5.

P r o c e d u r e Cons t ruc tPES
1 : f o r each edge e=(N1 ,N2 ) i n t h e que ry graph
2 : f o r each node n1 i n PNSN1

3 : f o r each node n2 i n PNSN2

4 : i f n2 i s r e a c h a b l e from n1

5 : Add (n1, n2) i n t o PESe

Figure 4.5: PES Construction Process

Line 4 in Figure 4.5 is the critical step. If a oneStep (or direct) data or control

dependence is specified, we simply check if n2 is connected to n1 in the PDG di-

rectly. If normal (transitive) data or control dependence is specified, we employ the

graph reachability indexing algorithm described in Section 4.2 for efficient check-

ing.

B) Node & Edge Filtering

In this step, we filter away nodes and edges that can not possibly be part of a

search result. We call such nodes and edges unpromising. The purpose of the filter is
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to reduce unnecessary checks when composing PNSs and PESs into search results.

Properties 1 and 2 specify rules for removing unpromising nodes and edges.

Property 1 (Unpromising Node). Let N1 be a node in the query graph and

{E1, . . . , Ek} be the edges connected to N1. All nodes in the PNSN1 and the fol-

lowing set are unpromising: {n | ∃i ∀e∈PESEi · n 6∈e}.

Proof. By definition, in order to match the node N1, a node n in PNSN1 should

connect to at least k edges that could match every Ei. That is, n should connect to

at least one edge from each of PESEi . Thus, n could be promising only if it is not

in the above set.

Property 2 (Unpromising Edge). If an edge starts from or ends with an unpromis-

ing node, then it is unpromising.

The two properties could then be applied to filter nodes and edges from PNSs

and PESs. Notice that we could iteratively apply the two properties one after the

other: when more unpromising nodes are identified via Property 1, more edges

could be pruned by applying Property 2; the application of Property 2 may then help

to identify more unpromising nodes when Property 1 is re-applied. The algorithm

to do this is shown in Figure 4.6.

P r o c e d u r e UnpromisingRemoval
1 : noChange = f a l s e ;
2 : w h i l e ( ! noChange )
3 : f o r each que ry node n ,
4 : Remove u n p r o m i s i n g nodes from PNSn (Prop 1 )
5 : Remove u n p r o m i s i n g edges from PESs v i a (Prop 2 )
6 : i f ( no node or edge i s removed )
7 : noChange = t r u e ;
8 : i f ( any PNSn or PESe i s empty )
9 : T e r m i n a t e s e a r c h

Figure 4.6: UnpromisingRemoval Procedure

Property 3 (Termination). UnpromisingRemoval procedure always termi-

nates.
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Proof. Each time we complete an iteration of the while loop (Lines 3-6), either one

of the following conditions hold:

1. The total size of nodes and edges in PNSs and PESs is reduced;

2. The total size of nodes and edges is unchanged. We have reached a fix point.

Since there is a finite size of nodes and edges in PNSs and PESs, there is only a

finite number of times condition 1) above would hold. Eventually condition 2) or a

fix point happens and the procedure would terminate.

Property 4 (Completeness). Each node remaining at the end of

UnpromisingRemoval procedure is promising.

Proof. Let assume for contradiction that one remaining node n is unpromising. This

would mean that n could be grown, with its connected neighbor nodes, into a true

subgraph of the query graph that cannot match the whole query graph. Then, this

can only because 1) some query node n′ has an empty PNS, or 2) some query

edge has an empty PES, or 3) some node reachable from n in the PDG has no

sufficient edges to connect to nodes in the PNS of some other query node. Case

1) and 2) would terminate the code search; case 3) would require Property 1 to

be applied which should not happen if UnpromisingRemoval has terminated.

This is a contradiction. By proof by contradiction, this property must hold, i.e.,

all nodes remaining at the end of UnpromisingRemoval procedure must be

promising.

C) Answer Set Composition

Based on Property 4, each node in the PNSs at the end of the filtering step is part

of one or more search answers. There are potentially many answers to a query based

on the sizes of the PNSs and the available PESs. In this last step of our approach,

we compose nodes and edges in PNSs and PESs to form search answers.
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The procedure is shown in Figure 4.7. The main idea to take every possible com-

bination of the nodes from the PNSs and see whether each of the combination could

match edges in the PESs. If the nodes in one combination match all PESs, the com-

bination of the nodes will be saved and translated back to code snippets as search

results. This translation works straightforwardly: when the target nodes are spec-

ified in the user query, only the code snippets that match them would be returned

to users, otherwise, all code snippets matching the nodes in the saved combination

would be returned.

The computational complexity of this step is linear to the size of every PNS

(i.e., potential number of matching code snippets) and linear to the number of PESs

(i.e., the number of relations specified in the user query). Although it could become

expensive in general, the queries for our code search purpose are often small, and

PNSs are also small due to the applications of semantic topic matching and Proper-

ty 1 and 2, and thus we expect acceptable search performance. Through empirical

studies, Section 4.6.1 demonstrates that our code search engine can be efficient for

practical uses.

P r o c e d u r e AnswerComposi t ion
I n p u t : PNSs and PESs from t h e f i l t e r i n g s t e p
1 . f o r each query node Ni
2 . Take one node ni from PNSNi

;
3 . f o r each query edge Ei = (N1, N2)
4 . i f (PESEi

does n o t c o n t a i n (n1, n2 ) )
5 . D i s c a r d t h i s combina t ion , Goto 7 ;
6 . Save t h i s c o m b i n a t i o n ;
7 . Repea t 1 u n t i l a l l c o m b i n a t i o n s a r e checked ;
8 . Conve r t e v e r y comb . i n t o code s n i p p e t s a s s e a r c h r e s u l t s .

Figure 4.7: Answer Set Composition

4.6 Empirical Evaluation

In this section we first describe our scalability evaluation. We then present four case

studies to show the utility of our topic-enriched dependence search tool on a number

of software engineering tasks on various systems.
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Table 4.2: Performance Comparison (in seconds)

Dataset Approach TP TQ TRF TT

Expat v32 [112] 1.7 64.7 2.1 68.5

ours 0.3 6.0 0 57.3

Expat v38 [112] 0.9 30.4 1.1 31.5

ours 0.8 0.5 0 1.3

GPSbabel v1071 [112] 3.3 640.2 3.6 647.1

ours 0.6 1.0 0 13.2

GPSbabel v1200 [112] 3.3 265.2 0.9 289.4

ours 0.7 0.1 0 0.81

4.6.1 Scalability Evaluation

We compare the speed of our processing engine with the previous engine proposed

by Wang et al. [112]. We use the dataset studied in their paper for comparison. The

results of the evaluation are shown in Table 4.2. Column “TP” represents the time

consumed for pruning unpromising nodes and edges before actual search. Column

“TQ” represents the time for performing queries. In the case of Wang et al. [112],

the column also includes the time spent on building graph indices for each query,

while our approach performs one-time indexing and just needs to load the index

when required by a query. Column “TRF” represents the time of post-filtering on

search results which is not applicable to our approach. The last column “TT” is

the total time for the whole query process, including all necessary graph indexing

costs. From Table 4.2, we notice that on average our approach is more than 130

times faster.

4.6.2 Case Studies

We next describe some case studies showing the utility of our code search engine.
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Task One

The first searching task is from the Expat project version 2002-05-17 which is a C

language project. The task was also used in Wang et al.’ work [112]. One com-

ment of the code change mentioned failed MALLOC() calls that can cause potential

memory leaks. The code before the change is shown below:

t a g = MALLOC( s i z e o f (TAG ) ) ;

i f ( ! t a g )

r e t u r n XML ERROR NO MEMORY;

tag−>buf = MALLOC( INIT TAG BUF SIZE ) ;

i f ( ! t ag−>buf )

r e t u r n XML ERROR NO MEMORY;

The code after the change is shown as below, with an added call to free:

t a g = MALLOC( s i z e o f (TAG ) ) ;

i f ( ! t a g )

r e t u r n XML ERROR NO MEMORY;

tag−>buf = MALLOC( INIT TAG BUF SIZE ) ;

i f ( ! t ag−>buf ){

f r e e ( t a g ) ;

r e t u r n XML ERROR NO MEMORY;

}

Our task is to find all similar code that may return without freeing some memory.

A sample query for this purpose in our DQLT syntax is as follows:

Topics: malloc;

Nodes: func A, func B, var C, var D, ctrlPoint E ofControlType if, stmt F return;

Relations: C dataDepends A, D dataDepends B, D isFieldOf C, E dataDepends D, E oneStep con-

trols F;

Targets: E

In the query, the topic is malloc. A corresponds to a function call to MALLOC

whose return value is used to initialize a variable C; another variable D, a field of

C, is assigned the value from another call and used in a control point E, and one of

E’s branch may call return.

In this task, the developers actually changed two places in the program. Our
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approach finds both of the places, plus four other places, which are false positives,

while Wang’s approach [112] finds the two target places but brings 36 false positive.

Our approach provides better precision.

Among the four false positives (i.e., the four places not changed by the develop-

ers), one actually missed a call to free too; the developers missed the place when

fixing the memory leak bugs. This also suggests our code search engine can be

useful for detecting inconsistent changes to help reduce bugs.

Task Two

The second searching task is from theGPSbabel project version 2004-10-27, which

was also used in [112]. The comment of the code change is “Aggressively replace

open-coded strncpy for space padded strings in various waypoint send functions.”

The submitted code changes demonstrate that the developers try to find all the code

elements that are in “waypoint send” functions (a list of functions whose names end

with “send”) and are like the italicized part in the following code portion.

UC∗ p , s t r ; . . .

f o r ( i = 0 ; i < 1 0 ; i ++){

s t r [ i ] = ∗p ++;

}

Such code is contained in functions whose names end with “send” and has the

following patterns: a loop (either for or while) contains an assignment, and the

data used in the assignment depends on a pointer declaration. Therefore, we have

the user query as below:

Topics: send;

Nodes: var A ofType “UC*”, ctrlPoint B ofControlType (for|while) inFunc “send”,

assgn C;

Relations: B oneStep controls C, A oneStep dataDepends C;

Targets: B

In this task, there are actually 37 targets in the code. Our approach finds all the
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37 targets together with 25 false positives, while the approach proposed by Wang et

al. [112] also finds all the targets with 25 false positives. Most of the false positives

are also all in other kinds of “send” functions (besides “waypoint”) that contain

similar loops.

Task Three

The third task is from Media Player Classic–Home Cinema version 1639. The

comment of the code change is to fix the memory leak in decoder initialization

functions. The aim is to find all the memory leaks that are caused by returns

before freeing relevant memory storing structure variables same as the previous

one. An example is as below.

D e c o d e r a m r S t a t e ∗ s ; . . .

i f ( ( s−> l s f S t a t e = ( D p l s f S t a t e ∗ )

ma l l oc ( s i z e o f ( D p l s f S t a t e ) ) ) == NULL ) {

f p r i n t f ( s t d e r r , . . . ) ;

r e t u r n −1;

}

The code may cause memory leak since it does not free the memory of occupied

by the variable s and its pointer fields other than lsfState. In this code, the

assignment s->lsfState = ...malloc... has one-step data dependency

on s and the return value of malloc. The control point (if (...== NULL))

has one-step data dependency on the assignment, and controls fprintf and the

return statement. The topics for the changes codes are decoder and init accord-

ing to the change comment. Therefore, our user query is as below.

Topics: decoder, init;

Nodes: var A, func B contains “malloc”, ctrlPoint C ofControlType if, stmt D return, assgn E, var

X;

Relations: X isFieldOf A, X oneStep dataDepends E, E oneStep dataDepends B, C oneStep dataDe-

pends X, C oneStep controls D;

Targets: C
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In this query, isF ieldOf is again used to relate a field to its containing structure.

C is the target because the developer wants to locate only the branches that may

need calls to free.

In this task, there are 10 targets in the code, and our approach finds all the targets

with one false positive. If no topic is used for search, the search based on depen-

dencies only finds all the targets, but brings 14 false positives. If the search is given

a constraint that the name of the involved functions should contain both decoder

and init without using the topics, one target is missed, since this target is in a

function Post Filter init whose name does not contain “decoder”. Search

with topics can find this target since this function has latent semantic relationship

with “decoder” even though its name does not contain “decoder”.

Task Four

The fourth task is fromNotepad++ Plugin project version 1.9. The developers aim

to fix memory leaks related to uploading. In the following sample code, when the

call to CreateThread fails, the program will return without freeing the memory

allocated before.

i f ( C r e a t e T h r e a d (NULL, 0 , doUpload ,

l t , NULL, &i d ) == NULL) {

t h r e a d E r r o r ( ” doUpload ” ) ;

busy = f a l s e ;

}

The correct code should contain calls to delete lt in the branch where lt

is allocated before the call. The topic involved is upload, and only two relations are

needed: one is the data dependence between the return value of CreateThread

and the if condition; the other is the control dependence between the if condition

and the error handling function threadError. So the query can be defined as

below.

Topics: upload;
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Nodes: ctrlPoint A ofControlType if, func B contains “CreateThread”, func C con-

tains “threadError”;

Relations: A oneStep dataDepends B, A oneStep controls C;

Targets: A

In this task, our approach can find all the three targets together with three false

positives. The search without topic can also find the three targets, but bring 11

false positives. The reason why our approach brings 3 false positives is that the

function WindowProcedure calls other upload related functions and thus be-

comes a function involving the topic of “upload” and at the same time it call-

s CreateThread with empty parameters (e.g.,CreateThread(NULL, 0,

doRenameDirectory, NULL, NULL, &id) == NULL) where “delete”

is not needed.

4.7 Conclusion and Future Work

We propose a code search approach that utilizes both of the topics and the depen-

dence relations in a code base for more accurate results. Our approach provides

a query language that allows users to specify both free-form topics and complex

dependence relations. We design and implement algorithms that can utilize topic

modeling techniques to refine dependence graph queries. As a result, our approach

can not only return more relevant search answers, but also is more scalable for pro-

cessing transitive dependence queries, achieving on average an order of magnitude

speedup than a previous state-of-the-art approach. We have evaluated our tool on

several software maintenance tasks in various software systems and demonstrated

the utility of our code search engine.

In the future, information besides topic and dependence that is related to the

code (e.g., email discussion records, programmer activity patterns, project-specific

patterns) may be incorporated into the code search engine to help make it more

accurate.
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Chapter 5

AutoQuery: Automatic Construction

of Dependency Queries for Code

Search

5.1 Introduction

Source code could be viewed more than just text. It also contains structures and

dependency relations among program elements. To leverage these dependencies

to improve search accuracy, dependence-based code search techniques have been

proposed. They accept queries expressed as dependency relationships among pro-

gram elements of interest [106, 112], and return code fragments whose constituen-

t program elements satisfy the dependency relationships. It has been shown that

dependence-based code search can outperform text-based code search [106].

However, there is one drawback that potentially hampers the usage of

dependence-based code search. Often it is hard to construct dependency queries.

Users need to be able to visualize the dependency relationships among program el-

ements, select relevant ones and express these as queries. This process might be

daunting for many potential users. In this work, we aim to address the drawback of

dependence-based code search by automatically constructing dependency queries
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from code examples. Using our tool, developers could input a set of example code

fragments, which correspond to snippets of code that users need to change to ad-

dress a particular need (e.g., new feature implementation, bug fix, etc.). By taking

multiple code fragments as input, our tool can learn important dependencies shared

by the examples and filter unimportant dependencies that are peculiar to an individ-

ual example. Our tool eventually constructs a dependency query, which can then

be used to identify other code fragments that need to be changed in a similar way

(to address the same need) by leveraging a dependence-based code search tool. Of

course, if needed, users can make changes to the dependency query before inputting

them to the code search tool. Our setting supports automation while still allowing

users to be in control in the code search process and thus the user’s domain knowl-

edge can be leveraged for effective code search.

We propose a tool named AutoQuery. Our tool first converts a given set of code

fragments (not necessarily compilable) into program dependence graphs (PDGs)

(see Section 4.2.1 for detail). These program dependence graphs are then analyzed

and their commonalities are highlighted. We develop a new graph mining solution

that could mine for these commonalities from the PDGs expressed as multi-labeled

graphs with textual and node type labels. The resulting mined sub-graph is then

converted to a dependency query. We use the dependency search tool proposed by

Wang et al. as the backend code search tool [112]. AutoQuery builds upon this

dependence-based code search tool by automating the process of generating depen-

dence queries from sample code fragments. Previously, users of the dependence-

based code search tool needed to manually construct dependence queries.

Our tool can help software engineers in various scenarios. For illustration pur-

pose, consider Alex a software engineer who is responsible for performing a cor-

rective maintenance task that may affect a number of files. Alex has localized two

buggy code fragments. However, it is likely that there are many other buggy code

fragments in other source code files that need to be fixed in a similar way. Auto-

Query can help Alex find the remaining buggy code fragments. Alex simply needs
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to input the buggy code fragments that he has localized into AutoQuery, and Auto-

Query will in turn construct a DQL query (see detail in Section 4.4) and invoke an

underlying code search tool to return the other buggy code fragments. Alex can save

much time since he does not need to search for the buggy code fragments manually.

There are several challenges that we need to solve to build AutoQuery. First,

the code fragments are not necessarily compilable. Many tools that construct PDGs

from code, e.g., CodeSurfer [23], require compilable code. Thus, we need to pro-

cess code fragments into compilable code units. Next, most graph mining solu-

tions, e.g., [118, 119, 126], only work on simple graphs whose nodes and edges

are labelled with simple types. PDGs are not simple graphs; each node in a PDG

is a program element and contains not only node type information but also textual

contents describing the fragment of the source code corresponding to the program

element. Thus we need to build a new graph mining solution that handles our special

graph representation that captures information in a PDG.

We evaluate our query generation approach on 47 realistic code search examples

that we have extracted from the repositories of four software projects (Apache Http

Server, Inkscape, Apache Subversion, and Libmpeg2). We show that using Auto-

Query we can generate good queries that could be used to retrieve relevant code

with precision, recall, and F-measure of 68.4%, 72.1%, and 70.2% respectively. We

have also conducted a user study to compare automatically generated queries with

manually generated queries. We find that our automatically generated queries can

perform as well as human generated queries.

Our contributions in this chapter are as follows:

1. We are the first to propose an approach that can automatically generate de-

pendency queries from several code examples.

2. We generate PDGs from non-compilable code fragments and propose a new

graph mining technique that can search for common substructures in special-

ized multi-label graphs with nodes containing both node type information and
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textual contents.

3. We have evaluated our approach on 47 realistic code search scenarios. We

show that AutoQuery plus a dependence based code search tool can return

relevant codes with precision, recall, and F-measure of 68.4%, 72.1%, and

70.2%. We have performed a user study that shows that our generated queries

are comparably as good as human generated queries in returning relevant

code.

The structure of this chapter is as follows. In Section 5.2, we describe our overall

framework at high level. We zoom into the PDG generation engine of our frame-

work in Section 5.3. We elaborate our query generation engine of our framework

in Section 5.4. We present our experiments that evaluate the effectiveness of Auto-

Query in Section 5.5. We conclude and mention future work in Section 5.6.

5.2 Overall Framework

In this section, we present the overall framework of our automatic query generation

approach. In Section 5.3 and Section 5.4, we elaborate on the core components of

our approach.

The structure of our automatic query generation approach is shown in Figure 5.1.

It consists of two major processing components (shown as big rounded rectangles)

namely PDGs generation engine and query generation engine. The outputs of the

PDGs generation engine, which are the PDGs of the code fragments given by the

user, is feeded to the query generation engine. The sequence of interactions among

the user and the various components of the framework is described in the following

paragraphs.

First, a user provides several code snippets to the PDGs generation engine. In-

side this engine, the non-compilable code fragments are extended to compilable

code by adding missing type definitions, missing variables, and missing methods.
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We support non-compilable code as users could find examples online (e.g., from

question and answer sites, from software forums, etc.); these examples are often

only code fragments that cannot be compiled by themselves. Next, the PDGs gen-

eration engine uses CodeSurfer [23] to convert the compilable code to their corre-

sponding program dependence graphs. Each PDG node corresponds to a program

element and contains two pieces of information: node type, and textual representa-

tion of the program element in the source code.

Next, the PDGs generated by the PDGs generation engine is sent to the query

generation engine. The query generation engine first transforms the PDGs to sim-

ple graphs by dropping the textual representation information from the nodes. A

maximal common subgraph is then mined from these simple graphs using an exist-

ing graph mining algorithm [79]. Then, each node in the mined simple subgraph

is mapped to its original node in the PDGs generated by the PDG generation en-

gine, to extract the corresponding textual representation information. A node in a

subgraph could be mapped to many nodes in the original PDGs. We develop heuris-

tics to choose the most appropriate one. After getting a common subgraph and text

information for each node in the subgraph, the engine converts the subgraph to a

dependency query acceptable to the dependence-based code search tool developed

by Wang et al. [112] (see Chapter 4).

