
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Dissertations and Theses Collection (Open
Access) Dissertations and Theses

2014

Using User Saliency For Effective OLED Display Power Using User Saliency For Effective OLED Display Power

Management Management

Kiat Wee TAN
Singapore Management University, kwtan.2010@phdis.smu.edu.sg

Follow this and additional works at: https://ink.library.smu.edu.sg/etd_coll

 Part of the Computer Sciences Commons

Citation Citation
TAN, Kiat Wee. Using User Saliency For Effective OLED Display Power Management. (2014). 1-134.
Available at:Available at: https://ink.library.smu.edu.sg/etd_coll/119

This Master Thesis is brought to you for free and open access by the Dissertations and Theses at Institutional
Knowledge at Singapore Management University. It has been accepted for inclusion in Dissertations and Theses
Collection (Open Access) by an authorized administrator of Institutional Knowledge at Singapore Management
University. For more information, please email cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/etd_coll
https://ink.library.smu.edu.sg/etd_coll
https://ink.library.smu.edu.sg/etd
https://ink.library.smu.edu.sg/etd_coll?utm_source=ink.library.smu.edu.sg%2Fetd_coll%2F119&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=ink.library.smu.edu.sg%2Fetd_coll%2F119&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

Using User Saliency For Effective OLED Display
Power Management

by
Tan Kiat Wee

Submitted to School of Information Systems in partial fulfilment of the
requirements for the Degree of Master of Science in Information Systems

Dissertation Committee:

Rajesh Krishna Balan (Supervisor / Chair)
Associate Professor of Information Systems
Singapore Management University

Archan Misra (Co-supervisor)
Associate Professor of Information Systems
Singapore Management University

Jiang LingXiao
Assistant Professor of Information Systems
Singapore Management University

Singapore Management University
2014

Copyright (2014) Tan Kiat Wee

Using User Saliency For Effective OLED Display
Power Management

Tan Kiat Wee

Abstract

The display component on mobile device has always been a main power drain com-

pared to networking and processing components. Even with advancement in display

technology such as Organic Light Emitting Diodes (OLED) displays to help reduce

this cost, the increasing display size and new mobile usage paradigm (App stores

and Social networking), the display still remains as the largest power drain compo-

nent.

In this thesis, we describe an approach to reduce power consumption on OLED

display by dimming areas of the screen that the user might not be interested in.

We determine these uninteresting areas by reviewing large number applications to

determine the Region-Of-Interest; this ROI is used to develop a simple dimming

model that is deployed to save power. The system is designed such that power can

be save without impacting the user usability, task time, as well as a small system

overhead to reduce power cost and not impact over system performance. This thesis

show power savings of between 23 to 34%. Our work complements existing OLED

power management literature such as colour mapping approach and improves over

default constant dimming approaches.

Table of Contents

1 Introduction 1

1.1 Motivation . 2

1.2 Research Objectives And Contributions 3

1.3 Dissertation Roadmap . 4

2 Literature Review 5

2.1 The Displays . 7

2.1.1 LCD . 8

2.1.2 OLED . 9

2.2 Power Management On The OLED Display 10

2.2.1 Colour Mapping . 10

2.2.2 Screen Dimming . 12

2.3 Saliency . 13

2.3.1 Bottom-Up . 14

2.3.2 Top-Down . 14

2.4 Behaviour . 15

3 Research Problem and Proposed Solution 16

3.1 The Research Problem . 16

3.2 The Proposed Solution . 16

3.3 Motivating Scenario . 17

i

4 Methodology 18

4.1 Popularity of OLED Devices . 18

4.2 Design . 19

4.3 Requirements . 20

4.4 Determining the Range Of Savings 21

4.5 Determining the Region Of Interest 22

4.5.1 Simple Region Of Interest Model 24

4.6 Proposed Architecture . 27

4.6.1 The Profile . 28

4.6.2 Profile Generation Module 28

4.6.3 Deployment Module . 29

5 Implementation 32

5.1 Profile Generation Module . 32

5.1.1 Default vs. App-Specific Profiles 32

5.1.2 Default Profile . 34

5.1.3 Application-Specific “Customised” Profiles 35

5.1.4 Creating and Deploying the Profiles 37

5.1.5 Profile File Format . 38

5.2 Deployment Module . 40

5.2.1 Android Primer . 40

5.2.2 Implementing Within The OS Stack 41

5.2.3 Profile Check and Preload 43

5.2.4 Extending the Android Draw Process 44

5.2.5 Capturing Events . 47

5.3 Putting it all Together . 47

6 Performance Evaluation 51

6.1 Evaluation Methodology . 51

6.1.1 Applications Selection . 51

ii

6.1.2 Power Measurements . 52

6.2 Power Savings . 55

6.2.1 Measurement Details . 55

6.2.2 Results: The System Saves Significant Display Power . . . 56

6.3 Task Completion Time . 58

6.3.1 Measurement Details . 58

6.3.2 Results: But What About The Time To Finish Tasks? 59

6.4 Comparison with other techniques 60

6.4.1 Colour Mapping . 60

6.4.2 Resolution Reduction and Uniform Dimming 60

6.4.3 Measurement Details . 61

7 User Study 64

7.1 User’s demographic profile . 64

7.2 User Study Methodology . 65

7.3 Experiment 1: Is the system Usable? 66

7.4 Result: The System is Perceived As Usable 67

7.5 Experiment 2: Are Supplied Profiles Good Enough? 68

7.6 Result: Users Can Pick Effective Profiles 71

7.7 Result: Feedback of Users . 72

8 Supporting Games 75

8.1 Salient Type: Centred-Based Games 75

8.1.1 Locus of Attention . 76

8.1.2 Power Saving Technique 78

8.1.3 Adapting to Game Play Situations 78

8.1.4 Adaptive Framework . 78

8.1.5 Implementation . 79

8.1.6 Evaluation . 82

8.1.7 Results . 84

iii

8.1.8 Discussion . 85

8.1.9 Generalisability of Technique 87

8.1.10 Conclusion . 88

8.2 Salient Type: Random-Based Games 89

8.3 On Going Work . 89

9 Dissertation Conclusion and Future Work 91

9.1 Conclusion . 91

9.2 Operational Issues . 92

9.3 Future Direction . 92

9.3.1 Content and Context Aware 93

9.3.2 Usability-Aware Power Management 93

A Profile Generation 96

A.1 Dim Profile Calculation . 96

A.1.1 Method Details: buildDimRect() 97

A.1.2 Method: buildRectDimAreas() 98

B View Class Modifications 103

B.1 Profile Check and Preload . 103

B.1.1 Constructor Modification 103

B.1.2 Method: readInDimArea() 104

B.2 Extending the Android Draw Process 106

B.2.1 Draw Method Modification 106

B.2.2 Method: kiatweeAddDimming() 111

B.3 Capturing Events . 115

B.3.1 Touch Event Dispatch . 115

B.3.2 Key Dispatch . 117

C User Study 120

C.1 Demographics Questions . 120

iv

C.2 Experiment 1 Questions . 124

C.3 Experiment 2 Questions . 126

C.4 Screenshots of the user study . 127

v

List of Figures

1.1 Power consumption of Facebook on Samsung Galaxy S3. The dis-

play consumes 44% of the total power compare to 4% network

transaction (3 Facebook newsfeed refresh) with the rest 52% con-

sume by the system (such as Facebook process, Android OS and

other process) . 3

2.1 Simplified exploded view of a Liquid-Crystal Display (LCD). The

Display Component contains the glass substrate, liquid crystal and

polarising filter. The Backlight Component provides the light source

that illuminates the display content 8

2.2 Magnified image of the AMOLED screen on the Google Nexus One

smartphone using the RGBG system. [30] 9

2.3 OLED Brightness-Power curve of Samsung Galaxy S3. Power con-

sumption of the primary RGB + White colour with increasing bright-

ness. Zero brightness indicate black screen 11

2.4 Colour Mapping: Inverting colours impact usability 12

2.5 OLED clock-face on Smart-watch. The analogue clock face saves

more power than the numeric due to lesser pixels gets turn on 13

vi

2.6 Saliency Examples. Bottom-Up Approach uses the content features

such as colour, contrast, etc to determine the salient region for im-

age segmentation [4]. Whereas Top-Down usually relies on cog-

nitive process of humans such as reading a page would require the

user to have certain patterns and directions on where the visual at-

tention would be [29]. 14

4.1 System design is influenced by 3 main areas: The OLED Display,

User Saliency and User Behaviour 19

4.2 Constant dimming applied to Facebook. Power consumption drops

as the the screen is progressive dimmed from 0% to 100% (where

screen is black at 100%) . 22

4.3 Effects of constant dimming at 50% and 75% for Facebook 23

4.4 Analysis of mobile applications. Majority of the applications have

new content at the top/bottom (64%), using scrolling (69%) and are

read only (77%) . 24

4.5 The Dimming Regions. Top Gradient Area and Middle Gradient

Area dims their area from brightness to 90% dim where Bottom

Black Area turns of the pixel in this area and Untouched Area re-

mains clear . 25

4.6 Applying dimming filter with 50% Untouched + 50% Middle Gradient 26

4.7 Applying dimming filter with custom effect with all four regions

included . 27

4.8 Profile Generation and Deployment Modules 28

4.9 Using the ”Flip” Feature for Dimming. Once the physical volume

buttons are depressed, volume increase flips the dimming filter and

volume decrease flips back to original 30

4.10 Conditions where dimming is not applied 31

vii

5.1 Profiles containing the dimming regions. Each region has a different

dimmed value thus creating the gradient effect 34

5.2 Default Profile (One Size Fits All). Applied to 6 different apps. . . . 35

5.3 Customised Profiles deploy for different applications 36

5.4 Applying application-specific profiles using the Desktop Tool 38

5.5 Applying application-specific profiles using the Mobility Tool 39

5.6 An example of a profile file for Facebook using Default Profile.

Each line is denote by Dim-Value Left Top Right Bottom where the

dim value is followed by the coordinates of the dimming box. Each

line specify one box. 40

5.7 The Android Stack. Modifying the Core Libraries allow the dim-

ming to be deployed as application agnostic solution 41

5.8 Modifying the View constructor to check and load in the profile

data. This is to avoid performance penalty due to re-execution of

the code in the subclasses as well as avoiding expensive file oper-

ation. The method readInMirrorDimArea(), is the same operation

for loading mirror profiles for dimming flipping. 43

5.9 Modifying the Draw method to implement the dimming profile.

Dimming method, kiatweeAddDimming(canvas), is applied after the

dispatchDraw such that the child widget is first rendered before dim-

ming is applied. 45

5.10 Part of the kiatweeAddDimming() that shows the Alpha-blending

process. Each dimming box is sequentially applied to the canvas

with the specified alpha-blending values. 46

5.11 Part of the dispatchTouchEvent() method that shows instrumenta-

tion that captures and touch interaction and store it under scroll flag

(kiatweeOnScrollFlag) within the root View. 48

viii

5.12 Part of the dispatchKeyEvent() method that shows instrumentation

that captures and volume button interaction and store it under flip

flag (kaitweeOnViewPortFlipFlag) within the root View. 49

5.13 How the dimming is applied during battery constraint scenario. Dim-

ming is applied only to applications with profiles during low battery

condition . 50

5.14 Process flow chart of creating, deploying and runtime operation of

dimming . 50

6.1 Monsoon Power Monitor measuring power consumption on the Sam-

sung Galaxy S3. The Monsoon Power Monitor replaces the battery

as a power source allowing us to measure consumed power 52

6.2 Uniform Dimming & Resolution Reduction (Unused areas are set to

black) compared to the originals and our Default and Custom profiles 62

7.1 Demographics of users . 65

7.2 Perceived usability of the system. The self-reported scores for the

question “This version of the application is as usable as the origi-

nal version” using a 5 point Likert scale (5–Strongly Agree to 1–

Strongly Disagree . 68

7.3 Perceived usability of the system. The self-reported scores for the

question “The most important portions of the application are still

visible” using a 5 point Likert scale (5–Strongly Agree to 1–Strongly

Disagree . 69

7.4 VBA Tool for user to control amount of dimming to be deployed . . 70

7.5 Aggressive profiles defined by users. Shown 3 examples of profiles

defined by users which save more power than our Custom profiles. . 72

7.6 Willingness to dim the screen to save power. 74

ix

8.1 Different salient region in games. Random salient region are found

in games such as Fruit Ninja where the focus is on the fruits. Cen-

tred salient region are found in games such as Quake 3 where the

focus is in middle . 76

8.2 Locus of attention . 77

8.3 Gradual dimming from Locus of Attention to the edges 79

8.4 The Adaptive Framework. Dimming only is applied during game

motion and is implemented slowly across time to reduce distraction

to the user . 80

8.5 An example of the series of Dimming Boxes used to create the gra-

dient effect . 82

8.6 Power savings . 85

8.7 Ease of Controls . 86

8.8 User ability to track when stationary 87

8.9 User ability to track when moving 88

8.10 Fruit Ninja dimming applied to the background when visual atten-

tion is placed on the fruits . 90

9.1 Occlusion Dimming . 94

x

List of Tables

6.1 For each application, we conducted our continuous power measure-

ments using the scenario(s) in the “One Minute Continuous Usage

Scenario” column and our task completion measurements using the

scenario(s) in the “Specific Task Scenario” column 54

6.2 Applications Used For This Evaluation 54

6.3 The table shows the average values across all test scenarios for each

application (Table 6.2). The bracket values for the ”(% & Diff.)”

column are the % savings difference between the “Customised” and

“Default” profiles for the continuous measurement scenario. For

the task scenario, all values are the % improvement over the base

case (without dimming running) — negative values indicating an

increase in the time or power consumption. 57

6.4 Measurement Results . 57

6.5 Comparing the Power Savings with Other Dimming Methods. All

values shown are the % improvement in Power consumption relative

to the Baseline . 63

xi

7.1 Power Savings Achievable by Participant Generated Profiles. The

table shows the % improvement of the minimum (least aggressive),

median, and maximum (most aggressive) participant generated pro-

files relative to the baseline unmodified power consumption values

(using the values shown in Table 6.4) for the same application. We

used the same testing procedure used to generate the “Continuous

Usage Scenario” entries in Table 6.4. Note: for Adobe Reader, one

participant (the min. value) decided that the best profile would be

to turn off the systems. 71

xii

Acknowledgments

I would like to express my gratitude to my advisor Prof. Rajesh Krishna Balan for

the guidance and support of my study and research, for his patience, encouragement.

Besides my advisor, I would like to thank the rest of my thesis committee: Prof.

Archan Misra and Prof. Jiang LingXiao for their encouragement, insightful com-

ments, and hard questions.

I thank fellow students, Kartik Muralidharan, Sougata Sen and Joseph Chan for

the stimulating discussions. In addition, I like to thank Tadashi Okoshi of Keio

University for his help in this thesis. Lastly, I like to thank Ms Ong Chew Hong and

Ms Seow Pei Huan for their admin support.

xiii

Dedication

I dedicate my dissertation work to my parents for their unwavering support.

xiv

List of Publications

Conference Papers
Kiat Wee Tan, Tadashi Okoshi, Archan Misra, and Rajesh Krishna Balan. 2013. FO-

CUS: a usable & effective approach to OLED display power management. In Pro-
ceedings of the 2013 ACM international joint conference on Pervasive and ubiquitous
computing, (UbiComp ’13).

Kiat Wee Tan and Rajesh Krishna Balan. 2012. Adaptive display power management
for OLED displays. In SIGCOMM Comput. Commun. Rev. 42, 4 (September 2012).

Kiat Wee Tan and Rajesh Krishna Balan. 2012. Adaptive display power management
for OLED displays. In Proceedings of the first ACM international workshop on Mo-
bile gaming (MobileGames ’12). ACM, New York, NY, USA, 25-30.

xv

Chapter 1

Introduction

The boom of mobile devices in the last decade has seen these devices becoming

more powerful and larger (in terms of screen size). With these devices becoming

powerful which leads to a higher power drain on their batteries. Although battery

technologies have tried to keep up, with the advancement in microelectronics, power

consumption has never stay stagnant. In fact, this power consumption has been

made worse due to the changing nature of smartphones such as increase popularity

of App stores, improved network condition (faster bandwidth, reduced latency), new

application paradigm such as social networking and even mobile gaming.

In general, there are two approaches to reduce power consumption on the de-

vices: Hardware or software. The hardware approach targets hardware components

to reduce their power consumption. This can include using power efficient semi-

conductors such as processors, chipsets, wireless communication devices, etc. The

software approach targets the efficient utilisation of hardware through clever adap-

tion to specific scenarios such as context or content. For example, adaptively ad-

justing processor frequency to reduce power consumption or putting the device to

sleep when the user is not using the device.

In this thesis, we focuses on the software approach on displays of the mo-

bile device, in particular OLED (Organic Light-Emitting Diode) and/or AMOLED

(Active-Matrix Organic Light-Emitting Diode) display technology. This is because

1

these displays compared to other components such as processor or network con-

sumes the largest amount of power. This is due to display being one of the primary

interface component on the device that users put their attention on (always on).

Hence, even with advanced OLED technology that was designed to save power (and

space), displays still dominate the power consumption on modern mobile devices.

1.1 Motivation

Modern handheld mobile devices such as Smartphones and tablets uses two main

display technology, LCD (Liquid Crystal Displays) and OLED to support high reso-

lution content with low latency response. The main power drain difference between

these two technology is that LCDs utilise the backlight component to illuminate the

screen that draws the most power whereas OLED turns on individual pixel based

on what is required to be displayed. In this work, we focuses on OLED due to their

increasing popularity that are being used in devices such as the Samsung Galaxy

Series (from 1 to 4), HTC One, Nokia Lumias to tablets.

Although OLED displays are very power efficient compared to their LCD

cousins, they still consumes large amount of energy when compared to other phone

components, for example, as shown in Figure 1.1, OLED display on the Samsung

Galaxy S3 still dominates about 44% alone in power consumption compare to other

phone modules using the Facebook App. Even with 3 network refresh to fetch new

feeds from the server within a test period of 10 minutes, the network transaction cost

consumes much less than the display when compared to display given the use-case

where the user is browsing news feed on Facebook.

Thus one of the main goals of this thesis is to reduce the power consumption

of mobile devices that utilised OLED display. OLED display power management

via software is not a new approach, two solutions exists: colour mapping [13, 14,

36] and screen dimming [36, 40]. Both approaches save power by manipulating

the displayed content, however it comes with usability trade off (unnatural colour,

2

44%#

4%#

52%#

Facebook(

Display# Network# System#

Figure 1.1: Power consumption of Facebook on Samsung Galaxy S3. The display
consumes 44% of the total power compare to 4% network transaction (3 Facebook
newsfeed refresh) with the rest 52% consume by the system (such as Facebook
process, Android OS and other process)

unable to see content, etc). Hence, the main research motivation for this thesis is

to effectively save power on these OLED mobile devices without affecting usability

cost ddm.

1.2 Research Objectives And Contributions

The research objectives of this thesis are defined by the following goals:

1. The use of human saliency to aid in OLED display power management.

2. The effective use of saliency to balance the trade off between power savings

and usability of the system.

3. The implementation, deployment, and testing of the system using both mod-

ern mobile operating systems and devices and a large range of commonly

3

used applications.

4. The implementation must be of low overhead and capable to scale across

different App category.

This system will have the following contributions:

1. The system will show how OLED based power management can be effec-

tively and efficiently applied to modern mobile device and usage scenario.

OLED-based power management is not a new area but our research will show

how these techniques can be effectively applied to modern setting.

2. This research will also show how the proposed technique will minimise the

user impact.

3. Our implementation will take into account the efficiency and scale such that

the overhead will be kept to a minimum.

4. This technique presents a viable option for low battery constraint scenarios

to extend the usage mileage as well as for other processes to utilise as a fea-

ture/option to offset the power cost if the processes are unable to reduce power

cost within its own processing space.

1.3 Dissertation Roadmap

This dissertation is organised into the following 9 chapters. Chapter 2 reviews the

literature background of the related work that is needed in this work. We then

formally define research problem and solution in Chapter 3. Chapter 4 describes

the methodology where we review the design and architecture. Chapter 5 describes

the implementation details in Android. The evaluation is done in both Chapter 6

and Chapter 7 for power performance and user study respectively. Chapter 8 looks

at the issue of implementation of the solution in games. Lastly, we conclude and

review possible future work direction in Chapter 9.

4

Chapter 2

Literature Review

Power management is not a new concept on mobile devices, for example, mod-

ern mobile operating systems incorporates power management functionality in the

devices. These may includes (this list is not exhaustive):

1. Screen Timeout This time out setting forces the system to switch off the

screen and goes into idle mode when it detects no interaction by the user. By

switching off the screen and going into idle mode, this allows the system to

save power.

2. Automatic Brightness Adjustment This setting allows the OS to automat-

ically adjust the screen brightness to different lighting condition. By adap-

tively reducing the brightness allows power saving to occur.

3. Idle/Sleep mode Idle or Sleep mode allows the operating system to put ei-

ther the entire phone into low power mode and/or specific components such

as cellular/Wi-Fi communication or sensors to low power mode to conserve

power. This employs techniques such as processor frequency scaling or intel-

ligent scheduling in the communication protocol, which are usually transpar-

ent to the user or developers.

The functionality list presented is not exhaustive but it can be broadly cate-

gorised into four main power management areas: Display, communication, process-

5

ing(CPU) and sensors. We will review some key ideas drawn from each of these

areas.

1. Communication Communication refers to the available communication com-

ponents on the device, this may include cellular (2G/3G/LTE), Wi-Fi, Infrared

and Bluetooth. The well-known technique to save power on these network in-

terfaces is to put them to sleep. Past and recent work has shown that by putting

network interfaces to sleep allows considerable power savings [7, 39, 22].

However, the key idea is when and how to put the interfaces to sleep without

trading off aspect of usability, efficiency and in some case utility. For exam-

ple, one such technique utilised in-game context within a gaming application

on the mobile device to put network interface to sleep achieving power saving

without impacting game play [1].

2. Processing In processing, power can be save in a number of ways. In ad-

dition to switching between standard sleep/idle modes, one simple approach

is to change the processor frequency to save power [5]. However, to effec-

tively manage power savings, software approaches are needed in conjunction

with hardware methods. For example, one such approach, application-aware,

based on the constraints of the system, applications adaptively changes their

fidelity to match power requirements hence prolonging the power [33, 16, 3]

3. Sensors Sensors are relatively new additions to consumer handheld mobile

devices. These sensors can include from accelerometer, GPS, barometer, light

and even fingerprint. As most sensors require their data streams to be pro-

cessed continuously, this posed a problem to their deployment due to the fact

that operating continuously meant a constant draw on power.

