
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Dissertations and Theses Collection (Open
Access) Dissertations and Theses

6-2014

Ranking-based approaches for localizing faults Ranking-based approaches for localizing faults

Lucia LUCIA
Singapore Management University, lucia.2009@phdis.smu.edu.sg

Follow this and additional works at: https://ink.library.smu.edu.sg/etd_coll

 Part of the Software Engineering Commons

Citation Citation
LUCIA, Lucia. Ranking-based approaches for localizing faults. (2014). 1-157.
Available at:Available at: https://ink.library.smu.edu.sg/etd_coll/107

This PhD Dissertation is brought to you for free and open access by the Dissertations and Theses at Institutional
Knowledge at Singapore Management University. It has been accepted for inclusion in Dissertations and Theses
Collection (Open Access) by an authorized administrator of Institutional Knowledge at Singapore Management
University. For more information, please email cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/etd_coll
https://ink.library.smu.edu.sg/etd_coll
https://ink.library.smu.edu.sg/etd
https://ink.library.smu.edu.sg/etd_coll?utm_source=ink.library.smu.edu.sg%2Fetd_coll%2F107&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/150?utm_source=ink.library.smu.edu.sg%2Fetd_coll%2F107&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

Ranking-Based Approaches for Localizing Faults

by

Lucia

Submitted to School of Information Systems in partial fulfillment of the
requirements for the Degree of Doctor of Philosophy in Information Systems

Dissertation Committee:

David LO (Chair)
Assistant Professor of Information Systems
Singapore Management University

Lingxiao JIANG

Assistant Professor of Information Systems
Singapore Management University

Feida ZHU

Assistant Professor of Information Systems
Singapore Management University

Julia LAWALL

Director of Research
Inria - Laboratoire d’Informatique de Paris 6

Singapore Management University
2014

Copyright (2014) Lucia

Ranking-Based Approaches for Localizing Faults

Lucia

Abstract

A fault is the root cause of program failures where a program behaves differently

from the intended behavior. Finding or localizing faults is often laborious (espe-

cially so for complex programs), yet it is an important task in the software lifecycle.

An automated technique that can accurately and quickly identify the faulty code is

greatly needed to alleviate the costs of software debugging.

Many fault localization techniques assume that faults are localizable, i.e., each

fault manifests only in a single or a few lines of code that are close to one another.

To verify this assumption, we study how faults spread across program elements.

We find that most faults are localizable within a few lines of code or a few methods,

while around 30% of the faults manifest in a single line of code.

Spectrum-based fault localization approach is a lightweight approach that ana-

lyzes execution traces to highlight top-most suspicious program elements (i.e., state-

ment, blocks, etc.) for inspection by developers. Our fault localization technique

can be categorized into spectrum-based approach. Our technique localizes faults

by measuring the strength of the relationship between the execution of a program

element and the occurrence of a program failure. Various association measures are

proposed in the domains of statistics and data mining to quantify the strength of

the relationship between two variables of interest. However, their effectiveness in

localizing faults is not well studied. We investigate the effectiveness of 40 associa-

tion measures in localizing faults in single-bug and multiple-bug programs. Some

of the measures achieve smaller percentage of code inspected on average than the

two well-known spectrum-based techniques, namely Ochiai and Tarantula, while a

number of the measures are comparable to Ochiai and Tarantula.

Different fault localization techniques have different effectiveness in localizing

faults for different buggy programs. We propose an approach called Fusion Local-

izer to leverage their differences and boost the effectiveness in localizing faults. Our

approach combines scores or ranking information produced by existing spectrum-

based fault localization techniques in particular, 40 association measures, Ochiai,

and Tarantula, to inexpensively rank the faulty program elements using data fusion

methods that have been studied in the domain of information retrieval. Our evalu-

ation demonstrates that our approach can significantly improve the effectiveness of

existing state-of-the-art fault localization techniques.

The above approaches localize potential faulty elements using execution traces.

However at times, full execution traces are not available for debugging. Code clones

(i.e., pieces of similar code) have been shown to be useful for detecting bugs because

the inconsistent changes among clones in a clone group may indicate potential bugs.

However, clone-based bug detection techniques suffer from an excessive number of

false positives. Our technique ranks the anomaly reports that contain bugs earlier in

the list as compared to the original list. By actively and incrementally incorporating

user feedback to iteratively refine our classification model and reorder the anomaly

reports, our technique can successfully reduce the false positive rate.

In summary, this dissertation has empirically demonstrated the need of and pro-

posed a number of novel ranking-based approaches for localizing faults, which ad-

vances the previous state-of-the-art.

Table of Contents

1 Introduction 1

1.1 Automatic Software Fault Localization 1

1.2 Research Problems . 4

1.3 Contributions . 7

1.4 Dissertation Outline . 8

2 Literature Review 10

2.1 Empirical Studies on Bugs . 10

2.2 Fault Localization . 11

2.2.1 Spectrum-Based Fault Localization. 11

2.2.2 Model-Based Fault Localization. 14

2.3 Code Clone Analysis and Clone-Based Bug Detection 16

2.4 Bug Prediction and Triage . 16

3 Empirical Study on Fault Locations 18

3.1 Are Faults Localizable? . 18

3.2 Empirical Study Setup . 20

3.2.1 Evaluation Dataset . 20

3.2.2 Extracting Faults from Changes 20

3.2.3 Research Questions on Locality of Faults 21

3.3 Results and Discussion . 22

3.3.1 RQ1: Are Faults Localizable? 22

i

3.3.2 RQ2: Are Severe Faults Localizable? 24

3.3.3 Threats to Validity . 27

3.4 Conclusion . 27

4 Employing Association Measures for Fault Localization 28

4.1 Association Measures for Localizing Faults 29

4.2 Concepts & Definitions . 32

4.2.1 Spectrum-Based Fault Localization 32

4.2.2 Dichotomous Association 36

4.3 Association Measures . 38

4.3.1 Constructing a Dichotomy Matrix 38

4.3.2 Association Measures . 39

4.3.3 From Association to Suspiciousness 40

4.4 Empirical Evaluation . 45

4.4.1 Datasets . 45

4.4.2 Evaluation Metrics . 47

4.4.3 Evaluation Results . 49

4.4.4 Effectiveness for Various Programming Languages. 58

4.4.5 Effectiveness for Various Kinds of Bugs. 61

4.4.6 Effectiveness on Multiple-bug Versions 67

4.5 Discussion . 75

4.6 Threats to Validity . 79

4.7 Conclusion . 80

5 Fusing Fault Localizers 83

5.1 Variations in Effectiveness of Localizing Faults 83

5.2 Motivating Example . 86

5.3 Fusion Localizer . 88

5.3.1 Overview . 88

5.3.2 Step 1: Score Normalization 90

ii

5.3.3 Step 2: Technique Selection 92

5.3.4 Step 3: Data Fusion . 95

5.4 Empirical Evaluation . 100

5.4.1 Dataset . 100

5.4.2 Evaluation Criteria . 101

5.4.3 Experiment Results . 102

5.4.4 Discussion . 109

5.5 Conclusion . 112

6 Active Refinement of Clone Anomaly Reports 114

6.1 Code Clones for Bug Detection . 115

6.2 Clone-Based Anomaly Detection 120

6.3 Overall Refinement Framework . 121

6.4 Refinement Engine . 123

6.4.1 Feature Extraction . 124

6.4.2 Preprocessing . 127

6.4.3 Classification . 129

6.4.4 Concrete Refinement Process 130

6.5 Evaluation Criteria . 132

6.6 Empirical Evaluation . 133

6.6.1 Settings and Results . 134

6.6.2 Threats to Validity . 139

6.7 Conclusion . 139

7 Conclusion 141

7.1 Summary of Contributions . 141

7.2 Future Work . 144

iii

List of Figures

3.1 Proportion of faults versus line locality. 22

3.2 Proportion of faults versus method locality. 23

3.3 Proportion of faults versus file locality. 23

3.4 Proportion of faults versus gap locality. 23

4.1 Example of block-hit program spectra 34

4.2 Accuracy partial order . 52

4.3 Comparison of measures’ accuracies on all datasets - Part I 56

4.4 Comparison of measures’ accuracies on all datasets - Part II 56

4.5 Comparison of measures’ accuracies on all datasets - Part III 57

4.6 Comparison of measures’ accuracies on all datasets - Part IV 57

4.7 Comparison of measures’ accuracies on all datasets - Part V 57

4.8 Comparison of measures’ accuracies on all datasets - Part VI 57

4.9 Comparison of measures’ accuracies on C programs - Part I 58

4.10 Comparison of measures’ accuracies on C programs - Part II 58

4.11 Comparison of measures’ accuracies on C programs - Part III 59

4.12 Comparison of measures’ accuracies on C programs - Part IV 59

4.13 Comparison of measures’ accuracies on C programs - Part V 59

4.14 Comparison of measures’ accuracies on C programs - Part VI 59

4.15 Comparison of measures’ accuracies on Java programs - Part I . . . 61

4.16 Comparison of measures’ accuracies on Java programs - Part II . . . 61

4.17 Comparison of measures’ accuracies on Java programs - Part III . . 61

iv

4.18 Comparison of measures’ accuracies on Java programs - Part IV . . 61

4.19 Comparison of measures’ accuracies on Java programs - Part V . . . 62

4.20 Comparison of measures’ accuracies on Java programs - Part VI . . 62

4.21 Comparison of measures on all multiple-bug programs - Part I . . . 72

4.22 Comparison of measures on all multiple-bug programs - Part III . . 72

4.23 Comparison of measures on all multiple-bug programs - Part IV . . 72

4.24 Comparison of measures on all multiple-bug programs - Part II . . . 72

4.25 Comparison of measures on all multiple-bug programs - Part V . . . 72

4.26 Comparison of measures on all multiple-bug programs - Part VI . . 72

4.27 Comparison of measures on two-bug programs - Part I 73

4.28 Comparison of measures on two-bug programs - Part III 73

4.29 Comparison of measures on two-bug programs - Part IV 73

4.30 Comparison of measures on two-bug programs - Part II 73

4.31 Comparison of measures on two-bug programs - Part V 74

4.32 Comparison of measures on two-bug programs - Part VI 74

5.1 Overview of Fusion Localizer . 91

5.2 Improvement of CombANZ over Naish2 105

5.3 Improvement of CombANZ over GP13 106

5.4 Improvement of CombANZ over Ochiai 106

5.5 Proportion of bug localized . 108

6.1 Clone group’s four quadrants . 117

6.2 A sample bug . 119

6.3 False positive clone groups in Linux Kernel 119

6.4 Active refinement process . 121

6.5 Refinement engine . 123

6.6 Feature extraction . 125

6.7 Computing and comparing APPF 133

6.8 Report of a true positive in Linux 136

v

6.9 Report of a true positive in Eclipse 136

6.10 Report of a true positive in ArgoUML 137

vi

List of Tables

2.1 Subject programs used in past fault localization studies 13

3.1 Number of faults involving certain faulty elements for Rhino 25

3.2 Number of faults involving certain faulty elements for AspectJ . . . 25

3.3 Number of faults involving certain faulty elements for Lucene . . . 25

3.4 Numbers of faults vs. severity levels in Rhino 26

3.5 Numbers of faults vs. severity levels in AspectJ 26

3.6 Numbers of faults vs. severity levels in Lucene 26

4.1 Some common notations . 34

4.2 An example of a dichotomy matrix 36

4.3 Dichotomy matrix for fault localization. 37

4.4 Preliminary definitions and equations 40

4.5 Definitions of association measures - Part I 41

4.6 Definitions of association measures - Part II 42

4.7 Value ranges of the association measures - Part I 43

4.8 Value ranges of the association measures - Part II 44

4.9 Dataset descriptions . 47

4.10 Overall mean and standard deviation of accuracies 51

4.11 Two possible dichotomy matrices for XML Security programs . . . 53

4.12 Detailed means and stdev. of accuracies on C programs 54

4.13 Detailed means and stdev. of accuracies on Java programs 55

4.14 Bug categories . 62

vii

4.15 Top measures for each bug category 64

4.16 Effectiveness of measures for each bug category 66

4.17 Multiple-bug datasets . 68

4.18 Overall mean and stdev. of accuracies on multiple-bug versions . . . 69

4.19 Overall mean and stdev. of accuracies on five-bug versions 70

4.20 Overall mean and stdev. of accuracies on two-bug versions 71

4.21 Top measures for localizing bugs in multiple-bug versions 71

5.1 An example of using a data fusion method. 89

5.2 Example: Overlap-based selection 93

5.3 Example of the list of ranks . 100

5.4 Dataset descriptions . 102

5.5 The average effectiveness of data fusion methods 104

5.6 The statistical significance of data fusion methods 105

5.7 The proportion of bug localized of fault localizers 107

5.8 Hit at top 10 most suspicious elements 109

6.1 Informal illustration: Refinement process 116

6.2 Top-5 re-orderings . 135

6.3 Top 3 features based on their Information Gain in Linux 135

6.4 Top 3 features based on their Information Gain in Eclipse 138

6.5 Top 3 features based on their Information Gain in ArgoUML 138

viii

Acknowledgments

First of all, I would like to thank my advisor, Prof. David Lo. His guidance, never

ending support, and valuable advice mean a lot to me during my PhD journey. I

would also like to thank my co-advisor, Prof. Lingxiao Jiang for the fruitful discus-

sions and the valuable advice. Both of them are my role models. Their intelligence

and excellent personalities have inspired me to keep improving my knowledge and

keep the good attitude in life. Many thanks to my defence committee members:

Prof. Feida Zhu, and Prof. Julia Lawall for the valuable comments and feedback

for this dissertation.

