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Abstract

The emergency room (ER) – or emergency department (ED) – is often seen

as a place with long waiting times and a lack of doctors to serve the patients.

However, it is one of the most important departments in a hospital, and must

efficiently serve patients with critical medical needs. In the existing literature,

addressing the issue of long waiting times in an ED often takes the form of

single-faceted queue-management strategies that are either from a demand

perspective or from a supply perspective. From the demand perspective, there

is work on queue design such as priority queues, or queue control strategies such

as a fast-track system and demand restriction through ambulance diversion.

On the supply side, existing studies looked at the management of the supply of

resources (e.g., doctors, nurses, equipment). However, they may not sufficiently

leverage insights that can be derived from both historical and real-time data.

In this dissertation, we present an integrated framework that manages

queues dynamically in the ED from both the demand and supply perspectives

by leveraging historical data and real-time data. More precisely, we introduce

data-driven and intelligent dynamic patient-prioritization strategies to manage

the demand concurrently with dynamic resource-adjustment policies to man-

age supply. Our framework allows decision-makers to select both demand-side

and supply-side strategies to suit the needs of their ED. We verify through

simulation that strategies from both perspectives work well together in our

proposed framework. The results show that such a framework improves aver-

age patient length-of-stay (LOS) in the ED without having to restrict demand

(stop patients from coming to the ED).

In our dynamic patient-prioritization strategies, we propose and evaluate



three schemes to allocate patients to doctors: shortest-consultation-time-first

(SCON), shortest-remaining-time-first (SREM) and a mixed strategy (MIXED).

We test the strategies using simulation and our experimental results show that

a dynamic priority queue is effective in reducing the LOS of patients and hence

improving patient flow. This is found to be better than standard queuing solu-

tions which are based on first-in-first-out (FIFO) or static priority queues. We

present results that show a trade-off between performance and risks (in terms

of implementation complexity, and starvation, a situation where a patient is

deprived of the chance to consult a doctor). We show that decision-makers

in healthcare institutions can use the information to choose a strategy that is

most suitable for their ED.

On the supply side, we consider the problem of allocating doctors in the

ambulatory area of the ED based on a set of policies. Traditional staffing poli-

cies are static and do not react well to surges in patient demand. By leveraging

real-time and historical information, we provide strategies in two dimensions:

(1) the ability to react to changes in demand and (2) to optimize the doctor

schedule so as to satisfy the hospital’s desired service quality in terms of LOS.

Our main contribution is a data-driven approach that performs online real-

location of doctor resources through symbiotic simulation in real time using

historical as well as current arrival rates. We build a simulation prototype to

demonstrate that this can be done. The experimental results from our proto-

type show that our approach allows the hospital to cope with varying levels

of demand and to better serve the patients within the desired service level. In

addition, the prototype offers insights into the trade-off between performance

and risk (in terms of implementation complexity and doctor schedule stabil-

ity). As such, we provide analysis and opportunities for decision-makers to

select a strategy which fits the hospital concerned.
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Chapter 1

Introduction

The key challenges in the emergency department (ED) of a hospital are service

quality and efficiency. One needs to ensure that the patients receive appropri-

ate quality medical attention, and that the department remains competitive

in terms of efficiency. Long waits and hence increased patient length-of-stay

(LOS) in an ED are a common problem faced by many hospitals around the

world. Managing wait times in an ED is challenging because the ED deals

with patients without appointments and with a wide variety of illnesses with

a large variance in the time required to diagnose and treat them. In order

to serve the emergency medical needs of patients while maintaining quality of

care, a public hospital needs to provide better service and seek ways to improve

patient flow in the ED by improving processes and queue management in the

department.

1.1 The Challenges in Emergency Departments

1.1.1 Complex Queue Management

Queue management in the ED is complex, making its analysis challenging.

Firstly, EDs deal with demand which is not easily predictable as patients arrive

without appointments. Restricting the demand, such as through ambulance

diversion [39], and the channeling of non-emergency cases to general practi-
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tioners, may not reflect well on the hospital or be suitable for certain cities.

The stochastic nature of the demand makes it difficult for the ED to allocate

resources. Secondly, the queuing process is multi-stage, unlike many standard

M/M/1 or M/M/s queuing models which are applicable to other domains such

as retail banking or merchandise shops. Multi-stage queuing systems lack an

analytical model that can truly mimic the real world. Thirdly, we will see that

the ED process (details in Chapter 2) requires the management of re-entrants,

patients who return to see the same doctor after taking some investigative

tests or treatments during a single visit to the ED. These are not patients

who return to the same hospital on another occasion. The re-entrants have

different service distributions from the patients in their first consultation with

a doctor. Standard queuing theory cannot deal with re-entrants in a tractable

way. Lastly, patients with the same acuity classification 1 are not homoge-

neous, and experience their visit and each part of the process differently. For

example, some patients may require a blood test while others require an X-ray

or no tests.

Having complex queue characteristics makes managing the patient queue

and planning for resources in the ED challenging. A typical fixed queuing

policy such as FIFO and a fixed resource schedule is inflexible and unable meet

varying demand or adapt to operational deviation from the expected service

time of a patient (if a patient requires more attention than expected). Our

intention in this dissertation is to combine use of the dynamic priority queue

and dynamic resource adjustment. In order to ensure that our results can

be applied realistically to a real-world context, we use simulation to develop

workable models based on hospital setup and consider the stochastic variability

of patient arrival, processing time, need for investigative tests and treatment

events, and processing time. The simulation model then uses real-life data

derived from a dataset obtained from a hospital in Singapore. A simulation

approach allows us to model and analyze complex ED processes which are

otherwise intractable with analytical queuing models.

1There are four levels of acuity, P1 to P4. P1 patients are in a critical condition, P2
patients have serious conditions, P3 and P4 are non-emergencies with moderate to mild
conditions
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1.2 Motivation

The main motivation of this dissertation is to explore innovative ways to min-

imize operational changes (e.g., process changes) for practitioners but to man-

age the queue in the ED with two key aims for hospital service quality:

1. No demand restriction. Patients can come to the ED at any time and in

any condition. Also, ambulance diversion is not advocated.

2. To serve patients within the parameters of the desired service quality

specified by the hospital.

The reason for not restricting demand is to meet the needs of the patient

in a small country like Singapore where patients may have a limited choice

of treatment centers. Although our proposed models are generic and should

be applicable to hospitals in general, we would like the proposed methods

to be directly applicable to public hospitals in Singapore. Some government

agencies only recognize the medical certificate given by doctors from public

hospitals. It was also reported in an article in a leading newspaper [38] that

a public campaign advising members of the public not to go to hospital for

every ailment had failed. Hospitals have to be able to cope with the demand.

Therefore, we explore ways that will improve service quality without resorting

to demand restrictions.

Desired service quality is measured by the length-of-stay (LOS) of a patient

in the ED from registration until readiness for discharge from the ED (the pa-

tient may still be admitted to the wider hospital). There is a large number of

possible metrics that can be used to evaluate the performance of an ED. In a

comprehensive survey on optimizing ED front-end operations [56], out of 54

pieces of work presented, most used metrics for the performance of the ED in

LOS. The other frequently used metrics include wait time, number of patients

left without being seen (LWBS), patient satisfaction and staff satisfaction. In

addition, other research has also shown that timeliness of care (wait time or

LOS) has a strong correlation with patient satisfaction [7]. There are also

reports that show that poor patient satisfaction leads to decreased staff satis-
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faction [40] and decreased physician productivity [43]. We selected LOS over

wait time because we wanted to measure the amount of time a patient spent

in the ED, including the time he/she takes in a test/treatment and the review

session with the doctor. Wait time usually treats each entry to the queue

(doctor’s queue) as a separate queue instance. We modeled only the queue to

the doctor’s consultation as findings in Boudreaux et al. [6] shows that the

wait time to be treated by a physician has the most powerful association with

satisfaction.

We asked whether, with the motivation to satisfy the desired service quality

of the hospital, queue management in an ED could be more innovative so that

customers are better served, without the need to restrict demand.

1.3 Objective

Our objective in this dissertation is to improve operational responsiveness of an

ED by managing the patient in the queue and providing better decision-support

to determine the number of doctors required. We propose an integrated Dy-

namic Queue Management (DQM) Framework that contains improvements in

two key aspects: (1) managing the demand by means of a dynamic priority

queue and (2) managing the supply by means of dynamic resource adjust-

ment (i.e., the supply of doctors). The overview of the framework is as shown

in Figure 1.1. To achieve this, we leverage on real-time information on pa-

tient arrivals and apply heuristic decision-making methods for planning and

scheduling, combined with queuing theory and simulation. Such methods do

not require process change and are generally transparent to patients.

1.4 Thesis Positioning

In this thesis, our aim is to model the ED process as close to the real world as

possible so results can be reflective of real life and methods directly applicable

to real life. Real-world ED process is complex. Traditional analytical methods

such as queuing theory are insufficient for the modeling of such complexity.
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Figure 1.1: Overview of the Dynamic Queue Management Framework

Such a challenge requires inter-disciplinary methods. In addition, we aim to

analyze a hospital’s data and provide system views of how a hospital can use

its data to create business insights and also have a plan to implement some

or all of our proposed methods. Our proposed Dynamic Queue Management

Framework is an inter-disciplinary approach that draws on the disciplines as

shown in Figure 1.2.

Figure 1.2: Multi-Disciplinary DQM Framework

The following describes how we make use of each of these disciplines in our
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framework:

• Queue design and control: To model the process and the queue to the

doctors such that we can also benchmark the methods against some of

the known analytical queuing models. The queue control considerations

are to look into how we can dynamically manage and clear the queue to

meet desired service levels.

• Intelligent decision-support and optimization: To formulate our problem

as a constrained optimization problem that incorporates service level and

other constraints. In addition, our optimization model enables decision-

makers to make decisions on what parameters to use for the ED process

to achieve the targets.

• Software systems integration: To evaluate the IT systems that are re-

quired to support the proposed strategies. We also provide a road map

and plans to show what live systems information is required to deploy

the methods and potential changes to the existing systems.

• Simulation: To provide a realistic platform to evaluate the performance

of the different proposed methods.

• Analytics: To understand the trends and demographics of the patients,

how the ED performs and to get the parameters that are essential to the

queuing models. Also, to study the results of the simulations.

1.5 Contribution

Three pieces of work form the Dynamic Queue Management Framework.

1.5.1 Demand Perspective

We introduce the concept and a case for a dynamic priority queue model where

the priorities of the entities within the queue system are recalculated when one
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or more resources serving the entities become available. Here, we addressed

the following questions:

1. How do we prioritize the patient such that the average LOS of all patients

is minimized?

2. How do we give priority to patients who will potentially have a shorter

consultation with the doctor instead of having them wait for others who

may occupy the doctor for an extended time?

3. How can we give priority to patients who have spent a long time in the

ED, especially those waiting for periods beyond the hospital’s desired

service duration?

4. How can we ensure that priorities given are unbiased and that patients

do not wait indefinitely (prevent starvation2)?

5. How can we design a way to automatically calculate priorities objec-

tively?

Our calculation of priority of a patient in the queue is based on one or more

of the following factors:

1. The patient’s estimated consultation time with the doctor and/or

2. The patient’s remaining time in order to meet the desired service quality

We propose a queuing model that intelligently allocates patients to doctors

based on the factors listed above so as to reduce the average LOS of all patients

in the ED. The model is also extendable to include other factors. We found

that our proposed strategies resulted in shorter LOS. We also provide analysis

and results to allow healthcare decision-makers to cope with starvation, and

select a strategy that best suits their implementation readiness.

2Starvation is a condition in which a patient is deprived of the chance to consult with a
doctor due to multiple preemptions by other patients with higher priorities.
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1.5.2 Supply Perspective

In this section, we introduce a number of strategies to dynamically adjust

doctor allocation in the ED. Here, we address the following questions:

1. How do we determine the number of doctors required to meet the desired

service quality based on known information about patient arrival trends

in the past?

2. How do we respond to uncertainties (e.g., surges in demand) by leverag-

ing real-time data?

3. When do we adjust the number of doctors, subject to the physical room

constraints of a typical ED?

4. How do we ensure that the quality of care is not compromised, especially

to the medically critical patient?

We present four staffing strategies, namely, historical (HIST), dynamic

(DYN), historical with optimization (HIST-OPT) and dynamic with optimiza-

tion (DYN-OPT) to address the above questions. Both HIST and HIST-OPT

use only historical data, while DYN and DYN-OPT use both historical and

real-time data to calculate staffing required. Our results showed that the dy-

namic strategies could indeed better cope with demand surges. HIST-OPT

can potentially provide a doctors’ schedule that meets the hospital’s desired

service quality with a slight increase in the number of doctors to be deployed

in the ED. DYN-OPT provides opportunities to obtain more stable schedules

with the ability to respond to changes. DYN performs better than DYN-OPT

since it is more reactive. Similarly, we presented an analysis for healthcare

decision-makers to select a strategy that is most suitable based on their quality

improvement appetite and implementation readiness. Our proposed dynamic

resource adjustment strategies are data-driven and provide invaluable real-time

decision support to ED operations.
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1.5.3 Integrated Dynamic Queue Management

Finally, we provided an integrated framework to combine the benefits brought

by the strategies from both demand and supply perspectives. Here, we ad-

dressed the following questions:

1. What are the effects of combining strategies from both perspectives?

2. Do the strategies work together?

3. Which combinations should a hospital select?

Our key contribution in this work is the ability to seamlessly integrate

strategies from both perspectives. The supply-side strategies perform well with

each demand-side strategy. Similarly, we provide analysis to help decision-

makers select the strategies that suit them.

1.6 Research Methodology

Figure 1.3 gives a schematic diagram of our research methodology and process.

Figure 1.3: Research methodology

We have taken a strong practice approach to our research. We started with

a field study at a selected hospital, and then mapped the physical setup of the

ED and gathered inputs on ED processes, the resources (human and facilities)
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involved and its challenges to meet service level target. During the field study,

we also interviewed ED staff and doctors. After the field study, we modeled

the as-is ED process and sought verifications from the hospital. Historical

data about the ED process was then collected and analyzed using an analytics

tool to obtain process parameters such as arrival rates, service rates, types of

investigative tests and treatment.

With the information about the ED processes and its resources, we began

to build analytical and simulation models to address the hospital’s intention

to meet the service level target. Here, a complex ED process was simplified to

the extent that it could be implemented in a simulation model but still suffice

for meaningful analysis. First, we developed demand-side strategies and built

a simulation prototype to analyze the performance of the strategies. Next,

we developed supply-side strategies and built a simulation prototype to an-

alyze the performance of the strategies. Finally, we designed an integrated

framework, an integrated simulation prototype that executed both demand-

side and supply-side strategies. The performances of the various combinations

of demand-side and supply-side strategies were plotted on graphs and evalu-

ated. We took further steps to rank the strategies by finding the statistical

significance of the performances of any pair of strategies that appeared similar

on graphs. Other aspects of the performances of the strategies were the cost of

deploying doctors and implementation complexity. The results of these met-

rics were also presented in tables, charts or quadrant analysis. Based on the

results, we iteratively refined the analytical and simulation models, and ana-

lyzed the results. The final step in our approach considered implementation

possibilities and provided designs to implement the strategies as intelligent

decision-support systems.

In addition, the methods and results were presented to the ED of two

public hospitals in Singapore. Feedback was collected, considered, and (where

possible) incorporated into the models in our iterations. We also learned that

there were many intangible considerations in the healthcare industry.
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1.7 Dissertation Structure

This dissertation document is structured as follows. In Chapter 2, we present

the context and scope of our study by showing the setup and processes in the

ED. In Chapter 3, we present a comprehensive literature review of the related

work in cross-disciplinary areas of intelligent systems, decision-support, opti-

mization, simulation and queuing theory. We study the work in the domain of

healthcare, with a focus on emergency departments. In Chapter 4, we discuss

the model, methods and experimental findings for our proposed demand-side

strategies to dynamically prioritize the patients in the queue. In Chapter 5,

we discuss the model, methods and experimental findings for our proposed

supply-side strategies to dynamically adjust the resources (doctors) in accor-

dance to the demand (arrival of patients). In Chapter 6, we show how both

the demand-side and supply-side strategies can be seamlessly integrated into

a single Dynamic Queue Management Framework. We discuss the framework,

model, and experimental findings for the integrated Dynamic Queue Manage-

ment Framework. We also provide a road map to implement the proposed

strategies. Finally, in Chapter 7, we offer a summary of the contributions of

the dissertation, other practical considerations in the healthcare domain and

future work.

