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Ranking-Based Approaches for Localizing Faults

Lucia

Abstract

A fault is the root cause of program failures where a program behaves differently
from the intended behavior. Finding or localizing faults is often laborious (espe-
cially so for complex programs), yet it is an important task in the software lifecycle.
An automated technique that can accurately and quickly identify the faulty code is
greatly needed to alleviate the costs of software debugging.

Many fault localization techniques assume that faults are localizable, i.e., each
fault manifests only in a single or a few lines of code that are close to one another.
To verify this assumption, we study how faults spread across program elements.
We find that most faults are localizable within a few lines of code or a few methods,
while around 30% of the faults manifest in a single line of code.

Spectrum-based fault localization approach is a lightweight approach that ana-
lyzes execution traces to highlight top-most suspicious program elements (i.e., state-
ment, blocks, etc.) for inspection by developers. Our fault localization technique
can be categorized into spectrum-based approach. Our technique localizes faults
by measuring the strength of the relationship between the execution of a program
element and the occurrence of a program failure. Various association measures are
proposed in the domains of statistics and data mining to quantify the strength of
the relationship between two variables of interest. However, their effectiveness in
localizing faults is not well studied. We investigate the effectiveness of 40 associa-
tion measures in localizing faults in single-bug and multiple-bug programs. Some
of the measures achieve smaller percentage of code inspected on average than the
two well-known spectrum-based techniques, namely Ochiai and Tarantula, while a

number of the measures are comparable to Ochiai and Tarantula.



Different fault localization techniques have different effectiveness in localizing
faults for different buggy programs. We propose an approach called Fusion Local-
izer to leverage their differences and boost the effectiveness in localizing faults. Our
approach combines scores or ranking information produced by existing spectrum-
based fault localization techniques in particular, 40 association measures, Ochiai,
and Tarantula, to inexpensively rank the faulty program elements using data fusion
methods that have been studied in the domain of information retrieval. Our evalu-
ation demonstrates that our approach can significantly improve the effectiveness of
existing state-of-the-art fault localization techniques.

The above approaches localize potential faulty elements using execution traces.
However at times, full execution traces are not available for debugging. Code clones
(i.e., pieces of similar code) have been shown to be useful for detecting bugs because
the inconsistent changes among clones in a clone group may indicate potential bugs.
However, clone-based bug detection techniques suffer from an excessive number of
false positives. Our technique ranks the anomaly reports that contain bugs earlier in
the list as compared to the original list. By actively and incrementally incorporating
user feedback to iteratively refine our classification model and reorder the anomaly
reports, our technique can successfully reduce the false positive rate.

In summary, this dissertation has empirically demonstrated the need of and pro-
posed a number of novel ranking-based approaches for localizing faults, which ad-

vances the previous state-of-the-art.
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Chapter 1

Introduction

1.1 Automatic Software Fault Localization

Developing a software that is free from bugs, is a very difficult requirement to be
met. In fact, it is almost impossible for most software, especially complex ones.
Software bugs cause financial loss to both users and developers. As reported by
the US National Institute of Standards and Technology, software bugs cost the US
economy 59.5 billion dollars annually [134].

A software fault (or bug) is the source of an error in a software or program,
while the error itself is a state of the program that causes program failures [15]. A
program failure is an event when the program behaves differently from what was
intended [15]. When a program failure occurs, manually finding the root cause of
the failure is often a laborious task, especially when the root cause of the failure
is far away from the failure point. An increase in the size and number of features
provided by a software system in turn increases the complexity of the system as
well as the possibility of defects manifesting in the software [25]. Indeed, testing
and debugging activities account for 30 to 90 percent of the labor expended for a
project [20,49]. Therefore, an automated technique that can accurately and quickly
identify the faulty code is greatly needed to reduce the cost of software debugging.

Automated software debugging has attracted much research interest. Many ap-



proaches have been proposed to automate software debugging activities, especially
in localizing root causes of failures (i.e., faults) in programs. Some approaches are
tailored for one kind of bugs, while others are general-purpose.

There are many approaches that locate a specific kind of bugs; some examples
include those that are designed to specifically detect deadlock bugs [23, 38, 111],
data race bugs [28, 38,99, 111, 123], atomicity violation bugs [40, 87, 145], etc.
Deadlock bugs occur when two or more operations circularly wait for one another to
release the acquired resource. Data race bugs occur when two conflicting executions
access one shared variable without proper synchronization. Atomicity violation
bugs occur when concurrent processes unexpectedly execute a critical code region
at the same time.

Many other fault localization approaches are general purpose. They can catch
various kinds of bugs and thus are more applicable to a wide range of software and
problems that they face. This family can be further divided into those that primarily
analyze textual information, execution traces, or source code. Many approaches
have been proposed in the literature that belong to each of these sub-families. We
highlight these approaches in the following paragraphs.

A number of approaches locate faults from the textual descriptions of bugs in
bug reports that are submitted by users or developers during testing. The infor-
mation described in these reports can be used to retrieve the failure-relevant code.
Many of these text-based approaches employ information retrieval techniques to
analyze information written in such reports and retrieve files that are similar to the
reports [88, 100, 115, 126, 154]. The effectiveness of such approaches in retrieving
the failure-relevant code depends on the quality of the information written in the
bug reports. If a bug report poorly describes a bug, it will be hard to find buggy
code from the description.

A number of approaches locate faults primarily by analyzing software execution
traces. Model-based debugging techniques [39,91-94] analyze execution traces by

using logical reasoning over formal models of programs to accurately locate the



faults. Even though these techniques are more accurate, they are often heavyweight
because such reasoning is expensive. On the other hand, spectrum-based fault lo-
calization [3,5,26,27,31,63,65,67,84,151,153] is a lightweight fault localization
approach, where program traces or abstractions of traces (called program spectra)
are used to represent program behaviors and are analyzed to identify potentially
faulty program elements (e.g., statements, basic blocks, functions, and components)
by computing suspiciousness scores. Among spectrum-based fault localization ap-
proaches, some of them focus on finding a single bug in software, e.g., [31, 65],
while others focus on directly finding multiple bugs in software, e.g., [5,67]. Some
others focus on extracting contextual information that can help developers in per-
forming debugging tasks [26,63,153]. The accuracy of these approaches in locating
faults is limited by the information contained in the program traces [5]. When a pro-
gram failure occurs, the execution trace may be long and contain failure-irrelevant
information. Also, full execution traces are often not available for debugging if
programs fail in the users’ sites.

A number of approaches primarily analyze source code and do not consider
execution traces [43, 53,64, 74,81, 119]. Some of these approaches rely on in-
formation of files that are affected by bugs before, to predict future buggy files,
e.g., [74]. Some others rely on a set of rules whose violations indicate bugs or code
smells, e.g., [119]. Some others rely on detection of common patterns (e.g., soft-
ware clones) and flag violations of these patterns (aka. anomalies) as potential bugs,
e.g., [43,53,64]. One disadvantage of these approaches is the high false positive rate
where many codes are predicted to have defects, while in fact there is no defect.

The above families of approaches have their own weaknesses and strengths.
This dissertation focuses on improving the accuracy of general purpose fault local-
ization approaches since they are applicable to a wide range of software and prob-
lems. In particular, we focus on lightweight fault localization techniques that can
scale in analyzing software of various sizes. Specifically, we focus on improving

state-of-the-art spectrum-based fault localization techniques and clone-anomaly-



based fault localization techniques which have been shown promising in many past
studies, e.g., [31,43,53,64,65].

Although fault localization approaches have improved much since they were
first proposed, they are still far from perfect. The emerging information system
technologies and the increasing program complexity further challenge their effec-
tiveness. Thus, improving the effectiveness of these approaches remains an open

research problem.

1.2 Research Problems

Most of the automated fault localization techniques attempt to pinpoint the location
of bugs and expect developers to investigate a certain number of program elements
to find faults. These techniques thus assume that faults are localizable, i.e., only one
or a few lines of code that are close to one another are responsible for each fault. In
reality, are faults localizable? This research question can impact the applicability of
the fault localization techniques to reveal the faulty program elements.

Among many techniques to locate the root cause of program failures (i.e.,
fault localization techniques), spectrum-based fault localization techniques are of-
ten lightweight and have good accuracy. These techniques use program traces or
abstractions of traces (called program spectra) to represent program behaviors. The
likelihood that a program element is a faulty element is often inferred by comparing
the spectra of correct and failed executions using statistical analysis [3,27,31,65,84].
Although they have good accuracy, the effectiveness of current state-of-the-art fault
localization techniques is not yet perfect. Often, faulty program elements are ranked
low in the returned ranked list. Therefore, the effectiveness of the state-of-the-art of
fault localization techniques needs further improvement to minimize the debugging
time.

There have been a number of studies proposed in the statistics and data mining

community on measuring of association between two variables of interest since the



early 20th century such as Yule’s Q [148] and Yule’s Y [149]. The properties, ben-
efits and limitations of each measure have been investigated from a computational
point of view [44, 132]. However, the effectiveness of various association measures
in measuring the strength of the relationship between the execution of a program
element and the occurrence of a program failure to localize faults has not been com-
prehensively evaluated. Some of the association measures have been studied for
fault localizations, e.g. Jaccard [3, 4], Sorensen-Dice [4], Anderberg [4], Simple
Matching [4], Rogers and Tanimoto [4], and Ochiai II [4]. In this work, we also
evaluate the effectiveness of these measures because their effectiveness in localiz-
ing various kinds of bugs and localizing bugs in multiple-bug programs have not
been evaluated.

Different spectrum-based fault localization techniques (e.g., association mea-
sures) could have different effectiveness in localizing bugs for different buggy pro-
grams. For a given buggy program, some techniques could have better effectiveness
than others, and vice versa. The question is: could we leverage diversity of the tech-
niques in localizing bugs such that we could better rank the faulty program elements
as compared to individual techniques?

Wang et al. [137] propose a technique that linearly combines the scores of a
number of association measures to rank faulty program elements at the top posi-
tions. Their approach generates a weight for each association measure using genetic
algorithms based on a set of training data (i.e., program traces of the past program
failures and the corresponding faults of the past failures). The effectiveness of the
technique in localizing faults depends on the set of buggy programs used in the
training set. It is possible that the bugs and buggy programs in the training set are
not representative enough for the incoming buggy programs which could limit the
effectiveness of the techniques. Furthermore, the training data is often unavailable
in many cases such as new programs, developers do not store the traces of the past
program failures, etc.

It is challenging to combine different fault localization techniques to better lo-



calize the bugs in programs. Not only do we need to handle different techniques, but
we also need to handle different buggy programs and different bugs that manifest in
the programs. Addressing these challenges is essential to effectively locate the bugs
for different programs.

The techniques mentioned in the previous paragraphs require the availability
of test cases to generate execution traces of the buggy programs; the traces are
then used to justify the likelihood that a program element is the faulty element. In
order to have useful program traces for localizing faults, at least one of the test
cases used to test the program must be able to reveal program failures (i.e., the
test case results in failure). However, obtaining such test cases can be difficult,
moreover such test cases may be unavailable. Consider a case when a program
failure occurs in the client’s site; often, developers cannot obtain the test case that
can reproduce the same program failure as what was reported by the client. Hence,
we could not collect the execution traces that can be used to infer the faulty program
elements. Thus, it would be useful if we have techniques that can locate the faulty
program elements without the availability of test cases.

In the absence of test cases, we can analyze buggy programs to infer faulty
program elements. Software clones have been shown to be useful for finding
bugs [43, 53, 64, 68,78, 81]. The inconsistent changes among clones in a clone
group may indicate potential bugs. Clone-based anomaly detection techniques have
been developed to look for the inconsistencies among code clones in every clone
group (i.e., a group of code fragments similar to each other) and report them as
anomalies (i.e., potential bugs). However, these techniques still produce an exces-
sive number of false positive anomaly reports [64], which impede broad adoption
of the techniques. The ability to present the anomaly reports that contain the bugs
in early positions is important to improve the adaption of clone-based bug detection

tools.



1.3 Contributions

This dissertation makes four contributions. The first contribution empirically stud-
ies how faults manifest in program elements of buggy programs. The second and
third contributions are related to better ranking the faulty program element using
spectrum-based fault localization approach. The last contribution aims to better

rank clone anomaly reports. We briefly describe our contributions as follows.

1. This dissertation presents a study of how faults manifest across program ele-
ments in buggy programs. Hundreds of real faults in several software systems
are evaluated and the assumption that faults are localizable within a few lines
of code is studied. We report how faults spread across program elements in

different levels of granularity.

2. In order to help developers to localize faults in programs, this dissertation as-
sesses the likelihood that a program element is the root cause of a program
failure by measuring the strength of the relationship between the execution of
the program element and the occurrence of program failure. Various associa-
tion measures have been proposed in the statistics and data mining literature
to measure the strength of the relationship between two variables of interest.
However, their effectiveness in localizing faults has not been well studied.
We investigate the effectiveness of 40 association measures to rank faulty
program elements and present our empirical evaluation of the effectiveness
of the association measures in localizing bugs in single-bug and multiple-bug

programs. Different types of bugs are also considered in our evaluation.

3. Different fault localization techniques could have different effectiveness in
localizing faults. This dissertation aims to better localize the bugs by lever-
aging the diversity of existing spectrum-based fault localization techniques in
particular, 40 association measures, Tarantula, and Ochiai. Our approach in-

corporates data fusion methods that have been studied in information retrieval



domain to rank faulty program elements higher in the list by combining the
scores or ranks assigned to program elements by different fault localization
techniques. Our approach is bug specific. It selects a different set of tech-
niques to be combined for different buggy programs based on their program
spectra, also our approach does not require any training data i.e., program

spectra of the past program failures to select techniques to be fused.

4. In the absence of program traces, inconsistency among code clones or pieces
of similar codes in a clone group have been shown to be useful as an indicator
to detect bugs in the programs. This dissertation presents an approach that
actively and incrementally incorporate users’ feedback to refine the rank of
clone anomaly reports produced by clone-based bug detection tools, so that
the reports that contain the buggy clones would be presented to the users

earlier than the default ordering.

1.4 Dissertation Outline

We present our contributions in four chapters in this dissertation. The structure of
the dissertation is organized as follows. Chapter 2 discusses a number of research
works related to our contributions. We perform an empirical study to investigate
how faults manifest across program elements in buggy programs, which is pre-
sented in Chapter 3. Chapter 4 discusses the effectiveness of a number of associ-
ation measures that have been introduced in statistics and data mining community
to better rank the faulty program elements in single-bug or multiple-bug programs.
In Chapter 5, we utilize the scores or the ranks produced by a number of measures
presented in Chapter 4 to better rank the faulty program elements. We employ data
fusion methods introduced in the domain of information retrieval to improve the ef-
fectiveness of the ranking results by ranking the faulty program elements in the top

ranks. When there is no available test case for localizing faults, Chapter 6 presents



a ranking approach to rank clone anomaly reports by incorporating user feedback
so that the anomaly reports that contain true bugs can be ranked in the top positions
for inspection by developers. Finally, Chapter 7 summarizes the contributions of

this dissertation and possible future work.



Chapter 2

Literature Review

In this section, we discuss studies that are closely related to the contributions of this

dissertation. The survey here is by no means a complete list of all related studies.

2.1 Empirical Studies on Bugs

Many researches have investigated the characteristics of bugs to obtain better un-
derstanding to automatically locate and fix bugs. Pan et al. analyze patterns of bug
fixes [105]. They find that bug fixes can be classified into different families includ-
ing: addition of pre-condition checks, removal of an if predicate, method call with
different number of parameters, etc. Similarly, Ostrand and Weyuker [104], Perry
and Stieg [107], and Leszak et al. [80] also study the characteristics of bugs. In this
study, we perform an orthogonal study investigating the localizability of bugs.

Parnin and Orso perform user studies on the effectiveness of fault localization
techniques and their results imply that the current techniques may not always be
sufficient [106]. Our work as presented in Chapter 3 analyzes the bugs themselves
without user evaluation, but the results also bear a similar implication.