Many thanks to Dr. Foyzur Rahman and Prof. Prem Devanbu for not only

providing us a database containing the Lucene bugs with the associated fixes which

we evaluate in this dissertation, but also for the fruitful discussions and the valuable

insights during the collaboration. Many thanks to Prof. Artur Dubrawski as my

research advisor while I was in CMU. It was such precious experience to work with

Prof. Dubrawski and his analytic team. Also, many thanks to Aditya Budi, Wang

Shaowei, Ferdian Thung, and Tien-Duy B. Le for the great collaboration.

Last but not least, many thanks to my family for your never ending love to me.

Many thanks to my friends in Singapore Management University and many great

friends out there. My PhD life becomes so precious, not only we can learn from

one another, but we can also have fun together. A special thank to my best friend,

Swee Won for always being there for me and providing valuable comments to this

dissertation. Above all, thanks be to God for His blessing and making everything

possible and beautiful in its time.

ix

Dedication

for my beloved mother, in memory of my father, my lovely brothers and sisters

for never ending love and support...

x

List of Publications

Conference Papers
Lucia, D. Lo, L. Jiang, and A. Budi. Comprehensive Evaluation of Association Mea-

sures for Fault Localization. In Proceedings of the 26th IEEE International Confer-
ence of Software Maintenance, Romania, 2010.

Lucia, F. Thung, D. Lo, and L. Jiang. Are Fault Localizable? In Proceedings of the 9th
IEEE Working Conference on Mining Repositories, Switzerland, 2012.

Lucia, D. Lo, L. Jiang, and A. Budi. Active Refinement of Clone Anomaly Reports. In
Proceedings of the 34th IEEE International Conference of Software Systems, Switzer-
land, 2012.

Lucia, D. Lo, and X. Xia. Fusing Fault Localizers. In Proceedings of 29th IEEE/ACM
International Conference on Automated Software Engineering, Sweden, 2014. (un-
der submission)

Journal Papers
Lucia, D. Lo, L. Jiang, F. Thung, and A. Budi. Extended Comprehensive Study of

Association Measures for Fault Localization. Journal of Software Evolution and
Process, 26(2), 2014, pp. 172-219.

xi

Chapter 1

Introduction

1.1 Automatic Software Fault Localization

Developing a software that is free from bugs, is a very difficult requirement to be

met. In fact, it is almost impossible for most software, especially complex ones.

Software bugs cause financial loss to both users and developers. As reported by

the US National Institute of Standards and Technology, software bugs cost the US

economy 59.5 billion dollars annually [134].

A software fault (or bug) is the source of an error in a software or program,

while the error itself is a state of the program that causes program failures [15]. A

program failure is an event when the program behaves differently from what was

intended [15]. When a program failure occurs, manually finding the root cause of

the failure is often a laborious task, especially when the root cause of the failure

is far away from the failure point. An increase in the size and number of features

provided by a software system in turn increases the complexity of the system as

well as the possibility of defects manifesting in the software [25]. Indeed, testing

and debugging activities account for 30 to 90 percent of the labor expended for a

project [20,49]. Therefore, an automated technique that can accurately and quickly

identify the faulty code is greatly needed to reduce the cost of software debugging.

Automated software debugging has attracted much research interest. Many ap-

1

proaches have been proposed to automate software debugging activities, especially

in localizing root causes of failures (i.e., faults) in programs. Some approaches are

tailored for one kind of bugs, while others are general-purpose.

There are many approaches that locate a specific kind of bugs; some examples

include those that are designed to specifically detect deadlock bugs [23, 38, 111],

data race bugs [28, 38, 99, 111, 123], atomicity violation bugs [40, 87, 145], etc.

Deadlock bugs occur when two or more operations circularly wait for one another to

release the acquired resource. Data race bugs occur when two conflicting executions

access one shared variable without proper synchronization. Atomicity violation

bugs occur when concurrent processes unexpectedly execute a critical code region

at the same time.

Many other fault localization approaches are general purpose. They can catch

various kinds of bugs and thus are more applicable to a wide range of software and

problems that they face. This family can be further divided into those that primarily

analyze textual information, execution traces, or source code. Many approaches

have been proposed in the literature that belong to each of these sub-families. We

highlight these approaches in the following paragraphs.

A number of approaches locate faults from the textual descriptions of bugs in

bug reports that are submitted by users or developers during testing. The infor-

mation described in these reports can be used to retrieve the failure-relevant code.

Many of these text-based approaches employ information retrieval techniques to

analyze information written in such reports and retrieve files that are similar to the

reports [88, 100, 115, 126, 154]. The effectiveness of such approaches in retrieving

the failure-relevant code depends on the quality of the information written in the

bug reports. If a bug report poorly describes a bug, it will be hard to find buggy

code from the description.

A number of approaches locate faults primarily by analyzing software execution

traces. Model-based debugging techniques [39, 91–94] analyze execution traces by

using logical reasoning over formal models of programs to accurately locate the

2

faults. Even though these techniques are more accurate, they are often heavyweight

because such reasoning is expensive. On the other hand, spectrum-based fault lo-

calization [3, 5, 26, 27, 31, 63, 65, 67, 84, 151, 153] is a lightweight fault localization

approach, where program traces or abstractions of traces (called program spectra)

are used to represent program behaviors and are analyzed to identify potentially

faulty program elements (e.g., statements, basic blocks, functions, and components)

by computing suspiciousness scores. Among spectrum-based fault localization ap-

proaches, some of them focus on finding a single bug in software, e.g., [31, 65],

while others focus on directly finding multiple bugs in software, e.g., [5, 67]. Some

others focus on extracting contextual information that can help developers in per-

forming debugging tasks [26,63,153]. The accuracy of these approaches in locating

faults is limited by the information contained in the program traces [5]. When a pro-

gram failure occurs, the execution trace may be long and contain failure-irrelevant

information. Also, full execution traces are often not available for debugging if

programs fail in the users’ sites.

A number of approaches primarily analyze source code and do not consider

execution traces [43, 53, 64, 74, 81, 119]. Some of these approaches rely on in-

formation of files that are affected by bugs before, to predict future buggy files,

e.g., [74]. Some others rely on a set of rules whose violations indicate bugs or code

smells, e.g., [119]. Some others rely on detection of common patterns (e.g., soft-

ware clones) and flag violations of these patterns (aka. anomalies) as potential bugs,

e.g., [43,53,64]. One disadvantage of these approaches is the high false positive rate

where many codes are predicted to have defects, while in fact there is no defect.

The above families of approaches have their own weaknesses and strengths.

This dissertation focuses on improving the accuracy of general purpose fault local-

ization approaches since they are applicable to a wide range of software and prob-

lems. In particular, we focus on lightweight fault localization techniques that can

scale in analyzing software of various sizes. Specifically, we focus on improving

state-of-the-art spectrum-based fault localization techniques and clone-anomaly-

3

based fault localization techniques which have been shown promising in many past

studies, e.g., [31, 43, 53, 64, 65].

Although fault localization approaches have improved much since they were

first proposed, they are still far from perfect. The emerging information system

technologies and the increasing program complexity further challenge their effec-

tiveness. Thus, improving the effectiveness of these approaches remains an open

research problem.

1.2 Research Problems

Most of the automated fault localization techniques attempt to pinpoint the location

of bugs and expect developers to investigate a certain number of program elements

to find faults. These techniques thus assume that faults are localizable, i.e., only one

or a few lines of code that are close to one another are responsible for each fault. In

reality, are faults localizable? This research question can impact the applicability of

the fault localization techniques to reveal the faulty program elements.

Among many techniques to locate the root cause of program failures (i.e.,

fault localization techniques), spectrum-based fault localization techniques are of-

ten lightweight and have good accuracy. These techniques use program traces or

abstractions of traces (called program spectra) to represent program behaviors. The

likelihood that a program element is a faulty element is often inferred by comparing

the spectra of correct and failed executions using statistical analysis [3,27,31,65,84].

Although they have good accuracy, the effectiveness of current state-of-the-art fault

localization techniques is not yet perfect. Often, faulty program elements are ranked

low in the returned ranked list. Therefore, the effectiveness of the state-of-the-art of

fault localization techniques needs further improvement to minimize the debugging

time.

There have been a number of studies proposed in the statistics and data mining

community on measuring of association between two variables of interest since the

4

early 20th century such as Yule’s Q [148] and Yule’s Y [149]. The properties, ben-

efits and limitations of each measure have been investigated from a computational

point of view [44,132]. However, the effectiveness of various association measures

in measuring the strength of the relationship between the execution of a program

element and the occurrence of a program failure to localize faults has not been com-

prehensively evaluated. Some of the association measures have been studied for

fault localizations, e.g. Jaccard [3, 4], Sorensen-Dice [4], Anderberg [4], Simple

Matching [4], Rogers and Tanimoto [4], and Ochiai II [4]. In this work, we also

evaluate the effectiveness of these measures because their effectiveness in localiz-

ing various kinds of bugs and localizing bugs in multiple-bug programs have not

been evaluated.

Different spectrum-based fault localization techniques (e.g., association mea-

sures) could have different effectiveness in localizing bugs for different buggy pro-

grams. For a given buggy program, some techniques could have better effectiveness

than others, and vice versa. The question is: could we leverage diversity of the tech-

niques in localizing bugs such that we could better rank the faulty program elements

as compared to individual techniques?

Wang et al. [137] propose a technique that linearly combines the scores of a

number of association measures to rank faulty program elements at the top posi-

tions. Their approach generates a weight for each association measure using genetic

algorithms based on a set of training data (i.e., program traces of the past program

failures and the corresponding faults of the past failures). The effectiveness of the

technique in localizing faults depends on the set of buggy programs used in the

training set. It is possible that the bugs and buggy programs in the training set are

not representative enough for the incoming buggy programs which could limit the

effectiveness of the techniques. Furthermore, the training data is often unavailable

in many cases such as new programs, developers do not store the traces of the past

program failures, etc.

It is challenging to combine different fault localization techniques to better lo-

5

calize the bugs in programs. Not only do we need to handle different techniques, but

we also need to handle different buggy programs and different bugs that manifest in

the programs. Addressing these challenges is essential to effectively locate the bugs

for different programs.