1.8 Chapter Summary

In this chapter, we showed the challenges of analyzing queues and manag-

ing queues in the ED due to its complexity. We presented our motivation,

objectives, contribution and approach to address the issues.
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Chapter 2

Scope of Study

The details of a real-life case in this chapter illustrate the scope of the problem

addressed in this dissertation.

2.1 A Real-life Case

A real-life study is conducted in the ED of a selected local hospital. In this

ED, based on national guidelines, the patients are classified into four acuity

categories, namely P1, P2, P3 and P4, with P1 and P2 being emergency pa-

tients. P1 patients are critically (life-threateningly) ill and must be attended

to immediately. P2 patients are those in great pain and must be attended to

within 20 minutes. The P3 and P4 patients are considered non-emergency pa-

tients with moderate and mild illnesses. On arrival, a P1 patient is sent to the

critical-care area immediately for treatment or resuscitation. Most P2 to P4

patients go through registration and triage before seeing a doctor. The acuity

category of a patient is determined by a nurse during the triage sub-process.

The department (shown in Figure 2.1) is divided into two areas for patient

care; the critical-care area manages P1 and P2 patients while the ambula-

tory area (clinic rooms) manages P3 and P4 patients. Non-emergency patients

represent 70% of the workload of the ED under investigation. P3 and P4

patients are considered lesser emergencies in comparison to P1 and P2, and

the relatively straightforward nature of the patients’ conditions presents the
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opportunity for implementation of improvements and the maximizing of effi-

ciency.

We limit our scope of study to the consultation process in the am-

bulatory area. Hospital management requires that the ED serve ambulatory

area patients to a specified desired level, for example, within an LOS of 60

minutes.

Figure 2.1: Logical segregation of work areas in ED at a local hospital

2.2 The ED Process in the Ambulatory Area

The patient’s LOS is the time between the start of registration and the end

of the case when the patient is either discharged or admitted as an in-patient.

It consists of several sub-processes, namely registration, triage, consultation

with a doctor, investigative tests and treatment, and discharge or admission.

The registration sub-process involves the recording of a patient’s personal in-

formation as well as the collection of a standard fee for use of ED services and

standard medications. The patient then proceeds to the triage sub-process

during which his/her condition is assessed by a nurse and is assigned an acu-

ity category. The patient then consults a doctor. During the consultation,

the doctor may order one or more investigative tests such as a blood tests,

X-rays and point-of-care tests (e.g., electrocardiogram, urine, eye and hearing

tests). The doctor may also order on-site treatment of the patient, such as the
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taking of oral medication, or the application of a bandage. Treatment could

also include a period of observation. If a blood test is ordered, the doctor will

draw the blood before releasing the patient to await the blood test result or to

proceed to undergo other tests or treatment. The investigative tests and treat-

ment sub-process consists of highly variable steps that differ greatly between

patients. A patient could take one or more tests but receive no treatment, or

could take no test but receive one or more treatments, or a combination of tests

and treatments. When the test results are ready and the patient has completed

his/her treatment, he/she is to be seen again by the same doctor. The patient

re-enters the patient queue to await the doctor, and such patients are called

re-entrants. During the second consultation, the doctor reviews results with

the patient, reviews the patient’s condition and decides whether the patient

is to be discharged or admitted as an in-patient. During the discharge sub-

process, some patients may require a referral to a specialist clinic for further

follow-up or pay additional fees for non-standard procedures or medication.

We modeled the various sub-processes in our ED process as shown in Fig-

ure 2.2, without the details within the sub-processes, which were only useful if

we were interested in exploring changes in the process sequence or the specific

physical design of the ED (e.g., adding an X-ray room). However, a detailed

process requires the collection of a huge amount of data for all the activities

in the process. To ease the data-collection process, we found that our process

model in Figure 2.2 was sufficient for capturing process information required

to evaluate patient-prioritization in the patient queue and the supply require-

ments of doctors.

Figure 2.3, based on three months’ data from the hospital, shows the types

of patients who take different routes through the ED. The term “basic” refers

to the steps that all non-emergency patients have to go through, namely, reg-

istration, triage, consultation and discharge or admission. For example, a

patient may take path Number 9 “Basic + L + R only”. This means that

the patient will go through registration and triage, then the first consultation

with the doctor, followed by a lab (blood) test and radiology (X-Ray) test (in

any sequence). Then a review consultation with doctor will occur before the
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Figure 2.2: Simplified process of the ED
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patient is discharged or admitted as an in-patient.

Figure 2.3: Patients may take different paths after the first consultation

2.3 The ED Queue in the Ambulatory Area

The existing patient queue (to the doctors) is managed as a single first-in-

first-out (FIFO) queue for new patients but in a somewhat ad hoc manner for

re-entrants. It has multiple servers (doctors). The queue capacity is infinite

(no turning away of patients). The arrival rates were found (based on our

analytics results) to be non-homogeneous (time-varying) Poisson processes.

The hourly arrival rate followed an exponential distribution, having different

arrival rates over a week’s horizon. We observed that Sundays and Mondays

had a higher volume of patients. Each day, the time-varying pattern was fairly

similar. The low demand period was between 1am and 8am daily. The peak

period was between 9am and midnight. The midnight-to-1am and 8am-to-9am

periods had moderate demand. An example of the time-varying arrivals over

a week is shown in Figure 2.4. The x-axis shows the day of the week starting

from Sunday and the y-axis shows the number of patients arriving in the hour.

Typically in queuing models, the symbol used is λ and the symbol t in the

brackets indicates the time variable. The doctors’ schedule is static and is

planned manually based on perceived understanding of the demand in the ED
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at various hours of the day, over an entire week or month. An example of a

static doctors’ schedule for a day is shown in Table 2.1, with the number of

doctors (servers) rostered for the given time of the day.

Figure 2.4: Time-varying arrival to ED

Time 12am - 8am 8am - 10am 10am - 6pm 6pm - 12am
Number of doctors 2 3 4 3

Table 2.1: Example of a static doctors’ schedule for a day

We make further assumptions on the queue. The doctors are modeled to

be homogeneous and have the same service rates for the same type of patient

(new or re-entrants). Serving the patient is non-preemptive in nature. We

consider balking (customer will not join the queue if queue length is more

than a specified value) as a pre-arrival process, hence net arrival rates are used

in our analysis. We do not consider reneging (customer leaving the queue if

he/she has waited for more than a specified amount of time) in our model.

In our attempt to model the queue as closely as possible to a real-world

queue, we use a single combined FIFO patient queue to the doctors in our

model. This somewhat differs from the real-life mechanism which serves the

re-entrants in an ad hoc manner. To verify that a FIFO estimate is sufficient to

represent the real world, we ran a verification experiment using our simulation

prototype with a FIFO patient queue and a static doctors’ schedule. The

outcome of the experiment showed that the differences in mean and standard
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deviation of the actual observed hospital data and the results of our simulation

prototype were found to be less than 5% and 10% respectively. The ranges of

average LOS (i.e., minimum and maximum) were also consistent. Therefore,

we conclude that the results of our simulation prototype are representative of

the performance of the ED process.

2.4 Chapter Summary

In this chapter, we showed the scope of the process being investigated, param-

eters to the process (e.g. trends of patient arrival) and some basic assumptions

on the process that will serve as the basis of all our work in the dissertation.
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Chapter 3

Literature Review

This dissertation draws inspiration from various cross-disciplinary areas. Here,

we provide a literature review of three main areas. They are:

• Queuing (analytical) and simulation approaches to studying ED pro-

cesses

• Demand-management methods

• Supply-management methods

3.1 Queuing and Simulation Approaches to Study-

ing ED Processes

In the extensive literature related to improvements in ED processes, we see two

major approaches, namely, queuing theory and a simulation approach. Each

has its advantages and limitations.

3.1.1 Queuing

It is generally known that queuing models are simpler, require less data, and

provide more generic results than simulation, as shown in Green [18]. However,

queuing models are sensitive to their parameters (e.g., arrival rates, queue
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discipline) and unable to capture the complexity and detail that are often

required in many real-world applications.

As we have seen in the previous chapter, modeling the ED process is com-

plex, having to deal with stochastic arrivals, a multi-stage configuration that

is multi-server at each stage, re-entrants, and customers (patients) with dif-

ferent priorities (multi-class). There is no standard queuing theory that can

address the complexities imposed by a general ED process. The standard

M/M/s queue is not appropriate. The closest matches are Jackson network

and priority queues. Jackson network can be used as the basis for analysis

of very special cases of the process but it is still insufficient for our analysis.

Jackson network is unable to handle priority queues and it is a FIFO queue at

each node. The standard analytical models provide only multi-server analysis

or multi-class analysis. They are unable to handle both. The standard priority

queue’s analytical model handles only a single server with service time as a dis-

tribution or multiple servers but require a single constant service time. See our

comparison table given in Figure 3.1. None of these cater to our requirements

in the ED process.

Figure 3.1: Comparison of our work with standard queuing theory

Despite the limitations of using queuing theory to model ED processes, a

rich repository of academic work on EDs has used queuing theory, such as in

Halfin et al. [21], Worthington [57] and Pajouh et al. [37]. Comprehensive

surveys can be found in Green [18] and Fomundam et al. [14].

Pure analytical or mathematical models usually provide long-term average

solutions, which do not help in a hospital’s planning process. For instance,
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numerous researchers have attempted to model the ER using mathematical

models [17]. However, the models of these attempts are often deterministic and

do not account for the variability in the processes. Modeling and simulation

serve as the most appropriate solutions in such circumstances.

3.1.2 Simulation

Simulation permits the modeling of the details of complex ED processes and

their dynamics. However, simulation techniques are lacking in supporting ana-

lytical models. Simulation requires knowledge about the data, and thus a large

time investment to obtain and analyze the data. The simulation approach is

less sensitive to parameters. Simulation requires the development of a simula-

tion model that is a close representation of the real system under investigation.

Jacobson et al. [25] present a list of steps that must be performed carefully to

model each healthcare scenario successfully using simulation, and warn about

the slim margins of tolerable error and the effects of such errors being lost

lives.

Mayhew and Smith [32] used queuing theory to analyze a four-hour com-

pletion time target in EDs in the UK. Setting of completion target is similar

to our target LOS. We, however, have a more challenging target of one hour

and hence we need intelligence to improve the process, such as dynamic prior-

itization to dispatch the right patient to the doctors.

Komashie et al. [28], Pajouh et al. [37], Samaha et al. [44] and Gunal et

al. [20] offer examples of discrete-event simulation to enable complex problems

to be analyzed. In these studies, the simulator was used as a tool to verify

the proposed models and perform what-if analysis to improve the processes,

or initiate more effective staff planning in the ED. The simulator, however,

was not used in real time for decision support. The work of Zeltyn et al. [59]

used a simulator as a tool to test which staffing method was suitable in real

time. One idea is symbiotic simulation, first proposed by Fujimoto et al. [16].

A symbiotic simulation system consists of a simulation model interacting with

physical systems. A more detailed architecture of how a symbiotic simulation
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systems fits into a landscape of physical systems can be found in Low et al.

[29]. “The simulation system benefits from the continuous supply of the lat-

est data and the automatic validation of its simulation outputs, whereas the

physical system benefits from optimized performance obtained from the anal-

ysis of simulation experiments.” [29]. Another related work is concerned with

the optimization of an objective function using simulation, generally termed

simulation optimization. (For details, we refer the reader to the comprehensive

survey on simulation optimization in Fu [15].) An example of using simulation

combined with simulation optimization in an ED context is shown in April et

al. [2]. This paper shows that an optimal solution can quickly create a solution

to help the ED to determine the optimal number of resources (doctors, nurses)

to deploy. One aspect of our work is to propose resource-allocation strategies

that use symbiotic simulation with simulation optimization to determine the

number of doctors required in the short-term resource plans in real time.

3.1.3 Combination of Simulation and Queuing

Many works have applied both simulation and queuing simultaneously. Tucker

et al. [54] offer an example that uses simulation to validate, refine and comple-

ment results obtained by queuing theory. Albin et al. [1] use queuing theory

to get approximate results and then use simulation models to refine them.

In this dissertation, we use queuing theory to model the ED process and

we use simulation in two ways: Firstly to verify the results of our queuing

model, and secondly to optimize the ED process using symbiotic simulation to

perform short-term resource planning.

3.2 Demand-Management Methods

For the demand-management methods, we examine the existing literature that

deals with managing demand in an ED. The demand perspective of the ED

deals with restricting, directing, and managing the flow, or prioritizing the

patients.

22



3.2.1 Restricting or Directing Patients

Ambulance diversion is a well-known method used by hospitals to spread the

demand load across various hospitals. A dynamic collaborative approach to

route ambulances to avoid overcrowding is shown in Barthell et al. [3]. In

this method, the demand is reduced by having ambulances routed to other

hospitals. However, such a method may not work well in an urban context

where all the hospitals are equally busy.

3.2.2 Managing Patient Flow

Another approach is to manage patient flow by directing patients by means

of fast-track systems (Rodi et al. [42], Sanchez et al. [45] and Roche et al.

[41]). This approach creates separate staffed areas for the care of patients

identified as low-acuity during triage. Our consultation with a public hospital

in Singapore which used to implement the fast-track system showed that it

was not a practical approach because it gives the public a false impression

that non-emergency patients are given higher priority than those patients with

higher acuity. As this impression prevails, more non-emergency patients who

can be treated by general practitioners appear at the ED and take up the

resources required to serve those patients who truly require services there.

A similar approach, directed queuing, assigns a doctor to the triage sub-

process to make decisions to direct patients to appropriate stations [34]. An-

other categorization method is shown in King et al. [27], where reducing

patient waiting time in the ED is done through triage systems to catego-

rize patients into different groups and treat them differently. The work in

Chakravarthy et al. [9] used a threshold for dynamically switching between

two types of customers to enter the service. Directed queuing requires interac-

tions with qualified medical doctors to achieve proper classification. We found

that, in practice, in the context of our local hospitals, it is preferable to place

scarce resources such as doctors in the consultation area where they can focus

on diagnosis and treatment of the patient.

In addition, the fast-track system and directed queuing methods require
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changes to core processes and possibly the physical layout of the ED to ac-

commodate these processes. It is our interest in this dissertation to keep such

changes to a minimum as they usually require careful change management

(training, organization changes and process acceptance) to ensure smooth ex-

ecution.

Another approach, proposed by Shi et al. [46], was to improve the per-

formance of an ED by reducing the ED boarding time, the time from an ad-

mission request to the transfer to an in-patient bed. It was found that the

average waiting time was more than four hours for patients who requested a

bed between 7am and 11am. This was because there were no beds immediately

available in the in-patient general wards as most discharges happened between

2pm and 3pm. Hence, the ED patients had to stay in the ED, cared for by

ED resources, resulting in ED overcrowding. The authors introduced an early

discharge campaign to increase the number of in-patients discharged before

noon, making beds available for bed requests from the ED in the morning. Al-

though this solution alleviated ED overcrowding by changing the processes in

other parts of the hospital, we recognize that this effort required collaboration

between many departments. It would certainly involve a large hospital-wide

effort on business process re-engineering and change management.

The priority queue, a form of managing patient flow, has been widely stud-

ied. McQuarrie [33] shows that giving priority to patients who require shorter

service times can reduce waiting times. The challenge is to address the issue

of starvation, the perceived unfairness (unless that class of patient is given

a dedicated server) and the difficulty of estimating service times accurately.