Hence, methods such as intelligent duty cycling and effectively switching

on and off sensors set by detecting which context they entered into provides

a good means of power savings [43]. Similarly, there are also works that

6

optimise the sensing pipelines to manage data such as piggyback allow power

savings to be achieved at application-agnostic level [45].

4. Display The display on mobile devices consumes the most power regardless

if they are LCD or OLED based. Although newer OLED technology has

vast improvements on power usage, the nature of the device still dominates

power consumption. In this paper, we specifically address the issue of power

management on mobile display and demonstrate the solutions.

2.1 The Displays

Displays on mobile devices have gone through several technology through the

decades. Prior to the launch of Android and iPhone Smartphones, majority of

handheld mobile devices (feature phones) usually utilised passive-matrix Liquid-

Crystal-Displays (LCD) that usually requires an external light source (sunlight or

an extra light bulb in the device) for the user to read off the screen. Although power

efficient, these devices generally do not offer high quality resolution or colour.

Current modern mobile devices, specifically Smartphones and tablets in current

consumer market uses generally two types of display technology: Active-Matrix

LCD types and OLED. Although providing high resolution, low latency and colour

to modern devices to support modern demands and usage, these devices compared

to their predecessors trade off power efficiency.

The power problem is further compounded with ever increasing large handheld

devices such as 5 to 7 inches screen size and large tablets (7 inches and above). In

addition, with the change of usage behaviour (social networking, etc) on modern

handheld devices and the popularity of Application (App) stores (Google Play, Ap-

ple App Stores, etc), users now spent considerable amount of time on these devices

than before further aggravating the power issue.

7

2.1.1 LCD

Modern Active-Matrix LCD (Liquid-Crystal Display), can be generally, viewed as

being make up of two main components that draws power: display and backlight

(see Figure 2.1). The backlight sits behind the display and controls the amount of

light (illumination) projected through to the display whereas the display holds the

displayed content. Hence, by varying the backlight, the LCD controls how bright

the display but at the same time the backlight dominates the power consumption

(the brighter screen, the higher the backlight power consumption).

Display(Component(

Backlight(Component(

Figure 2.1: Simplified exploded view of a Liquid-Crystal Display (LCD). The Dis-
play Component contains the glass substrate, liquid crystal and polarising filter. The
Backlight Component provides the light source that illuminates the display content

Power management has predominately focus on the backlight to reduce power

consumption from better hardware designs to system-level optimisations [19, 2, 8,

10, 34] that utilised component power model or application context. The technique

8

mainly focuses on reducing the backlight and compensating the image (Gamma cor-

rection, etc). This approach tries to reduce power consumption without impacting

on usability on the user such that the compensated image resembles as closely to

the original.

2.1.2 OLED

In contrast, OLED or Organic Light Emitting Diodes displays do not have backlight

component. Instead, individual pixel on OLED displays consists organic semicon-

ducting compound. Depending on the manufacturing process, each pixel can con-

sists of the red, green and blue (RGB) diodes [38] or more see Figure 2.2. Hence,

for any image content, each pixel will light up and vary each RGB diodes to achieve

the desired colour and intensity for the content.

Figure 2.2: Magnified image of the AMOLED screen on the Google Nexus One
smartphone using the RGBG system. [30]

Hence, this meant that content dictates the power consumption for day-to-day

usage compare to backlight component in LCD displays. As a result, LCD-based

approach to power saving will not work on OLED displays such as reducing the

backlight and compensating it by adjusting the displayed content’s gamma to com-

pensate for the reduce in brightness [2, 8, 10, 34].

9

2.2 Power Management On The OLED Display

OLED and Active Matrix OLED (AMOLED) displays have the characteristic that

each pixel is emissive (no backlight). This meant that each pixel contains red, green

and blue component when light up generates the required colour for the displayed

content thus no backlight required. However, each organic compound differs from

each other in terms of their organic compound, lifetime and power consumption.

Hence, to achieve a constant lifetime for the OLED display, each RGB component

differ in size during manufacturing seen in Figure 2.2.

This results in different power consumption curves for different devices, shown

in the Figure 2.3 is our measurement of the Samsung Galaxy S3 OLED Dim-

Response curve, each colour consumes different power at different brightness with

the white colour consuming the most power. Thus, the two main approaches for

power management on OLED devices are the colour mapping and/or display dark-

ening which will be discussed in the next section.

2.2.1 Colour Mapping

The colour mapping technique essentially maps a high power consuming displayed

colour to a lower power-consuming colour. This approach uses display characteris-

tic of the OLED display. Seen in Figure 2.3 shows the power vs. colour response

for Samsung Galaxy S3, each colour consumes different power due to the different

properties of the organic semiconductor material. Thus by mapping one colour to

another power saving colour provides an advantage to save power [23, 36], however,

the problem to this approach is two fold.

First, each OLED manufacturer uses different manufacturing process, hence

each power curve seen in Figure 2.3 would differ between manufacturers, this would

be hard to derive a device agnostic solution. Seen in works from Mian Dong et.

al [13, 12, 14], power models derived from each phones differs hence, to effectively

apply this solution, a series of models has to be build prior to accommodate different

10

Dim-power curve.pdf

0"

200"

400"

600"

800"

1000"

1200"

1400"

1600"

1800"

2000"

0" 10" 20" 30" 40" 50" 60" 70" 80" 90" 100"

Po
w
er
&(m

W
)&

Brightness&Intensity&

Samsung&Galaxy&S3&OLED&Brightness?Power&Curve&

White" Blue" Red" Green"

Figure 2.3: OLED Brightness-Power curve of Samsung Galaxy S3. Power con-
sumption of the primary RGB + White colour with increasing brightness. Zero
brightness indicate black screen

phone types.

In additional, different screen sizes as well as resolution density or DPI (dots

per inch) affects how the content is going to be displayed. Smaller DPI would have

a poorer power savings when compared to a larger DPI. Hence, colour mapping has

to be adapted carefully in order to maximise power savings.

Second, colour mapping usually comes a cost of usability, as an example, one

efficient colour mapping solution is to do colour inversion (white to black or vice

versa) seen in Figure 2.4. Although achieving power savings, it would be not usable

since the image may have has lost its semantic information during the inversion as

user now no longer able to identify what the picture is about. This lost in semantic

information can be resulting from a change in colour can include lost of fidelity or

usability [14].

11

Original	 Colour	 Inversion	

Figure 2.4: Colour Mapping: Inverting colours impact usability

2.2.2 Screen Dimming

Observing Figure 2.3, the other alternative is to reduce power consumption is to

reduce the intensity of the pixels or screen dimming to save power. Earlier works

by Kamijoh et. al [27] as well as Ranganathan et. al [36] showed that saving

OLED display power was possible by reducing the image brightness and reducing

the number of pixels to be turn on.

Kamijoh showed that by choosing a better UI design for the Smart watch, the

system is capable of saving power and does not impact on usability at the same time.

Seen in Figure 2.5, although both clock face shows the same time. But by choosing

the analogue clock face, it saves more energy than the numeric clock face due to the

fact that less pixels are turn on compared to the numeric face[27].

Modern OLED based Smartphone also utilised this technique to save power

such as dimming the screen after a certain period of in activity. Recent work has

also tried to similar approaches in the hardware level using dynamic voltage scaling

12

3:00PM Clock	 Face:	 Numeric	

Clock	 Face:	 Analogue	

Figure 2.5: OLED clock-face on Smart-watch. The analogue clock face saves more
power than the numeric due to lesser pixels gets turn on

(DVS) to change the power consumed by the diodes in an OLED pixel [9, 37].

However this approach degrades the luminance of the image, which can affect the

end user experience. Our current solution is complementary to and can be used in

tandem with both colour-remapping and hardware-based approaches.

2.3 Saliency

User saliency in this work is defined as the area on the screen where user’s Region-

Of-Interest (ROI) lies or the area where the user places attention on. Saliency arises

from the study of human visual attention from cognitive science [17] through a

comprehensive study of where humans places their visual attention given a scene.

For our purpose of this work, we will only require to use the following scope, in

particular, two main concepts: The bottom-up and top-down approach to visual

attention.

13

Bo#om%Up% Top%Down%

Figure 2.6: Saliency Examples. Bottom-Up Approach uses the content features
such as colour, contrast, etc to determine the salient region for image segmenta-
tion [4]. Whereas Top-Down usually relies on cognitive process of humans such
as reading a page would require the user to have certain patterns and directions on
where the visual attention would be [29].

2.3.1 Bottom-Up

Saliency has been widely used in the field of image and video processing [25],

this approach is generally known as the bottom-up saliency where interesting visual

features (colour, contrast, etc) are used to determine the salient or interesting bits

of the displayed contents (see Figure 2.6. Such approaches have also been used

on mobile platforms [44], where it bridge the disconnect between users viewing

attention with the salient image features to build a better Region-of-Interest (ROI)

model that aid in the user viewing process. However, although such approaches are

good in detecting ROI in still images, it is not useful when the system is interactive

such as in gaming and it consumes battery resources for processing.

2.3.2 Top-Down

The top-down approach uses the cognitive approach to determine where the visual

attention is being placed. For example, when the user is reading a book where user

places the attention on the start of the paragraph and follows the sentences across

the paragraphs on a page, see Figure 2.6.

Hence, to determine the focus of the user, we can either study the content and

use cognitive heuristic to locate the region of interest(where the user might start

14

reading the paragraphs, etc) or use eye tracking equipment to determine the user

gaze [15, 17, 26, 44]. The drawbacks of using this approach is such that additional

specialised equipment needs to be use and results might differ due to different users

or heuristic (E.g. right to left reading style in Arabic script).

2.4 Behaviour

Another factor that influence this work in power management is user behaviour.

Behaviour affects power consumption, specifically, when battery levels influence

the usage behaviour in order to extend usage mileage. Truong et. al [41] shown that

users change their usage patterns from altering the screen brightness, turning off

communication radios to reducing app usage or even limiting themselves to phone

usage to reduce their consumption on the battery. This shows users are willingly to

trade usability aspects on their mobile devices for extended battery usage.

In addition, earlier works by Rahmati et. al has shown that mobile users do

not really understand power management features. Hence users are not taking full

advantage of power management features [35]. This also indicates the system will

have to do manage power on the user behalf in order to maximise the power man-

agement features on the phone.

15

Chapter 3

Research Problem and Proposed

Solution

3.1 The Research Problem

Organic Light Emitting Diodes (OLED) displays that is use on modern mobile de-

vices such as Smartphone or tablet continue to be the dominant power consumption

component on these devices. Although OLED offers better power savings compared

to their LCD cousin, their power consumption still depends very much on their dis-

play content in terms of colour and intensity. Hence, software approaches to manage

power via colour mapping and darkening is insufficient. These techniques require

not only the use of application context but also how the context is being utilised by

the user to be truly effective in managing the power consumption.

3.2 The Proposed Solution

We proposed our OLED power management technique by utilising existing OLED

power saving techniques with the addition of usability consideration. This involves

the concept of human saliency and behaviour to provide an effective and efficient

way of power management on OLED displays minimising the system overhead and

16

user usability while achieving power savings. The following motivating scenario

highlights how we expect our system to work.

3.3 Motivating Scenario

Lisa, a third year university student, own a Samsung Galaxy S 3 smartphone that

has an OLED display.Like many of her peers, she uses her Smartphone through her

school day for chatting with friends, checking status on social networking applica-

tions such as Facebook, Google Plus, WhatsApp, short gaming sessions, YouTube

watching and traditional usage such as email, texting, calendar, etc. She charges her

phone if opportunity allows but usually, her Smartphone runs out of battery before

the end of her school day.

Using our solution, Lisa prepares a set of dimming profiles for applications that

she commonly use (e.g. Facebook, WhatsApp, Gmail). As soon as her smartphone’s

battery reaches 20%, our solution will activate to prolong the usage time. As soon

as Lisa activates an application with a dimming profile, the dimming will be applied

to the application.

Each dimming profile contains the areas of dimming as well as the amount of

dimming needed for that area. Each dimming profile is configured by Lisa with the

aim of saving as much power as possible while maintaining the usability Lisa is

comfortable with. With the dimming applied, the power consumption of the display

is reduced thus allowing her extended usage time.

This ability to significantly extend the smartphone’s battery life by losing a little

bit of display usability is the key benefit of this thesis.

17

Chapter 4

Methodology

In this chapter, we first review the popularity of OLED based handheld mobile de-

vices to verify the merit of the problem and solution. We then review the design

principles and requirements. We first determine the value of dimming by under-

standing the power savings it can achieved. Second, we looked at the saliency of

mobile applications to determine the salient regions and formulate a simple Region

Of Interest (ROI) model. Lastly, we look review the design architecture based on

the design principles, requirements and the ROI model.

4.1 Popularity of OLED Devices

Although LCD based smartphones continues to be in the market place (e.g. Apple

iPhone). OLED based smartphones have become extremely popular due to their

low power and slim form factor. We discovered that OLED-based smartphones are

extremely popular, with Samsung leading the way and other manufacturers soon

to follow [31]. Samsung, according to Gartner [18], has become the world’s most

popular smartphone manufacturer — with their OLED-based Galaxy Series smart-

phones (S II, III & IV, Note I & II, etc.).

In addition, due to market and technology issues, larger OLED displays (e.g.,

tablets, laptops, or TVs) [31] will become common anytime soon. Indeed, searching

18

the tablet market revealed only 2 OLED-based tablets (the Samsung Galaxy Tab 7.7

and the Toshiba Excite 7.7) with the larger 10 inch variant only available after 1st

quarter of 2014. Hence, we focused our research effort on reducing the power

consumption of smartphone OLED displays.

4.2 Design

The proposed solution aims to save power on OLED-based mobile devices using

the dimming (darkening/gradient) approach by utilising the saliency properties of

the user in such a way that we can effectively managed power with minimising the

impact to usability. The system design can be broken down into three areas, the

display, saliency and user/usage behaviour as seen in Figure 4.1. These principles

are derived from our related work in Chapter 2.

Saliency)

OLED)

Behaviour)

System'Principles'

Users)place)their)
visual)a8en9on)

on)certain)parts)of)
the)screen)

Users)change)
their)usage)

behaviour)when)
ba8ery)constraint)

Dimming)displayed)
content)saves)power)

Figure 4.1: System design is influenced by 3 main areas: The OLED Display, User
Saliency and User Behaviour

Seen in previous section, to save power on the OLED device, our work focuses

on utilising a combination of reducing the pixel intensity or switching off the pixel

19

to save power. To do so we dimmed areas that area that are not interesting to the

user. To determine which areas are interesting we used the concept of user saliency.

User saliency helps to determine which area on the screen that the user is putting

their attention to, as discussed in Section 2.3), this area is known to be the Region-

Of-Interest (ROI). To determine this ROI on the applications, we intensively review

a large number of applications and build a simple ROI model of which areas on the

screen the users are looking at and using these models to dimmed the uninteresting

areas. However, these ROI will inadvertently cause usability problems to the user

since other areas of the screen is dimmed, hence to mitigate the problem, we looked

at user behaviour.

User behaviour influence our design such that we know when and how to ef-

fectively implement the dimming models and at the same time reduce the usability

impact. We know from previous Section 2.4 that reducing usability on the phones

will not make this approach useful, hence, to implement this model successfully,

this approach is extremely useful when the user is strained by low battery condition

where the user is more willing to trade usability for extra usage time.

Hence by implementing this approach in low battery condition, we are able to

save power on these mobile device, prolong their available usage time at a usability

level that the user is comfortable and willing to accept to.

4.3 Requirements

To guide us in the design, the proposed design will have the following requirements

that the system will adhere to.

1. User Friendly. The proposed design must not affect the end user experience

in unacceptable ways. However, with proposed design, the user will only be

encountering the dimmed screens only at low battery conditions where the

impact of usability is acceptable to the user to prolong extended battery life.

20

However, the envision system will not dimmed the screens when the mobile

device is not battery constraint as not to affect the end user experience. This

validate this acceptability using both the researcher determination as well as

the user. We will demonstrate this in the following Chapter 7.

2. Significant Power Savings. The proposed design should have significant

power savings across the system not just on OLED display component. This

indicates that power savings in the OLED will translate to a savings across

the system, hence bring power consumption per application down.

3. Generalisable. In this proposed design, the proposed system will be

application-agnostic instead of an application-specific approach. The sys-

tem will be implemented such that we affect all installed binaries (default and

3rd-party) instead of tuning each application.

4. Low Computational Requirements. It must be computationally efficient,

i.e., It cannot save OLED display power at the expense of incurring a signif-

icant CPU or other resource energy cost. We proposed to inline the dimming

using existing available alpha-blending APIs within draw process of Android

applications.

4.4 Determining the Range Of Savings

In order to determine the amount of savings is possible using dimming, we con-

ducted a simple test using the Monsoon Power Monitor to determine the amount

savings achievable using the dimming approach. Shown in the Figure 4.2, as we

gradually dimmed from 0% to 100% using a constant dimming approach where we

dimmed the screen uniformly. We are able to achieve savings up to 51% from the

baseline. However, it should be noted that due to the emissive nature of the OLED

display, under different apps, power savings differs depending on their displayed

content.

21

Figure 4.2: Constant dimming applied to Facebook. Power consumption drops as
the the screen is progressive dimmed from 0% to 100% (where screen is black at
100%)

Figure 4.3 shows the display of the mobile device at different levels of dimming

during the test. Although, significant power savings can achieve when we increase

the level of dimming, this comes at the cost of usability where the user now have a

harder time using their screen (strain to the eyes), display looses fidelity above 75%

dimming.

4.5 Determining the Region Of Interest

To understand the dimming methods that are likely to prove successful, we first

carefully surveyed the top 20 applications in each of the 26 Google Play applica-

tion categories (520 apps in total). Our analysis shown in Figure 4.4 revealed the

following:

1. A majority of applications (64%) place their new content either at the top

or bottom portions of the screen. For a reasonably large set of applications

(29%) (e.g. book readers), the new content was on the entire screen. There

22

a)	 Original	 b)	 50%	 Constant	 Dimming	 c)	 75%	 Constant	 Dimming	

Figure 4.3: Effects of constant dimming at 50% and 75% for Facebook

were also a few applications (7%) (e.g. wallpapers) that were meant to be run

in the background and could be safely dimmed or even turned off when power

conservation becomes crucial.

2. In addition, most applications (69%) used scrolling to access new content,

while a few applications (30%) (book readers again) used page flips (where

you swipe across the screen and the whole page refreshes with new content).

An even smaller set (1%) (Ebay) used a combination of both scrolling and

page flips.

3. Finally, a significant majority of applications were principally focused on dig-

ital consumption and are thus read-only (77%), with very little user input

(beyond navigation controls). However, a few applications (23%) (e.g. What-

sApp and Twitter) required the user to provide a lot of input.

23

64%	

29%	

7%	

Content	 Loca*on	

Top/Bo-om	

Full	

Background	
69%	

30%	

1%	
Interac*on	 Mode	

Scroll	

Page	 Flip	

Both	

77%	

23%	

Content	 Consump*on	

Read	 Only	

InteracFve	

Figure 4.4: Analysis of mobile applications. Majority of the applications have new
content at the top/bottom (64%), using scrolling (69%) and are read only (77%)

4.5.1 Simple Region Of Interest Model

Based on the our analysis, we developed a simple Region-Of-Interest (ROI) model

that divides the screen into regions that we can apply the dimming accordingly. It

is seen that the new content is generally located in the top and bottom of screen and

a large portion of the apps uses scrolling that moves the older content into these top

or bottom regions with large portion of the applications are content-consumption

based rather than content-creation.

From this knowledge, we divide the screen into four main areas see in Figure 4.5.

A dimming region at the top, clear region, dimming region at the bottom and a black

plateau region. All four regions are adjustable and/or can be removed based on the

app’s specified ROI regions. The regions are description as follows:

1. Top Gradient Area. The top gradient region dims from 90% dim to 0% from

the top to the bottom edge of this region. This region covers areas of screen

24

Top	 Gradient	 Area	

Untouched	 Area	

Middle	 Gradient	 Area	

Bo5om	 Black	 Area	

Top	 Marker	 (Adjustable)	

Middle	 Marker	 (Adjustable)	

Black	 Marker	 (Adjustable)	

Figure 4.5: The Dimming Regions. Top Gradient Area and Middle Gradient Area
dims their area from brightness to 90% dim where Bottom Black Area turns of the
pixel in this area and Untouched Area remains clear

that usually does not have any information such as logo bars, dividing bars,

etc or status indicators. Having this region gives us the flexibility to increase

the dimming to the top part of the screen. The gradual dimming (gradient)

provides a means to enable dimming while at the same time still allow the

user to observe the content instead of a blanket uniform dimming

2. Untouched Area/Clear Region. The clear region does not have any dimming

modification and remains clear to the user.

3. Middle Gradient Area. Similar to the dimming region at the top, it dims

from 0% to 90% dimmed following the Clear region. It gradually dimmed

25

(gradient) the screen such that the user is still able to observe the content until

the region edge.

4. Bottom Black Area. The black plateau region turns off all pixel in this region

and no content is shown. This region provides the maximum power savings.

To illustrate how this simple model translates into dimming filters that is being

deployed, we show two examples. First example, we wish to create a dim filter that

only dims 50% of the bottom screen and leaves the 50% untouched. To do so, we

adjust the Middle Marker to the mid point and remove the Top Gradient Area and

Bottom Black Area and we will get the desired effect shown in Figure 4.6.

Original	

Untouched Area	

Middle Gradient
Area	

50-50 Profile
Top and Bottom Region

is removed	

Outcome	

Figure 4.6: Applying dimming filter with 50% Untouched + 50% Middle Gradient

In the second example, if we are to be more aggressive in our power saving,

we can include all four areas into the dim filter. This will include the Top Gradient

Area, Untouched Area, Middle Gradient Area and the Black Area. This will result

in the shown outcome in Figure 4.7 where the bottom area is now black (pixels turn

off) with also the Top Gradient Area applied to the top of the screen.

26

Original	

Top Gradient Area	

Middle Gradient
Area	

All four areas included	 Outcome	

Untouched Area	

Bottom Black Area	

Figure 4.7: Applying dimming filter with custom effect with all four regions in-
cluded

4.6 Proposed Architecture

The design first addresses generalisability and low computational requirements, to

effectively achieve this requirements, the implementation has to be incorporated

within the OS stack of the mobile device. This will allow an application-agnostic

solution as well as keeping computation low and simple without the need to change

each and individual application.