The techniques mentioned in the previous paragraphs require the availability

of test cases to generate execution traces of the buggy programs; the traces are

then used to justify the likelihood that a program element is the faulty element. In

order to have useful program traces for localizing faults, at least one of the test

cases used to test the program must be able to reveal program failures (i.e., the

test case results in failure). However, obtaining such test cases can be difficult,

moreover such test cases may be unavailable. Consider a case when a program

failure occurs in the client’s site; often, developers cannot obtain the test case that

can reproduce the same program failure as what was reported by the client. Hence,

we could not collect the execution traces that can be used to infer the faulty program

elements. Thus, it would be useful if we have techniques that can locate the faulty

program elements without the availability of test cases.

In the absence of test cases, we can analyze buggy programs to infer faulty

program elements. Software clones have been shown to be useful for finding

bugs [43, 53, 64, 68, 78, 81]. The inconsistent changes among clones in a clone

group may indicate potential bugs. Clone-based anomaly detection techniques have

been developed to look for the inconsistencies among code clones in every clone

group (i.e., a group of code fragments similar to each other) and report them as

anomalies (i.e., potential bugs). However, these techniques still produce an exces-

sive number of false positive anomaly reports [64], which impede broad adoption

of the techniques. The ability to present the anomaly reports that contain the bugs

in early positions is important to improve the adaption of clone-based bug detection

tools.

6

1.3 Contributions

This dissertation makes four contributions. The first contribution empirically stud-

ies how faults manifest in program elements of buggy programs. The second and

third contributions are related to better ranking the faulty program element using

spectrum-based fault localization approach. The last contribution aims to better

rank clone anomaly reports. We briefly describe our contributions as follows.

1. This dissertation presents a study of how faults manifest across program ele-

ments in buggy programs. Hundreds of real faults in several software systems

are evaluated and the assumption that faults are localizable within a few lines

of code is studied. We report how faults spread across program elements in

different levels of granularity.

2. In order to help developers to localize faults in programs, this dissertation as-

sesses the likelihood that a program element is the root cause of a program

failure by measuring the strength of the relationship between the execution of

the program element and the occurrence of program failure. Various associa-

tion measures have been proposed in the statistics and data mining literature

to measure the strength of the relationship between two variables of interest.

However, their effectiveness in localizing faults has not been well studied.

We investigate the effectiveness of 40 association measures to rank faulty

program elements and present our empirical evaluation of the effectiveness

of the association measures in localizing bugs in single-bug and multiple-bug

programs. Different types of bugs are also considered in our evaluation.

3. Different fault localization techniques could have different effectiveness in

localizing faults. This dissertation aims to better localize the bugs by lever-

aging the diversity of existing spectrum-based fault localization techniques in

particular, 40 association measures, Tarantula, and Ochiai. Our approach in-

corporates data fusion methods that have been studied in information retrieval

7

domain to rank faulty program elements higher in the list by combining the

scores or ranks assigned to program elements by different fault localization

techniques. Our approach is bug specific. It selects a different set of tech-

niques to be combined for different buggy programs based on their program

spectra, also our approach does not require any training data i.e., program

spectra of the past program failures to select techniques to be fused.

4. In the absence of program traces, inconsistency among code clones or pieces

of similar codes in a clone group have been shown to be useful as an indicator

to detect bugs in the programs. This dissertation presents an approach that

actively and incrementally incorporate users’ feedback to refine the rank of

clone anomaly reports produced by clone-based bug detection tools, so that

the reports that contain the buggy clones would be presented to the users

earlier than the default ordering.

1.4 Dissertation Outline

We present our contributions in four chapters in this dissertation. The structure of

the dissertation is organized as follows. Chapter 2 discusses a number of research

works related to our contributions. We perform an empirical study to investigate

how faults manifest across program elements in buggy programs, which is pre-

sented in Chapter 3. Chapter 4 discusses the effectiveness of a number of associ-

ation measures that have been introduced in statistics and data mining community

to better rank the faulty program elements in single-bug or multiple-bug programs.

In Chapter 5, we utilize the scores or the ranks produced by a number of measures

presented in Chapter 4 to better rank the faulty program elements. We employ data

fusion methods introduced in the domain of information retrieval to improve the ef-

fectiveness of the ranking results by ranking the faulty program elements in the top

ranks. When there is no available test case for localizing faults, Chapter 6 presents

8

a ranking approach to rank clone anomaly reports by incorporating user feedback

so that the anomaly reports that contain true bugs can be ranked in the top positions

for inspection by developers. Finally, Chapter 7 summarizes the contributions of

this dissertation and possible future work.

9

Chapter 2

Literature Review

In this section, we discuss studies that are closely related to the contributions of this

dissertation. The survey here is by no means a complete list of all related studies.

2.1 Empirical Studies on Bugs

Many researches have investigated the characteristics of bugs to obtain better un-

derstanding to automatically locate and fix bugs. Pan et al. analyze patterns of bug

fixes [105]. They find that bug fixes can be classified into different families includ-

ing: addition of pre-condition checks, removal of an if predicate, method call with

different number of parameters, etc. Similarly, Ostrand and Weyuker [104], Perry

and Stieg [107], and Leszak et al. [80] also study the characteristics of bugs. In this

study, we perform an orthogonal study investigating the localizability of bugs.

Parnin and Orso perform user studies on the effectiveness of fault localization

techniques and their results imply that the current techniques may not always be

sufficient [106]. Our work as presented in Chapter 3 analyzes the bugs themselves

without user evaluation, but the results also bear a similar implication.

There are also studies that investigate cases where multiple faults exist at the

same time (e.g., [67]). Herzig and Zeller “untangle” changes in a commit that are

unrelated to each other [56]. Our study in Chapter 3 assumes changes in one commit

10

deal with one bug only, and empirically analyzes how widespread or localized the

failure-relevant changes are.

2.2 Fault Localization

Recently, there have been many studies on fault localization and automated de-

bugging. There are different ways to categorize these studies. Based on the data

analyzed by the approaches, fault localization techniques can be classified into

spectrum-based and model-based.

2.2.1 Spectrum-Based Fault Localization.

Spectrum-based fault localization techniques often use program spectra (i.e., pro-

gram traces or abstractions of program traces) to represent program runtime behav-

iors in certain ways. Statistical analysis is often used to correlate program elements

(e.g., statements, basic blocks, functions, and components) with program failures.

Many spectrum-based fault localization techniques [3, 31, 65, 66, 83, 116, 122,

141] take two sets of spectra as inputs, one for correct executions and the other for

failed executions, and report potential locations where root causes of program fail-

ures (i.e., faults) may reside. Given a failed program spectrum and a set of correct

spectra, Renieris and Reiss present a fault localization tool WHITHER [116] that

compares the failed execution to the nearest correct execution and reports the most

suspicious locations in the program. Liblit et al. propose a technique to search for

predicates whose true evaluation correlates with failures [83]. Chao et al. extend

the work by incorporating information on the outcomes of multiple predicate evalu-

ations in a program run in their tool called SOBER [31]. Wong et al., [141] propose

a method called DStar that modifies a similarity-based coefficient (i.e., Kulczynski

coefficient) to better localize the bugs as compared to Taratula [65, 66], Ochiai [3],

and 12 similarity-based coefficients. All of these techniques need to compare spec-

tra of failed and correct executions in some way. Evaluating the effectiveness of

11

various association measures can complement all of these techniques by helping to

quickly locate the most failure-relevant program elements.

Artzi et al. propose a tool named Apollo that can generate test cases to ex-

pose failures in web applications, then localize bugs that cause the failures [13].

Their fault localization technique uses a spectrum-based fault localization technique

namely, Tarantula and a technique that keep information about which program state-

ments are potentially responsible for producing a particular part of an output (e.g.,

a table in an HTML document). This approach is possible for web applications but

may not be applicable to other applications as the output is often not decomposable

into parts (it could be a single number) and the number of program statements that

are potentially responsible for producing an output is often large. Artzi et al. extend

their work by evaluating the effectiveness of several test generation techniques in

generating enough test cases for localizing faults in web applications with the help

of a spectrum-based fault localization technique, namely Ochiai [12].

Bandyopadhyay and Ghosh study how the properties of faults affect the effec-

tiveness of Tarantula [18]. Three properties, namely accessibility, original state

failure condition, and impact, are investigated. Our study presented in Chapter 4

also investigates the effectiveness of various fault localization techniques for dif-

ferent kinds of bugs. However, we consider a different categorization of faults –

our categorization is based on the empirical study performed by Pan et al. on bug

fixes [105].

Other spectrum-based techniques [48,61,130,152] only use failed executions as

the input and systematically alter the program structure or program runtime states to

locate faults. Zhang et al. [152] search for faulty program predicates by switching

the states of program predicates at runtime. Sterling and Olsson use the concept of

program chipping [130] to automatically remove parts of a program so that the part

that contributes to the failure becomes more apparent.Gupta et al. [48] work on pro-

gram dependency graphs and use the intersection of forward and backward program

slices to reduce the sizes of failure-relevant code for further inspection. Jeffrey et

12

Dataset LOC Papers Dataset LOC Papers
SumPowers 27 [92, 94] Power 763 [83]
BinSearch 29 [92, 94] Compress 1590 [83]
BubbleSort 29 [92, 94] Bh 2053 [83]
Hamming 48 [92, 94] Webchess v.0.9.0 2226 [12, 13]
Adder 49 [92, 94] Tetris 2403 [106]
Permutation 54 [92, 94] Schoolmate v.1.5.4 4263 [12, 13]
Binomia 80 [92, 94] Gzip 5680 [5, 21]
Polynom 105 [92, 94] Space 6218 [4, 5, 65, 66]
Tcas 141 [5, 6, 18, 21, 31, 61, 65, 91, 92, 94, 116] NanoXML 7646 [106, 122]
Schedule 292 [3, 5, 6, 18, 21, 31, 48, 61, 65, 116, 122] Phpsysinfo v.2.5.3 7745 [12, 13]
Schedule2 301 [3, 5, 6, 18, 21, 31, 48, 61, 65, 116, 122] Li 7761 [83]
Treeadd 385 [83] Grep 10068 [21, 152]
Perimeter 395 [83] Flex 10459 [21, 152]
Print token2 399 [3, 5, 6, 18, 21, 31, 48, 61, 65, 116, 122] Sed 14427 [5, 21]
Tot info 440 [3, 5, 6, 18, 21, 31, 61, 65, 116, 122] XMLsecurity 16800 [122]
Print token 478 [3, 5, 6, 18, 21, 31, 48, 61, 65, 116, 122] Bc-1.06 17042 [152]
Replace 512 [3, 5, 6, 18, 21, 31, 48, 61, 65, 116] Tar-1.13.25 27137 [152]
Emad 557 [83] Go 29315 [83]
Rest 617 [83] Ijpeg 31371 [83]
Bisort 707 [83] Make 35545 [152]
Health 725 [83] JABA 37966 [122]
Faqforge v.1.3.2 734 [12, 13]

Table 2.1: Subject programs used in past fault localization studies
al. use a value profile based approach to rank program statements according to their

likelihood of being faulty [61]. These fault localization techniques do not com-

pare the spectra of failed and correct executions. Thus, association measures are

generally not applicable to them.

Instead of empirically studying the effectiveness of a fault localization technique

on various faults, Naish et al. theoretically analyze a number of formulas that can

be used to compute suspiciousness scores of program elements in “idealized condi-

tions” [97]. Their study is later extended by Xie et al. which theoretically analyze

30 formulas and group them into equivalence classes [143]. They prove that, under

some conditions, two families (i.e., ER1 and and ER5) outperform the rest. These

families include five formulas: Naish1, Naish2, Wong1, Russel & Rao, and Binary.

Instead of manually designing fault localization formulas, Yoo generates a num-

ber of formulas using Genetic Programming [147]. The effectiveness of these for-

mulas are then theoretically studied by Xie et al. [144]. They find that GP13 and

three other formulas, i.e., GP02, GP03, and GP19, are the best ones for fault lo-

calization. Instead of generating new formulas, we combine multiple formulas to

improve their effectiveness in localizing faults.