5.3 PDGs Generation Engine

In this section, we present the steps to generate PDGs for given code fragments (or

incomplete lines of code). Code fragments given by a user might not be compilable

due to various reasons, e.g., missing type definitions, missing method declarations,

etc. Many examples, especially those available in software forums and question and

answer sites, are in this format. In this work, we are able to add the missing type

definitions, variable declarations, and function definitions to make a non-compilable

code fragment compilable. There have been studies in literature (e.g.,[43, 102] ) that
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Figure 5.1: Overall Framework

make incomplete code compilable, but our goal is not to preserve the full semantics

of the code; rather, we just would like to preserve the dependencies among the

various program elements in the code fragment. Our implementation and evaluation

focuses on C/C++ code.
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Table 5.1: Inference Heuristics

Name Heuristic

Assignment If two expressions are on the two sides of an assign-
ment, then they are of the same type.

Operator If two expressions are connected with an operator in
an expression, then they are of the same type.

Switch-
case condi-
tion

If two expressions are either the condition expression
of a switch statement or the expression in a case state-
ment of the same switch statement, then they are of the
same type.

Function
defini-
tion and
invocation

A parameter of a function must be of the same type
as the corresponding argument of its invocation. The
return type of a function must be of the same type as
the corresponding return value of its invocation.

5.3.1 Code Extension

Algorithm 1 Code Extension Algorithm
1: CodeExtension(RPT )

2: Input:

3: RPT : Root of the parse tree of a code fragment

4: Output: Extended compilable code

5: Method:

6: Initialize DV , UV , UF , UT , EX , RV to {}

7: Traverse(RPT , DV , UV , UF , UT , EX ,RV )

8: Let MAP = Mappings from m in (DV
⋃
UV

⋃
EX) to its type

9: repeat

10: if s1 and s2 in MAP in a type-equivalence relation in RV then

11: Union s1 and s2 into MAP

12: end if

13: until No more change in MAP

14: Replace Unknown type in MAP with int

15: Add necessary (global) variable declarations based on UV

16: Add necessary function definitions based on UF

17: Add necessary classes based on UT

18: Add other necessary code (e.g., include statements, etc.)

To infer the types of variables and signatures of invoked functions in a code
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fragment, we first obtain the parse tree of the code fragment. We create this parse

tree using the python library pycparser1. From this parse tree we infer the types of

undeclared variables and the signatures of invoked functions (including information

about their parameters and return types). Undefined types appearing in the code

fragment are inferred as well. We infer relevant data fields and functions of an

undefined type that are used in the code fragment. After the above information is

gathered, we extend the code fragment by adding:

1. Declarations of undeclared variables

2. Definitions of undefined functions

3. New classes (data types) that specify undefined types

Our code extension algorithm is shown in Algorithm 1. It takes a parse tree as

an input and outputs a piece of compilable code. The major task of the algorithm is

to infer a list of undeclared/undefined variables, function arguments, and function

return values along with their inferred types, a list of undefined functions along with

their signatures, and a list of undefined types along with their relevant attributes and

functions.

We first initialize several sets to store a list of declared variables and constants

(i.e., DV ), a list of undeclared/undefined variables, function arguments, and return

values (i.e., UV ), a list of undefined functions (i.e., UF ), a list of undefined types

(i.e., UT ), a list of expressions (i.e., EX), and a list of type-equivalence relation-

s among variables and expressions (i.e., RV ) (Line 6). Note that each expression

could be of various types, e.g., function invocation, operator, variable reference,

etc. The heuristics in Table 5.1 are used to infer type-equivalence relations and

update the RV list. For example, a variable/expression on the left side of an as-

signment has an “assignment” relationship with a variable/expression on the right

side of the assignment. We then update, add or remove items into these lists by

1https://bitbucket.org/eliben/pycparser
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traversing the parse tree using the procedure Traverse defined in Algorithm 2

(Line 7). The Traverse procedure walks each node in the parse tree to discover

(un)declared/(un)defined variables, expressions, functions, types and store them in

corresponding lists. During the traversal, all the type-equivalence relations between

the variables and expressions are stored for type inference later. We will elaborate

the procedure Traverse in later paragraphs. After the lists are initialized, we cre-

ate a set MAP that contains mappings from a set of variables, arguments, return

values, and expressions to their type (Line 8). MAP is initialized as follows:

MAP = {{m} 7→ m′s type|m ∈ DV }
⋃
{{m} 7→ Unknown|m ∈ UV }

⋃
{{e} 7→ Unknown|e ∈ EX} (5.1)

For each member of DV , we have its type, and thus we can insert a mapping

between itself and its type in MAP . For each member of UV , initially we set its

type in MAP to Unknown. Next, we try to identify variables, arguments, return

types, and expressions stored in MAP that have the same type (Lines 9-13). If two

members ofMAP are in a type-equivalence relation, we combine their correspond-

ing mappings in MAP (Lines 10-12). Note that we consider two members, which

have a type-equivalence relation if there is a type-equivalence relation between two

elements from each member (i.e., s1, s2), as a type-equivalence. We perform this

unification iteratively by subsequent application of the inference heuristics [78]. We

try to put all variables of the same type together and infer the types of undeclared/un-

defined variables, arguments, and return values based on variables of known types.

As the unification proceeds, the number of remaining mappings decreases. The

unification process ends when the number of mappings does not change anymore

(i.e., a fixed point is reached) (Line 13). Note that this fixed point is guaranteed to

eventually be reached since every time line 11 is executed, we reduce the number

of mappings in MAP by one. Since there is a finite number of mappings in MAP ,

the repeat-until structure (Lines 9-14) must eventually terminate. At the end of the

process, we have inferred equivalence classes of variables, arguments, and return
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values that must be of the same type. For some of these equivalence classes, we can

infer the type since one member of the class is defined in the code fragment. For

other equivalence classes, the type is still Unknown. For these equivalence classes,

we replace Unknown with int (Line 14). This operation (replacing Unknown with

int) does not affect the compilability of the resulting code as there is no conflicting

type assignment. Please note that we are only interested in recovering dependency

relationships among program elements in the code fragment and not the full seman-

tics of the code fragment.

At the end of the above steps, we would be able to infer the types of all variables,

function arguments and return values. We also know the signatures of the missing

functions (including types of arguments and return values.) and type definition (e.g.,

name of attribute, member function, and their corresponding types, etc.). Using

these pieces of information, we then add necessary code (e.g., variable declarations,

function definitions, new classes, include library, etc.) to make the code fragment

compile (Lines 15-18).

In Algorithm 2, we traverse the parse tree node by node starting from its root.

The goal is to update a list of declared variables and constants (DV ), undeclared/un-

defined variables, arguments, return values (UV ), undefined functions (UF ), unde-

fined types (UT ) and relations of variables and expressions (RV ) based on the parse

tree. We consider several cases where we need to update our lists: start of a local

block (e.g., if, for, while, switch-case blocks, etc.), variable declaration or constan-

t, expression, assignment, operator, function invocation, and undeclared variable

reference. When we encounter the start of a local block, we might find a set of

declared variables defined locally for that block in the parse tree (Line 17). We add

all these local variables to DV when we enter the local block. We then recursively

call the procedure Traverse to visit the children of the local block’s start node in

the parse tree (Line 18). We remove these local variables from DV when we exit

the local block (Line 19). If the local block is a switch-case block, we update RV

with “switch-case condition” (cf. Table 5.1) relationship of expressions in switch
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s w i t c h ( x ){
c a s e 1 :

r e t u r n t r u e ;
d e f a u l t :

r e t u r n f a l s e ;
}

Figure 5.2: An Example Code Snippet of Switch-case Condition

statement and case statement (Lines 14-16).

For example, in Figure 5.2, we assign the “switch-case condition” relation to

variable x and constant 1 and store it in RV . When we visit a variable declaration

or constant node, we update our list of declared variables DV (Lines 22-24). When

we visit a reference to an undeclared variable, we update UV (Lines 26-27). If

the undeclared variable is an attribute of an object, we also update UT , including

updating the attribute for the object. (Lines 28-30). When we visit an expression

node, we add it to EX and call Traverse recursively (Lines 33-37). When we

visit an assignment node, we update RV with an “assignment” relationship with

the return value of expressions on the left and right sides (Line 39). Next, the left

side and right side of the assignment are traversed recursively (Lines 40-41). For

example, for the assignment c = b + tag → getSize() in Figure 5.3, we apply the

“assignment” relationship to variable c and expression b + tag → getSize() and

update it to RV . After the Traverse procedure, with this information, we could

infer c and b+ tag → getSize() have the same type (see step 6 in Table 5.3). When

we visit an operator node, similarly to an assignment node, we update RV with

an “operator” relationship between the expressions connected with the operator and

call Traverse to visit the two expression nodes recursively (Lines 45-47). For

example, for operator node b + tag → getSize() in above example, we assign the

“operator” relationship to the variable b and the expression tag → getSize() and

store it in RV , for inference use in (in the step 4 in Table 5.3). When we visit a

function invocation node, we also consider the arguments and return values of the
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Algorithm 2 Traverse Procedure
1: Traverse(RPT , DV , UV , UF , UT , EX , RV )
2: Inputs:
3: RPT : Root of the parse tree of a code fragment
4: DV : List of declared variables and constants
5: UV : List of undeclared/undefined variables, arguments, return values
6: UF : List of undefined functions
7: UT : List of undefined types
8: EX: List of expressions
9: RV : List of relations of variables and expressions
10: Outputs: DV , UV , UF , UT , EX , RV
11: Method:
12: for each child c of RPT do
13: if c is a start of a local block then
14: if c is a switch case condition block then
15: Add into RV the type-equivalence relations between the expressions in the switch statement and the expres-

sions in the case statements based on heuristic in Table 5.1
16: end if
17: Add locally declared variables into DV
18: Traverse(c, DV , UV , UF , UT , RV )
19: Remove locally declared variables from DV
20: Continue
21: end if
22: if c is a declared variable or a constant then
23: Add into DV the variable/constant with its type
24: Continue
25: end if
26: if c is an undeclared variable reference then
27: Add into UV this new variable
28: if c is an attribute of an object then
29: Add into UT this new type with its member
30: end if
31: Continue
32: end if
33: if c is an expression then
34: Add into EX this new expression
35: Traverse(c’s left side, DV , UV , UF , UT , EX , RV )
36: Continue
37: end if
38: if c is an assignment then
39: Add into RV the type-equivalence relations between the expressions of c’s left side and c’s right side based on

heuristic in Table 5.1
40: Traverse(c’s left side, DV , UV , UF , UT , EX , RV )
41: Traverse(c’s right side, DV , UV , UF , UT , EX , RV )
42: Continue
43: end if
44: if c is an operator then
45: Add into RV the type-equivalence relations between the expressions connected with the operator based on

heuristic in Table 5.1
46: Traverse(c’s left side, DV , UV , UF , UT , EX , RV )
47: Traverse(c’s right side, DV , UV , UF , UT , EX , RV )
48: Continue
49: end if
50: if c is a function invocation then
51: Update UF
52: for each argument of its invocation a of c do
53: Add into RV the type-equivalence relations between the argument expression a and its corresponding pa-

rameter of c based on heuristic in Table 5.1
54: Traverse(a, DV , UV , UF , UT , EX , RV )
55: end for
56: Add into RV the type-equivalence relations between the return expression a and of c’s return type based on

heuristic in Table 5.1
57: Traverse(c’s return, DV , UV , UF , UT , EX , RV )
58: if c is called from an object then
59: Update UT
60: end if
61: Continue
62: end if
63: Traverse(c, DV , UV , UF , UT , EX , RV )
64: end for
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i f ( t ag−>check ( a , b , c ) ) {
t ag−>a = a ;
b = 0 ;
c = b + tag−>g e t S i z e ( ) ;
t a g 1 = t a g ;
d = tag1−>g e t S i z e ( ) ;

} e l s e {
r e t u r n a ;

}

Figure 5.3: An example of code snippet

function invocations. First, we update RV with a “function definition and invoca-

tion” relationship between the expressions in the argument nodes and the parameter

of the function (Line 52). Second, we invoke the procedure Traverse to visit the

argument nodes (Line 53). We deal with the return value of the function in the same

way as arguments node (Lines 55-56). For example, the pair of a variable a and an

argument checkarg12 is assigned as “function definition and invocation” and used to

do inference (in the step 1 in Table 5.3). Furthermore, if the function is called from

an object, we also add the object variable to UV and update the list of undefined

types (UT ), including updating the member function of the object (Lines 57-59).

For example, for tag → getSize(), we add tag to UT as TAG3, meanwhile we

add the function getSize() as TAG’s member function. We also assign a “function

definition and invocation” relationship to the expression tag → getSize() and the

return value of function TAG→ getSize()4 and update it to RV .

Example. We use the simple code fragment shown in Figure 5.3 to illustrate how

the algorithm works.

We would like to extend the code fragment and make it compile. First, we

generate a parse tree for it and traverse the tree to find the undeclared/undefined

variables, functions, expressions, types, and type-equivalence relations.

2First argument of function tag → check()
3We simply name a type by using its corresponding variable name in uppercase letters. The

signature of the type of variable tag.
4The member function of TAG
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The results are shown in Table 5.2.

Table 5.2: The Results of Lists UT , UF , UV , and EX .

List Name Items in List

UT TAG, TAG1

UF TAG→check(), TAG→getSize(), TAG1→getSize()

UV tag, a, b, c, d, tag→a, tag→check(), TAG→checkreturn, checkarg1,

checkarg2, checkarg3, TAG→getSizereturn, TAG1→getSizereturn

EX tag→getSize(), tag1→getSize(), b+ tag → getSize()

We notice that tag is an object, thus we create a class named TAG and it has a as

an attribute and two methods check and getSize. We simply name a type by using

its corresponding variable’s name in uppercase letters. We deal with tag1 in the

same way. If during type inference, we find two objects are the same, we merge the

corresponding types into one, and keep the attribute (i.e., signature and type) and

member functions (i.e., signature, types of arguments and return value) of the new

type consistent with older ones. For example, at step 7 in Table 5.3, we infer that

the type of tag and tag1 are the same. We merge those two classes and make sure

that the functions getSize() in both of them are consistent. In this case, the type of

the return values TAG→ getSizereturn
5 and TAG1→ getSizereturn is indeed the

same.

Next, we infer the types of the variables, argument, and return values. The

inference process proceeds following the steps listed in Table 5.3. Initially, each

variable, argument, and return value either declared or undeclared has its own map-

ping. So far, we only know the type of tag and 0. In step 1, the return val-

ue TAG → checkreturn and expression tag → check(), a and checkarg1, b and

checkarg2, and c and checkarg3 are merged by following the function definition

5The return value of TAG→getSize().
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Table 5.3: Illustration of our type inference process
Step Mappings Inference heuristic

1 {tag} 7→ TAG, {a, checkarg1} 7→ Unknown {tag → a} 7→ Unknown,
{b, checkarg2} 7→ Unknown, {d} 7→ Unknown, {c, checkarg3} 7→ Unknown,
{TAG→ checkreturn, tag → check()} 7→ Unknown,
{0} 7→ int, {tag1} 7→ TAG1, {tag → getSize()} 7→ Unknown,
{tag1→ getSize()} 7→ Unknown, {TAG→ getSizereturn} 7→ Unknown,
{TAG1→ getSizereturn} 7→ Unknown, {b+ tag → getSize()} 7→
Unknown

Function defini-
tion and invocation
(tag→check(a,b,c))

2 {tag} 7→ TAG, {checkarg1, a, tag → a} 7→ Unknown,
{b, checkarg2} 7→ Unknown, {d} 7→ Unknown, {c, checkarg2} 7→ Unknown,
{0} 7→ int, {TAG→ checkreturn, tag → check()} 7→ Unknown,
{tag1} 7→ TAG1, {tag → getSize()} 7→ Unknown,
{tag1→ getSize()} 7→ Unknown, {TAG→ getSizereturn} 7→ Unknown,
{TAG1→ getSizereturn} 7→ Unknown, {b+ tag → getSize()} 7→
Unknown

Assignment (tag→a =
a)

3 {tag} 7→ TAG, {a, checkarg1tag → a} 7→ Unknown,
{b, checkarg2, 0} 7→ int, {d} 7→ Unknown, {c, checkarg3} 7→ Unknown,
{tag1} 7→ TAG1, {TAG→ checkreturn, tag → check()} 7→ Unknown,
{tag → getSize()} 7→ Unknown, {tag1→ getSize()} 7→ Unknown,
{TAG→ getSizereturn} 7→ Unknown, {TAG1→ getSizereturn} 7→ Unknown,
{b+ tag → getSize()} 7→ Unknown

Assignment (b = 0)

4 {tag} 7→ TAG, {a, checkarg1tag → a} 7→ Unknown,
{b, checkarg2, 0} 7→ int, {tag → getSize(), TAG →
getSizereturn} 7→ Unknown, {d} 7→ Unknown, {c, checkarg3} 7→ Unknown,
{TAG→ checkreturn, tag → check()} 7→ Unknown,
{tag1} 7→ TAG1, {tag1→ getSize()} 7→ Unknown,
{TAG1→ getSizereturn} 7→ Unknown, {b+ tag → getSize()} 7→
Unknown

Function defini-
tion and invocation
(tag→getSize())

5 {tag} 7→ TAG, {a, checkarg1, tag → a} 7→ Unknown,
{b, checkarg2, 0, tag → getSize(), TAG → getSizereturn} 7→
int, {d} 7→ Unknown, {c, checkarg3} 7→ Unknown,
{TAG→ checkreturn, tag → check()} 7→ Unknown,
{tag1} 7→ TAG1, {tag1→ getSize()} 7→ Unknown,
{TAG1→ getSizereturn} 7→ Unknown, {b+ tag → getSize()} 7→
Unknown

Operator (b +
tag→getSize())

6 {tag} 7→ TAG, {a, checkarg1, tag → a} 7→ Unknown,
{checkarg2, checkarg3, b, 0, c, tag → getSize(),
TAG → getSizereturn, b + tag → getSize()} 7→
int, {TAG→ checkreturn, tag → check()} 7→ Unknown,
{d} 7→ Unknown, {tag1} 7→ TAG1, {tag1→ getSize()} 7→ Unknown,
{TAG1→ getSizereturn} 7→ Unknown

Assignment (c = b +
tag→getSize())

7 {tag, tag1} 7→ TAG, {a, checkarg1, tag → a} 7→ Unknown,
{b, checkarg2, checkarg3, 0, c, tag → getSize(),
TAG → getSizereturn, b + tag → getSize()} 7→
int, {TAG→ checkreturn, tag → check()} 7→ Unknown,
{tag1→ getSize(), TAG→ getSizereturn} 7→ Unknown,
{d} 7→ Unknown

Assignment (tag1 =
tag )

8 {tag, tag1} 7→ TAG, {a, checkarg1, tag → a} 7→ Unknown,
{b, checkarg2, checkarg3, 0, c, tag → getSize(), TAG →
getSizereturn, tag1 → getSize(), b + tag → getSize()} 7→ int,
{TAG→ checkreturn, tag → check()} 7→ Unknown, {d} 7→ Unknown

Function defini-
tion and invocation
(tag→getSize())

9 {tag, tag1} 7→ TAG, {a, checkarg1, tag → a} 7→ Unknown,
{d, b, checkarg2, checkarg3, 0, c, tag → getSize(), TAG →
getSizereturn, tag1 → getSize(), b + tag → getSize()} 7→ int,
{TAG→ checkreturn, tag → check()} 7→ Unknown

Assignment (d =
tag→getSize())
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class test{
int testmain(){

int a, b, c, d;
TAG* tag, tag1;

if(tag->check(a,b,c)){
tag->a = a;
b = 0;
c = b + tag->getSize();
tag1 = tag;
d = tag1->getSize();

}else{
return a;

}
return 0;

}
static void main(){

test *t = new test();
t->testmain();

}
}

class TAG{
public int check(int a0, int a1, int a2){}
public int getSize(){}
public int a;
TAG(){}

}

Figure 5.4: Compilable code extended from a code snippet

and invocation heuristic (see Table 5.1) based on the relations stored in RV . In

step 2, the mappings for a and tag → a are merged following the assignmen-

t heuristic. However, their type is still unknown since the type of a and tag→a

are both unknown. The same heuristic is applied in step 3. In step 5, the op-

erator heuristic is applied and we merge b and tag → getSize(). In following

steps, the function call and invocation and operator heuristics are applied and we

are able to infer the types of d, b, check(arg2), checkarg3, 0, c, tag → getSize(),

TAG→ getSizereturn,tag1→ getSize() are all int since type of 0 is int. We could

not merge any other mappings. Finally, we replace all unknown types with int.

After the above steps, we have the needed information to add variable declara-

tions, a new class, and other needed pieces of code. The code fragment (in gray

background) is extended to the compilable code (excluding #include package part

in Figure 5.4.