Siddhartan et al. [47] proposed a priority discipline for different categories

of patients and then a FIFO discipline for each category. They found that

the priority discipline reduced the average wait time for all patients; however,

while the wait time for higher priority patients was reduced, lower priority

patients endured a longer average waiting time. Fiems et al. [13] investigated

a preemptive repeat priority queuing system in which emergency patients may

interrupt scheduled patients. This work is based on a single server queue only.

In Hay et al. [22], authors allowed a patient’s priority to be dynamically up-
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dated based on the waiting time and the patient’s underlying clinical priority.

They did not consider re-entrants (patients seeing the same doctor multiple

times) and also used a static priority queue. We will study dynamic priority

queues and also consider re-entrants.

3.3 Supply-management methods

For the supply-management methods, we explored queue design, queue control,

and staffing methods for handling time-varying arrivals.

3.3.1 Queue Design and Control

For queue design and control, there are studies on managing service operations

with dual facilities, in our case a back room and front room. The main idea in

queue control is to prevent a queue from building up by dynamically changing

resource capacity. In another words, queue control is a technique applied to

ensure that the queue satisfies some criteria, such as the wait time for all

patients in the queue being at most x minutes.

In a retail shopping context, Berman et al. [5] presented a scenario where

the front room had shoppers and a check-out station, and the back room had

other indirect work in which the customer was not directly involved. They

used a staff-switching policy, where resources in both rooms were shared and

back-room resources could be switched to the front room in order to control

the queue so that wait-time was within an acceptable value. This is a three-

dimensional queue with shoppers in the shop (not in the queue but potentially

joining the queue), and the customers who are in the queue in the check-out

line. The number of servers attending to the queue forms the third dimension.

The paper presented a heuristic-based solution to find the optimal switching

policy while having the ability to fulfill the back room minimum requirement.

Terekhov et al. [52] built on Berman et al.’s [5] work by introducing a

constraint-programming approach to the solution. They claimed to be first to

find proven optimality in solving the switching problem. However, they did
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not consider the concept of shoppers and the solution is restricted to a two-

dimensional queuing model (number of people in the queue and the number

of servers). Our ED process is three-dimensional as the patients who are

undergoing the investigative tests and/or treatment are potential customers

who will be (re-)joining the queue, as in the work of Berman et al. [5]. The

other limitations of these studies that restrict us from directly applying them

to ED process are: (1) strong assumption of single arrival rate and single

service rate; (2) no consideration of time-varying arrival rates; (3) assumed

homogeneous customer with single priority; (4) assumption that back-room

demand is homogeneous and hence the resource requirement in the back room

is homogeneous; and (5) no consideration of re-entrant customers.

3.3.2 Staffing

Staffing is a well-studied problem from the supply perspective. Some ap-

proaches used simulation to design proactive staffing policies [8, 44]; some used

analytical methods with considerations of time-varying arrival [12, 19, 26, 58].

In the work of Sinreich et al. [48], algorithms were presented to shift resource

capacity from low-demand hours to peak hours. These are proactive methods

which produce staff schedules before execution.

Real-time (dynamic) staffing has received considerable attention in recent

years. Marmor et al. [30] and Thorwarth et al. [53] used simulation as a

backend engine to provide decisions to real-time staffing.

There are other classical methods to address staffing problems with time-

varying arrivals. There are two major approaches: one is suitable for short

service-times and another for long service-times. The methods in the former

approach are steady-state approximations such as PSA (Piecewise Stationary

Analysis), RCCP (Rough Cut Capacity Planning) [55], Stationary Indepen-

dent Period by Period (SIPP), or lag-SIPP [19, 26]. The methods for the lat-

ter approach are MOL (Modified Offered Load) [26] and ISA (Infinite Server

Approximation) [12]. In a more recent study in Izady and Worthington [24]

showed how staffing requirements were tailored to meet the UK’s national
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target of 98% of ED patients completing their total consultation within four

hours. The ED process was modeled as a network of K stations with time-

varying Markovian arrival with general service times. The approach used was

MOL and staffing requirements were calculated using square-root staffing rules

for each station in the network. In this method, the first and second consul-

tation with a doctor were modeled as different nodes and hence the staffing

was not consolidated, although the authors provided a method to attempt to

have consolidated staffing. Therefore, we noticed that none of above methods

addressed the re-entrance needs of the ED process. Yom-Tov [58] showed that

both time-varying arrival and re-entrance can be modeled using an Erlang-R

queue model. In that study, the results showed that modeling the re-entrants

provides a staffing policy that gives more stable performance in terms of prob-

ability of wait. Time-varying arrival was handled using the MOL approach

and staffing policy was based on a square-root staffing formula. Although

that study did not consider using real-time information to influence staffing, it

served as a foundation and benchmark for us as we build our dynamic resource-

adjustment strategies.

The switching problem with time-varying arrival and re-entering patients

is a complex process that is not easily characterized using analytical models.

In our approach to make supply-side staffing as close to real life as possible, we

model the problem as an optimization problem and solve it via a combination

of simulation and heuristics. We adopt some of the findings in Yom-Tov [58]

to provide an initial solution to our local search algorithm, which we then

apply to obtain an improved solution for our problem. In addition, we propose

the use of simulation in real time to make predictions on future demand upon

which our dynamic allocation policy is based. Figure 3.2 shows a summary of

the comparison between our work and the existing literature.
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Figure 3.2: Comparison of our work with existing queue design and control
literature
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3.4 Demand and Supply Management Meth-

ods

As we saw in previous sections, the methods that attempted to address ED

issues are rich from both the demand and supply perspectives. However, there

is no study that integrates queue management from both perspectives in the

context of EDs.

We draw inspiration from the traffic/civil engineering and economics do-

mains, where the performance of the system is managed via controls from both

demand and supply perspectives. A key model in traffic engineering is the Dy-

naMIT system http://mit.edu/its/dynamit.html [4]. It is a real-time

model of traffic conditions on roads (supply) and drivers’ travel requirements

(demand) to predict and generate strategies to guide drivers towards optimal

route-choice decisions. In economics, an example of managing queues by ad-

justing demand and supply is shown in Mendoza et al. [35]. The methods used

in both of these domains are not directly applicable to the context of ED.

In upcoming chapters we will investigate how to seamlessly integrate demand-

side strategies of dynamic patient prioritization and supply-side strategies of

dynamic resource adjustments in our proposed framework of Dynamic Queue

Management.

3.5 Chapter Summary

In this chapter, we saw that the process and optimization of ED processes

is complex. Knowledge from various domains, including process modeling,

queuing, simulation, intelligent systems / optimization, analytics and software

systems integration, are applied to address the problem of meeting targeted

services levels for an ED. None of the existing work considers both demand and

supply management. The existing literature also does not consider the systems

integration view on how the recommended solution can be implemented in real

life.
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Chapter 4

Demand Perspectives: Dynamic

Patient-Prioritization Strategies

In this chapter, we introduce the dynamic priority queue model where the

priorities of the patients within the ED queue system are recalculated whenever

at least one of the doctors serving the patients becomes available. The queue in

our context is modeled as a multi-server, multi-class queue with time-varying

arrival and re-entrants.

4.1 The Idea

There are several ways to manage queues. The common models are the first-

in-first-out (FIFO) and standard priority queues. One application of a priority

queue in the context of a hospital is that patients with more severe illnesses are

generally treated as a higher priority than those with less severe illnesses. A

static priority queue model calculates the priority of an entity based on some

attributes of the entity (e.g., severity of illness) when it enters the queue and

the priority remains the same with respect to the other entities in the queue

throughout its life-time in the queue system. One of the key concerns with

static queues such as FIFO or standard priority queues is that they fail to

recognize that the individuals in the queue might not have the same priority

as time elapses.
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In our proposed dynamic queue prioritization strategies, priorities of all

patients in the queue are calculated each time a doctor becomes available.

There is a significant difference between our dynamic priority queue and the

standard priority queue: the priorities of patients are dynamic in the sense

they might change over time as the surrounding environment changes.

The priority of a patient is dependent on one or more of the following

factors: (a) the estimated consultation time with the doctor and (b) the time

remaining to meet the desired service level (e.g., a target of an average LOS

of 60 minutes). Let us refer to this target as the target LOS. We propose a

queuing model that intelligently allocates patients to doctors so as to improve

patient flow and reduce the average LOS of all patients in the ED.

4.2 Problem Definition

The formal problem definition is as follows: Given the front room’s patient

queue with time-varying arrival rates and re-entrants, a fixed number of doctors

in each hour over a week, the service rates of new patients and re-entrants, the

service rates and probability of a patient taking a test or treatment and a fixed

time horizon (e.g., two days), find the patient with the highest priority and

dispatch to the next available doctor to minimize the average LOS.

We proposed three strategies in which the priorities of all patients in

the queue are calculated each time a doctor becomes available: shortest-

consultation-time-first (SCON), shortest-remaining-time-first (SREM) and a

mixed strategy based on a combination of SCON and SREM. The remaining

time of a patient is given as the difference between the target LOS and the

total amount of time that the patient has spent in the sub-process of consul-

tation with doctors. If the patient has to take any investigative test or receive

a treatment, we allow the target LOS to extend beyond the original value by

the amount of time spent in taking tests and treatment. This is reasonable as

the patient has a need to stay in the ED for the additional activities. When

the patient re-enters the queue, his/her total time spent does not start from

zero, but is accumulated and hence this patient can have a higher priority
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than another patient who is waiting to consult the doctor for the first time.

In addition, we observed in our field study that the review consultation time

could be shorter than the first consultation time. As such, we consider the

priorities of all the patients within the same queue to be dynamically set.

4.3 Dynamic Priority Queuing Model with

Re-entrant Entities

An overview of our proposed dynamic priority queuing model is shown, and

its parameters defined, in Figure 4.1 and Table 4.1. Our findings reveal from

analytics on historical data that patients arrive according to non-homogeneous

(time-varying) Poisson arrival rates. Each doctor is a server, and all servers are

assumed to be identical with an exponential service time distribution whose

rate is dependent on the type of patient (new patient or re-entrant). The

re-entrants may have different service rates based on the results of their in-

vestigative tests and treatments. The service rate of an investigative test or

treatment is also exponentially distributed and dependent on the combination

of test and treatment.

Figure 4.1: The dynamic priority queuing model
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Parameter Definition Comments

λf (t) Time-varying arrival rates
of new patients in the am-
bulatory area.

The subscript f is to indicate
the arrival rate for the ambu-
latory area, also known as the
front-room operation of the ED.
Each λf(t) is defined per hour
over a week’s horizon. An ex-
ample is shown in Figure 2.4.

µn Service rate of the doctors
if the patient is a new pa-
tient.

We assume a homogeneous ser-
vice rate for all doctors.

µr Service rate of the doc-
tors if the patient is a re-
entrant.

This is modeled as a set of
four exponential distributions
with corresponding probability
of occurrence. A patient with
clean test results usually takes
a shorter review duration com-
pared to a patient with complex
test results. A typical example
of service rates is shown in Ta-
ble 4.2.

δ Service rate for investiga-
tive tests or treatments.

This is modeled as a set of expo-
nential distributions with cor-
responding probability occur-
rence. The reason is that there
are different types and combina-
tions of tests and treatments re-
quired by different patients. A
typical example of service rates
is shown in Table 4.3.

b Probability of re-entrance. Patients who require tests and
treatments are required to be
reviewed by a doctor, and hence
re-enter the queue.

Table 4.1: Parameters in the demand-side queuing model

Percentage of re-entrants Average time-taken(mins)
40% 5
30% 12
20% 18
10% 25

Table 4.2: Service rates of re-entrants
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Percentage of patients Average time taken(mins)
14% 8
68% 29
13% 50
5% 78

Table 4.3: Service rates of investigation and treatment

4.4 Strategies in Calculating Priorities of Pa-

tients

We have three dynamic priority strategies to calculate priorities of patients in

the queue, namely shortest-consultation-time-first (SCON), shortest-remaining-

time-first (SREM) and mixed strategy incorporating both consultation-time

and remaining-time factors (MIXED).

The formal definitions of the variables in our model are as follows. Each

patient k who has registered has a targeted LOS dk and an elapsed time ek

that he has spent in the department. At the end of triage (i.e. the beginning

of the queuing model), dk is set to the targeted LOS (e.g., 60 minutes) and

the elapsed time is set to zero. If a patient requires an investigative test

or treatment, he/she incurs additional time tk based on the type of test or

treatment, based on treatment service rate δ. The remaining time for the

patient, rk, is then defined as dk+ tk−ek. Note that we added tk so as to allow

the patient to spend more time in the ED to take the test(s) or treatment.

In the consultation queue, the patient is either a new patient or a re-entrant.

Each patient has an estimated consultation time ck, computed based on the

doctors’ service rate µn or µr if the patient is new or a re-entrant.

4.4.1 Shortest-Consultation-Time-First (SCON)

In the SCON strategy S1, we rank (give priority to) patients according to

their estimated consultation times with the doctor. The intuition behind this

strategy is based on our observation that some re-entrants have very short

estimated consultation times. For example, a doctor reviews a clear blood test
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result with the patient in about two minutes. We suggest that such patients

be cleared earlier to allow them to exit the ED. Let ck be the estimated con-

sultation time of patient k. We use an exponentially decreasing function (with

ρ1 as the constant parameter to set the gradient of the exponential function)

to assign (as shown by the arrow in the equation) the priority of a patient pk:

pS1

k ← e
ρ1
ck (4.1)

4.4.2 Shortest-Remaining-Time-First (SREM)

In the SREM strategy S2, we rank patients according to their remaining times.

This is because we want to inspire the patients’ confidence in the hospital’s

ability to serve them within the targeted LOS and, as a result, maintain the

hospital’s reputation. We assign the patient a priority, which tends to a large

number when the remaining time tends to zero, and tends to 1 when the re-

maining time is sufficiently large. Furthermore, since the remaining time may

even become negative (i.e., when the patient is yet to be served after the tar-

geted LOS has elapsed), his/her priority should be set to an even larger value.

For this purpose, we propose an exponentially decreasing function (with ρ2 as

a constant parameter to set the gradient of the function) when the remaining

time is a positive number. When the remaining time tends to zero, we set it

to a large constant to avoid division by zero. And when the remaining time

becomes more negative, it increases linearly. As such, we propose a three-

segment function as shown in the following equation. Let c be a small value

(e.g., 0.1) to ensure priority is very high (only a few cases fall into such a

category). We let fc = e
ρ2
c when rk = [−c, c]. When rk < 0, we use a negative

linear function with a constant slope m > 0.

pS2

k ←



















e
ρ2
rk if rk > c

fc if rk ∈ [−c, c]

fc −mrk if rk < −c

(4.2)

The selection of the exponentially decreasing functions in both SCON and
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SREM was inspired by the work in Cheu et al. [10] in which the authors

reasoned that the most computational-efficient functions for measuring dis-

utility (in their case, in transportation domain) are linear and exponential

functions. An analogous situation for our domain is the waiting anxieties of

patients, which can be seen as a dis-utility. Since we want to give much higher

priorities to patients who have a very short consultation time or remaining

time, we adopted the exponential functions.