The design is broken down into the following: Profile Generation Module and

Deployment Modification as shown in the following Figure 4.8. These two modules

are kept separate such that the profiles can be easily generated on any platform. The

Profile Generation Module is lightweight operation that can be easily be deployed

as an simple application in both desktop and mobile hardware. This allows the

Deployment Module flexibility to be deployed as either a kernel level solution or

application-level solution.

27

Profile	 Genera+on	 Module	 Deployment	 Module	

Salient	 Region	
Selec+on	

Dim	 Value	
Applica+on	

Profile	
Genera+on	

Dim	 Profile	 For	
Each	 App	

Secondary	 Storage	
(SDCard)	

App	
Detector	

Primary	 Storage	 	
(Memory)	

Profile	 Loader	

App	 Draw	
Process	

Render	 to	
screen	

Profile	 Profile	 Profile	 Profile	 Profile	

Profile	 Profile	 Profile	 Profile	 Profile	

Profile	

Interac+on	
Detector	

Figure 4.8: Profile Generation and Deployment Modules

4.6.1 The Profile

In order to understand the two modules, we need to review how the four areas under

our ROI model is organised into a single entity known as a profile. Each profile

contains the definitions of each of the four areas. Once the ROI model is defined

for the app to be dimmed, we translate each of the areas and organised them into a

profile for this particular app.

Using this profile with the simple ROI model approach, we can now easily build

any profile for any application. Hence, this allows us to build a power saving solu-

tion while maintaining a usable screen for the user based on the saliency character-

istic of each application.

4.6.2 Profile Generation Module

The profile generation module seen in Figure 4.8 is responsible for creating a dim-

ming profile for each application. To setup a profile, the user would use this Pro-

file Generation module to determine which area of the screen would be salient and

28

which area of the screen would be dimmed. As discussed in the previous section,

the four regions would be determine and set by the user for each application.

The user does not need to understand the low level semantics with only need to

adjust the markers (Figure 4.5). Once the markers are set and the appropriate dim

value is determine, the Profile Generation module would generate all the necessary

dimming boxes that is needed by these 4 dimming regions. This design is highly

flexible as the dimming boxes are flexible to implement different kinds of dim-

ming patterns hence, the system design is flexible enough to accommodate future

changes.

Using the Profile Generation Module, the system is capable of adapting the sim-

ple ROI model into any application, this allow the user or the developer to quickly

customised a profile for any application. As the design is build on a need-only basis,

only applications that as an associated profile will be dimmed, applications without

will not be modified. The mechanics of how this achieved is explained in the next

section.

4.6.3 Deployment Module

In our design, the deployment module is developed and implemented as a kernel-

level solution (within the OS stack). The profiles that are generated by the Profile

Generation Module is first transferred and stored within the secondary storage on

the mobile device (usually the SDCard medium). This allows us to reduce the ac-

tive memory usage by loading only the profiles that are needed when dimming is

required. Individual profile is then loaded into active memory if the app detector

has detect if the app has been loaded. In addition, an interaction detector is used

to detect user interaction to switch on and off dimming to reduce the impact on

usability.

Once the conditions have been satisfied, the profile is loaded into memory. As

the solution implements within the OS stack, we implement the dimming routines

29

within the App draw process, our dimming profiles (within the memory) is applied

to the screen. Hence, if the system does not detect a profile is available, no profile

will be loaded and no dimming will be applied, allowing the user to use the mobile

device normally.

In addition, we further improve the usability by implementing a ”flip” feature

by pressing a hardware button, the dimming “flips”, i.e., the bottom portion is clear

and the top portion is dimmed. (The topmost status bar dimming never flips). This

approach handles the majority of applications that have new content on either the

top or bottom portions of the screen. In addition, the flip button makes it possible to

view content anywhere on the screen — albeit with more effort and usability impact

seen in Figure 4.9.

Dim Filter Applied Normally	 Dim Filter “Flipped”	

Figure 4.9: Using the ”Flip” Feature for Dimming. Once the physical volume but-
tons are depressed, volume increase flips the dimming filter and volume decrease
flips back to original

To ensure that scrolling is still easy, removes all dimming the moment the screen

30

is touched (so that all content and scrollbars become instantly visible). Moreover, to

allow easy entering of user input, does not dim any of the virtual keyboards shown

in Figure 4.10.

Dim Filter Applied	 Dim Filter Removed During
Screen Interaction (Touch)	

Dim Filter Removed When
Keyboard Is Active	

Figure 4.10: Conditions where dimming is not applied

Using this design, we able to build an application agnostic solution where we

now affect all mobile applications using the implementation in the OS stack. In

addition, by using the profile approach and checking the availability of the profiles

during application start, we reduce unnecessary computation such that only appli-

cations with profiles are modified.

31

Chapter 5

Implementation

In this chapter, the implementation of the design for both Profile Generation Module

and Deployment Module are described. In addition, the chapter provides additional

description of how the various design requirements are achieved in the implemen-

tation phase.

5.1 Profile Generation Module

5.1.1 Default vs. App-Specific Profiles

The dimming profile determines the pattern of darkening that is applied to the dis-

play. At the high level, each profile is organised into four different portions of the

screen (as discussed in Section 4.5.1):

1. Top Gradient Area.

2. Untouched Area.

3. Middle Gradient Area.

4. Bottom Black Area.

However, since the Untouched Area or Clear Region does not have any dim-

ming, only 3 areas need to be considered for dimming or turn off: emphTop &

32

Middle Gradient Area and Bottom Black Area. This provides both flexibility and ef-

ficiency in handling and loading of the profile during runtime. For the two dimming

regions and black plateau region, two values can be specified:

1. The size of the region (Defined via rectangle defined by its four coordinates).

2. The intensity level at the end of the dimming region, i.e., the alpha blending

should blend from 100% intensity to x% intensity (where x is the value spec-

ified) at the edge of the dimming region. By default, this value is set to 90%.

The black plateau region is set to 100%

However, due to limitation of the Android’s Alpha-Blending API, the desired

gradient effect (Dimming in gradual intensity) using the API is not achievable (no

such effect available). Hence, in order to achieve the gradient effect, the Top &

Middle Gradient Areas are decomposed into multiple smaller areas with increasing

dimming intensity to create the desired effect.

Each dimming region is bounded by a rectangular box that defines the region

that would be dimmed. Hence, by setting up each region carefully, the required

gradient effect dimming pattern can be achieved, shown in Figure 5.1.

The computing of these dimming boxes is transparent to the user, once the re-

gion is defined, each of the dimming regions and black plateau region will be broken

into a series of dimming boxes. This will be finally stored as a single profile for the

application.

To handle the flipping feature (that flips the dimming profile to handle full screen

content), an additional profile known as a mirror profile is computed. This mirror

profile is simply an inverted dimming profile. During an activation of the volume

button, either the increase or decrease volume button, the system will activate one

of these two profiles which will be rendered onto the screen.

Touch events such as screen scrolling and onscreen keyboard disables the dim-

ming. For any touch operation, dimming is disabled when any finger is on the

screen and re-enable once the finger is removed. Similarly, the dimming is disabled

33

Before	 OLED	 Profile	 Containing	 The	
Dimming	 Regions	

A:er	

Figure 5.1: Profiles containing the dimming regions. Each region has a different
dimmed value thus creating the gradient effect

when the onscreen keyboard is enabled. This is a usability consideration, to reduce

usability impact when the user is interacting with the phone.

Both flipping feature, touch events capturing and onscreen keyboard is reviewed

in later Section 5.2.5 where event capturing is implemented within the OS stack.

5.1.2 Default Profile

The default profile is application independent, this meant that this is a standard

profile with only dimming pattern that can be used across all applications. The

dimming pattern is as defined as follows: The top dimming region size was set to

50% with no dimming. The size of the bottom-dimming region was set to 50% (i.e.,

half of the screen) and the plateau region was set to the bottom of the screen (i.e.,

there was no area of the visible screen that was turned off). Finally, the gradient of

the bottom-dimming region was set to 10%. This profile leaves the top 50% of the

screen unmodified while dimming the bottom 50% gradually from 100% intensity

34

to 10% intensity at the very bottom of the screen. The effect of this conservative

profile is shown in Figure 5.2.

(a) WhatsApp Messenger (b) Adobe Reader (c) Firefox browser

(d) BBC News (e) Facebook (f) Gmail

Figure 5.2: Default Profile (One Size Fits All). Applied to 6 different apps.

5.1.3 Application-Specific “Customised” Profiles

The default profile provides an one size fits all approach that quickly provides a

quick dimming solution to any applications. However, in situations where default

profile is not appropriate or sufficiently optimised, the system allows either the Ap-

plication developer or the user to specify per-application dimming profiles. Such

35

per-application dimming profiles are creating by altering the default values of the

top dimming region, the middle clear region, and the bottom dimming region, in

terms of both the region size and the final intensity level. These application-specific

or custom profiles aims to provide the maximum dimming effect to achieve power

saving while at the same time reduce the usability impact to the user show in Fig-

ure 5.3

(a) WhatsApp Messenger (b) Adobe Reader (c) Firefox browser

(d) BBC News (e) Facebook (f) Gmail

Figure 5.3: Customised Profiles deploy for different applications

36

5.1.4 Creating and Deploying the Profiles

Both Default and Custom dimming profile defines the four regions (Top Gradient,

Untouched, Middle Gradient and Black) in terms of both the size of the region and

the intensity value as explained in the previous sections. Once the dimming regions

are defined, individual dimming boxes are computed, stored and transferred to the

phones. There are two approach on how this is done:

Desktop Computer Tool

For the desktop computer, a simple Java-based tool was developed to allow users

to create either the Default or Customised profiles for any application they choose.

The interface of this tool is shown in Figure 5.4. This tool works on a desktop/laptop

with Java runtime installed. The resulting profiles created are then transferred to the

phone. The tool allows users to easily specify the three portions stated above for

any application.

The users need only to adjust the three main sliders to mark the four regions, ad-

ditional optional adjustments to the dimming effect are provided should the user

wish to customised the gradient dimming. For every dimming setting, the tool

shows the expected effect on the application and the expected power savings achiev-

able (by interpolating a-priori power measurements of various settings for that ap-

plications). When the user is comfortable with their profile, they can click a button

to generate and deploy the profile to their phone. Figure 5.3 illustrates the resulting

application profiles that we (as researchers) created, for 3 out of the total set of 6

applications that we investigated.

Mobility Tool

For mobile platform, a similar tool was developed for the mobile device. The inter-

face is shown in Figure 5.5. The user is presented with three markers (horizontal

lines) in which they can adjust by moving the markers to their desired location to

37

Step 3:
Deploy on

Mobile Device

Step 2:
Create Dimming

Profiles

Dimming Region
At The Top

Clear Region

Dimming
Region At The

Bottom

Plateau Region
(Black Area)

Step 1:
Define the Locus
and Dim Areas

Estimated
Power

30%

Figure 5.4: Applying application-specific profiles using the Desktop Tool

mark the Top Gradient, Untouched, Middle Gradient and Black area (users can also

move the markers out of the screen to denote that that region is not utilised). Once

the user is satisfied with the markers position, he can preview and deploy the profile

to the appropriate application directly on the mobile device.

5.1.5 Profile File Format

In this section, we review the profile file format that hold the dimming boxes. Each

profile file is stored as a plain text file (extension .txt) where the profile’s filename

is denoted by the application’s name that the profile is meant for (e.g. A dimming

profile for Facebook will be stored as com.facebook.katana.txt).

As described in previous section, once the user has defined the areas with ei-

ther the desktop or mobile tool, these regions are further broken down into smaller

dimming boxes to allow regions that have a gradient dimming effect, the code re-

sponsible for breaking down into the dimming boxes using the sliders is shown in

Appendix A. Figure 5.6, shows the content of a Default (one size fits all) profile for

Facebook.

38

a)	 Dimming	 Selector	 b)	 Adjust	 the	 markers	 c)	 Preview	 and	 Deploy	

Figure 5.5: Applying application-specific profiles using the Mobility Tool

Each line within the file denotes a dimming box and is arranged in a CSV-like

(comma-separated values) order. The dim value followed by the coordinates of the

dimming box within the resolution of the display as follows: Dim-Value Left Top

Right Bottom. The Dim-Value is restricted by the Alpha-blending API within the

range of 0 to 255 (8 bits). Similarly, for the dimming box coordinates, the box is

restricted by the display resolution (e.g. On Samsung Galaxy S3, the max resolution

is 720x1280)

For the black plateau region, dim value of 255 with the dimming box will allow

to generate the black region. Similarly, there is no need to define for clear region in

the profile file. As seen in Figure 5.6, a series of dimming boxes with an increasing

dim value allow us to generate the required gradient effect for the Top and Middle

Gradient Area. Once the profile file is generated and deploy to the phone, it is then

parsed by the Deployment Module line by line to apply the dimming effect on to

the screen described in Section 5.2.4.

39

Figure 5.6: An example of a profile file for Facebook using Default Profile. Each
line is denote by Dim-Value Left Top Right Bottom where the dim value is followed
by the coordinates of the dimming box. Each line specify one box.

5.2 Deployment Module

In this section, the implementation detail of the Deployment Module is reviewed. In

which, the Android primer is first reviewed to established how Android is organised

internally before the kernel changes are reviewed.

5.2.1 Android Primer

The Android operating system from Google is an open source Linux based mobile

operating system [21]. However, the Linux kernel is not directly exposed to the

user or developer. Instead, Android provides abstraction to third party developers

develop applications to execute on Android Runtime (virtual machine). Hence, in-

stead of compiling applications into native environment, Android utilised the Dalvik

virtual machine that works with byte code that is compiled from Java. The operating

system (OS) stack is divided into several layers shown in Figure 5.7.

The application framework, core libraries are written in Java that provides the

necessary APIs to build applications. These applications are then compiled into byte

40

Applica'on	 Level	

Applica'on	 Framework	

Android	 Run'me	 Na've	
Libraries	

Linux	 Kernel	

Core	 Libraries	

A
nd

ro
id
	 O
S	
St
ac
k	

Figure 5.7: The Android Stack. Modifying the Core Libraries allow the dimming
to be deployed as application agnostic solution

code and run within the Android Runtime that take advantage of the native libraries

and Linux kernel to execute the applications. Hence, to achieve an application-

agnostic design, our solution needs to be deployed within the Core Libraries, such

that any applications that use these APIs will now include our solution.

5.2.2 Implementing Within The OS Stack

In order to apply the dimming to the screen as well as gathering inputs from the user,

the implementation is done within the Core Libraries. Specifically, the required set

of APIs are modified within the Core Libraries to allow a phone wide effect shown

in Figure 5.7. This modified API allows access to both user key presses (to detect

swipes, etc.) and the display framebuffer. This was a careful architectural choice

and offers advantages over the two likely alternatives:

1. Implementing in the lower levels of the stack (such as the kernel video

drivers): This would have provided more direct access to the image frame-

buffer, to allow a more direct manipulation. However, this also meant addi-

tional processing is needed to interpret low-level pressure data with the touch

sensors. Hence, although access to kernel video drivers provides access to

41

framebuffer it comes at the expense of semantically meaningful key presses

(which would now be reported as raw pressure values), making it difficult to

adjust the dimming function in response to user interactions.

2. Implementing in user space: This would require application recompiling of

every application on the user’s phone as this is the only method to inject

OLED modifications into third party applications. However, this would limit

generalisability for example, Android system applications cannot be easily

recompile unless root access is guaranteed on user phones to extract the nec-

essary applications. In addition, problems with recompiling with correct sig-

natures as well as obfuscation also limit generalisability. Another problem is

recompilation would incurred significant performance penalty as the OLED

routines now have to be added within the third party applications.

Under the Android system, all widgets that is used in any Android applications

are a direct or indirect subclass of the superclass View. The View class is a su-

perclass that is part of the Core Libraries, this meant both interacting widgets like

buttons and non interact widgets such as Layout classes (e.g. LinearLayout, Rel-

ativeLayout, etc) inherits from this superclass. In addition, the View superclass

processes touch events such as onClick that is feed by Android system services.

In Android rendering process, the widget draw process is based on a parent-

child relationship. Hence, all View objects (including direct or indirect subclass)

are directly chain together under this draw tree. Thus any widgets declared within

the draw tree will always have a root View object. This View API design simplifies

our modification, thus we only require to modify a singular class (View) to create all

the necessary effect.

However, modification in this superclass can result in performance problem due

to the subclasses that inherits from it. As all of the user interface widgets inherit

(directly or indirectly) from this superclass, any improper modification might re-

sult multiple executions of the same code causing performance penalty. Hence,

42

our modification is done such that we only apply the dimming on selected widget

components and we only apply when the profile is available for the application.

5.2.3 Profile Check and Preload

The first step in the Deployment Module is to check for available profile and load

the profile into memory. As discussed, we carefully modify the View class construc-

tor such that we do not execute unnecessary code in the subclass. To do this, we

utilise the draw tree to avoid any redundant computation that impede performance.

Any widgets that is part of the draw tree will first check the root View before any

processing, once any processing is completed, the results are stored only in root

View of the draw tree.

In the implementation, during the first instantiation of the View object within the

constructor, the process will call our readInDimArea() method, see Figure 5.8, that

will first check if the profile file is available. If not available, no further processing

will be done, the process execute as per normal.

Figure 5.8: Modifying the View constructor to check and load in the profile data.
This is to avoid performance penalty due to re-execution of the code in the sub-
classes as well as avoiding expensive file operation. The method readInMirrorDi-
mArea(), is the same operation for loading mirror profiles for dimming flipping.

If the profile file is available, it will then check if the root View already contains

43

the data. If available, no further processing is done, otherwise it will read from file

and the stored the data into active memory. Please refer to the Appendix B.1 for

full implementation. This avoid unnecessary code re-execution in the draw tree and

avoid expensive file read operation to load the profile data into active memory.

5.2.4 Extending the Android Draw Process

Our solution applies the dimming on any applications by extending the Android

draw process that renders application content onto the screen. Standard Android

applications that use widgets to draw content on the screen are arranged internally

in a parent-child relationship with each widget being a child of the master “View

object” [20] structure as a tree.

At runtime, Android draws all the widgets in this tree onto the screen, in a

recursive way, starting from the parent. Once all the children for the entire rendering

tree have been added to the framebuffer, Android goes ahead and renders the entire

framebuffer to the display.

As all user interface widgets are direct or indirect subclasses from the View

superclass, we can easily modify the draw(Canvas canvas) method and implement

our dimming routines. During a draw operation in the draw tree, the root View will

execute its own draw method. Once its draw operation is completed, it dispatches

an event to the next widget in the parent-child chain in the draw tree. It repeats for

the next widget in a recursive manner until all widget is processed.

Our modification takes advantage of this draw tree by only executing our dim-

ming at the end of all draw process. In addition, we only execute on the main widget

that utilise the whole display resolution, this only allow us to apply the dimming to

the final content once. Our method, kiatweeAddDimming(canvas) is added after the

dispatchDraw(canvas) so that we only execute after the next widget’s draw process

has been executed seen in Figure 5.9.

As the draw process is a recursive operation, each widget will execute its own ki-

44

Figure 5.9: Modifying the Draw method to implement the dimming profile. Dim-
ming method, kiatweeAddDimming(canvas), is applied after the dispatchDraw such
that the child widget is first rendered before dimming is applied.

atweeAddDimming(canvas) method after its child’s draw operation has completed.

Hence, our method will only execute on the main widget that is higher up in the

draw tree that utilise the whole display resolution. This main widget may not nec-

essary be the root View as different developers creates their UI differently. This

effectively only apply the dimming once and prevents re-execution of the code in

draw tree.

In implementation, kiatweeAddDimming(canvas) method will first check for the

scroll flag, if it is turn on, no dimming will be applied. If not, it continues to check

if the user has initiated to flip the dimming. This allow us to apply the correct dim-

ming filter (the original or mirror profile) later on. Second, we obtain the widget

resolution to determine if this widget utilise the whole screen. If if does, we proceed

to dim the screen by applying the dimming boxes sequentially (more details in the

next Section 5.2.4. The method utilise different configuration parameters for differ-

ent machine, shown in Appendix B.2, this set of parameters is meant for Samsung

Galaxy S3.

Utilising Alpha Blending

The system applies a dimming profile to the final root display object using the well-

known alpha blending technique, which uses a special colour channel to gradually

adjust the opacity and translucency of the individual pixels of the screen image. In

our solution, black colour is used to blend with the displayed content (black content

turns off pixels on OLED).

45

There are existing efficient Alpha-Blending APIs within the Android Core Li-

braries, the API requires the region to be blended as well as the opacity/translu-

cency value to be set and the API performs the blending. However, as discussed

earlier, these APIs is limited in its functionality as the gradient effect is not avail-

able. Hence, to achieve the desired effect, dimming regions are furtherer divided

into dimming boxes to achieve various dimming effects.

In implementation, we utilised Alpha-Blending APIs under the Paint class in the

android.graphics package. Using this Paint class, we first set Paint colour to black.

Next, since our profile data is already prepared in the following format Dim-Value

Left Top Right Bottom (discussed in Section 5.1.5), we can easily set the Alpha

channel with the Dim-Value with the canvas colour to transparent and the proceed

to draw the rectangle (dimming box) onto the canvas with the provided coordinates,

see in Figure 5.10. The dimming is applied after all dimming boxes in memory

has been parsed and draw onto the screen creating all the necessary effect. For full

implementation see Appendix B.2.2.

Figure 5.10: Part of the kiatweeAddDimming() that shows the Alpha-blending pro-
cess. Each dimming box is sequentially applied to the canvas with the specified
alpha-blending values.

46

5.2.5 Capturing Events

In addition to extend the draw process, we instrument various key system events in

order capture and to aid in the dimming procedure. These includes:

1. Touch Event Dispatch. This is instrumented to give us the event when a

touch event has been fired, see Figure 5.11, for implementation refer to Ap-

pendix B.3.1. This aid us to switch on or off the dimming filter, this is to

reduce the usability impact when the user is interacting with the content such

as scrolling. We keep scroll flag (boolean value) to indicate if the user is

touching the screen. This is later used draw process to apply the profile or not

(in previous Section 5.2.4).

2. Key Dispatch. Key dispatch event inform us when a physical button on the

device is being utilised, see Figure 5.12, for implementation refer to Ap-

pendix B.3.2.This instrumentation allow hooks to be placed with the even

volume buttons, this fires the event for the mirror profile to be applied so as

to ”flip” the dimming filter and vice versa. Similar to the touch event, we use

flip flag (boolean value) that is also use in the the draw process to determine

if the mirror profile should be use (in previous Section 5.2.4).

5.3 Putting it all Together

To illustrate how the system work, an use case with the process flow is shown in

Figure 5.13 and Figure 5.14. This show how the system works with all the pieces

connected.