The above techniques [3, 31, 65, 66, 83, 97, 116, 122, 141, 143, 144, 147] ana-

13

lyze a single type of program spectra to assign suspiciousness scores to program

elements. Differently, Santelices et al. collect a number of program spectra types

(i.e., statement, branches, and du-pair spectra), where for each program spectra, a

single fault localization technique (i.e., Ochiai) is used to assign a suspiciousness

score for each program element [122]. For each program element, they combine

its suspiciousness scores produced by analyzing different types of program spectra.

Different from Santelices et al.’s technique, our approach presented in Chapter 5

analyzes a single program spectra type (i.e., block spectra) using a number of fault

localization techniques. Thus, we are investigating orthogonal directions and it is

possible to combine our approach and Santelices et al.’s approach in a future work.

Our approach presented in Chapter 5 is closely related to the technique proposed

by Wang et al. [137]. For every program element, their technique linearly combines

the scores of a number of association measures where each measure obtains a weight

which is computed based on a set of training data using a Genetic Algorithm. Dif-

ferent from their technique, our approach does not require any training data which

makes our technique applicable to new programs or when program spectra of rele-

vant past program failures are unavailable. Also, their technique applies the same

set of measures and the same set of weights to localize bugs for different buggy pro-

grams. Different from Wang et al.’s technique, our technique selects a different set

of techniques or set of weights to localize faults for each buggy program based on

its program spectra. While Wang et al.’s approach is one-size-fits-all, our approach

is bug specific. Table 2.1 shows the list of programs that have been used by those

past fault localization studies.

2.2.2 Model-Based Fault Localization.

Compared with spectrum-based techniques, model-based debugging techniques

[39, 91–94] are often more accurate, but heavyweight since they are based on more

expensive logic reasoning over formal models of programs. Many static and dy-

14

namic analysis techniques [82,89,131] can be classified as model-based debugging.

Recently, there have been a number of techniques proposed to combine

spectrum-based with model-based techniques to better localize the bugs. Abreu

et al. propose a framework called BARINEL that combines spectrum-based fault

localization and model-based debugging to localize single and multiple bugs in

programs, and found that the approach is more accurate and heavyweight than

spectrum-based fault localization [5]. Baah et al. extend spectrum-based fault lo-

calization model by incorporating data and control dependencies to narrow down

the potential faulty elements, hence to improve the effectiveness of the techniques

in localizing bugs [16]. Gopinath et al. combine spectrum-based technique with

specification-based analysis to better localize faults [47]. Digiuseppe and Jones

generate description of faults by combining spectrum-based techniques with natu-

ral language techniques that can extract features from the source code [98].

Although few model-based techniques have employed the concept of failure

association, incorporating association measures investigated in this study into pro-

gram models can be a future direction to improve the performance of model-based

debugging techniques. In this dissertation, we focus on comparisons with two well-

known spectrum-based fault localization techniques, namely Tarantula [65, 66] and

Ochiai [3, 5, 6]. We evaluate 40 association measures and find promising ones for

fault localization. Our work presented in Chapter 5 aims to improve the effective-

ness of spectrum-based fault localization which could benefit the techniques that

incorporate spectrum-based fault localization.

15

2.3 Code Clone Analysis and Clone-Based Bug De-

tection

Code clones have been widely studied in the literature. Some studies focus on

detection of code clones, based on similarities among strings, tokens, syntax trees,

dependency graphs, and even functionalities [17,19,69,76,81,110,135]. Clones are

traditionally thought of as harmful, and techniques have been proposed to reduce

clones [60, 114]. On the other hand, some studies show that clones can be useful

and necessary [70, 72]. Then, instead of reducing clones, some studies investigate

techniques to track and manage code clones [36, 59, 101].

One important use of code clones is to detect bugs. A number of studies de-

tect bugs by detecting inconsistencies among clones [43, 53, 64, 68, 81]. Such

inconsistency-based detection of clone-related bugs often produces many false pos-

itives, and uses various filtering rules to reduce false positives. However, even with

the most recent filtering techniques, such as ones based on textual similarity and se-

quence alignment [43], false positive rates remain high. Compared with these stud-

ies that use filtering-based approaches to remove reports, which may cause false

negatives, our approach actively and incrementally refines and re-ranks anomaly re-

ports based on user feedback without removing any report. The code features used

in our re-ranking are also different from those used in other papers. Our work is

not an alternative, but rather a complement of others. Filtering-based approaches

(which still leave many false positives behind) may be applied first, then our work

refines the filtered reports as users take actions, e.g., to fix an anomaly if it is a true

positive.

2.4 Bug Prediction and Triage

Many studies aim to predict whether certain code changes or files contains faults.

Kim et al. [73,74] use bug history to predict faults. Ruthruff et al. [119] use logistic

16

regression models from historical data to predict whether a warning generated by

FindBugs is actionable. Zimmermann et al. [155] have studied the accuracies of

bug prediction models that may be used across various projects in various domains.

Other studies aim to reduce similar bug reports or prioritize bug reports.

Podgurski et al. [109] group software failures with similar symptoms together.

Kremenek and Engler [77] propose z-ranking to order bug reports produced by a

static program checking analysis tool. Heckman and William [55] propose FAULT-

BENCH, a benchmark for evaluating alert prioritization and classification tech-

niques. These ranking models only perform reordering of bug reports once.

Our approach presented in Chapter 6 is different from the aforementioned stud-

ies in several aspects. We focus on anomaly reports generated by a clone-based

anomaly detection tool, instead of reports from users. We reorder anomaly reports,

while most other studies filter reports. Filtering anomaly reports carries a risk of

removing true positives. Filtering and reordering are complementary as we could

first filter and then re-order anomaly reports. Some studies leverage historical data

to prioritize anomaly reports, while we leverage immediate user feedback to itera-

tively prioritize clone-based anomaly reports.

17

Chapter 3

Empirical Study on Fault Locations

In this chapter, we study a certain characteristic of faults in programs in order to

have better idea about the capability that is expected from automatic software fault

localization techniques. In particular, we perform an empirical study on whether

real faults are localizable (i.e., whether it spans a few lines of code, methods, or

classes).

We organize this chapter as follows. Section 3.1 presents the motivation and

main contribution of this chapter. We present subject programs that we evaluate for

this study and the setup of our empirical study in Section 3.2. Section 3.3 presents

our findings and discusses their implications. Section 3.4 concludes the study.

3.1 Are Faults Localizable?

Bugs are one of the major contributors to high software cost. Many automated

debugging techniques have been proposed to reduce the cost of debugging. Fault

localization techniques aim to pinpoint program elements responsible for a fault.

Many of these techniques analyze program spectra (i.e., a set of profiles of cor-

rect executions and failures), with the goal of highlighting likely faulty program

elements [30, 31, 65, 83, 116, 150].

Fault localization techniques often assume that faults are localizable, i.e., a fault

18

is often confined to one or a few lines of code that are close to each other in a

software system. Most fault localization techniques would rank program elements

according to their suspiciousness (i.e., the likelihood that a program element is the

root cause of a program failure) and expect developers to traverse this list of program

elements and be able to decide whether an element contains a fault by just inspecting

that element. Past studies on fault localization often use faults that are injected to

only one or a few locations, making the evaluation of the techniques biased.

The question is whether it is indeed the case that faults are confined to a few

lines of code in real systems. Are faults localizable? This research question has

important implications. If faults turn out to be non-localizable, we may then need

to re-consider the applicability of fault localization and design new approaches to

aid developers in debugging non-localizable faults.

In this chapter, we perform an empirical study by analyzing software from a

public bug repository–iBugs [33] and the JIRA repository of Lucene. We consider

hundreds of real bugs in three real systems: AspectJ, Rhino, and Lucene, and inves-

tigate how localized or spread-out the locations of buggy program elements are.

The contributions of this work are as follows:

• We highlight an important research question on whether bugs are localizable

in real software.

• We present an empirical study on three Java programs and note that many

faults are not localized.

• We analyze whether severe faults are localizable.

19

3.2 Empirical Study Setup

3.2.1 Evaluation Dataset

We analyze the locality of bugs in two Java programs (Rhino and AspectJ) from

iBugs repository [33] and a third Java program Lucene. Rhino is a Javascript inter-

preter written in Java with code size of about 49 kLOC. There are 32 buggy versions

of Rhino in iBugs. AspectJ is a compiler for aspect-oriented programming in Java

with code size of about 75 kLOC, and iBugs contains 350 of its buggy versions.

Lucene is a text engine library with code size of about 88 kLOC (version 2.9).

The iBugs repository stores both pre-fix versions that contain bugs (buggy ver-

sions) and the corresponding post-fix versions that fix the bugs. Each of the buggy

versions is assumed to contain one bug that may span across multiple lines in mul-

tiple files. Information about each fix is also provided, e.g., the numbers of changed

lines, changed methods, and changed files, and the severity level of the bug. We also

know which lines or files are changed based on the differences between the pre-fix

and the post-fix versions. Similar information about bugs and corresponding fixes

in Lucene has been collected from JIRA [2] by another research team at UC Davis.

3.2.2 Extracting Faults from Changes

In this work, we are concerned with program elements that are responsible, or are

the root causes of a bug (i.e., faults). The datasets from iBugs and JIRA include bug

fixes and enhancements. We exclude those corresponding to enhancements, those

that do not contain any severity information, and bug fixes that only fix test code

and comments. We end up with 374 bugs and their fixes: 32 for Rhino, 290 for

AspectJ, and 52 for Lucene.

For these bug fixes, the iBugs and JIRA datasets include lines added, deleted,

and modified in the commit that fixes the bug. Not all these lines correspond to the

root causes of the bug and thus we could not simply count them as the number of

20

faulty lines. First, these lines are the treatment of the fault and we need to recover

the fault from them. Second, previous studies, e.g., [71], show that not all changes

are essential – many are simple refactorings that do not change the behavior of a

program. To recover faults from their treatments, we perform a manual inspection

on the iBugs and JIRA data.

3.2.3 Research Questions on Locality of Faults

First, we define the locality of a bug based on faulty program elements. We consider

program elements at three levels of granularity, including lines, methods, and files.

We also consider the spatial distances among the program elements. The following

is a list of locality definitions that we use in our empirical evaluation.

D1 Considering a line of code as a program element, we define the locality L of a

buggy version v as follows:

LD1(v) = the number of faulty lines.

D2 Considering a method as a program element, we define the locality L of a buggy

version v as follows:

LD2(v) = the number of faulty methods.

D3 Considering a file as a program element, we define the locality L of a buggy

version v as follows:

LD3(v) = the number of faulty files.

D4 Considering the spatial distances among the faulty lines, we define the locality

L of a buggy version v based on the number of faulty files nf and the gaps

among the faulty lines in every file Gline(file):

LD4(v) = (ΣfileGline(file) + nf − 1) × nf , where Gline(file) is the distance

between the first and last faulty lines in the file.

Based on the locality definitions, we consider the following research questions:

21

RQ1 How wide or localized is the locality of bugs? How many bugs could be

localized to a few program elements?

RQ2 Are severe bugs localizable?

The following section evaluates the locality of the 374 real bugs. We also discuss

the answers for the above research questions.

3.3 Results and Discussion

3.3.1 RQ1: Are Faults Localizable?

We evaluate how localized the faults are in term of the number of faulty lines, meth-

ods, and files. Figures 3.1, 3.2, and 3.3 show the proportion of faults that are local-

izable up to a certain number of faulty lines, methods, and files respectively. Each

figure shows the results for Rhino, AspectJ, Lucene, and the overall dataset. The

detailed results are given in Tables 3.1, 3.2, and 3.3.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 5 10 15 20 25 30 35 40 45 50

Rhino

AspectJ

Lucene

All

Number of Faulty Lines

P
er

ce
n

ta
g

e
o

f
F

au
lt

s

Figure 3.1: Proportion of faults versus line locality.