Finally, we feed the extended code to CodeSurfer and get a PDG. We then re-

move some nodes from the PDG that correspond to the added code and only keep
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those that correspond to the input code fragment.

5.4 Query Generation Engine

In this section, we present how we find commonalities among multiple PDGs gen-

erated from a set of example code fragments, and convert these commonalities into

a dependency query. As Figure 5.1 shows, there are three steps in our query gener-

ation process:

1. Mine simple subgraphs from a set of PDGs

2. Recover text information for each node in the common subgraphs

3. Construct a query from the text-enriched subgraphs

We describe these steps below.

Before elaborating the detail, we give some definitions about the PDG. We rep-

resent a PDG as a graph G = (N,E), where N is a set of nodes and E is a set of

edges. N is defined as the set {n1 = (ntype1, text1), . . . ni = (ntypei, texti), . . .}.

Each node has two labels: ntypei which is the node type, and texti which is the

textual representations of the corresponding program element in a piece of source

code. Let ni.ntype and ni.text denote the node type and text label of node ni. E

is defined as the set {e1 = (nL1 , n
R
1 , etype1), . . . , ei = (nLi , n

R
i , etypei), . . .}. Each

edge contains two nodes nLi and nRi ; these are the nodes connected by the edge.

Each edge also has a type etype, etype can either be data dependency or control

dependency (i.e., etype ∈ {data, control}). Most graph mining algorithms, only

accept simple graphs, i.e., graphs with one categorical label per node (edge). We

create a simple graph representation of a PDG G by dropping the text information

from the node labels. We denote the resulting simple graph Gnotext.
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5.4.1 Mine Simple Maximal Common Subgraph

First, we just focus on the node and edge types, i.e., ntype and etype. We convert

each PDGG into its simple graph representationGnotext. Next we mine for maximal

subgraphs that appear on all Gnotext. We get one such simple maximal common

subgraph. We mine this maximal common subgraph using an existing graph mining

tool called Gaston6.

5.4.2 Recover Textual Information

At this step, we have a simple subgraph Snotext that is common for the set of all

PDGs PDGSet. Our next job is to recover textual information for each node of

this subgraph. The textual information of a node captures semantic and structural

information. If the ntype of a node is function, its textual information represents

the name of the function. If the ntype of a node is control statement, its textual

information represents the type of the control statement (e.g., if, while, etc). We

extract the textual information to create “contain string” constraints for a node in a

DQL query.

Note that this step is not trivial since each node in Snotext can match multiple

nodes containing different textual information in a particular PDG, and thus there is

a need to choose the best matching node. The best matching nodes among different

PDGs may contain different textual information, and thus there is a need to unify

this textual information by removing information specific to a matching node of a

PDG.

High-Level Description. The algorithm performing textual content recovery is

shown in Algorithm 3. The idea is to perform graph matching. We match each

simple subgraph Snotext to each PDG Gj in PDGSet based on the labels ntype and

etype (we ignore the textual labels) (Lines 8-11). The graph matching operation

returns a set of candidate nodes in Gj that potentially match each node of Snotexti .

6http://www.liacs.nl/∼snijssen/gaston/
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Algorithm 3 Textual Information Recovery Procedure
1: recoverText(PDGSet, Gnotextsub ,Candidate)
2: Input:
3: PDGSet: A set of PDGs
4: Snotext: A common subgraph of PDGs in PDGSet ignoring text labels
5: Output: Text enriched Snotext (i.e., S)
6: Method:
7: Let Cand = Pool = {}
8: for each Gi in PDGSet do
9: Perform a graph matching operation between Snotext and Gi
10: Let CandGi

n stores all candidates for node n in Snotext

11: end for
12: for each node n in Snotext do
13: Let Rep = {} // Representative nodes from each PDGs
14: if ∀Gi ∈ PDGSet.|CandGi

n | = 1 then
15: Rep = {c|∃Gi∈PDGSet.c ∈ Cand

Gi
n }

16: else
17: Let Reference = {} //First representative node
18: Let Others = {} //Candidates from other PDGs
19: if ∃Gi ∈ PDGSet.|CandGi

n | = 1 then
20: Reference = {c ∈ CandGi

n | |CandGi
n | = 1}

21: Others = {CandGi
n |Gi ∈ PDGSet ∧ |CandGi

n | > 1}
22: else
23: Reference = an arbitrary CandGi

n

24: Others = {CandGi
n |Gi ∈ PDGSet} \Reference

25: Delete all but (random) node in Reference
26: end if
27: Let Rep = selectRepCand(Reference,Others)
28: end if
29: Remove nodes in Rep from Cand

Gi
n′ , n′ 6=n and Gi∈PDGSet

30: n.Text = Unify text labels of nodes in Rep
31: end for

Notation-wise, given a node n in Snotexti , we denote its set of candidate nodes in Gj

as CandGjn . We select one representative candidate per PDG and extract its textual

label (Lines 12-28). A candidate node of a PDG can only represent one node in

Snotext. Thus we delete the representative nodes from the sets of candidate nodes of

other nodes in Snotext (Line 29). We then unify this set of labels to recover the label

for node n (Line 30). We elaborate our approach to select representative candidates

and unify text labels in the following paragraphs.

Selecting Representative Candidates. We would like to select one representative

candidate per PDG for a node n. If all candidate sets are of size 1, then we simply

take all candidate nodes as the representative nodes (Lines 14-15). Otherwise, we

would like to pick representative nodes such that they are similar to one another.

The rationale for this would be explained further by an example described in Sec-

tion 5.4.4. To pick similar representative nodes, first we pick a set of reference nodes

(Lines 20, 23, and 25). If there are candidate set of size 1, we take the nodes in these
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sets as the reference nodes (Lines 19-20). Otherwise, we pick an arbitrary candidate

node as a reference node (Lines 23, 25). Next we pick representative nodes from

other PDGs that are similar to the reference nodes (Line 27). Algorithm 4 describe

this last step in more detail. In Algorithm 4, we first take the input reference nodes

as the representative nodes (Line 7). Next, we visit each candidate node set of the

other PDGs and pick a node that is the most similar to the selected representative

nodes (Lines 8-12).

Algorithm 4 Selection of Representative Candidates
1: selectRepCand(Reference, Others)
2: Input:
3: Reference: Selected representative candidates
4: Others: Candidates from other PDGs
5: Output: All representative candidates
6: Method:
7: Let Rep = {n|n ∈ Reference}
8: for each set CandGi

n in Others do
9: Select a node n′ in CandGi

n which is the most similar to all nodes in Reference
10: Rep = Rep

⋃
{n′}

11: Others = Others \ CandGi
n

12: end for
13: return Rep

At line 9 of Algorithm 4, we need to measure the similarity between nodes. We

measure the similarity between nodes by considering their text labels. Each node

is represented by a vector that captures its textual information. Each element of the

vector corresponds to a word token that appears in the corresponding node’s text

label. In our dataset, the sizes of these vectors are from 1 to 11 with a mean of 4.2.

The vocabulary of these vectors contains all words that appear in the textual labels

of all nodes in the PDGs. We then weigh each word by using a TF-IDF weighting

scheme [70]. Here, the TF (Term Frequency) of a word refers to the number of times

the word appear in the text label. IDF (Inverse Document Frequency) refers to 1 / DF

(Document Frequency), where DF is the number of representative nodes with text

labels containing the word. Each node is then represented as a vector of weights.

Similarity between two nodes n1 and n2 is measured by the similarity between their

corresponding weight vectors v1 and v2. We use standard cosine similarity for this

purpose [70]:
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cos(v1, v2) =

∑
i∈(v1

⋃
v2)

v1[i]× v2[i]√∑
i∈v1

v1[i]2 ×
√∑

i∈v2
v2[i]2

Finally, we average the similarity scores of the node n in CandGin and each node in

Reference and select the node with the highest score as the most similar one.

Unifying Textual Labels. For this process, for a node n in a subgraph Snotext, we

have as input a set of representative nodes with their text labels. Our goal is to create

a single unified textual label for n (Line 30). To do this, we perform the following

steps:

1. For each representative node text label, we pre-process it as follows: If

n.ntype = function call, keep on the function name. If n.ntype = expres-

sion, keep only the right side of the expression. For all other node types, all

text is kept.

2. Get the longest common text from the pre-processed text labels. In this step,

we find the longest consecutive sequence of characters [26] (we don’t consid-

er case-sensitivity) that appears in all the text labels.

3. Split the resulting text and remove special symbols. We first split the resulting

text with white space. We then perform Camel Case splitting on each token to

split identifiers [5]. For example, we split “getString” into “get” and “string”.

We also split each token that contains some special symbols (i.e., operators

and numbers). At last, we remove some special symbols (i.e., operators and

numbers).

Example: Assume two representative nodes n1 and n2 with labels “a = ge-

tExtString(para1) + 123 + var12” and “b = ExtString(para2) + 123 + var13” respec-

tively. We first perform step 1 on these two nodes. This step removes “para1” from

n1 and “para2” for n2 as their ntype is function call. We also remove “a =” and

“b =” as we only keep the right hand side of an expression. After step 1, we get
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“getExtString + 123 + var12” and “ExtString + 123 + var13” for n1 and n2, respec-

tively. Following step 2, we get the longest common text “ExtString + 123 + var1”

from “getExtString + 123 + var12” and “ExtString + 123 + var13”. At the last step,

we split the longest common text “ExtString + 123 + var1” to “ext”, “string”, “+”,

“123”, “+”, “var”, and “1” and then remove “+”, “123” and “1”. Finally, we get

“ext”, “string” and “var”.

5.4.3 Construct Query from Enriched Subgraphs

For this step, we have as input a text-enriched common maximal subgraph S. We

create a dependency query (expressed in DQL which was described in Section 4.4)

from this subgraph by the following steps:

1. Output the nodes in S and their types as node declarations of the query

2. Output the edges in S as relationship descriptions of the query

3. Output the text labels of nodes in S as node descriptions of the query

4. Identify all nodes defined in the query as target nodes

5.4.4 Example

We use Figure 5.5 to illustrate the query generation process. PDGs GA and GB are

the inputs and a query written in DQL is the output. First, we perform graph mining

on GA and GB to get a simple maximal common subgraph which is S.

Next, we run Algorithm 3 on GA, GB, and S to recover the textual information

for the nodes in S. For node s1, its representative nodes in GA and GB can be easily

identified as there is only one candidate node for each PDG; they are nodes a1 and

b1. After we unify the text labels of a1 and b1, we get “if” as the text label of s1.

For node s2, there are two candidate nodes in GA (i.e., nodes a2 and a3), and one

candidate node in GB (i.e., node b2). For this case, our algorithm first selects node
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b2 as a representative node. It then finds the node in {a2,a3} that is the most similar

to b2. It selects a3 as it is more similar to b2 than a2. After we unify the text labels

of a3 and b2, we obtain “ext” by getting the longest common text “ext()” and then

removing the parentheses.

Finally, we convert the text-enriched S to a dependency query expressed in

DQL. The resulting query is as follows:

Node declarations: ctrlPoint A, Expression B;

Node descriptions: A contains if, B contains ext;

Relationship descriptions: A oneStep controls B;

Targets: A,B;

a1

a2

b1

b2

expression

B = ext()+foo()

a3

expression

C  = ext()

control_point

If(C>1)

expression

C=getStr()

control control control 

control_point

If(B>3)

GA

s1

s2

expression
control 

control_point

S

GB

Figure 5.5: Query Generation Example

5.5 Evaluation

5.5.1 Experimental Settings

To evaluate our proposed approach, we extract code search scenarios from reposi-

tories of real software systems. We are especially interested in recovering real-life
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changes that need to be applied to various locations in a code base. We use these

changes to simulate code search scenarios. Developers might know some of these

locations but would like to know other relevant locations. Code search could help

developers to find these other locations. This experimental setting follows the set-

ting described in Wang et al.’ work [112]. The code bases that we use for our

experiments are from four realistic programs written in C and C++ namely Apache

Http Server (12 versions), Inkscape (9 versions), Apache Subversion (8 versions),

and Libmpeg (3 versions), which have undergone at least thirteen years of contin-

uous development, improvement, and optimization. The details of these programs

are shown in Table 5.4.

In previous work [108], we perform an empirical study on widespread changes.

To identify widespread changes, we look for commits that touch many files such

that these files are modified in a similar way structurally and semantically. Files

involved in a widespread change are modified for the same purpose, e.g., fixing the

same bug, etc. To check whether the files are modified in a semantically similar

way, we manually inspect the files to find whether they are indeed changed for the

same purpose. We follow the same procedure to identify widespread changes on

the 4 programs that we use in this study. Given 47 widespread changes. Each

widespread change involves 5 to 53 code locations, with an average of 10 locations.

Let us refer to the code requiring change at each location as a fragment. In total,

we have 478 fragments. Each fragment is 2 to 20 lines of code. To simulate code

search scenarios, for each widespread change, we randomly pick two fragments as

the input to a code search task. We test the effectiveness of the code search task

using the remaining fragments, i.e., the remaining fragments become the gold set or

standard. Since we have 47 widespread changes, we simulate 47 code search tasks.

We implement our AutoQuery approach in Python and Java. AutoQuery con-

verts code examples into dependency queries. We use the approach by Wang et

al. [112] as the backend code search engine that processes the dependency queries

and return relevant pieces of code. We use a desktop with an Intel Core i5 3.2GHz
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Table 5.4: Programs Analyzed in this Study
Name Description Size (KLOC) #Versions

Apache Http
Server

HTTP Web Server. 264.5 12

Apache Sub-
version

Open source version control system. 483.5 8

Inkscape Open source vector graphics editor. 458.2 9

Libmpeg2 Library for decoding MPEG-2 and MPEG-1 video
streams.

37.3 3

CPU installed with 4GiB of memory and 2TiB of hard disks to run experiments.

We compare the performance of AutoQuery with manually constructed queries

(we refer to them as UserQuery). We perform a user study involving 10 participants

and the 47 code search tasks. Among the 10 participants, 9 of them are PhD stu-

dents who have at least two years of C and C++ programming experience. One of

them is a professional software engineer who has three years of C and C++ pro-

gramming experience. All of them know are familiar with Program Dependency

Graphs (PDGs) – many of them have taken a course on program analysis.

We give each participant tasks in the following format: given a set of code frag-

ments, generate a DQL query that can capture the code fragments in this set. Each

participant is assigned four or five tasks. For each task, a participant is given two

fragments (i.e., code examples) along with the corresponding PDGs of the frag-

ments, to ease the task. A participant needs to look at the code fragments as well

as their corresponding PDGs, and construct a dependency query expressed in DQL

to find other similar code. We record the queries users created and the time each of

them takes to complete the construction of a query. Before users start with the tasks,

each of them is given a 20 minute tutorial about dependence-based code search and

DQL. They are also given a 10 minute exercise to construct a query from simple

code fragments. These tutorial and exercise are meant to familiarize users with the

tasks.
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5.5.2 Experiment Results

We aim to answer the following research questions:

1. RQ1: Can AutoQuery generate good dependency queries that can retrieve

relevant search results?

2. RQ2: Can AutoQuery perform comparably to developers in constructing

good dependency queries?

3. RQ3: Can AutoQuery reduce the time it takes to construct queries?

The first research question investigates the overall effectiveness of our proposed

approach. The second research question investigates the effectiveness of AutoQuery

as compared to manually constructed queries (UserQuery). The third research ques-

tion investigates the efficiency of our approach as compared to UserQuery.

RQ1: Effectiveness of AutoQuery

To answer this research question, for each of the 47 tasks, we run the dependency

query generated by AutoQuery using the dependence-based code search engine of

Wang et al. [112]. We count the number of code fragments in the gold set that are

retrieved. Based on this, we compute the average precision, recall, and F-measure

which are standard information retrieval measures [70]. For a given task, precision,

recall, and F-measures are defined as follows:

precision =
# retrieved code fragments in the gold set

# retrieved code fragments

recall =
# retrieved code fragments in the gold set

# code fragments in the gold set

F −measure =
2× precision× recall
precision+ recall

F-measure is the harmonic mean of precision and recall and it is often used as

a summary measure. It quantifies if an increase in precision outweighs a decrease

87



Table 5.5: AutoQuery vs. UserQuery: Precision, Recall, and F-measure

AutoQuery UserQuery

Precision 0.684 0.584

Recall 0.721 0.767

F-measure 0.702 0.664

in recall (and vice versa). Table 5.5 shows the result. The average precision, recall,

and F-measure for the 47 tasks are 68.4%, 72.1%, and 70.2%, respectively. For

25 automatically constructed queries, we are able to find all fragments in the gold

set (recall = 1). For 21 automatically constructed queries, all retrieved fragments

are in the gold set (precision = 1). For 12 automatically constructed queries, all

fragments in the gold set are retrieved and all retrieved fragments are in the gold set

(F-measure = 1).

In the default setting, for each task, AutoQuery is given two code fragments to

generate a query. We next test the effectiveness of AutoQuery with different num-

bers of code fragments as input. In this experiment, we give k randomly selected

code fragments to AutoQuery. Since the number of relevant code fragments for each

task ranges from 5 to 53, we vary the value of k in set {1,2,3,4} and measure the

effectiveness in terms of recall, precision and F-measure. In Figure 5.6, we present

the effectiveness of AutoQuery for different numbers of code fragments. We notice

that the recall increases as the number of code fragments increases, and the preci-

sion decreases as the number of code fragments increases. As more code fragments

are used to generate a query, a more general query is generated. Searching using

a more general query returns a larger number of code fragments. As the number

of code fragments increases, more false positives are introduced, which leads to a

lower precision value. On other hand, as the number of code fragments increases,

fewer false negatives are introduced, which leads to a higher recall. In terms of F-

measure, the harmonic mean of precision and recall, AutoQuery performs the best

when three code fragments are given.
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Figure 5.6: Results (y-axis) vary as the number of code fragments (x-axis) increase

We also perform a 5-fold cross validation like experiment to evaluate Auto-

Query. We randomly split 1/5 of the code fragments in each gold set of our code

search tasks into 5 buckets. We then perform 5 iterations. In each iteration, we use

fragments in one of the buckets to generate a query and use the other four buckets

to test the effectiveness of AutoQuery. For this experiment, AutoQuery achieves a

recall, precision, and F-measure of 0.861, 0.64, and 0.734, respectively

RQ2: AutoQuery Vs. UserQuery

To answer this research question, we compare the results of AutoQuery with those

of UserQuery. For each of the 47 code search tasks, we use the same pairs of code

fragments as input to AutoQuery and UserQuery.

As shown in Table 5.5, the precision, recall, and F-measure of UserQuery are

58.4%, 76.7%, and 66.4%, respectively. In general, users’ queries are more general

(contain fewer constraints), while queries generated by AutoQuery are more specific

(contain more constraints). This makes the results obtained from the queries gen-

erated by AutoQuery more precise (resulting in higher precision). However, some

relevant results are missed (resulting in lower recall) because of the more specific

queries. These is thus again trade-off between precision and recall. To measure this

trade-off, we also compute the F-measure. In terms of the F-measure, AutoQuery
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achieves a 5.7% improvement over UserQuery.

We also perform a Wilcoxon signed-rank test [115] to test the significance of

the differences in the performance of AutoQuery and UserQuery measured in terms

of recall, precision and F-measure. The results show that the differences in terms of

F-measure (p-value = 0.49) and recall (p-value = 0.17) are not significant, while the

difference in terms of precision is significant (p-value = 0.02). This shows that Au-

toQuery is comparable to developers in constructing dependency queries in terms

of recall and F-measure, and the improvement in terms of precision achieved by

AutoQuery in constructing dependency queries over developers is statistically sig-

nificant.

Table 5.6 presents the number of tasks where AutoQuery outperforms User-

Query (and vice versa). In terms of precision, AutoQuery wins on 18 queries and

loses on 7 queries. In terms or recall, AutoQuery wins on 4 queries and loses on

5 queries. In terms of F-measure, AutoQuery wins on 16 queries and loses on 9

queries. AutoQuery and UserQuery do not produce the exact same search results

for the remaining queries, however their precision (or recall, or F-measure) values

for these queries are the same. Figures 5.7, 5.8, and 5.9 present precision, recall,

and F-measure of AutoQuery and UserQuery for each of the 47 tasks. The above re-

sults show that AutoQuery is comparable to developers in constructing dependency

queries.