If a user that is using the proposed mobile system wishes to use Facebook, BBC

News, Gmail and WhatsApp even when the user’s mobile device is battery con-

straint. The user would first utilised either desktop or mobile tool to a series of

four profiles for this four applications and deploy these four profiles into the mobile

47

Figure 5.11: Part of the dispatchTouchEvent() method that shows instrumenta-
tion that captures and touch interaction and store it under scroll flag (kiatweeOn-
ScrollFlag) within the root View.

device. Using the tool and adjusting the markers, the user can define a dimming

profile that it acceptable, save and deploy to the mobile device’s SDCard.

The user then proceeds to use this mobile device normally and reaches a point

where the mobile device enters a battery constraint condition (As an example, less

than 10% battery life). If the user still wishes to use one of the four applications, for

example, Facebook then during the Start Up process, the system will now check for

a profile (either a “Customised” or “Default” profile).

If available, the system applies the profile using the draw process and applies

the dimming filter using the alpha-blending and renders the output to the display. If

not, it leaves the application unmodified.

48

Figure 5.12: Part of the dispatchKeyEvent() method that shows instrumentation that
captures and volume button interaction and store it under flip flag (kaitweeOnView-
PortFlipFlag) within the root View.

As the dimming is applied, display power is reduced allowing more extended

phone life, allowing the user to continue to use the applications compared to when

the user continue to use the screen without dimming.

In critical battery situations like this, we believe that users will be willing to

lose some of their screen real estate if it meant that a) they could still use their

applications effectively, and b) it extends their battery life by about 20% longer. In

future versions, the system could query a web service for an appropriate profile (the

profile could also be downloaded when installing the application).

49

Dimming	 Applied	

Load	 App	 Profile	 Into	
Memory	

Apply	 Profile	 During	
Draw	 Process	

Copy	 Dimming	
Profiles	 Onto	 Phones	

GMail	
BBC	 News	

WhatsApp	
Facebook	

Start	 App	

Figure 5.13: How the dimming is applied during battery constraint scenario. Dim-
ming is applied only to applications with profiles during low battery condition

Start	

Load	 OLED	
Profile	 to	
Memory	

Is	 OLED	
Profile	
available	

App	 Start-‐Up	
Process	

Yes	

No	

Widget	 Draw	
Process	

Has	 last	 child	
widget	 been	
drawn?	

Is	 OLED	 Profile	
in	 memory	

Alpha	
Blending	 with	
OLED	 Profile	

Exit	 Widget	
Draw	
Process	

ConInue	
Draw	 Process	

Yes	

Yes	

No	

No	

Create	 Profile	
(Mobile/
Desktop)	

Profile	 Storage	 on	
Mobile	 (SDCard)	

Push	 to	 mobile	
device	

Start	

CreaIon	 Process	 Draw	 Process	

Figure 5.14: Process flow chart of creating, deploying and runtime operation of
dimming

50

Chapter 6

Performance Evaluation

In this chapter, an quantitative evaluation was conducted on the system where de-

tailed power performance of the system was analysed. In which, power savings was

determined for no technique, default and custom profiles.

6.1 Evaluation Methodology

In this experiment, we utilise the Samsung Galaxy S III (GS3) Smartphone, which

is a popular OLED based mobile device as our test device and for the user study.

The GS3 uses a 4.8 inch HD Super-AMOLED (1280x720 resolution) display. The

modifications implemented on the View class is subsequently build on Android ver-

sion 4.2.2 using CyanogenMod i9300 variant. CyanogenMod is an open source

operating system that is based on the Android platform, it is chosen for its read-

ily available online resource and comprehensive support from the CyanogenMod

community [11].

6.1.1 Applications Selection

In our evaluation for both power savings and usability study, we evaluated using

15 popular applications from the Android app store (Google Play). The Android

app store covers 26 categories (games has a separated category) from books, busi-

51

ness, comics, communications to launcher widgets. In our work, we selected the

top applications from the top categories that the users would normally use on their

mobile device. We cover large popular categories such as books, business, com-

munication, finance, media & video, news, productivity, shopping and social. The

applications from these categories are shown in Table 6.2, that adequately cover the

entire application space.

6.1.2 Power Measurements

We used the Monsoon external hardware power monitor [32] to collect accurate

power measurements. The Monsoon power monitor show in Figure 6.1 replaces

the battery as the primary power source of the mobile device. Hence, we are able

to determine how much power the mobile device draws from the Monsoon power

monitor during normal operation as well as during dimming operations.

Figure 6.1: Monsoon Power Monitor measuring power consumption on the Sam-
sung Galaxy S3. The Monsoon Power Monitor replaces the battery as a power
source allowing us to measure consumed power

52

As the power drained measurement is for the whole phone, to determine display

measurement, we have to first measure a baseline reading that is without any tech-

nique for each application. We then subsequently compare subsequent measurement

relative to this baseline. Due to this nature, we have to keep the measuring time con-

sistent as well as ensuring that no other applications or processes running. In the

following result sections, we provide more details on their respective methodology.

53

N
am

e
C

at
eg

or
y

O
ne

M
in

ut
e

C
on

tin
uo

us
U

sa
ge

Sc
en

ar
io

C
om

pl
et

in
g

A
Sp

ec
ifi

c
Ta

sk
Sc

en
ar

io

A
ld

ik
o

B
oo

k
R

ea
de

r
B

oo
ks

Pa
ge

14
of

a
eB

oo
k

(“
O

liv
er

Tw
is

t”
)

Fl
ip

to
1s

tp
ag

e
an

d
re

ad
th

e
1s

tp
ag

e
D

oc
um

en
ts

To
G

o
3.

0
B

us
in

es
s

V
ie

w
in

g
4

sa
m

pl
e

fil
es

pr
ov

id
ed

by
th

e
ap

p
(2

E
xc

el
,1

W
or

d,
1

Po
w

er
po

in
t)

O
pe

n
a

sp
ec

ifi
c

w
or

d
do

cu
m

en
t

an
d

re
ad

to
sp

ec
ifi

ed
po

in
t

G
m

ai
l

C
om

m
un

ic
at

io
n

In
bo

x
lis

tin
g

B
ro

w
se

co
nt

en
to

fa
se

le
ct

ed
em

ai
l

Fi
re

fo
x

B
ro

w
se

r
C

om
m

un
ic

at
io

n
M

ai
n

pa
ge

s
of

G
oo

gl
e,

Y
ah

oo
SG

,W
ik

ip
ed

ia
,

A
m

az
on

U
S,

an
d

E
nd

ga
dg

et
U

se
G

oo
gl

e,
se

ar
ch

:
cn

n
an

d
br

ow
se

to
w

w
w

.c
nn

.c
om

W
ha

ts
A

pp
M

es
se

ng
er

C
om

m
un

ic
at

io
n

C
ha

ts
cr

ee
n

w
ith

ke
yb

oa
rd

ac
tiv

e
B

ro
w

se
to

sp
ec

ifi
c

th
re

ad
an

d
po

st
“t

es
t”

re
pl

y
O

C
B

C
B

an
k

Fi
na

nc
e

C
ur

re
nt

ba
la

nc
e

sc
re

en
B

ro
w

se
an

d
re

ad
tr

an
sa

ct
io

n
hi

st
or

y
Y

ou
Tu

be
M

ed
ia

an
d

V
id

eo
Po

rt
ra

it
m

od
e

pl
ay

ba
ck

of
“G

an
gn

am
St

yl
e”

vi
de

o
Po

rt
ra

it
m

od
e

pl
ay

ba
ck

of
“G

an
gn

am
St

yl
e”

vi
de

o
B

B
C

N
ew

s
N

ew
s

A
rt

ic
le

vi
ew

pa
ge

of
5

lo
ng

liv
ed

ar
tic

le
s

R
ea

d
to

p
th

re
e

ne
w

s
ar

tic
le

s
co

m
pl

et
el

y
A

do
be

R
ea

de
r

Pr
od

uc
tiv

ity
Pa

ge
10

of
a

pd
ffi

le
(“

Ja
va

C
ry

pt
og

ra
ph

y”
)

R
ea

d
de

fa
ul

td
oc

um
en

tt
o

sp
ec

ifi
ed

po
in

t
D

ro
pb

ox
Pr

od
uc

tiv
ity

Fi
le

lis
tin

g
pa

ge
B

ro
w

se
co

nt
en

ts
of

sp
ec

ifi
c

fo
ld

er
E

S
Fi

le
E

xp
lo

re
r

Pr
od

uc
tiv

ity
Fi

le
lis

tin
g

pa
ge

B
ro

w
se

fo
ld

er
co

nt
en

ts
of

di
re

ct
or

y
on

sd
ca

rd
C

al
en

da
r

Pr
od

uc
tiv

ity
W

ee
kl

y
sc

he
du

le
pa

ge
B

ro
w

se
ev

en
tc

al
en

da
rf

or
a

sp
ec

ifi
c

da
y

eB
ay

Sh
op

pi
ng

In
di

vi
du

al
It

em
de

sc
ri

pt
io

n
pa

ge
B

ro
w

se
pr

in
te

r
se

ct
io

n
to

a
pa

rt
ic

ul
ar

pr
in

te
r

sa
le

Fa
ce

bo
ok

So
ci

al
Ti

m
el

in
e

of
th

e
5

m
os

t
po

pu
la

r
Fa

ce
bo

ok
pa

ge
s

R
ea

d
to

p
15

po
st

in
gs

of
a

sp
ec

ifi
c

us
er

Tw
itt

er
So

ci
al

Ti
m

el
in

e
sc

re
en

B
ro

w
se

to
p

15
tw

ee
ts

of
a

sp
ec

ifi
c

us
er

Ta
bl

e
6.

1:
Fo

re
ac

h
ap

pl
ic

at
io

n,
w

e
co

nd
uc

te
d

ou
rc

on
tin

uo
us

po
w

er
m

ea
su

re
m

en
ts

us
in

g
th

e
sc

en
ar

io
(s

)i
n

th
e

“O
ne

M
in

ut
e

C
on

tin
uo

us
U

sa
ge

Sc
en

ar
io

”
co

lu
m

n
an

d
ou

rt
as

k
co

m
pl

et
io

n
m

ea
su

re
m

en
ts

us
in

g
th

e
sc

en
ar

io
(s

)i
n

th
e

“S
pe

ci
fic

Ta
sk

Sc
en

ar
io

”
co

lu
m

n

Ta
bl

e
6.

2:
A

pp
lic

at
io

ns
U

se
d

Fo
rT

hi
s

E
va

lu
at

io
n

54

6.2 Power Savings

The first evaluation was to identify how much OLED display power the system

could save. We conducted two main sets of experiments.

6.2.1 Measurement Details

In the first set of experiments, we used the generic “Default” profile (that gradu-

ally dimmed only the bottom half of the screen) for all the applications listed in

Table 6.2.

For each application, we ran the application without the system for one minute

and with the system for one minute. In both cases, we ensured that no other appli-

cations or processes were running (the phone was rooted and we manually killed all

background processes etc.). For each test, we repeated for at least 3 times to ensure

that the readings we obtain are consistent and the average is taken. For readings that

are not consistent (e.g. Power spikes due to Android system processes) are dropped

and test is repeated.

To ensure repeatability across experiments, we did the following: for each ap-

plication, we left the application on the “main” page. In particular, this was the

page which was the most frequently accessed page when the application was used

normally. For example, for the Aldiko Book Reader and Adobe Reader, this was the

page that showed the contents of the book or pdf being read (and not the main menu

page).

In the second set of experiments, we used a per-application “Customised” pro-

file, which we created to save as much power as possible while still preserving

(from our perceptual standpoint) application usability. These profiles could thus be

thought off as a form of usable “upper bound” to demonstrate the potential of the

system.

In both experiments, measured power is compared against the baseline (one

minute without the system). This gave us the power savings across the phone re-

55

sulting from the display changes.

6.2.2 Results: The System Saves Significant Display Power

Table 6.4 shows the average power consumption when running each application

without the dimming (“Unmodified”), with the “Default” profile, and with the “Cus-

tomised” profile. The table also shows the % improvement in power consumption

between the “Default” profile and the unmodified version (“(2) over (1)” in the ta-

ble), between the “Customised” profile and the unmodified version (“(3) over (1)”

in the table), and between the “Customised” and “Default” profiles (“(3) over (2)”

in the table). We show both the % improvement and the absolute difference in %

savings (in brackets) for this last case.

In terms of power savings for the ”Default” profiles or ”Custom” profiles are not

consistent, this is mainly due to how the application is developed. For example, ap-

plications that are mainly dominated by white colour theme such as Adobe reader,

book readers, etc usually have better power savings when dimming is applied com-

pared to darker theme applications.

In addition, the results show that the “Default” profile’s power savings ranged

from 1.5% (WhatsApp) to 32.5% (Twitter). The poor performance of WhatsApp

arose because the “Default” profile only dims the bottom half of the screen. How-

ever, the WhatsApp test scenario has the virtual keyboard active on most of the

bottom half of the screen, rendering this system (which does not dim the keyboard)

largely ineffective. However, even with WhatsApp’s poor performance, on average,

the “Default” profile saves about 23% of the OLED display power. This translates

to savings of anywhere between 15% to 20% or more of the total power consump-

tion of the phone when the screen is on (depending on which other components are

also active).

56

A
pp

lic
at

io
n

O
ne

M
in

ut
e

C
on

tin
uo

us
U

sa
ge

Sc
en

ar
io

Sp
ec

ifi
c

Ta
sk

Sc
en

ar
io

Po
w

er
C

on
su

m
pt

io
n

(m
W

)
%

Im
pr

ov
em

en
t

%
Im

pr
ov

em
en

t
B

as
e

“D
ef

au
lt”

“C
us

to
m

is
ed

”
(2

)o
ve

r
(3

)o
ve

r
(3

)o
ve

r(
2)

“D
ef

au
lt”

“C
us

to
m

is
ed

”
(1

)
(2

)
(3

)
(1

)
(1

)
(%

&
D

iff
.)

Ti
m

e
E

ne
rg

y
Ti

m
e

E
ne

rg
y

A
ld

ik
o

B
oo

k
R

ea
de

r
19

52
.3

0
13

37
.6

5
12

36
.2

7
31

.4
8

36
.6

8
16

.5
2

(5
.2

0)
-0

.3
7

23
.2

1
0.

49
29

.0
6

D
oc

um
en

ts
To

G
o

3.
0

16
20

.0
4

13
57

.1
1

12
67

.6
7

16
.2

3
21

.7
5

34
.0

1
(5

.5
2)

-0
.1

7
11

.7
9

0.
18

7.
23

G
m

ai
l

17
07

.4
8

12
43

.7
7

10
06

.5
9

27
.1

6
41

.0
5

51
.1

4
(1

3.
89

)
0.

90
19

.3
4

-1
0.

09
16

.6
2

Fi
re

fo
x

B
ro

w
se

r
17

03
.8

9
12

55
.2

4
10

47
.3

2
26

.3
3

38
.5

3
46

.3
3

(1
2.

20
)

1.
09

10
.2

2
-1

2.
75

3.
39

W
ha

ts
A

pp
M

es
se

ng
er

12
37

.1
0

12
18

.1
8

95
2.

98
1.

53
22

.9
7

14
01

.3
1

(2
1.

44
)

-1
.1

0
21

.8
2

-1
.4

5
15

.9
9

O
C

B
C

B
an

ki
ng

16
96

.9
6

12
49

.1
7

10
36

.1
9

26
.3

9
38

.9
4

47
.5

6
(1

2.
55

)
-0

.5
9

20
.9

8
-0

.7
5

29
.3

1
Y

ou
Tu

be
14

52
.8

0
11

13
.6

0
78

7.
30

23
.3

5
45

.8
1

96
.1

8
(2

2.
46

)
0.

01
27

.8
8

0.
02

36
.8

1
B

B
C

N
ew

s
15

50
.9

9
11

18
.9

7
88

1.
51

27
.8

5
43

.1
1

54
.7

9
(1

5.
26

)
4.

77
27

.3
6

5.
09

42
.3

7
A

do
be

R
ea

de
r

19
23

.1
9

14
37

.4
2

12
61

.1
5

25
.2

6
34

.4
2

36
.2

6
(9

.1
6)

2.
58

5.
31

4.
95

7.
82

D
ro

pb
ox

19
21

.8
0

13
58

.9
9

12
84

.4
0

29
.2

9
33

.1
7

13
.2

5
(3

.8
8)

-1
.5

7
15

.7
9

0.
46

14
.2

3
E

S
Fi

le
E

xp
lo

re
r

88
9.

71
79

0.
46

76
8.

43
11

.1
6

13
.6

3
22

.1
3

(2
.4

7)
-0

.0
7

2.
78

0.
44

12
.1

0
C

al
en

da
r

15
20

.5
5

11
49

.2
3

10
92

.5
8

24
.4

2
28

.1
5

15
.2

7
(3

.7
3)

-0
.1

6
22

.0
2

0.
68

24
.7

1
eB

ay
17

66
.7

8
12

59
.8

6
12

38
.6

0
28

.6
9

29
.9

0
4.

22
(1

.2
1)

0.
26

8.
02

-0
.1

4
4.

62
Fa

ce
bo

ok
15

57
.3

5
12

88
.4

9
10

41
.7

8
17

.2
6

33
.1

1
91

.8
3

(1
5.

85
)

0.
28

14
.4

7
-1

.0
1

8.
93

Tw
itt

er
18

23
.3

8
12

30
.8

4
10

20
.1

8
32

.5
0

44
.0

5
35

.5
4

(1
1.

55
)

0.
73

31
.5

7
-0

.3
3

38
.7

1

A
ve

ra
ge

—
—

-
—

-
23

.2
6

33
.6

8
—

0.
44

17
.5

0
-0

.9
5

19
.4

6

Ta
bl

e
6.

3:
T

he
ta

bl
e

sh
ow

s
th

e
av

er
ag

e
va

lu
es

ac
ro

ss
al

lt
es

ts
ce

na
ri

os
fo

re
ac

h
ap

pl
ic

at
io

n
(T

ab
le

6.
2)

.T
he

br
ac

ke
tv

al
ue

s
fo

rt
he

”(
%

&
D

iff
.)”

co
lu

m
n

ar
e

th
e

%
sa

vi
ng

s
di

ff
er

en
ce

be
tw

ee
n

th
e

“C
us

to
m

is
ed

”
an

d
“D

ef
au

lt”
pr

ofi
le

s
fo

r
th

e
co

nt
in

uo
us

m
ea

su
re

m
en

ts
ce

na
ri

o.
Fo

r
th

e
ta

sk
sc

en
ar

io
,a

ll
va

lu
es

ar
e

th
e

%
im

pr
ov

em
en

to
ve

rt
he

ba
se

ca
se

(w
ith

ou
td

im
m

in
g

ru
nn

in
g)

—
ne

ga
tiv

e
va

lu
es

in
di

ca
tin

g
an

in
cr

ea
se

in
th

e
tim

e
or

po
w

er
co

ns
um

pt
io

n.

Ta
bl

e
6.

4:
M

ea
su

re
m

en
tR

es
ul

ts

57

The “Customised” profiles obtained higher power savings. In particular, What-

sApp increased from 1.5% to almost 23% as the WhatsApp “Customised” profile,

shown in Figure 5.3, darkens areas of less interest to the user that are not covered by

the virtual keyboard. On average, the “Customised” profile saved about 34% of the

OLED display power (with a maximum savings of about 45% for YouTube). This

translates to saving 20% to 30% of the phone’s total power consumption.

6.3 Task Completion Time

In the second evaluation, we identify how much impact to the user task time when

the dimming is applied. We conducted two main sets of experiments as well.

6.3.1 Measurement Details

In first set of experiment, we utilise the ”Default” profile and perform a task on this

application across one minute. Each task is unique and typical to the application.

For example, using Facebook, we read the top 15 postings in the timeline. We mea-

sured the both the time and energy (mJ) needed to perform this task. In which, we

repeat the task again for ”Default” and ”Custom” profile, for the Facebook example,

we read the posting in the clear region and subsequently move the unread stuff into

this clear region. We repeat each task for at least 3 times to make sure the results

are consistent (without any Android system processes interferences), results that are

inconsistent are discarded and test is repeated.

Table 6.2 lists the “One Minute Continuous Usage Scenario” we used for each

application. Note: for four applications, Documents to Go 3.0, Firefox Browser,

BBC News, and Facebook, the content displayed could change dramatically and

this affected the power savings. Hence, for these four applications, we used mul-

tiple compelling test scenarios as described in Table 6.2. The measurement results

shown for these four applications are the average values across all the different test

scenarios for that application. We did not use different test scenarios for the other

dynamic-content applications applications such as eBay, Adobe Reader, and Twit-

58

ter as our testing showed no significant power variation even across different pages

containing fairly standard amounts of text.

6.3.2 Results: But What About The Time To Finish Tasks?

For the results shown above, the applications were used continuously for 1 minute

each. It is, however, important to ascertain if such dimming impacts task effec-

tiveness, i.e., will the partial dimming of the screen result in a much higher task-

completion time (as the user has to scroll unnecessarily to find things), thereby

increasing the overall energy consumption?

To evaluate this, we tested all 15 applications with a series of realistic tasks (de-

scribed in the “Completing a Specific Task Scenario” column in Table 6.2) without

dimming and with both the “Default” and “Customised” profiles. For each applica-

tion, we measured the energy consumption (in mJ) as well as the time to completion

of each task.

The ‘Specific Task Scenario” column of Table 6.4 shows the results of this ex-

periment as a % improvement over the same task being run for the same application

without the system active. (negative numbers indicate the time or energy consumed

increased by that % value).

Our experiment revealed that the task completion time increased by 0.44% and

-0.95%, on average, when using the “Default” and “Customised” profiles respec-

tively. Even in the cases when it increased or decreased task completion times (e.g.,

an increase of 12.75% for Firefox and 10% for Gmail, a decrease of 4.77% for BBC

News), the absolute time increase was at most 1 to 2 seconds only and within the

error margin.

In our experiment, we notice that due to the fact that we do not dim the screen

when the user is interacting with the screen, this indirectly aid the task. For example,

reading when scrolling up the content helps to reduce time spent in reading. In

addition, there are less scrolling action as we do not dim the screen when the user

is interacting, hence, content is usually move into the clear region once without any

59

correction.

This suggests that the system has minimal impact on task completion times.

However, even with this minimal impact, the “Default” and “Customised” profiles

still saved, on average, 17.50% and 19.52% of the overall display energy consump-

tion respectively. Coupled with the higher energy savings achievable when using

applications continuously, we posit that using system regularly will achieve signifi-

cant energy savings with minimal impact on task completion times.