Considering the number of faulty lines, faults in Rhino, AspectJ, and Lucene

could span up to 957, 103, and 772 lines respectively. However, there are not many

versions that have faults residing in more than 50 lines – only 22%, 3%, and 10%

22

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 2 4 6 8 10 12 14 16 18 20

Rhino

AspectJ

Lucene

All

Number of Faulty Methods

P
er

ce
n

ta
g

e
o

f
F

au
lt

s

Figure 3.2: Proportion of faults versus method locality.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 2 3 4 5 6 7 8 9 10

Rhino

AspectJ

Lucene

All

Number of Faulty Files

P
er

ce
n

ta
g

e
o

f
F

au
lt

s

Figure 3.3: Proportion of faults versus file locality.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 10 50 100 200 300 400 500 1000

Rhino

AspectJ

Lucene

All

Gap Locality

P
er

ce
n

ta
g

e
o

f
F

au
lt

s

Figure 3.4: Proportion of faults versus gap locality.

23

of Rhino’s, AspectJ’s, and Lucene’s faults respectively. Figure 3.1 shows the pro-

portion of faults that span across 1 to 50 lines of code. Among the faults, 22% of

Rhino’s faults, 37% of AspectJ’s faults, and 12% of Lucene’s faults involve one line

of code. Overall, 32% of the faults involve at most one line of code. More than

50% of the faults involve at most 10 lines of codes i.e., 59% of Rhino’s faults, 86%

of AspectJ’s faults, 67% of Lucene’s faults, and 81% of all faults. Therefore, most

faults are localized within 10 lines of code.

Considering the number of faulty methods, faults in Rhino, AspectJ, and Lucene

could span up to 296, 78, and 778 methods respectively. However, only few versions

have faults residing in more than 20 methods – only 25%, 2%, 12% of Rhino’s,

AspectJ’s, and Lucene’s faults respectively. Figure 3.2 shows the proportion of

faults that span across 1 to 20 methods. Among the faults, 28% of Rhino’s faults,

49% of AspectJ’s faults, and 23% of Lucene’s faults involve one method. Overall

44% and 80% of the faults involve at most one method and six methods respectively.

Considering the number of faulty files, faults in Rhino, AspectJ, and Lucene

could span up to 14, 56, and 57 files respectively. However, only few versions have

faults residing in more than 10 files – only 3%, 1%, 10% of Rhino’s, AspectJ’s,

and Lucene’s faults respectively. Figure 3.3 shows the proportion of faults that span

across 1 to 10 files. Among the faults, 76% of Rhino’s faults, 77% of AspectJ’s

faults, and 37% of Lucene’s faults involve one file. Overall 69% of the faults involve

at most one file and 86% of the faults involve at most two files.

Figure 3.4 shows the proportion of faults that have 1 to 1,000 gap locality scores.

We notice that most faults have rather big gap locality in the three programs.

3.3.2 RQ2: Are Severe Faults Localizable?

We evaluate the relationship between localizable bugs and their severity levels.

There are six severity levels in the AspectJ bugs that we analyze: blocker, criti-

cal, major, minor, normal, and trivial (from high to low). As for Rhino, there are

only two levels: major and normal. For Lucene, there are four levels: blocker, ma-

24

Locality Num. of Faults
(% of Faults)

Locality Num. of Faults
(% of Faults)

Locality Num. of Faults
(% of Faults)

1 Line 7 (22%) 1 Method 9 (28%) 1 File 25 (76%)

2 Lines 3 (9%) 2 Methods 5 (16%) 2 Files 3 (10%)

3 Lines 2 (6%) 3 Methods 4 (13%) 3 Files 0 (0%)

4 Lines 0 (0%) 4 Methods 1 (3%) 4 Files 2 (7%)

5 Lines 3 (9%) 5 Methods 1 (3%) 5 Files 0 (0%)

6 Lines 0 (0%) 6 Methods 0 (0%) 6 Files 0 (0%)

7 Lines 2 (6%) 7 Methods 0 (0%) 7 Files 1 (3%)

8 Lines 1 (3%) 8 Methods 0 (0%) 8 Files 0 (0%)

9 Lines 1 (3%) 9 Methods 1 (3%) 9 Files 0 (0%)

10 Lines 0 (0%) 10 Methods 1 (3%) 10 Files 0 (0%)

Table 3.1: Number & percentage of faults (in parentheses) covering different num-
ber of faulty lines, methods, and files for Rhino

Locality Num. of Faults
(% of Faults)

Locality Num. of Faults
(% of Faults)

Locality Num. of Faults
(% of Faults)

1 Line 106 (37%) 1 Method 139 (48%) 1 File 213 (77%)

2 Lines 49 (17%) 2 Methods 49 (17%) 2 Files 45 (16%)

3 Lines 32 (11%) 3 Methods 26 (9%) 3 Files 15 (5%)

4 Lines 13 (4%) 4 Methods 15 (5%) 4 Files 8 (3%)

5 Lines 16 (6%) 5 Methods 8 (3%) 5 Files 3 (1%)

6 Lines 8 (3%) 6 Methods 10 (3%) 6 Files 4 (1%)

7 Lines 9 (3%) 7 Methods 11 (4%) 7 Files 0 (0%)

8 Lines 4 (1%) 8 Methods 8 (2%) 8 Files 0 (0%)

9 Lines 5 (2%) 9 Methods 3 (1%) 9 Files 0 (0%)

10 Lines 6 (2%) 10 Methods 4 (1%) 10 Files 0 (0%)

Table 3.2: Number and percentage of faults (in parentheses) covering different num-
ber of lines, methods, and Java files for AspectJ

Locality Num. of Faults
(% of Faults)

Locality Num. of Faults
(% of Faults)

Locality Num. of Faults
(% of Faults)

1 Line 6 (12%) 1 Method 12 (23%) 1 File 19 (37%)

2 Lines 10 (19%) 2 Methods 10 (19%) 2 Files 17 (33%)

3 Lines 8 (15%) 3 Methods 5 (10%) 3 Files 5 (10%)

4 Lines 5 (10%) 4 Methods 5 (10%) 4 Files 2 (4%)

5 Lines 2 (4%) 5 Methods 3 (6%) 5 Files 1 (2%)

6 Lines 3 (6%) 6 Methods 4 (8%) 6 Files 2 (4%)

7 Lines 1 (2%) 7 Methods 0 (0%) 7 Files 0 (0%)

8 Lines 0 (0%) 8 Methods 0 (0%) 8 Files 1 (2%)

9 Lines 0 (0%) 9 Methods 1 (2%) 9 Files 0 (0%)

10 Lines 0 (0%) 10 Methods 1 (2%) 10 Files 0 (0%)

Table 3.3: Number and percentage of faults (in parentheses) covering different num-
ber of lines, methods, and Java files for Lucene

25

Bug severity 1 Line 10 Lines 1 Method 1 File
Major 0 (0%) 1 (50%) 1 (50%) 2 (100%)

Normal 7 (23%) 18 (60%) 8 (30%) 23 (85%)

Table 3.4: Numbers and percentages of faults for different severity levels in Rhino
when faults are within 1 line, 10 lines, 1 method, or 1 file

Bug severity 1 Line 10 Lines 1 Method 1 File
Blocker 3 (43%) 7 (100%) 4 (57%) 6 (86%)

Critical 8 (33%) 19 (79%) 11 (46%) 16 (67%)

Major 12 (40%) 26 (87%) 15 (50%) 22 (73%)

Minor 6 (43%) 11 (79%) 5 (36%) 11 (79%)

Normal 75 (35%) 183 (86%) 102 (48%) 156 (73%)

Trivial 2 (100%) 2 (100%) 2 (100%) 2 (100%)

Table 3.5: Numbers & percentages of faults for different severity levels in AspectJ
when faults are within 1 line, 10 lines, 1 method, or 1 file

jor, minor, trivial. Table 3.4, 3.5, and 3.6 show the severity levels when faults reside

in one line, less than ten lines, one method, and one file for Rhino, AspectJ, and

Lucene respectively. For Rhino, 0%, 50%, 50%, and 100% of the major faults are

localizable to one line of code, ten lines of code, one method, and one file, respec-

tively. For AspectJ, 43%, 100%, 57%, and 86% of the blocker faults are localizable

to one line of code, ten lines of code, one method, and one file respectively. For

Lucene, 0%, 67%, 33%, and 33% of the blocker faults are localizable to one line

of code, ten lines of code, one method, and one file respectively. Overall, consider-

ing the most severe bugs in the category (i.e., blocker for Lucene and AspectJ, and

major for Rhino), 25%, 83%, 50%, and 75% of these severe bugs are localizable

to one line of code, ten lines of code, one method, and one file respectively. The

results show that many severe faults are localizable. A significant percentage of

severe faults are however not localizable.

Bug severity 1 Line 10 Lines 1 Method 1 File
Blocker 0 (0%) 2 (67%) 1 (33%) 1 (33%)

Major 4 (16%) 17 (68%) 7 (28%) 9 (36%)

Minor 2 (10%) 14 (67%) 4 (19%) 9 (43%)

Trivial 0 (0%) 2 (100%) 0 (0%) 0 (0%)

Table 3.6: Numbers and percentages of faults for different severity levels in Lucene
when faults are within 1 line, 10 lines, 1 method, or 1 file

26

3.3.3 Threats to Validity

Threat to external validity refers to the generalizability of our findings. In this study,

we only analyze three real Java programs: AspectJ, Rhino, and Lucene. The find-

ings may not be generalizable to programs written in different languages. Threat to

internal validity is mostly related to the manual investigation of what lines of code

are responsible for each bug. There may be errors in the labeling process.

3.4 Conclusion

In this chapter, we have performed a preliminary study for the question whether

bugs are localizable. We have analyzed hundreds of bugs and their fixes from three

software systems, AspectJ, Rhino, and Lucene, and manually extract faults from

changes. We have found that (1) a substantial proportion of faults (i.e., 32%) still

manifest in a single line of code, and 56% of the faults are localizable within a

few lines of code or a few methods and (2) only 25% and 50% severe faults (i.e.,

categorized as blocker in AspectJ and Lucene, and major in Rhino) are localizable

within one line and one method respectively.

27

Chapter 4

Employing Association Measures for

Fault Localization

In this chapter, we present our work that automatically locates faulty program el-

ements to help developers locate bugs in programs. For a given buggy program,

our approach quantifies the likelihood that a program element is the faulty program

element, then presents a list of most suspicious program elements to developers for

inspection. The idea of our approach is to model the fault localization problem as

the association between the executions of a program element with program fail-

ures. We employ association measures that have been introduced in the statistics

and data mining domains to measure the likelihood that a program element is the

faulty program element.

We organize this chapter as follows. Section 4.1 presents the motivation and

main contribution of this chapter. Section 4.2 explains the concept and definition

used in this work. Section 4.3 presents our approach that employs association mea-

sures for localizing faults. We evaluate our approach to localize faults in Section 4.4

and discuss our results in Section 4.5. Section 4.7 concludes our findings.

28

4.1 Association Measures for Localizing Faults

Program traces or abstractions of traces (called program spectra) can be used to

represent program behaviors. The spectra of correct and failed executions can be

compared to identify potentially faulty program elements (e.g., statements, basic

blocks, functions, and components). Spectrum-based fault localization is one family

of the fault localization techniques that utilize program spectra [3, 27, 31, 65, 84].

They often employ statistical analysis to compare the program traces. Program

elements that are observed more often in failed executions than in correct executions

(or statistically correlate with failures) may be identified and presented to developers

for further inspection.

Spectrum-based fault localization techniques are promising as they are

lightweight and have good accuracy. Among the existing spectrum-based fault

localization techniques, two well-known techniques are Tarantula [65, 66] and

Ochiai [3, 5, 6]. Both approaches compute a suspiciousness score for each program

element based on the execution frequencies of the element in correct and failed

executions. Then, all program elements are ranked according to their scores and

presented to developers for inspection. Presenting the buggy element earlier in the

ranking helps developers to effectively and efficiently localize bugs.

Unfortunately, the effectiveness of current state-of-the-art fault localization

techniques is not yet perfect. Faulty program elements are often ranked low in

the returned ranked list. Thus, there is a need to improve the state-of-the-art so

that fault localization techniques can provide better assistance for developers while

minimizing the cost of performing bug fixing tasks.