4.4.3 Mixed Strategy (MIXED)

We consider a MIXED strategy S3 to take into consideration the multiple

factors determining the priorities of patients. We also observe (see experiments

below) that a pure SCON strategy may potentially result in the problem of

starvation. Hence, we propose a MIXED strategy to prevent starvation. Note

that although we consider only two factors in this paper, namely, consultation

time and remaining time, we believe that the model can be extended to include

more factors. We use a weighted scheme so that weights can be assigned to the

various factors that make up the MIXED strategy. The weights are normalized

such that the sum of the weights equals 1. The weights are constant parameters

that are calibrated via a local search algorithm. Hence, in general, suppose we

have N factors, each having a weight of an (1 ≤ n ≤ N) contributing to the

MIXED strategy, then we have the priority of patient k:

pS3

k ←
∑

n

an.p
Sn

k (4.3)

where
∑

n

an = 1 and anε[0, 1]

To find the weights an, we propose a multi-dimensional binary search al-

gorithm. We begin the search with an (1 ≤ n ≤ N) set to 1
N

which gives the

centroid of the multi-dimensional search space. In each iteration of the search,

we examine the N(N − 1) neighboring points, which are the points derived

from choosing 2 out of the N weight variables and shifting half the weight

value from one variable to the other. We run simulations for the current point
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Search algorithm for weights
01. Set an to 1

N
for each 1 ≤ n ≤ N

02. Initialize dg to a user-defined value used to stop the search
03. d← aLargeNumber
04. acurr ← a // current best setting
05. avgLOS ← runSim(a, dayOfWeek, numOfIterations)
06. while (d ≥ dg)
07. for each point a′ in the neighborhood (of N(N − 1) points)
08. avgLOS ′ ← runSim(a′, dayOfWeek, numOfIterations)
09. endForEach
10. if there is an improvement over the current avgLOS value,
11. then set avgLOS and acurr to the values associated with the neighbor

with the minimum average LOS
12. Set d to the difference between the current avgLOS

and its previous iteration value
13. endWhile

Table 4.4: Search algorithm to obtain the weight of each factor in the MIXED
strategy

and those of the neighboring points. We then take the average LOS over all

hours and obtain the weights that provide the best average LOS. We continue

the search until the algorithm converges to a point such that difference (d)

between the current average LOS and minimum neighboring average LOS is

less than a targeted difference dg. The details of the search algorithm are as

shown in table 4.4.

4.5 Implementation Design

We propose in this section a preliminary system design to support our proposed

methods. The SCON method requires a way to provide an accurate estimation

of the consultation time in order for the scheme to be successful. In order not

to overload the nurses or doctors, we proposed to automate the estimation by

the use of IT systems. The SREM method required real-time tracking of the

amount of time the patients spent in the ED. This can be fairly accurate and

easily implemented in most hospitals with today’s technologies.

37



4.5.1 Estimation of Consultation Time for SCON

With the example of the systems and process in the ED that we have studied,

we have the patient arrival information recorded in the Patient Care System

(refer to Figure 4.2). This is entered during registration. At each stage of the

ED process, time-stamps and some basic information of the activities are also

recorded (e.g., the time at which an X-ray is ordered and the time in which

the nurse receives the result). For investigative tests, the results are recorded

in the individual systems. For example, the blood test results of a patient

are recorded in the Laboratory System, and the X-ray image and analysis

are recorded in the X-ray System. The Enterprise Resource Planning (ERP)

System records hospital-wide information including bed information. This

system is used when the ED is discharging the patient to an in-patient ward

or to book an appointment in another specialist’s clinic within the hospital.

For new patients, we have little information other than the outcome of the

triage process to estimate the consultation time. Based on interviews with the

hospital’s staff, we understand that the service rates for new P3 and P4 patients

are relatively stable. As such, we automate the estimation of consultation time

for all first consultations with a doctor using a standard service rate µn.

The estimated consultation time for the re-entrants (second consultation)

is more complex. However, with the help of the information systems, we can

get a good automated estimate. The patient’s test results are readily obtained

and can be used in our estimate when they are available in the individual

systems. As an illustration, in a typical blood test, if a patient’s blood results

show all of the items in the test are within the normal range, he/she is believed

to have a clean blood test result. If a patient has clean test results, then the

second consultation with the doctor is generally as short as two minutes and

usually completed within five minutes. If the tests show few or borderline issues

(readings near to borderline normal ranges), there will be some discussion

between the doctor and patient during the second consultation. If the test

results show many issues, the second consultation with the doctor can be

longer as it either involves long discussions with the patient or the family, or
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Figure 4.2: ED process with associated supporting systems
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involves more detailed information to be indicated in the medical record or a

referral memorandum before the patient is discharged to an in-patient ward

or specialist clinics. There are, at times, cases when the test and treatment

results are unfavorable, and a very short second consultation is observed and

the patient is warded for further investigation. As a general heuristic, the

doctor takes more time to see patients with observable conditions than those

who have clean test results. We can form a set of re-entrant service rates

µr such as the ones shown in Table 4.2. Using data drawn from the test

results of patients, a hospital can gather statistics based on historical data to

determine the service rates for each of the categories of re-entrants. We can

then automate the estimation of the consultation times of re-entrants using

these service rates. The process of estimating a patient’s consultation time is

illustrated in Figure 4.3.

Figure 4.3: Proposed calculation of estimated consultation time of patient

We recognize that the proposed method is an estimate and the realized

consultation time can deviate from the estimate. The behavior of individual

patients and their family members is not easily predicted using technology. As
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such, we need to find a more accurate method to complement SCON. In the

next two sections, we will see how priorities in SREM can be more accurately

calculated and how the MIXED method can reap the benefits of both SREM

and SCON strategies.

4.5.2 Calculation of Remaining Time for SREM

The calculation of remaining time for SREM can be made more accurately.

There are three components to the calculation: target LOS (dk), treatment

duration (tk) and elapsed time (ek). dk is set by the hospital. ek is the differ-

ence between the current time and the patient’s registration time as recorded

in the Patient Care System. ek is accurately computed. The only component

that may be only partially accurate is the treatment duration tk. Although

most of the start and end test time-stamps captured in the individual systems

supporting each investigative test (e.g. Laboratory System, X-ray System) can

indicate the treatment duration, there could be slight variations due to human

entry delays. For example, in some cases, nurses batch a few X-ray reports

before entering them into the system. Hospitals should review the systems’

ability to capture such information for accurate calculation of remaining time.

We believe that capturing such information can be easily automated with sim-

ple and inexpensive solutions such as bar codes, QR-codes or any form of

scanning devices.

4.5.3 Inclusion of Other Factors for MIXED Strategies

If a hospital wants to include other factors into the MIXED strategy, it should

analyze its information systems capability and readiness to ensure that in-

formation can be captured and the relevant priorities can be calculated. An

example of other factors is the patient’s health conditions during his/her stay

in the ED. A patient’s vital statistics are collected during his/her stay in the

ED and the values are used to dynamically prioritize the patient [11]. The

acuity level of the patient may also change if his/her condition deteriorates

greatly (up-triage). A higher priority will then be assigned to such a patient
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when the next doctor becomes available or the patient will be transferred to

the critical-care area.

4.6 Experimental Evaluation

We built a prototype of the Dynamic Queue Management system as a simulator

to evaluate the effects of using the strategies. We set up our experiments using

six months’ data from the selected local hospital from which we derived the

parameters λf(t), µn, µr, δ and b. We implemented the prototype using Java

and ran the simulation over 10 iterations for a static FIFO queue, as well as for

each of the three proposed dynamic priority queue strategies. We measured

the average values over all of the iterations.

We used two sets of time-varying arrival rates, one for running the sim-

ulation for Tuesday to Saturday and another for Sunday and Monday. The

latter are the two days of the week when the ED experiences a higher volume

of patients, hence the arrival rates are different. In each set, exponential dis-

tributions with mean 60
λf (t)

were used. In our time-varying arrival rates, the

low demand period was between 1am and 8am daily. The peak period was

between 9am and midnight. The midnight-to-1am and 8am-to-9am periods

were moderate.

Similarly, we derived two sets of consultation times represented by expo-

nential distributions for the services by the doctors. One set of consultation

times was used for new patients (first consultation) and another for re-entrants

(review consultation). The first consultation time consists of only a single ex-

ponential distribution with mean 60
µn

where µn is the doctor service rate. The

review consultation time consists of a set of four exponential distributions

with corresponding probabilities of occurrence as shown in Table 4.2. The

service time for investigation tests and treatment is a set of four exponential

distributions with corresponding probability of patients’ going through tests

or treatments as shown in Table 4.3. In the MIXED strategy, the patients’

priorities were calculated based on a combination of SCON and SREM. The

weights are determined via a local search algorithm (Table 4.4) based on a

42



two-dimensional search. Finally, we set the probability of re-entrance b to 40%

as per our observation of historical data.

For all of the simulations (except the sensitivity test on the number of

doctors), we set the number of doctors in consultation to three and we allowed

one day of simulations to pass before we started collecting the results. We

then ran the simulation over an additional two days and collected the results

for the two days.

4.6.1 Experimental Results

Our first set of results is shown in Figure 4.4, with comparisons between the

proposed strategies and FIFO. The number of doctors is three and the service

rate of the doctors (µn) is set to six new consultations per hour (i.e., doctors’

service time is an exponential distribution with mean (60/6) = 10 minutes).

These are the current settings in the ED of the hospital we studied. The

average service rate information was provided by the hospital.

From Figure 4.4, we observed that the proposed strategies clearly out-

performed the FIFO queue, both in terms of lower average LOS of all patients,

as well as consistent and almost stable average LOS over peak and non-peak

hours. The pattern of SREM and MIXED strategies is similar to FIFO: average

LOS increased during peak hours and decreased during non-peak hours. On

days on which the ED had higher demand (Sundays and Mondays), the three

strategies performed far better than FIFO. On days that did not have such a

high demand, the performance of SREM and MIXED were closer to FIFO. We

observed that SCON coped very well with various types of demand in the ED

and yielded consistent and relatively low average LOS with smaller variances

compared to other strategies.

Next, we performed a what-if analysis by setting the service rate of the

doctors (µn) to five new consultations per hour (i.e., doctors’ service time is

an exponential distribution with mean (60/5) = 12 minutes). This was to test

what happened if the doctors took more time to serve a patient. We show in

Figure 4.5 the results of this analysis. On Sundays and Mondays, as shown
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Figure 4.4: Comparison of proposed strategies against FIFO for three doctors
with µn = 6
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in Figure 4.5(a), the queue became unstable and the average LOS became

increasingly high using FIFO, SREM or MIXED strategies. Unstable queues

appeared when the service was slower than the arrivals (which is consistent

with standard FIFO queuing theory). In contrast, although the average LOS

for SCON was also high at peak hours (reaching 400 minutes at some points),

it is interesting to see that it remained fairly stable under such conditions. We

draw a conclusion here that the SCON strategy scales better under high load

conditions. But SREM and MIXED strategies still perform better than FIFO.
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Figure 4.5: Comparison of proposed strategies against FIFO for three doctors
with µn = 5

Another what-if analysis we conducted was when the service rate of the

doctors (µ1) was set to 7.5 new consultations per hour (i.e., doctors’ service
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time is an exponential distribution with mean (60/7.5) = 8 minutes). We

tested the situation where the hospital required increased efficiency, with doc-

tors serving each patient more swiftly. We show in Figure 4.6 the results of

our investigation. An interesting observation is in Figure 4.6(b) (results of

simulation for Tuesday to Saturday). When the ED is not heavily loaded (i.e.,

during off-peak hours when there are sufficient resources such as doctors), the

various strategies including FIFO perform similarly. The proposed strategies

have less advantage over FIFO in low-peak situations.
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Figure 4.6: Comparison of proposed strategies against FIFO for three doctors
with µn = 7.5

Since a hospital must assure quality of care, increasing the service rate of

doctors may not always be feasible (doctors need to thoroughly examine a
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patient). We examined a situation in which the hospital increases the number

of doctors to four and the result is in Figure 4.7. Figure 4.7(b) further verifies

our observation that, if the resources (doctors) are not extremely scarce such

as on non-peak days like Tuesdays to Saturdays, any chosen strategy works

similarly to any other. Our intelligent patient-allocation strategies become

useful with a high volume of patients that competes for expensive resources

such as doctors.
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Figure 4.7: Comparison of proposed strategies against FIFO for four doctors
with µn = 6

Across all the various sensitivity tests on the doctors’ service rates and

number of doctors, we found that the SCON strategy yielded a very consistent

and optimistic result, regardless of whether peak hours were involved. From
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a management perspective, this strategy not only has the best performance

but also inspires the hospital confidence in ensuring the public that a certain

service level can be achieved in its ED. For example, the hospital could convey

to the public that x% of patients can be served within 20 to 80 minutes in the

Tuesday-to-Saturday period based on the doctors’ service rate of six patients

per hour.

We noticed that SREM did not seem to perform well although it had been

designed to meet the LOS target. In our experiments, the number of doctors

did not vary but was fixed at three. As such, there were times when there

were simply insufficient doctors to clear the demand. In fact, SREM behaved

just like FIFO except when a patient’s remaining time was very near zero or

negative. The patients in such cases would still have to wait for an available

doctor or the same doctor who had seen him/her previously to review him/her.

As such, the LOS target could not be achieved all the time.

4.6.2 Starvation Analysis

Despite its good performance, we speculate that SCON has a potential limita-

tion of patients suffering from starvation. We present the results in Figure 4.8

to illustrate this phenomenon. The symbol w in the table indicates the length

of time (in minutes) that patients have waited in the queue for a doctor by

the end of our simulation runs. The number in each column shows the total

number of such patients over the 10 iterations.

�

Figure 4.8: Comparison of starvation phenomenon between the three strategies

We ran the experiments over two types of treatment duration distributions,

normal treatment and long treatment. The duration distributions for normal

treatment comprise 90% of re-entrants with less than or equal to the esti-
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mated consultation time of a new patient. The duration distributions of long

treatments only comprise 70% of such re-entrants. We found that even under

non-peak conditions (three doctors, µn = 7.5, normal treatment, four doctors,

µn = 6, normal treatment and four doctors, µn = 6, long treatment), SCON

has cases of starvation, while SREM and MIXED are cleared of starvation.

When the ED is slightly crowded (three doctors, µn = 7.5, long treatment),

the MIXED strategy still outperformed SCON in terms of starvation cases. In

this starvation study, we found that SCON had a significant disadvantage and

its performance should be evaluated in conjunction with both the starvation

study and the average LOS measurement. The results that were shown in Fig-

ures 4.4 to 4.7 were based on patients who had completed the ED process, but

did not include the patients who were still starved when the simulation had

ended (since we were not able to measure the LOS of patients who had not

completed their full process). Therefore, we recommend that despite SCON’s

seemingly good performance, it should not be a strategy that to be used alone.

In this analysis, we observed a trade-off between the performance and the risk

of having starved patients.

4.7 Management Insights for Decision-Makers

Among the three strategies for dynamic priority queuing of patients at an ED,

we found that the proposed strategies result in shorter average LOS compared

to using the FIFO method and they are able to scale well over peak days

and peak hours. Introduction of the SREM strategy also helps the hospital to

meet its desired service level. With the advancement of IT that enables patient

real-time movements to be tracked and data to be mined quickly, we believe

that our proposed concept of a dynamic priority queue is implementable. We

observed a trade-off between performance and risk of implementation in terms

of readiness.
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Figure 4.9: Summary of pros and cons of the three strategies

The advantages and disadvantages of strategies are shown in Figure 4.9.

The SCON strategy yields the best performance with lower variance over the

average LOS for all the scenarios, but the drawback is that the strategy re-

quires additional effort to implement and faces the high risk of starvation. The

SREM strategy is readily implementable but its performance is less promising.

We see the potential of the MIXED strategy because it addresses the problem

of starvation (faced by SCON) and gives better results compared to SREM.

More importantly, the MIXED strategy reduces reliance on the accuracy of

estimating the consultation time of patients; it also has the flexibility of in-

corporating other important contributing factors (e.g., patient’s illness type

- a patient with a fish bone in the throat may be more uncomfortable than

another patient with a cold and fever) to setting the patient’s priority.

In our further analysis, we see two major trade-offs that a decision-maker

must consider: the trade-off between performance and risk of implementation,

and the trade-off between performance and the risk of starvation. We illus-

trate these trade-offs in Figures 4.10(a) and 4.10(b). The arrows in the figures

indicate what a decision-maker may like to achieve – high performance and

low risk. Decision-makers can make a choice of the strategy to adopt based

on the hospital’s appetite for performance and risk. The MIXED strategy is

our recommended strategy with a good trade-off between the various consid-

erations.