We can notice that for Query 20 in Figure 5.7, AutoQuery achieves a preci-

sion value of 1, while UserQuery can not find any correct results, which leads to

poor precision. We manually check the query generated by the user, and we notice

that the user miss important constraints or make wrong constraints which make the

query ineffective at finding relevant code fragments. The precisions of the queries

formed by users for tasks 13, 18-21 are low. We have checked the queries we got

from tasks 13, 18-21 and find that they are generated by users that are able to create

relatively good queries for other tasks. In Figure 5.8, for some queries (e.g., Query

41) UserQuery outperforms AutoQuery. We checked the queries generated by both
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Table 5.6: AutoQuery vs. UserQuery: Number of Winning Queries

AutoQuery Wins UserQuery Wins

Precision 18 7

Recall 4 5

F-measure 16 9

of them and we found that the queries generated by users are more general with

fewer constraints, while queries obtained from AutoQuery are more specific with

more constraints. More general queries return more results which causes a User-

Query to achieve a higher recall than AutoQuery. Based on this observation, in the

future, to improve the effectiveness of AutoQuery, we plan to extend it by develop-

ing a machine learning technique that can remove or weaken some of the generated

constraints automatically.
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Figure 5.8: AutoQuery vs. UserQuery: Recall per Task
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RQ3: Efficiency of AutoQuery compared with UserQuery

Static analysis and data mining techniques can take much time and resources to run

to completion. Some static analysis and data mining techniques can run for hours.

Our approach makes use of both static analysis and data mining. Graph mining in

particular can be a time consuming operation. Thus, in this research question we

want to investigate whether our approach is efficient enough as compared to the

time it takes for developers to manually construct queries. If our approach is slower

than the time developers take to manually construct queries, then it might not be

practical. Another side goal of this research question is to investigate the effort

developers need to construct queries as measured by the time they take to construct

them.
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Figure 5.10: AutoQuery vs. UserQuery: Efficiency

To answer this question, we compare the time it takes for AutoQuery to construct

queries with that of UserQuery. The total time it takes for AutoQuery to construct

the 47 queries is 27.5 seconds. Thus, the average time per query is 0.6 second which

is reasonably short. The total time for developers (UserQuery) to construct the 47
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queries is 10,509 seconds, with an average of 223.6 seconds. Compared with the

time it takes for developers to construct query, our approach is much more efficient.

Many developers are likely to be reluctant to use a code search tool if they need to

think hard for 3-4 minutes to construct a query. AutoQuery addresses this concern.

Figure 5.10 shows the time it takes for AutoQuery and a developer to construct

each of the 47 queries. Almost all queries can by constructed by AutoQuery in less

than a second except for two queries: one of them requires 3.9 seconds and another

requires 19.8 seconds. For these two most complicated queries, developers spend

521 seconds and 723 seconds, respectively. From these experiment results, we can

see that AutoQuery is able to save much developer time.
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( 1 )

i f ( ! t y p e ) {

GTypeInfo i n f o = {

s i z e o f ( S P A t t r i b u t e T a b l e C l a s s ) ,

0 , / / b a s e i n i t

0 , / / b a s e f i n a l i z e

( G C l a s s I n i t F u n c ) s p a t t r i b u t e t a b l e c l a s s i n i t ,

0 , / / c l a s s f i n a l i z e

0 , / / c l a s s d a t a

s i z e o f ( S P A t t r i b u t e T a b l e ) ,

0 , / / n p r e a l l o c s

( G I n s t a n c e I n i t F u n c ) s p a t t r i b u t e t a b l e i n i t ,

0 / / v a l u e t a b l e

} ;

t y p e = g t y p e r e g i s t e r s t a t i c (GTK TYPE VBOX ,

” S P A t t r i b u t e T a b l e ” ,

&i n f o ,

s t a t i c c a s t <GTypeFlags > ( 0 ) ) ;

}

re turn t y p e ;

( 2 )

s t a t i c GType t y p e = 0 ;

i f ( ! t y p e ) {

GTypeInfo i n f o = {

s i z e o f ( S P C t r l R e c t C l a s s ) ,

0 , / / b a s e i n i t

0 , / / b a s e f i n a l i z e

( G C l a s s I n i t F u n c ) s p c t r l r e c t c l a s s i n i t ,

0 , / / c l a s s f i n a l i z e

0 , / / c l a s s d a t a

s i z e o f ( C t r l R e c t ) ,

0 , / / n p r e a l l o c s

( G I n s t a n c e I n i t F u n c ) s p c t r l r e c t i n i t ,

0 / / v a l u e t a b l e

} ;

t y p e = g t y p e r e g i s t e r s t a t i c ( SP TYPE CANVAS ITEM ,

” S P C t r l R e c t ” ,

&i n f o ,

s t a t i c c a s t <GTypeFlags > ( 0 ) ) ;

}

re turn t y p e ;

Figure 5.11: Two Complex Code Fragments Example Containing 19 lines
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( 1 )

i f ( i t em ) {

ec−>s h a p e k n o t h o l d e r = s p i t e m k n o t h o l d e r ( i tem , ec−>d e s k t o p ) ;

Node ∗ s h a p e r e p r ;

s h a p e r e p r = SP OBJECT REPR ( i t em ) ;

i f ( s h a p e r e p r ) {

ec−>s h a p e r e p r = s h a p e r e p r ;

s p r e p r r e f ( s h a p e r e p r ) ;

s p r e p r a d d l i s t e n e r ( s h a p e r e p r , &e c s h a p e r e p r e v e n t s , ec ) ;

s p r e p r s y n t h e s i z e e v e n t s ( s h a p e r e p r , &e c s h a p e r e p r e v e n t s , ec ) ;

}

( 2 )

i f ( i t em ) {

ec−>s h a p e k n o t h o l d e r = s p i t e m k n o t h o l d e r ( i tem , ec−>d e s k t o p ) ;

Node ∗ s h a p e r e p r ;

s h a p e r e p r = SP OBJECT REPR ( i t em ) ;

i f ( s h a p e r e p r ) {

ec−>s h a p e r e p r = s h a p e r e p r ;

s p r e p r r e f ( s h a p e r e p r ) ;

s p r e p r a d d l i s t e n e r ( s h a p e r e p r , &e c s h a p e r e p r e v e n t s , ec ) ;

s p r e p r s y n t h e s i z e e v e n t s ( s h a p e r e p r , &e c s h a p e r e p r e v e n t s , ec ) ;

}

Figure 5.12: Two Complex Code Fragments Example Containing 10 lines

In Figure 5.11 and 5.12, we present the code fragments for those two queries,

which contain 19 (its PDG has 23 nodes and 10 edges) and 10 lines (its PDG has

21 nodes and 27 edges), respectively. Correspondingly, their dependence graphs are

bigger and more complex, which take more time to generate query by AutoQuery.

In our approach, we perform common graph extraction which is very sensitive to

the size of graph (size of nodes and edges). Also, users cost much more time to

formulate query based on the given code fragments. In the future, one way we

would like to alleviate this problem is by compressing the dependence graph by

removing some unimportant edges and nodes.
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Threats to Validity

Threats to internal validity include experimenter bias. There might be subjectivity in

the queries that a participant formulates. Similar to past studies, e.g., [77, 104, 107],

we do not have a large pool of participants such that each query can be formulated

by many people. It could be the case that some participants may have formulated

very bad queries, which may not be representative of a typical/trained user. Still, we

consider 47 widespread changes and take averages, and we believe averaging helps

reduce the threats. Also, we have given user study participants a 20 minutes tutorial

and 10 minutes exercise (the exercises we gave to the users are similar to the actual

tasks) to familiarize them with writing queries in DQL. We also provided helps and

hints when users faced difficulties during the tasks. The results that we got may be

different if we train them much more. However, if we train users more, users may

behave more like AutoQuery. We decided 30 minutes would be sufficient to become

familiar with DQL and left query construction to users’ diverse creativity.

Threats to external validity relate to the generalizability of our approach. We

have investigated 47 widespread changes and experimented on four realistic pro-

grams written in C and C++. Admittedly, our programs are just a fraction of the

collection of all programs out there. Also, our tasks do not cover all kinds of

widespread changes. In the future, we plan to reduce the threats to external va-

lidity further by investigating more widespread changes and more programs written

in other languages.

5.6 Conclusion and Future Work

Searching through a large base of source code is common activities performed by

developers. Without the aid of automated code search tools, developers need to tap

on their experience to browse relevant source code files and manually find the code

fragments that are related to their tasks at hand. This is not only be time consuming
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but also error-prone. A number of code search tools have been proposed to address

this problem. Many of them accept textual descriptions as user queries and return

relevant code fragments.

Source code contains not only text but also dependencies. Dependence-based

code search tools accept queries expressed as dependency relationships among pro-

gram elements of interest and return code fragments whose constituent program el-

ements satisfy the dependency relationships. Dependence-based code search tools

have been shown to be effective and improve the accuracy of search results than

text-based code search tools. However, there is one drawback that potentially ham-

pers the usage of dependence-based code search. It may be hard for users who have

no or little knowledge of PDGs to construct queries.

To address this drawback, we propose an automatic approach to construct a

query based on common dependency structures and textual information extract-

ed from a set of sample code fragments. We have evaluated our approach with

47 realistic code search tasks on 4 real systems, and show that the automatically

constructed dependency queries recover relevant code with a precision, recall, and

F-measure of 68.4%, 72.1%, and 70.2%, respectively. We have also performed a

user study that shows that our automatically constructed queries are comparable to

human constructed queries in retrieving relevant codes.

In the future, we plan to experiment with more code search tasks and systems.
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Chapter 6

Search-Based Fault Localizaiton

6.1 Introduction

Many approaches have been proposed to help in automating debugging process, e-

specially in localizing faults [2, 15, 45, 60, 65, 87, 120]. One common family of

approaches is spectrum-based fault localization, e.g., [2, 45], where program traces

or abstractions of traces (called program spectra) of correct and failed executions are

compared to identify program elements that likely cause failures and are reported

as potential faults. Some well-known studies include Tarantula [45] and Ochiai [2];

Baah et al. [9] improve fault localization accuracy by using a linear model to esti-

mate the causal effect of a program element on failures. Lucia et al. [67] have also

investigated the effectiveness of more than 20 association measures, and report that

information gain may on average perform the best for fault localization.

We observe that although one measure could be more accurate than other mea-

sures on some datasets, there are programs where a poorer measure performs better

than a better one. We aim to leverage this fact by composing different measures into

a composite one that could perform better than any individual constituent measure.

In this chapter, we model the problem of finding an optimal composition of

various measures as a search-based optimization problem. Our search-based fault

localization engine works on two phases: training and deployment. In the training
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phase, the engine takes in a number of buggy programs along with actual fault

locations to measure how good a particular composition is. A good composition

should be able to locate many bugs in this training set with a high accuracy. Search

heuristics (e.g. simulated annealing [51] and genetic algorithm [35]) are employed

to traverse the search space of all possible linear combinations of the more than 20

association measures to find near optimal ones that perform best on the training set.

In the deployment phase, our engine takes a given buggy program and its spectra,

and applies the composite measure to identify potential fault locations.

We evaluate our search-based fault localization engine on ten programs, includ-

ing seven C programs in the Siemens test suite [38], and three larger programs

(Space in C, and NanoXML and XML-Security in Java) from the Software-artifact

Infrastructure Repository [90, 93]. We compare the effectiveness of our proposed

composite measures with its constituent measures. Similar to past papers [2, 45, 67],

effectiveness is measured based on two criteria: 1. The number of bugs that could

be localized when at most a given proportion of code in a program is inspected, and

2. The proportion of code to be inspected to localize all bugs. We show that our

search-based fault localization could locate 22% and 14% more bugs than Tarantula

and Ochiai respectively when only 10% of the code is inspected. Also, in order

to localize all bugs, we reduce the average amount of code to be inspected from

27.0% (for Tarantula) and 25.3% (for Ochiai) to 20.6% (23.7% and 18.6% reduc-

tion respectively). With Wilcoxon signed-rank test [115], we find that the improved

results are statistically significant.

In the experiments, we also demonstrate the insensitivity of the composite mea-

sures to the training set by performing a random 10-fold cross validation, a cross-

program validation, and a cross-bugtype validation. The validation results show

that the fault localization performance of the composite measures constructed from

different training sets varies only a little, implying that the composite measures can

consistently perform better than individual measures over various kinds of bugs in

various programs.
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6.2 Preliminaries

In this section, we instroduce spectrum based fault localization, and search based

algorithms.

6.2.1 Spectrum Based Fault Localization

Spectrum-based fault localization starts with a faulty program, a set of test cases,

and a test oracle. The set of test cases is run over the faulty program and obser-

vations of how the program runs on each of the test cases are recorded as program

spectra. A program spectrum [30, 88] is simply a set of data or values collected at

runtime; each value could be a program state, or a counter or a flag for a program

element. A test oracle is available to label whether a particular output or execution

of a test case is correct or wrong. Wrong executions are classified as program fail-

ures. The task of a fault localization tool is to find the program elements that are

responsible for the failures (i.e., the faults or the root causes) based on the program

spectra of both correct and wrong executions.

There have been various spectra proposed in the literature [1, 30], but we are

particularly interested in block-hit program spectra, each of which consists of a set

of flags to indicate whether each block is executed or not in each test case.1 An

example of block-hit program spectra is shown in Figure 6.1. The second column

is a code excerpt from the Siemens test programs; the “Block ID” column indicates

the ID of the containing block of statements. A bug lies in the if condition in

Block 3, causing Blocks 4–7 to be skipped when the variable count is 1. The

other columns indicate whether each basic block is executed by test cases: T1, T2,

T3, and T4, along with the information whether each test case passes or fails2. In

1We acknowledge that different spectra may have different effects in fault localization. We use
block-hit program spectra in this chapter mainly for establishing the same ground for comparison
with Tarantula and Ochiai.

2Notice that the code excerpt is a part of a function which could be called many times in a single
execution of the program. Thus, it is possible for Block 2 and Block 3 to be executed in a single test
case.
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Block 
ID 

Code T1 T2 T3 T4 

1 int count; 
int n; 
Ele *proc; 
List *src_queue, *dest_queue; 
if (prio >= MAXPRIO) /*maxprio=3*/ 

• • • • 

2 {return;}  • • • 

3 src_queue = prio_queue[prio]; 
dest_queue = prio_queue[prio+1]; 
count = src_queue->mem_count; 
if (count > 1) /* Bug*//* supposed : count>0*/ { 

• • • • 

4 n = (int) (count*ratio + 1); 
proc = find_nth(src_queue, n); 

 • • 
 

5 if (proc) {  • • 
 

6 src_queue = del_ele(src_queue, proc);  • • 
 

7 proc->priority = prio; 
dest_queue = append_ele(dest_queue, proc); } }} 

 

 • • 
 

 Test Case’s Success (S)/Fail (F) Status: S S S F 
 

Figure 6.1: Example of block-hit program spectra
this example, • denotes that a block is executed by a test case and an empty cell

denotes that a block is not executed by a test case.

Spectrum-based fault localization techniques find the correlation between the

execution of a program element and failures. A number of correlation measures

being proposed and these are commonly termed as suspiciousness measures [1, 3,

4, 45, 46, 67]. Those program elements that are more correlated with failures are

deemed to be more suspicious than the others. Developers are then presented with a

list of program elements sorted based on their suspiciousness scores in descending

order.

6.2.2 Search-based Algorithms

There are different kinds of search based algorithms for optimization. These al-

gorithms typically work on a search space of possible solutions. Each solution is

given a score based on an objective function. Thus, the search space of the possible

solutions forms a landscape; some points in the landscape are hills, i.e., have high

objective scores, while some others are valleys, i.e., have low objective scores. A

search algorithm looks for an optimum solution i.e., the solution with the maximum

score (for maximization problem) or minimum score (for minimization problem).
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As the search space could be very large, various metaheuristics solutions have been

proposed. The metaheuristic solutions attempt to find a good enough solution or a

near optimal solution in a reasonable amount of time.

We discuss two search-based algorithms: simulated annealing (SA) and genetic

algorithm (GA). SA aims to minimize a given objective function, while a GA aims

to maximize an objective function. We describe these algorithms in the following

paragraphs.

Simulated Annealing. Simulated annealing (SA) proposed by Kirkpatrick et al.

[51] was inspired by the annealing process in metallurgy where a piece of metal is

heated and slowly cooled down to result in another piece with a lower entropy. To

mimic this, simulated annealing updates a current solution with a randomly picked

neighbor if the neighbor has a better objective function score, or the difference

between the objective function score of the neighbor and that of itself is less than a

threshold, which is a function of a random number and the simulated temperature T

(which should be gradually decreased during the process). The process is a global

optimization procedure; it prefers going “downhill” in the search process; however,

it also allows an “uphill” move in the search landscape with some probability that is

a function of T . Initially (when the temperature is high), more “uphill” moves are

allowed; as time passes (when the temperature becomes low), fewer “uphill” moves

are allowed.

A standard algorithmic template for SA is shown in Figure 6.2. Simulated an-

nealing has two loops. The outer loop reduces the temperature T in every iteration.

The inner loop repeatedly swaps a solution with its randomly picked neighbor based

on the parameter T until a certain termination condition (e.g., I iterations have been

performed) is satisfied.

Genetic Algorithm. A genetic algorithm (GA) is a search procedure that aims to

find one or more solutions that maximize a given objective function [35]. It does

so by modeling a solution as a chromosome which can be represented as a bit-
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Procedure Simulated Annealing

Inputs: T : Initial temperature

L: Lowest temperature

R: Temperature reduction factor

I: Inner loop repetition

Outputs: Best solution found

Method:

1: ln Let S = A random initial solution

2: ln While T > L

3: ln Repeat for I times

4: ln Let S′ = A random neighbour of S

5: ln Let ∆ = S′.Score - S.Score

6: ln If (∆ > 0)

7: ln S = S′

8: ln Else If (e−∆/T > random(0, 1))

9: ln S = S′

10: T = T ×R

11: Output S

Figure 6.2: Simulated Annealing: Pseudocode

string. Given a population of chromosomes, various operations including selection,

crossover, and mutation, are performed. Selection selects the best chromosomes

based on an objective function. Crossover combines two chromosomes into a single

chromosome. Mutation flips random elements in a chromosome. These operations

are performed iteratively many times. At the end of each iteration a new generation

of chromosomes is formed. The iterative process stops when a certain criteria is met,

e.g., a solution with an objection function score larger than a threshold is found, or
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when a specific number of iterations of selection, crossover, and mutation has been

performed.

There are many genetic algorithm variants and Figure 6.3 shows the pseudocode

of the genetic algorithm variant used in this chapter. The parameters are usually

empirically determined by some preliminary experiments.

Procedure Genetic Algorithm

Inputs: N : Number of chromosomes

I: Number of iterations

M : Mutation probability

C: Crossover probability

Outputs: Best solution found

Method:

1: ln Let P = Initial set of population with N members

2: ln Evaluate P and find the best solution so far

3: ln Repeat for I times

4: ln Let P ′ = Selection(P )

5: ln P ′ = Crossover(P ′, C)

6: ln P ′ = Mutation(P ′,M )

7: ln Evaluate P ′ and update the best solution so far

8: ln Output the best solution found

Figure 6.3: Genetic Algorithm: Pseudocode

The major tasks to employ a GA for a problem is to identify the mapping from

the problem’s potential solutions into chromosomes, and to provide an appropriate

objective function.
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6.3 Fault Localization Measures

We consider 22 different fault-localization measures to be composed into a com-

posite one. These include 2 measures proposed in state-of-the-art fault localization

studies, namely Tarantula [45] and Ochiai [2]. The other 20 are taken from an em-

pirical study by Lucia et al. [67] which investigates 20 association measures from

the data mining community for fault localization.

6.3.1 Tarantula

Jones and Harrold propose Tarantula [45] to rank program elements based on their

suspiciousness scores. Intuitively, a program element is more suspicious if it ap-

pears in failed executions more frequently than in correct executions.

To define the suspiciousness score of Tarantula, we first define some notations:

Given a program P and a test suite for P , n is the total number of test cases in the

test suite; n(e) is the number of test cases that run through a particular element e in

P ; ns is the number of test cases that succeed; nf is the number of test cases that

fail; ns(e) is the number of test cases that run through a particular element e and

succeed; nf (e) is the number of test cases that run through a particular element e

and fail.

Based on the above notations, Tarantula’s suspiciousness score for a program

element e is as follows:

suspiciousnessT (e) =

nf (e)

nf

ns(e)
ns

+
nf (e)

nf

6.3.2 Ochiai

Abreu et al. [4] propose Ochiai measure as the suspiciousness score for a program

element e. It is defined as:
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suspiciousnessO(e) =
nf (e)√

nf (nf (e) + ns(e))
=

nf (e)√
nfn(e)

Similar to Tarantula, Ochiai considers an element to be more suspicious if it

occurs more frequently in failed executions than in correct executions (the
√

nf (e)

n(e)

part). In addition, it considers an element to be more suspicious if it occurs fre-

quently in failed executions (the
√

nf (e)

nf
part).

6.3.3 Association Measures

Lucia et al. study 20 association measures from the data mining community and

investigate their effectiveness in fault localization tasks [67]. The 20 association

measures include: φ coefficient, odds ratio, Yule’s Q, Yule’s Y, Cohen’s Kappa, J-

Measure, Gini index, Support, Confidence, Clark and Boswell’s Laplace accuracy,

conviction, interest, cosine, Piatetsky-Shapiro’s Leverage, certainty factor, added

value, collective strength, Jaccard, Klosgen, and information gain. The formulas

for these association measures, which compute the strength of association between

two variables A and B, are given in Table 6.1.