There are also studies that investigate cases where multiple faults exist at the
same time (e.g., [67]). Herzig and Zeller “untangle” changes in a commit that are

unrelated to each other [56]. Our study in Chapter 3 assumes changes in one commit
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deal with one bug only, and empirically analyzes how widespread or localized the

failure-relevant changes are.

2.2 Fault Localization

Recently, there have been many studies on fault localization and automated de-
bugging. There are different ways to categorize these studies. Based on the data
analyzed by the approaches, fault localization techniques can be classified into

spectrum-based and model-based.

2.2.1 Spectrum-Based Fault Localization.

Spectrum-based fault localization techniques often use program spectra (i.e., pro-
gram traces or abstractions of program traces) to represent program runtime behav-
iors in certain ways. Statistical analysis is often used to correlate program elements
(e.g., statements, basic blocks, functions, and components) with program failures.
Many spectrum-based fault localization techniques [3, 31, 65, 66, 83,116, 122,
141] take two sets of spectra as inputs, one for correct executions and the other for
failed executions, and report potential locations where root causes of program fail-
ures (i.e., faults) may reside. Given a failed program spectrum and a set of correct
spectra, Renieris and Reiss present a fault localization tool WHITHER [116] that
compares the failed execution to the nearest correct execution and reports the most
suspicious locations in the program. Liblit et al. propose a technique to search for
predicates whose true evaluation correlates with failures [83]. Chao et al. extend
the work by incorporating information on the outcomes of multiple predicate evalu-
ations in a program run in their tool called SOBER [31]. Wong et al., [141] propose
a method called DStar that modifies a similarity-based coefficient (i.e., Kulczynski
coefficient) to better localize the bugs as compared to Taratula [65,66], Ochiai [3],
and 12 similarity-based coefficients. All of these techniques need to compare spec-

tra of failed and correct executions in some way. Evaluating the effectiveness of
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various association measures can complement all of these techniques by helping to
quickly locate the most failure-relevant program elements.

Artzi et al. propose a tool named Apollo that can generate test cases to ex-
pose failures in web applications, then localize bugs that cause the failures [13].
Their fault localization technique uses a spectrum-based fault localization technique
namely, Tarantula and a technique that keep information about which program state-
ments are potentially responsible for producing a particular part of an output (e.g.,
a table in an HTML document). This approach is possible for web applications but
may not be applicable to other applications as the output is often not decomposable
into parts (it could be a single number) and the number of program statements that
are potentially responsible for producing an output is often large. Artzi et al. extend
their work by evaluating the effectiveness of several test generation techniques in
generating enough test cases for localizing faults in web applications with the help
of a spectrum-based fault localization technique, namely Ochiai [12].

Bandyopadhyay and Ghosh study how the properties of faults affect the effec-
tiveness of Tarantula [18]. Three properties, namely accessibility, original state
failure condition, and impact, are investigated. Our study presented in Chapter 4
also investigates the effectiveness of various fault localization techniques for dif-
ferent kinds of bugs. However, we consider a different categorization of faults —
our categorization is based on the empirical study performed by Pan et al. on bug
fixes [105].

Other spectrum-based techniques [48,61,130,152] only use failed executions as
the input and systematically alter the program structure or program runtime states to
locate faults. Zhang et al. [152] search for faulty program predicates by switching
the states of program predicates at runtime. Sterling and Olsson use the concept of
program chipping [130] to automatically remove parts of a program so that the part
that contributes to the failure becomes more apparent. Gupta et al. [48] work on pro-
gram dependency graphs and use the intersection of forward and backward program

slices to reduce the sizes of failure-relevant code for further inspection. Jeffrey et
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Dataset LOC | Papers Dataset LOC Papers
SumPowers 27 [92,94] Power 763 [83]
BinSearch 29 [92,94] Compress 1590 [83]
BubbleSort 29 [92,94] Bh 2053 [83]
Hamming 48 [92,94] Webchess v.0.9.0 2226 [12,13]
Adder 49 [92,94] Tetris 2403 [106]
Permutation 54 [92,94] Schoolmate v.1.5.4 | 4263 [12,13]
Binomia 80 [92,94] Gzip 5680 [5,21]
Polynom 105 [92,94] Space 6218 [4,5,65,66]
Tcas 141 [5,6,18,21,31,61,65,91,92,94,116] | NanoXML 7646 [106, 122]
Schedule 292 [3,5,6,18,21,31,48,61,65,116,122] | Phpsysinfo v.2.5.3 7745 [12,13]
Schedule2 301 [3,5,6,18,21,31,48,61,65,116,122] | Li 7761 [83]
Treeadd 385 [83] Grep 10068 [21,152]
Perimeter 395 [83] Flex 10459 [21,152]
Print_token2 399 [3,5,6,18,21,31,48,61,65,116,122] | Sed 14427 [5,21]
Tot_info 440 [3,5,6,18,21,31,61,65,116, 122] XMLsecurity 16800 [122]
Print_token 478 [3,5,6,18,21,31,48,61,65,116,122] | Bc-1.06 17042 [152]
Replace 512 [3,5,6,18,21,31,48,61,65,116] Tar-1.13.25 27137 [152]
Emad 557 [83] Go 29315 [83]
Rest 617 [83] Ijpeg 31371 [83]
Bisort 707 [83] Make 35545 [152]
Health 725 [83] JABA 37966 [122]
Fagforge v.1.3.2 | 734 [12,13]

Table 2.1: Subject programs used in past fault localization studies
al. use a value profile based approach to rank program statements according to their

likelihood of being faulty [61]. These fault localization techniques do not com-
pare the spectra of failed and correct executions. Thus, association measures are
generally not applicable to them.

Instead of empirically studying the effectiveness of a fault localization technique
on various faults, Naish et al. theoretically analyze a number of formulas that can
be used to compute suspiciousness scores of program elements in “idealized condi-
tions” [97]. Their study is later extended by Xie et al. which theoretically analyze
30 formulas and group them into equivalence classes [143]. They prove that, under
some conditions, two families (i.e., ER1 and and ERS) outperform the rest. These
families include five formulas: Naish1, Naish2, Wong1, Russel & Rao, and Binary.

Instead of manually designing fault localization formulas, Yoo generates a num-
ber of formulas using Genetic Programming [147]. The effectiveness of these for-
mulas are then theoretically studied by Xie et al. [144]. They find that GP13 and
three other formulas, i.e., GP02, GP0O3, and GP19, are the best ones for fault lo-
calization. Instead of generating new formulas, we combine multiple formulas to
improve their effectiveness in localizing faults.

The above techniques [3, 31, 65, 66, 83,97, 116, 122, 141, 143, 144, 147] ana-
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lyze a single type of program spectra to assign suspiciousness scores to program
elements. Differently, Santelices et al. collect a number of program spectra types
(i.e., statement, branches, and du-pair spectra), where for each program spectra, a
single fault localization technique (i.e., Ochiai) is used to assign a suspiciousness
score for each program element [122]. For each program element, they combine
its suspiciousness scores produced by analyzing different types of program spectra.
Different from Santelices et al.’s technique, our approach presented in Chapter 5
analyzes a single program spectra type (i.e., block spectra) using a number of fault
localization techniques. Thus, we are investigating orthogonal directions and it is
possible to combine our approach and Santelices et al.’s approach in a future work.

Our approach presented in Chapter 5 is closely related to the technique proposed
by Wang et al. [137]. For every program element, their technique linearly combines
the scores of a number of association measures where each measure obtains a weight
which is computed based on a set of training data using a Genetic Algorithm. Dif-
ferent from their technique, our approach does not require any training data which
makes our technique applicable to new programs or when program spectra of rele-
vant past program failures are unavailable. Also, their technique applies the same
set of measures and the same set of weights to localize bugs for different buggy pro-
grams. Different from Wang et al.’s technique, our technique selects a different set
of techniques or set of weights to localize faults for each buggy program based on
its program spectra. While Wang et al.’s approach is one-size-fits-all, our approach
is bug specific. Table 2.1 shows the list of programs that have been used by those

past fault localization studies.

2.2.2 Model-Based Fault Localization.

Compared with spectrum-based techniques, model-based debugging techniques
[39,91-94] are often more accurate, but heavyweight since they are based on more

expensive logic reasoning over formal models of programs. Many static and dy-
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namic analysis techniques [82,89,131] can be classified as model-based debugging.
Recently, there have been a number of techniques proposed to combine
spectrum-based with model-based techniques to better localize the bugs. Abreu
et al. propose a framework called BARINEL that combines spectrum-based fault
localization and model-based debugging to localize single and multiple bugs in
programs, and found that the approach is more accurate and heavyweight than
spectrum-based fault localization [5]. Baah et al. extend spectrum-based fault lo-
calization model by incorporating data and control dependencies to narrow down
the potential faulty elements, hence to improve the effectiveness of the techniques
in localizing bugs [16]. Gopinath et al. combine spectrum-based technique with
specification-based analysis to better localize faults [47]. Digiuseppe and Jones
generate description of faults by combining spectrum-based techniques with natu-
ral language techniques that can extract features from the source code [98].
Although few model-based techniques have employed the concept of failure
association, incorporating association measures investigated in this study into pro-
gram models can be a future direction to improve the performance of model-based
debugging techniques. In this dissertation, we focus on comparisons with two well-
known spectrum-based fault localization techniques, namely Tarantula [65,66] and
Ochiai [3,5,6]. We evaluate 40 association measures and find promising ones for
fault localization. Our work presented in Chapter 5 aims to improve the effective-
ness of spectrum-based fault localization which could benefit the techniques that

incorporate spectrum-based fault localization.
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2.3 Code Clone Analysis and Clone-Based Bug De-
tection

Code clones have been widely studied in the literature. Some studies focus on
detection of code clones, based on similarities among strings, tokens, syntax trees,
dependency graphs, and even functionalities [17,19,69,76,81,110,135]. Clones are
traditionally thought of as harmful, and techniques have been proposed to reduce
clones [60, 114]. On the other hand, some studies show that clones can be useful
and necessary [70,72]. Then, instead of reducing clones, some studies investigate
techniques to track and manage code clones [36,59, 101].

One important use of code clones is to detect bugs. A number of studies de-
tect bugs by detecting inconsistencies among clones [43, 53, 64, 68, 81]. Such
inconsistency-based detection of clone-related bugs often produces many false pos-
itives, and uses various filtering rules to reduce false positives. However, even with
the most recent filtering techniques, such as ones based on textual similarity and se-
quence alignment [43], false positive rates remain high. Compared with these stud-
ies that use filtering-based approaches to remove reports, which may cause false
negatives, our approach actively and incrementally refines and re-ranks anomaly re-
ports based on user feedback without removing any report. The code features used
in our re-ranking are also different from those used in other papers. Our work is
not an alternative, but rather a complement of others. Filtering-based approaches
(which still leave many false positives behind) may be applied first, then our work
refines the filtered reports as users take actions, e.g., to fix an anomaly if it is a true

positive.

2.4 Bug Prediction and Triage

Many studies aim to predict whether certain code changes or files contains faults.

Kim et al. [73,74] use bug history to predict faults. Ruthruff et al. [119] use logistic
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regression models from historical data to predict whether a warning generated by
FindBugs is actionable. Zimmermann et al. [155] have studied the accuracies of
bug prediction models that may be used across various projects in various domains.

Other studies aim to reduce similar bug reports or prioritize bug reports.
Podgurski et al. [109] group software failures with similar symptoms together.
Kremenek and Engler [77] propose z-ranking to order bug reports produced by a
static program checking analysis tool. Heckman and William [55] propose FAULT-
BENCH, a benchmark for evaluating alert prioritization and classification tech-
niques. These ranking models only perform reordering of bug reports once.

Our approach presented in Chapter 6 is different from the aforementioned stud-
ies in several aspects. We focus on anomaly reports generated by a clone-based
anomaly detection fool, instead of reports from users. We reorder anomaly reports,
while most other studies filter reports. Filtering anomaly reports carries a risk of
removing true positives. Filtering and reordering are complementary as we could
first filter and then re-order anomaly reports. Some studies leverage historical data
to prioritize anomaly reports, while we leverage immediate user feedback to itera-

tively prioritize clone-based anomaly reports.
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Chapter 3

Empirical Study on Fault Locations

In this chapter, we study a certain characteristic of faults in programs in order to
have better idea about the capability that is expected from automatic software fault
localization techniques. In particular, we perform an empirical study on whether
real faults are localizable (i.e., whether it spans a few lines of code, methods, or
classes).

We organize this chapter as follows. Section 3.1 presents the motivation and
main contribution of this chapter. We present subject programs that we evaluate for
this study and the setup of our empirical study in Section 3.2. Section 3.3 presents

our findings and discusses their implications. Section 3.4 concludes the study.

3.1 Are Faults Localizable?

Bugs are one of the major contributors to high software cost. Many automated
debugging techniques have been proposed to reduce the cost of debugging. Fault
localization techniques aim to pinpoint program elements responsible for a fault.
Many of these techniques analyze program spectra (i.e., a set of profiles of cor-
rect executions and failures), with the goal of highlighting likely faulty program
elements [30,31,65,83,116, 150].

Fault localization techniques often assume that faults are localizable, i.e., a fault
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is often confined to one or a few lines of code that are close to each other in a
software system. Most fault localization techniques would rank program elements
according to their suspiciousness (i.e., the likelihood that a program element is the
root cause of a program failure) and expect developers to traverse this list of program
elements and be able to decide whether an element contains a fault by just inspecting
that element. Past studies on fault localization often use faults that are injected to
only one or a few locations, making the evaluation of the techniques biased.

The question is whether it is indeed the case that faults are confined to a few
lines of code in real systems. Are faults localizable? This research question has
important implications. If faults turn out to be non-localizable, we may then need
to re-consider the applicability of fault localization and design new approaches to
aid developers in debugging non-localizable faults.

In this chapter, we perform an empirical study by analyzing software from a
public bug repository—iBugs [33] and the JIRA repository of Lucene. We consider
hundreds of real bugs in three real systems: Aspect], Rhino, and Lucene, and inves-
tigate how localized or spread-out the locations of buggy program elements are.

The contributions of this work are as follows:

e We highlight an important research question on whether bugs are localizable

in real software.

e We present an empirical study on three Java programs and note that many

faults are not localized.

e We analyze whether severe faults are localizable.
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3.2 Empirical Study Setup

3.2.1 Evaluation Dataset

We analyze the locality of bugs in two Java programs (Rhino and Aspect]) from
iBugs repository [33] and a third Java program Lucene. Rhino is a Javascript inter-
preter written in Java with code size of about 49 kKLOC. There are 32 buggy versions
of Rhino in iBugs. Aspect] is a compiler for aspect-oriented programming in Java
with code size of about 75 kLOC, and iBugs contains 350 of its buggy versions.
Lucene is a text engine library with code size of about 88 kLOC (version 2.9).

The iBugs repository stores both pre-fix versions that contain bugs (buggy ver-
sions) and the corresponding post-fix versions that fix the bugs. Each of the buggy
versions is assumed to contain one bug that may span across multiple lines in mul-
tiple files. Information about each fix is also provided, e.g., the numbers of changed
lines, changed methods, and changed files, and the severity level of the bug. We also
know which lines or files are changed based on the differences between the pre-fix
and the post-fix versions. Similar information about bugs and corresponding fixes

in Lucene has been collected from JIRA [2] by another research team at UC Davis.

3.2.2 Extracting Faults from Changes

In this work, we are concerned with program elements that are responsible, or are
the root causes of a bug (i.e., faults). The datasets from iBugs and JIRA include bug
fixes and enhancements. We exclude those corresponding to enhancements, those
that do not contain any severity information, and bug fixes that only fix test code
and comments. We end up with 374 bugs and their fixes: 32 for Rhino, 290 for
Aspect], and 52 for Lucene.