In this study, we see a potential need to be able to have a combined mea-

surement of the performance in terms of LOS and the starvation cases. We
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(a) Trade-off between performance and implementation
risk

(b) Trade-off between performance and starvation
risk

Figure 4.10: Demand-side strategy quadrant analysis for the decision-maker
on strategy selection

recognize that the performance measure of SCON (only in terms of hourly

average LOS) may be overly optimistic because the hourly average LOS can-

not account for the starvation cases. Since the patients who are starved will

exit some hours later and only be measured in later hours, they are not taken

into consideration in computing the average LOS. We anticipate that different

concluding results may be observed if longer simulation runs (such as over a

week or two) are used to ensure that starved patients are cleared from the

system and are measured. Moving forward, another possibility for extension is

to consider measurement of performance using other forms of evaluation such
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as agent-based simulation where each patient is differentiated and an LOS

measurement may be taken for each patient, including the patient who has

experienced starvation in the ED process.

4.8 Summary

We conclude that a dynamic priority queue has many advantages over the

standard FIFO queue to improve patient flow in an emergency department.

We see two trade-offs in considerations of a good strategy: performance ver-

sus risk of implementation and performance versus risk of starvation. Before

deciding on the strategy to adopt, the decision-maker must understand the

available state-of-the-art of technology and the hospital’s ability to implement

new technologies and systems.
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Chapter 5

Supply Perspectives: Dynamic

Resource-Adjustment Strategies

In this chapter, we introduce our dynamic resource-adjustment strategies for

managing the supply of doctors in the ambulatory area. In doing so, we need

to bear in mind the resource requirements of the critical-care area and en-

sure that the more critical patients (P1 and P2) have sufficient doctors to

serve them before the P3 and P4 patients in ambulatory area. This is the first

study to consider queue design and real-time queue control under time-varying

demand with re-entering customers for a dual-facility service center. The

queue model in our context is modeled as dual time-varying (Gb(t)/Mb/Sb(t),

Gf(t)/Mf/Sf(t)) queues for the critical-care area (the back room with sub-

script b) and the ambulatory area (the front room with subscript f). The

front room is modeled as a queue with re-entering patients.

5.1 The Idea

A doctors’ schedule for both front and back rooms is planned manually based

on the hospital’s estimate of demand in the ED at various times of the day,

over an entire week or month. Such schedules generally do not react well to

uncertainties such as surges in patient arrivals, and often the hospital is unable

to react to meet its desired service level (in terms of target length-of-stay). The
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doctors are at times moved between the front room and back room. In current

practice, this is typically done in a reactive and unplanned manner without the

ability to know when there is a need to move a doctor from the critical-care

area and when to return the doctor. If the ED experiences surges in demand

(usually in the front room), additional doctors may be called in but there is a

lack of information about how long the additional doctors will be required to

serve the patients.

We designed dynamic resource-allocation strategies with the aim of achiev-

ing the following objectives: (1) ability to respond to uncertainties (e.g., surges

in demand) by leveraging on real-time data; (2) ability to meet the desired ser-

vice level in the front room while ensuring that the quality of the related facility

(i.e., the ED’s back room) is maintained. Our proposed dynamic resource-

adjustment strategies are data-driven and provide real-time decision support

to the ED’s operations.

5.2 Preliminaries

To support our dynamic resource-adjustment policies, we considered the queue

model with re-entrants proposed by Yom-Tov [58]. A queue model with re-

entrants (known as an Erlang-R model as shown in Figure 5.1) was selected. It

is most relevant to the ED process and the results have shown that the Erlang-

R model provides more stable performance as measured by the probability of

wait (P (W > 0)) of the patients under the balanced Quality- and Efficiency-

Driven (QED) regime. In Yom-Tov’s work, the goal was to identify the staffing

required at the ED that provides a stable probability of wait regardless of the

time of arrival of the patient. However, physical constraints (e.g., the total

number of doctor’s rooms available in the ED) and a dual-facility (critical-care

area) were not considered in her work. As such, we extended one of her models

to build in our other strategies. We also used the method as a benchmark for

comparisons between the proposed strategies. We present the mathematical

equations from her work that are essential and related to our work.

In Figure 5.1, we show two stations, Station 1 and Station 2. The numbers
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Figure 5.1: The Erlang-R Model

in the circles indicate the station numbers, not the number of servers available.

Based on the modified offered load (MOL) approach, the time-varying offered

load Rx at Station x is given by the following equation [31]:

Rx(t) = E[λ+
i (t− Sx,e)]E[Sx] (5.1)

where λ+
x is the aggregated arrival-rate function to node x, Sx represents the

service time at node x, and Sx,e is a random variable representing the excess

service time at node x.

The doctor staffing at Station 1 where patients await consultation is then

determined by substituting the time-varying offered load formula into the fol-

lowing staffing formula [12, 26] where β is chosen to take on one of the val-

ues which provide a stable expected wait-time according to findings in Yom-

Tov[58]. We recognize that there are other ways of setting β, such as to

parameterize it according to the desired service quality. The methods can be

found in Halfin and Whitt [21].

s1(t) = R1(t) + β
√

R1(t); ∀t > 0 (5.2)

Using the arrival function of our selected local hospital as in the previous

chapter, the arrivals are modeled as non-homogeneous time-varying Poisson

processes. The arrival pattern is found in Figure 2.4 earlier. For the purpose

of comparison of our proposed strategies with existing work with an analytical

model in [58], the service rates at Stations 1 and 2 are simplified to single
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exponential distributions of µ and δ. Based on the findings in Yom-Tov [58],

for general time-varying arrival and exponential service rates, we can solve

via numerical approximation. The time-varying offered load with re-entrants

using the following ordinary differential equations is given by:

d

dt
R1(t) = λt + δR2(t)− µR1(t)

d

dt
R2(t) = pµR1(t)− δR2(t)

(5.3)

5.3 Problem Definition

The problem consists of two variants: (1) the constraint-satisfaction problem

where the goal is to find the allocation of doctors (doctors’ schedule) that

satisfies all constraints; and (2) the optimization problem where the goal is to

find an allocation of doctors that optimizes the cost of using them, and treats

the service level constraint as a soft constraint. The term soft constraint is

used to refer to a constraint which can be relaxed during the search for the

selection of the best solution. A solution with fewer occurrences of violations

to the soft constraint is a better solution than one which has higher occurrences

of violations.

The cost of using doctors consists a primary cost – the hourly labor cost

of a doctor multiplied by the number of doctors allocated in the hour; and a

secondary cost – the deviation cost of the allocation for measuring schedule

stability. Deviation refers to the total difference in the number of doctors

between the two consecutive time periods, and the deviation cost is computed

as the square of deviation multiplied by a numeric cost factor.

The constraint-satisfaction problem is defined as: Given the front-room’s

patient queue time-varying arrival rates and re-entrants, a pre-determined

hourly doctors’ requirement for serving the patients in the back room, hourly

total number of available doctors in the whole ED, a service rate of the doc-

tors, the service rate and probability of a patient taking a test or receiving

treatment, calculate the number of doctors allocated in the front room per

hour for a planning horizon such that the following constraints are satisfied:
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(a) the front and back rooms’ allocations do not exceed the hourly total num-

ber of doctors (back-room service level guarantee),

(b) the front room’s requirements do not exceed the front room’s physical

capacity.

The optimized problem involves optimizing the cost of doctors, and is de-

fined as: Given the front-room’s patient queue time-varying arrival rates and

re-entrants, a pre-determined hourly doctors’ requirement for serving the pa-

tients in the back room, hourly total number of available doctors in the whole

ED, a service rate of the doctors, the service rate and the probability of a

patient taking a test or receiving treatment, the goal is to find the number

of doctors allocated in the front room per hour for a planning horizon that

minimizes the cost of using doctors, such that the following constraints are

satisfied:

(a) the front and back rooms’ allocations do not exceed the hourly total num-

ber of doctors,

(b) the front room’s requirements do not exceed the front room’s physical

capacity,

(c) the service level target is achieved in each hour (soft constraint).

5.4 The Dynamic Resource-Adjustment Queu-

ing Model with Re-entrants

Table 5.1 defines the parameters to our queuing model as shown in Figure

5.2. Our aim is to intelligently determine or forecast the optimal number of

doctors required at Station 1 (the front room of the ED) in order to meet the

front-room service quality desired by the hospital while maintaining back-room

quality. We focus on Station 1 because we learnt that it is the bottleneck of

the ED process (through our on-site observations). With reference to Figure

5.2, we define the following notation used in our model:
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Parameter Definition Comments

λb(t) Time-varying arrival rates
of new patients in the back
room.

Each λb(t) is defined per hour
over a week’s horizon.

λf (t) Time-varying arrival rates
of new patients in the
front room.

Each λf(t) is defined per hour
over a week’s horizon as shown
in Figure 2.4.

LOS(t) Average LOS of patients
who leave the ED within
a time interval of [t, t+1).

LOSmax Hospital’s desired service
quality in terms of LOS.

µb Service rate of the doctors
in the back room.

Assumes an exponential service
rate and homogeneous doctors.

µ Service rate of the doctors
at Station 1.

Assumes a homogeneous and
exponential service rate for all
doctors.

δ Service rate for investiga-
tive tests and treatments
at Station 2.

Assumes an exponential service
rate.

roommax Physical constraints in the
ED’s front room.

This corresponds to the max-
imum number of consultation
rooms in the set-up of the ED.

Smax(t) Maximum number of doc-
tors that can be deployed
in the ED (front and back
rooms combined) at time
t.

This corresponds to the re-
source capacity in real life.

Sb(t) Number of doctors re-
quired in the back room to
serve the demand.

Estimated using steady-state
offered load.

Sf (t) Number of doctors to be
placed in the front room.

b Probability that a patient
will go for investigative
tests and treatments.

Table 5.1: Parameters in the supply-side queuing model

We observed that the demand in the back room was fairly stable from

day to day although it varied depending on the time of day. Assuming that

it is possible to get to steady state, and using that average arrival rate of a

58



Figure 5.2: The queuing model for dynamic resource adjustment

time-interval (e.g., an hour), we calculated the offered load for each interval

R(t) ≈ λb(t)
µb

. 1
µb

determines the mean service time in the back room. We then

found the staffing requirements for the back room using the staffing rule as

per Equation 5.2 under the QED regime. The hourly time-varying back room

requirements were pre-computed and then used as an input for the front-room

staffing.

The following are the constraints for our problem:

Sf(t) ≤ Smax(t)− Sb(t) (5.4)

Sf(t) ≤ roommax (5.5)

LOS(t) ≤ LOSmax (soft constraint) (5.6)

Constraint (5.4) specifies the back-room service level guarantee, (5.5) spec-

ifies the physical front-room constraint and (5.6) specifies the service level

constraint. The service level soft constraint can be implemented as a penalty

function in the objective function. For example, we can count the number of
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violations to the constraint and provide a penalty to the measurement of the

objective function.

The queue model used in the dynamic-resource adjustment strategies is

similar to the model in the previous chapter of dynamic patient-prioritization

strategies. However, the model is different in this chapter in the following

ways:

1. The needs of the back room are considered.

2. The queue discipline used for the patient queue is first-in-first-out (FIFO).

3. Homogeneous rates are used for the service rate of doctors (single µ)

and the service rate of investigative tests and treatments (single δ). The

reason for using homogeneous rates is to be able to allow our proposed

strategies to be compared to a benchmark as given by the work in Yom-

Tov [58], which is supported by an analytical model.

4. The number of doctors in each hour is not constant.

In the following chapter, we will show that we can combine the demand-side

and supply-side queue models in the integrated dynamic queue-management

framework.

5.5 Resource-Adjustment Strategies

The resource-allocation strategies allow a doctors’ schedule in the front room

for Station 1 to be determined either in a proactive manner or dynamically,

depending on the actual arrival conditions. The doctors’ schedule is designed

to adjust at the minimum of hourly intervals. This is to prevent a schedule

that has many changes within a small time interval. We also assume that the

back-room requirement is fairly predictable based on historical data and hence

back-room staffing is pre-processed and is available before the allocation of

doctors to the front room.

The design of the strategies (shown in Figure 5.3) aims to achieve these

objectives: to be able to react to demand changes, and to meet the target
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Figure 5.3: Resource allocation strategies

service level. We group the strategies into proactive strategies and dynamic

strategies in one dimension; and into constraint satisfaction and optimization

in a second dimension. The proactive strategies are those which are planned

in advance by the hospital and do not change during real-life execution of the

ED process. The dynamic strategies make use of real-time information about

a patient’s arrival and produce staffing requirements that change according

to demand observed in the ED. The strategies used to address the constraint

satisfaction problems use the staffing rule to find the staffing requirements, and

the optimization strategies use a local search heuristic to find a schedule with

the least violation of the service level. The HIST strategy is to be used as the

benchmark for comparison. The HIST-OPT strategy aims to satisfy the aim

of meeting the target service level. The DYN strategy is a simple way to react

to demand changes. However, we notice that it is too reactive (planning every

hour) and may cause the ED to be too nervous. We then have DYN-OPT

whose objective is to perform short-term planning over a time horizon (e.g.,

eight hours) while retaining the ability to react to demand. In DYN-OPT,

a symbiotic simulation system is required to be implemented to generate the
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short-term doctors’ schedule.

5.5.1 Constraint Satisfaction Strategies

Proactive Strategy HIST

This strategy considers resource allocation using historical trends taken from

the actual data for patient arrivals from a real-world hospital. Using this

data, we applied the Erlang-R method [58] for the front-room model. We

first estimated the requirements in the back room, then solved the ordinary

differential equations (Equation 5.3) and applied the square-root staffing rule

(Equation 5.2) using numerical approximation for the front-room requirements.

The front-room staffing was subject to the back-room service level guarantee

in Equation 5.4 and physical front-room constraints in Equation 5.5. Without

the back room and physical constraints, this was proven to provide a stable

queue wait-time (not LOS) over time as shown in Yom-Tov [58]. However,

with the addition of the constraints, where the number of doctors that could

be assigned to the front room might be less than the output from the staffing

rule, the wait-time stability could no longer be guaranteed. This provides the

opportunity to develop better strategies, as shown below.

Dynamic Strategy DYN

This strategy considers dynamic resource allocation using real-time data. With

the support of enterprise systems and real-time monitoring devices, it is possi-

ble to track the time-varying arrival rates in real time. With these arrival rates,

we can then calculate the actual time-varying offered load based on Equation

5.3 for the previous time intervals. One challenge to applying this method is

that the arrival rates must be recorded in a significantly large time frame, such

as hourly. However, to approximate the offered loads, one must use a small

time interval such as a per-minute time frame in order to compute reasonably

sensible offered load for the next time period.

The DYN strategy is designed to be reactive to real-time observation of
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arrivals and perform short-term forecasts (such as on an hourly basis). Let

R′

1(t) and R′

2(t) be the real-time offered load based on actual real-time arrival

rates at time t. In this method, we use one reading of the historical arrival

rate as this is the only information we know about the arrival in time t + 1

at time t. We recognize that if the forecast is hourly, then we have at most a

one-hour delay in terms of reacting to the demand changes. The algorithm for

DYN is as shown in Table 5.2:

DYN Algorithm
01. Use the actual arrival rate in the previous hour to calculate R′

1(t) and
R′

2(t) up to the minute before current time t.
02. Use the historical arrival rate for the next hour (t+1) to find the offered

load for each minute in the next hour.
03. Calculate the theoretical doctors’ requirements S ′

f(t+1) using the square-
root staffing rule (per Equation 5.2) based on the offered load for t+1.

04. Sf(t + 1)← min[S ′

f (t+ 1), Smax(t + 1)− Sb(t + 1), roommax]
05. Repeat steps 1 to 4 every hour in real time.