An association measure quantifies the degree of relationship between two vari-

ables. In our case, we want to measure the association between the execution of

a program element (A) and failure (B) or non-execution of a program element (A)

and failure (B). The strength of association is then used as a suspiciousness score

computed by the formula in Definition 2 which in turn uses the notation in Defini-

tion 1.

Definition 1 (Association Measure). We define αi (x.EX,FAIL) to be the asso-

ciation between the executions of program element x and failure computed using

the ith association measure defined in Table 6.1. Similarly,

αi(x.EX,FAIL) refers to the association between the non-execution of program

element x and failure computed using the ith association measure.
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Table 6.1: Definitions of Association Measures. A and B are the two variables.
P (A) and P (B) correspond to the probabilities of A and B respectively. Other no-
tations follow standard notations from probability and statistics: P (A) is the prob-
ability of not A; P (A,B) is the joint probability of A and B; P (A|B) and P (B|A)
are conditional probabilities.

Name Formula

φ-Coefficient (M1)
P (A,B)−P (A)P (B)√

P (A)P (B)(1−P (A))(1−P (B))

Odds ratio (M2)
P (A,B)P (A,B)

P (A,B)P (A,B)

Yule’s Q (M3)
P (A,B)P (AB)−P (A,B)P (A,B)

P (A,B)P (AB)+P (A,B)P (A,B)
= α−1

α+1

Yule’s Y (M4)

√
P (A,B)P (AB)−

√
P (A,B)P (A,B)√

P (A,B)P (AB)+
√
P (A,B)P (A,B)

=
√
α−1√
α+1

Kappa (M5)
P (A,B)+P (A,B)−P (A)P (B)−P (A)P (B)

1−P (A)P (B)−P (A)P (B)

J-Measure (M6) max(P (A,B) log(P (B|A)
P (B)

) + P (AB) log(P (B|A)

P (B)
),

P (A,B) log(P (A|B)
P (A)

) + P (AB) log(P (A|B)

P (A)
))

Gini Index (M7) max(P (A)[P (B|A)2+P (B|A)2]+P (A)[P (B|A)2+P (B|A)2]−P (B)2−
P (B)2, P (B)]P (A|B)2+P (A|B)2]+P (B)[P (A|B)2+P (A|B)2]−P (A)2−
P (A)2)

Support (M8) P (A,B)

Confidence (M9) max(P (B|A), P (A|B))

Laplace (M10) max(P (A,B)+1
P (A)+2

, P (A,B)+1
P (B)+2

)

Conviction (M11) max(P (A)P (B)

P (AB)
, P (B)P (A)

P (BA)
)

Interest (M12)
P (A,B)
P (A)P (B)

Cosine (M13)
P (A,B)√
P (A)P (B)

Piatetsky-Shapiro’s (M14) P (A,B)− P (A)P (B)

Certainty Factor (M15) max(P (B|A)−P (B)
1−P (B)

, P (A|B)−P (A)
1−P (A)

)

Added Value (M16) max(P (B|A)− P (B), P (A|B)− P (A))

Collective Strength (M17)
P (A,B)+P (AB)

P (A)P (B)+P (A)P (B)
× 1−P (A)P (B)−P (A)P (B)

1−P (A,B)−P (AB)

Jaccard (M18)
P (A,B)

P (A)+P (B)−P (A,B)

Klosgen (M19)
√
P (A,B)max(P (B|A)− P (B), P (A|B)− P (A))

Information Gain (M20) (−P (B) logP (B)− P (B) logP (B))−

(P (A)× (−P (B|A) logP (B|A))− P (B|A) logP (B|A)−

P (A)× (−P (B|A) logP (B|A))− P (B|A) logP (B|A)))
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Definition 2 (Suspiciousnessi(e)). If e is a control block (e.g., if or while

statement), and children is the list of direct children of e in the control flow graph

of the containing program, the suspiciousnessi of e is the maximum of the following

values:

1 αi(e.EX, FAIL)

2 maxc∈children. αi(c.EX, FAIL)

Otherwise, the suspiciousnessi of e is αi(e.EX, FAIL).

Normalization. The suspiciousness scores corresponding to the various association

measures have different ranges. Some range from 0 to 1, others from −∞ to ∞,

etc. We normalize them to the range of 0 to 1.

6.3.4 Examples and Motivation

Let’s first investigate the block-hit program spectra in Figure 6.1. The following

paragraphs describe how suspiciousness scores are computed based on this spectra.

Using Tarantula’s measure, the suspiciousness score of Block 3 that contains

the bug is 1/1
3/3+1/1

= 0.5. Since Block 1 is executed by the same set of test cases

as Block 3, it also has the same suspiciousness score. Block 2 receives the highest

suspiciousness score: 1/1
2/3+1/1

= 0.6. Following the same calculation, Blocks 4–6

are not suspicious since their scores are zero. Thus, following an ordering based on

the suspiciousness scores, the bug in Block 3 can be localized after 3 blocks have

been investigated3.

Using Ochiai’s measure, the suspiciousness score of Block 3 is 1/(
√

1× 4)=0.5.

Block 1 also receives the same score. Similar to Tarantula, Ochiai also returns Block

2 as the most suspicious one (the suspiciousness score is 1/(
√

1× 3) = 0.58), while

the remaining blocks are not suspicious. Like Tarantula, Ochiai can localize the bug

3We consider the worst case.
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Block 
ID 

Code T1 T2 T3 T4 

1 int count; 
int n; 
Ele *proc; 
List *src_queue, *dest_queue; 
if (prio >= MAXPRIO) /*maxprio=3*/ 

• • • • 

2 {n=2;} • 
   

3 src_queue = prio_queue[prio]; 
dest_queue = prio_queue[prio+1]; 
count = src_queue->mem_count; 
if (count > 0) /* Bug*//* supposed : count>1*/ { 

• • • • 

4 n = (int) (count*ratio + 1); 
proc = find_nth(src_queue, n); • • • • 

 Test Case’s Success (S)/Fail (F) Status: S F F F 
 

Figure 6.4: Sample block-hit spectrum - No. 2
after 3 blocks have been investigated.

Next, we illustrate how the other 20 association measure based suspiciousness

scores are computed. We can observe that Blocks 1, 3, and 5 control Block-

s 2, 4, and 6, respectively, and the bug at the if condition belongs to Block

3. The suspiciousness score of Block 3 is determined by the maximum of the

association strength between executing Block 3 and failure and the association

strength between not executing Block 4 and failure. For example, by using one

of the 20 association measures, i.e., Cosine, the suspiciousness score of Block 1 is

max( 0.25√
1×0.25

, 0
0.25×0.25

) = 0.5; the suspiciousness score of Block 2 is 0; the suspi-

ciousness score of Block 3 is max( 0.25√
1×0.25

, 0.25√
0.5×0.25

) = 0.71; the suspiciousness

score of Block 4 is 0; the suspiciousness score of Block 5 is 0.71. Blocks 6 and 7

have suspiciousness scores of 0. There is no need to normalize cosine’s suspicious-

ness score as its range is from zero to one. Cosine can localize the bug after 2 blocks

(Blocks 3 and 7) have been investigated. Thus for the program, bug, and set of test

cases shown in Figure 6.1, Cosine is better than Tarantula and Ochiai.

However, this is not true for all possible programs, bugs, and set of test cases.

Consider a slightly different program with a slightly different bug and different

program spectra in Figure 6.4. Tarantula and Ochiai would rank the blocks (in

descending order of suspiciousness scores) as: (Block 3, Block 4), Block 1, and

Block 24. Cosine would rank the blocks (in descending order of suspiciousness

4Blocks 3 and 4 have the same suspiciousnessO and suspiciousnessT scores.
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scores) as: Block 1, (Block 3, Block 4), and Block 2. Thus, for this case, Tarantula

and Ochiai are better than Cosine.

The above shows that a fault localization measure could perform better for some

programs, bugs and spectra, and yet perform worse on other programs, bugs, and

spectra. Thus, there is a need to compose various association measures. By compos-

ing different association measures the weakness of one measure could be addressed

by the strengths of other measures. We empirically demonstrate this in Section 6.5.

6.4 Search-Based Composition Engine

Our search-based fault localization process is divided into two phases: training and

deployment. The two phases are illustrated in Figures 6.5 & 6.6.

6.4.1 Training Phase

In the training phase, we take as input the measures described in Section 6.3 along

with a training dataset. As training data, we take a set of program spectra along with

actual bug locations. This training data could be obtained in practice from past fault

localization efforts or past bugs encountered in one or more systems. Based on the

22 measures and the training data, the search algorithm would investigate various

composite measures and search for the one that performs best in localizing faults

based on the set of program spectra and bugs in the training dataset.

In the following paragraphs, we first define the search space of potential com-

posite measures. Next, we describe how we adapt existing search algorithms to the

problem of fault localization. The output of the training phase is a near optimal

composite measure that performs well for the training data.

Search Space

We first define the search space of potential composite measures. There could be

many possible ways to combine the individual spectrum-based fault localization
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measures. In this work, we employ one of the many possible composition strategies,

which is a weighted sum of the individual fault localization measures. Given 22

measures named as M1, M2, . . ., M22, and a program element e, the suspiciousness

score for e assigned by the composite measure is defined as follows:

MComposite(e) = w1 ×M1(e) + w2 ×M2(e) + . . .+ w22 ×M22(e)

The search space of all possible compositions corresponds to the various assign-

ments of weights, i.e., w1, w2, . . . , w22. We consider a weight to be a real number

from zero to one. Many search algorithms however only work on discrete search

space, thus we discretize the search space by representing each real number weight

by 7 bits. The function mapping the 7 bit signature to weight is:

BitToWeight(b1b2b3b4b5b6b7) =
Σbi × 2i

27 − 1

The more bits we have the more accurate the weight would be represented; still,

we believe 7 bits is good enough to represent each weight. The size of the search

space for the weights of the 22 measures would thus be equal to (27)22 which is a

huge number.

Objective Functions

Search algorithms require an objective function to measure how good a candidate

solution is. As introduced in Section 6.2.2, some search algorithms maximize a

given objective function, while others minimize an objective function.

We thus define two types of functions: one where the lower the score is, the

better the quality of a fault localization measure would be, and the other where the

higher the score is, the better the quality of a fault localization measure would be.

The first will be used as the objective function for SA to minimize, and the later will
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be used as the objective function for GA to maximize. We define two such objective

functions, denoted as fmin and fmax, as follows:

fmin The average percentage of program elements that need to be investigated to

locate the bugs by traversing down a list of program elements sorted in de-

scending order according to their suspiciousness scores generated by the mea-

sure.

fmax The average percentage of program elements that can be skipped when users

of a fault localization measure try to locate bugs by traversing down a list of

program elements sorted in descending order according to their suspicious-

ness scores generated by the measure.

From the definitions, it is clear that fmin + fmax = 1.

According to past studies [4, 15, 45], the accuracy of fault localization can also

be measured in term of the proportion of bugs (i.e., buggy versions) successfully

localized when a given percentage of program elements are inspected. The higher

the proportion, the more accurate a fault localization technique would be. Based on

this measure, we define two more objective functions as follows:

pmin The proportion of bugs missed when only 10% of program elements are in-

spected.

pmax The proportion of bugs successfully localized when only 10% of program

elements are inspected.

In above definition of pmin and pmax, we set the percentage of program elements

inspected to be 10% following past studies [45]5.

5Jones et al. compares the effectiveness of Tarantula with other techniques based on how many
percentage of bugs can be found when 10% program elements are investigated [45].
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Figure 6.5: Training Phase
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Figure 6.6: Deployment Phase

Adapting Search Algorithms

We describe how we use simulated annealing and genetic algorithm for fault local-

ization in the following paragraphs.

Simulated Annealing. To use simulated annealing (SA) for our problem, we model

the search space following the description in Section 6.4.1 which tries to minimize

an objective function. We create three variants of simulated annealing algorithm

each using a different objective function defined in Section 6.4.1:

SAF Uses fmin as the objective function.

SAP Uses pmin as the objective function.

SAFP Uses fmin + pmin as the objective function.

As defined in section 6.4.1, the smaller average percentage of program elements

inspected to locate all bugs and the more bugs successfully located when 10% of

program elements inspected, the more effective an association measure is. So, we

use fmin and pmin as an objective function for the respective variant of simulated

annealing (SAF and SAP ). For the third variant SAFP , since both fmin and pmin

are important quality measures of fault localization techniques, we use an objective

function that combines fmin and pmin and considers both of them as equally impor-
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tant. Our intention is to investigate whether SAFP could have a better performance

than the other two variants.

Similar to previous work employing search-based techniques in software engi-

neering tasks [59], we use small-scale initial experiments to find out the parameters

(T , L,R, and I used in Figure 6.2) that could empirically lead to a better performing

SA. In our case, we choose to use T=0.005, L=0.0006, R=0.9, and I=100.

Genetic Algorithm. To use a genetic algorithm (GA) for our problem, we also

model the search space as described in Section 6.4.1 which tries to maximize an

objective function. We concatenate the 22 7-bit weights together to form a 7 ×

22=154 bits chromosome. The search space is thus all possible binary chromosomes

of length 154.

A genetic algorithm requires of the creation of an initial population, and the

selection, crossover, and mutation operations. We create the initial population of

chromosomes randomly. The crossover and mutation operations are based on [35].

We only adapt the selection step of GA.

The selection operation of GA selects the best chromosomes, according to a fit-

ness function(as shown below), to be used as the population for the next generation.

Considering obj to be an objective function that needs to be maximized, we define

the fitness of a chromosome Xi in a generation R containing |R| chromosomes as

the chromosome’s relative performance against other chromosomes as follows:

Fitness(Xi) =

|R|∑
j=1

e10×(obj(Xj)−obj(Xi))

Since the difference between obj(Xj) and obj(Xi) is rather small, we take the

exponentiation of this difference multiplied by ten. Similar to what we use for SA,

we consider three objective functions defined in Section 6.4.1 for GA:
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GAF Uses fmax as the objective function obj.

GAP Uses pmax as the objective function.

GAFP Uses fmax + pmax as the objective function.

Based on these objective functions, we consider the following selection strate-

gies to be used in GA:

1. Random. In this selection strategy, each chromosome of the current genera-

tion has a chance to be selected to be a chromosome in the next generation

proportional to its fitness score. As we have three objective functions, we

have three variants: GAFRandom, GAPRandom, and GAFPRandom.

2. Enhanced. In this strategy, we first select all chromosomes whose fitness

scores are no less than the 90% percentile of the fitness scores of all chro-

mosomes in the generation. The other chromosomes are randomly selected

for the later generation as in the random strategy. As we have three objective

functions, we have three variants: GAFEnhanced, GA
P
Enhanced, and GAFPEnhanced.

Also, we use small-scale initial experiments to fine-tune the parameters of GA

(N , I , M , and C in Figure 6.3). In our case, we choose to use N=50, I=200,

M=0.01, and C=0.6.

6.4.2 Deployment Phase

In the deployment phase, we use the composite measures constructed in the training

phase to locate faults. Given a program spectrum, a composite measure would as-

sign a suspiciousness score to each program element. These suspiciousness scores

are used to rank the program elements based on their likelihood to be faults, as in-

dividual measures would do. The process is illustrated in Figure 6.6. If a composite
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measure is deployed and used, the ranked list of program elements would be the

output for the user to inspect to find the location of the fault.

In our experiments, we need to quantify the effectiveness of each fault localiza-

tion measure by quantifying how accurate the ranked lists from each measure are

for locating actual faults. We carry out our evaluation on programs with known bugs

in Section 6.5.

6.5 Empirical Evaluation

This section describes our experimental settings and evaluation results.

6.5.1 Settings

Subject Programs

We use the seven programs from the Siemens Test Suite [38] and three larger

programs: Space [90], NanoXML and XML-Security [93] downloaded from the

Software-artifact Infrastructure Repository [17] (http://sir.unl.edu/).

The Siemens test suite contains seven programs: print tokens, print tokens2,

replace, schedule, schedule2, tcas, and tot info. Each program contains many ver-

sions where each version has one bug. These bugs represent a wide array of realistic

bugs. The total number of buggy versions are 132. Among these versions, we use

120 versions. We exclude versions that contain bugs in global variable declarations

since our instrumentation tool cannot collect program spectra that record declara-

tions. These versions include versions 6, 10, 19, and 21 of tot info, version 12 of

replace, and versions 13, 14, 15, 36, 38 of tcas. Since versions 4 and 6 of print token

are identical with the original version, we exclude these versions as well. Thus, the

total number of buggy versions from the Siemens test suite that we take into con-

sideration is 120.

The average lines of code for Space, NanoXML, and XML-Security are 6,218,

116

http://sir.unl.edu/


Table 6.2: Dataset Details

Dataset LOC Faulty versions Test cases

print token 472 5 4030

print token2 399 10 4115

replace 512 31 5542

schedule 292 9 2650

schedule2 301 10 2710

tcas 141 36 1608

tot info 440 19 1051

space 6,218 35 13,585

NanoXML v1 3,497 7 214

NanoXML v2 4,007 7 214

NanoXML v3 4,608 9 216

NanoXML v5 4,782 8 216

XMLSec v1 21,613 6 92

XMLSec v2 22,318 6 94

XMLSec v3 19,895 4 84

4,223, and 21,275 respectively. Space is an interpreter for Array Definition Lan-

guage (ADL) developed for European Space Agency. We analyze 35 faulty ver-

sions of Space. NanoXML is an XML parser written in Java. We analyze 31 faulty

versions of NanoXML. XML-Security is a Java library which includes a mature

Digital Signature and Encryption implementation. We analyze 16 faulty versions of

XML-Security.

Thus, the combined number of versions is 202. Details about these datasets are

provided in Table 6.2.
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Instrumentation

We have instrumented the programs and run them with the provided test cases to

collect program block-hit spectra. Each block-hit spectrum identifies how many

times each block is executed when the program is executed with the test case.

Effectiveness Calculation

As introduced in Section 6.4.1, we measure the effectiveness of a fault localization

technique by using: 1) the average percentage of program elements that need to be

inspected to locate all bugs, and 2) the proportion of bugs successfully localized

when only a given proportion of program elements are inspected. The first mea-

sure has been used in past study [67], while the second one has been used in past

studies [4, 15, 45]. Similar to previous studies, we assume that an inspector could

recognize a bug whenever he or she sees the faulty line of code.

To compute the first measure, which corresponds to the objective functions fmin

and fmax6 we perform the following steps. First, for each program, we decreasingly

sort all elements in the program based on their suspiciousness scores generated by

each fault localization measure, and count the percentage of elements that have

scores greater than or equal to the score for the buggy element. Next, we calculate

the average percentage for all programs.

To compute the second measure, which corresponds to the objective functions

pmin and pmax, we perform the following steps. First, for each program, we sort

the program elements as with the computation of the first measure. Next, given an

ordering for each program, we count the number of located bugs (i.e., contained

in the top x% of the program elements in the ordering, where x is a user-defined

parameter). Finally, we calculate the percentage of located bugs in all programs.

6Note that fmin and fmax are dual of each other—each can be derived from the other. This is
also the case with pmin and pmax.

118



Cross Validations

We perform a 10-fold cross validation (i.e., 9/10 of the dataset is used for training

and 1/10 is used for testing) [28] to evaluate our compositional fault localization ap-

proach. We randomly split the 202 versions into 10 buckets, each bucket containing

20 or 21 versions. In 10-fold cross validation, 10 separate iterations are performed.

In each iteration, we keep one of the buckets as the test/validation set and use the

other nine buckets for training. The results reported in the following subsection are

based on the average of the 10 iterations of the cross validation process.

6.5.2 Evaluation Results

Fault Localization Effectiveness

We measure the accuracies of the nine variants of our proposed search-based

approach, namely, SAF , SAP , SAFP , GAFRandom, GAPRandom, GAFPRandom,

GAFEnhanced,GA
P
Enhanced, and ,GAFPEnhanced, and compare them with those of Taran-

tula [45], Ochiai [4], and Information Gain [67]7.

Proportion of Bugs Localized. Looking from an angle, where developers need to

localize all faults, we examine the mean and standard deviation of the percentages

of blocks that need to be inspected to localize all faults for each technique. The

results are shown in Table 6.3. GAFPEnhanced localizes all bugs with the lowest aver-

age percentage of blocks inspected, which is 20.6%, followed by GAFEnhanced. The

relative improvements of GAFPEnhanced over Tarantula, Ochiai, and Information Gain

are 23.7%, 18.6%, and 37.6% respectively.

To check whether the differences among these means are statistically significan-

t, we perform the commonly used Wilcoxon signed-rank test [115] for each pair of

fault localization techniques with p-value set to 0.05. We notice that GAFPEnhanced

statistically significantly improves Tarantula, Ochiai, and Information Gain. We al-

7Information gain has been shown in [67] to perform on average better than other association
measures for the Siemens test suite.
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Table 6.3: Means and Standard Deviations of Percentages of Inspected Blocks (S-
maller is Better)

Techniques Mean Standard Dev.