For these bug fixes, the iBugs and JIRA datasets include lines added, deleted,
and modified in the commit that fixes the bug. Not all these lines correspond to the

root causes of the bug and thus we could not simply count them as the number of
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faulty lines. First, these lines are the treatment of the fault and we need to recover
the fault from them. Second, previous studies, e.g., [71], show that not all changes
are essential — many are simple refactorings that do not change the behavior of a
program. To recover faults from their treatments, we perform a manual inspection

on the iBugs and JIRA data.

3.2.3 Research Questions on Locality of Faults

First, we define the locality of a bug based on faulty program elements. We consider
program elements at three levels of granularity, including lines, methods, and files.
We also consider the spatial distances among the program elements. The following

is a list of locality definitions that we use in our empirical evaluation.

D1 Considering a line of code as a program element, we define the locality L of a
buggy version v as follows:

Lpi(v) = the number of faulty lines.

D2 Considering a method as a program element, we define the locality L of a buggy
version v as follows:

Lps(v) = the number of faulty methods.

D3 Considering a file as a program element, we define the locality L of a buggy
version v as follows:

Lps(v) = the number of faulty files.

D4 Considering the spatial distances among the faulty lines, we define the locality
L of a buggy version v based on the number of faulty files ny and the gaps
among the faulty lines in every file Gy, (file):

Lpi(v) = (ZfiteGrine(file) + ng — 1) x ng, where Gy (file) is the distance

between the first and last faulty lines in the file.

Based on the locality definitions, we consider the following research questions:
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RQ1 How wide or localized is the locality of bugs? How many bugs could be

localized to a few program elements?

RQ2 Are severe bugs localizable?

The following section evaluates the locality of the 374 real bugs. We also discuss

the answers for the above research questions.

3.3 Results and Discussion

3.3.1 RQ1: Are Faults Localizable?

We evaluate how localized the faults are in term of the number of faulty lines, meth-

ods, and files. Figures 3.1, 3.2, and 3.3 show the proportion of faults that are local-

izable up to a certain number of faulty lines, methods, and files respectively. Each

figure shows the results for Rhino, Aspect], Lucene, and the overall dataset. The

detailed results are given in Tables 3.1, 3.2, and 3.3.
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Figure 3.1: Proportion of faults versus line locality.

Considering the number of faulty lines, faults in Rhino, AspectJ, and Lucene

could span up to 957, 103, and 772 lines respectively. However, there are not many

versions that have faults residing in more than 50 lines — only 22%, 3%, and 10%
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of Rhino’s, Aspect)’s, and Lucene’s faults respectively. Figure 3.1 shows the pro-
portion of faults that span across 1 to 50 lines of code. Among the faults, 22% of
Rhino’s faults, 37% of Aspect]’s faults, and 12% of Lucene’s faults involve one line
of code. Overall, 32% of the faults involve at most one line of code. More than
50% of the faults involve at most 10 lines of codes i.e., 59% of Rhino’s faults, 86%
of Aspect)’s faults, 67% of Lucene’s faults, and 81% of all faults. Therefore, most
faults are localized within 10 lines of code.

Considering the number of faulty methods, faults in Rhino, Aspect], and Lucene
could span up to 296, 78, and 778 methods respectively. However, only few versions
have faults residing in more than 20 methods — only 25%, 2%, 12% of Rhino’s,
Aspect)’s, and Lucene’s faults respectively. Figure 3.2 shows the proportion of
faults that span across 1 to 20 methods. Among the faults, 28% of Rhino’s faults,
49% of Aspect]’s faults, and 23% of Lucene’s faults involve one method. Overall
44% and 80% of the faults involve at most one method and six methods respectively.

Considering the number of faulty files, faults in Rhino, Aspect], and Lucene
could span up to 14, 56, and 57 files respectively. However, only few versions have
faults residing in more than 10 files — only 3%, 1%, 10% of Rhino’s, Aspect]’s,
and Lucene’s faults respectively. Figure 3.3 shows the proportion of faults that span
across 1 to 10 files. Among the faults, 76% of Rhino’s faults, 77% of Aspect)’s
faults, and 37% of Lucene’s faults involve one file. Overall 69% of the faults involve
at most one file and 86% of the faults involve at most two files.

Figure 3.4 shows the proportion of faults that have 1 to 1,000 gap locality scores.

We notice that most faults have rather big gap locality in the three programs.

3.3.2 RQ2: Are Severe Faults Localizable?

We evaluate the relationship between localizable bugs and their severity levels.
There are six severity levels in the Aspect] bugs that we analyze: blocker, criti-
cal, major, minor, normal, and trivial (from high to low). As for Rhino, there are

only two levels: major and normal. For Lucene, there are four levels: blocker, ma-
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Locality | Num. of Faults | Locality Num. of Faults | Locality | Num. of Faults
(% of Faults) (% of Faults) (% of Faults)

1 Line 7 (22%) 1 Method 9 (28%) 1 File 25 (76%)

2 Lines 3 (9%) 2 Methods 5 (16%) 2 Files 3 (10%)

3 Lines 2 (6%) 3 Methods 4 (13%) 3 Files 0 (0%)

4 Lines 0 (0%) 4 Methods 1 (3%) 4 Files 2 (7%)

5 Lines 3 (9%) 5 Methods 1 (3%) 5 Files 0 (0%)

6 Lines 0 (0%) 6 Methods 0 (0%) 6 Files 0 (0%)

7 Lines 2 (6%) 7 Methods 0 (0%) 7 Files 1 (3%)

8 Lines 1 (3%) 8 Methods 0 (0%) 8 Files 0 (0%)

9 Lines 1 (3%) 9 Methods 1 (3%) 9 Files 0 (0%)

10 Lines 0 (0%) 10 Methods 1 3%) 10 Files 0 (0%)

Table 3.1: Number & percentage of faults (in parentheses) covering different num-

ber of faulty lines, methods, and files for Rhino

Locality | Num. of Faults | Locality Num. of Faults | Locality | Num. of Faults
(% of Faults) (% of Faults) (% of Faults)
1 Line 106 (37%) 1 Method 139 (48%) 1 File 213 (77%)
2 Lines 49 (17%) 2 Methods 49 (17%) 2 Files 45 (16%)
3 Lines 32 (11%) 3 Methods 26 (9%) 3 Files 15 (5%)
4 Lines 13 (4%) 4 Methods 15 (5%) 4 Files 8 3%)
5 Lines 16 (6%) 5 Methods 8 (3%) 5 Files 3 (1%)
6 Lines 8 (3%) 6 Methods 10 3%) 6 Files 4 (1%)
7 Lines 9 (3%) 7 Methods 11 (4%) 7 Files 0 (0%)
8 Lines 4 (1%) 8 Methods 8 (2%) 8 Files 0 (0%)
9 Lines 5 (2%) 9 Methods 3(1%) 9 Files 0 (0%)
10 Lines 6 (2%) 10 Methods 4 (1%) 10 Files 0 (0%)

Table 3.2: Number and percentage of faults (in parentheses) covering different num-

ber of lines, methods, and Java files for Aspect]

Locality | Num. of Faults | Locality Num. of Faults | Locality | Num. of Faults
(% of Faults) (% of Faults) (% of Faults)

1 Line 6 (12%) 1 Method 12 (23%) 1 File 19 (37%)
2 Lines 10 (19%) 2 Methods 10 (19%) 2 Files 17 (33%)
3 Lines 8 (15%) 3 Methods 5 (10%) 3 Files 5 (10%)

4 Lines 5 (10%) 4 Methods 5 (10%) 4 Files 2 (4%)

5 Lines 2 (4%) 5 Methods 3 (6%) 5 Files 1 (2%)

6 Lines 3 (6%) 6 Methods 4 (8%) 6 Files 2 (4%)

7 Lines 1 2%) 7 Methods 0 (0%) 7 Files 0 (0%)

8 Lines 0 (0%) 8 Methods 0 (0%) 8 Files 1 2%)

9 Lines 0 (0%) 9 Methods 1 2%) 9 Files 0 (0%)

10 Lines 0 (0%) 10 Methods 1 (2%) 10 Files 0 (0%)

Table 3.3: Number and percentage of faults (in parentheses) covering different num-

ber of lines, methods, and Java files for Lucene
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Bug severity | 1Line | 10 Lines | 1 Method 1 File
Major 0 (0%) 1 (50%) 1 (50%) | 2 (100%)
Normal 7 23%) | 18 (60%) | 8 (30%) | 23 (85%)

Table 3.4: Numbers and percentages of faults for different severity levels in Rhino
when faults are within 1 line, 10 lines, 1 method, or 1 file

Bug severity 1 Line 10 Lines | 1 Method 1 File
Blocker 3(43%) | 7(100%) 4 (57%) 6 (86%)
Critical 8 (33%) 19 (79%) 11 (46%) 16 (67%)
Major 12 (40%) | 26 (87%) 15 (50%) | 22 (73%)
Minor 6 (43%) 11 (79%) 5 (36%) 11 (79%)
Normal 75 (35%) | 183 (86%) | 102 (48%) | 156 (73%)
Trivial 2 (100%) | 2(100%) | 2(100%) | 2 (100%)

Table 3.5: Numbers & percentages of faults for different severity levels in Aspect]
when faults are within 1 line, 10 lines, 1 method, or 1 file

jor, minor, trivial. Table 3.4, 3.5, and 3.6 show the severity levels when faults reside
in one line, less than ten lines, one method, and one file for Rhino, Aspect], and
Lucene respectively. For Rhino, 0%, 50%, 50%, and 100% of the major faults are
localizable to one line of code, ten lines of code, one method, and one file, respec-
tively. For Aspect], 43%, 100%, 57%, and 86% of the blocker faults are localizable
to one line of code, ten lines of code, one method, and one file respectively. For
Lucene, 0%, 67%, 33%, and 33% of the blocker faults are localizable to one line
of code, ten lines of code, one method, and one file respectively. Overall, consider-
ing the most severe bugs in the category (i.e., blocker for Lucene and AspectJ, and
major for Rhino), 25%, 83%, 50%, and 75% of these severe bugs are localizable
to one line of code, ten lines of code, one method, and one file respectively. The
results show that many severe faults are localizable. A significant percentage of

severe faults are however not localizable.

Bug severity | 1Line | 10 Lines | 1 Method | 1 File

Blocker 00%) | 2(67%) 1(33%) | 1(33%)
Major 4 (16%) | 17 (68%) | 7(28%) | 9 (36%)
Minor 2(10%) | 14(67%) | 4(19%) | 9 (43%)
Trivial 0(0%) | 2 (100%) 0 (0%) 0 (0%)

Table 3.6: Numbers and percentages of faults for different severity levels in Lucene
when faults are within 1 line, 10 lines, 1 method, or 1 file
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3.3.3 Threats to Validity

Threat to external validity refers to the generalizability of our findings. In this study,
we only analyze three real Java programs: AspectJ, Rhino, and Lucene. The find-
ings may not be generalizable to programs written in different languages. Threat to
internal validity is mostly related to the manual investigation of what lines of code

are responsible for each bug. There may be errors in the labeling process.

3.4 Conclusion

In this chapter, we have performed a preliminary study for the question whether
bugs are localizable. We have analyzed hundreds of bugs and their fixes from three
software systems, Aspect], Rhino, and Lucene, and manually extract faults from
changes. We have found that (1) a substantial proportion of faults (i.e., 32%) still
manifest in a single line of code, and 56% of the faults are localizable within a
few lines of code or a few methods and (2) only 25% and 50% severe faults (i.e.,
categorized as blocker in Aspect] and Lucene, and major in Rhino) are localizable

within one line and one method respectively.
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Chapter 4

Employing Association Measures for

Fault Localization

In this chapter, we present our work that automatically locates faulty program el-
ements to help developers locate bugs in programs. For a given buggy program,
our approach quantifies the likelihood that a program element is the faulty program
element, then presents a list of most suspicious program elements to developers for
inspection. The idea of our approach is to model the fault localization problem as
the association between the executions of a program element with program fail-
ures. We employ association measures that have been introduced in the statistics
and data mining domains to measure the likelihood that a program element is the
faulty program element.

We organize this chapter as follows. Section 4.1 presents the motivation and
main contribution of this chapter. Section 4.2 explains the concept and definition
used in this work. Section 4.3 presents our approach that employs association mea-
sures for localizing faults. We evaluate our approach to localize faults in Section 4.4

and discuss our results in Section 4.5. Section 4.7 concludes our findings.
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4.1 Association Measures for Localizing Faults

Program traces or abstractions of traces (called program spectra) can be used to
represent program behaviors. The spectra of correct and failed executions can be
compared to identify potentially faulty program elements (e.g., statements, basic
blocks, functions, and components). Spectrum-based fault localization is one family
of the fault localization techniques that utilize program spectra [3,27, 31, 65, 84].
They often employ statistical analysis to compare the program traces. Program
elements that are observed more often in failed executions than in correct executions
(or statistically correlate with failures) may be identified and presented to developers
for further inspection.

Spectrum-based fault localization techniques are promising as they are
lightweight and have good accuracy. Among the existing spectrum-based fault
localization techniques, two well-known techniques are Tarantula [65, 66] and
Ochiai [3,5, 6]. Both approaches compute a suspiciousness score for each program
element based on the execution frequencies of the element in correct and failed
executions. Then, all program elements are ranked according to their scores and
presented to developers for inspection. Presenting the buggy element earlier in the
ranking helps developers to effectively and efficiently localize bugs.

Unfortunately, the effectiveness of current state-of-the-art fault localization
techniques is not yet perfect. Faulty program elements are often ranked low in
the returned ranked list. Thus, there is a need to improve the state-of-the-art so
that fault localization techniques can provide better assistance for developers while
minimizing the cost of performing bug fixing tasks.

Fault localization boils down to the problem of computing good suspicious-
ness scores to differentiate faulty and correct program elements. The com-

putation of the suspiciousness scores in effect answers the following question:
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What is the strength of association between the executions of a particu-

lar program element with failures?

Various association measures in the data mining and statistics communities,
such as odds ratio [9], Yule’s Q [148], and Yule’s Y [149] have been proposed
to measure the strength of association between two variables of interest. For exam-
ple, one might be interested in the association between an application of a particular
medical treatment with recovery from an illness, or in the association between an
execution of a business strategy with a revenue change. There are several studies
that evaluate the effectiveness of some similarity coefficients, e.g., Jaccard [3, 4],
Sorensen-Dice [4], Anderberg [4], Simple Matching [4], Rogers and Tanimoto [4],
and Ochiai II [4].

Thus, a general solution for fault localization can naturally emerge based on
the proliferation of association measures in the literature: measure the strength of
association between a program element’s executions and failures, and the stronger
the association is, the more likely the program element is a fault.

Besides Tarantula and Ochiai which have been used for fault localization, there
are rich varieties of association measures that have not been studied for fault local-
ization. This chapter aims to fill this gap by investigating the effectiveness of 40
well-known association measures as methods to rank program elements for the pur-
pose of fault localization and compare them with Tarantula and Ochiai. In particular,

we are interested in answering the following research questions (RQs):

RQ 1. Are vanilla or off-the-shelf association measures accurate enough in local-

izing faults?

RQ 2. Among 40 association measures, which of the association measures are the

most accurate for localizing faults?

RQ 3. What is the relative performance of off-the-shelf association measures as

compared to well-known suspiciousness measures (in particular, Tarantula
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and Ochiai) for fault localization?

RQ 4. Is the accuracy of off-the-shelf association measures, of Tarantula, and of
Ochiai, in localizing faults for programs written in C, different from their

accuracy in localizing faults for programs written in Java?

RQ 5. What is the effectiveness of off-the-shelf association measures, Tarantula,

and Ochiai in localizing different types of bugs?

RQ 6. What is the accuracy of off-the-shelf association measures, Tarantula, and

Ochiai in localizing bugs in multiple-bug programs?