6.4 Comparison with other techniques

As stated earlier, there are other techniques such as colour remapping and other

ways of dimming the screen that can, in principle achieve the same results as this

system. In this section, we discuss how these other approaches compare with this

system. All of these techniques are orthogonal to and can be used concurrently —

with each technique benefitting from the strengths of the other. However, we do not

evaluate concurrent usage in this thesis.

6.4.1 Colour Mapping

We were unable to directly compare with colour remapping systems such as

Chameleon [14] as these systems are extremely complicated and hard to replicate.

For example, Chameleon was implemented and evaluated on just a single custom

browser (Fennec browser on a Google Nexus One phone) that first study the power-

colour relationship per device model before implementing colour mapping. Instead,

we point out that their reported power savings of ≈40% when browsing is a little

higher (but albeit with a much more significant engineering effort).

6.4.2 Resolution Reduction and Uniform Dimming

Uniform dimming and resolution reduction are traditional methods in OLED dim-

ming. Resolution reduction has two main forms, either a reduction in pixel reso-

lution or spatial resolution. In this comparison, we looked at pixel resolution re-

60

duction. For uniform dimming, the whole display is dimmed uniformly across the

screen. In fact, uniform dimming implementation can be found in almost all OLED

smartphones (screen is dimmed when no interactivity is detected).

6.4.3 Measurement Details

However, it is possible to compare existing dimming techniques such as uniform

dimming as well as resolution reduction. To compare against other dimming tech-

niques, we choose to perform a static screen test. This test utilised capturing screen

shots and replaying back the screen shots on the screen. We choose this approach

as power management feature such as uniform dimming feature does not provide

adequate controls during power measurement to allow un-bias power comparison.

In addition, significant changes has to be implemented to allow resolution reduction

to be deploy to the device.

We performed a task on 6 applications (Facebook, WhatsApp, BBC News,

Gmail, Adobe Reader, Firefox), these applications are chosen as they are the top

and popular applications on the app store and they cover across different categories.

We first captured screen shots on each key application screen for that task. We

then applied the appropriate dimming routines to these screen shots. These rou-

tines consists of uniform dimming, resolution reduction, as well as our default and

custom profiles seen in Figure 6.2.

We then replayed the screen shots on a real phone (to simulate the task being

performed) and measured the power consumed by the display. Each screenshot is

measured across one minute, repeated at least 3 times to ensure results are consis-

tent. The power savings is then calculated by comparing against the baseline (orig-

inal screenshot). This gave us an excellent idea of the power savings achievable by

each dimming method across 6 applications. However, without a real implementa-

tion and user study, we make no claims as to the usability of these approaches.

The results are shown in Table 6.5 for different dimming percentages. We ob-

serve that the “Default” profile has comparable power savings to either a 20% re-

61

(a) Original	 (b) Default Profile 	 (c) Custom Profile	

(d) Uniform Dimming
(50%)	

(e) Resolution Reduction
(50%)	

Figure 6.2: Uniform Dimming & Resolution Reduction (Unused areas are set to
black) compared to the originals and our Default and Custom profiles

duction in either resolution or screen brightness while the “Customised” profile is

comparable to a 30% resolution or screen brightness reduction. We suspect that

both the resolution and screen brightness reduction methods will impact usability

far more than this system as they do not differentiate between important and less im-

portant areas of the screen. Hence, key content could be too dim for the user to see

(using uniform dimming) or too small for the user to interact with (using resolution

reduction). However, this validation is left as future work.

62

A
pp

lic
at

io
n

B
as

el
in

e
Sy

st
em

U
ni

fo
rm

D
im

m
in

g
(%

R
ed

uc
tio

n)
R

es
ol

ut
io

n
R

ed
uc

tio
n

(%
R

ed
uc

tio
n)

(m
W

)
D

ef
au

lt
C

us
to

m
is

ed
10

20
30

40
50

10
20

30
40

50

Fa
ce

bo
ok

16
27

.9
4

27
.8

5
42

.0
5

15
.6

7
27

.7
2

37
.4

2
44

.5
1

51
.0

6
13

.6
6

23
.5

3
32

.2
5

40
.5

9
46

.7
9

W
ha

ts
A

pp
M

es
se

ng
er

16
82

.6
0

25
.3

1
18

.4
6

14
.1

7
26

.3
6

36
.7

1
45

.1
6

51
.5

3
14

.7
1

24
.6

2
33

.4
3

41
.5

4
48

.5
4

B
B

C
N

ew
s

90
8.

45
9.

03
23

.8
4

6.
87

13
.4

3
19

.0
2

23
.0

8
27

.2
7

9.
15

14
.6

9
19

.3
0

24
.3

3
28

.5
4

G
m

ai
l

17
80

.1
1

24
.8

2
43

.4
7

14
.7

4
26

.4
5

37
.4

1
46

.2
2

53
.4

7
13

.1
9

23
.8

4
33

.2
3

41
.9

9
49

.5
7

A
do

be
R

ea
de

r
77

3.
56

9.
73

12
.4

3
5.

60
7.

75
12

.2
8

15
.6

0
19

.2
0

8.
75

12
.4

4
15

.6
2

18
.9

2
21

.2
7

Fi
re

fo
x

B
ro

w
se

r
15

34
.4

8
23

.0
2

29
.7

0
12

.3
1

23
.9

7
33

.8
3

41
.8

1
49

.4
0

11
.8

1
21

.7
9

30
.2

3
38

.5
7

45
.4

3

A
ve

ra
ge

Im
pr

ov
em

en
t

—
19

.9
6

28
.3

3
11

.5
6

20
.9

4
29

.4
5

36
.0

6
41

.9
9

11
.8

8
20

.1
5

27
.3

4
34

.3
2

40
.0

2

Ta
bl

e
6.

5:
C

om
pa

ri
ng

th
e

Po
w

er
Sa

vi
ng

s
w

ith
O

th
er

D
im

m
in

g
M

et
ho

ds
.

A
ll

va
lu

es
sh

ow
n

ar
e

th
e

%
im

pr
ov

em
en

t
in

Po
w

er
co

ns
um

pt
io

n
re

la
tiv

e
to

th
e

B
as

el
in

e

63

Chapter 7

User Study

Having established that the system is indeed effective in saving display power, we

now present the results of our qualitative evaluation through a user study designed

to evaluate if the system is acceptable to end-users. The user study was designed to

answer two questions:

1. Are the “Default” and “Customised” profiles usable?: We compared both

profiles against the base application.

2. Are Supplied Profiles Good Enough?: The most useful systems tend to be

the ones that requires no user intervention. As such, the second experiment in-

vestigated if the “Default” and “Customised” profiles created by the research

team (and which could, in theory, be created easily by application developers)

are good enough for end-users.

7.1 User’s demographic profile

In total, we had 30 undergraduate participants (18 males and 12 females) from

SMU’s Information Systems school that is proficient with Smartphones. Figure 7.1

shows the break down of the demographics.

From the pre-test demographics survey, 96% of the participants recharged their

phones at least once a day, 66% of the participants agreed or strongly agreed that

they reduced their application usage to save power, and 63% of the participants

agreed or strongly agreed that their phones did not have sufficient battery capacity

64

27%	

70%	

3%	

Frequency	 of	 Recharging	 Phones	

Mul*ple	 *mes	 every	 day	

Once	 a	 day	

A	 few	 *mes	 per	 week	

4	

3	 3	

11	

9	

0	

2	

4	

6	

8	

10	

12	

Strongly	
disagree	

disagree	 neutral	 agree	 Strongly	 agree	

Inten5onal	 Reducing	 App	 Usage	

1	

5	 5	

8	

11	

0	

2	

4	

6	

8	

10	

12	

Strongly	
disagree	

disagree	 neutral	 agree	 Strongly	 agree	

Ba<ery	 Life	 Is	 Insufficient	

37%	

47%	

8%	

6%	

2%	

Types	 of	 Phones	

iPhone	

Android	

Blackberry	

Windows	 Phone	 7	 or	 8	

Other	

Figure 7.1: Demographics of users

for their daily usage patterns. This shows a consistent user behaviour that users are

willingly to perform some degree of tradeoff for longer battery life.

7.2 User Study Methodology

For the user study, we reduced the set of applications tested to just 6 for two ex-

periments. This allowed us to obtain enough participant data points per application

without requiring an extremely large user base. We chose 6 popular applications

that collectively covered a very broad application range: WhatsApp Messenger,

Facebook, BBC News, Gmail, Adobe Reader, and Firefox Browser.

To avoid fatigue, each participant tested just 4 applications. In total, each of

the 6 applications was tested by 15 participants. The user study procedure was as

follows: Each user was asked to answer a small pre-test demographics questionnaire

and then perform two experiments. Each participant was paid SGD $10 (≈USD $8)

for taking part in the study.

65

7.3 Experiment 1: Is the system Usable?

This first experiment was designed to evaluate the usability of the system, with both

the “Default” and a research team-supplied “Customised” profile. We asked each

participant to first use the unmodified version of the application for 30-50 seconds

to re-familiarise themselves with these popular applications, this step is necessary

for users who have not use any of these applications before.

Each participant then used both modified versions of the application (running

the system with either the “Default” or “Customised” profile) for a short period

of time (about 2 to 3 minutes per modified application). Users are free to use the

application in any way they please, we do not restrict the user on how they should

use the application.

To minimise bias, we counter-balanced the order of using the modified versions

among the participants, i.e., half the participants used the applications in the or-

der {Unmodified, “Default”, “Customised”}, whereas the other half used the order

{Unmodified, “Customised”, “Default”}.

Right after completing the use of each modified version, they had to answer the

following two questions using a 5-point Likert scale:

• 5 — Strongly Agree

• 4 — Somewhat Agree

• 3 — Neutral

• 2 — Somewhat Disagree

• 1 — Strongly Disagree

Question 1 was “This version of the application is as usable as the original version”

while Question 2 was “The most important portions of the application are still

visible”.

66

We understand that the positive phrasing of the questions, coupled with a direct

comparison instead of an objective score, could lead to experimental bias. However,

because each participant was already very familiar with every test application (all 6

are very popular mobile applications) and because of our intentional bias against the

system (see below), we believe that the results collected are still quite meaningful.

No specific training was provided to the participant for any part of this experi-

ment. Note: to avoid further bias, we did not tell participants either that the system

was for saving display power or the amount of power savings achieved. As such,

even the participants who guessed that the system was power-related did not know

the actual gains for either the “Default” or the “Customised” profiles. This was an

intentional bias to avoid making the users more receptive to the system due to its

significant power savings.

7.4 Result: The System is Perceived As Usable

Figure 7.2 shows the perceived usability of the system for both profiles and the 6

test applications. In the Figure, higher values are better (indicating that the users

agree with the question “This version of the application is as usable as the original

version”). We observe, that in every case, the “Default” profile achieved acceptable

usability scores (every value is above the neutral 3 middle mark).

This is a very encouraging result as it suggests that the system is still usable

even when saving significant display power (average 23% savings for this profile).

However, the “Customised” profile that the research team provided was rated as be-

low neutral for 4 of the 6 applications. This was because the “Customised” profiles

turned off parts of the screen and the participants found this jarring — especially

since they did not know the purpose and effectiveness of the systems.

Similar, for question, “The most important portions of the application are still

visible”, showed the same pattern shown in Figure 7.3. This shows the ”Default”

profile performs better than ”Custom” with most of the important visual components

67

1

2

3

4

5

Facebook BBC WhatsApp Gmail Adobe Firefox

Li
ke

rt
 S

ca
le

Application

"One Size Fits All"

"Customised"

Good

Bad

Figure 7.2: Perceived usability of the system. The self-reported scores for the ques-
tion “This version of the application is as usable as the original version” using a 5
point Likert scale (5–Strongly Agree to 1–Strongly Disagree

still visible and usable to the user. While ”Custom” profiles was designed by the

research team with aim of balancing power savings with usability, the rating was

lower not only due to the jarring interface (users did not know the purpose), the

”Custom” profile may dim visual components that the user felt important.

However, as we shall see next, when the participants understood the purpose of

the system and were able to pick their own “best” profiles, more than half of them

picked profiles that were at least as aggressive as the default profile, while a handful

picked profiles that were even more aggressive (in terms of darkening the screen)

than our “Customised” profiles.

7.5 Experiment 2: Are Supplied Profiles Good
Enough?

In the second experiment, our goal was to understand if the participants, after be-

ing told what the system did, could design their own profiles to achieve what they

68

Figure 7.3: Perceived usability of the system. The self-reported scores for the ques-
tion “The most important portions of the application are still visible” using a 5 point
Likert scale (5–Strongly Agree to 1–Strongly Disagree

believe to be the best balance of power savings and usability. In particular, this

experiment would allow us to understand if the participants would voluntarily pick

settings for the system that either matched or exceeded either our “Default” or “Cus-

tomised” profiles — instead of deciding that the most usable form of the system

would be to turn off all the dimming settings.

For experiment 2, each participant was asked to customise the dimming profile

for 3 applications. We only chose 3 applications as each participant was given 5

to 10 minutes per application to create and test their “best” dimming profile. We

counterbalanced the order of the applications presented to each participants.

The experiment started by explaining the system power saving technique to the

participants. Each participant was then given a PowerPoint slide deck, that included

embedded Visual Basic Application (VBA) scripting, see Figure 7.4, allowing them

to customise, via movable sliders, the three dimming areas for each application used

in this experiment. The dimming areas were:

69

1. The size of the top dimming area

2. The size of the bottom dimming area

3. The plateau position in the bottom dimming area.

Ad	
Top	 Bo(om	 Plateau	

Predicted	 OLED	
Display	 Power	

Savings	

25.2	 %	

Adjust	 The	 Sliders	 To	
Your	 Preference	 163	 699	 932	

Figure 7.4: VBA Tool for user to control amount of dimming to be deployed

All user manipulations to the sliders immediately changed the image on the

slide to show the resulting screen output, as well as provided an updated estimate

for the resulting OLED display power savings. (These predictions were computed

by interpolating real measurement studies done with various slider settings for each

application.) When a participant wanted to test her PowerPoint settings, she could

transfer and deploy it onto a Galaxy S III phone and test the application to see if the

system settings were optimal for her. If not, the participant could iterate through the

whole process until she obtained her “best” profile.

70

Application Minimum (%) Median (%) Maximum (%)

Facebook 5.68 18.74 47.03
WhatsApp 0.38 16.67 29.39
BBC News 9.02 35.19 43.17

Gmail 1.87 25.54 45.06
Adobe Reader 0.00 32.05 54.67

Firefox 2.67 27.82 31.40

Average 3.27 26.00 41.79

Table 7.1: Power Savings Achievable by Participant Generated Profiles. The table
shows the % improvement of the minimum (least aggressive), median, and max-
imum (most aggressive) participant generated profiles relative to the baseline un-
modified power consumption values (using the values shown in Table 6.4) for the
same application. We used the same testing procedure used to generate the “Contin-
uous Usage Scenario” entries in Table 6.4. Note: for Adobe Reader, one participant
(the min. value) decided that the best profile would be to turn off the systems.

7.6 Result: Users Can Pick Effective Profiles

In total, 15 profiles (each from a different user) were created for each of the 6 test

applications. Table 7.1 shows the results of this experiment and we observe that at

least half the users (looking at the “Median” values) picked profiles that achieved

comparable power savings to our “Default” profile. In the best case (“Maximum”

column), some users were even dimming more aggressively than our “Customised”

profile!

Overall, the median % power improvement with the participant supplied profiles

was similar to that achievable with the “Default” profile — indeed many of the user

profiles looked very similar to the “Default” profile. This suggests that developers

can supply profiles with their applications that are acceptable to many users. At the

other extreme, the users who wanted extreme power savings ended up with profiles

that looked and behaved (in terms of power savings) very similar to the research-

team created “Customised” profiles, see Figure 7.5 — again supporting the claim

that developer supplied profiles might be sufficient.

However, there were also some users who picked very conservative profiles.

71

We will need further studies to understand if this attitude changes under low power

situations. Overall, this experiment suggests that developer-supplied profiles, for

both the “Default” and extreme power savings “Customised” cases, might be good

enough for the majority of users. This greatly reduces the system entry barrier as

users need not supply their own specific profiles.

Facebook	 BBC	 News	 GMail	

Figure 7.5: Aggressive profiles defined by users. Shown 3 examples of profiles
defined by users which save more power than our Custom profiles.

7.7 Result: Feedback of Users

At the end of the user study, we solicited feedback from the user to enquire about the

solution. Generally, users are willing to trade away some part of the screen estate

(dimming) to save power, seen in Figure 7.6 with positive feedback, ”Very novel

idea and I am sure people will find it extremely useful.” However, users provide

feedback on the solution which can be generally categorised as follow:

Context and User Aware There are significant group of feedback that indicates

that the solution must take into account of the context of the application. This

meant that certain parts of the screen should not be dimmed due to important

72

visual information may be blocked. In addition, solution needs to take into

account of how users read and use the application.

Due to the problem that each user and application is different this may be a

hard problem to achieve even with significant machine learning with a human

expert user (to make the final decision).

Examples of such feedback, ”it depends on the screen size and the type of

application and the users. for reading apps, i might not be a fast reader with

my eyes running in z-form and thus i can use this power saving method as

i usually only need to focus on certain portion of the screen whereas other

people may be more used to scheming the entire article”

User Customisable Controls Another feedback wish the solution to have more

user customisable controls. This includes a more flexible way of choosing

regions other than the solution’s 4 regions, user ability to adjust the amount

of dimming on the fly as well as customisable to different applications and

even widgets. This aspect of more controls can be easily be implemented

should the solution be deployed. Example of such feedback, ”User should

get to decide how much of the screen is dimmed down. Varies depending on

which application. Should not apply to home screen. Can be used like a

screensaver for apps that provide a feed.”

Negative Feedback There are also feedback on solution that this may not work in

certain applications such as video applications (Youtube) which is correct as

salient region in videos are hard to determine. There are also one feedback

that they would rather use hardware solution to extend battery, Refer not in

this approach to improve the battery use life, rather than enhance the hard-

ware or other technology to boost the battery usage life..

73

Figure 7.6: Willingness to dim the screen to save power.

74

Chapter 8

Supporting Games

In this work, we have seen the solution implemented on applications that utilised

standard Android widgets that allow manipulation through the draw process. How-

ever, the other key application category that was not supported in this study is the

game category. Although, the same strategy can be applied to games, it is much

harder to support this class of applications as they have very different ROI.

In terms of the region of interest (ROI), games can be broadly classified into

those that continuously divert user attention to random screen areas (most casual

games (Angry Birds, Cut The Rope, etc.) do this) or those that focus attention to

the middle of the screen (most first person shooting and driving games do this) see

Figure 8.1.

Hence, the simple ROI model that we derived for top-down or bottom-up dim-

ming approaches used for applications won’t work for games. Unfortunately, these

different ROIs makes it much harder to produce a game-agnostic solution.

8.1 Salient Type: Centred-Based Games

Games in this category, usually have their salient regions located in the middle of the

screen (First player Shooters, Driving Simulation, etc) [15]. Hence, to effectively

dim to save power, we can dimmed the areas outside the central salient region to

save power.

To better understand how to effectively apply this dimming filter without im-

75

Random	
(Fruit	 Ninja)	

Centered	
(Quake	 3)	

Figure 8.1: Different salient region in games. Random salient region are found in
games such as Fruit Ninja where the focus is on the fruits. Centred salient region
are found in games such as Quake 3 where the focus is in middle

pacting gaming experience, we have to look at the locus of attention to determine

this central ROI. In this review, we used this dimming approach on First Player

Shooter (FPS) game (Quake 3) on the OLED mobile device (HTC Nexus One).

8.1.1 Locus of Attention

In earlier chapter, large numbers of applications were reviewed to determine a sim-

ple ROI model, the other approach is to determine the ROI is via tracking the eye

gaze of the user when they use an application. El-Nasr et al. [15] has performed

eye-tracking study of users playing a FPS game (Halo II) and found that the main

area of focus, within these games, was the centre of the screen. Their study showed

that the resolution of the main area of interest (the locus of attention) was approx-

76

imately 300x220 pixels when the game resolution was 640x480 pixels. This locus

was centred on the crosshair of the game located at the centre of the screen (coordi-

nate {320,240}).

For this study, we utilised this knowledge on a Nexus One Smartphone that uses

the OLED display with a resolution of 800x480 pixels. We thus linearly scaled the

results listed above and identified a locus of interested of around 300x180 pixels,

centred at coordinate {400,240} as shown in Figure 8.2.

	

Figure 8.2: Locus of attention

The implication is that the remainder of the screen commands less interest to

the user when playing the game. However, this does not imply that these non-locus

77

areas are not useful during game play. Indeed, peripheral visual attention allows

users to see the movement of artefacts as they come in and out of the locus of

attention. Thus removing the non-locus areas completely, as shown in Figure 8.2,

is not practical.

8.1.2 Power Saving Technique

To achieve a good balance between power saving and preserving the user’s periph-

eral vision, we dim the areas outside the locus of attention – allowing us to achieve

power savings. However, the challenge then becomes to affect this dimming with-

out distracting the user (for example, naive dimming can can cause flickering as the

user moves around).

To address this concern, we use a gradient dimming approach where areas close

to the locus of attention are dimmed less than areas further away. We ensure that

artefacts at the edge of the screen are still visible by ensuring that there is a mini-

mum level of brightness that is applied to every pixel as shown in Figure 8.3. This

minimum brightness level differs based on the OLED manufacturer and needs to be

calibrated once for every new display (from a different manufacturer).

8.1.3 Adapting to Game Play Situations

The dimming mechanism can only be applied when the game is actually being

played and even then, only in situations where the user’s viewpoint is changing

(either because the user is moving or looking around). When the user is stationary,

we do not dim the display as prior work [15] has noted that the user’s attention is

spread across the entire screen when they are stationary.

8.1.4 Adaptive Framework

Our final implemented framework is shown in Figure 8.4 and implements the fol-

lowing: First, the system remains in normal power mode when the user is stationary

within the game. Second, dimming is performed incrementally as the user initiate

78

	

Figure 8.3: Gradual dimming from Locus of Attention to the edges

movements and vice versa (brightening the screen) as the user stops moving. This

approach reduces user distraction as the user will not see the screen abruptly dim or

brighten.

8.1.5 Implementation

We tested our solution using Kwaak 3 [28], an Android version of the Quake 3

Arena [24] game. This game belongs to the First-Player Shooters (FPS) genre which

demands both the most phone resources as well as the most user attention during

game play. We believed these genre characteristics make Kwaak 3 an ideal test

79

	
Figure 8.4: The Adaptive Framework. Dimming only is applied during game mo-
tion and is implemented slowly across time to reduce distraction to the user

app and that any results achieved with Kwaak 3 can be generalised to other app

categories.