Fault localization boils down to the problem of computing good suspicious-

ness scores to differentiate faulty and correct program elements. The com-

putation of the suspiciousness scores in effect answers the following question:

29

What is the strength of association between the executions of a particu-

lar program element with failures?

Various association measures in the data mining and statistics communities,

such as odds ratio [9], Yule’s Q [148], and Yule’s Y [149] have been proposed

to measure the strength of association between two variables of interest. For exam-

ple, one might be interested in the association between an application of a particular

medical treatment with recovery from an illness, or in the association between an

execution of a business strategy with a revenue change. There are several studies

that evaluate the effectiveness of some similarity coefficients, e.g., Jaccard [3, 4],

Sorensen-Dice [4], Anderberg [4], Simple Matching [4], Rogers and Tanimoto [4],

and Ochiai II [4].

Thus, a general solution for fault localization can naturally emerge based on

the proliferation of association measures in the literature: measure the strength of

association between a program element’s executions and failures, and the stronger

the association is, the more likely the program element is a fault.

Besides Tarantula and Ochiai which have been used for fault localization, there

are rich varieties of association measures that have not been studied for fault local-

ization. This chapter aims to fill this gap by investigating the effectiveness of 40

well-known association measures as methods to rank program elements for the pur-

pose of fault localization and compare them with Tarantula and Ochiai. In particular,

we are interested in answering the following research questions (RQs):

RQ 1. Are vanilla or off-the-shelf association measures accurate enough in local-

izing faults?

RQ 2. Among 40 association measures, which of the association measures are the

most accurate for localizing faults?

RQ 3. What is the relative performance of off-the-shelf association measures as

compared to well-known suspiciousness measures (in particular, Tarantula

30

and Ochiai) for fault localization?

RQ 4. Is the accuracy of off-the-shelf association measures, of Tarantula, and of

Ochiai, in localizing faults for programs written in C, different from their

accuracy in localizing faults for programs written in Java?

RQ 5. What is the effectiveness of off-the-shelf association measures, Tarantula,

and Ochiai in localizing different types of bugs?

RQ 6. What is the accuracy of off-the-shelf association measures, Tarantula, and

Ochiai in localizing bugs in multiple-bug programs?

We use association measures as measurements to rank program elements in a

program for the purpose of locating faults. We investigate and compare the accura-

cies of Tarantula, Ochiai, and the additional 40 association measures on programs

from the Siemens test suite [125], and three larger programs from Software Infras-

tructure Repository (SIR) [35]. The latter includes Space which is written in C, and

NanoXml and XmlSecurity, which are written in Java. The programs come along

with seeded bugs, test cases, and test oracles to decide between failures and non-

failures. We show that a few association measures could better localize faults than

Ochiai and that many are better than Tarantula.

The contributions of this work are as follows:

1. We comprehensively investigate the effectiveness of 40 association measures

for fault localization.

2. We highlight a few promising association measures that can outperform two

well-known spectrum-based fault localization approaches (i.e., Tarantula and

Ochiai) and those that are comparable with these two approaches.

3. We provide a partial order of association measures in terms of their accuracy

for fault localization.

31

4. We characterize the effectiveness of the association measures, Ochiai, and

Tarantula on programs written in different programming languages.

5. We analyze different kinds of bugs and investigate the effectiveness of the

40 association measures, Ochiai, and Tarantula in localizing each of these

categories of bugs.

6. We investigate the accuracy of the 40 association measures, Ochiai, and

Tarantula in localizing faulty programs containing multiple bugs.

4.2 Concepts & Definitions

In this section we formally introduce the problem of spectrum-based fault localiza-

tion as the computation of association strengths between the executions of various

program elements and failures. Also, we describe the concept of dichotomy matrix

that is used in the calculation of these association strengths.

4.2.1 Spectrum-Based Fault Localization

This problem starts with a faulty program, a set of test cases, and a test oracle.

The test cases are run over the faulty program and observations on how the program

runs on each of the test cases are recorded as program spectra. A program spectrum

represents certain characteristics of an execution of a program, providing a behavior

signature of the execution [117]. The signature of a behavior could be a set of

counters, each of which indicates the number of times each program element (e.g.,

statement, basic block, path, etc.) is executed in one execution [52]. The counters

could also simply be 0-1 flags that indicate whether an element is executed. A test

oracle is available to label whether a particular output or execution of a test case

is correct or wrong. Wrong executions are classified as program failures. The task

of a fault localization tool is to find the program elements that are responsible for

32

the failures (i.e., the faults or the root causes) based on the program spectra of both

correct and wrong executions.

Various spectra have been proposed in the literature [3, 52]. Different spectra

may have different effects on the effectiveness of fault localization. The block-hit

spectra are at a suitable profiling granularity because all code in the same basic

block has the same execution pattern and there is no need to instrument individual

instructions in a granularity finer than blocks. Also, it has been shown that the

instrumentation costs to obtain such spectra are relatively low and it can be used

for effective fault localization [3–6, 52]. The granularity has a balance between

reducing instrumentation costs and having sufficient bug-revealing capabilities.

In this work, we use block-hit program spectra, each of which consists of a set

of flags to indicate whether each basic block is executed or not in each test case.

An example of block-hit program spectra is shown in Figure 4.1. The first column

contains identifiers of basic blocks. The second column contains the statements

in the corresponding basic blocks. The other columns indicate whether each basic

block is executed in test cases T15, T16, T17, and T18 along with the information

whether each of the test cases passes or fails. In this example, • denotes that a

basic block is executed by a test case and an empty cell denotes that the block is

not executed by the test case. In the code snippet, a bug lies in the condition of

the if statement in Block 3, causing Blocks 4–5 to be skipped when the variable

count is 1. Note that in test cases T16-T18, execution of Block 2 that contains

return statement is followed by the execution of Block 3. Normally, Block 3 should

not be executed, but since the function containing this code snippet is being called

inside a loop, thus this block is executed.

Based on these spectra, we want to compute the suspiciousness score of each

program element following Definition 4.2.1.

Definition 4.2.1 (Suspiciousness Score) Consider a program P = {e1, ..., en} and

a set of program spectra T = Ts ∪ Tf for P , where P comprises of n elements

33

Block ID Program Elements T15 T16 T17 T18

1 int count;

int n;

Ele *proc;

List *src_queue, *dest_queue;

if (prio >= MAXPRIO) /*maxprio=3*/

2 {return;}

3 src_queue = prio_queue[prio];

dest_queue = prio_queue[prio+1];

count = src_queue->mem_count;

if (count > 1) /* Bug*//* expected : count>0*/ {

4 n = (int) (count*ratio + 1);

proc = find_nth(src_queue, n);

if (proc) {

5 src_queue = del_ele(src_queue, proc);

proc->priority = prio;

dest_queue = append_ele(dest_queue, proc); } }}

Status of Test Case Execution : Pass Pass Pass Fail

Figure 4.1: Example of block-hit program spectra

Symbol Definition
n Total number of test cases in the test suite
n(e) Number of test cases that execute a program element e
ns Total number of correct test cases
nf Total number of failed test cases
ns(e) Number of correct test cases that execute a program element e
nf (e) Number of failed test cases that execute a program element e

Table 4.1: Some common notations

e1, ..., en and T comprises the spectra for correct executions Ts and the spectra

for wrong executions Tf . We would like to measure the strength of the association

between the executions of each ei and program failures and assign this strength as

the suspiciousness score of ei denoted as suspiciousness(ei).

Tarantula

Jones and Harrold propose Tarantula [65] to rank program elements based on their

suspiciousness scores. Intuitively, a program element is more suspicious if it ap-

pears in failed executions more frequently than in correct executions. Considering

a program P and a test suite T , Table 4.1 introduces some common notations that

are used in the rest of this work.

34

Tarantula computes suspiciousness score for a program element e as follows:

suspiciousness(e) =

nf (e)

nf

ns(e)
ns

+
nf (e)

nf

Based on block-hit program spectra shown in Figure 4.1, the suspiciousness

score of Block 3 that contains the bug is 1/1
3/3+1/1

= 0.5. Block 1 has the same sus-

piciousness score. Interestingly, Block 2 receives the highest suspiciousness score:

1/1
2/3+1/1

= 0.6. Following the same calculation, Blocks 4 and 5 are not suspicious

because there is no failure that executes these blocks. Assuming developers inspect

program elements one by one from the most suspicious to the least suspicious, the

bug in Block 3 can be found after inspecting at most 3 blocks.

Ochiai

Abreu et al. [6] propose Ochiai to assign suspicious scores to a program element.

Given a program element, Ochiai analyzes the number of failed test cases that ex-

ecute the program element (i.e., nf (e)), the total number of failed test cases (i.e.,

nf), and the number of test cases that execute the program element (i.e., n(e)).

Similar to Tarantula, Ochiai considers an element more suspicious if it occurs more

frequently in failed executions than in correct executions (computed as
√

nf (e)

n(e)
).

Ochiai calculates the suspiciousness score of a program element as follows:

suspiciousness(e) =
nf (e)√

nf (nf (e) + ns(e))
=

nf (e)√
nfn(e)

Using the same example shown in Figure 4.1, Blocks 1 and 3 receive a sus-

piciousness score of: 1/
√

1 ∗ (1 + 3) = 0.50. Similar to Tarantula, Ochiai also

returns Block 2 as the most suspicious block: 1/
√

1 ∗ (1 + 2) = 0.58, while the re-

maining blocks are assigned suspiciousness scores of 0. Both Tarantula and Ochiai

can find the bug after inspecting 3 blocks. In this study, we are interested in inves-

tigating other association measures that can possibly localize the bug earlier.

35

4.2.2 Dichotomous Association

A common characteristic of the association measures evaluated in this work is that

they are all defined based on dichotomy matrices. The following are the necessary

definitions.

Definition 4.2.2 (Dichotomy) A dichotomous outcome is an outcome whose val-

ues could be split into two categories, e.g., wrong or correct, executed or skipped,

married or unmarried, etc. A dichotomous variable is a variable having a dichoto-

mous outcome. A dichotomy matrix is a 2 × 2 matrix that tries to associate two

dichotomous variables in the form of a 2 × 2 contingency table which records the

bivariate frequency distribution of the two variables.

An example of a dichotomy matrixD(A,B) relating variablesA andB is shown

in Table 4.2. The value c00 corresponds to the number of observations in which the

value of variable A equals to A0 and the value of variable B equals to B0. The

values of the other three entries in the dichotomy matrix are similarly defined.

A = A0 A = A1

B = B0 c00 c01

B = B1 c10 c11

Table 4.2: An example of a dichotomy matrix. We refer to it as D(A,B).

Based on the concept of dichotomy matrix, we introduce dichotomous associa-

tion in Definition 4.2.3.

Definition 4.2.3 (Dichotomous Association) A dichotomous association is a spe-

cial form of bivariate association [54] which measures the strength of association

between two dichotomous variables, e.g., application of a medical treatment and

recovery from the disease, job satisfaction and productivity, and program element

execution and program failure. The formulae for calculating dichotomous associa-

tions depend on the four entries in dichotomy matrices.

Given a dichotomy matrix relating two variables, two questions are often asked:

36

1. Is there a (dichotomous) association between the two variables?

2. How strong is the association between the two variables?

A common way to answer these two questions is to define a formula, referred as

an association measure, to calculate a score based on the four entries in a dichotomy

matrix and consider that the association exists (or is strong) if the score is beyond a

particular threshold. We define association measure in Definition 4.2.4.

Definition 4.2.4 (Association Measure) An association measure M of two vari-

ables A and B is a mathematical function of the four entries of a dichotomy matrix

D(A,B), and is denoted as M(A,B,D(A,B)) or simply M(A,B,D) if it is clear

from the context.

In fault localization, we could produce a dichotomy matrix that relates the exe-

cutions of a program element with program failures. Consider a program element

e. For each test case, a trace is generated when a subject program is executed on the

test case. Some traces execute e, others do not. Some traces correspond to failures,

others correspond to correct executions. After the test cases are run, a dichotomy

matrix as shown in Table 4.3 is produced for every program element e.

e Executed e Not Executed
Test Passed ns(e) ns(e)
Test Failed nf (e) nf (e)

Table 4.3: Dichotomy matrix for fault localization.