We use association measures as measurements to rank program elements in a
program for the purpose of locating faults. We investigate and compare the accura-
cies of Tarantula, Ochiai, and the additional 40 association measures on programs
from the Siemens test suite [125], and three larger programs from Software Infras-
tructure Repository (SIR) [35]. The latter includes Space which is written in C, and
NanoXml and XmlSecurity, which are written in Java. The programs come along
with seeded bugs, test cases, and test oracles to decide between failures and non-
failures. We show that a few association measures could better localize faults than
Ochiai and that many are better than Tarantula.

The contributions of this work are as follows:

1. We comprehensively investigate the effectiveness of 40 association measures

for fault localization.

2. We highlight a few promising association measures that can outperform two
well-known spectrum-based fault localization approaches (i.e., Tarantula and

Ochiai) and those that are comparable with these two approaches.

3. We provide a partial order of association measures in terms of their accuracy

for fault localization.
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4. We characterize the effectiveness of the association measures, Ochiai, and

Tarantula on programs written in different programming languages.

5. We analyze different kinds of bugs and investigate the effectiveness of the
40 association measures, Ochiai, and Tarantula in localizing each of these

categories of bugs.

6. We investigate the accuracy of the 40 association measures, Ochiai, and

Tarantula in localizing faulty programs containing multiple bugs.

4.2 Concepts & Definitions

In this section we formally introduce the problem of spectrum-based fault localiza-
tion as the computation of association strengths between the executions of various
program elements and failures. Also, we describe the concept of dichotomy matrix

that is used in the calculation of these association strengths.

4.2.1 Spectrum-Based Fault Localization

This problem starts with a faulty program, a set of test cases, and a test oracle.
The test cases are run over the faulty program and observations on how the program
runs on each of the test cases are recorded as program spectra. A program spectrum
represents certain characteristics of an execution of a program, providing a behavior
signature of the execution [117]. The signature of a behavior could be a set of
counters, each of which indicates the number of times each program element (e.g.,
statement, basic block, path, etc.) is executed in one execution [52]. The counters
could also simply be 0-1 flags that indicate whether an element is executed. A test
oracle is available to label whether a particular output or execution of a test case
is correct or wrong. Wrong executions are classified as program failures. The task

of a fault localization tool is to find the program elements that are responsible for
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the failures (i.e., the faults or the root causes) based on the program spectra of both
correct and wrong executions.

Various spectra have been proposed in the literature [3,52]. Different spectra
may have different effects on the effectiveness of fault localization. The block-hit
spectra are at a suitable profiling granularity because all code in the same basic
block has the same execution pattern and there is no need to instrument individual
instructions in a granularity finer than blocks. Also, it has been shown that the
instrumentation costs to obtain such spectra are relatively low and it can be used
for effective fault localization [3-6,52]. The granularity has a balance between
reducing instrumentation costs and having sufficient bug-revealing capabilities.

In this work, we use block-hit program spectra, each of which consists of a set
of flags to indicate whether each basic block is executed or not in each test case.
An example of block-hit program spectra is shown in Figure 4.1. The first column
contains identifiers of basic blocks. The second column contains the statements
in the corresponding basic blocks. The other columns indicate whether each basic
block is executed in test cases T15, T16, T17, and T18 along with the information
whether each of the test cases passes or fails. In this example, e denotes that a
basic block is executed by a test case and an empty cell denotes that the block is
not executed by the test case. In the code snippet, a bug lies in the condition of
the i f statement in Block 3, causing Blocks 4-5 to be skipped when the variable
count is 1. Note that in test cases T16-T18, execution of Block 2 that contains
return statement is followed by the execution of Block 3. Normally, Block 3 should
not be executed, but since the function containing this code snippet is being called
inside a loop, thus this block is executed.

Based on these spectra, we want to compute the suspiciousness score of each

program element following Definition 4.2.1.

Definition 4.2.1 (Suspiciousness Score) Consider a program P = {eq, ..., e, } and

a set of program spectra T' = T, U Ty for P, where P comprises of n elements
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Block ID | Program Elements T15 | T16 T17 T18

1 int count; ° ) ° )
intn;

Ele *proc;
List *src_queue, *dest_queue;
if (prio >= MAXPRIO) /*maxprio=3*/

{return;}

src_queue = prio_queuelprio]; [} [} [} [ ]
dest_queue = prio_queue[prio+1];

count = src_queue->mem_count;

if (count > 1) /* Bug*//* expected : count>0*/ {
4 n = (int) (count*ratio + 1); ) °
proc = find_nth(src_queue, n);
if (proc) {

5 src_queue = del_ele(src_queue, proc); [ [
proc->priority = prio;

dest_queue = append_ele(dest_queue, proc); } }}

Status of Test Case Execution : | Pass | Pass | Pass Fail

Figure 4.1: Example of block-hit program spectra

Symbol | Definition

n Total number of test cases in the test suite

n(e) Number of test cases that execute a program element e
Mg Total number of correct test cases

ny Total number of failed test cases

ns(e) Number of correct test cases that execute a program element e
nys(e) Number of failed test cases that execute a program element e

Table 4.1: Some common notations

e, ...,en and 'T' comprises the spectra for correct executions Ty and the spectra
for wrong executions Ty. We would like to measure the strength of the association
between the executions of each e; and program failures and assign this strength as

the suspiciousness score of e; denoted as suspiciousness(e;).

Tarantula

Jones and Harrold propose Tarantula [65] to rank program elements based on their
suspiciousness scores. Intuitively, a program element is more suspicious if it ap-
pears in failed executions more frequently than in correct executions. Considering
a program P and a test suite 7', Table 4.1 introduces some common notations that

are used in the rest of this work.
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Tarantula computes suspiciousness score for a program element e as follows:

suspiciousness(e) =

Based on block-hit program spectra shown in Figure 4.1, the suspiciousness
score of Block 3 that contains the bug is ﬁ = 0.5. Block 1 has the same sus-
piciousness score. Interestingly, Block 2 receives the highest suspiciousness score:

1/1

TR = 0.6. Following the same calculation, Blocks 4 and 5 are not suspicious

because there is no failure that executes these blocks. Assuming developers inspect
program elements one by one from the most suspicious to the least suspicious, the

bug in Block 3 can be found after inspecting at most 3 blocks.

Ochiai

Abreu et al. [6] propose Ochiai to assign suspicious scores to a program element.
Given a program element, Ochiai analyzes the number of failed test cases that ex-
ecute the program element (i.e., n¢(e)), the total number of failed test cases (i.e.,
ny), and the number of test cases that execute the program element (i.e., n(e)).

Similar to Tarantula, Ochiai considers an element more suspicious if it occurs more

frequently in failed executions than in correct executions ( computed as 4/ 7;{(?))).

Ochiai calculates the suspiciousness score of a program element as follows:

suspiciousness(e) = ny(e) _ ny(e)

 ng(ng(e) +ng(e))  /gmn(e)

Using the same example shown in Figure 4.1, Blocks 1 and 3 receive a sus-
piciousness score of: 1 /\/m = 0.50. Similar to Tarantula, Ochiai also
returns Block 2 as the most suspicious block: 1/ \/m = (.58, while the re-
maining blocks are assigned suspiciousness scores of 0. Both Tarantula and Ochiai
can find the bug after inspecting 3 blocks. In this study, we are interested in inves-

tigating other association measures that can possibly localize the bug earlier.
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4.2.2 Dichotomous Association

A common characteristic of the association measures evaluated in this work is that
they are all defined based on dichotomy matrices. The following are the necessary

definitions.

Definition 4.2.2 (Dichotomy) A dichotomous outcome is an outcome whose val-
ues could be split into two categories, e.g., wrong or correct, executed or skipped,
married or unmarried, etc. A dichotomous variable is a variable having a dichoto-
mous outcome. A dichotomy matrix is a 2 X 2 matrix that tries to associate two
dichotomous variables in the form of a 2 X 2 contingency table which records the
bivariate frequency distribution of the two variables.

An example of a dichotomy matrix D(A, B) relating variables A and B is shown
in Table 4.2. The value cyy corresponds to the number of observations in which the
value of variable A equals to Ay and the value of variable B equals to By. The

values of the other three entries in the dichotomy matrix are similarly defined.

[A=A[A=4]
B = B, €00 Co1
B =B C10 C11

Table 4.2: An example of a dichotomy matrix. We refer to it as D(A, B).

Based on the concept of dichotomy matrix, we introduce dichotomous associa-

tion in Definition 4.2.3.

Definition 4.2.3 (Dichotomous Association) A dichotomous association is a spe-
cial form of bivariate association [54] which measures the strength of association
between two dichotomous variables, e.g., application of a medical treatment and
recovery from the disease, job satisfaction and productivity, and program element
execution and program failure. The formulae for calculating dichotomous associa-

tions depend on the four entries in dichotomy matrices.

Given a dichotomy matrix relating two variables, two questions are often asked:
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1. Is there a (dichotomous) association between the two variables?

2. How strong is the association between the two variables?

A common way to answer these two questions is to define a formula, referred as
an association measure, to calculate a score based on the four entries in a dichotomy
matrix and consider that the association exists (or is strong) if the score is beyond a

particular threshold. We define association measure in Definition 4.2.4.

Definition 4.2.4 (Association Measure) An association measure M of two vari-
ables A and B is a mathematical function of the four entries of a dichotomy matrix
D(A, B), and is denoted as M (A, B, D(A, B)) or simply M (A, B, D) if it is clear

from the context.

In fault localization, we could produce a dichotomy matrix that relates the exe-
cutions of a program element with program failures. Consider a program element
e. For each test case, a trace is generated when a subject program is executed on the
test case. Some traces execute e, others do not. Some traces correspond to failures,
others correspond to correct executions. After the test cases are run, a dichotomy

matrix as shown in Table 4.3 is produced for every program element e.

’ H e Executed \ e Not Executed ‘

Test Passed ns(e) ns(e)
Test Failed ne(e) nys(€)

Table 4.3: Dichotomy matrix for fault localization.

The notation € means e is not executed, while other notations are defined in
Table 4.1. Thus, n,(€) is the number of test cases that do not execute e and pass,
while 7 (€) is the number of test cases that do not execute e and fail.

Considering variables £~ and F' to represent the execution of a program element
and the occurrence of a program failure, respectively, we are interested in computing
M(E.F,D.(E,F)) (i.e., the association between the execution of e and a failure),

where D, (E, F') represents the dichotomy matrix of the two variables E and F' for
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a program element e. The formulae of the 40 association measures are given in

Section 4.3.

4.3 Association Measures

In this section, we first describe how a dichotomy matrix can be constructed. Next,
we present how the 40 association measures can be computed from a dichotomy
matrix. Finally, we give an example that sorts program elements for inspection

using the association measures.

4.3.1 Constructing a Dichotomy Matrix

Constructing a dichotomy matrix requires program instrumentation that supports
collection of program execution traces and a test oracle. In this work, we instru-
ment all the buggy programs in our dataset at the basic block level. We manually
instrument C programs and use Cobertura! to instrument Java programs. In order
to construct a dichotomy matrix, we collect program execution traces that con-
tain information about basic blocks that are executed by each test case. The test
oracle then gives us information on whether a test case fails or passes.

Next, for each basic block, we construct a dichotomy matrix by counting the
number of times the basic block is executed by the passing test cases (denoted
as ns(e)), the number of times the basic block is not executed by the passing test
cases (denoted as n,(€)), the number of times the basic block is executed by failing
test cases which is denoted as n(e), and the number of times the basic block is not
executed by failing test cases which is denoted as ns(€). The information in this
dichotomy matrix is then used as an input to the association measures to calculate

how likely it is that the corresponding basic block contains a bug.

"http://cobertura.sourceforge.net/
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4.3.2 Association Measures

There have been a number of studies proposed in the statistics and data mining com-
munity on measures of association between variables since the early 20th century.
These include measures such as Yule’s Q and Yule’s Y [148, 149]. Other measures,
such as the Odds Ratio [9], are also commonly considered and utilized in various
domains, such as medicine [10] and social science [54]. In the data mining com-
munity, Agrawal and Srikant have proposed association rule mining to infer associ-
ations from two itemsets in a transaction dataset in the early 90s [8]. They propose
the metrics of support and confidence for measuring the strength of an association.
Various other metrics, such as interest and collective strength, were proposed later.

Various association measures have been studied by comparing their properties,
and investigating the benefits and limitations of each from a computational point
of view [132]. The measures are revisited by Geng and Hamilton by including
measures for aggregated data summaries [44]. Some of the association measures
have been studied for fault localizations, e.g. Jaccard [3, 4], Sorensen-Dice [4],
Anderberg [4], Simple Matching [4], Rogers and Tanimoto [4], and Ochiai II [4].
In this work, we revisit the effectiveness of the measures that have been studied
before in localizing faults, because their effectiveness on localizing various kinds of
bugs and localizing bugs in multiple-bug programs have not been evaluated.

We investigate the effectiveness of 40 association measures in localizing var-
ious kinds of bugs that reside in single-bug and multiple-bug programs. The 40
association measures that we consider are as follows: ¢-coefficient [54], odds ra-
tio [9], Yule’s Q [148], Yule’s Y [149], Kappa [32], J-Measure [127], gini in-
dex [45], support [8], confidence [8], Clark and Boswell’s Laplace accuracy [29],
conviction [24], interest [24], cosine [132], Piatetsky-Shapiro’s Leverage [108],
certainty factor [124], added value [132], collective strength [7], Jaccard [51],
Klosgen [75], information gain [26, 112], Coverage [44, 103], Accuracy [44, 103],

Leverage [44, 103], Relative Risk [44, 103], Interestingness Weighting Depen-
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P(A) = ng(e)+ns(e) P(A,B) = ng(e) P(B|A) = P(A,B)

n

P(A) = "f(é)jl-ns(ﬁ) P(4,B) = ns (@) P(A|B) = P(A,B)

P(B) = ng(e)+ng(€) P(A,B) = ns(e)

n

P(B) = "l2tn@ | p(4 B) = "

n

Table 4.4: Preliminary definitions and equations.
dency [44, 103], Goodman and Kruskal [44, 46, 103, 132], Normalized Mutual In-

formation [44, 103, 132], One-Way Support [44, 103], Two-Way Support [44, 103],
Two-Way Support Variation [44, 103], Loevinger [44], Sebag-Schoenauer [44],
Least Contradiction [44], Odd Multiplier [44], Example and Counterexample
Rate [44], Zhang [44], Sorensen-Dice [34, 129], Anderberg [11], Simple Match-
ing [128], Rogers and Tanimoto [118], and Ochiai II [102].

The mathematical formulae of the association measures are defined in terms
of probabilities, instead of frequencies, but we can derive the probabilities from
the frequencies recorded in dichotomous matrices. The mathematical formulae for
calculating the association measures, including Tarantula and Ochiai, are given in
Tables 4.5 and 4.6. The ranges of values that these association measures can take

are given in Tables 4.7 and 4.8.

4.3.3 From Association to Suspiciousness

From Section 4.2, the suspiciousness score for a program element e with dichotomy
matrix D, is defined as the strength of the association between the executions of e
with failures (i.e., M(E, F, D.)). M refers to one of the 40 association measures
presented in Section 4.3.2.

Next, we illustrate how an association measure could be used to rank program
elements for inspection. Using the example in Figure 4.1, we observe that there
are 5 blocks: Blocks 1, 2, 3, 4, and 5. The bug resides at the if statement in

Block 3. The suspiciousness score of Block 3 is determined by the association

40



Name Formula

¢-Coefficient (M) E Aff;?;gf;?jﬁfﬂ =)

Odds ratio (Ma) %ﬁg?

Yule's Q (M) PABIPCD P(BIPCL) — o1

s Y (a1 e e
P(A,B)+P(A,B)—P(A)P(B)—P(A)P(B)

Kappa (M)
J-Measure (M)

Gini Index (Mr)

Support (M)

Confidence (My)

Laplace (M)
Conviction (M)
Interest (M2)
Piatetsky-Shapiro’s (Mi3)
Certainty Factor (M4)
Added Value (Mis)
Collective Strength (M)
Jaccard (M;7)

Klosgen (Mg)

Information Gain (M)

1—P(A)P(B)—P(A)P(
max(P(A, B) log(Z&A))

P(4, B)log(5212)) + P(AB) log(ZA42)))
max(P(A)[P(B|A)® + P(B|A)] +

P(B[A)? — P(B)? — P(BP(B)P(AB)® +
P(A|B)?| + P(B)[P(A[B)?