Table 5.2: The DYN Algorithm

5.5.2 Optimization Strategies

Both the HIST and DYN strategies rely heavily on the staffing rule. One major

limitation with the use of the staffing rule in our problem is that the only way

to satisfy the back-room quality constraint or physical front-room constraint

is to limit the number of doctors deployed in the front room to the minimum

of [Smax(t)−Sb(t+1), roommax]. This may cause violations to the service level

quality constraint though. To overcome this limitation and with intuition that

one could allocate more doctors in the previous hour(s) before any service level

violation, we propose our next two strategies – HIST-OPT and DYN-OPT –

which will use heuristic search methods to find optimized resource allocations.

Proactive Optimized Strategy HIST-OPT

The idea for the HIST-OPT strategy is to provide a pre-planned optimized

resource allocation by using historical data in case real-time arrival information
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is not available. We propose the use of a local search algorithm.

Let Cl be the cost of labor for deploying a doctor for a single unit of time t

and Cd be the deviation cost factor when the number doctors in time t deviates

from t−1. The deviation cost is included in the model because we do not wish

to have a schedule where the number of doctors changes too frequently from

hour to hour. In real life, when a doctor comes to work in the front room

or when he is removed from the back room, he will incur a set-up cost and

lose some productivity. Hence we factor in the deviation cost to minimize

hour-to-hour changes in the doctors’ schedule.

We have the following objective function:

min Cl

∑

t

Sf(t) + Cd

∑

t

[Sf (t)− Sf(t− 1)]2 (5.7)

subject to constraints (5.6) to (5.5) of the model. If no feasible solution is

found, the solution with the least violation is returned.

Our local search algorithm is as shown in Table 5.3. Note that a simulator

has to be used to evaluate each schedule that we try in the search algorithm.

We will see later that this simulator is also our symbiotic simulation system.

In practice, if a hospital does not choose a dynamic optimized strategy, the

simulator used in HIST-OPT can be implemented as a normal discrete-event

simulator without any interaction with the physical systems.

Dynamic Optimized Strategy DYN-OPT

DYN-OPT is the dynamic variant of HIST-OPT using real-time data. The

design of DYN-OPT attempts to address the limitations of DYN which has a

short planning time (hence being too nervous to react to changes every hour)

and HIST-OPT which is not unable to react to demand changes. The intuition

behind DYN-OPT is to make use of existing known real-time information as

well as the forecast of the future (of at least more than one hour) based on

historical information about the arrivals. The aim is to plan a number of hours

ahead such that resources in the ED can be better informed or additional
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HIST-OPT Algorithm
01. Using the HIST schedule, run the schedule in a simulator once with x

replications.
02. While a service level violation exists in the results or maximum number

of searches has not been reached
03. Find earliest time t where the service quality constraint is violated.
04. While violated
05. Find a time t1 nearest to t when (0 ≤ t1 ≤ t) when increase in the

resource will not violate constraints (5.4) and (5.5).
06. Increase the resource by 1 unit at t1.
07. If the solution removes the violation, select this solution.
08. Else,
09. Find a time t2 nearest to t when (t < t2 ≤ length of simulation) when

increase in the resource will not violate constraints (5.4) and (5.5).
10. Increase the resources by 1 unit at t2.
11. If the solution removes the violation, select this solution.
12. endElse.
13. If none of the two solutions remove the violation, select the solution

with the lower cost.
14. endWhile.
15. endWhile.
16. Return the first schedule without a violation or an infeasible schedule with

the least violation.

Table 5.3: The HIST-OPT Algorithm

resources can be better arranged.

We define a vector (L,H), where L denotes the lead time and H denotes

the time horizon. Between the current time t and lead time L, there will be

no change in staffing. This is to cater for the case when the ED cannot add

or remove a doctor instantaneously from the ED. The variable H defines the

horizon of re-planning based on what is known currently (e.g., plan for the

horizon of eight hours). The next planning period is then t+H .

Our optimization model becomes:

min Cl

t+L+H
∑

t=t+L

S(t) + Cd

t+L+H
∑

t=t+L

[S(t)− S(t− 1)]2 (5.8)

The DYN-OPT algorithm is as shown in Table 5.4. Again, in the DYN-

OPT algorithm, a simulator is used to evaluate each schedule that we tried
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in the search algorithm. As DYN-OPT’s optimization is done using real-time

data, a symbiotic simulation system is required to support this algorithm. We

show the design in the next section.

DYN-OPT Algorithm
01. Use the actual arrival rate of previous hours to calculate R′

1(t) and R′

2(t)
up to the minute before current time t.

02. Use the historical arrival rates for hours (t+L) to (t+L+H) to find the
offered loads for each of the hours in planning horizon.

03. Calculate the theoretical doctors requirements for the planning horizon us-
ing the square-root staffing rule subject to back room quality and physical
constraints.

04. Run the schedule once with x replications.
05. For the hours from t + L+H
06. While a service level violation exists in the results or maximum number

of searches has not been reached
07. Find time t’ (t+L ≤ t′ ≤ t+L+H) when the service quality constraint

is violated.
08. While violated
09. Find a time t1 nearest to t′ when (t + L ≤ t1 ≤ t′) when increase in

the resource will not violate constraints (5.4) and (5.5).
10. Increase the resource by 1 unit at t1.
11. If the solution removes the violation, select this solution.
12. Else,
13. Find a time t2 nearest to t when (t < t2 ≤ t + L+H) when increase

in the resource will not violate constraints (5.4) and (5.5).
14. Increase the resource by 1 unit at t2.
15. If the solution removes the violation, select this solution.
16. endElse.
17. If none of the two solutions remove the violation, select the solution

with the lower cost.
18. endWhile.
19. endWhile.
20. endFor.
21. Return the first schedule without a violation or an infeasible schedule with

the least violation.

Table 5.4: The DYN-OPT Algorithm

5.6 Implementation Design

We present a design of a possible implementation of Dynamic Queue Manage-

ment (DQM) as a system. We assume that this system is capable of receiving
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both historical data and real-time data from the physical systems as shown

in Figure 5.4. Examples of physical systems are the Patient Care System,

Laboratory System, X-Ray System and Enterprise Resource Planning (ERP)

system (see Figure 4.2). Data from the physical systems can be extracted from

the databases and be analyzed to form the ED’s historical process data such as

the time-varying arrival rates, service rates of various activities (consultation

for new patient and re-entrants, various investigative tests and treatments) in

the process and the probability of re-entrants. Experts’ inputs on the process

sequence are also collected to model the ED process and derive our queuing

model.

Figure 5.4: Implementation design of DQM

In terms of implementation complexity, HIST requires only historical data,

while DYN also requires real-time data. HIST-OPT requires historical data

and the optimization model, while DYN-OPT requires historical, real-time

data and the symbiotic simulator.

We built a prototype of DQM as a discrete-event simulator using Java (see

Figure 5.5). The decision-maker selects a desired strategy as an input to the
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prototype. In our prototype, the discrete-event simulator simulates the ED

process of patients’ arrival, queuing, consultation with doctor, investigative

tests and treatments. This is to emulate the real-life interactions with the

hospital’s physical systems where information about the patients’ arrival, time

of consultation, investigative tests and treatments can be received. The DQM

prototype reads the historical process data and doctors’ schedule from external

files. The doctors’ schedule is used to determine the hourly number of available

doctors in HIST and HIST-OPT strategies. These schedules are generated

before the simulation runs. In an actual deployment, we can expect a physical

system such as the ERP to store and provide the doctors’ schedule.

Figure 5.5: The DQM prototype

The core component of the DQM prototype is the strategies implementa-

tion. This component comprises of computations, an optimization model and

a symbiotic simulator. The computations component implements the logic of
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calculating the number of doctors required for dynamic strategies. The opti-

mization model implements the algorithms for HIST-OPT and DYN-OPT as

specified in Table 5.3 and 5.4. The symbiotic simulator is a symbiotic simula-

tion system [16] that evaluates the performance of staffing schedules produced

by the optimization model by interacting with the simulated ED process (emu-

lating real-life interactions with physical systems). For more details about the

design of a symbiotic simulation system, the reader may refer to Low et al. [29].

Our DQM prototype then collects and reports the performance measurements

of each of the strategies.

5.7 Experimental Evaluation

5.7.1 Experimental Setup

Similar to the previous chapter, we set up our experiments using six months’

data from the selected local hospital. Each experiment was run over 100 repli-

cations and the result was an average of the replications. In each optimization

for HIST-OPT and DYN-OPT, 50 replications were used in the symbiotic simu-

lator and the average was taken to evaluate the solution. The maximum search

iteration was set to 300. In DYN-OPT, the lead time was set to 0 (to plan

for the next hour) and the planning horizon was set to 8 hours. We derived

the parameters λb(t), λf(t), µ, δ and b from historical data using a commercial

business analytics software, SAS. The time-varying arrival rates (λb(t), λf (t))

were recorded over a week, and each day had its own time-varying arrival rates

that changed every hour, which we refer to as the historical arrival rates (Fig-

ure 2.4). The probability of re-entrance b was 0.4. The average service rate

of doctors µ was 4 per hour. The QED service parameter β was set to 0.5,

one of the values which yields more stable expected wait for small systems

(which is similar to our context) [58] and minimizes over-buffering of doctors.

The registration and triage service times were assumed to be exponentially

distributed with a mean of 14.2 minutes. The hospital’s desired service qual-

ity, LOSmax was set to 60 minutes. The hourly back-room requirements were
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pre-determined by the hospital and were fed into the simulator as inputs.

For each set of experiments (for all strategies), a simulation over 9 days

was executed and the first and last days were discarded in order to remove

inaccurate results from the simulation start-up and completion. The remaining

7 days represented the 7 days of the week with different patterns of arrivals

as observed in real life. To simulate various real-life scenarios, we ran the

experiments under three conditions: normal, low and high load. The normal

load condition assumes the arrival rates to be exactly the same as historical

rates. In the low load condition, the arrival rates on Thursdays, Fridays,

Saturdays and Sundays are halved. In the high load condition, the arrival

rates of the same affected days are doubled.

5.7.2 Experimental Results

The first experiment was to compare HIST and DYN (which use the staffing

rule) to illustrate the value of real time information. As shown in Figure 5.6,

we observe that DYN is capable of reacting to surges. The doctor staffing

schedule generated by DYN was able to keep the average LOS stable under

the conditions of low and normal loads. Although the average LOS was higher

under the high load condition, the doctors’ schedule generated by DYN allowed

the queue to clear. In the case of HIST, if the load was high, the average LOS

remained higher than the desired service quality over the period of demand

surges (Thursday to Sunday).
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(b) Average LOS using DYN staffing under 3 load conditions

Figure 5.6: Results of varying demand for the strategies using staffing rule

Table 5.5 (and its pictorial representation in Figure 5.7) shows the average

number of doctor hours required in a week under the given strategy and de-

mand conditions. Under the high-load condition, the percentage increase in the

number of doctors was only about 9%. However, if the demand dropped, the

number of doctors required dropped by 22%. We feel that the HIST method

led to slight over-staffing. Supposed that an ED, over time, has an equal prob-

ability of experiencing high, normal or low loads, then the average cost of using

a dynamic strategy (computed to be an average of 650 doctor hours) was lower

than that of a static one at 681 doctor hours based on historical data.
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Normal High Low
HIST 681 681 681
DYN 678 743 530

% Change -0.4 9 -22

Table 5.5: Comparison of number of doctor hours required per week between
the HIST and DYN strategies

Figure 5.7: Number of doctors required

We can see that the staffing rule provided reasonably good solutions. How-

ever, neither HIST nor DYN guarantee that the solution can satisfy the service

level constraint given in Equation 5.6. We provide an example of use of the

optimization model in DQM to find a solution that satisfies the service level

constraint. Figure 5.8 shows an instance of a simulation evaluation when the

ED can achieve a performance within the desired service level using an op-

timization model such as HIST-OPT. This is observable under normal- and

low-load conditions. The HIST-OPT strategy requires an additional increase

of only eight doctor hours per week compared to HIST. However, we need

to understand that this performance is not guaranteed because some patients

may require more time to be monitored and be treated with quality care in

a real-life situation. The results in this figure also show that HIST-OPT is a

static method and is not able to react to high-load conditions.

The results from DYN-OPT provide interesting insights. We found that

DYN-OPT can react to surges but its performance is limited by the length of

its planning horizon. Figures 5.9(a) and 5.9(b) show the results of DYN-OPT
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Figure 5.8: Performance of HIST-OPT under three load conditions

versus the optimized counterpart of HIST-OPT and the dynamic counterpart

of DYN under the high-load condition. We found that DYN-OPT performs

better than HIST-OPT as it can better respond to surges in demand. On the

other hand, as the planning horizon uses the historical arrival rates (but the

actual arrival rates are higher), the performance degrades over this horizon.

From the DYN-OPT curve in either of the figures, we can see that at every

x-axis tick (which is the eight-hourly DYN-OPT’s horizon), there is a drop

in the average LOS at the start of each horizon. This is because the method

will indicate that more doctors are required to serve the patients under the

unexpected high load. The entire horizon is then planned based on historical

arrivals which are only half of the actual arrivals. As such, the queue builds

up again during this period when there is no resource planning until the next

horizon. DYN-OPT is able to react to demand surges by lowering the LOS at

the start of each horizon, and we see that strategy DYN is better at handling

surges. This is because DYN has the opportunity to adjust the resources

every hour. However, one may find DYN to be a strategy that is too reactive

and so the hospital may not be able to find doctors at short notice. We see

more opportunity to further improve the DYN-OPT strategy or investigate

how the DYN-OPT parameters, such as the horizon, can affect or improve the
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Figure 5.9: Results of DYN-OPT against its optimized and dynamic counter-
parts

performance. DYN-OPT is potentially a good short-term planning strategy.

As we recognize through the DYN and HIST-OPT strategies though, there are

benefits in using real-time information and an optimization method.

5.8 Management Insights for Decision-Makers

The advantages and disadvantages of our strategies are shown in Figure 5.10.

Among the four strategies for resource adjustment, we found that there were
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two major trade-offs. We show the trade-offs in Figures 5.11(a) and 5.11(b).

The arrows on the figures indicate the directions that a decision-maker may

like to take. For stability, we should try to achieve high performance and high

stability. For implementation complexity though, we should try to achieve high

performance with low implementation complexity. On the other dimension, we

want the strategies to be able to respond to demand surges. We summarize

this in Figure 5.12. In this figure, we know that HIST is not able to respond to

surges. HIST-OPT is also unable to react but it is slightly better because the

HIST-OPT schedule contains more staff (doctors) than HIST. Hence, there is

a higher buffer to serve the patient if there is an increase in demand. DYN is

on the other extreme. DYN-OPT is a good balance and its ability to react to

surges is dependent on the length of the planning horizon.

Figure 5.10: Summary of pros and cons of the four supply-side strategies
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(a) Trade-off between performance and schedule stability

(b) Trade-off between performance and implementation complex-
ity

Figure 5.11: Supply-side strategy matrices for decision-maker on strategy se-
lection

Figure 5.12: Ability to react to demand surges for various strategies
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5.9 Chapter Summary

In this chapter, we showed strategies for resource allocation in the front room

of the ED. We proposed proactive strategies (with and without optimization)

and dynamic strategies, while maintaining the service quality in the back room.

We found in our experiments that our methods yielded better average length-

of-stay for all patients compared to a typical method that purely uses historical

data and the staffing rule (HIST). Since real-time data is easily accessible, the

benefit of incorporating symbiotic simulation to optimize resource allocation

in a dynamic situation is valuable. We implemented a prototype with the

use of symbiotic simulation via the DYN-OPT strategy. With the advances

in enterprise systems that enable the real-time movements of patients to be

tracked, data can be fed quickly into a real-time simulator such as our symbiotic

simulator. So a dynamic resource allocation is implementable. Although it

has a higher requirement for doctors than the non-optimized strategies, it

yields significant benefits in reducing the LOS of patients for various arrival

conditions. The other strategies that we proposed provide alternatives for

hospital decision-makers to select other effective methods that do not require

symbiotic simulation (DYN) or pre-planned optimized schedule (HIST-OPT).
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Chapter 6

The Integrated Dynamic Queue

Management Framework

This chapter offers an integrated framework to manage queues dynamically in

the ED from both the demand and supply perspectives by deploying intelligent

dynamic patient-prioritization strategies and dynamic resource-adjustment strate-

gies developed in the previous two chapters (Figure 6.1). We explore the effects

of such integration on the performance of the various combinations of demand-

side and supply-side strategies.
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Figure 6.1: Deploying dynamic patient-prioritization and dynamic resource-
adjustment strategies to ED process.
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6.1 The Dynamic Queue Management Frame-

work

There are three main components in the framework, namely Live System and

Data, Analytical Model and Decision-Support Model. A diagram illustrating

the contents of the three components is shown in Figure 6.2.