The notation e means e is not executed, while other notations are defined in

Table 4.1. Thus, ns(e) is the number of test cases that do not execute e and pass,

while nf (e) is the number of test cases that do not execute e and fail.

Considering variables E and F to represent the execution of a program element

and the occurrence of a program failure, respectively, we are interested in computing

M(E,F,De(E,F)) (i.e., the association between the execution of e and a failure),

where De(E,F) represents the dichotomy matrix of the two variables E and F for

37

a program element e. The formulae of the 40 association measures are given in

Section 4.3.

4.3 Association Measures

In this section, we first describe how a dichotomy matrix can be constructed. Next,

we present how the 40 association measures can be computed from a dichotomy

matrix. Finally, we give an example that sorts program elements for inspection

using the association measures.

4.3.1 Constructing a Dichotomy Matrix

Constructing a dichotomy matrix requires program instrumentation that supports

collection of program execution traces and a test oracle. In this work, we instru-

ment all the buggy programs in our dataset at the basic block level. We manually

instrument C programs and use Cobertura1 to instrument Java programs. In order

to construct a dichotomy matrix, we collect program execution traces that con-

tain information about basic blocks that are executed by each test case. The test

oracle then gives us information on whether a test case fails or passes.

Next, for each basic block, we construct a dichotomy matrix by counting the

number of times the basic block is executed by the passing test cases (denoted

as ns(e)), the number of times the basic block is not executed by the passing test

cases (denoted as ns(e)), the number of times the basic block is executed by failing

test cases which is denoted as nf (e), and the number of times the basic block is not

executed by failing test cases which is denoted as nf (e). The information in this

dichotomy matrix is then used as an input to the association measures to calculate

how likely it is that the corresponding basic block contains a bug.

1http://cobertura.sourceforge.net/

38

4.3.2 Association Measures

There have been a number of studies proposed in the statistics and data mining com-

munity on measures of association between variables since the early 20th century.

These include measures such as Yule’s Q and Yule’s Y [148, 149]. Other measures,

such as the Odds Ratio [9], are also commonly considered and utilized in various

domains, such as medicine [10] and social science [54]. In the data mining com-

munity, Agrawal and Srikant have proposed association rule mining to infer associ-

ations from two itemsets in a transaction dataset in the early 90s [8]. They propose

the metrics of support and confidence for measuring the strength of an association.

Various other metrics, such as interest and collective strength, were proposed later.

Various association measures have been studied by comparing their properties,

and investigating the benefits and limitations of each from a computational point

of view [132]. The measures are revisited by Geng and Hamilton by including

measures for aggregated data summaries [44]. Some of the association measures

have been studied for fault localizations, e.g. Jaccard [3, 4], Sorensen-Dice [4],

Anderberg [4], Simple Matching [4], Rogers and Tanimoto [4], and Ochiai II [4].

In this work, we revisit the effectiveness of the measures that have been studied

before in localizing faults, because their effectiveness on localizing various kinds of

bugs and localizing bugs in multiple-bug programs have not been evaluated.

We investigate the effectiveness of 40 association measures in localizing var-

ious kinds of bugs that reside in single-bug and multiple-bug programs. The 40

association measures that we consider are as follows: φ-coefficient [54], odds ra-

tio [9], Yule’s Q [148], Yule’s Y [149], Kappa [32], J-Measure [127], gini in-

dex [45], support [8], confidence [8], Clark and Boswell’s Laplace accuracy [29],

conviction [24], interest [24], cosine [132], Piatetsky-Shapiro’s Leverage [108],

certainty factor [124], added value [132], collective strength [7], Jaccard [51],

Klosgen [75], information gain [26, 112], Coverage [44, 103], Accuracy [44, 103],

Leverage [44, 103], Relative Risk [44, 103], Interestingness Weighting Depen-

39

P (A) =
nf (e)+ns(e)

n P (A,B) =
nf (e)
n P (B|A) = P (A,B)

P (A)

P (A) =
nf (e)+ns(e)

n P (A,B) =
nf (e)
n P (A|B) = P (A,B)

P (B)

P (B) =
nf (e)+nf (e)

n P (A,B) = ns(e)
n

P (B) = ns(e)+ns(e)
n P (A,B) = ns(e)

n

Table 4.4: Preliminary definitions and equations.
dency [44, 103], Goodman and Kruskal [44, 46, 103, 132], Normalized Mutual In-

formation [44, 103, 132], One-Way Support [44, 103], Two-Way Support [44, 103],

Two-Way Support Variation [44, 103], Loevinger [44], Sebag-Schoenauer [44],

Least Contradiction [44], Odd Multiplier [44], Example and Counterexample

Rate [44], Zhang [44], Sorensen-Dice [34, 129], Anderberg [11], Simple Match-

ing [128], Rogers and Tanimoto [118], and Ochiai II [102].

The mathematical formulae of the association measures are defined in terms

of probabilities, instead of frequencies, but we can derive the probabilities from

the frequencies recorded in dichotomous matrices. The mathematical formulae for

calculating the association measures, including Tarantula and Ochiai, are given in

Tables 4.5 and 4.6. The ranges of values that these association measures can take

are given in Tables 4.7 and 4.8.

4.3.3 From Association to Suspiciousness

From Section 4.2, the suspiciousness score for a program element e with dichotomy

matrix De is defined as the strength of the association between the executions of e

with failures (i.e., M(E,F,De)). M refers to one of the 40 association measures

presented in Section 4.3.2.

Next, we illustrate how an association measure could be used to rank program

elements for inspection. Using the example in Figure 4.1, we observe that there

are 5 blocks: Blocks 1, 2, 3, 4, and 5. The bug resides at the if statement in

Block 3. The suspiciousness score of Block 3 is determined by the association

40

Name Formula

φ-Coefficient (M1)
P (A,B)−P (A)P (B)√

P (A)P (B)(1−P (A))(1−P (B))

Odds ratio (M2)
P (A,B)P (A,B)

P (A,B)P (A,B)

Yule’s Q (M3)
P (A,B)P (A,B)−P (A,B)P (A,B)

P (A,B)P (A,B)+P (A,B)P (A,B)
= α−1

α+1

Yule’s Y (M4)

√
P (A,B)P (A,B)−

√
P (A,B)P (A,B)√

P (A,B)P (A,B)+
√
P (A,B)P (A,B)

=
√
α−1√
α+1

Kappa (M5)
P (A,B)+P (A,B)−P (A)P (B)−P (A)P (B)

1−P (A)P (B)−P (A)P (B)

J-Measure (M6) max(P (A,B) log(P (B|A)
P (B)) + P (AB) log(P (B|A)

P (B)
),

P (A,B) log(P (A|B)
P (A)) + P (AB) log(P (A|B)

P (A)
))

Gini Index (M7) max(P (A)[P (B|A)2 + P (B|A)2] + P (A)[P (B|A)2 +

P (B|A)2] − P (B)2 − P (B)2,P (B)[P (A|B)2 +

P (A|B)2] + P (B)[P (A|B)2 + P (A|B)2] − P (A)2 −

P (A)2)

Support (M8) P (A,B)

Confidence (M9) max(P (B|A), P (A|B))

Laplace (M10) max(P (A,B)+1
P (A)+2 , P (A,B)+1

P (B)+2)

Conviction (M11) max(P (A)P (B)

P (AB)
, P (B)P (A)

P (BA)
)

Interest (M12)
P (A,B)
P (A)P (B)

Piatetsky-Shapiro’s (M13) P (A,B)− P (A)P (B)

Certainty Factor (M14) max(P (B|A)−P (B)
1−P (B) , P (A|B)−P (A)

1−P (A))

Added Value (M15) max(P (B|A)− P (B), P (A|B)− P (A))

Collective Strength (M16)
P (A,B)+P (A,B)

P (A)P (B)+P (A)P (B)
× 1−P (A)P (B)−P (A)P (B)

1−P (A,B)−P (AB)

Jaccard (M17)
P (A,B)

P (A)+P (B)−P (A,B)

Klosgen (M18)
√
P (A,B)max(P (B|A)− P (B), P (A|B)− P (A))

Information Gain (M19) (−P (B) logP (B) − P (B) logP (B)) − (P (A) ×

(−P (B|A) logP (B|A)) − P (B|A) logP (B|A) −

P (A) × (−P (B|A) logP (B|A)) −

P (B|A) logP (B|A)))

Table 4.5: Definitions of association measures, Tarantula, and Ochiai [Part I].

41

Name Formula

Coverage (M20) P (A)

Accuracy (M21) P (A,B) + P (A,B)

Leverage (M22) P (B|A)− P (A)P (B)

Relative Risk (M23) P (B|A)/P (B|A)

Interestingness Weighting Depen-

dency (M24)

((P (A,B)
P (A)P (B)

)k − 1)P (A,B)m where k,m are coefficients of depen-

dency and generality, respectively, weighting the relative importance

of the two factors.

Goodman and Kruskal (M25)
∑

i maxjP (Ai,Bj)+
∑

j maxiP (Ai,Bj)−maxiP (Ai)−maxjP (Bj

2−maxiP (Ai)−maxjP (Bj))

Normalized Mutual Information

(M26)

∑
i

∑
j P (Ai, Bj)log2

P (Ai,Bj)

P (Ai)P (Bj)
/{−

∑
i P (Ai)log2P (Ai)}

One-Way Support (M27) P (B|A)log2
P (A,B)

(P (A)P (B))

Two-Way Support (M28) P (A,B)log2
P (A,B)

(P (A)P (B))

Two-Way Support Variation (M29) P (A,B)log2
P (A,B)

(P (A)P (B))
+ P (A,B)log2

P (A,B)

(P (A)P (B))
+

P (A,B)log2
P (A,B)

(P (A)P (B))
+ P (A,B)log2

P (A,B)

(P (A)P (B))

Loevinger (M30) 1− P (A)P (B)

P (A,B)

Sebag-Schoenauer (M31)
P (A,B)

P (A,B)

Least Contradiction (M32)
P (A,B)−P (A,B)

P (B)

Odd Multiplier (M33)
P (A,B)P (B)

P (B)P (A,B)

Example and Counterexample Rate

(M34)

1− P (A,B)
P (A,B)

Zhang (M35)
P (A,B)−P (A)P (B)

max(P (A,B)P (B),P (B)P (A,B)

Sorensen-Dice (M36)
2P (A,B)

2P (A,B)+P (A,B)+P (A,B)

Anderberg (M37)
P (A,B)

P (A,B)+2(P (A,B)+P (A,B))

Simple-Matching (M38) P (A,B) + P (A,B)

Rogers and Tanimoto (M39)
P (A,B)+P (A,B)

P (A,B)+P (A,B)+2(P (A,B)+P (A,B))

Ochiai II (M40)
P (A,B)+P (A,B)√

(P (A,B)+P (A,B))(P (A,B)+P (A,B))(P (A,B)+P (A,B))(P (A,B)+P (A,B))

Tarantula
P (A,B)
P (B)

P (A,B)

P (B)
+

P (A,B)
P (B)

Ochiai P (A,B)√
P (A)P (B)

Table 4.6: Definitions of association measures, Tarantula, and Ochiai [Part II].