P(A)?)

P(A,B)

max(P(B|A), P(A|B))
P(A,B)+1 P(AB)+1
( P(A)+2 P(B)+g)
PAP(B) PBIPEA)y
P(AB) ’ P(BA)
P(A,B)
P(A)P(B)
P(A, B) — P(A)P(B)
P(B|A)~P(B) P(A|B)-P(A
max( (1|—I)3(B)( g (1|—1)3(A)( )
max(P(B|A) — P(B), P(A|B) — P(A)
P(A,B)+P(A,B) 1-P(A)P(B)—P(A)P(B)
P(A)P(B)+P(A)P(B) 1-P(A,B)-P(AB)
P(A,B)
P(A)+P(B)—P(A,B)

V'P(A, B) max(P(B|A) — P(B), P(A|B) — P(4))
(—P(B)logP(B) — P(B)log P(B)) — (P(A) x

—P(B|A)log P(B|A)) — P(B|A)log P(B|A) —
( ) x (—P(BJA)log P(B]A)) -
P(B|A)log P(B|A)))

max

max(

D>\

Table 4.5: Definitions of association measures, Tarantula, and Ochiai [Part I].
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Name

Formula

Coverage (M2o)

Accuracy (Ma1)

Leverage (Ma2)

Relative Risk (Ma3)
Interestingness Weighting Depen-

dency (Ma4)

Goodman and Kruskal (Mas)
Normalized Mutual Information
(Mas)

One-Way Support (Ma7)
Two-Way Support (M2s)

Two-Way Support Variation (Mag)

Loevinger (M30)
Sebag-Schoenauer (Ms1)
Least Contradiction (M32)
0Odd Multiplier (M33)
Example and Counterexample Rate
(M3a)

Zhang (M35)
Sorensen-Dice (Mszs)
Anderberg (Ms7)
Simple-Matching (Mss)
Rogers and Tanimoto (M3g)

Ochiai II (M40)

Tarantula

Ochiai

P(A)
P(A, B) + P(4,B)

P(B|A) — P(A)P(B)

P(B|A)/P(B|A)

(e -

BAPE) 1)P(A, B)™ where k,m are coefficients of depen-

dency and generality, respectively, weighting the relative importance

of the two factors.

22 max; P(A;,Bj)+30; maz; P(A;,B;)—maxz; P(A;)—maxz; P(B;
2—maz;P(A;)—maz; P(B;))

P(Aq,Bj)

ZiZjP(Ai7Bj)l092P(A YP(B; )/{ > P(Ai)log2P(Ai)}
P(A,B
P(B|A)logz a0 #pyy
P(A,B)
P(4, Bﬂog?(P(f(nP(B))
P(A,B) = P(A,B)
P(A, Bllog2tpraspmy  +  PlABloggriedy
i P(A,B) ) P(A,B)
P(A, B)loggm + P(A, B)logzm
| _ PAEB)
P(A,B)
P(A,B)
P(A,B)
P(A,B)—P(A,B)
P(B)
P(A,B)P(B)
P(B)P(A,B)
1 _ P(AB)
P(A,B)

P(A,B)—P(A)P(B)
max(P(A,B)P(B),P(B)P(A,B)

2P(A,B)
2P(A,B)+P(A,B)+P(A,B)

P(A,B)
P(A,B)+2(P(A,B)+P(A,B))
P(A,B)+ P(A,B)
P(A,B)+P(A,B)
P(A,B)+P(A,B)+2(P(A,B)+P(A,B))
P(A,B)+P(A,B)

\/(P(ﬁ,B)E)P(KB))(P(A,B)+P(A7§))(P<K§)+P(Z,B))(P(ZEHP(AE))

Table 4.6: Definitions of association measures, Tarantula, and Ochiai [Part II].
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Name Range No | Perfect
¢-Coefficient (M) —-1...0...1 0 1
Odds ratio (M) 0.. .00 1 00
Yule’s Q (Ms) —1...0...1 0 1
Yule’s Y (M) —1...0...1 0|1
Kappa (M5) —1. 1 0 1

J Measure (Ms) 0...1 0 1
Gini index (Mr) 0...1 0 1
Support (Ms) 0...1 0 1
Confidence (My) 0...1 0 1
Laplace (M) 0...1 0 1
Conviction (M) 0.5 .00 1 00
Interest (M;2) 0.. .00 1 00
Piatetsky-Shapiro’s (Mi3) —0.25...0...0.25 0 0.25
Certainty factor (M;4) -1.. 1 0 1
Added Value (M;5) —0.5...0.. 0 1
Collective strength (M) 0.. .00 1 00
Jaccard (M) 0...1 0 1
Klosgen (M;g) (L -1)?2-3 - 5l 0. 3275 0 %
Information Gain (M) 0...1 0 1

Table 47 Value ranges of the association measures, Tarantula, and Ochiai [Part I]. The third and fourth columns give
the values corresponding to no association and perfect association respectively. Values of measures with ranges in the format
of a...b(e.g., J-Measure (0...1), etc.) indicate positive associations with failures. Values of measures with ranges in the
formatofa...b...c(e.g., ¢-coefficient (-1..0..1), etc.) indicate positive associations with failures (if they are between b and
¢), or negative associations with failures (if they are between a and b). Values closer to a imply stronger associations with

passing executions.
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Name

Range

Z
S

Perfect

Coverage (Msg)

1

Accuracy (Ma)

1

Leverage (Maz)

1

Relative Risk (Ma3)

Interestingness Weighting Dependency (May4)

Goodman and Kruskal (Mas)

Normalized Mutual Information (Mag)

One-Way Support (Ma7)

Two-Way Support (Mag)

Two-Way Support Variation (Mag)

Loevinger (Ms)

—_ | o | = | = | = [ = | =

Sebag-Schoenauer (M3;)

Least Contradiction (M33)

—18

Odd Multiplier (M33)

Example and Counterexample Rate (M3s4)

Zhang (M3s5)

Sorensen-Dice (Msg)

Anderberg (Ms7)

Simple-Matching (Mss)

Rogers and Tanimoto (M3sg)

Ochiai IT (Myg)

Tarantula

=l el el ol ol o ==} Rl i} Joj ol Joj ol Nol e} el 5 E=2 R =2 R=]

Ochiai

P(A,B)

’—t’—l’d’d’d"’—"—t’—tg

Table 4.8: Value ranges of the association measures, Tarantula,
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strength between the executions of Block 3 and failures. For example, by using
one of the association measures, e.g., Coverage, Blocks 3 and 1 receive the highest
suspiciousness score, i.e., 1, followed by Block 2 whose suspiciousness score is
0.75. The suspiciousness scores of Blocks 4 and 5 are 0.5. This particular measure
can rank the block containing the bug such that no other blocks receive a higher
score. However, Tarantula and Ochiai are unable to do so—see Section 4.2 for

details.

4.4 Empirical Evaluation

In this section we describe our datasets, our evaluation metrics, and evaluation re-

sults.

4.4.1 Datasets

Based on the availability of the programs listed in Table 2.1, which have been
used in previous studies, we choose our subject programs as follows. We an-
alyze different programs from Siemens Test Suite [58]. Siemens programs are
injected with realistic bugs and are often analyzed for fault localization stud-
ies [3,5,6,18,21,31,48,61,65,91,92,94, 116, 122]. We also analyze other three
real programs from Software-artifact Infrastructure Repository (SIR) [125] namely:
Space [4,5,65,66], NanoXML [122], and XML-Security [122]. Space is written in
C, while NanoXML and XML-Security are written in Java. The average number of
lines of code for the various versions of Space, NanoXML and XML-Security are
6,218, 4,223, and 21,275 respectively.

The Siemens test suite was originally used for research in test coverage ade-
quacy and was developed by Siemens Corporation Research. We use the variant
provided at www.cc.gatech.edu/aristotle/Tools/subjects/. Each program contains
many different versions where each version has one bug. These bugs comprise

a wide array of realistic bugs. The Siemens Test Suite comes with 7 programs:
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print_tokens, print_tokens2, replace, schedule, schedule2, tcas, and tot_info. The
total number of buggy versions is 132, as shown in Table 4.9. We manually in-
strumented the buggy versions at the basic block level. Since our instrumentation
cannot reach the bugs that reside in variable declarations, we exclude versions that
contain this type of bugs, i.e., versions 6, 10, 19, 21 of tot_info dataset, version 12 of
replace dataset, and versions 13, 14, 15, 36, 38 of tcas dataset. We exclude versions
4 and 6 of print_token because they are identical to the original version. We also
exclude version 9 of schedule2 because there is no test case for it that results in a
failure. Thus, in total, we use 119 buggy versions from the Siemens test suite.

Space is an interpreter for Array Definition Language (ADL) used by European
Space Agency. We analyze all 35 faulty versions of Space downloaded from SIR.
NanoXML is a utility for parsing XML. SIR contains 5 versions of NanoXML. We
exclude NanoXML _v4 because there is no test case for this program that results in
a failure. For each version, SIR provides a few bugs. In total there are 32 buggy
versions for NanoXML_v1, NanoXML_v2, NanoXML_v3, and NanoXML_v5, and
we analyze 30 of them. We exclude two buggy versions because there is no test
case that results in a failure. XML-Security is a Java library that supports digital
signature and encryption. SIR contains 3 versions of XML-Security. Again for
each version, SIR provides a few bugs. In total there are 32 buggy versions for
XMLSec_vl, XMLSec_v2, and XMLSec_v3. We exclude 16 buggy versions be-
cause there is no test case that results in a failure. Thus, the total number of buggy
versions that we analyze for the 3 programs are 81.

Table 4.9 provides the number of lines, the programming language in which the
program is written, the number of faulty versions, and the number of test cases for

each subject program.
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Dataset LOC | Language | Num. of Faulty Version | Num. of Test Cases
print_token 478 C 5 4130
print_token2 399 C 10 4115
replace 512 C 31 5542
schedule 292 C 2650
schedule2 301 C 2710
tcas 141 C 36 1608
tot_info 440 C 19 1051
space 6,218 C 35 13,585
NanoXML v1 3,497 Java 6 214
NanoXML v2 4,007 Java 7 214
NanoXML v3 4,608 Java 9 216
NanoXML v5 4,782 Java 8 216
XML security vl | 21,613 Java 6 92
XML security v2 | 22,318 Java 6 94
XML security v3 | 19,895 Java 4 84

Table 4.9: Dataset descriptions
4.4.2 Evaluation Metrics

We use 40 association measures, Tarantula, and Ochiai to rank program elements
based on their suspiciousness. Developers could then use this list to investigate the
more suspicious program elements first. We assume that developers would be able
to identify the buggy program element when they inspect it.

We consider two commonly used evaluation metrics: average percentage of code
inspected to find all bugs, and proportion of bugs found when a given proportion of

the code is inspected. We describe these two metrics in the following paragraphs.

Percentage of Code Inspected.

We evaluate the performance of the measures by the number of elements that are
ranked as high or higher than the program element containing the fault/bug. For a
suspiciousness score to be effective, buggy program elements should have a rela-
tively larger value of suspiciousness scores than the non-buggy elements.

When a buggy program element has the same suspiciousness score as several
other elements, the lowest rank of the elements that has this suspiciousness score

is used as the rank of the buggy element. For example, consider the case where
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the two highest suspiciousness scores are 0.92 and 0.91, two elements (e.g., e; and
e2) have suspiciousness scores of 0.92, and 3 elements (e.g., e3,e4 and e;) have
suspiciousness scores of 0.91. Since we do not know how the programmer will
traverse elements that have the same suspiciousness score, we use the worst case
scenario where the programmer inspects all elements having the same score. In this
case, e; and e; have arank of 2, while e5 to e5 have a rank of 5. In the situation where
a buggy version contains multiple bugs or one single bug that involves multiple
program elements, we use the lowest rank among the buggy elements as it is the
worst case rank that represents scenarios when programmers would like to find all
the buggy elements by using the given list of most suspicious program elements.

Ranking program elements by using suspiciousness score is useful to evaluate
the accuracy of a fault-localization approach. However, it may not be representa-
tive enough to know how programmers really locate the bugs with their expertise,
as this ranking approach does not provide the context of the bugs to help program-
mers in understanding the root cause of the bugs, as the study by Parnin and Orso
has shown [106]. An interesting future study would be to augment suspiciousness
ranking with some additional information to more effectively guide programmers to
locate all buggy program elements.

Given a list of most suspicious program elements produced by a suspiciousness
measure, in this work, we assume that programmers would inspect the program
elements from the most to the least suspicious ones in the list. Hence, an effective
suspiciousness measure should rank buggy elements first. We then use this rank to
compute the percentage of program elements that need to be inspected to find the

buggy elements by the formula:

largest rank among the buggy elements

total elements

In our experiment, we thus choose to use basic block as the granularity of the

elements and the above percentage is applied as the first accuracy criterion of the
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association measures. The accuracy of a particular measure to localize bug in all
buggy versions of our datasets is then evaluated by calculating the overall mean of
all percentages of code inspected for the measure which is the average of the per-
centages of code inspected of the measure for all buggy versions in our datasets.
The smaller the overall mean, the more accurate the measure in localizing bug.
However, the overall mean might not necessarily indicate that the measure would
localize bugs with the same accuracy for all buggy versions. A measure could have
a good accuracy in localizing one bug, but might not have a good accuracy in local-
izing other bugs. Thus, we also calculate the measure’s overall standard deviation
to evaluate its variance of percentages of code inspected for all buggy versions. The
smaller the overall standard deviation, the better the overall mean reflects the accu-
racy of the measure because of less variation of percentage of code inspected for all

buggy versions.

Proportion of Bugs Localized.

Next, we calculate the percentage of bugs that could be localized assuming that the
developers are only willing to investigate a given proportion of code. To compute
this measure we vary the proportion of code that the developers are willing to inspect

and for each proportion we compute the percentage of bugs that can be localized.

4.4.3 Evaluation Results

We describe the accuracy of the association measures in comparison with Ochiai
and Tarantula in the following paragraphs.

Percentage of Code Inspected.

We calculate the overall means and standard deviations of percentage of code in-
spected for the 40 association measures, Ochiai and Tarantula for all subject pro-

grams, as shown in Table 4.10. Among the 40 measures, Klosgen (M;g) achieves
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the smallest average percentage of code inspected i.e., 25.24%, which is better than
Ochiai (i.e., 25.45%) and Tarantula (i.e., 27.13%). Intuitively, Klosgen also consid-
ers that a program element is more suspicious when it is executed more often by the
failed test cases. It measures the suspiciousness of a program element by consider-
ing two main conditions. First, it measures the difference between the probability
that a test case would fail, given that the element was executed, and the probabil-
ity that a test case would fail during its execution (i.e., P(B|A) — P(B)). Second,
it measures the difference between the probability that a program element would
be executed, given that a test case was failed during its execution, and the proba-
bility that that program element would be executed (i.e., P(A|B) — P(A)). Then,
Klosgen takes the maximum likelihood among these two conditions. The compar-
ison between these two conditions can enrich the information to infer the faulty
elements.

In addition, a number of the association measures has similar accuracy with
Klosgen (M;g) and Ochiai (i.e., having a mean in the range of 25.66% and 26.24%):
Collective Strength (M/;6), Normalized Mutual Information (M), ¢-Coefficient
(M), Added Value (M;5), Two-Way Support (Msg), and Interestingness Weight-
ing Dependency (M»,). We notice that 11 other measures can achieve similar accu-
racy as Tarantula (i.e., having a mean between 26.60% to 27.12%) i.e., J-Measure
(Ms), Information Gain (Mjg), Two-Way Support Variation (Msg), Example and
Counterexample Rate (Ms,), Confidence (My), Kappa (Ms), Sebag (Ms;), Odd
Multiplier (M33), Interest (Mis), Zhang (Mss), and One-Way Support (Ma7).