GAFP
Enhanced 20.6% 23.4%

GAF
Enhanced 20.6% 23.3%

GAP
Enhanced 20.9% 23.9%

GAFP
Random 20.7% 23.3%

GAF
Random 20.7% 23.4%

GAP
Random 21.3% 23.5%

SAFP 21.2% 23.6%

SAF 21.2% 23.6%

SAP 21.4% 23.6%

Ochiai 25.3% 25.9%

Information Gain 33.0% 35.4%

Tarantula 27.0% 26.8%

so notice that GA-based techniques statistically significantly outperform SA-based

techniques.

Percentage of Program Elements Inspected. Here, the accuracy for each fault lo-

calization technique is measured in terms of the number (or percentage) of bugs that

could be localized by only examining a certain number (or percentage) of program

elements (blocks in our case).

We plot the accuracies of the various techniques in Figures 6.7, 6.8, 6.9, 6.10.

The x-axis describes the percentage of blocks inspected and y-axis describes the

percentage of buggy versions that can be localized. Assuming an inspector can

recognize a bug when a block is presented to him or her, the plot lines shall always

reach 100% at the right ends. The more buggy versions localized at lower numbers

of inspected blocks, the better a fault localization approach is.

We find that GAFPEnhanced performs better than all other techniques. When
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Figure 6.7: Accuracies of SA versus Baseline Approaches
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Figure 6.8: Accuracies of GARandom versus Baseline Approaches

less than 10% of the blocks are inspected, GAFPEnhanced localizes 49.0% of al-

l buggy versions. At the same percentage of inspected blocks, GAFEnhanced,

GAPEnhanced,GA
F
Random, GAFPRandom, GAPRandom, SAF , SAP and SAFP localize

47.0%, 46.5%, 47.0%, 47.5%, 46.5%, 46.0%, 46.5% and 46.5%, of the bugs re-

spectively, while Ochiai, Tarantula and Information Gain localize 43.1%, 40.1%,

and 37.6% respectively. Thus, the relative improvements ofGAFPEnhanced over Taran-

tula, Ochiai, and Information Gain are 22%, 14%, and 30%, respectively.
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Figure 6.9: Accuracies of of GAEnhanced versus Baseline Approaches
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Figure 6.10: Accuracies of of GAEnhanced versus SA

Furthermore, 62% of the buggy versions were localized by GAFPEnhanced and

GAFEnhanced, GA
P
Enhanced, GA

F
Random, GAFPRandom and GAPRandom with only up to

20% of blocks inspected. To achieve the same number of localized bugs, SAF ,

SAP and SAFP need at least 22%, 23%, 22% of block inspections respectively,

while Tarantula, Ochiai, and Information Gain requires at least 27%, 26%, 29% re-

spectively. Also, our nine various versions of search-based approaches can localize

more than 90% of the bugs when up to 60% code elements are inspected. Ochiai,
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Table 6.4: Proportion of bugs localized when 10% of the code is investigated (PBL)
and average percentage of basic blocks investigated for all bugs to be localized
(ABB), when the amount of training data is varied from 10% to 90%. The remaining
data is used for testing.

10% 30% 50% 70% 90%

PBL 47.8% 46.1% 49.5% 43.0% 50.0%

ABB 20.8% 21.4% 19.4% 20.6% 23.5%

Tarantula, and Information Gain require 64%, 66%, and 94% respectively.

Training Data Sensitivity Analysis

We also experiment by varying the amount of training and test data – from 10% to

90% training data. We experiment with GAFPEnhanced which is the best-performing

composite measure. The training data is randomly selected from the pool of 202

versions of the 10 programs. The remaining versions are used as test data. We

analyze the results in terms of proportion of bugs localized when 10% of the code

is investigated (PBL), and the average percentage of basic blocks investigated for

all bugs to be localized (ABB). The results are shown in Table 6.4. The results

show that our approach works well with varying amount of training data used. With

just 10% of all bugs, our composite measures still achieve on average better fault

localization accuracies than previous individual approaches. In addition, the results

imply that our compositional fault localization works better than the constituent

approaches across different kinds of bugs across different programs, which is further

evaluated in the next subsection. With the accumulation of many bug databases, the

sensitivity to the training data may become less an issue.

Effectiveness for Various Kinds of Bugs

We divide the bugs into eight categories; our categorization is based on that by

Kim et al. [80]. Kim et al. categorize different fixes that are made to various soft-

ware systems. We categorize bugs based on how the bugs get fixed. The following
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Table 6.5: Bug Categories

Bug category # of versions

Change of loop predicate (LP-CC) 11

Change in method calls (CH-MC) 17

Change of assignment expression (AS-CE) 65

Change of return expression (CH-RET) 14

Change of if condition expression (IF-CC) 55

Addition/removal of non-conditional statement (CH-NCS) 16

Addition/removal of conditional statement (CH-CS) 23

Others (OTH) 1

paragraphs describe our bug categories and present the effectiveness of our compo-

sitional approach. We add two categories that are not included in the classification

of Kim et al. [80], i.e., Change of return expression (CH-RET) and others (OTH).

Table 6.5 lists these eight bug categories.

In order to test the effectiveness of the compositional approach across different

categories of bug, we do a |B|-fold cross validation, where |B| is the number of

categories of bug. We put all buggy versions of one category into a bucket, then

during the |B|-fold cross validation, we pick one category of buggy versions as the

test data and the rest are used as the training data.

The results for each bug category are shown in the table 6.6. The results show

that our approach performs better for most types of bugs, and on average our ap-

proach finds all bugs when 20.5% of the blocks are inspected, while Tarantula,

Ochiai, and Information Gain need inspection of 27.0%, 25.3%, and 33.0% respec-

tively. Also, our approach localizes 47.5% of all bugs, while Ochiai, Tarantula and

Information Gain localize 43.1%, 40.1%, and 37.6% respectively. Using Wilcox-

on signed-rank test with p-value set to 0.05, we find that the differences between

GAFPEnhanced and Tarantula, Ochiai, and Information Gain, are statistically signifi-

cant.
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Table 6.6: The comparison of our approach(GAFPEnhanced), Tarantula, Ochiai and
Information Gain in terms of the average percentage of elements inspected to find
all bugs.

Bug category Our approach Information Gain Tarantula Ochiai

LP-CC 13.9% 17.9% 11.2% 15.8%

CH-MC 34.9% 52.6% 33.9% 38.4%

AS-CE 21.7% 31.5% 30.8% 27.7%

CH-RET 22.5% 31.9% 26.0% 27.8%

IF-CC 14.9% 30.0% 22.8% 19.5%

CH-NCS 13.4% 26.2% 22.5% 16.0%

CHCS 24.4% 37.4% 30.5% 29.8%

OTH 74.2% 100.0% 74.0% 74.0%

Average 20.5% 33.0% 27.0% 25.3%

We note that the effectiveness of individual fault localization measures can vary

for different bug types, and so are for composite measures. A composite measure

may not be better than individual measures for some bug types. For example, for

LP-CC bugs (see Table 6.6), the composite measure is trained on other bug types

that Ochiai performs the best on average during |B|-fold cross validation, which

leads to a much higher weight for Ochiai than the weight for Tarantula, even though

Tarantula performed better than Ochiai for LP-CC bugs. This causes the composite

measure to perform worse than Tarantula for LP-CC bugs, even though the compos-

ite measures for different bug types on average perform better than individual mea-

sures. This observation indicates that our approach is better to be applied to training

data containing various types of bugs to improve the generalizability of composite

measures, and we further perform cross-program validation in Section 6.5.1.

We give some further observations that may indicate how the effectiveness of in-

dividual measures affects that of composite measures for different bug types. Firstly,

the effectiveness of each individual measure is built on the basic intuition for using

125



association measures to locate bugs: the execution profiles of buggy program el-

ements may be quite different from those of correct program elements. Thus, the

effectiveness of an association measure may decrease if the profiles of a buggy ele-

ment are about the same as those of correct elements, or if the profiles of the buggy

element from failed test cases are about the same as its profiles from successful test

cases. Based on our observation, certain bugs do not change the profiles of the bug-

gy elements, while the profiles of some elements executed after the buggy elements

may be affected, causing less accurate localization. For example, here is a sample

buggy code fragment from NanoXML:

this.systemID = systemID;

this.lineNr = lineNr;

this.encapsulatedException = null;

...

The third statement assigns a “null” to “this.encapsulatedException”, while it

should be assigned a non-null object. The profiles of this buggy statement from

both failed and successful test cases are the same, although it affects the profiles

of some correct statements that are executed after it but at locations far away from

it. The suspiciousness scores for those correct statements are higher than the buggy

statement, causing lower localization accuracy. The statements in this example are

all in the same block of control flow graph, and they always have the same block-hit

spectra and thus the same suspiciousness score, causing the buggy statement to be

ranked even lower. Generally speaking, when there are many correct statements

having the same profiles as the buggy statement, localization accuracy for the bug

would also be decreased since they all have the same score and our evaluation metric

counts all elements that have scores greater than or equal to the score of the buggy

element. On the other hand, if the correct statements whose profiles are affected by

the buggy statements are spatially close to the bug, or if the suspiciousness scores

of those correct statements can be ”propagated” back to the buggy statement, local-
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ization accuracy may be improved. We have a special propagation for most of the

association measures used in this chapter (please see Definition 2 in Section 6.3):

the suspiciousness scores of statements contained in a control block (e.g., if and

while statement) may be propagated to the control block itself. This may help to

improve accuracy if the control block is indeed buggy.

Secondly, we also note that Tarantula can perform better than Ochiai for some

bug types (i.e., LP-CC, CH-RET, and CH-MC), although Ochiai is better on aver-

age. From the formula of Tarantula ( 1

1+
ns(e)/ns
f(e)/nf

) (see Section 4.1), we noticed that if

a program element is always executed in all test cases, including failed and passed

test cases (i.e., ns(e) = ns and nf (e) = nf ), the suspiciousness score is always

0.5, while the score computed by Ochiai still varies for different and as Ochiai’s

formula ( nf (e)√
nfn(e)

in Section 4.2) can be simplified to
√

nf (e)

n(e)
under the above con-

dition. A number of program statements (e.g., constructors, initialize functions,

etc.) are executed by all test cases, which led to 0.5 for their suspiciousness scores

from Tarantula, while their scores from Ochiai change based on available failed and

passed test cases for the programs.

General Applicability of Composite Models

In order to test the reusability of composite models, we do a |P |-fold cross-program

validation, where |P | is the number of programs. Different from random 10-fold

cross validation, here we put all of the buggy versions of one program into a bucket,

instead of randomly assigning them into a bucket. Then, during each iteration of the

cross-program validation, all versions of one program are used as the test/validation

set, the other programs are used as the training set.

Our results show that when less than 10% of the blocks are inspected,

GAFPEnhanced localizes 45.5% of all bugs, while Ochiai, Tarantula and Information

Gain localize 43.1%, 40.1%, and 37.6% respectively. Also, GAFPEnhanced finds all

bugs when on average 21.3% of the blocks are inspected, while Tarantula, Ochi-

ai, and Information Gain need inspection of 25.3%, 27.0%, and 33.0% respective-
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ly. Using Wilcoxon signed-rank test with p-value set to 0.05, we find that the d-

ifferences between GAFPEnhanced and Tarantula, Ochiai, and Information Gain, are

statistically significant. These results show that our compositional fault localiza-

tion approach can produce composite measures that perform better than constituent

techniques when they are trained on a set of programs but applied to different pro-

grams. With the accumulation of bug databases from various programs containing

various types of bugs, the sensitivity to the training data may become less an issue,

and it may be likely that we could have a compositional fault localization engine

in the future that is able to adjust composition strategies with respect to available

programs and spectra to locate various bugs in various programs more accurately

than constituent techniques.

Discussion

In our initial experiments, we have tested several parameters used for our GA and

SA. We find no substantial difference in the performance of GA, but a more sub-

stantial difference in the performance of SA. The average time to learn a composite

measure using the various variants of search-based approaches are within 22 min-

utes (ranging from 18 minutes to 28 minutes for the iterations in the random 10-fold

cross validation). Although this might seem long, it can be done off-line and no need

to train models frequently. In practice, we only need to retrain a composite measure

when either much more training data becomes available or the accuracy of the com-

posite measure becomes unacceptably low due to significantly changing programs

or bug types. Applying a composite measure to a program spectra is not expen-

sive as it only involves computing a weighted sum of computationally inexpensive

mathematical formulas—typically it takes less than a second.

We have also noticed that some constituent fault localization measures are often

(but not always) assigned zero weights during our experiments, which implies that

they often perform worse than others. In the future, we may remove constituent

measures that do not perform well from our approach to help reduce search space.
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On the other hand, we shall note that if there is an individual fault localiza-

tion technique that could perform better than all other techniques under all circum-

stances, we do not need to employ compositional fault localization. However, based

on our experience in cross-program and cross-bugtype validations and the literature,

no such panacea exists yet. In the future, it may be worthwhile to investigate deeper

into the reasons why certain techniques perform better or worse under certain situa-

tions, and consider both improving individual fault localization techniques that can

be tailored for particular bugs in particular programs and improving the ways the

individual fault localization techniques are composed.

6.5.3 Threats to Validity

Threat to construct validity corresponds to the appropriateness of our performance

metrics. We use two metrics to measure the quality of fault localization measures:

the percentage of bugs successfully localized when a certain amount of code is

examined, and the average percentage of program elements (i.e., code) that need

to be investigated to locate all bugs. These two metrics have been used in many

past studies [4, 15, 45, 67] and we believe they are suitable for evaluating fault

localization techniques. It is not clear if techniques with good performance metrics

scores could better help developers. In the future, it is interesting to perform a case

study with real professional developers on real projects to see if indeed techniques

with higher scores help developers more in debugging.

Threat to internal validity corresponds to the various biases when performing

the experiments. We use existing benchmarks with a variety of datasets containing

various bugs (real and seeded). We believe this greatly reduces the threat of exper-

imenter bias. We also perform 10-fold cross validation and do not mix test with

training data. Furthermore, we have also performed sensitivity analysis to see if we

could achieve similar performance with less training data.

Threat to external validity corresponds to the generalizability of our results. In
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this study, we have considered 10 programs. All these programs are written in C

and Java, ranging from 141 to 22,318 lines of code. Various kinds of bugs exist in

these datasets – 202 buggy versions. We have also performed 10-fold and |P |-fold

cross-program validation to investigate if a model learned on a set of bugs could be

used to effectively localize other bugs and the results are promising. Still, there is

a threat of external validity especially on the applicability of our approach on even

larger programs and programs written in other programming languages.

6.6 Conclusion and Future Work

There are many spectrum-based fault localization techniques proposed in the liter-

ature. For some programs, bugs, and program spectra, some measures are better

than the others. In this chapter, we leverage this observation to build a solution that

combines existing fault localization measures into improved composite measures.

We model the possible compositions as a search space and use advances in the

machine learning and meta-heuristics community to compute near optimal compo-

sitions based on a training set. We demonstrate that our approach can achieve better

average performance than all previous spectrum-based fault localization techniques.

Compared with Ochiai and Tarantula, our approach (using GAFPEnhanced) could lo-

calize at least 14% more bugs when 10% of the programs are analyzed, and reduce

the average amount of code investigated by at least 18.6%. We also show that the

improvements achieved by our approach is statistically significant, and our cross-

program and cross-bugtype validations imply our approach could be generally ap-

plicable to various bugs in various programs with sufficient test cases.

As future work, we plan to investigate more advanced genetic algorithm so-

lutions to search for optimal compositions. We have only considered one way to

compose past fault localization measures, namely using a weighted sum of the con-

stituent measures; we also plan to explore other composition strategies.
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Chapter 7

Active Code Search: Incorporating

User Feedback to Improve Code

Search Relevance

7.1 Introduction

To help improving developer productivity, there is a need for automated tools that

can help developers in searching through large amount of code to find relevant code

for a specific task.A number of studies in the literature have proposed various code

search techniques that can return pieces of code considered to be relevant to a user’s

query.

Based on the forms of user queries, we can categorize code search techniques

into two main families. Most code search techniques, e.g., [13, 62, 77, 95], belong

to the first family that takes queries as a set of natural language keywords (simi-

lar to the way one provides keywords to general-purpose web search engines, e.g.

Google). Portfolio is one of the state-of-the-art techniques that processes a set of

keywords from users and internally considers code structures (e.g., call graphs) to

find relevant pieces of code [77]. The authors of Portfolio have compared their
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approach with Koders1 and Google Code Search2 and demonstrated that Portfolio

performs better. The second family of code search techniques allows queries in the

form of an SQL-like language where users can specify certain constraints that need

to be satisfied by relevant pieces of code [74, 106, 112]. In this work, we focus on

the first family.

The above studies have shown that code search can be effective to aid developers

in finding relevant pieces of code. However, there is still much room for improving

the relevance of the search results. For example, McMillan et al. report that par-

ticipants of their user study that evaluates Portfolio indicate an average precision

of 65% for the search results and give an average confidence level of 2.86 out of 4

(with a 4-point Likert scale [61]) [77].

One factor that potentially affects the effectiveness of code search is the difficul-

ty in formulating a precise query that matches the relevant code fragments needed

by users. Often, users could not exactly specify what they wanted in the form of

a set of keywords or constraints, but they were often able to decide whether a giv-

en code fragment satisfies their needs. Given a list of code fragments returned by

a code search engine, some code fragments might be close to what a user wants,

while others might be very different. As a user checks each code fragment one at a

time, he or she will naturally form an opinion about its relevance. It will be bene-

ficial to utilize user opinions on code fragments that they have checked to improve

the results.

The key idea of this chapter is to improve code search relevance by integrating

users’ feedback. Our approach records user’s opinions about each code fragment

when they check through a list of results returned by a search engine and refines the

list so that code fragments that are more relevant to a user’s needs appear earlier in

the list, which would save the user’s time. Our approach can be built on top of any

1The service at http://www.koders.com/ has been merged into Ohloh Code at https:
//www.ohloh.net/

2The service has been shut down; only an archive page is available at http://web.
archive.org/web/20101112131244/http://www.google.com//codesearch
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code search engine that takes textual descriptions as query inputs. The feedback

required by our approach does not impose much additional effort on users either, as

they would need to navigate the search results anyway to decide whether the results

match their needs; the only difference is that they need to explicitly indicate their

opinions about a search result when using our approach.

Specifically in this chapter, we build our approach on one of the state-of-the-art

code search engines, Portfolio [77], to incorporate user feedback. Users of our ap-

proach first receive a list of search results from Portfolio for their query as usual.

Then, they can provide relevance feedback on each search result when they check

through the list one by one. The feedback is expressed as a label in a 4-point Likert

scale, where 1, 2, 3, and 4 indicate whether the result is completely irrelevant, most-

ly irrelevant, mostly relevant, and highly relevant, respectively. Once the relevance

feedback for a search result is recorded, our approach incorporates this feedback

to re-sort the remaining search results. This is performed based on the similarity

between each of the remaining results and all known relevant or irrelevant results.

The goal is to place search results that are more likely to be relevant nearer to the

top of the list. Our approach can also utilize the past feedback collected from previ-

ous queries to refine the current and future queries, allowing users benefit from past

feedback. We refer to this as active code search—users can more actively affect the

output of a code search engine by providing relevance feedback.

We have evaluated our approach with 70 queries on a code base containing

19,414 programs written in C and/or C++, comprised of about 169 million lines

of code. Ten human participants were asked in our user study to provide relevance

scores to each search result. Similar to studies on web search (c.f., [33]), we mea-

sure the overall relevance of a list of search results using Normalized Discounted

Cumulative Gain (NDCG) [70], which assigns a higher score for an ordering list

where results at the beginning of the list have higher relevance scores than those lat-

er in the list. Our evaluation shows that Portfolio achieves an average NDCG score

of 0.738 for the 70 queries on the code base, while our active code search approach
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(Portfolioactive) achieves an average NDCG score of 0.821.

The following are the main contributions in this chapter:

1. We present the concept of active code search where users can more actively

affect code search results by providing relevance feedback.

2. We design an active code search technique that can take incremental user

feedback and iteratively improve the relevance of code search results. It can

be implemented on top of any existing code search engine that takes textual

descriptions as query inputs.

3. We have implemented an active code search engine on top of Portfolio and

evaluated it in a user study involving 70 queries, 10 participants, and a code

base containing 19,414 programs and about 169 million lines of code. The re-

sulting Portfolioactive can on average achieve 11.3% higher relevance scores,

measured in Normalized Discounted Cumulative Gain (NDCG), than the o-

riginal Portfolio.

The structure of this chapter is as follows. In Section 7.2, we describe Portfolio

and introduce several concepts needed in our chapter. We present our active code

search approach in Section 7.4.4 and zoom in on the refinement engine component

in Section 7.4. Our empirical evaluation results are presented in Section 7.5. We

finally conclude and mention future work in Section 7.6.