Figure 6.2: The Integrated Dynamic Queue Management Framework

In this framework, we unify the demand-side and supply-side queue mod-

els. Referring to Table 6.1, the integrated model now considers demand in

the critical-care area. It has the ability to incorporate demand-side dynamic

priority (or the decision-maker can also choose FIFO) in the patient queue dis-
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cipline. It uses a set of exponential distributions with corresponding probabili-

ties of occurrence for the service rates of doctors. And it has a varying number

of doctors for different hours of the day and days of the week. The service rates

of investigative tests and treatment remain the same as the supply-side model

because we approximate the set of exponential distributions using a single ex-

ponential distribution and our initial experiments showed that there were no

significant differences in the results. In order to ensure that the analytical and

simulation models remain valid with these parameters, we will show how we

can make use of the properties of the exponential distributions to estimate a

single service rate of the doctor and a single service rate of tests and treatment

so they can be used in the calculation of the staffing requirements.

Demand-side Supply-side Integrated model
model model

Back room No Yes Yes
considerations
Queue Dynamic- FIFO FIFO and Dynamic-
discipline priority priority
Service rates Set Single Set
of doctors (µ)
Service rates Set Single Single
of tests and treatments(δ)
Hourly number Constant Varying Varying
of doctors

Table 6.1: Unifying demand-side and supply-side queue models into integrated
model

6.1.1 Live Systems and Data

This consists of the various information technology (IT) physical systems and

databases that support the live operations of the ED and its supporting depart-

ments. For example, the ED processes interact with processes in laboratory

(e.g., blood tests) and X-ray departments. The processes in laboratory and

X-ray departments use the Laboratory System and X-ray System respectively.

The Laboratory System contains the blood test results and the X-ray System

contains X-ray test results of a patient who has undergone each test. The live
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systems provide data that serve as the input to the analytical model and the

decision-support model. An example of the live systems supporting the ED

process is shown in Figure 4.2.

6.1.2 Analytical Model

We build our initial process models and queuing models based on historical

data from the live systems. The components in the analytical model are:

• Analytics (on historical data): A set of actions performed on historical

data using commercial business analytics software (such as SAS). His-

torical data represents a snapshot of the live data at the point when it

is taken. Output is Historical Process Data.

• Historical Process Data: ED process parameters such as time-varying

arrival rates, service rates of triage, service rates of doctors, service rates

of investigative tests and treatment, and probability of re-entrance.

• Process Models: Depict the real-life processes of the ED. An example of

a simplified process flow is as in Figure 2.2.

The Analytical Model provides a set of outputs (reflected as Input Set A

in Figure 6.2) that are required by the Dynamic Queue Management module

in order to carry out decision-support functions. This set of outputs consists

of:

• λb(t) - Time-varying arrival rate of new patients in the back room. Each

λb(t) is defined per hour over a week’s horizon.

• λf(t) - Time-varying arrival rates of new patients in the ambulatory area.

Each λf (t) is defined per hour over a week’s horizon.

• µb - Service rate of the doctors in the back room.

• µn - Service rate of the doctors for new patients. We assume a homoge-

neous service rate for all doctors.
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• µr - Service rate of the doctors if the patient is a re-entrant. The review

consultation time consists of a set of four exponential distributions with

corresponding probability of occurrence. A patient with clean test results

usually takes a shorter duration compared to a patient with complex test

results.

• δ - Service rate for investigative tests or treatment, assumed to be a set

of exponential distributions with corresponding probability occurrence.

This can be simplified to a single exponential distribution using an esti-

mate.

• b - Probability of re-entrance.

6.1.3 Decision-Support Model

The main component of the decision-support model is the Dynamic Queue

Management (DQM) module. We enhanced this module (from the supply-

side implementation) to also handle the demand-side dynamic priority queuing

strategies. Hence, in our prototype, DQM can now generate plans on the sup-

ply of doctors based on the selected supply-side strategy and also dynamically

prioritize patients in the patient queue with selected demand-side prioritization

strategies. We mimic the real world by having the DQM prototype contain a

discrete-event simulator that generates events such as patient arrivals, distribu-

tions of registration, triage, consultation, treatment and investigative tests. As

mentioned, DQM contains an optimization model and a symbiotic simulation

system (named as the symbiotic simulator).

A decision-maker makes decisions to select the dynamic queue-prioritization

parameters and the dynamic resource-adjustment parameters. Strategies selec-

tion, associated parameters and real-time data are fed into DQM collectively.

DQM generates output (e.g., which patient to serve next, how many doctors

are required) and the information is fed back into the live systems for real-

time execution. On the supply side, if the decision-maker chooses the HIST-

OPT or DYN-OPT strategy, the optimization model will be used to perform

the schedule optimization. If the supply-side strategy DYN-OPT is selected,
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the symbiotic simulator is used in real time to perform optimization for the

specified planning horizon during the course of simulation. If HIST-OPT is

selected, the symbiotic simulator is used as a pre-processing tool to obtain the

optimized doctors’ schedule. For the purpose of evaluating the HIST-OPT

schedule, DQM is used for the second time to obtain the performance.

DQM receives real-time data (as reflected as Input Set B in Figure 6.2)

from the live systems to support the demand and supply strategies. Input Set

B requires the real-time time-varying arrival rates of new patients λ′

f (t) in the

ambulatory area.

In DQM, the symbiotic simulator is used to evaluate which doctors’ sched-

ule is to be used for the planning horizon such that there is either no LOS

violation or the least violation. We use the concept of a snapshot. A snapshot

contains the current queue conditions, doctor availability, patients’ statuses

and the realized arrival rates. At the start of each planning period, a snapshot

is taken and is used with the historical arrival rates for the planning horizon. A

heuristic local search algorithm is then applied to find the best schedule. When

the schedule has been found, the snapshot is restored and the best schedule is

used in the DQM as the schedule for the next horizon.

A decision-maker must provide two sets of parameters (as reflected as Input

Set C and D in Figure 6.2) to allow DQM to work.

The decision-maker must provide the following parameters (as reflected

as Input Set C in Figure 6.2) to the demand-side dynamic patient queue-

prioritization configuration. Input Set C contains:

• Si - Dynamic patient-prioritization strategy where i is the selected strat-

egy type.

• LOSmax - Hospital’s desired service quality in terms of LOS.

Input Set D contains:

• Xj: Resource-adjustment policy j.

• LOSmax: Hospital’s desired service quality in terms of LOS. This should

be consistent with the value set in Input Set C.
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• roommax: Physical constraints in the ED’s ambulatory area, which cor-

respond with the maximum number of consultation rooms in the real-life

set up of the ED.

• Smax(t): Maximum number of doctors that can be deployed in the ED

(both areas of the ED combined) at time t.

• Cl: Cost of labor for deploying a doctor for a single unit of time t.

• Cd: Cost of deviation per doctor. This is applicable when the number

doctors at time t is different from the number of doctors at time t− 1.

• L: Lead time for dynamic planning.

• H : Time horizon for dynamic planning.

6.2 Implementation Design

In a real-life implementation, the discrete-event simulator of the DQM proto-

type should be replaced and implemented as a physical system that interacts

with the optimization model and the symbiotic simulator. Hence, we propose

a design of the Dynamic Queue Management System (DQMS) with symbiotic

simulation to support implementation of the DQM strategies, the entire suite

of demand-side and supply-side strategies. An example of a possible design

is presented in Figure 6.3. In this figure, we show how various systems can

be responsible for feeding the DQMS with the information that it requires to

enable the proposed strategies to be executed in real time. The outputs of

the DQMS are (1) the next patient to serve, and (2) the short-term dynamic

doctors’ schedule. Each of the outputs is fed back into the system supporting

the parts of the ED process.
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Figure 6.3: An example of implementation design

6.3 Experimental Evaluation

For evaluation of how the various demand-side and supply-side strategies work

together, we used the DQM prototype as shown in Figure 5.5. We implemented

the three demand-side strategies (SCON, SREM and MIXED) as part of the

computations component of the prototype. We also allowed the decision-maker

to make selections of the demand-side and supply-side strategies.

6.3.1 Experimental Setup

Similar to previous experiments, our experiments were run using six months’

data from the selected hospital. Each experiment was run over 100 replications

and the results were averaged over the replications. As for HIST-OPT and

DYN-OPT, which require the symbiotic simulation system, each symbiotic

simulation was run over 50 replications and the average was taken over the

symbiotic simulation replications. The maximum search iteration was set to

300. In DYN-OPT, the lead time was set to 0 (plan for next hour) and the

86



planning horizon was set to eight hours.

In order to verify that our simulator was sufficiently close to real-world

performance, we used a FIFO patient queue and a static doctors’ schedule in

a verification experiment. The outcome of the experiment showed that the

differences in the means and standard deviations of the actual hospital data

and the results from the DQM simulator were less than 5% and 10%. The

ranges of LOS (minimum and maximum) were also consistent. We conclude

that the results from DQM simulator are representative of the performance of

the ED process.

For each set of experiments (for all strategies), a simulation over nine days

was run, and the first and last days were discarded in order to remove inac-

curate results from simulation start-up and completion. The remaining seven

days represent the seven days of the week with time-varying arrivals, as ob-

served in real life. Through the Analytical Model, the probability of re-entrance

b was found to be 0.4. The average service rate of doctors for new patients,

µn, was four per hour. The review consultation time consisted of a set of

four exponential distributions with corresponding probabilities of occurrence

as shown in Table 4.2. The registration and triage service times were exponen-

tially distributed with a mean of 14.2 minutes. The hospital’s desired service

quality, LOSmax was set to 60 minutes.

6.3.2 Service Rates Estimates for Staffing Requirement

Calculations

Although the service rate of the consultation station is represented by a set

of exponential distributions with associated probabilities in the experiments,

the staffing requirement calculations require a single service rate. The set of

exponential distributions yield a hyperexponential distribution. Statistically,

we know that the mean of this distribution is equal to the weighted average of

the means of the underlying set of exponential distributions. Experimentally,

we found from our dataset that, with the inclusion of the service rate for new

patients µn, the resulting hyperexponential distribution could be approximated
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closely by an exponential distribution whose mean was equal to the mean of the

hyperexponential distribution. The evidence (see Figure 6.4) is derived from an

experiment that simulates the service times provided by both the approximated

exponential distribution and the service rates represented by the original set

of exponential distributions. As such, the staffing requirements for HIST and

DYN in our experiment can be computed by solving the ordinary differential

equations in Equation 5.3 using the mean of the resulting hyperexponential

distribution as the single service rate µ. Using a similar estimation method,

the rate of investigative tests (δ) is computed and can be set to 2.3 per hour

for the supply-side staffing requirements calculations.

Figure 6.4: Approximation of hyperexponential distribution with exponential
distribution.

6.3.3 Statistical Test Setup

In most cases, we charted the results on the graphs so that we could visually

see which strategy was better. However, in some cases, the results were very

similar, hence further steps were required to rank the strategies. We needed a

statistical method to compare the result sets. The purpose of a statistical test

was to compare the two sets of data to provide evidence of whether they were

significantly different. This was used for the what-if analysis. For example,

a decision-maker wants to evaluate two choices: (A) a MIXED strategy on

the demand side and a DYN strategy on the supply side, or (B) an SREM
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strategy on the demand side and a DYN strategy on the supply side. Since

the supply-side strategy remains constant (DYN), we are effectively comparing

two demand-side strategies: S1 MIXED and S2 SREM.

Our hypotheses are as follows:

• Null Hypothesis (H0): Strategy S2 has no improvement over Strategy

S1.

• Alternative Hypothesis (H1): Strategy S2 has a significant improvement

over Strategy S1.

In our attempt to select a suitable statistical test, we evaluated the dis-

tribution of the differences for the two strategy selections. We found that

the differences did not follow any distribution. As such, we rejected any of

the parametric tests such as the Student’s t-test and ANOVA, which assume

the differences must follow normal distribution. The Kruskal-Wallis test does

not assume that the data is normally distributed but it does assume that the

observations in each group come from populations with the same shape of

distribution. This is again not suitable for our case.

We selected the Wilcoxon Signed-Rank test because it is a non-parametric

test which does not assume that the differences must be normal or difference

samples must be from the same distribution. We determine whether we reject

H0 by the computation of the p-value. If the p-value is lower than 0.05, we

can conclude that the null hypothesis does not hold (i.e., S2 is better than S1).

Using this method, we presented statistically-proven rankings of the various

strategies so that a decision-maker can make informed decisions about the

demand-side and supply-side strategy pairs that he/she would take.

6.3.4 Experimental Results

Two sets of experiments were set up. First, we simulated the real-life situation

when each hour had a maximum number of doctors that could be deployed.

That means, Smax(t) varies hourly. This experiment allowed us to show the
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effects of the demand-side strategies on the supply-side strategies. We show in

Figure 6.5 the results for HIST and DYN as a representation of the static and

dynamic supply-side strategies.
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(b) Average LOS using DYN staffing

Figure 6.5: Results of using demand-side strategies with a selected supply-side
strategy.

We can see that the demand-side strategies (SCON, SREM, MIXED) have

similar performances to FIFO in the HIST and DYN supply-side strategies.

One reason for similar performance is that all the supply-side strategies per-

formed well. This is a consistent observation when evaluating the demand-side

strategies. When the ED is not as crowded, the improvements provided by
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the demand-side strategies are not as great compared to FIFO. Although all

the strategies (including FIFO) performed well, we discovered from Wilcoxon

Signed-Rank tests that the SCON, SREM and MIXED strategies still pro-

vide significant improvements over FIFO in HIST and DYN experiments. We

present the outcome of Wilcoxon Signed-Rank tests in Figure 6.6. For sim-

plicity, we use a tick to represent values less than 0.05 and a circle otherwise.

Figure 6.6: The results of Wilcoxon Signed-Rank test.

Our second set of experiments aimed to determine how the supply-side

strategies are useful in working together with the demand-side strategies. We

now allow the ED to increase or decrease doctors to adapt to demand changes

as long as the number of doctors at any time t is still below the physical

constraints of the ED. The physical constraint roommax in this case is set

to five. To test the demand changes, we provided the DQM prototype with

three different types of arrival rates: high, normal and low. In the case of a

high load, the arrival rates were doubled for Thursdays, Fridays, Saturdays

and Sundays. Likewise for the low load, the arrival rates were halved for the

same days of the week. Using HIST and DYN as representations of static and

dynamic strategies, Figure 6.7 shows how HIST and DYN perform under each

demand-side strategy and with high-, normal- or low-load conditions.
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Figure 6.7: Results of using supply-side strategies with a selected demand-side
strategy.
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As we can see from Figure 6.7(a)-(c), the dynamic method DYN did better

with demand surges when compared to HIST. This came with the price of a

slight increase in the number of doctor hours deployed at the ED (in a week) to

handle the additional load. This is shown in Figure 6.8. The more interesting

result is that the corresponding decrease in demand in fact yielded a larger

decrease in the number of doctor hours to be deployed, yet the performance

is similar to that of HIST which is over-staffed under normal- and low-load

conditions. Hence, we conclude that use of a dynamic staffing method is effec-

tive in its ability to cope with demand surges and also reduces the amount of

doctor effort when the demand is low.