In our dataset, we have 15 subject programs where each subject program has a
number of buggy versions. Since the accuracy of association measures in localizing
bugs may vary for different programs, we then evaluate the accuracy of the measures
in localizing bugs for each program. Tables 4.12 and 4.13 shows the mean and stan-
dard deviation of each measure in localizing faults for each subject program. Based
on the results, almost half of the measures could localize bugs in buggy versions of

schedule when less than 10% of code is inspected. The measures generally require
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Association Measures Mean StdDev | Association Measures Mean StdDev
Klosgen(Mig) 25.24% | 27.13% | Anderberg(Ms7) 27.60% | 27.30%
Ochiai 25.45% | 26.54% | Sorensen-Dice(Msg) 27.61% | 27.28%
Collective Strength(M16) 25.66% | 26.86% | Ochiai II(Mao) 28.23% | 28.88%
Normalized Mutual Information(Ma2g) 25.68% | 26.38% | GiniIndex(M7) 28.23% | 28.43%
¢-Coefficient(M7) 25.73% 27.07% Leverage(Ma2) 29.46% 28.12%
Added Value(M;5) 25.74% 27.50% Least Contradiction(M32) 33.42% 28.82%
Two-Way Support(Mag) 26.03% | 27.25% | Rogers and Tanimoto(Mzg) 33.47% | 28.85%
Interestingness Weighting Dependency (M24) 26.24% | 27.42% Accuracy(Ma1) 33.68% | 28.81%
J-Measure(Mg) 26.60% | 27.51% | Simple-Matching(Masg) 33.68% | 28.81%
Information Gain(Mi9) 26.73% 27.53% Odds Ratio(M2) 41.61% 21.34%
Two-Way Support Variation(Mag) 26.73% | 27.53% | Yule’s Q (Ms) 41.68% | 21.45%
Example and Counterexample Rate(Mz4) 26.96% | 27.12% | Yule’s Y (My) 41.69% | 21.44%
Confidence(My) 26.99% | 27.25% | Certainty Factor(My4) 41.73% | 21.26%
Kappa(Ms) 27.04% | 27.21% | Conviction(M11) 41.73% | 21.27%
Sebag(Ms1) 27.09% | 27.18% | Relative Risk(Ma3) 4482% | 22.01%
Odd Multiplier(M33) 27.09% 27.20% Laplace(M10) 45.34% 21.63%
Interest(M12) 27.10% | 27.19% | Support(Msg) 45.44% | 21.65%
Zhang(Ms3s5) 27.11% 27.17% Goodman and Kruskal(M2s5) 45.74% 37.82%
One-Way Support(Ma7) 27.12% | 27.26% | Coverage(Mazg) 47.02% | 24.37%
Tarantula 27.13% | 27.17% | Piatetsky-Shapiro’s(M3) 57.37% | 24.50%
Jaccard(M17) 27.47% | 27.36% | Loevinger(Msg) 57.57% | 25.35%

Table 4.10: Overall mean and standard deviation (in parentheses) of accuracy values
(smaller the better)

more than 10% of the code to be inspected in order to localize bugs for the other
five C programs (i.e., print_tokens, schedule2, replace, tcas, and tot_info) and the
Java programs.

We observe that the average percentages of code inspected for all measures in
localizing bugs for XML security programs are the same. This is due to the fact that
program elements in those programs are either executed by both failed and passed
test cases, or are not executed at all. Given the above fact, each element only has
two possible dichotomy matrices (i.e., a matrix that is used by association measures
to calculate the suspiciousness score of a program element). Table 4.11 shows two
possible dichotomy matrices for buggy programs of XML Security version 1. As
each possible dichotomy matrix has only two non-zero values, not much informa-
tion can be inferred from the program spectra to rank the program elements, hence
all measures perform similarly.

Hence, not much information can be inferred from the program spectra to rank
the program elements and all measures perform similarly.

We also perform statistical tests for each pair of measures including Tarantula

and Ochiai using Wilcoxon signed rank test [139] to evaluate if some measures are
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Figure 4.2: Accuracy partial order
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« Executed | « Not Executed ‘ ’ - Executed | « Not Executed ‘
Test 91 0 Test 0 91
Passed Passed
Test 1 0 Test 0 1
Failed Failed

Table 4.11: Two possible dichotomy matrices for buggy programs of XML Security
version 1: [left] a program element is executed by all test cases; [right] a program
element is not executed at all.

statistically significantly better than others (i.e., p-value is smaller than 0.05). The
Wilcoxon test does not assume that the data should follow certain distribution.

We visualize the statistical significance relationship as a partial order as pre-
sented in Figure 4.2. A link from A to B in the partial order denotes that A is
statistically significantly better than B. The relationships expressed in the partial or-
der are transitive: if A outperforms B, and B outperforms C, then A outperforms
C. To reduce the number of links in the partial order, we omit links that could be
captured by this transitivity property.

Based on the partial order, Klosgen (M;g) and Normalized Mutual Informa-
tion (Msg) have comparable performance as Ochiai. Klosgen (1g), Normalized
Mutual Information (Ms4), and Ochiai are significantly better than Tarantula. We
also notice that 7 other measures also perform significantly better than Tarantula
i.e., ¢-coefficient (M;), Added Value (M;5), Collective Strength (M;4), Two-Way
Support (Mag), Interestingness Weighting Dependency (M»,), Example and Coun-
terexample Rate (M 34), and Kappa (M5). Measures that perform comparably with
Tarantula are Interest (M), One-Way Support (Ms7), Sebag (Ms;), Odds Multi-
plier (Ms3), and Zhang (Ms35). On the other hand, Piatetsky-Shapiro’s (M;3), and

Loevinger (Ms) perform worse than other measures for fault localization.

Proportion of Bugs Localized.

For each measure, we plot a curve showing the proportion of code that are investi-

gated (x-axis) vs. the proportion of bugs localized (y-axis) for all dataset. We split
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Association Measures Programs
print_token| print_token2 schedule schedule2 | replace tcas tot_info space

¢-Coefficient 21%(25%) | 13%(17%) | 9%(15%) 47%(24%) | 13%(19%) | 56%(27%) | 19%(15%) | *10%(24%)
OddsRatio 43%(19%) | 44%(2%) 49%(28%) | 53%(7%) 34%(16%) | 64%(15%) | 49%(20%) | 23%(20%)
Yule’s Q 43%(19%) | 44%(3%) 48%(28%) | 53%(1%) 34%(16%) | 64%(15%) | 49%(20%) | 23%(20%)
Yule’s Y 44%(18%) | 44%(3%) 48%(28%) | 53%(7%) 34%(16%) | 64%(15%) | 49%(20%) | 23%(20%)
Kappa 28%(26%) | 16%(20%) | 7%(6%) 51%(24%) | 16%(21%) | 56%(27%) | 21%(16%) | *10%(24%)
J-Measure 22%(27%) | 11%(13%) | 14%(19%) | 49%(23%) | *12%(18%)| 56%(29%) | 18%(15%) | 12%(25%)
Gini Index 26%(32%) | 16%(22%) | 12%(12%) | 58%(26%) | 13%(19%) | 58%(29%) | 24%(19%) | 12%(25%)
Support 43%(17%) | 45%(3%) 50%(30%) | 56%(8%) 34%(16%) | 67%(14%) | 51%(20%) | 26%(21%)
Confidence 29%(26%) | 13%(18%) | T%(6%) 51%(24%) | 16%(21%) | 57%(27%) | 23%(16%) | 11%(24%)
Laplace 43%(17%) | 45%(3%) 50%(29%) | 56%(8%) 35%(16%) | 67%(14%) | 50%(20%) | 25%(20%)
Conviction A2%(16%) | 44%(3%) 48%(28%) | 53%(7%) 34%(16%) | 64%(15%) | 49%(20%) | 24%(20%)
Interest 29%(26%) | 17%(20%) | 7%(6%) 51%(24%) | 16%(21%) | 56%(27%) | 22%(16%) | 11%(24%)
Piatetsky-Shapiro’s 61%(32%) | 77%(16%) | T1%(29%) | 68%(28%) | 64%(22%) | 66%(26%) | 63%(28%) | 50%(18%)
Certainty Factor 42%(16%) | 44%(3%) 48%(28%) | 53%(7%) 34%(16%) | 64%(15%) | 49%(20%) | 24%(20%)
Added Value 23%(28%) | 14%(19%) | 7%(10%) 50%(25%) | 13%(20%) | 56%(28%) | 18%(15%) | 11%(24%)
Collective Strength 24%(31%) | 13%(16%) | 11%(20%) | 44%(23%) | 13%(18%) | 55%(27%) | 18%(15%) | *10%(24%)
Jaccard 26%(26%) | 12%(18%) | 7%(6%) 50%(24%) | 15%(21%) | 56%(27%) | 21%(15%) | 11%(24%)
Klosgen 21%(25%) | 11%(15%) | 8%(12%) 48%(24%) | *12%(19%)| 55%(28%) | *17%(13%)| 11%(24%)
Information Gain 22%(27%) | 11%(14%) | 14%(19%) | 49%(23%) | *12%(18%)| 56%(29%) | 19%(16%) | 12%(25%)
Coverage 63%(26%) | 63%(20%) | 69%(30%) | *36%(26%)| 53%(23%) | *47%(25%)| 51%(28%) | 40%(24%)
Accuracy 38%(26%) | 28%(22%) | 11%(5%) 60%(24%) | 27%(22%) | 60%(29%) | 37%(29%) | 15%(26%)
Leverage 30%((28%) | 20%(22%) | 7%(4%) 55%(26%) | 17%(20%) | 59%(28%) | 28%(23%) | 14%(25%)
Relative Risk 44%(19%) | 45%(3%) 50%(28%) | 56%(8%) 35%(16%) | 68%(14%) | 50%(20%) | 23%(20%)
Int. Weighting Dependency 24%(28%) | 15%(20%) | 8%(9%) 50%(24%) | 14%(20%) | 56%(27%) | 21%(16%) | *10%(24%)
Goodman and Kruskal 35%(44%) | 30%(44%) | 67%(38%) | 83%(9%) 40%(40%) | 70%(30%) | 66%(41%) | 19%(31%)
Normalized Mutual Info. 23%(31%) | *9%(11%) | 16%(27%) | 41%20%) | *12%(17%)| 54%(27%) | *17%(13%)| 11%(24%)
One-Way Support 29%(26%) 17%(20%) | 7%(6%) 51%(24%) 16%(20%) | 57%(27%) | 22%(16%) 11%(24%)
Two-Way Support 23%((28%) | 14%(19%) | 8%(10%) 50%((25%) | 13%(18%) | 56%(28%) | 20%(15%) | *10%(24%)
Two-Way Support Variation | 22%(27%) | 11%(14%) | 14%(19%) | 49%(23%) | *12%(18%)| 56%(29%) | 19%(16%) | 12%(25%)
Loevinger T1%(26%) | 78%(21%) | 74%(30%) | 44%(26%) | 65%(22%) | 53%(23%) | 70%(26%) | 61%(25%)
Sebag 29%(26%) | 17%(20%) | 7%(6%) 51%(24%) | 16%(21%) | 56%(27%) | 22%(16%) | 11%(24%)
Least Contradiction 34%(30%) | 28%(22%) | 11%(5%) 59%(24%) | 26%(21%) | 60%(29%) | 36%(29%) | 15%(26%)
Odd Multiplier 29%(26%) | 17%(20%) | 7%(6%) 51%(24%) | 16%(21%) | 56%(27%) | 22%(16%) | 11%(24%)
Example and Counter. 29%(26%) | 17%(20%) | 7%(6%) 51%(24%) | 16%(21%) | 56%(27%) | 22%(16%) | 11%(24%)
Zhang 29%(26%) | 17%(20%) | 7%(6%) 51%(24%) | 16%(21%) | 56%(27%) | 22%(16%) | 11%(24%)
Sorensen-Dice 27%(26%) | 16%(20%) | 7%(6%) 50%(24%) | 15%(21%) | 56%(27%) | 20%(14%) | 11%(24%)
Anderberg 26%(26%) | 16%(20%) | 7%(6%) 51%(24%) | 16%(21%) | 56%(27%) | 20%(14%) | 11%(25%)
Simple-Matching 38%(26%) | 28%(22%) | 11%(5%) 60%(24%) | 27%(22%) | 60%(29%) | 37%(29%) | 15%(26%)
Rogers and Tanimoto 34%(30%) | 28%(22%) | 11%(5%) 60%(24%) | 27%(22%) | 60%(29%) | 36%(29%) | 15%(26%)
Ochiai II 27%(32%) | 16%(21%) | *6%(4%) 57%(26%) | 15%(21%) | 57%(28%) | 28%(27%) | 11%(24%)
Tarantula 29%(26%) | 17%(20%) | 7% (6%) 51%(24%) | 16%(21%) | 56%(27%) | 22%(16%) | 11%(24%)
Ochiai #20%(29%)| *9%(10%) | 13%(28%) | 42%(22%) | *12%(19%)| 53%(26%) | *17%(12%)| 11%(24%)

Table 4.12: Detailed means and standard deviations (in parentheses) of percentages
of code inspected to find all bugs in the C programs. The star (*) marks the mea-
sure(s) with the lowest mean and the underline marks measures that have a mean

below 10%.
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Association Measures Programs
Nano._v1 Nano_v2 Nano._v3 Nano_v5 XML- XML- XML-
sec_vl sec_v2 sec_v3