7.2 Portfolio & Active Code Search

In this section, we briefly summarize Portfolio, and then present the concept of

active code search and introduce the metric used to measure the relevance of search

results.
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7.2.1 Portfolio

Portfolio is a code search engine that takes natural language descriptions as input

and outputs a list of functions or code fragments along with corresponding cal-

l graphs [77]. Portfolio assumes that call graphs can help users to have a better

understanding of the returned code. Portfolio internally analyzes both textual and

structural (e.g., call graphs) information from code, and employs Page Rank, Vec-

tor Space Model (VSM), and Spreading Activation Network (SAN) to quality the

relations among code and the given query, aiming to locate more relevant results.

Page Rank measures the global importance of a function in the whole call graph

in a code base: the more other functions call this function, the more important it

is. Since the Page Rank score of each function is independent from query, it could

be pre-computed and stored in a database. We denote the Page Rank score for

a function Fi as PR(Fi), calculated by PR(Fi) =
∑

Fj∈BFi
PR(Fj)

|Fj | ,where BFi is

the set of functions that invoke Fi and |Fj| is the number of functions invoked by

function Fj .

When a query comes in, Portfolio first uses VSM to perform keyword matching

between the words in each function in the code base and the words in the query.

Next, it feeds the functions returned from the previous keyword matching step along

with their similarity scores to SAN, and spreads the similarity scores along the call

graph. The intuition of SAN is that nodes farther away from the starting nodes

should get smaller scores. New scores for different nodes are transitively computed

from the starting nodes using the formula SANj =
∑

i f(SANi ∗ wij), where the

score of node j (denoted as SANj) equals to a combination of the scores SANi of all

nodes incident to j. wij represents the strength of the connection between i and j (so

called decay factor), indicating what percentage of the score for i can be propagated

to j. Last, Portfolio ranks all functions in the call graph based on a combined

similarity score S = λ1PR(F ) + λ2SAN(F ), where λi is the interpolation weight

for each type of scores, and returns the top ones as search results. Users can also
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specify how many search results to get for each query.

7.2.2 Active Code Search Paradigm

Active code search in this chapter refers to a kind of code search that leverages user

feedback to improve the quality of the search results for a given query.

A user first provides a query and gets a list of search results returned by a code

search engine. As the user navigates through the results one by one, he or she can

indicate the relevance of each result. Then, the code search engine takes the user’s

indications as feedback to refine and improve the list of search results. Thus, the

user may get an updated list of search results that is supposed to be more relevant to

the given query. It should also allow users to incrementally provide feedback, and

ideally does not impose additional effort on the user and is able to take feedback at

the right intervals to incrementally improve search results and user experience.

In this chapter, we also aim to make our approach applicable to any code search

engine that takes user queries in the form of textual descriptions, and design our

active code search technique as an additional layer on top of a list of search results

from an existing code search engine. After taking in user feedback, the refinement

and improvement of the search results are done without the need for additional

queries to the existing code search engine: the initial list of search results, together

with user-provided relevance scores for some results in the list, is used to estimate

the potential relevance scores for the results that have no user feedback yet, and

re-order them so that more relevant results can potentially appear nearer to the top

of the list and the user can find what he or she wants more quickly.

There can be many variants in the active code search paradigm, as there are many

different feedback mechanisms for web search engines in the information retrieval

research community [48, 64, 70, 89]. The particular active code search technique

proposed in this chapter refines a list of search results from any code search engine

that takes textual descriptions as queries without additional queries to the underly-
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ing search engine. It can thus improve the relevance of the list of search results,

although it does not retrieve additional relevant results from the whole document

(i.e., code) collection. Some information retrieval techniques, e.g., [48, 89], retrieve

additional results from the entire collection, however, these techniques require many

repeated search operations to be performed on the entire collection and/or are spe-

cific to the internals of particular search engines. Our technique works on the result

list and thus it does not require many repeated search operations and can potentially

work with many underlying search engines while requiring no change to be made to

the internals of the engines. A number of web search engines, e.g., [64], take user

click-through logs and/or browsing preferences and histories into consideration to

improve search results for future queries. In this work, we utilize the feedback col-

lected from users to improve the search results for both current queries and future

queries.

7.2.3 Normalized Discounted Cumulative Gain

To compare different code search techniques, we need to measure the relevance of

a list of search results for a user query, where the relevance score for each result in

the list is given by users who form opinions about whether the result matches the

query.

By following the user study performed to evaluate Portfolio [77], the relevance

score for an individual search result in our study is given by human participants

in a 4-point Likert scale [61], ranging from 1 (completely irrelevant) to 4 (highly

relevant), and the meaning of each score is as follows:

1: Completely irrelevant — there is very little correlation between the result and

the given query.

2: Mostly irrelevant — the result is only remotely relevant to the given query; it is

unclear how to reuse the returned code for the task intended by the query.
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3: Mostly relevant — the result has some relevance to the given query; the returned

code may be modified with modest effort for the task intended by the query.

4: Highly relevant — the result is highly relevant to the given query with high

confidence.

However, different from Portfolio, we employ the Normalized Discounted Cu-

mulative Gain (NDCG) [40] instead of Precision to measure the overall relevance

of a list of results. McMillan et al. define precision as # of relevant results in a list
Total # of results in the list ,

where “relevant results” are the ones with Likert scores 3 or 4 [77]. This metric

does not consider the ordering of the results in the list and may be suitable for a

relatively short list where all results in the list can be expected to be inspected by a

user.

In our setting, active code search re-orders search results from a passive code

search engine, and its effectiveness has to be measured when the ordering of results

in a list is considered and . Thus, we choose to use NDCG, which is a metric com-

monly used to evaluate the results of web search engines to measure the relevance

of a list of ranked results.

The ordering of the results matters in measuring the effectiveness of a code

search task. A measure should give higher scores if relevant results appear nearer to

the top of the list. NDCG, which is a metric commonly used to evaluate the results of

web search engines and measure the relevance of a list of ranked results [33, 40, 70],

is such a measure. NDCG has two assumptions: First, relevant documents that

appear earlier in the result list are more valuable than those appearing later; Second,

highly relevant documents are more valuable than marginally relevant documents.

According to these assumption, the NDCG score of a list of ranked results can be

calculated as follows:

DCG =

p∑
i=1

2reli − 1

log2(i+ 1)

NDCG =
DCG

IDCG
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In the equations above, reli is the relevance score given by human participants for

the result at the ith position in the list; p is the size of the list; IDCG is the DCG

score of a perfectly sorted list. Based on the definition, NDCG ranges from 0 to 1.

When NDCG is equal to 1, the ranking algorithm performs perfectly.

Example. We give an example to show how NDCG is calculated. Consider a

list of documents ordered by a ranking algorithm: D1, D2, D3, D4. Let their rele-

vance scores be 1, 3, 2, 4 respectively. DCG = 21−1
log22

+ 23−1
log23

+ 22−1
log24

+ 24−1
log25

= 13.4.

The perfect ordering isD4, D2, D3, D1 with the documents sorted in the descending

order of their relevance scores, so, the IDCG is 21.4. Finally, the NDCG for this

list of results is 0.626.

7.3 Approach Overview

This section presents the overall framework of our active code search approach.

Section 7.4 then elaborates the details about the core component of our approach—

the refinement engine that reorders the search results from a normal code search

engine based on relevance feedback from users.

Our active code search framework is shown in Figure 7.1. It consists of two ma-

jor processing components (shown as rectangular blocks in the figure): Code Search

Engine and Refinement Engine. The interaction between users and these two major

components results in a list of results (in the rounded rectangular block) containing

potentially relevant code fragments. As a user can provide feedback piece by piece

incrementally, the list of search results is refined in multiple iterations, as illustrated

by the circular arrows. The sequence of the interactions in our active code search

framework is described in the following paragraphs.

First, a user posts a query to a passive code search engine. The search engine

takes the user query and returns a list of code fragments (i.e., the “List of Results”

block in Figure 7.1) sorted according to the scores of the code fragments calculated

internally by the search engine. The earlier a code fragment appears in the list, the
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Figure 7.1: Active Code Search: Overall Structure

more similar the search engine thinks it is to the user query. In this chapter, we use

Portfolio [77] in the Code Search Engine block.

Second, as the user navigates through the list of results one by one, he or she can

provide relevance feedback. For example, after the user investigates the result at the

top of the list, the user forms a judgement if the result is relevant. The judgement can

be expressed as a label for the result in a 4-point Likert scale [61]. Each judgement

for the results investigated by the user is used as input to the Refinement Engine

block one at a time.

Third, as the refinement engine receives a piece of relevance feedback, it refines

the ordering of the results in the list that have not been investigated by the user,

aiming to improve the overall relevance of the refined list. For example, an unin-

vestigated code fragment that is originally at the 5th position could be shifted to

the 48th position, as it is similar to some investigated code fragments that are given

low relevance scores; on the contrary, an uninvestigated code fragment at the 48th

position could be shifted to the 4th position, as it is similar to some investigated

code fragments receiving high relevance scores. The process that involves refining

a list of results, displaying a refined list, and providing relevance feedback repeats

until the user decides to stop or when the list is exhausted. When a user stops, it
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could man that the user has found what he or she wants, or that the user has decided

to accept something marginally relevant and use the returned code from there, or

where the user has decided to give up and to complete his or her task without result-

ing code, etc. In the refinement engine, the feedback of previous queries and their

corresponding refined results are cached. When a new query is posted, if a similar

query is identified in the cache, the refined results of the similar query are returned.

We describe how we identify the relevant refined results in Section 7.4.

7.4 Refinement Engine

This section describes the core component of our approach in detail. Figure 7.2 il-

lustrates the structure of our refinement engine. The engine takes in the original user

query, a list of results, the relevance feedback from users expressed in 4-point Lik-

ert scores, and outputs a refined list of results that shows potentially more relevant

results nearer to the top.
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Figure 7.2: Refinement Engine Component
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Our refinement engine has several data blocks (in rounded rectangles): “Re-

sults”, “Labeled Results”, “Unlabeled Results”, “Refined Query Representation”,

and “Reordered Results”. Results are the list of results displayed to the user so far.

Labeled results are results that have received relevance feedback from the user. Un-

labeled results are those that have not received relevance feedback from the user.

The Refined Query Representation is used internally in our refinement engine to

represent the combined effect of the original query and the results that have been

investigated and labeled by the user. Reordered results are the refined list outputted

by the refinement engine after taking user feedback into consideration and will be

presented to the user for additional feedback.

Our refinement engine has also several processing blocks (in rectangles): “Up-

date Query Representation”, “Parameter Tuning”, “Reorder Results”, and “Cache

Processor”. These processing blocks work together to refine the list of results for

the original user query based on the relevance feedback. The “Update Query Repre-

sentation” block produces the refined query representation from labeled results and

the original query. This refined query representation is used by the “Reorder Result-

s” block to produce the refined results. The “Update Query Representation” block

accepts parameters that are to be tuned periodically as more relevance feedback is

received. This is done by the “Parameter Tuning” block. The “Cache Processor”

block stores the original queries that the refinement engine has processed before and

their corresponding labeled results, refined query representations, and reordered re-

sults. This block also checks if a new input query closely matches a past query; if

it does, it will bootstrap the refinement engine with the cached data. If the same

query is processed by the refinement engine, the cached data will be updated. We

elaborate on these processing blocks in Sections 7.4.1, 7.4.2, 7.4.3, and 7.4.4.
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7.4.1 Update Query Representation

In this block, we incorporate information from search results that have received

relevance feedback (i.e., Labeled Results) into the original query. We convert the

original query into its representative vectors. We also convert the search results that

have received relevance feedback into their representative vectors. We then update

the representative vectors of the original query to a refined query representation.

To elaborate “Update Query Representation”, we present some definitions first, and

then the algorithm.

Query and Result Representations

We first introduce the representations for a query and a result that can be used to

transform a textual query or a code fragment into vectors of numerical scores. We

consider two representations: semantic and structural.

Definition 3 (Semantic Representation). In the semantic representation, a query

and a code fragment are viewed as a bag of words. We use standard tokenization,

stop word removal, identifier splitting, and stemming to convert a query or a code

fragment into a bag of words [70]. The semantic score of a word is given by the

product of its term frequency and inverse document frequency (tf*idf) [70]. The

term frequency (tf) of a word is the number of times the word appears in the query

or code fragment normalized by the total number of words in the query or code

fragment. The inverse document frequency (idf) of a word is the logarithm of the

total number of documents (i.e, the number of methods in the code base in our

code search setting) divided by the number of documents that contain the word. We

take the logarithm, since otherwise the idf would be very large. Given a query or

code fragment q, we denote the vector of semantic scores representation of q as

V Score(q)sem.

Example. Let a query q be lock unlock file. Then the term frequencies of words

lock, unlock and file are 0.33, 0.33, 0.33 respectively. Also, let the words lock,
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unlock and file appear in 270,872, 154,029, and 800,672 methods out of 7,916,458

methods in the code base. Then the inverse document frequencies for the words

calculated by the equation idf(w,D) = log |D|
|{d∈D:w∈d}| are 1.46, 1.71, and 0.99,

respectively, where w is a word in the query and d is a method in the code base

D. Finally, the semantic scores are 0.48, 0.54, and 0.33 for lock, unlock and file,

respectively.

Definition 4 (Structural Representation). In the structural representation, a query

and a code fragment are viewed as a bag of function calls. The structural score of a

function is given by the product of its term frequency and inverse document frequen-

cy. Given a query or a code fragment r in the search results, the term frequency of

a function in r is the frequency of the function being called in r normalized by the

total number of function calls in r; the inverse document frequency of a function is

the logarithm of the total number of code fragments in the search results divided by

the number of code fragments in the search results that call the function. We denote

the vector of structural scores of r as V Score(r)str. Note that the original query

entered by the user does not contain function calls, thus it is represented by a vector

of zeroes. However, as we incorporate results that have received relevance feedback

from users to the original query, the query’s vector of structural scores is updated.

In this definition, we use the names of the functions called in the search results to

construct the structural scores because we assume that code fragments performing

similar functionality would call the same functions and the similarity among code

fragments may be measured by the functions called in the code fragments.

Example. Consider a code fragment r which is a function ScLockedFile. There is

only one function unlock called in ScLockedFile. So the term frequency of unlock is

1. In total 50 search results are returned, and the function unlock is called by 2 code

fragments in the results; so its inverse document frequency value is log 50
2

=1.40.

Thus, the V Score(unlock)str for unlock is 1.40.
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Vector Operations

We also define operations that are applied to vectors and help to make it easier to

describe the algorithm in the following subsections of this chapter.

Let v[i] be the score in a vector v corresponding to a word or a function i. If the

word or the function i does not have a corresponding entry in v, let v[i] be 0. Let

us also denote WS(v) to be the set of words and functions that have corresponding

entries in vector v.

Definition 5 (Vector Summation and Division). – Given two vectors v1 and v2, the

sum of these two vectors is a new vector vr, and ∀i : vr[i] = v1[i] +v2[i]. Consider

a vector v and a constant c, the result of dividing of vector v by c is a new vector

vr, and ∀i : vr[i] = v[i]/c.

Example. Suppose v1sem = {file = 1, unlock = 2, lock = 2} and v2sem =

{file = 1, access = 3, control = 2}. The sum of these two vectors v1sem + v2sem

is {file = 2, unlock = 2, lock = 2, access = 3, control = 2}. The result of

dividing the vector v1sem by 2 is {file = 0.5, unlock = 1, lock = 1}.

We also need to define similarity among vectors, so that we can gauge the re-

finement of queries and search results. We measure vector similarity by adapting

the well-known cosine similarity [99].

Definition 6 (Vector Cosine Similarity). Given two vectors of scores, v1 and v2, the

cosine similarity of v1 and v2, denoted as cos(v1, v2), is the sum of the products of

corresponding entries in the two vectors normalized by the sizes of the vectors:

cos(v1, v2) =

∑
i∈(v1

⋃
v2)

v1[i]× v2[i]√∑
i∈v1

v1[i]2 ×
√∑

i∈v2

v2[i]2

Example. Suppose V Score(q)sem and V Score(r)sem are {file =

0.01, unlock = 0.03, lock = 0.05} and {file = 0.04} respectively. The

cosine similarity for them is 0.169. Suppose V Score(q)str and V Score(r)str
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are {file unlock() = 0.03, file lock() = 0.05} and {file access() = 0.04}

respectively, then the cosine similarity is 0. Finally, the similarity between the

query and the result is 0.085.

Algorithm

The procedure for “Update Query Representation” is shown in Algorithm 5. The

procedure takes in a set of search results labeled so far (LBL), the new feedback

(fback), the set of unlabeled results (ULBL), the original user query origquery,

and a set of weights (α1, α2, α3, α4) that determine the contributions of labeled re-

sults with the Likert scores 1, 2, 3, and 4 respectively. Weight α1, α2, α3, α4 are set

to be -0.3, -0.1, 0.1, and 0.5 initially. The procedure updates the set of labeled re-

sults LBL and unlabeled results ULBL, and creates a refined query representation

refquery which consists of two vectors refquerysem and refquerystr which are

the semantic and structural representations.

Algorithm 5 Update Query Algorithm
1: Procedure UpdateQuery
2: Input:
3: LBL: Labeled search results
4: fback: New feedback, i.e., a new Likert score to an unlabeled search result
5: ULBL: Unlabeled search results
6: origquery: Original user query
7: α1, α2, α3, α4: The weights of contributions of labeled results with the Likert score 1, 2, 3, and 4 respectively
8: Output: Updated LBL, ULBL, and a refined query representation refquery
9: Method:
10: Add fback into LBL, and remove the result labeled by fback from ULBL
11: Let LBL1, LBL2, LBL3, and LBL4 be the sets of results in LBL with Likert scores 1, 2, 3, and 4 respectively
12: Compute the semantic centers of LBL1, LBL2, LBL3, and LBL4 and denote them as C1sem, C2sem, C3sem,

and C4sem
13: Compute the structural centers of LBL1, LBL2, LBL3, and LBL4 and denote them as C1str , C2str , C3str , and

C4str
14: Let refquerysem = V Scoresem(origquery) +

∑
i=1...4

αi × Cisem

15: Let refquerystr = V Scorestr(origquery) +
∑

i=1...4
αi × Cistr

16: Return LBL, ULBL, and (refquerysem, refquerystr)

To transform the inputs to the outputs, the procedure works in the following

steps. We split the results in LBL into four sets based on the relevance scores (Line

11). After this step, we compute the semantic center of each set (Line 12) by the

following equation:

Cisem =

∑
r∈LBLi

V Scoresem(r)

|LBLi|
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Similarly, we compute the structural center of each set (Line 13) by the following

equation:

Cistr =

∑
r∈LBLi

V Scorestr(r)

|LBLi|

The (semantic or structural) center of each set is a vector that is the sum of the

(semantic or structural) vectors of all results appearing in the set normalized by

the size of the set (i.e., the number of results in the set). We then compute the

semantic refined query representation (refquerysem) by combining the centers of

the corresponding four sets (Cisem) with the semantic score vector of the origi-

nal query (origquerysem) (Line 14). The structural refined query representation

(refquerystr) is computed in a similar way (Line 15). This refined query represen-

tation (refquerysem,refquerystr) is then used to help reorder the search results as

described in Section 7.4.2.

7.4.2 Reorder Results Block

In this block, we sort the unlabeled results based on their similarity with the re-

fined query representation. The pseudocode is shown in Algorithm 6. It takes in

the refined query representation refquery generated by Algorithm 5 and a list of

unlabeled search results ULBL. It outputs a reordered ULBL by the following

steps. First, it iterates through the list of unlabeled results to compute the structural

and semantic similarity scores between the score vectors of each result and those

of refquery, i.e., refquerysem and refquerystr (Lines 8-9). It then takes the aver-

age of these two scores to compute the overall similarity score (Line 10). Second,

it reorders the unlabeled results according to their overall similarity scores in the

descending order (Line 12).
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Algorithm 6 Reorder Result Algorithm
1: Procedure ReorderResults
2: Input:
3: refquery: Refined query representation
4: ULBL: Unlabeled results
5: Output: Reordered ULBL
6: Method:
7: for all r in ULBL do
8: Let simsem = cos(V Score(r)sem, refquerysem)
9: Let simstr = cos(V Score(r)str, refquerystr)
10: Let simoverall = simsem+simstr

2

11: end for
12: Sort all results in ULBL in the descending order according to their overall similarities to refquery as computed at

Line 10
13: Return ULBL

7.4.3 Parameter Tuning

Our refinement engine takes in 4 weight parameters: α1, α2, α3 and α4. These 4 pa-

rameters are initially set to take the following values: -0.3, -0.1, 0.1, and 0.5, respec-

tively3. We re-tune these weight parameters whenever we receive a new relevance

feedback that rates a result with Likert score 3 or 4 (i.e., the result is marginally or

highly relevant). We tune the algorithm by trying many possible parameter settings

one at a time. For each parameter setting, we consider its effectiveness on the set of

labeled data known so far. We pick the parameter setting that is the most effective

(i.e., it achieves the highest NDCG on the set of labeled data known so far).