Figure 6.8: The number of doctor hours required for deployment in a week

6.3.5 Sensitivity analysis of parameters in patient-prioritization

functions

The next set of experiments we carried out was the sensitivity analysis of the

parameters ρ1 and ρ2 of the demand-side patient-prioritization functions in

Equations 4.1 and 4.2. More interestingly, we wanted to evaluate if the results

of the MIXED strategy (comprising both SCON and SREM functions) were

sensitive to the parameters. As the results were very similar, we used Wilcoxon

Signed-Rank tests to test significant differences. The set of values used to set

the parameters is (1, 5, 20, 100).

The hypotheses are modified slightly and are set up as follows:
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• Null Hypothesis (H0): S1 parameter has no significant improvement over

S2 parameter in the same strategy.

• Alternative Hypothesis (H1): S1 parameter has a significant improve-

ment over S2 parameter in the same strategy.

The first set of results showed the outcome of changing a single parameter,

e.g., ρ1 or ρ2 in each of the individual strategies. For example, in SCON, we

evaluated if the results were significantly different when we changed the value

of ρ1. Similarly, we did this for SREM. We ran tests by varying the parameters

for HIST strategy as the proactive representative of the supply-side strategy.

The results of the Wilcoxon Signed-Ranked tests were shown in Figure 6.9.

The symbol ρ shown in the table simply means either ρ1 or ρ2 depending on

whether it was for SCON or SREM. The same test for DYN was also done

and tabulated in Figure 6.10 for SCON and SREM. For simplicity, we used a

tick to represent the situation when the null hypothesis H0 was rejected, i.e.,

there was a significant difference. We can see from both the diagrams that

in most cases, there was no significant difference when varying the patient-

prioritization parameters.

Figure 6.9: Sensitivity test of parameters in SCON and SREM for the HIST
strategy

Figure 6.10: Sensitivity test of parameters in SCON and SREM for the DYN
strategy

In our investigation of the effects on the MIXED strategy, we used a single

value of ρ1 (e.g., ρ1 = 1) and varied the value of ρ2 (ρ2 = 1, 5, 20, 100). We
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compared the results against the case when we set ρ1 = 1 and ρ2 = 1, as these

were the values we used for all of our other experiments. We used the DYN

strategy as the representative supply-side strategy. Wilcoxon Signed-Rank

tests were used to establish if the results of using different parameters yielded

results which would be significantly different. The results were shown in Figure

6.11. We concluded that the changes in parameters in each contributing strat-

egy produced no significant difference in the results of the MIXED strategy.

The results of the demand-side strategies were not sensitive to the parameters

of the patient-prioritization functions.

Figure 6.11: Sensitivity test of parameter ρ1 in the MIXED strategy

6.3.6 Sensitivity analysis of performance metric

In our next sensitivity analysis, we aimed to investigate if the other measure-

ments such as the 90th percentile of the hourly LOS (instead of average LOS)

might give a different conclusion to the performances of the various strategies.

Supposing we could deploy as many doctors as the physical capacity of the

front room allowed, we ran experiments to output the various performance

metrics – 90th percentile, 80th percentile, 70th percentile and average LOS.

Using the MIXED strategy on the demand side and HIST and DYN on the
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supply side (HIST to represent a proactive strategy and DYN to represent a

dynamic strategy), we show the results in Figures 6.12(a) and 6.12(b).

(a) Performance of HIST with different metrics

(b) Performance of DYN with different metrics

Figure 6.12: Results of HIST and DYN as measured by different performance
metrics

From the figures, we observed that the different percentile measurements

were different scales of average LOS. We plotted a graph (Figure 6.13) based on

the 90th percentile measurement when subjected to different demand conditions

(high load, normal load and low load) for the MIXED strategy on the demand-

side and HIST and DYN strategies on supply side. We observed that the

patterns from using other measurements were consistent with the case when we
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plotted using average LOS. With this, we noticed that the conclusions drawn

about the performance of the various strategies were consistent whether we

used the average LOS or the 90th percentile measurements.
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Figure 6.13: Performance of the MIXED strategy with HIST and DYN strate-
gies as measured by 90th percentile LOS

6.3.7 Sensitivity analysis of randomness

To minimize the effects due to randomness on the results of the simulation

runs, besides the 100 replications (and 50 replications for each symbiotic sim-

ulations) used in each simulation run, we further investigated if multiple runs

of the simulation (of 100 replications each) would yield the same conclusion.

In this test, we set the demand-side strategy to the MIXED strategy and we

investigated how HIST and DYN responded to various demand conditions. For

each of the supply-side strategies (HIST and DYN) and each demand condi-

tion, we ran the simulation 10 times. For each simulation run, we collected

the average LOS for each hour. We took an average for each hour for the 10

simulation runs. The results of this test are plotted in Figure 6.14. We ob-

served the same pattern as that observed when using a single simulation run

as reported in Figure 6.7(c). For example, the DYN strategy was able to cope

with demand surges as compared to the HIST strategy. We also determined if
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the two sets of results have any significant difference for each demand condi-

tions with the use of Wilcoxon Signed-Rank tests. We found that there was no

statistically significant difference between the single simulation run and the av-

erage of 10 simulation runs. The results of the Wilcoxon Signed-Rank test are

shown in Figure 6.15. As such, we report that despite with some randomness,

the observations and conclusions drawn were consistent.
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Figure 6.14: Performance of the MIXED strategy on supply-side strategies
using average of 10 simulation runs

Figure 6.15: Results of Wilcoxon Signed-Rank tests to compare the perfor-
mances of a single simulation run and the average of 10 simulation runs

6.4 Visualization Tool for Decision-Makers

In order to help decision-makers visualize which combination of demand-side

and supply-side strategies performs best, we built a simulation-playback visu-

alization. The tool shows a playback of when the patients join the ED, when
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they go to consultation, undergo tests or treatment, and when they return to

the doctors and are discharged.

Many commercial simulation tools in the market offer an animated view of

the simulation while it is running. Unlike these, our visualization tool offers

the animated view only after a simulation is completed. This is because the

simulation is run so quickly that the execution of many strategies will only

occur in seconds. We need our simulator to perform quickly due to the large

number of replications, especially the supply-side strategy that requires opti-

mization in real time. Our simulation is run too fast to be visualized during

execution. As such, we enabled our simulation prototype to export all the

simulation events, the number of doctors for each simulation hour and the av-

erage LOS for each simulation hour. We then presented the playback using a

custom-made visualizer built in Java. The design is shown in Figure 6.16 and

an example of the visualizer is shown in Figure 6.17.

Figure 6.16: Design of Visualization Tool

In our design, the integrated DQM simulator exports the simulation events

into a file. The exported events file, the results (hourly LOS) from the simula-
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tion results, and the hourly doctor requirements are then fed into the visualizer

for a playback of what happened during the simulation.

As shown in Figure 6.17, each dot on the visualizer is a patient. If a patient

has waited past the target LOS, the dot is displayed in red, otherwise, it is

green. Although the current version of the visualization tool is simplistic, it

serves its purpose to provide validation for non-IT personnel (or healthcare

personnel) to see the effects on the ED of applying the strategies.

Figure 6.17: A snapshot of the visualization tool during a playback

6.5 Implementation Road Map

We provide an implementation road map as shown in Figure 6.18, to help

hospital planners and the IT team take the proposed strategies and framework

from design to implementation. The design of the road map is in increasing

order of implementation complexity.

In this road map, we recommend that a hospital should first analyze its

ED process and apply any best practices. An example can be found in Miller

et al. [36] where six sigma is applied to the ED process. Simulation is then

used to evaluate the performance. In real life, in the field of Business Process

Management, applying best practices to processes can also be done without the

use of simulation. The next step in the road map is to derive intelligence from

historical data. With the process model and historical data, we can observe

trends such as arrival rates, service rates of doctors, and service rates of tests
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Figure 6.18: A suggested implementation road map

and treatment. The supply-side strategy of the HIST staffing method can also

be applied and staffing requirements can be computed. Following this, we

suggest implementation of the optimization model in our proposed Dynamic

Queue Management System that reads the historical statistics and contains

the optimization model. With this, we can produce a HIST-OPT schedule.

Next we come to the more complex and higher risk part of the imple-

mentation. The next step is to be able to observe and understand real-time

information. To do this, arrival rates can be easily captured and computed.

It simply means the number of patients visiting the ED over a time period.

We may need to integrate the DQMS with an existing system that records the

patients’ registrations. Now, we can dynamically produce a DYN schedule.

The next step is a big leap. We suggest evaluating the hospital’s IT systems

and understanding where the pieces of information are stored that provide the

intelligence to estimate consultation time and to compute the remaining time

of a patient in the ED. This information is required to implement the demand-

side strategies to dynamically prioritize patients in the queue. Finally, the

hospital should also consider building a symbiotic simulator in the DQMS to

provide real-time optimization and evaluation of the doctors’ schedule based

on historical as well as real-time information.
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6.6 Chapter Summary

In this chapter, we presented an integrated framework for Dynamic Queue

Management from both demand and supply perspectives. From our experi-

mental analysis, we concluded that single-faceted queue management strate-

gies (either demand side or supply side) are not cost-effective or not sufficient

to provide a holistic approach to alleviate long length-of-stay in the ED. We

showed via simulation that our integrated framework can synergistically com-

bine intelligent dynamic patient queue-prioritization and dynamic resource-

adjustment strategies to yield improvements in providing quality services in

an ED. Our framework allows healthcare decision-makers to play a role in

achieving the target service quality and select from a list of possible strategies

that suit the operational needs of the ED. To reap the benefits of deploying the

strategies, healthcare decision-makers must make careful plans and selections

of the strategies. We provided a visualization tool and an implementation road

map to assist this effort.
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Chapter 7

Summary of Conclusion

7.1 Summary of Contribution

This dissertation makes valuable contributions to applied and interdisciplinary

healthcare research in many ways. In all our proposed models, we took special

care to go beyond standard theoretical queuing models and have our models

represent the real-life ED processes. We also provided validations at logical

points by comparing against real-life observed data. We then followed up

by implementing prototypes of the models and evaluated the various strate-

gies using simulations. The performances of the strategies were analyzed and

compared with one another. If performances were similar visually on graphs,

statistical hypothesis tests were used to further establish their significance dif-

ferences. The comparisons allowed us to derive interesting managerial insights.

In our first piece of work, we modeled the ED process in the ambulatory

area and showed that a hospital ED can improve the average LOS of patients by

managing demand through the use of dynamic patient prioritization, leveraging

both historical and real-time information. This work was published in the

Proceedings of the 8th IEEE International Conference on Automation Science

and Engineering (CASE 2012) [51].

In our second piece of work, we enhanced the ED process to model both

the ambulatory area and the critical-care area. We showed that the hospital

ED can improve the average LOS, potentially meet its desired LOS, and re-
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act to demand surges by optimizing and dynamically changing the supply of

doctors based on real-time data. We applied both queue design and queue

control techniques with the use of offline and online (symbiotic) simulation

in our staffing strategies. This work was published in the Proceedings of the

9th IEEE International Conference on Automation Science and Engineering

(CASE 2013) [50].

In our third piece of work, we provided a framework for integrating both

demand-side strategies and supply-side strategies. We showed that a decision-

maker can select any combination of demand-side strategies or supply-side

strategies depending on the hospital’s appetite for performance (in terms of

average patient LOS) and other factors, such as risk of implementation, the

doctors’ schedule stability and ability to react to demand surges. This is the

first work in the domain of healthcare to provide practical optimization capabil-

ities from both the demand and supply perspectives. This work was published

in the Proceedings of the 2013 Winter Simulation Conference (WSC2013) [49].

7.2 Tangible Optimization versus Intangible

Considerations

During the course of completing this dissertation, we noticed the importance

of intangible considerations among the operational optimization considerations

in the healthcare industry. One challenge of optimization in healthcare is that

it is not enough to simply find an optimal solution like a minimum LOS or a

minimum wait-time. Healthcare’s essential human element – patients, doctors,

nurses, family members, lab technicians and many more - means there is a need

to balance optimization with intangible, human considerations, such as quality

of care, patient satisfaction and staff satisfaction. For example, as we consider

deploying dynamic prioritization of the patients, we have to consider how a

hospital should manage the patients who get preempted by other patients. This

is an issue not investigated in this dissertation, but something that hospital

decision-makers must explore.
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One solution to balancing the two considerations could be exploring how

the hospital can display information to patients to reassure them that the

system is patient-centered. Suppose that Patient A is fifth in the queue and

the expected waiting time is 20 minutes. When re-prioritization occurs, the

display shows that he is sixth in the queue but the expected waiting time has

dropped to 15 minutes. The patient is likely to be happy. Other efforts can be

made to improve patient comfort, for example by providing an option for the

patient to go for a snack or drink at the hospital’s cafeteria during the waiting

period (since we are dealing with non-emergency patients).

Likewise, there are motivational issues with doctors, and doctors (and

nurses) should not be overworked. Hospitals need to consider how to bal-

ance the workload among doctors/staff, and ensure that doctors/staff have

sufficient rest, even as efforts are made to improve the ED’s performance.

In terms of operational quality, hospitals also need consider the quality of

care in both the ambulatory area as well as other related facilities such as the

critical-care and treatment areas where doctors are also required. Although

there are service level targets to serve customers, hospitals need to also consider

that quality of care (of both the ambulatory and related facilities) cannot be

compromised. For example, it is unacceptable if doctors reduce the time spent

with the patient because there is a need to meet a challenging targeted length

of stay. Hospitals need to ensure that patients receive proper care during their

stay in the ED.

Hospital targets may backfire resulting in quality of care being compro-

mised, as reported in an article by the Australian Healthcare and Hospitals

Association [23]. They explained that hospital targets to serve patients within

a target LOS do not directly address the concerns of “improved patient access

to timely and safe ED services”. In a survey, they found that 80% of doctors

felt that the hospital targets compromised their capacity to deliver “proper

patient care”. In our correspondences with Singapore hospitals, a concern was

raised that an improved LOS for non-emergency patients may send a false

message to the public that one can go to the ED for minor ailments which

should be attended to at GP clinics. Hospitals need to consider additional
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campaigns such as public education on who should visit an ED in conjunction

with operational improvement targets.

We illustrate the need to balance optimization with intangible considera-

tions in Figure 7.1. Intangible considerations remain a challenge in healthcare.

They are not part of the objective functions in this dissertation but certainly

could be a vital focus of future research.

Figure 7.1: The need to balance optimization and intangible considerations

7.3 Further Work

As there are so many possible ways to improve the ED’s ability to react to de-

mand, this work can be further developed to include other forms of intelligence

for decision support. One which we have considered is dynamic collaboration.

The idea is to allow hospitals to dynamically collaborate with other entities

such as general practitioners (GPs) or ground transportation operators. In the

case of collaboration with GPs, a hospital will have a view of the waiting time

at a few nearby clinics. In this way, the hospital may divert patients with mild

illnesses to nearby clinics which may serve them faster than the hospital. In

some cases, when investigative tests or on-site treatment is required, a hospital

may allow the diverted patients to take the tests or treatment at the hospital

(since it is nearby). This will only be possible if the hospital has a close group

of collaborators and has visibility into the queue and functions of the GP.

In the case of collaboration with transportation companies, such as taxi

companies, a hospital can be informed of an incoming patient if the patient

boards a taxi and indicates that he/she is visiting the ED for treatment. In

that way, the hospital has more visibility into the incoming demand and better
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decisions can be made for staffing the ED.

We see opportunities for taking this work in various directions. In the

optimization field, we can further evaluate how hospitals can leverage oppor-

tunities when demand is low to release some doctors to perform administrative

or operational activities. From the perspective of information systems man-

agement, we hope to provide more managerial insights and evaluate the costs

and benefits of dynamic strategies (either demand-side or supply-side or both)

on the quality of patient care, doctor satisfaction and quality of care of pa-

tients in the critical-care area. In the domain of enterprise systems, we would

like to see a real implementation of the strategies and evaluate the impact and

complexity of dynamic strategies on real-world systems.
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