¢-Coefficient #21%(28%)| 32%(25%) | *31%(30%)| 20%(15%) | 29%(0%) 31%(0%) 40%(0%)
OddsRatio 45%(18%) | 43%(18%) | 44%(19%) | 23%(10%) | 29%(0%) 31%(0%) 40%(0%)
Yule’s Q 44%(18%) | 43%(18%) | 44%(19%) | 25%(14%) | 29%(0%) 31%(0%) 40%(0%)
Yule’s Y 44%(18%) | 43%(18%) | 44%(19%) | 25%(14%) | 29%(0%) 31%(0%) 40%(0%)
Kappa *21%(28%)| 32%(25%) | *31%(30%)| 20%(15%) | 29%(0%) 31%(0%) 40%(0%)
J-Measure 25%(30%) | 31%(26%) | *31%(30%)| 26%(17%) | 29%(0%) 31%(0%) 40%(0%)
Gini Index 25%(30%) | 32%(25%) | *31%(30%)| 26%(19%) | 29%(0%) 31%(0%) 40%(0%)
Support 67%(11%) | 51%(12%) | 55%(10%) | 41%(18%) | 29%(0%) 31%(0%) 40%(0%)
Confidence #21%(28%)| 26%(29%) | *31%(30%)| 20%(15%) | 29%(0%) 31%(0%) 40%(0%)
Laplace 67%(11%) | 51%(12%) | 55%(10%) | 41%(18%) | 29%(0%) 31%(0%) 40%(0%)
Conviction 44%(18%) | 42%(18%) | 44%(19%) | 25%(14%) | 29%(0%) 31%(0%) 40%(0%)
Interest *21%(28%)| *26%(29%)| *31%(30%)| 20%(15%) | 29%(0%) 31%(0%) 40%(0%)
Piatetsky-Shapiro’s 52%(20%) | 46%(16%) | 36%(13%) | 46%(22%) | 29%(0%) 31%(0%) 40%(0%)
Certainty Factor 44%(18%) | 42%(18%) | 44%(19%) | 25%(14%) | 29%(0%) 31%(0%) 40%(0%)
Added Value #21%(28%)| *26%(29%)| *31%(30%)| 20%(15%) | 29%(0%) 31%(0%) 40%(0%)
Collective Strength #*21%(28%)| 31%(26%) | *31%(30%)| 20%(15%) | 29%(0%) 31%(0%) 40%(0%)
Jaccard *21%(28%)| 53%(9%) *31%((30%)| 19%(15%) | 29%(0%) 31%(0%) 40%(0%)
Klosgen *21%(28%)| 28%(28%) | *31%(30%)| 19%(14%) | 29%(0%) 31%(0%) 40%(0%)
Information Gain 25%(30%) | 32%(25%) | *31%(30%)| 26%(18%) | 29%(0%) 31%(0%) 40%(0%)
Coverage 59%(21%) | 47%(19%) | 34%(15%) | 40%(19%) | 29%(0%) 31%(0%) 40%(0%)
Accuracy 25%(30%) | 38%(27%) | 32%(30%) | 24%(21%) | 29%(0%) 31%(0%) 40%(0%)
Leverage 25%(30%) | 28%(28%) | *31%(30%)| 24%(17%) | 29%(0%) 31%(0%) 40%(0%)
Relative Risk 67%(11%) | 51%(12%) | 55%(10%) | 40%(16%) | 29%(0%) 31%(0%) 40%(0%)
Int. Weighting Dependency *21%(28%)| 27%(28%) | *31%(30%)| 20%(15%) | 29%(0%) 31%(0%) 40%(0%)
Goodman and Kruskal 29%(35%) | 38%(27%) | 40%(30%) | 42%(30%) | 29%(0%) 31%(0%) 40%(0%)
Normalized Mutual Info. #21%(28%)| 43%(18%) | *31%(30%)| 21%(14%) | 29%(0%) 31%(0%) 40%(0%)
One-Way Support #21%(28%)| *26%(29%)| *31%(30%)| 21%(18%) | 29%(0%) 31%(0%) 40%(0%)
Two-Way Support #*21%(28%)| 30%(27%) | *31%(30%)| 20%(13%) | 29%(0%) 31%(0%) 40%(0%)
Two-Way Support Variation | 25%(30%) | 32%(25%) | 31%30%) | 26%(18%) | 29%(0%) 31%(0%) 40%(0%)
Loevinger 63%(20%) | 50%(21%) | 35%(15%) | 45%(21%) | 29%(0%) 31%(0%) 40%(0%)
Sebag #21%(28%)| *26%(29%)| *31%(30%)| 20%(15%) | 29%(0%) 31%(0%) 40%(0%)
Least Contradiction 25%(30%) | 38%(27%) | 32%(30%) | 24%(21%) | 29%(0%) 31%(0%) 40%(0%)
Odd Multiplier #21%(28%)| *26%(29%)| *31%(30%)| 20%(15%) | 29%(0%) 31%(0%) 40%(0%)
Example and counter. #21%(28%)| *26%(29%)| *31%(30%)| 20%(15%) | 29%(0%) 31%(0%) 40%(0%)
Zhang *21%(28%)| *26%(29%)| *31%(30%)| 20%(15%) | 29%(0%) 31%(0%) 40%(0%)
Sorensen-Dice *21%(28%)| 53%(9%) 42%35%) | 19%(15%) | 29%(0%) 31%(0%) 40%(0%)
Anderberg *21%(28%)| 53%(9%) 42%3B5%) | 19%(15%) | 29%(0%) 31%(0%) 40%(0%)
Simple-Matching 25%(30%) | 38%(27%) | 43%(35%) | 24%(21%) | 29%(0%) 31%(0%) 40%(0%)
Rogers and Tanimoto 25%(30%) | 38%(27%) | 43%(35%) | 24%(21%) | 29%(0%) 31%(0%) 40%(0%)
Ochiai IT 25%(30%) | 32%(25%) | 42%(35%) | 24%(18%) | 29%(0%) 31%(0%) 40%(0%)
Tarantula *21%(28%)| *26%(29%)| *31%(30%)| 20%(15%) | 29%(0%) 31%(0%) 40%(0%)
Ochiai #21%(28%)| 53%(10%) | *31%(30%)| *18%(15%)| 29%(0%) 31%(0%) 40%(0%)

Table 4.13: Detailed means and standard deviations (in parentheses) of percentages
of code inspected to find all bugs in the Java programs.
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the large graphs into several smaller graphs so that measures that have similar accu-
racies are grouped together, as shown in Figures 4.3, 4.4, 4.5, 4.6, 4.7, and 4.8. For
each graph, we compare the percentage of bugs localized by a number of association
measures with Tarantula and Ochiai.

Figure 4.3 shows three association measures that perform better than Ochiai and
Tarantula or as good as Ochiai. When only 10% of program elements are inspected,
Klosgen (Ms) and Added Value (M;;) could localize more bugs than Tarantula
and Ochiai—they could localize 47% and 48% of the bugs respectively. Tarantula
and Ochiai could localize 39% and 45% of the bugs respectively. Two-Way Support
(Msg) could localize the same proportion of bugs as Ochiai.

When only 10% of program elements are inspected, a number of association
measures could perform better than Tarantula even though they are not as good
as Ochiai, as shown in Figures 4.5 and 4.6. In addition, a number of association
measures could have similar accuracy with Tarantula, as shown in Figure 4.4. When
10% of program elements are inspected, these measures could localize 39 to 40%
of the bugs, while the rest of the measures could not perform as good as Tarantula
and Ochiai. See Figures 4.7 and 4.8 for the proportion of bugs localized for the
measures that perform worse than Tarantula and Ochiai.
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4.4.4 Effectiveness for Various Programming Languages.

In this section, we evaluate the accuracy of measures in localizing faults for different
programming languages (C and Java) in terms of the percentage of code inspected
and the proportion of bugs localized. Based on the percentage of code inspected, we
generate two partial orders separately for the C and Java programs to evaluate the
measures that perform better in each of the programming languages. We highlight
measures that are at the top of the partial orders (i.e., no other measures perform
statistically significantly better than them).

We find that for both C and Java programs, Ochiai and Klosgen (;g) are at the
top of the partial order. Besides these two measures, a number of other measures
are also at the top of the partial order in localizing bugs for Java programs, namely
Confidence (My), Interest (M), Added Value (M5), Sebag (M3;), Example and
Counterexample Rate (M34), Zhang (M3s5), Tarantula, Interestingness Weighting

Dependency (Ms,), and Normalized Mutual Information (Mag).

Localizing Bugs in C Programs.
Based on the proportion of bugs localized, Added Value (M/;5) and Klosgen
(M;s) could localize more bugs in C programs as compared to Ochiai and Taran-

tula when 10% of code inspected. Added Value (M;5) and Klosgen (M;jg) could
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localize 54% and 53% of the bugs respectively, while Tarantula and Ochiai could
localize 43% and 52% of total bugs in C programs. Two-Way Support (Msg) could
localize 51% of the bugs, which is slightly lower than Ochiai. See Figure 4.9 for
the proportion of bugs localized for different percentage of code inspected of these
measures.

Figures 4.11 and 4.12 show measures that perform better than Tarantula but not
as good as Ochiai. When only 10% of program elements are inspected, they could
localized 45% to 51% of the bugs. The measures are ¢-Coefficient (M), Collective

Strength (M), J-Measure (M), Information Gain (M;9), Interestingness Weight-
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ing Dependency (M5,), Normalized Mutual Information (Msgs), Two-Way Support
Variant(Mag), Ochiai IT (Myg), Gini Index (M7), Jaccard (M;7), Sorensen-Dice
(Ms36), and Anderberg (Ms7).

On the other hand, a number of the measures have similar performance with
Tarantula, as presented in Figure 4.10. They localize 43-44% of the bugs when 10%
of the program elements are inspected. The rest of the association measures could
not outperform Tarantula and Ochiai. See Figures 4.13 and 4.14 for the proportion
of bugs localized when we use these measures.

Localizing Bugs in Java Programs.

For Java programs, Tarantula can have better accuracy in localizing bugs as com-
pared to Ochiai. When 10% of program elements are inspected, Tarantula could
localize 26% of the bugs, while Ochiai could only localize 20% of the bugs. Fig-
ure 4.15 shows measures that have similar performance as Tarantula. They could
localize 26% of the bugs within 10% of code inspected i.e., Confidence (My), Inter-
est (M), Added Value (Mi5), Sebag (Ms;), Odd Multiplier (M33), Example and
Counterexample Rate (Ms,), and Zhang (Mss).

A number of association measures could also have performance between aran-
tula and Ochiai when 10% of program elements are inspected, as shown in Fig-
ures 4.16, 4.17, and 4.18. The association measures that could not perform as good
as compare to Ochiai and Tarantula are shown in Figures 4.19 and 4.20.

Based on the above results, a number of association measures could perform as
good as Tarantula and Ochiai to localize the bugs that reside in programs written in
different programming languages. The differences in accuracies for localizing bugs
in C and Java programs possibly imply that there could be a specific characteristic of
spectra produced by different program languages that could benefit or disadvantage
spectrum-based fault localization. For example in Java, due to the object oriented
model, more program elements (e.g., class constructors) could be executing together

with the faulty ones, thus obscuring the suspiciousness scores for the actual faults.
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4.4.5 Effectiveness for Various Kinds of Bugs.

In this section, we categorize the bugs into several groups based on the bug-fix
categorization by Pan et al. [105]. The following paragraphs describe our bug cat-
egories and present the effectiveness of the various association measures, including

Tarantula, and Ochiai on different bug categories.

Bug Categories.

Pan et al. [105] describe a number of bug categories based on the way bugs are fixed.

In this work, we refer to their categories to analyze the bugs in our programs. We
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Figure 4.19: Comparing M, - My, Mg, Figure 4.20: Comparing Moy, Mo, Mos,
Mo ,Mi; - My, with Ochiai and Taran- My, M;3y with Ochiai and Tarantula for

tula for Java programs Java programs
Bug category Total version
Addition/removal of conditional statement (CH-CS) 28
Addition/removal of non-conditional statement (CH-NCS) 10
Change in method calls (CH-MC) 26
Change of assignment expression (AS-CE) 60
Change of if condition expression (IF-CC) 44
Change of loop predicate (LP-CC) 11
Change of return expression (CH-RET) 18
Others (OTH) 3

Table 4.14: Bug categories

categorize the bug in each buggy version based on the bug fix. Buggy versions for
which there is no category are put in the category “other” (OTH). In addition to bug
categories by Pan et al. [105], we add the category change of return expression (CH-
RET). Thus, we categorize the bug in our programs into 8 categories. Table 4.14
shows the categories and the number of buggy versions for each type of bugs.

We categorize a bug into addition or removal of conditional statement category
(CH-CS) when a bug could be fixed by adding a conditional check statement (e.g. if
statement) or removing an inappropriate check statement. This type of bug occurs
when there is a missing precondition or postcondition check of some variables, or
an extraneous conditional check. Bugs that could be fixed by adding or by removing
statement that is not a conditional check statement are categorized into addition/re-
moval of non-conditional statement (CH-NCS) category. An example of this type

of bug is missing or extraneous assignment statements.
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The Change in method calls (CH-MC) category includes bugs that can be fixed
by adding or removing a method call in a program, or by changing the parame-
ter values of a method call. Bugs that could be fixed by changing the right hand
side of an assignment expression are categorized into change of assignment expres-
sion (AS-CE) category. When a bug could be fixed by modifying a conditional
expression within an if statement, we categorize the bug into change of if condition
expression (IF-CC) category. Similarly, when a bug could be fixed by modifying a
conditional expression in a looping statement, then we put this bug into change of
loop predicate (LP-CC) category. When a bug could be fixed by changing the value
or the expression in a return statement, then we categorize the bug into change of
return expression (CH-RET) category.

We create a category named other (OTH) to include other bugs that are not
covered by the above categories, e.g., a bug is fixed by changing an if statement to
a for loop statement, etc. As very few bugs (i.e., three bugs) in our dataset are
categorized as other (OTH), we exclude the bugs that belong to this category from

our evaluation.

Effectiveness.

We first evaluate the effectiveness of the various measures on each category by the
first accuracy criterion (i.e., percentage of code inspected). Based on this criterion,
we create several partial orders based on statistically significantly better relation-
ships among the measures. We highlight measures that are at the top of the partial
orders as shown in Table 4.15.

Based on the partial orders, Klosgen (M;s) is the only measure that is at the
top of the partial orders for all bug categories. Ochiai, Information Gain (M),
Normalized Mutual Information (Mss), Two-Way Support Variation (Mog) are at
the top of the partial orders of six bug categories.

Next, we evaluate the effectiveness of the measures on each bug category by

the second accuracy criterion (i.e., proportion of bugs localized). We compute the
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Bug category

Top Measures

Addition/removal of
conditional statement
(CH-CS)

Klosgen (Ms), Ochiai, Information Gain (M),
Normalized Mutual Information (Msg), Two-Way Support Variation
(Mag),

Tarantula, ¢-Coefficient (M7 ), Kappa (Ms), J-Measure (Ms), Confi-
dence (My), Added Value (M), Collective Strength (Mj¢), Interest-
ingness Weighting Dependency (Ma4), One-Way Support (Ma7), Two-
Way Support (Mag), Sebag (Ms;1), Odd Multiplier (Ms3), Example
and Counterexample Rate (M3,4), Zhang (Ms5), Sorensen-Dice (Msg),
Anderberg (Ms7), Interest(M72), Leverage(Maz), and Jaccard(M;7)

Addition/removal
of  non-conditional
statement (CH-NCS)

Klosgen (Mis), Ochiai, Information Gain (M),
Normalized Mutual Information (Msg), Two-Way Support Variation
(Mag),

¢-Coefficient (M;), Kappa (Ms5), Gini Index (M7), J-Measure (M),
Added Value (M;5), Collective Strength (Mig), Jaccard (M;7), In-
terestingness Weighting Dependency (Ma4), Two-Way Support (Mag),
Anderberg (Ms7), and Ochiai IT (Myg)

Change in method
calls (CH-MC)

Klosgen (Ms), Ochiai, Information Gain (M),
Normalized Mutual Information (Mag), Two-Way Support Variation
(Mag),

Tarantula, ¢-Coefficient (M;), Confidence (My), Interest (Mi2),
Added Value (Mj5), Collective Strength (Mig), Interestingness
Weighting Dependency (Ms4), One-Way Support (Ma7), Two-Way
Support (Mss), Sebag (Ms1), Odd Multiplier (Ms3), Example and
Counterexample Rate (Ms4), and Zhang (M35)

Change of assign-
ment expression
(AS-CE)

Klosgen (Mjs), Ochiai, and Normalized Mutual Information (Mag)

Change of if condi-
tion expression (IF-

Klosgen (M;s), Ochiai, Information Gain (M),
Normalized Mutual Information (Mss), Two-Way Support Variation

CO) (Mao),
and J-Measure (M)
Change of loop pred- | Klosgen (M;is), Ochiai, Information Gain (M),

icate (LP-CC)

Normalized Mutual Information (Msg), Two-Way Support Variation
(Mag),

Tarantula, ¢-Coefficient (M;), Kappa (Ms), Collective Strength
(Mjig), J-Measure (M), Gini Index (M7), Confidence (My), Added
Value (M;5), Jaccard (My7), Interestingness Weighting Dependency
(Ma4), Goodman Kruskal (Mass), One-Way Support (Ma7), Two-
Way Support (Masg), Sebag (Ms1), Example and Counterexample
Rate (M3,), Zhang (M3s5), Sorensen-Dice (Msg), Anderberg (Msy),
Interest(M2), Leverage(Maz), Odd Multiplier (Ms3), Support(Msg),
and Ochiai IT (Myo)

Change of return ex-
pression (CH-RET)

Klosgen (M;g), Information Gain (Mg), Two-Way Support Variation
(Mag),

J-Measure (Ms), Gini Index (M7), Added Value (Mis), Interest-
ingness Weighting Dependency (Ms4), Two-Way Support (Mas),
Accuracy(Mo;), Least Contradiction(Msz), Simple-Matching (Mssg),
and Rogers and Tanimoto (M3g)

Table 4.15: Measures that are at the top of the partial orders for each bug category.
The underline marks measures that are at the top of the partial orders of more than
five bug categories.
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percentage of bugs localized when up to 10% of program elements are inspected, as
shown in Table 4.16.