Kwaak 3 Overview

Quake 3 Arena was developed by Id Software in 1999 and was a commercially suc-

cessful FPS game. Id Software released the Quake 3 game engine under the GNU

General Public License in 2005. It was then ported to Android and made publicly

available by the Kwaak 3 [28] project. Kwaak 3 has two main game components:

an app layer that sits on top of Android’s Application Framework API and a native

component developed using Android’s Native Development Kit (NDK).

Kwwak 3 Modification

Our dimming technique utilises the OpenGL API that is already present in An-

droid’s API stack. We achieve our dimming by performing alpha blending (to

change the transparency of specific pixels) on the areas outside the locus of at-

tention. To control the dimming, we added code to monitor the game’s movement

controls (the dimming is activated when the user moves and removed when the user

stops). In particular, we monitored both the forward and backward controls mapped

to the on-screen trackball as well as the pan controls that were mapped to screen

80

gestures.

Alpha Blending Implementation

In our game implementation, alpha-blending is utilised again to achieved the grad-

ual dimming effect from the locus of attention to the edge. However, in this game

implementation, we are using the OpenGL alpha-blending APIs instead of the Core

Libraries. This is because the game’s rendering engine was developed with the

OpenGL APIs. To obtain our gradual dimming effect:

1. Similar to our Core Libraries implementation, we have to compute a series of

dimming boxes due to the limitation in the alpha-blending APIs. The dim-

ming boxes originates from the locus of attention to the edge of the screen

as shown in Figure 8.5. The maximum number of boxes is set to 60. This

number was derived experimentally so that each larger box still had the same

aspect ratio as the screen (3:5). For the Nexus One (800x400 pixel display

with a locus of attention of 300x180 pixels), this resulted in 60 boxes. In

addition, we experimented with less than 60 boxes but found that the result-

ing images showed noticeable user artefacts (boundaries of the dimmed boxes

becoming visible etc.).

2. Second, alpha blending is then applied to these boxed areas using the follow-

ing heuristics:

(a) The outermost box is set to the brightness level that is dim but still bright

enough for the user to see.

(b) The remaining 59 boxes (between the outermost box and the locus of

attention) are then brightened linearly (with each box having a different

brightness value) until the box next to the locus of attention is just a little

dimmer than the locus.

This heuristics ensures that we incrementally dim the screen from the locus of

81

attention (brightest area) to the edge of the display (dimmest yet still visible

area).

	

Figure 8.5: An example of the series of Dimming Boxes used to create the gradient
effect

8.1.6 Evaluation

We focused on two evaluation goals:

1. To test the effectiveness of the power saving technique. In particular, how

much power can we save, when playing a game, with our technique.

2. How playable is the game when our technique is active?

We tested both these goals via a user study involving 30 participants.

Participant Selection and Devices

The user study participants were separately elicited from the undergraduate and

postgraduate population at Singapore Management University for the game study.

The basic requirement for the user study was that each participant needed to be com-

fortable with Smartphone. The evaluation was performed on a single Google Nexus

One Android Smartphone to ensure that the results were not skewed by inconsistent

hardware or settings between phones (such as different OLED displays, OS version

or settings).

82

In total, we obtained 30 participants for our user study (18 males, 12 females)

who were within the age range of 16 to 27. All our participants had prior experience

with playing mobile games, with the majority preferring to play causal/puzzle mo-

bile games. The majority indicated that they preferred to play mobile games during

“quieter” moments when they were on public transport, queuing, or resting. The

majority of the participants were also spent more than 15 minutes per day playing

mobile games.

Experiment Settings

During the user study, each participant had to play two games of Kwaak 3, each

lasting 15 minutes, that used the exact same map and configurations. One game used

our technique and one did not. We used PowerTutor [42] to measure the component

(display, CPU, network, etc.) power consumption of each game. The user was not

told which version of the game they were trying and the order of the games (our

version and normal) was counter-balanced between users to reduce bias.

To identify game playability issues, we tracked the number of kills (elimination

of the enemy in the game) achieved by the user within the 15 minute playing window

for both game versions. This provided an objective measure of whether players

could achieved the same level of success with our version of the game (as compared

to the default). We also surveyed each user to learn their qualitative opinion of the

playability of each game version.

User Study Procedure

Each user study experiment was conducted in the following order.

1. The participant was briefed on the project and motivation for this study. They

then signed the consent form.

2. Each participant was shown a demo of the unmodified Kwaak 3 game on the

Google Nexus One Smartphone.

83

3. The participant was then allowed to try the game for a while to get used to the

game mechanics, controls and map before the actual test. This allowed every

participant to become somewhat familiar with the game even if they had no

prior experience with it. After about 5 to 10 minutes of acclimatisation, the

actual test would begin.

4. After each game session, the user had to complete a questionnaire that asked

them to rate the playability of that game.

5. After completing both game sessions, the user had to fill up a final overall

feedback form.

Each user study took about one hour in total and each participant was paid USD

$8 for their participation. Finally, we did not influence the participants while they

were playing the game – in particular, they were allowed to use whatever game play

style (aggressive, cautious, camping, etc.) that they wished.

8.1.7 Results

In this section, we present and discuss the results from our user study.

Power savings

Figure 8.6 shows the power savings achievable by our method (The bars for “After”

are with our technique turned on). We show both the total power savings as well

as the savings for just the OLED power consumption. On average, across all par-

ticipants, our methods managed to save about 11% of the OLED display power that

resulted in a 4% total power savings.

Playability

To understand the playability impact of our solution, we reviewed the in-game per-

formance (in terms of the number of “kills”) of each player both with and without

our system. The mean kill score across both game variants, across all participants,

84

	
0	 500	 1000	

OLED	 Before	

OLED	 After	

Total	 Before	

Total	 After	

Power	
(mW)	

Figure 8.6: Power savings

was consistently low at 0.8 (original) and 1.2 (with our system) with a median of

0.5 and 1 respectively. This difference was statistically insignificant (p-value of 0.51

using a pairwise t-test). This indicated that our system had no impact on the player’s

kill totals. However, the low number of kills per player was a cause for concern as

we expected many more kills to be obtained in a 15 minute game window.

To understand the reason for the low number of kills, we reviewed the survey

feedback and noted that almost all the users had trouble with the controls for the

game. In particular, most users (80% of the participant pool) found the game con-

trols hard to master. They thus were unable to navigate or shoot effectively in the

game and this contributed to their low kill scores. Hence, overall, we could not

reach any definitive conclusion on the impact of our solution on the playability of

the game.

8.1.8 Discussion

In this section, we discuss the lessons learned during this study.

The True Cost of Power Savings

We could have significantly increased the OLED display power savings from 11%

by dimming the rest of the screen extremely aggressively – albeit at the cost of

playability. We believe that this tradeoff could be integrated within the game settings

and provided as an option to the user – save minimal power with no playability

85

	

0	 5	 10	 15	 20	 25	 30	 35	 40	 45	 50	

1	
(Hard)	

2	

3	

4	

5	 (Easy)	

Percentage	 of	 users	

Figure 8.7: Ease of Controls

impact or save more power with playability impact.

Our overall power savings is limited to 4% as we need additional CPU cycles to

perform our alpha blending-based screen dimming. However, we believe that this

CPU cost can be reduce by utilising Android’s native layer SDK (which provides

power efficient image manipulation methods). Finally, another factor for our lower

power savings was that quite a few participants (36%) used a passive game play style

where they did not move around much (possibly because they were not comfortable

with the game controls). Our scheme would save more power for players who were

constantly moving about the game world.

Playability Has Many Aspects

We found that our participant reported usability issues arose from Kwaak 3’s con-

troller implementation and not from our power dimming implementation. This was

because Quake 3 was never designed for mobile devices (that did not have a key-

board and mouse) and thus the movement controls had to be artificially mapped

onto a few physical buttons, an on-screen joystick, and touch gestures.

As a result, our participants had major difficulties switching between the var-

ious control schemes when playing the game (moving around, shooting enemies,

etc.). This resulted in the overall low number of kills per participants. Indeed, as

86

noted above, 36% of the participants adopted a more passive game play style. We

investigated the control issues in more detail and found that most participants found

it much easier to track and engage enemies while they were stationary (Figure 8.8)

compared to when they were moving (Figure 8.9). This was because the move-

ment and tracking controls were laid out differently (movement used an on-screen

joystick while tracking required screen swipes).

Overall, our experience is that there could be significant control issues inher-

ent to playing complicated games on mobile devices. Hence, for our future tests,

we will provide participants with external keyboards and mice to eliminate control

issues.

	

0	 10	 20	 30	 40	 50	 60	

1	

2	

3	

4	

5	

After	 Before	

(Hard)	

(Easy)	

Figure 8.8: User ability to track when stationary

8.1.9 Generalisability of Technique

The technique discussed so far was tested with one game using data from an eye

tracking model developed for FPS games. In order to generalise it, we would need

to first conduct additional eye tracking user studies to determine where mobile users

look at when they are using applications from other genres on their mobile devices.

We can then use this information to determine the appropriate locus of attention

87

	

0	 10	 20	 30	 40	 50	

1	

2	

3	

4	

5	

After	 Before	

(Hard)	

(Easy)	

Figure 8.9: User ability to track when moving

for other application genres. Next, we can make use of existing mobile OS features

and notifications to improve our dimming mechanism. For example, we can perform

gradual dimming when the user is scrolling (the faster the scroll, the dimmer it gets).

We can also achieve very CPU-efficient dimming by implementing our mechanisms

into the framebuffer pipeline of the mobile OS. By utilising these behavioural and

low-level OS features, we believe we can extend our dimming technique to many

other applications. We plan to investigate these techniques in future work.

8.1.10 Conclusion

This work has demonstrated that we can save the power consumption of OLED

displays, during game play, by gradually dimming the edges of screen when the user

is moving based on a centred oriented salient region. We implemented our solution

on a Nexus One Android phone with the Kwaak 3 FPS game. We conducted a

user study, involving 30 participants, to test our solution. The study showed that our

method reduced the overall system power consumption by 4% without incurring and

significant game playability impact. However, more study needs to be done to build

an comprehensive solution as peripheral vision outside the locus of attention can

88

differ between games thus the amount and dimming pattern would differ between

games as well.

8.2 Salient Type: Random-Based Games

In this category, the salient regions are harder to define based on the game type

and their interaction model. For example, in side scrolling games like Super Mario

Bros, Metal Slug have interactivity content across the screen and due to the scrolling

nature, it is harder to dimmed the screens due to the high dynamic nature of the

game.

However, it is still possible to implement dimming in this type of games by

shifting the focus to non-dynamic content. For example, in some casual games,

there are foreground and background elements. Hence, the best way to save power,

is to dim the non dynamic content such as background images while leaving the

foreground objects clear (e.g., leave the bids, pigs, and structures clear in Angry

Birds but dim everything else).

However, doing this requires understanding not only the game nature and con-

text but the exact composition of the pixels in the game’s framebuffer as well (as

the foreground objects could be anywhere on screen). This makes the task harder

than expected as games use the OpenGL-ES and not the standard rendering frame-

work. While we have extended to support OpenGL-ES games shown in Fruit Ninja

Figure 8.10 where we dimmed the background and leave the foreground objects

untouched, this continues to be work-in-progress.

8.3 On Going Work

The games category is the most dynamic category within any popular application

stores and as well as the most challenging in terms of power management. In this

chapter, we review region of interest differs widely between games and although

it is possible to applied dimming as a solution but it remains a ongoing work in

89

Before	

A(er	

Figure 8.10: Fruit Ninja dimming applied to the background when visual attention
is placed on the fruits

progress to develop a game agnostic solution.

90

Chapter 9

Dissertation Conclusion and Future
Work

9.1 Conclusion

We presented a novel system that saves OLED display power by dimming the screen

in effective and efficient ways by exploiting the saliency properties of individual ap-

plications as well as user behaviour. We do this by dimming regions of low interest

while keeping region of interest untouched, we reduce the impact to usability by

activating the dimming during low battery condition, in addition, we do not dim the

screen when the user is interacting with the screen and using the onscreen keyboard

to further reduce usability impact.

We evaluated the performance of the system with 15 popular applications. Our

evaluation showed that system saves, on average, between 23 to 34% of the OLED

display power when using applications with minimal impact on task completion

times. As stated earlier, OLED displays consume as much as 67% of the overall

system power [6]. Hence, the power savings translates to at least a few extra hours

of phone use. In addition, we showed, via a user study with 30 participants, that the

usability of system was still quite high and that developer-supplied profiles might be

good enough. Overall, the results are very positive and demonstrate that the system

is effective at saving OLED display power without affecting usability significantly.

Furthermore, our review of dimming in games through our review of the Kwaak

3 dimming implementation. We showed that it is possible for developers to bundle

91

useful dimming profiles together with their applications — thus reducing the burden

on the user. However, region of interest is harder to determine in games due to

different game category as such, a game agnostic solution remains in the pipeline

for future work.

9.2 Operational Issues

While our results suggest that this system is quite effective and usable, this sys-

tem still has some practical limitations. In addition that game solution is still in

the works, this study was done in a well-lit office environment. To generalise our

solution, we need to conduct studies in other indoor and outdoor environments to

better determine if dimming effects needs to be strengthen or weaken depending on

lighting condition. In addition, the profiles currently only work in portrait mode

and will need to be modified to support landscape orientations, and then tested for

effectiveness.

The user study was a key component in evaluating the efficacy of this system.

However, it also has its limitations. While our user population was large, it com-

prised solely of undergraduate technically oriented students; it is possible that a

general or larger population might show different results.

Finally, the user study lasted only about 30 minutes; it is possible that the results

would be quite different if this system was deployed and used daily. Clearly, addi-

tional studies are needed to ascertain the true power savings that can be achieved

under normal daily use.

9.3 Future Direction

In this work, we look at the tradeoffs between usability and power savings through

the use of dimming on OLED displays. There are few directions that we expand

this work in the following areas:

92

9.3.1 Content and Context Aware

Seen in our game review, we saw that the game’s content and context can affects

the user interactivity, such as adopting a sit and wait approach rather than a rush

tactic in Quake 3. Hence, by understanding the application content and context, this

information can be extremely valuable to aid in power savings, for example earlier

works utilised in game player positions to help save power [1].

Hence, the same approach can be used in application and games to help in dis-

play power savings. For example, we can utilise in game lighting to aid in power

savings such as shadow casting allow us to turn off pixels. Similarly, any applica-

tions that emphasised on any important content can use the foreground and back-

ground approach to dim any unrelated content to emphasised the foreground con-

tent.

9.3.2 Usability-Aware Power Management

Usability-Aware takes the approach that power savings can be achieved when we

take into consideration the usability characteristic between the user and their mobile

hardware. The intuition stems from the fact that users are willingly to trade off

usability when face with resource constraint. Hence, we can also observe usability

and make intelligent choices when to save power.

One example is a simple extension for the OLED work is to use occlusion dim-

ming. Occlusion dimming observes the fact that when the user is interacting with

the mobile device, the user’s fingers will always occlude the area underneath. This

presents a good opportunity to dim or turn off the screen. Seen in Figure 9.1, the

user fingers are on the screen, hence, there is no need to display any areas under-

neath the screen.

We proposed to approach usability-aware power management on two fronts:

Minimising wastage when resource abundant and Maximising usage life when face

with resource constraint.

93

Occlusion	 Dimming	
when	 finger	 is	 on	

screen	

Turn	 off	 or	 dim	
areas	 under	 the	

finger.	

Figure 9.1: Occlusion Dimming

Maximising usage life when resource constraint

Our OLED work can be broadly categorised under this area. However, we can also

expand the same concept to other areas such as into other display technology, Wi-

Fi/cellular radio and processing. As an example, on LCD display, we can modified

content and backlight to adapt the content to reflective colours to use natural light-

ing to read content during battery constraint condition. Similarly, if users are using

wearable computers, interaction and content can be diverted to these wearables dur-

ing battery constraint conditions.

Minimising wastage when resource abundant

On the other end, usability can be utilised to minimise wastage on resource during

resource abundant period (e.g. Fully charged battery). In most modern devices,

94

some level of power savings features already reduces battery wastage such as au-

tomatically screen dim, sleep mode, etc. However, these usually activates after

inactivity. Our proposed approach looks at enabling saving during active usage. A

simple example uses the previous wearable computer scenario, where messages and

notifications can be directed to these wearables reducing the need for users to use

their mobile devices, this indirectly, reduce the frequency for user to look at their

mobile device.

Other techniques can make use of human perception properties such as opti-

cal illusion effects and/or change blindness to aid in power savings. For example,

using change blindness such as gradual dimming white spaces and/or increasing

black font size over a period of time would enable power savings on OLED devices

without impacting the user due to the slow gradual change.

95

Appendix A

Profile Generation

Profile generation is part of Section 5.1.4. This chapter shows how the user defined

sliders in the Desktop or Mobile tool generates the required profile text files that is

used in the deployment module.

A.1 Dim Profile Calculation

The dim profile calculation is encoded within the DimCalculation class. To utilise

it, developers need only to do the following:

//Calculate the actual dim area, store
this data, only apply to the system
when user click the button

DimCalculation dimHandle=new
DimCalculation();

String[] data=dimHandle.buildDimRect(2,
deviceWidthResolution,
deviceHeightResolution, rectLocus,
rectBlack, 0, 0);

The result is presented in the String array, data. Using any CSV tool, we can

deploy this data into a normal text file. This text file needs to be denoted by the

application name that the dimming is applied to. For example, a dimming profile

for Facebook will be stored as com.facebook.katana.txt.

Note: Method buildDimMirrorRect() is not shown here. This method is used for

creating the mirror profiles, however, it uses the same approach as buildDimRect().

The only difference is the dimming boxes generate is just in reverse order.

96

A.1.1 Method Details: buildDimRect()

Method buildDimRect(int boxWidth, int displayWidth, int displayHeight, ClsRect

LocusArea, ClsRect PureDarkArea, int alphaSeedTop, int alphaSeedGradient) is

responsible for building the String array data.

The String array data consists of each String with the format Dim-Value Left Top

Right Bottom (See Section 5.1.5 for more details)

The slider markers in the Desktop or Mobile tool can be easily translate into two

main area, LocusArea and PureDarkArea (clear region and black plateau region).

These two main areas is defined in code using our ClsRect class. Our ClsRect class

is an implementation of the Android Rect class (under package android.graphics),

this class simply holds the rectangular coordinates of the four edges of these two

regions. Once we known the dimension of these two regions, we can easily compute

the other 2 regions (Top gradient region and Middle gradient region).

Parameters displayWidth and displayHeight refers to the maximum resolution

of the display of your device. Both alphaSeed parameters indicate how fast the

gradients should be reached to the edge (range 0 to 100). The bigger the seed, the

faster it reaches 90% dim. alphaSeedTop refers to the Top gradient region.

Lastly, as mentioned in Section 5.1, the gradient regions are made up of smaller

dimming boxes. Hence, the boxWidth parameter indicates the height of these dim-

ming boxes.

This method builds all the necessary dimming boxes in another subroutine, buil-

dRectDimAreas() and formats into the String array.

public String[] buildDimRect(int boxWidth, int
displayWidth, int displayHeight, ClsRect
LocusArea, ClsRect PureDarkArea, int alphaSeedTop,
int alphaSeedGradient)

{
//Step 1: Call Basic Building Rect List First.
rectHolder=new ArrayList<ClsRect>();
alphaHolder=new ArrayList<Integer>();
buildRectDimAreas(boxWidth, displayWidth,

displayHeight, LocusArea, PureDarkArea,
alphaSeedTop, alphaSeedGradient);

97

//Step 2 Translate Build Rect List to String
data

int size=rectHolder.size();

String data[]=new String[size];
for(int i=0;i<size;i++)
{

String tempHolder="" + alphaHolder.get(i)
+ " " + rectHolder.get(i).getRect();

data[i]=tempHolder;
}

return data;
}

Note: rectHolder and alphaHolder are global variables.

A.1.2 Method: buildRectDimAreas()

This is the important routine that builds the necessary dimming boxes. Data is stored

directly into the global variables rectHolder and alphaHolder, this reduces memory

pressure when deploy on to the mobile platform.

The private method buildRectDimAreas(int boxWidth, int displayWidth, int dis-

playHeight, ClsRect LocusArea, ClsRect PureDarkArea, int alphaSeedTop, int al-

phaSeedGradient) uses the same parameters from method buildDimRect(), see pre-

vious Section A.1.1 for parameter details.

This method is broken into 3 main areas:

1. Computing the Top Gradient Region

2. Computing the Middle Gradient Region

3. Computing the Black Region

The clear region does not require any dimming, hence no processing is needed for

this region.

All 3 areas consists of nearly the same flow structure. First, given the parameters

LocusArea and PureDarkArea, we can compute the Top & Middle Gradient Region

98

and Black region. Second, given the boxWidth, we can divide the Top and Middle

Gradient region into individual dimming boxes.

Lastly, given the nature of the region, the dimming is applied accordingly. For

Top Gradient Region, the dimming is applied in reverse from 90% dim to 0% across

the dimming boxes. For Middle Gradient Region is from 0% to 90%. Since the

dark region is black, we only need to set the last dimming box to the PureDarkArea

dimension and set the dimming to 100%.

private void buildRectDimAreas(int boxWidth, int
displayWidth, int displayHeight, ClsRect LocusArea,
ClsRect PureDarkArea, int alphaSeedTop, int
alphaSeedGradient)
{

final int locusLeft=LocusArea.getCorner_Left();
final int locusTop=LocusArea.getCorner_Top();
final int locusRight=LocusArea.getCorner_Right();
final int locusBottom=LocusArea.getCorner_Bottom();

final int blackLeft=PureDarkArea.getCorner_Left();
final int blackTop=PureDarkArea.getCorner_Top();
final int blackRight=PureDarkArea.getCorner_Right();
final int blackBottom=PureDarkArea.getCorner_Bottom();

int boxResolution=0;
float alphaResolution=0;

int leftShifter;
int rightShifter;
int topShifter;
int currentAlpha;
int bottomShifter;

float floatCurrentAlpha=0.0f;

//Top Gradient Box
//Based on boxWidth, calculate number of boxes

required.
boxResolution=(int)

Math.ceil((double)locusTop/(double)boxWidth);
System.out.println("Top Gradient Box Resolution: " +

boxResolution);

if(boxResolution!=0)
{

//int readjusted_boxResolution=(int)

99

Math.ceil((double)boxResolution*((double)alphaSeedTop/100));
//alphaResolution=(int)

Math.ceil((double)256/(double)readjusted_boxResolution);
//Give the number of boxes, calculate the
alpha from light to dark to the edge.

alphaResolution=(float)256/(float)boxResolution;
//Given the number of boxes, calculate the
alpha from light to dark to the edge.