The pseudocode of our tuning process is shown in Algorithm 7. Let us define

a notation AP (a, b, s) to represent an arithmetic progression (AP) between a and b

with a step s. We initialize two ranges α1−2 and α3−4 to be AP (−0.5, 0.4, 0.1) and

AP (0, 0.9, 0.1) respectively (Line 6). The first is the range of possible parameter

values for α1 and α2. The second is the range of possible parameter values for α3

and α4. Then we try to adjust the 4 parameters by trying different combinations of

values picked from the sets α1−2 and α3−4 (Line 8).

After a combination of parameters are picked, we evaluate its effectiveness on

the set LBL of labeled results known so far (Line 9). We simply reorder LBL us-

ing the parameter combination setting and compute NDCG. The larger the resulting

NDCG score is, we assume the better a parameter combination is. We repeat the

3These values are determined empirically.
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above two steps (i.e., Line 8 and 9) until we find a local optimum (Line 10). We de-

tect a locally optimal setting for α1, α2, α3, α4 by trying all combinations of values

picked from the sets α1−2 and α3−4 in order and looking for a combination whose

resulting NDCG score is 1 or no smaller than the NDCG scores of its neighboring

configurations in the combinations of parameter values in the arithmetic progres-

sions. We finally output the local optimal setting of the 4 parameters (Line 11).

Algorithm 7 Parameter Tuning Procedure
1: Procedure ParameterTuning
2: Input:
3: LBL: Labeled results
4: Output: Parameters α1, α2, α3, α4

5: Method:
6: Initialize two sets α1−2 and α3−4 to be AP (−0.5, 0.4, 0.1) and AP (0, 0.9, 0.1) repectively
7: repeat
8: Adjust the value of the 4 parameters
9: Evaluate effectiveness of the adjusted parameters on LBL
10: until a local optimum is reached
11: Output the local optimum

7.4.4 Cache Processor

Once a user posts a new query, the “Cache Processor” block checks whether there

exists a highly similar query in the cache. If a highly similar query is identified, its

corresponding cached results will be used to bootstrap the refinement engine. To

identify whether a highly similar query exists, this block computes the similarity of

the new query with each of the old queries. The similarity of a new query qnew and

an old query qold is computed by taking the cosine similarity of their corresponding

semantic vectors:

Similaritysem = cos(V Score(qnew)sem, V Score(qold)sem)

We rank the old queries based on their similarity scores. The top one old query

whose similarity is larger than a threshold t is identified as the highly similar query

(ties are randomly broken). If no old query has similarity above t, then no highly

similar query is identified. In this study, by default, we set t to 1 which means only

the exactly same query will be identified.
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7.5 Empirical Evaluation

In this section, we present our experimental settings, evaluation metrics, results, and

some threats to validity.

7.5.1 Experimental Settings

The code base we use in this chapter is from FreeBSD4, which has undergone over

thirty years of continuous development, improvement, and optimization. We down-

load 49,889 program versions from this code base, but use only the latest version

for programs that have multiple versions. Finally, we use 19,414 programs written

in C and/or C++ in our study. The total size of these programs is around 36GB, and

they contain about 169 million lines of code, 8 million functions, and 2 million files.

Most code search workloads (except result collection and display) are performed on

a machine with an Intel Core i5 3.2GHz CPU with 4GiB of memory and 2TiB of

hard disks.

We have used 70 queries used in Portfolio’s evaluation [77]. All these queries

are formulated as set of keywords to address some programming tasks reported in

Portfolio’s user study. We show the queries in table 7.1.

We also involve users for evaluation and use a simple web application written in

PHP to display search results and collect user feedback. In the user study, we have

10 participants, 9 of them are PhD students who have at least of two years of Java

and C++ programming experience, and the other is a professional software engineer

who has three years of Java and C++ programming experience. Each participant

is assigned a number of queries and asked to examine the top fifty search results

for each query and provide a relevance score in a 4-point Likert scale for every

result. The guidelines for the participants to assign the 4-point relevant scores are

as described in Section 7.2.3.
4ftp://ftp.freebsd.org/pub/FreeBSD/distfiles/
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Table 7.1: List of queries

Id Content Id Content
1 cd image as virtual disk 2 ms dos support emulation on mscdex
3 mount cd image 4 module for controlled file access
5 files lock unlock 6 access file functions
7 sort photos by date 8 lock unlock access by filename
9 lock file filename 10 mount iso file as virtual disk
11 read iso file 12 iso file virtual disk
13 mscdex emulator 14 photo organized date
15 convert raw image to jpeg 16 file lock
17 convert raw images from digital camera 18 dos read from mscdex
19 sort by date 20 mscdex
21 mscdex emulation 22 file access controller
23 image mounting 24 photo sort date
25 convert digital camera images to jpeg 26 raw file to jpeg convert
27 list image files by date 28 sort photos date
29 sort picture by date 30 dos support for emulation of mscdex
31 mount iso as virtual disk 32 convert camera image to jpeg
33 filename lock controlled access 34 img jpeg
35 files lock to prevent access 36 file access lock
37 convert from jpeg to raw images 38 file access locks
39 organize photos by date 40 dos mscdex emulator
41 organize image in digital camera based on date 42 lock unlock file
43 mscdex emulation read 44 sort photos
45 photo organized 46 mount iso virtual disk for program
47 sort modified time 48 mscdex emulate on dos
49 sort photo by date 50 convert raw images to jpeg
51 iso virtual disk mount 52 photos date time sort
53 photo date organization 54 convert raw digital image jpeg
55 raw image to jpeg convert 56 convert jpeg digital image
57 emulate mscdex on using dos 58 jpeg image format
59 sort file 60 convert from raw images to jpeg
61 lock files by filename 62 raw to jpeg
63 camera raw image convert jpeg 64 digital camera to jpeg
65 convert image to jpeg 66 convert digital camera raw image to jpeg
67 mount iso virtual disk 68 dos mscdex emulation
69 jpeg image compression 70 raw image convert jpeg
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Figure 7.3: Improvement of Portfolioactive over Portfoliooriginal in terms of NDCG

7.5.2 Evaluation Results

The objective for our evaluation is to investigate the overall effectiveness of our

active code search approach as compared to passive code search. We also want to

investigate the benefit of distinctive features of our approach and its practicality.

Our objective can be broken down to the following research questions (RQs):

RQ1 Can our active code search approach Portfolioactive improve the relevance of

search results as compared to the original Portfolio?

We build our approach on top of Portfolio and thus we need to compare the two

approaches. The answer to this research question will shed light on whether our

active code search approach is useful to improve the relevance of search results.

To answer this research question, we compare Portfolioactive and Portfolio on 70

queries.

RQ2 Can Portfolioactive outperform Portfoliorocchio ?

Rocchio is a standard way to incorporate relevance feedback by refining a query

based on a set of labeled results [70]. It has been used in a number of prior software

engineering studies [22, 31]. Different from our proposed approach, standard Roc-

chio does not consider structural scores and use a static set of weights to incorporate

labeled results to refine a query. In our experiments, we set the weights of Rocchio
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to their recommended values [70]: a = 1, b = 0.75, and c = 0, where a, b, and c are

the weights of the original query, results labeled as relevant, and results labeled as

irrelevant, respectively. Answer to this research question will shed light on whether

our approach is better than a standard relevance feedback technique.

RQ3 Are structural representation and scores useful for active code search?

One distinctive feature of our approach versus existing relevance feedback algo-

rithms is the usage of structural representation and the computation of structural

scores (see Section 7.4.1). These are unique to code search as they are derived from

function invocations in source code files. The answer to this research question will

shed light on whether our distinctive feature is useful for code search. To answer this

research question, we compare two versions of Portfolioactive: one with structural

representation and scores, and another without both of them.

RQ4 Is parameter tuning effective in improving result relevance?

The parameter tuning step is potentially at runtime(see Section 7.4.3). The param-

eter tuning step is also another additional feature that differentiates us from Roc-

chio [70]. In Rochio, the various weights are set to their default values and are

not dynamically learned. The answer to this research question will shed light on

whether this feature is useful for code search. To answer this research question,

we compare two versions of Portfolioactive: one with parameter tuning, and another

without parameter tuning.

RQ5 How efficient, in terms of running time, is Portfolioactive?

The efficiency of Portfolioactive will affect its practical usage. Portfolioactive

needs to process each relevance feedback efficiently. Otherwise, a user needs to

wait a long time for the list of results to be updated. In this study, our goal is for

Portfolioactive to process the relevance feedback in less than one second. To answer

this question, we compute the average time that Portfolioactive needs to spend to

process the relevance feedback.
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RQ1: Overall Relevance Improvement

We compare the NDCG of Portfolioactive with that of Portfoliooriginal. Our evalua-

tion shows that the original Portfolio on average achieves an NDCG score of 0.738

while Portfolioactive on average achieves an NDCG score of 0.821, a 11.3% im-

provement. Figure 7.3 presents a detailed comparison of the NDCG score for every

query. Table 7.2 shows a summary of the comparison results: Portfolioactive wins

in 67 cases while performing marginally worse for 3 other cases (query number 35,

49, and 52). We also perform a Wilcoxon signed-rank test [115] on the NDCGs

(p-value < 0.05), which indicates the improvement achieved by Portfolioactive is

statistically significant.

For illustration, Table 7.3 shows the top three cases where Portfolioactive im-

proves the NDCG of the search result the most. For example, for the query “m-

scdex emulation”, Portfolioactive reorders two highly relevant results from positions

14 and 15 to positions 2 and 3 just after one round of feedback, and improves the

NDCG from 0.557 to 0.738.

In few cases, we could notice that the results from Portfolioactive are worse than

those from Porfoliooriginal. We investigate these cases and find that some irrelevant

functions will be brought to higher rank by the functions marked as relevant be-

cause of their similarity in text. For example, in query 49 (i.e., sort photo by date),

functions slotSortDateDec() and slotSortDateInc() are marked as highly relevant as

their functionality is to sort photos based on their dates in slots. However, anoth-

er two irrelevant functions slotAddPhoto() and slotEditCopy() are made to rank in

high positions because these four functions have high similar textual information

which is all about operating with slots. One potential way to alleviate the problem

is to slice out the source code irrelevant to the original query in the functions when

reordering the rest results, which could reduce the effect from the irrelevant part of

a function.

In the default setting, for each code search task, users give a feedback to

154



Table 7.2: Portfoliooriginal vs. Portfolioactive: Wins and Loses
Result Number
Portfoliooriginal > Portfolioactive 3
Portfoliooriginal < Portfolioactive 67

Table 7.3: The three sample cases where Portfolioactive improves the NDCG of the
search results the most

Query NDCG of NDCG of Reordering
Portfoliooriginal Portfolioactive samples

mscdex emulation 0.557 0.738 14→2, 15→3
filename lock 0.596 0.873 46→2, 47→3
controlled access
digital camera 0.612 0.792 30→2, 50→8
to jpeg

each of the first 50 results and after each feedback we apply our refinemen-

t engine. We would like to test the effectiveness of our active code search ap-

proach with different amount of feedbacks from users (denoted as Kf ). In this

experiment, users only give feedback on the first Kf results. We vary Kf in

the set {1,2,3,4,5,10,15,20,25,30,35,40,45,50} and measure the effectiveness in

terms of NDCG. Table 7.4 compare the effectiveness of Portfoliooriginal with our

Portfolioactive with different amount of feedbacks (Kf ) to refine the results. When

only one piece feedback is given by the user for refining the results, Portfolioactive

achieves a 7.46% improvement over Portfoliooriginal. As the Kf value increases,

Portfolioactive achieves more and more improvement until Kf reaches 30. The ef-

fectiveness of Portfolioactive remains constant when Kf is increased from 30 to 50.

RQ2: Portfolioactive vs Portfoliorocchio

To answer this question, we compare Portfolioactive with Portfoliorocchio in terms of

NDCG. Portfoliorocchio achieves an average NDCG score of 0.764. Porfolioactive

achieves an average NDCG score of 0.821 which is a 7.5% improvement over

Portfoliorocchio’s result. We also perform a Wilcoxon signed-rank test and find

that the improvement achieved by Portfolioactive is statistically significant (p-value

< 0.05).
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Table 7.4: Comparison of Portfoliooriginal and Portfolioactive in terms of NDCG for
different Kf

Kf Portfoliooriginal Portfolioactive Improvement
1 0.738 0.794 7.46%
2 0.738 0.806 9.10%
3 0.738 0.805 9.04%
4 0.738 0.808 9.47%
5 0.738 0.809 9.59%
10 0.738 0.816 10.55%
15 0.738 0.820 11.05%
20 0.738 0.820 11.05%
25 0.738 0.820 11.05%
30 0.738 0.821 11.12%
35 0.738 0.821 11.12%
40 0.738 0.821 11.12%
45 0.738 0.821 11.12%
50 0.738 0.821 11.12%
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Figure 7.4: Improvement of Portfolioactive with structural scores over Portfolioactive

without structural scores in terms of NDCG

RQ3: Effectiveness of Structural Scores

We compare Portfolioactive with structural scores and that without structural scores.

Figure 7.4 shows the performance of Portfolioactive with structural scores against

that without structural scores. Among the 70 queries, Portfolioactive with struc-

tural scores wins in 43 cases. The evaluation shows that adding structural scores

can improve the average NDCG from 0.81 to 0.821. We also perform a Wilcox-

on signed-rank test to show that the improvement achieved by Portfolioactive with

structural scores is statistically significant (p-value < 0.05). Thus, the results show

that the distinctive feature of our relevance feedback mechanism helps improve the

relevance of the returned results.
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RQ4: Effectiveness of Parameter Tuning

We compare the average NDCG score of Portfolioactive with parameter tuning a-

gainst that of Portfolioactive without parameter tuning by using different initial con-

figurations for the parameters α1, α2, α3, and α4. We create 625 different initial

configurations as follows:

(1) Initialize two sets α1−2 = AP (−0.5, 0.3, 0.2) and α3,4 = AP (0, 0.8, 0.2).

(2) Select values of α1 and α2 from α1−2. Select values of α3 and α4 from α3−4.

There are in total 5*5*5*5=625 configurations.

For each of these initial configurations, we run Portfolioactive with parameter

tuning and Portfolioactive without parameter tuning. This results in two sets of ND-

CG scores. Figure 7.5 shows the results. Among all the 625 initial configurations,

Portfolioactive with parameter tuning wins in 606 configurations and loses only in

19 configurations.

The average NDCG of Portfolioactive with parameter tuning is 0.819, while that

of Portfolioactive without parameter tuning is 0.792. Figure 7.5 indicates that the per-

formance of Portfolioactive with parameter tuning is more stable and better. We also

perform a Wilcoxon signed-rank test on the results, which shows that Portfolioactive

with parameter tuning statistically significantly outperforms Portfolioactive without

parameter tuning.
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Figure 7.5: NDCGs of Portfolioactive with parameter tuning versus Portfolioactive

without parameter tuning
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RQ5: Efficiency of Active Code Search

We measure the average response time for every iteration of the result reordering

process on the 70 queries. The total wall-clock time of the simulated active code

search process for all results from all queries (50*70) is 1896 seconds. Thus, the av-

erage time for all results from each query is 27.1 seconds, and the average response

time for each feedback from users is 0.54 seconds.

We believe that this response time is acceptable and it has satisfied our initial

goal, i.e., it takes less than one second to process a round of feedback. The most time

consuming part of our approach is the parameter tuning step. It can be a valuable

future work to optimize parameter tuning and various parts of our implementation

to make them more efficient.

7.5.3 Threats to Validity

Threats to internal validity include experimenter bias. There might be subjectivity

in the relevance scores that a participant assigns to returned code fragments. Similar

to past studies, e.g., [77, 104, 107], we do not have a large pool of participants such

that each result can be labeled by many people. Thus, inter-rater reliability is not

dealt with in this user study. Still, we consider 70 queries and take averages, and we

believe that averaging helps reduce the threats.

Threats to external validity relate to the generalizability of our findings. We have

investigated 70 queries and considered a code base consisting of 19,414 projects and

169 million lines of code. Admittedly these queries do not represent all the different

kinds of queries that a developer might give to a code search engine. Also, our code

base is just a fraction of the collection of all code out there. In the future, we plan

to reduce the threats to external validity further by investigating more queries and

larger code databases.

Threats to construct validity refer to the suitability of our evaluation metrics. We

use normalized discounted cumulative gain (NDCG) [40], a common metric used to
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investigate the quality of web search engines, and we believe the threats to construct

validity are minimal.

7.6 Conclusion and Future Work

Code search is a common activity required in many software engineering tasks,

and needs tool support to help users find pieces of code of interest in a large code

base. However, most code search techniques are passive, i.e., the code search engine

simply outputs a static list of results given a query. Users’ feedback on the relevancy

of query results is not taken into consideration.

In this chapter we propose active code search, where a user can provide feed-

back to the code search engine and guide the engine to improve the relevance of

search results. We propose a refinement engine that can take into consideration user

relevance feedback: based on a set of results whose relevance feedback has been

received, our engine enhances the user’s original query and uses it to update the

search results by reordering the potentially more relevant search results to the top

of the list for the user to see. The refinement process can be repeated for a num-

ber of times until the list is exhausted or the user decides to stop searching further

down the list. Our active code search technique imposes little additional overhead

on users, and can improve the relevance of search results from any passive code

search engine that takes textual descriptions as user queries.

We have evaluated our approach on 70 queries, and involved 10 participants to

search for relevant code fragments in a corpus of 19,414 software projects. We find

that our active code search approach on average improves the effectiveness of code

search by 11.3% in terms of Normalized Discounted Cumulative Gain (NDCG).

In this work we only apply our approach to Portfolio. We plan to apply our

approach to other passive code search tools and show that the active code search

paradigm can benefit those code search engines too. There are many variants of

feedback mechanisms (e.g., learning to rank) that we can investigate as well.
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Chapter 8

Conclusion and Future Work

Today’s software is large and complex, consisting of millions of lines of code. New

developers for a software project face significant challenges in locating code related

to their development or maintenance tasks, such as, implementing features, fixing

bugs and adding new features. In fact, research has shown that developers typically

spend more time on locating and understanding code during maintenance than mod-

ifying it [52]. Thus, we can significantly reduce the cost of software development

and maintenance by using code search techniques to reduce the time of locating

code of interest.

In this dissertation, we have presented a multimodal code search engine that

allows users to search via multiple input forms, including free-form texts, an SQL-

like domain-specific language, code examples, execution traces, and user feedback.

Specifically, the contributions of this dissertation are as follows:

• We propose an approach called Amalgam, which integrates the information of

similar bug report, historical information in the version control system and the

structural information of source code itself to perform bug localization [105].

Our experimental results show that Amalgam outperforms the state-of-the-art

technique.

• We propose a SQL-like query language not only allowing developer to specify
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their search targets in a specialized graph query language, which allows users

to describe low-level data and control dependencies in code, but also in a

free-form format describing desired topics [106].

• To address the drawback of dependence-based code search, we propose Au-

toQuery, which can automatically construct dependency queries from a set of

code snippets [110].

• We propose to compose existing spectrum-based fault localization measures

into a more improved measure [111]. Our experimental results demonstrate

that our compositional approach improves the existing approaches significant-

ly.

• We present an active approach to incorporate users’ opinions on the results

from a code search engine to refine result lists: as a user forms an opinion

about one result, our technique takes this opinion as feedback and leverages

it to re-order the results to make truly relevant results appear earlier in the

list [109].

In the future, We plan to enhance Amalgam by involving more information,

such as bug reporter information, stack trace information. We also plan to extend

our compositional fault localization measure by involving more individual fault lo-

calization measures and evaluate on more datasets. We would like to experiment

with more code search tasks and systems in active code search and dependency-

based code search. We would like to apply our active code search to other passive

code search tools and show that the active code search paradigm can benefit those

code search engines too. I am also interested in applying other feedback mechanism

to improve active code search.

As a long term plan, one promising direction that I would like to pursue is to

enrich the returned source code. I believe that searching code alone is insufficient

and I plan to link the identified code to other related textual materials, such as online
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documents of the APIs appearing in the resulting code, examples about these APIs,

and discussions related to the resulting code. Another direction that I would like

to pursue is code auto-completion based on a context. I plan to do automatic code

completion, by employing data mining techniques (e.g., API sequence mining) and

natural language processing techniques (e.g., statistical language model) to analyze

a large code base and infer missing code based on a particular context.

Besides research on code search, I am also interested to employ program anal-

ysis and data mining techniques to improve software testing, such as developing a

new test case generation method and improving web application fault localization

via log analysis. I am also interested in doing research on mobile security, such as

malware detection – I would like to detect the malicious behavior of an application

by leveraging program dependency graph.
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