For each category shown in Table 4.16, different measures have different ef-
fectiveness in localizing bugs when 10% of the code are inspected. The star (*)
marks the measures that could localize the largest number of bugs in each category.
We notice that Added Value (M) could localize the largest number of bugs in six
categories, while Klosgen (M;5) and Two-Way Support (Mag) could localize the
largest number of bugs in four bug categories. Ochiai and Tarantula could localize
the largest number of bugs in 3 and 1 categories respectively.

By only inspecting up to 10% of the program elements, bugs in change in
method calls (CH-MC) category are not easy to be localized. The best measure
for this category could only localize 35% of these bugs. Our initial investigation
shows that the bugs in this category often involve more than one faulty line. Hence
multiple program elements must be inspected in order to localize the bugs that be-
long to this category.

On the other hand, the measures can better localize three types of bugs i.e., the
bugs in addition or removal of non-conditional statement (CH-NCS), change of loop
predicate (LP-CC), and change of return expression (CH-RET) categories. The best
measures for each of the three categories can localize up to 70%, 64%, and 61%
of the bugs respectively. We observe that the bugs in these categories often involve
one faulty line which is more localizable than the bugs in the change in method
calls (CH-MC) category. As for the bugs in change of assignment expression (AS-
CE) category and bugs in addition or removal of conditional statement (CH-CS)
category, the best measures of each of the two categories can only localize 48% and
43% of the bugs.

In general, most of the measures could better localize bugs that can be cate-
gorized into addition or removal of non-conditional statement (CH-NCS), change
of loop predicate (LP-CC), and change of return statement (CH-RET) categories.

They could localize at least 50% of these types of bugs. Only 11 measures that
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Measures CH-CS | CH-NCS | CH-MC | AS-CE | IF-CC | LP-CC | CH-RET
¢-Coefficient( M) *43% *70% 31% 47% 41% 55% 50%
Odds Ratio( M) 0% 0% 0% 3% 5% 0% 0%
Yule’s Q(M3) 0% 0% 4% 3% 5% 0% 0%
Yule’s Y(My) 0% 0% 4% 3% 5% 0% 0%
Kappa(Ms) 39% 60% 27% 43% 30% 55% 50%
J-Measure(Mpg) *43% 60% 23% 45% *48% 36% 50%
Gini Index(Mv7) 39% 60% 23% 45% 36% 36% 50%
Support(Myg) 0% 0% 4% 5% 5% 0% 0%
Confidence(Mpy) 39% 60% *35% 40% 32% 55% 56%
Laplace(M10) 0% 0% 4% 5% 5% 0% 0%
Conviction(M71) 0% 0% 4% 3% 5% 0% 0%
Interest(M12) 39% 60% *35% 40% 30% 55% 56%
Pietatsky-Shapiro(M13) 4% 0% 4% 8% 2% 0% 0%
Certainty Factor(Mi4) 0% 0% 4% 3% 5% 0% 0%
Added Value(M;5) *43% *70% *35% *48% *48% *64% 56%
Collective Strength(M16) *43% *70% 31% *48% 39% *64% 50%
Jaccard(Mi7) 39% 60% 27% 43% 32% 55% 50%
Klosgen(M;3s) 39% *70% 31% *48% *48% 55% *61%
Information Gain(Mg) *43% 60% 23% 45% 45% 36% 50%
Coverage(M2o) 4% 0% 8% 5% 7% 9% 0%
Accuracy(Ma1) 36% 40% *35% 37% 18% 18% 39%
Leverage(Ma2) 36% 40% 31% 35% 27% 55% 56%
Relative Risk(M23) 0% 0% 4% 5% 5% 0% 0%
Int. Weighting Dependency(Ma4) 39% *70% *35% 43% 39% *64% 56%
GoodMan and Kruskal(Mas) 29% 30% 23% 42% 25% 45% 50%
Normalized Mutual Info.(M26) *43% 60% 27% 43% 43% 36% 50%
One-Way Support(Ma7) 39% 60% *35% 40% 30% 55% 56%
Two-Way Support(Mag) *43% *70% 31% 47% 43% *64% 50%
Two-Way Support Variation(Mag) *43% 60% 23% 45% 45% 36% 50%
Loevinger(Ms30) 0% 0% 4% 5% 2% 0% 0%
Sebag(M31) 39% 60% *35% 40% 30% 55% 56%
Least Contradiction(M32) 36% 40% *35% 37% 20% 18% 39%
Odd Multiplier(M33) 39% 60% *35% 40% 30% 55% 56%
Example and Counter.(M34) 39% 60% *35% 40% 30% 55% 56%
Zhang(Mss) 39% 60% *35% 40% 30% 55% 56%
Sorensen-Dice (M3g) 39% 60% 27% 43% 30% 55% 50%
Anderberg (Ms37) 39% 60% 27% 43% 30% 55% 50%
Simple-Matching (M3g) 36% 40% *35% 37% 18% 18% 39%
Rogers and Tanimoto (M3g) 36% 40% *35% 37% 20% 18% 39%
Ochiai IT (M40) 39% *70% 31% 45% 39% *64% 50%
Tarantula 39% 60% *35% 40% 27% 55% 56%
Ochiai *43% *70% 27% 45% *48% 55% 50%

Table 4.16: Effectiveness of bug localization for (M;) to (M) for each bug cat-
egory when up to 10% program elements are inspected. The star (*) marks the
measures that localize bugs the most for each category.
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could only localize a small number of bugs for each bug category i.e., Cover-
age (Ma), Pietatsky-Shapiro (Mi3), Support (Msg), Laplace (M), Relative Risk
(Mas), Yule’s Q (Ms), Yule’s Y (M,), Conviction (Mj;), Certainty Factor (M),
Loevinger (M3g), and Odds Ratio (Ms).

4.4.6 Effectiveness on Multiple-bug Versions

We evaluate the effectiveness of association measures, Tarantula and Ochiai, in lo-
calizing multiple bugs in programs. We refer the programs in which more than one
bug could reside as multiple-bug versions. A multiple-bug version of a program
contains a number of bugs where each bug only involves one line in the program
and different bugs affect different lines [5, 66].

We generate 173 multiple-bug versions of C programs as shown in Table 4.17.
To generate these versions of a subject program, we first take the bugs that only
involve one line in the single-bug versions of the subject program. Among these
bugs, we randomly choose a number of bugs (i.e., two or five bugs) and concatenate
the code fragments containing bugs, to make a new version. We refer this version
to as multiple-bug version. We ensure that each bug appears in at least one of the
generated multiple-bug versions. Also, the bugs that we choose to be concatenated
should not involve the same line of code to maintain the effect of each bug.

As the print_token and schedule2 programs only have four and five bugs, respec-
tively, that involve one line, the number of possible single-bug fragments that can
be concatenated in each of their multiple-bug versions is limited. In this work, we
only concatenate two possible single-bug fragments in every multiple-bug version
of those two programs so that we could have more versions that contain more than
one bug. For each of those two programs, we generate ten multiple-bug versions.
Thus, we have 20 multiple-bug versions that contain two bugs (minimum number

of multiple bugs).
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Dataset Num. of Bug in | Num. of Single | Language | Num. of Buggy
a Version Bug in Dataset Version

print_token 2 4 C 10

schedule2 2 5 C 10

print_token2 5 9 C 10

replace 5 25 C 32

schedule 5 7 C 9

tcas 5 30 C 41

tot_info 5 19 C 23

space 5 19 C 38

Table 4.17: Multiple-bug datasets

For the other programs, we randomly choose five bugs and concatenate the
code fragments containing bugs in every multiple-bug version of these programs.
We generate the same number of multiple-bug versions as the number of its single-
bug versions (including single-bug versions that contain bugs that involve multiple
lines) so that we could have similar number of buggy versions for our evaluation.
For example, there are 38 single-bug versions (including versions that contain bugs
that involve multiple lines) for Space, so we randomly generate 38 multiple-bug
versions for Space, each of which contains five bugs. Thus, we have 153 multiple-
bug versions that contain five bugs (minimum number of multiple bugs).

We evaluate the measures’ effectiveness on versions containing five and two
bugs respectively, as well as their overall effectiveness in multiple-bug versions.
Tables 4.18, 4.19, and 4.20 show the overall means and standard deviations of the
percentage of code that must be inspected by the measures to localize bugs in all
multiple-bug versions, versions containing five bugs, and versions containing two
bugs, respectively.

Generally, the effectiveness of all measures in localizing multiple bugs is not as
good as their effectiveness in localizing a single bug. The overall ranges of means of
percentage of code inspected of the measures to localize all multiple-bug versions
is between 74% and 91%. The measures require an inspection on average between

43% and 87% of the program elements in localizing two bugs in the programs, and
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Association Measures Mean StdDev | Association Measures Mean StdDev
Added Value (M15) 73.88% 23.36% Klosgen (Mig) 74.92% 22.39%
One-Way Support (Ma7) 73.98% | 23.50% | Ochiai Il (M) 75.07% | 22.61%
Collective Strength (M) 73.99% | 23.36% | Yule’s Q (Ms) 75.34% | 20.43%
Ochiai 74.03% 22.95% Yule’s Y (My) 75.36% 20.38%
¢-Coefficient (M7) 74.1% 22.80% | Leverage (Ma2) 75.76% | 21.42%
Tarantula 74.14% 23.28% Odds Ratio (Ms) 76.58% 19.99%
0dd Multiplier (M33) 74.16% | 23.30% | Laplace (M1o) 76.61% | 19.87%
Zhang (Mss) 74.17% | 23.28% | GiniIndex (Mq) 76.97% | 21.48%
Interest (M12) 7417% | 23.29% | Rogers (Msg) 7131% | 2033%
Sebag (M31) 74.17% 23.28% Accuracy (Ma1) 77.40% 20.34%
Confidence (My) 74.20% 23.29% Simple-Matching (M3g) 77.40% 20.34%
Interestingness Weighting Dependency (Ma24) | 74.20% | 23.39% | Least Contradiction (M3z2) 7741% | 20.45%
Kappa (M5) 7434% | 22.99% | Information Gain (Mig) 71.58% | 20.39%
Two-Way Support (Mog) 74.36% | 22.96% | Two-Way Support Variation (Mag) 77.58% | 20.39%
Jaccard (M17) 74.40% | 21.71% | J-Measure (Ms) 77.60% | 20.33%
Relative Risk (M23) 74.43% 22.41% Normalized Mutual Information (Mze) 77.79% 20.52%
Certainty Factor (M14) 74.46% | 21.09% | Support (Mg) 71.94% | 19.34%
Conviction (M11) 74.46% 21.11% Coverage (Mao) 80.72% 17.40%
Example Rate (M34) 74.78% | 23.28% | Loevinger (Ms0) 86.24% | 15.32%
Sorensen-Dice (Msg) 74.79% | 21.74% | Piatetsky-Shapiro’s (M13) 87.34% 12.69%
Anderberg (M37) 74.81% 21.68% GoodMan Kruskal (Ms5) 91.31% 9.25%

Table 4.18: Overall mean and standard deviation (in parentheses) of accuracy values
(smaller the better) of all multiple-bug versions

the measures require more inspections (i.e., the ranges of 76% to 92% in localizing
five bugs in the programs. As it is expected, the percentage of code inspected is more
likely to be larger when there are more bugs manifest in programs. Among all of the
measures, the measures that could localize all multiple-bug versions, five bugs, and
two bugs in the programs with the smallest percentage of code inspected are Added
Value (M;5), Relative Risk (Ma3), and Two-Way Support (Mag) respectively.

We notice that performance of the measures in localizing five and two bugs in the
programs are different. Tarantula performs better than Ochiai when localizing two
bugs (i.e., 43.05% for Tarantula, 57.75% for Ochiai). In contrast Ochiai performs
slightly better than Tarantula when localizing five bugs in the programs (i.e., 78.14%
for Tarantula, 76.14% for Ochiai).

There are 3 measures (i.e., Added Value (M;5), One-Way Support (M), and
Collective Strength (M;4)) that perform better than Tarantula and Ochiai in localiz-
ing all multiple-bug versions in the programs. Among these measures, Added Value
(M;5) and Collective Strength (M) also have good performance in localizing sin-
gle bugs. The overall mean of percentage of code inspected for Added Value (M;5)

and Collective Strength (M) are 25.74% and 25.66% respectively, which are only
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Association Measures Mean StdDev Association Measures Mean StdDev
Relative Risk (Ma3) 7556% | 23.17% | Confidence (M) 7821% | 20.59%
Certainty Factor (M14) 76.03% | 21.34% | Laplace (M1o) 78.24% | 19.53%
Conviction (M11) 76.04% | 21.36% | Kappa (Ms) 7835% | 20.20%
Ochiai 76.16% 21.33% Example Rate (M34) 78.41% 20.76%
Yule’s Q (Ms) 76.71% | 20.85% | Two-Way Support (Mas) 78.46% | 20.06%
Yule's Y (My) 76.75% | 20.81% | Ochiai Il (Mao) 78.52% | 20.85%
Jaccard (M17) 77.34% | 20.00% | Leverage (Ma2) 79.36% | 19.08%
Coefficient (M) 71.52% | 20.67% | Support (Mg) 79.67% | 18.81%
Added Value (M75) 77.74% 21.08% J-Measure (Mg ) 80.10% 18.98%
Anderberg (Mz7) 77.78% | 19.96% | Information Gain (Mng) 80.11% | 19.04%
Sorensen (Mszg) 77.78% 19.97% Two-Way Support Variation (Mag) 80.11% 19.04%
Collective Strength (M) 77.92% 20.33% Normalized Mutual Information (Mag) 80.22% 18.92%
One-Way Support (Ma7) 7197% | 20.91% | GiniIndex (M7) 80.27% | 19.66%
Klosgen (Mig) 78.10% 20.45% Rogers (M3g) 80.74% 18.43%
Odds Ratio (M3) 78.12% | 20.27% | Accuracy (Ma1) 80.78% | 18.43%
Tarantula 78.14% 20.60% Simple-Matching (M3sg) 80.78% 18.43%
Odd Multiplier (M33) 78.17% 20.61% Least Contradiction (M32) 80.78% 18.57%
Zhang (M3s) 78.18% 20.59% Coverage (Mao) 82.64% 16.34%
Interest (M12) 78.18% | 20.59% | Loevinger (Mso) 88.58% | 13.68%
Interestingness Weighting Dependency (M24) | 78.18% | 20.73% | Piatetsky-Shapiro’s (M13) 89.52% 11.38%
Sebag (M31) 78.18% | 20.59% | GoodMan Kruskal (Mas) 91.82% | 9.61%

Table 4.19: Overall mean and standard deviation (in parentheses) of accuracy values
(smaller the better) of versions containing five bugs

slightly higher than the smallest mean of percentage of code inspected to localize
all single-bug programs (25.24%). In addition, Added Value (M;5) and Collective
Strength (Mig) are in the top of partial order of 5 and 4 bug categories out of 7
categories.

We also perform statistical tests for each pair of measures including Tarantula
and Ochiai using Wilcoxon signed rank test [139] at 0.05 statistical significance
threshold to see if some measures are statistically significantly better than others
in localizing multiple-bug versions. Table 4.21 shows the measures that are at the
top of the partial order (no other measures that statistically significantly perform
better than the measure) for localizing both all multiple-bug versions, versions con-
taining five bugs, and versions containing two measures. We notice that Added
Value (Mis), Collective Strength (Mjs), Ochiai, Ochiai IT (M), One-Way Sup-
port (Ma7), Relative Risk (Ma3), Two-Way Support (Mag), and ¢-Coefficient (M)
are at the top of the partial order of all multiple-bug versions and at least at the top
order of one of partial order of two or five bugs versions.

We also plot the curve showing the proportion of code that is investigated (x-

axis) versus the proportion of bugs local