System.out.println("Top Gradient Alpha
Resolution: " + alphaResolution);

//Setup the box boundaries that does not change.
leftShifter=locusLeft;
rightShifter=locusRight;
topShifter=locusTop;

//Reset Alpha to zero
currentAlpha=0;
floatCurrentAlpha=0.0f;

//Plus Alpha is the throttling of the dimming
(achieve dark edge faster) for this area based
on user’s selection

int plusAlpha=(int)
Math.ceil(256d*(double)alphaSeedTop/100);

//Draw the boxes
for(int i=0;i<boxResolution;i++)
{

ClsRect rect=new ClsRect(leftShifter,
topShifter-boxWidth, rightShifter,
topShifter);

rectHolder.add(rect);
//alphaHolder.add(currentAlpha+plusAlpha);
alphaHolder.add(currentAlpha);

topShifter-=boxWidth;

//currentAlpha+=(alphaResolution+plusAlpha);
floatCurrentAlpha+=alphaResolution+plusAlpha;
currentAlpha=(int)

Math.floor(floatCurrentAlpha);
}

}

//Middle Gradient Box
//Reset box and alpha resolution back to zero.

100

boxResolution=0;
alphaResolution=0;

//Based on boxWidth, calculate number of boxes
required for this section.

boxResolution=(int)
Math.ceil(Math.abs((double)blackTop-(double)locusBottom)/(double)boxWidth);

System.out.println("Middle Gradient Box Resolution: "
+ boxResolution);

//Given the box resolution, find out the resolution
for the alpha for each incremenet.

alphaResolution=(float)256/(float)boxResolution;

System.out.println("Alpha Resolution: " +
alphaResolution);

//Setup box value that does’t change.
bottomShifter=locusBottom;
rightShifter=locusRight;
leftShifter=locusLeft;

//Reset Alpha values
currentAlpha=0;
floatCurrentAlpha=0.0f;

//Plus Alpha is the throttling of the dimming
(achieve dark edge faster) for this area based on
user’s selection

int plusAlpha=(int)
Math.floor(256*(double)alphaSeedGradient/100);

//System.out.println("Box Diff: " +
(boxResolution-readjusted_boxResolution));

//Draw the boxes
for(int i=0;i<boxResolution;i++)
{

ClsRect rect=new ClsRect(leftShifter,
bottomShifter, rightShifter,
bottomShifter+boxWidth);

rectHolder.add(rect);
//alphaHolder.add(currentAlpha+plusAlpha);
alphaHolder.add(currentAlpha);
//System.out.println("Alpha: " + currentAlpha);

bottomShifter+=boxWidth;

101

floatCurrentAlpha+=alphaResolution+plusAlpha;
currentAlpha=(int)

Math.floor(floatCurrentAlpha);
}

//Bottom Black Box
if(boxWidth>1)
{

ClsRect rect=new ClsRect(blackLeft, blackTop,
blackRight, blackBottom);

rectHolder.add(rect);
alphaHolder.add(255);

}
else
{

boxResolution=0;
alphaResolution=0;

//Get the number of Rect(boxes) to draw
boxResolution=(int)

Math.ceil(Math.abs((double)blackTop-(double)blackBottom)/(double)boxWidth);
System.out.println("Black Box Resolution: " +

boxResolution);

bottomShifter=blackTop;
rightShifter=locusRight;
leftShifter=locusLeft;

for(int i=0;i<boxResolution;i++)
{

ClsRect rect=new ClsRect(leftShifter,
bottomShifter, rightShifter,
bottomShifter+boxWidth);

rectHolder.add(rect);
//alphaHolder.add(currentAlpha+plusAlpha);
alphaHolder.add(255);
//System.out.println("Alpha: " + currentAlpha);

bottomShifter+=boxWidth;

}
}

}

102

Appendix B

View Class Modifications

Modifications to the View class under the Android Core Libraries. Only dimming

modifications made to the View class are listed, for implementation details please

refer to Section 5.

B.1 Profile Check and Preload

B.1.1 Constructor Modification

Modified constructor to execute our solution to check and preload the profile during

any Android widget loading.

/**
* Simple constructor to use when creating a view from

code.

*
* @param context The Context the view is running in,

through which it can

* access the current theme, resources, etc.

*/
public View(Context context) {

mContext = context;
mResources = context != null ? context.getResources()

: null;
mViewFlags = SOUND_EFFECTS_ENABLED |

HAPTIC_FEEDBACK_ENABLED;
// Set some flags defaults
mPrivateFlags2 =

(LAYOUT_DIRECTION_DEFAULT <<
PFLAG2_LAYOUT_DIRECTION_MASK_SHIFT) |

(TEXT_DIRECTION_DEFAULT <<
PFLAG2_TEXT_DIRECTION_MASK_SHIFT) |

(PFLAG2_TEXT_DIRECTION_RESOLVED_DEFAULT) |

103

(TEXT_ALIGNMENT_DEFAULT <<
PFLAG2_TEXT_ALIGNMENT_MASK_SHIFT) |

(PFLAG2_TEXT_ALIGNMENT_RESOLVED_DEFAULT) |
(IMPORTANT_FOR_ACCESSIBILITY_DEFAULT <<

PFLAG2_IMPORTANT_FOR_ACCESSIBILITY_SHIFT);
mTouchSlop =

ViewConfiguration.get(context).getScaledTouchSlop();
setOverScrollMode(OVER_SCROLL_IF_CONTENT_SCROLLS);
mUserPaddingStart = UNDEFINED_PADDING;
mUserPaddingEnd = UNDEFINED_PADDING;

readInDimArea(context.getPackageName());
readInMirrorDimArea(context.getPackageName());

}

B.1.2 Method: readInDimArea()

Read and load the dimming profiles into memory with checks to prevent re-

execution of code in subclasses as well as prevent multiple expensive IO operations.

readInMirrorDimArea() provides the same functionality.

/**
* Read in the dim profiles from the SDCard Path

/OLEDProfiles/ into the memory.

* Please ensure that the /OLEDProfiles/ profile is
created.

*
* @param packageName The package name (App) that we are

going to load in the profile

*/
private void readInDimArea(String packageName)
{

//Log.i("KiatWee", packageName);

//Customisation For Weird App Behaviours
if(packageName.equals("com.halfbrick.fruitninjafree"))

//Dialog box
return;

else if(packageName.equals("android")) //System
return;

else if(packageName.contains("com.android")) //System
return;

else if(packageName.contains("com.cyanogenmod"))
//System
return;

104

File sdcardKW =
Environment.getExternalStorageDirectory(); //Get
the SDCard path (where the OLED Profiles are
stored)

//Get the profile (text) file
File file = new File(sdcardKW, "/OLEDProfiles/" +

packageName + ".txt");

//Log.i("Data: ", file.getAbsolutePath());

if(file.exists()==false) //Exit if not exist
return;

try
{

//Get the root view
View rootView=getRootView();
//View rootView= (View) getRootNode();

//Check if root view has the data
if(rootView.alphaHolder.size()==0 &&

rootView.rectHolder.size()==0)
{

//Log.i("KiatWee", "Load in root. " +
this.toString());

//Load from file
BufferedReader br = new BufferedReader(new

FileReader(file));
String line;

while ((line = br.readLine()) != null)
{

//Log.i("Data: ", line);

//Data is CSV-like format, data seperated by
space.

//Process the data in the following format
//alpha-value rect-left rect-top rect-bottom

rect-right
//Process the data into alpha value and Rect
String[] splitHolder=line.split(" ");
int

alphaValue=Integer.parseInt(splitHolder[0]);
Rect rect=new

Rect(Integer.parseInt(splitHolder[1]),
Integer.parseInt(splitHolder[2]),
Integer.parseInt(splitHolder[3]),
Integer.parseInt(splitHolder[4]));

105

alphaHolder.add(alphaValue);
rectHolder.add(rect);

}

br.close();

//Store the data into root so that we only need
to store in one location. No need to store
in every View. This is because it will be
very memory expensive to store this repeated
information.

rootView.alphaHolder=alphaHolder;
rootView.rectHolder=rectHolder;

}
}
catch (IOException e)
{

Log.e("KiatWeeOLED", e.getMessage());
}

}

B.2 Extending the Android Draw Process

B.2.1 Draw Method Modification

Modification to the draw(Canvas canvas) method to add in our dimming subrou-

tines, kiatweeAddDimming(Canvas canvas).

/**
* Manually render this view (and all of its children)

to the given Canvas.

* The view must have already done a full layout before
this function is

* called. When implementing a view, implement

* {@link #onDraw(android.graphics.Canvas)} instead of
overriding this method.

* If you do need to override this method, call the
superclass version.

*
* @param canvas The Canvas to which the View is

rendered.

*/
public void draw(Canvas canvas) {

final int privateFlags = mPrivateFlags;
final boolean dirtyOpaque = (privateFlags &

PFLAG_DIRTY_MASK) == PFLAG_DIRTY_OPAQUE &&

106

(mAttachInfo == null ||
!mAttachInfo.mIgnoreDirtyState);

mPrivateFlags = (privateFlags & ˜PFLAG_DIRTY_MASK) |
PFLAG_DRAWN;

/*
* Draw traversal performs several drawing steps

which must be executed

* in the appropriate order:

*
* 1. Draw the background

* 2. If necessary, save the canvas’ layers to
prepare for fading

* 3. Draw view’s content

* 4. Draw children

* 5. If necessary, draw the fading edges and
restore layers

* 6. Draw decorations (scrollbars for instance)

*/

// Step 1, draw the background, if needed
int saveCount;

if (!dirtyOpaque) {
final Drawable background = mBackground;
if (background != null) {

final int scrollX = mScrollX;
final int scrollY = mScrollY;

if (mBackgroundSizeChanged) {
background.setBounds(0, 0, mRight - mLeft,

mBottom - mTop);
mBackgroundSizeChanged = false;

}

if ((scrollX | scrollY) == 0) {
background.draw(canvas);

} else {
canvas.translate(scrollX, scrollY);
background.draw(canvas);
canvas.translate(-scrollX, -scrollY);

}
}

}

// skip step 2 & 5 if possible (common case)
final int viewFlags = mViewFlags;
boolean horizontalEdges = (viewFlags &

FADING_EDGE_HORIZONTAL) != 0;
boolean verticalEdges = (viewFlags &

107

FADING_EDGE_VERTICAL) != 0;
if (!verticalEdges && !horizontalEdges) {

// Step 3, draw the content
if (!dirtyOpaque) onDraw(canvas);

// Step 4, draw the children
dispatchDraw(canvas);

kiatweeAddDimming(canvas); //KiatWee Additions

// Step 6, draw decorations (scrollbars)
onDrawScrollBars(canvas);

// we’re done...
return;

}

/*
* Here we do the full fledged routine...

* (this is an uncommon case where speed matters less,

* this is why we repeat some of the tests that have
been

* done above)

*/

boolean drawTop = false;
boolean drawBottom = false;
boolean drawLeft = false;
boolean drawRight = false;

float topFadeStrength = 0.0f;
float bottomFadeStrength = 0.0f;
float leftFadeStrength = 0.0f;
float rightFadeStrength = 0.0f;

// Step 2, save the canvas’ layers
int paddingLeft = mPaddingLeft;

final boolean offsetRequired =
isPaddingOffsetRequired();

if (offsetRequired) {
paddingLeft += getLeftPaddingOffset();

}

int left = mScrollX + paddingLeft;
int right = left + mRight - mLeft - mPaddingRight -

paddingLeft;
int top = mScrollY + getFadeTop(offsetRequired);
int bottom = top + getFadeHeight(offsetRequired);

108

if (offsetRequired) {
right += getRightPaddingOffset();
bottom += getBottomPaddingOffset();

}

final ScrollabilityCache scrollabilityCache =
mScrollCache;

final float fadeHeight =
scrollabilityCache.fadingEdgeLength;

int length = (int) fadeHeight;

// clip the fade length if top and bottom fades
overlap

// overlapping fades produce odd-looking artifacts
if (verticalEdges && (top + length > bottom -

length)) {
length = (bottom - top) / 2;

}

// also clip horizontal fades if necessary
if (horizontalEdges && (left + length > right -

length)) {
length = (right - left) / 2;

}

if (verticalEdges) {
topFadeStrength = Math.max(0.0f, Math.min(1.0f,

getTopFadingEdgeStrength()));
drawTop = topFadeStrength * fadeHeight > 1.0f;
bottomFadeStrength = Math.max(0.0f, Math.min(1.0f,

getBottomFadingEdgeStrength()));
drawBottom = bottomFadeStrength * fadeHeight >

1.0f;
}

if (horizontalEdges) {
leftFadeStrength = Math.max(0.0f, Math.min(1.0f,

getLeftFadingEdgeStrength()));
drawLeft = leftFadeStrength * fadeHeight > 1.0f;
rightFadeStrength = Math.max(0.0f, Math.min(1.0f,

getRightFadingEdgeStrength()));
drawRight = rightFadeStrength * fadeHeight > 1.0f;

}

saveCount = canvas.getSaveCount();

int solidColor = getSolidColor();
if (solidColor == 0) {

final int flags = Canvas.HAS_ALPHA_LAYER_SAVE_FLAG;

109

if (drawTop) {
canvas.saveLayer(left, top, right, top +

length, null, flags);
}

if (drawBottom) {
canvas.saveLayer(left, bottom - length, right,

bottom, null, flags);
}

if (drawLeft) {
canvas.saveLayer(left, top, left + length,

bottom, null, flags);
}

if (drawRight) {
canvas.saveLayer(right - length, top, right,

bottom, null, flags);
}

} else {
scrollabilityCache.setFadeColor(solidColor);

}

// Step 3, draw the content
if (!dirtyOpaque) onDraw(canvas);

// Step 4, draw the children
dispatchDraw(canvas);

kiatweeAddDimming(canvas); //KiatWee Additions

// Step 5, draw the fade effect and restore layers
final Paint p = scrollabilityCache.paint;
final Matrix matrix = scrollabilityCache.matrix;
final Shader fade = scrollabilityCache.shader;

if (drawTop) {
matrix.setScale(1, fadeHeight * topFadeStrength);
matrix.postTranslate(left, top);
fade.setLocalMatrix(matrix);
canvas.drawRect(left, top, right, top + length, p);

}

if (drawBottom) {
matrix.setScale(1, fadeHeight *

bottomFadeStrength);
matrix.postRotate(180);
matrix.postTranslate(left, bottom);
fade.setLocalMatrix(matrix);
canvas.drawRect(left, bottom - length, right,

110

bottom, p);
}

if (drawLeft) {
matrix.setScale(1, fadeHeight * leftFadeStrength);
matrix.postRotate(-90);
matrix.postTranslate(left, top);
fade.setLocalMatrix(matrix);
canvas.drawRect(left, top, left + length, bottom,

p);
}

if (drawRight) {
matrix.setScale(1, fadeHeight * rightFadeStrength);
matrix.postRotate(90);
matrix.postTranslate(right, top);
fade.setLocalMatrix(matrix);
canvas.drawRect(right - length, top, right,

bottom, p);
}

canvas.restoreToCount(saveCount);

// Step 6, draw decorations (scrollbars)
onDrawScrollBars(canvas);

}

B.2.2 Method: kiatweeAddDimming()

Apply the dimming profile onto the screen. Uses the scroll flag to determine any

touch operation and flip flag to determine if user uses the volume button. Method

has been configure for Samsung Galaxy S3 deployment, however, other options are

available for other devices.

/**
* Actual Dimming Function to dim the screen using the

canvas. Called from the onDraw method.

* To understand this method, understand how Android
draw the View. Quick guide: All views are structured
via the layout.xml. Like any XML processing DOM/SAX
parsing, the tree has to be traverse from the root,
each view is successively drawn one ontop of each
other until the whole XML tree is parsed.

* Hence to dim effectively, we have to apply the dim at
the correct location and applied it only once
instead of applying everytime a draw occurs which

111

inccured a computational penalty. Hence, this
function only dims at the correct location where the
View occipies the device’s width and height.

*
* @param canvas The Canvas to which the View is

rendered. In this method, we piped in the canvas
from onDraw to do the actual dimming.

*/
private void kiatweeAddDimming(Canvas canvas)
{

//Initialize local Rect and Alpha holders for local
processing without the affecting the main store.

List<Rect> kwD_rectHolder; //Alpha Rect holders,
holds the actual rect for alpha blending. Refer to
alpha blending. A rect is basically a rectangle
that covers the area you want to alpha-blend.

List<Integer> kwD_alphaHolder; //Holds each alpha
value for each rect.

View viewHolder = this; //Get a view handle. For
accessing the global variables. Do note, in
Android using Get/Set functions is computationally
expensive, please refer to Google’s Android
Performance guide to understand why we are doing
this instead of building Get/Set functions.

View rootView=getRootView(); //Get the root view. For
processing rootView variables, to determine
width/height and apply dim at the correct location

//Turn on/off occulsion dimming under finger
if(rootView.kiatweeOnScrollFlag)
{

canvas.drawColor(Color.TRANSPARENT);

Paint paint = new Paint();
paint.setColor(Color.BLACK);

float radius=kwpressuredata * 80;

canvas.drawCircle(kwlocX, kwlocY, radius, paint);

return; //Do not apply dimming so that screen is
not dimmed during on Touch events.

}

if(hasRectMirror &&
rootView.kiatweeOnViewPortFlipFlag==false) //Check
if there is a mirror component so that we can
apply the dim accordingly.

112

{
//System to use the mirror to dim the upper part

of the screen.

//Read from Root view holder.
kwD_rectHolder=rootView.rectHolderMirror;
kwD_alphaHolder=rootView.alphaHolderMirror;

//kwD_rectHolder=rectHolderMirror;
//kwD_alphaHolder=alphaHolderMirror;

}
else
{

//If no mirror, just dim the lower areas

//Read from Root view holder.
kwD_rectHolder=rootView.rectHolder;
kwD_alphaHolder=rootView.alphaHolder;

//kwD_rectHolder=rectHolder;
//kwD_alphaHolder=alphaHolder;

}

//Log.i("Kiatwee", "W: " + viewHolder.getWidth() + ",
H: " + viewHolder.getHeight());

//1184, 1038, 1134

//Customization for Browser due to weird behaviour so
additional customisation needed.

int viewHolderProtraintWidth=0;
int viewHolderProtraintHeight=0;
int viewHolderLandscapeWidth=0;
int viewHolderLandscapeHeight=0;
String packName=mContext.getPackageName();

//Galaxy Nexus
/*
viewHolderProtraintWidth=720;
viewHolderProtraintHeight=1184;
viewHolderLandscapeWidth=1184;
viewHolderLandscapeHeight=720;

if(packName.equals("com.google.android.youtube"))
{

//720x633, 187, 112, 405
viewHolderProtraintWidth=720;
viewHolderProtraintHeight=633;
viewHolderLandscapeWidth=633;
viewHolderLandscapeHeight=720;

113

}

*/

//Galaxy S3
viewHolderProtraintWidth=720;
viewHolderProtraintHeight=1280;
viewHolderLandscapeWidth=1280;
viewHolderLandscapeHeight=720;

if(packName.equals("com.google.android.youtube"))
{

//720x633, 187, 112, 405
viewHolderProtraintWidth=720;
viewHolderProtraintHeight=729;
viewHolderLandscapeWidth=729;
viewHolderLandscapeHeight=720;

}

//if(packName.equals("com.facebook.katana"))
//{
// //720x633, 187, 112, 405
// viewHolderProtraintWidth=720;
// viewHolderProtraintHeight=1281;
// viewHolderLandscapeWidth=1281;
// viewHolderLandscapeHeight=720;
//}

//Galaxy Tab 7.7
/*
viewHolderProtraintWidth=736;
viewHolderProtraintHeight=1280;
viewHolderLandscapeWidth=1280;
viewHolderLandscapeHeight=736;

*/

if((viewHolder.getWidth()==viewHolderProtraintWidth
&&
viewHolder.getHeight()==viewHolderProtraintHeight)
||
(viewHolder.getWidth()==viewHolderLandscapeWidth
&&
viewHolder.getHeight()==viewHolderLandscapeHeight))

{
//Step 1: If rect holder is null means no dim for

this widget, return.
if(kwD_rectHolder==null)

return;

//Step 2: Check if View is a valid view covering

114

the whole screen.
Paint paint = new Paint();
paint.setColor(Color.BLACK);

//Step 3: Apply Dim area
canvas.drawColor(Color.TRANSPARENT);

int len=kwD_rectHolder.size();

for(int i=0;i<len;i++)
{

paint.setAlpha(kwD_alphaHolder.get(i)); //
trasparenza

canvas.drawRect(kwD_rectHolder.get(i), paint);
}

//kwsavecanvas=canvas.save();
//drawnBeforeFlag=true;

}
}

B.3 Capturing Events

B.3.1 Touch Event Dispatch

Modified to the Touch dispatcher that is fired when the touch event arrives for this

widget. Any touch operation is captured and stored within the root View scroll flag.

/**
* Pass the touch screen motion event down to the target

view, or this

* view if it is the target.

*
* @param event The motion event to be dispatched.

* @return True if the event was handled by the view,
false otherwise.

*/
public boolean dispatchTouchEvent(MotionEvent event) {

//KiatWee Start Additions
//Log.i("kwOLED", "dispatch Touch"); //KiatWee

//Get the tge touch event to:
//1) Turn on or off dimming on the screen during on

Touch events

115

//2) Turn on or off occulsion dimming under the finger
switch (event.getAction())
{

case MotionEvent.ACTION_UP:
kwpressuredata=0.0f;
View rootView1=getRootView();

rootView1.kiatweeOnScrollFlag=false;
//KiatWee

rootView1.invalidate();
//Log.i("kwOLED", "Action Up. " +

mContext.getPackageName());

break;
case MotionEvent.ACTION_MOVE:

kwlocX=0.0f;
kwlocY=0.0f;
kwpressuredata=0.0f;

case MotionEvent.ACTION_DOWN:

kwlocX=event.getX();
kwlocY=event.getY();

if(OcculDimFlag)
{

kwpressuredata=event.getPressure(); //Turn
on occulsion

}
else
{

kwpressuredata=0.0f; //Turn off occulsion
}

View rootView2=getRootView();
rootView2.kiatweeOnScrollFlag=true;

//KiatWee
//rootView2.kiatweeOnScrollFlag=false;

//KiatWee: Premeant Dim Turn On
rootView2.invalidate();

//Log.i("kwOLED", "Action Down. " +
mContext.getPackageName());

break;
}
//KiatWee End Additions

if (mInputEventConsistencyVerifier != null) {
mInputEventConsistencyVerifier.onTouchEvent(event,

0);
}

116

if (onFilterTouchEventForSecurity(event)) {
//noinspection SimplifiableIfStatement
ListenerInfo li = mListenerInfo;
if (li != null && li.mOnTouchListener != null &&

(mViewFlags & ENABLED_MASK) == ENABLED
&& li.mOnTouchListener.onTouch(this, event))

{
return true;

}

if (onTouchEvent(event)) {
return true;

}
}

if (mInputEventConsistencyVerifier != null) {
mInputEventConsistencyVerifier.onUnhandledEvent(event,

0);
}
return false;

}

B.3.2 Key Dispatch

Modified to the key dispatcher that is fired when any physical key/button event

arrives for this widget. We filtered for volume button detection, volume up and

down is captured and stored within the root View flip flag.

/**
* Dispatch a key event to the next view on the focus

path. This path runs

* from the top of the view tree down to the currently
focused view. If this

* view has focus, it will dispatch to itself. Otherwise
it will dispatch

* the next node down the focus path. This method also
fires any key

* listeners.

*
* @param event The key event to be dispatched.

* @return True if the event was handled, false
otherwise.

*/
public boolean dispatchKeyEvent(KeyEvent event) {

//KiatWee Start

117

//Log.i("KiatWee", "dispatchKeyEvent event: " +
event.getKeyCode());

//Get the keyevent KiatWee Additions
//Purpose: To do the dim mirror so that the dim area

can flipped up or down
switch (event.getKeyCode())
{

case KeyEvent.KEYCODE_VOLUME_DOWN:
if(hasRectMirror)
{ //kiatweeOnViewPortFlipFlag

View rootView2=getRootView();
rootView2.kiatweeOnViewPortFlipFlag=true;

rootView2.invalidate();
}

break;
case KeyEvent.KEYCODE_VOLUME_UP:

if(hasRectMirror)
{ //kiatweeOnViewPortFlipFlag

View rootView2=getRootView();
rootView2.kiatweeOnViewPortFlipFlag=false;

rootView2.invalidate();
}
break;

}
//KiatWeeEnd

if (mInputEventConsistencyVerifier != null) {
mInputEventConsistencyVerifier.onKeyEvent(event,

0);
}

// Give any attached key listener a first crack at
the event.

//noinspection SimplifiableIfStatement
ListenerInfo li = mListenerInfo;
if (li != null && li.mOnKeyListener != null &&

(mViewFlags & ENABLED_MASK) == ENABLED
&& li.mOnKeyListener.onKey(this,

event.getKeyCode(), event)) {
return true;

}

if (event.dispatch(this, mAttachInfo != null
? mAttachInfo.mKeyDispatchState : null, this)) {

return true;
}

118

if (mInputEventConsistencyVerifier != null) {
mInputEventConsistencyVerifier.onUnhandledEvent(event,

0);
}
return false;

}

119

Appendix C

User Study

In this chapter, we reviewed the user study material used in solution. The user study

material is created with the help of Tadashi Okoshi of Keio University.

C.1 Demographics Questions

The list of demographics data points and questions as follows:

1. The student’s email address.

2. The student’s gender

• male

• female

3. The student’s school

• Accountancy

• Lee Kong Chian School of Business

• Economics

• Information Systems

• Social Sciences

• Law

4. The student’s Year of study

120

• 1st year

• 2nd year

• 3rd year

• 4th year

5. How do you think of your proficiency level in smart phones?

• I have never used smartphones

• novice

• average

• expert

6. Which smart phones have you used?

• iPhones

• Android

• Blackberry

• Windows Phone 7 or 8

• Others

7. Please write down which smart phones you are currently using.

8. I intentionally reduce my application usage on my smart phone to save battery

power.

• Strongly Disagree

• Disagree

• Neutral

• Agree

• Strongly Agree

121

9. How often do you recharge your phone during the day?

• Multiple times every day

• Once a day

• A few times per week

10. I feel that my phone has insufficient battery power for my usage patterns.

• Strongly Disagree

• Disagree

• Neutral

• Agree

• Strongly Agree

11. Application 1: How often do you use the ”Facebook” (not ”Messenger”) app

on your smart phone?

• More than 10 times per day

• Between 3 to 10 times per day

• Just a few times per week

• Just a few times per month

• Just 1 or 2 times per day

12. Application 2: How often do you use the ”WhatsApp Messenger” app on

your smart phone?

• More than 10 times per day

• Between 3 to 10 times per day

• Just a few times per week

• Just a few times per month

122

• Just 1 or 2 times per day

13. Application 3: How often do you use the ”BBC News” app on your smart

phone?

• More than 10 times per day

• Between 3 to 10 times per day

• Just a few times per week

• Just a few times per month

• Just 1 or 2 times per day

14. Application 4: How often do you use the ”Fruit Ninja” app on your smart

phone?

• More than 10 times per day

• Between 3 to 10 times per day

• Just a few times per week

• Just a few times per month

• Just 1 or 2 times per day

15. Application 5: How often do you use the ”Gmail” app on your smart phone?

• More than 10 times per day

• Between 3 to 10 times per day

• Just a few times per week

• Just a few times per month

• Just 1 or 2 times per day

16. Application 6: How often do you use the ”Adobe Reader” app on your smart

phone?

123

• More than 10 times per day

• Between 3 to 10 times per day

• Just a few times per week

• Just a few times per month

• Just 1 or 2 times per day

17. Application 7: How often do you use the ”Firefox” app on your smart phone?

• More than 10 times per day

• Between 3 to 10 times per day

• Just a few times per week

• Just a few times per month

• Just 1 or 2 times per day

18. Application 8: How often do you use the ”Kwaak” app on your smart phone?

• More than 10 times per day

• Between 3 to 10 times per day

• Just a few times per week

• Just a few times per month

• Just 1 or 2 times per day

C.2 Experiment 1 Questions

1. Q1: Is the application still usable (the unmodified version was shown at the

start of this trial)?

• Strongly Disagree

• Disagree

• Neutral

124

• Agree

• Strongly Agree

2. Q2: Are the most important portions of the application still visible on the

screen?

• Strongly Disagree

• Disagree

• Neutral

• Agree

• Strongly Agree

3. Q3: Is the application still usable (the unmodified version was shown at the

start of this trial)?

• Strongly Disagree

• Disagree

• Neutral

• Agree

• Strongly Agree

4. Q4: Are the most important portions of the application still visible on the

screen?

• Strongly Disagree

• Disagree

• Neutral

• Agree

• Strongly Agree

5. What application did you just try?

125

• Facebook

• WhatsApp Messenger

• BBC News

• Fruit Ninja

• Gmail

• Aldiko

• Firefox

• Qwaak

6. Which mode do you prefer (2nd or 3rd)?

C.3 Experiment 2 Questions

1. Q1: I am willing to tradeoff some part of the screen in order to save overall

power.

• Strongly Disagree

• Disagree

• Neutral

• Agree

• Strongly Agree

2. Q2: I find the usability versus power savings tradeoffs with this approach

acceptable.

• Strongly Disagree

• Disagree

• Neutral

• Agree

126

• Strongly Agree

3. Q3: Any comments/thoughts/feedback on the technique?

C.4 Screenshots of the user study

127

128

129

130

Bibliography

[1] B. Anand, K. Thirugnanam, L. T. Long, D.-D. Pham, A. L. Ananda, R. K. Balan, and
M. C. Chan. ARIVU: Power-aware middleware for multiplayer mobile games. In
Workshop on Network and Systems Support for Games (NetGames), Taipei, Taiwan,
Nov. 2010.

[2] B. Anand, K. Thirugnanam, J. Sebastian, P. G. Kannan, A. L. Ananda, M. C. Chan,
and R. K. Balan. Adaptive display power management for mobile games. In Proc.
Conf. on Mobile Systems, Applications, and Services (MobiSys), Bethesda, MA, June
2011.

[3] M. Anand, E. B. Nightingale, and J. Flinn. Ghosts in the machine: interfaces for better
power management. In Proceedings of the 2nd international conference on Mobile
systems, applications, and services, MobiSys ’04, pages 23–35, New York, NY, USA,
2004. ACM.

[4] Athi. Colour Image Segmentation, Sep. 2009. http://
www.mathworks.com/matlabcentral/fileexchange/
25257-color-image-segmentation.

[5] Azevedo, A., Cornea, R., Issenin, I., Gupta, R., Dutt, N., Nicolau, A., Veidenbaum,
and A. Architectural and compiler strategies for dynamic power management in the
copper project. In Proc. Conf. on Innovative Architecture for Future Generation High-
Performance Processors and Systems (IWIA), Maui, HI, Jan. 2001.

[6] A. Carroll and G. Heiser. An analysis of power consumption in a smartphone. In Proc.
USENIX Technical Conference, Berkeley, CA, June 2010.

[7] S. Chandra. Wireless network interface energy consumption: implications for popular
streaming formats. Multimedia Systems, 9:185–201, Aug. 2003.

[8] N. Chang, I. Choi, and H. Shim. Dls: dynamic backlight luminance scaling of liquid
crystal display. IEEE Trans. VLSI Systems, 12(8):837–846, Aug. 2004.

[9] X. Chen, J. Zheng, Y. Chen, M. Zhao, and C. J. Xue. Quality-retaining oled dynamic
voltage scaling for video streaming applications on mobile devices. In Proc. Design
Automation Conference (DAC), San Francisco, CA, June 2012.

[10] W.-C. Cheng, Y. Hou, and M. Pedram. Power minimization in a backlit TFT-LCD dis-
play by concurrent brightness and contrast scaling. In Proc. Conf. Design, Automation
and Test in Europe (DATE), Paris, France, Feb. 2004.

[11] CyanogenMod. CyanogenMod Android Fork, Jul. 2012. http://www.
cyanogenmod.org/.

131

http://www.mathworks.com/matlabcentral/fileexchange/25257-color-image-segmentation
http://www.mathworks.com/matlabcentral/fileexchange/25257-color-image-segmentation
http://www.mathworks.com/matlabcentral/fileexchange/25257-color-image-segmentation
http://www.cyanogenmod.org/
http://www.cyanogenmod.org/

[12] M. Dong, Y.-S. K. Choi, and L. Zhong. Power modeling of graphical user interfaces
on oled displays. In Design Automation Conference (DAC), San Francisco, California,
July 2009.

[13] M. Dong, Y.-S. K. Choi, and L. Zhong. Power-saving color transformation of mobile
graphical user interfaces on oled-based displays. In Proc. Symp. Low Power Electron-
ics and Design (ISLPED), San Fancisco, CA, Aug. 2009.

[14] M. Dong and L. Zhong. Chameleon: A color-adaptive web browser for mobile OLED
displays. In Proc. Conf. on Mobile Systems, Applications, and Services (MobiSys),
Bethesda, MA, June 2011.

[15] M. S. El-Nasr and S. Yan. Visual attention in 3d video games. In Proc. Conf. on
Advances in Computer Entertainment Technology (ACE), Hollywood, CA, June 2006.

[16] J. Flinn and M. Satyanarayanan. Energy-aware adaptation for mobile applications.
In Proceedings of the seventeenth ACM symposium on Operating systems principles,
SOSP ’99, pages 48–63, New York, NY, USA, 1999. ACM.

[17] S. Frintrop, E. Rome, and H. I. Christensen. Computational visual attention systems
and their cognitive foundations: A survey. ACM Trans. Appl. Percept., 7(1):6:1–6:39,
Jan. 2010.

[18] Gartner. Worldwide Sales of Mobile Phones Declined 3% in 3rd Quarter of 2012;
Smartphone Sales Increased 47%, Nov. 2012. http://www.gartner.com/it/
page.jsp?id=2237315.

[19] F. Gatti, A. Acquaviva, L. Benini, and B. Ricco’. Low power control techniques for
tft lcd displays. In Proceedings of the 2002 International Conference on Compilers,
Architecture, and Synthesis for Embedded Systems, CASES ’02, pages 218–224, New
York, NY, USA, 2002. ACM.

[20] Google. How Android Draws Views, Nov. 2012. http://developer.android.
com/guide/topics/ui/how-android-draws.html.

[21] Google Inc. Android Operating System, Jan. 2014. http://developer.
android.com/index.html.

[22] H. Han, Y. Liu, G. Shen, Y. Zhang, and Q. Li. Dozyap: power-efficient wi-fi tethering.
In Proceedings of the 10th international conference on Mobile systems, applications,
and services, MobiSys ’12, pages 421–434, New York, NY, USA, 2012. ACM.

[23] T. Harter, S. Vroegindeweij, E. Geelhoed, M. Manahan, and P. Ranganathan. Energy-
aware user interfaces: an evaluation of user acceptance. In Proc. Conf. on Human
Factors in Computing Systems (CHI), Vienna, Austria, Apr. 2004.

[24] Id Software. Quake 3 Arena Source Code, Jul. 2010. http://ioquake3.org/,
Version 3.21.

[25] L. Itti, C. Koch, and E. Niebur. A model of saliency-based visual attention for rapid
scene analysis. Pattern Analysis and Machine Intelligence, IEEE Transactions on,
20(11):1254 –1259, nov 1998.

[26] L. Itti, C. Koch, and E. Niebur. A model of saliency-based visual attention for rapid
scene analysis. IEEE Trans. Pattern Analysis & Machine Intel., 20(11):1254 –1259,
Nov. 1998.

132

http://www.gartner.com/it/page.jsp?id=2237315
http://www.gartner.com/it/page.jsp?id=2237315
http://developer.android.com/guide/topics/ui/how-android-draws.html
http://developer.android.com/guide/topics/ui/how-android-draws.html
http://developer.android.com/index.html
http://developer.android.com/index.html
http://ioquake3.org/

[27] N. Kamijoh, T. Inoue, C. M. Olsen, M. T. Raghunath, and C. Narayanaswami. Energy
trade-offs in the IBM wristwatch computer. In Proc. Symp. on Wearable Computers
(ISWC), Washington, DC, Oct. 2001.

[28] kwaak3. Port of Quake3 to Android. http://code.google.com/p/kwaak3/.

[29] Lucsk-ho. An Example of Fixations and Saccades Over Text., Feb. 2007.
http://en.wikipedia.org/wiki/File:Reading_Fixations_
Saccades.jpg.

[30] Matthew Rollings. Photo taken with a 200x digital microscope by Matthew
Rollings [1]. It shows the RGB arrangement of the pixels on Google’s Nexus One
AMOLED screen with PenTile matrix pixel arrangement., Jun 2010. http://en.
wikipedia.org/wiki/File:Nexus_one_screen_microscope.jpg.

[31] J. Melnick. Smartphone Market Will Ring Up Largest Share of the OLED Display
Market Through 2017. Lux Research Inc., June 2012. http://goo.gl/brWOuZ.

[32] Monsoon Solutions Inc. Monsoon Power Moniter. http://www.msoon.com/
LabEquipment/PowerMonitor/.

[33] B. Noble, M. Satyanarayanan, and M. Price. A programming interface for application-
aware adaptation in mobile computing. In Proceedings of the 2nd Symposium on
Mobile and Location-Independent Computing, MLICS ’95, pages 57–66, Berkeley,
CA, USA, 1995. USENIX Association.

[34] S. Pasricha, M. Luthra, S. Mohapatra, N. Dutt, and N. Venkatasubramanian. Dynamic
backlight adaptation for low-power handheld devices. Design & Test of Computers,
21(5):398–405, Sept.-Oct. 2004.

[35] A. Rahmati, A. Qian, and L. Zhong. Understanding human-battery interaction on mo-
bile phones. In Proceedings of the 9th international conference on Human computer
interaction with mobile devices and services, MobileHCI ’07, pages 265–272, New
York, NY, USA, 2007. ACM.

[36] P. Ranganathan, E. Geelhoed, M. Manahan, and K. Nicholas. Energy-aware user
interfaces and energy-adaptive displays. IEEE Computer, 39(3):31 – 38, Mar. 2006.

[37] D. Shin, Y. Kim, N. Chang, and M. Pedram. Dynamic voltage scaling of oled displays.
In Proc. Design Automation Conference (DAC), San Diego, CA, June 2011.

[38] J. Shinar. Organic Light-Emitting Devices: A Survey. Springer, 2003.

[39] M. Stemm, P. Gauthier, D. Harada, and Y. H. Katz. Reducing power consumption of
network interfaces in hand-held devices. In Workshop on Mobile Multimedia Commu-
nications, Princeton, New Jersey, Sept. 1996.

[40] K. W. Tan and R. K. Balan. Adaptive display power management for OLED displays.
ACM Comput. Commun. Rev., 42(4):485–490, Sept. 2012.

[41] K. N. Truong, J. A. Kientz, T. Sohn, A. Rosenzweig, A. Fonville, and T. Smith. The
design and evaluation of a task-centered battery interface. In Proceedings of the 12th
ACM international conference on Ubiquitous computing, Ubicomp ’10, pages 341–
350, New York, NY, USA, 2010. ACM.

133

http://code.google.com/p/kwaak3/
http://en.wikipedia.org/wiki/File:Reading_Fixations_Saccades.jpg
http://en.wikipedia.org/wiki/File:Reading_Fixations_Saccades.jpg
http://en.wikipedia.org/wiki/File:Nexus_one_screen_microscope.jpg
http://en.wikipedia.org/wiki/File:Nexus_one_screen_microscope.jpg
http://goo.gl/brWOuZ
http://www.msoon.com/LabEquipment/PowerMonitor/
http://www.msoon.com/LabEquipment/PowerMonitor/

[42] University of Michigan. A Power Monitor for Android-Based Mobile Platforms.
http://powertutor.org/.

[43] Y. Wang, J. Lin, M. Annavaram, Q. A. Jacobson, J. Hong, B. Krishnamachari, and
N. Sadeh. A framework of energy efficient mobile sensing for automatic user state
recognition. In Proceedings of the 7th international conference on Mobile systems,
applications, and services, MobiSys ’09, pages 179–192, New York, NY, USA, 2009.
ACM.

[44] X. Xie, H. Liu, S. Goumaz, and W.-Y. Ma. Learning user interest for image browsing
on small-form-factor devices. In Proc. Conf. on Human Factors in Computing Systems
(CHI), Portland, OR, Apr. 2005.

[45] Z. Zhuang, K.-H. Kim, and J. P. Singh. Improving energy efficiency of location sens-
ing on smartphones. In Proceedings of the 8th international conference on Mobile
systems, applications, and services, MobiSys ’10, pages 315–330, New York, NY,
USA, 2010. ACM.

134

http://powertutor.org/

	Using User Saliency For Effective OLED Display Power Management
	Citation

	1 Introduction
	1.1 Motivation
	1.2 Research Objectives And Contributions
	1.3 Dissertation Roadmap

	2 Literature Review
	2.1 The Displays
	2.1.1 LCD
	2.1.2 OLED

	2.2 Power Management On The OLED Display
	2.2.1 Colour Mapping
	2.2.2 Screen Dimming

	2.3 Saliency
	2.3.1 Bottom-Up
	2.3.2 Top-Down

	2.4 Behaviour

	3 Research Problem and Proposed Solution
	3.1 The Research Problem
	3.2 The Proposed Solution
	3.3 Motivating Scenario

	4 Methodology
	4.1 Popularity of OLED Devices
	4.2 Design
	4.3 Requirements
	4.4 Determining the Range Of Savings
	4.5 Determining the Region Of Interest
	4.5.1 Simple Region Of Interest Model

	4.6 Proposed Architecture
	4.6.1 The Profile
	4.6.2 Profile Generation Module
	4.6.3 Deployment Module

	5 Implementation
	5.1 Profile Generation Module
	5.1.1 Default vs. App-Specific Profiles
	5.1.2 Default Profile
	5.1.3 Application-Specific ``Customised'' Profiles
	5.1.4 Creating and Deploying the Profiles
	5.1.5 Profile File Format

	5.2 Deployment Module
	5.2.1 Android Primer
	5.2.2 Implementing Within The OS Stack
	5.2.3 Profile Check and Preload
	5.2.4 Extending the Android Draw Process
	5.2.5 Capturing Events

	5.3 Putting it all Together

	6 Performance Evaluation
	6.1 Evaluation Methodology
	6.1.1 Applications Selection
	6.1.2 Power Measurements

	6.2 Power Savings
	6.2.1 Measurement Details
	6.2.2 Results: The System Saves Significant Display Power

	6.3 Task Completion Time
	6.3.1 Measurement Details
	6.3.2 Results: But What About The Time To Finish Tasks?

	6.4 Comparison with other techniques
	6.4.1 Colour Mapping
	6.4.2 Resolution Reduction and Uniform Dimming
	6.4.3 Measurement Details

	7 User Study
	7.1 User's demographic profile
	7.2 User Study Methodology
	7.3 Experiment 1: Is the system Usable?
	7.4 Result: The System is Perceived As Usable
	7.5 Experiment 2: Are Supplied Profiles Good Enough?
	7.6 Result: Users Can Pick Effective Profiles
	7.7 Result: Feedback of Users

	8 Supporting Games
	8.1 Salient Type: Centred-Based Games
	8.1.1 Locus of Attention
	8.1.2 Power Saving Technique
	8.1.3 Adapting to Game Play Situations
	8.1.4 Adaptive Framework
	8.1.5 Implementation
	8.1.6 Evaluation
	8.1.7 Results
	8.1.8 Discussion
	8.1.9 Generalisability of Technique
	8.1.10 Conclusion

	8.2 Salient Type: Random-Based Games
	8.3 On Going Work

	9 Dissertation Conclusion and Future Work
	9.1 Conclusion
	9.2 Operational Issues
	9.3 Future Direction
	9.3.1 Content and Context Aware
	9.3.2 Usability-Aware Power Management

	A Profile Generation
	A.1 Dim Profile Calculation
	A.1.1 Method Details: buildDimRect()
	A.1.2 Method: buildRectDimAreas()

	B View Class Modifications
	B.1 Profile Check and Preload
	B.1.1 Constructor Modification
	B.1.2 Method: readInDimArea()

	B.2 Extending the Android Draw Process
	B.2.1 Draw Method Modification
	B.2.2 Method: kiatweeAddDimming()

	B.3 Capturing Events
	B.3.1 Touch Event Dispatch
	B.3.2 Key Dispatch

	C User Study
	C.1 Demographics Questions
	C.2 Experiment 1 Questions
	C.3 Experiment 2 Questions
	C.4 Screenshots of the user study