42

Name Range No Perfect
φ-Coefficient (M1) −1 . . . 0 . . . 1 0 1

Odds ratio (M2) 0 . . . 1 . . .∞ 1 ∞
Yule’s Q (M3) −1 . . . 0 . . . 1 0 1

Yule’s Y (M4) −1 . . . 0 . . . 1 0 1

Kappa (M5) −1 . . . 0 . . . 1 0 1

J Measure (M6) 0 . . . 1 0 1

Gini index (M7) 0 . . . 1 0 1

Support (M8) 0 . . . 1 0 1

Confidence (M9) 0 . . . 1 0 1

Laplace (M10) 0 . . . 1 0 1

Conviction (M11) 0.5 . . . 1 . . .∞ 1 ∞
Interest (M12) 0 . . . 1 . . .∞ 1 ∞
Piatetsky-Shapiro’s (M13) −0.25 . . . 0 . . . 0.25 0 0.25

Certainty factor (M14) −1 . . . 0 . . . 1 0 1

Added Value (M15) −0.5 . . . 0 . . . 1 0 1

Collective strength (M16) 0 . . . 1 . . .∞ 1 ∞
Jaccard (M17) 0 . . . 1 0 1

Klosgen (M18) (2√
3
− 1)1/2[2−

√
3− 1√

3
] . . . 0 . . . 2

3
√
3

0 2
3
√
3

Information Gain (M19) 0 . . . 1 0 1

Table 4.7: Value ranges of the association measures, Tarantula, and Ochiai [Part I]. The third and fourth columns give
the values corresponding to no association and perfect association respectively. Values of measures with ranges in the format
of a . . . b (e.g., J-Measure (0 . . . 1), etc.) indicate positive associations with failures. Values of measures with ranges in the
format of a . . . b . . . c (e.g., φ-coefficient (-1..0..1), etc.) indicate positive associations with failures (if they are between b and
c), or negative associations with failures (if they are between a and b). Values closer to a imply stronger associations with
passing executions.

43

Name Range No Perfect
Coverage (M20) 0 . . . 1 0 1

Accuracy (M21) 0 . . . 1 0 1

Leverage (M22) −1 . . . 0 . . . 1 0 1

Relative Risk (M23) 0 . . . 1 . . .∞ 1 ∞
Interestingness Weighting Dependency (M24) −1 . . . 0 . . . 1 0 1

Goodman and Kruskal (M25) 0 . . . 1 0 1

Normalized Mutual Information (M26) 0 . . . 1 0 1

One-Way Support (M27) −1 . . . 0 . . . 1 0 1

Two-Way Support (M28) −1 . . . 0 . . . 1 0 1

Two-Way Support Variation (M29) 0 . . . 1 0 1

Loevinger (M30) −1 . . . 0 . . . 1 0 1

Sebag-Schoenauer (M31) 0 . . . 1 . . .∞ 1 ∞
Least Contradiction (M32) 0 . . . 1 0 1

Odd Multiplier (M33) 0 . . . 1 . . .∞ 1 ∞
Example and Counterexample Rate (M34) -∞ . . . 0 . . . 1 0 1

Zhang (M35) −1 . . . 0 . . . 1 0 1

Sorensen-Dice (M36) 0 . . . 1 0 1

Anderberg (M37) 0 . . . 1 0 1

Simple-Matching (M38) 0 . . . 1 0 1

Rogers and Tanimoto (M39) 0 . . . 1 0 1

Ochiai II (M40) 0 . . . 1 0 1

Tarantula 0 . . . 1 0 1

Ochiai 0 . . .
√
P (A,B) . . . 1

√
P (A,B) 1

Table 4.8: Value ranges of the association measures, Tarantula, and Ochiai [Part II].

44

strength between the executions of Block 3 and failures. For example, by using

one of the association measures, e.g., Coverage, Blocks 3 and 1 receive the highest

suspiciousness score, i.e., 1, followed by Block 2 whose suspiciousness score is

0.75. The suspiciousness scores of Blocks 4 and 5 are 0.5. This particular measure

can rank the block containing the bug such that no other blocks receive a higher

score. However, Tarantula and Ochiai are unable to do so—see Section 4.2 for

details.

4.4 Empirical Evaluation

In this section we describe our datasets, our evaluation metrics, and evaluation re-

sults.

4.4.1 Datasets

Based on the availability of the programs listed in Table 2.1, which have been

used in previous studies, we choose our subject programs as follows. We an-

alyze different programs from Siemens Test Suite [58]. Siemens programs are

injected with realistic bugs and are often analyzed for fault localization stud-

ies [3, 5, 6, 18, 21, 31, 48, 61, 65, 91, 92, 94, 116, 122]. We also analyze other three

real programs from Software-artifact Infrastructure Repository (SIR) [125] namely:

Space [4, 5, 65, 66], NanoXML [122], and XML-Security [122]. Space is written in

C, while NanoXML and XML-Security are written in Java. The average number of

lines of code for the various versions of Space, NanoXML and XML-Security are

6,218, 4,223, and 21,275 respectively.

The Siemens test suite was originally used for research in test coverage ade-

quacy and was developed by Siemens Corporation Research. We use the variant

provided at www.cc.gatech.edu/aristotle/Tools/subjects/. Each program contains

many different versions where each version has one bug. These bugs comprise

a wide array of realistic bugs. The Siemens Test Suite comes with 7 programs:

45

print tokens, print tokens2, replace, schedule, schedule2, tcas, and tot info. The

total number of buggy versions is 132, as shown in Table 4.9. We manually in-

strumented the buggy versions at the basic block level. Since our instrumentation

cannot reach the bugs that reside in variable declarations, we exclude versions that

contain this type of bugs, i.e., versions 6, 10, 19, 21 of tot info dataset, version 12 of

replace dataset, and versions 13, 14, 15, 36, 38 of tcas dataset. We exclude versions

4 and 6 of print token because they are identical to the original version. We also

exclude version 9 of schedule2 because there is no test case for it that results in a

failure. Thus, in total, we use 119 buggy versions from the Siemens test suite.

Space is an interpreter for Array Definition Language (ADL) used by European

Space Agency. We analyze all 35 faulty versions of Space downloaded from SIR.

NanoXML is a utility for parsing XML. SIR contains 5 versions of NanoXML. We

exclude NanoXML v4 because there is no test case for this program that results in

a failure. For each version, SIR provides a few bugs. In total there are 32 buggy

versions for NanoXML v1, NanoXML v2, NanoXML v3, and NanoXML v5, and

we analyze 30 of them. We exclude two buggy versions because there is no test

case that results in a failure. XML-Security is a Java library that supports digital

signature and encryption. SIR contains 3 versions of XML-Security. Again for

each version, SIR provides a few bugs. In total there are 32 buggy versions for

XMLSec v1, XMLSec v2, and XMLSec v3. We exclude 16 buggy versions be-

cause there is no test case that results in a failure. Thus, the total number of buggy

versions that we analyze for the 3 programs are 81.

Table 4.9 provides the number of lines, the programming language in which the

program is written, the number of faulty versions, and the number of test cases for

each subject program.

46

Dataset LOC Language Num. of Faulty Version Num. of Test Cases
print token 478 C 5 4130

print token2 399 C 10 4115

replace 512 C 31 5542

schedule 292 C 9 2650

schedule2 301 C 9 2710

tcas 141 C 36 1608

tot info 440 C 19 1051

space 6,218 C 35 13,585

NanoXML v1 3,497 Java 6 214

NanoXML v2 4,007 Java 7 214

NanoXML v3 4,608 Java 9 216

NanoXML v5 4,782 Java 8 216

XML security v1 21,613 Java 6 92

XML security v2 22,318 Java 6 94

XML security v3 19,895 Java 4 84

Table 4.9: Dataset descriptions
4.4.2 Evaluation Metrics

We use 40 association measures, Tarantula, and Ochiai to rank program elements

based on their suspiciousness. Developers could then use this list to investigate the

more suspicious program elements first. We assume that developers would be able

to identify the buggy program element when they inspect it.

We consider two commonly used evaluation metrics: average percentage of code

inspected to find all bugs, and proportion of bugs found when a given proportion of

the code is inspected. We describe these two metrics in the following paragraphs.

Percentage of Code Inspected.

We evaluate the performance of the measures by the number of elements that are

ranked as high or higher than the program element containing the fault/bug. For a

suspiciousness score to be effective, buggy program elements should have a rela-

tively larger value of suspiciousness scores than the non-buggy elements.

When a buggy program element has the same suspiciousness score as several

other elements, the lowest rank of the elements that has this suspiciousness score

is used as the rank of the buggy element. For example, consider the case where

47

the two highest suspiciousness scores are 0.92 and 0.91, two elements (e.g., e1 and

e2) have suspiciousness scores of 0.92, and 3 elements (e.g., e3, e4 and e5) have

suspiciousness scores of 0.91. Since we do not know how the programmer will

traverse elements that have the same suspiciousness score, we use the worst case

scenario where the programmer inspects all elements having the same score. In this

case, e1 and e2 have a rank of 2, while e3 to e5 have a rank of 5. In the situation where

a buggy version contains multiple bugs or one single bug that involves multiple

program elements, we use the lowest rank among the buggy elements as it is the

worst case rank that represents scenarios when programmers would like to find all

the buggy elements by using the given list of most suspicious program elements.

Ranking program elements by using suspiciousness score is useful to evaluate

the accuracy of a fault-localization approach. However, it may not be representa-

tive enough to know how programmers really locate the bugs with their expertise,

as this ranking approach does not provide the context of the bugs to help program-

mers in understanding the root cause of the bugs, as the study by Parnin and Orso

has shown [106]. An interesting future study would be to augment suspiciousness

ranking with some additional information to more effectively guide programmers to

locate all buggy program elements.

Given a list of most suspicious program elements produced by a suspiciousness

measure, in this work, we assume that programmers would inspect the program

elements from the most to the least suspicious ones in the list. Hence, an effective

suspiciousness measure should rank buggy elements first. We then use this rank to

compute the percentage of program elements that need to be inspected to find the

buggy elements by the formula:

largest rank among the buggy elements

total elements

In our experiment, we thus choose to use basic block as the granularity of the

elements and the above percentage is applied as the first accuracy criterion of the

48

association measures. The accuracy of a particular measure to localize bug in all

buggy versions of our datasets is then evaluated by calculating the overall mean of

all percentages of code inspected for the measure which is the average of the per-

centages of code inspected of the measure for all buggy versions in our datasets.

The smaller the overall mean, the more accurate the measure in localizing bug.

However, the overall mean might not necessarily indicate that the measure would

localize bugs with the same accuracy for all buggy versions. A measure could have

a good accuracy in localizing one bug, but might not have a good accuracy in local-

izing other bugs. Thus, we also calculate the measure’s overall standard deviation

to evaluate its variance of percentages of code inspected for all buggy versions. The

smaller the overall standard deviation, the better the overall mean reflects the accu-

racy of the measure because of less variation of percentage of code inspected for all

buggy versions.

Proportion of Bugs Localized.

Next, we calculate the percentage of bugs that could be localized assuming that the

developers are only willing to investigate a given proportion of code. To compute

this measure we vary the proportion of code that the developers are willing to inspect

and for each proportion we compute the percentage of bugs that can be localized.

4.4.3 Evaluation Results

We describe the accuracy of the association measures in comparison with Ochiai

and Tarantula in the following paragraphs.

Percentage of Code Inspected.

We calculate the overall means and standard deviations of percentage of code in-

spected for the 40 association measures, Ochiai and Tarantula for all subject pro-

grams, as shown in Table 4.10. Among the 40 measures, Klosgen (M18) achieves

49

the smallest average percentage of code inspected i.e., 25.24%, which is better than

Ochiai (i.e., 25.45%) and Tarantula (i.e., 27.13%). Intuitively, Klosgen also consid-

ers that a program element is more suspicious when it is executed more often by the

failed test cases. It measures the suspiciousness of a program element by consider-

ing two main conditions. First, it measures the difference between the probability

that a test case would fail, given that the element was executed, and the probabil-

ity that a test case would fail during its execution (i.e., P (B|A) − P (B)). Second,

it measures the difference between the probability that a program element would

be executed, given that a test case was failed during its execution, and the proba-

bility that that program element would be executed (i.e., P (A|B) − P (A)). Then,

Klosgen takes the maximum likelihood among these two conditions. The compar-

ison between these two conditions can enrich the information to infer the faulty

elements.

In addition, a number of the association measures has similar accuracy with

Klosgen (M18) and Ochiai (i.e., having a mean in the range of 25.66% and 26.24%):

Collective Strength (M16), Normalized Mutual Information (M26), φ-Coefficient

(M1), Added Value (M15), Two-Way Support (M28), and Interestingness Weight-

ing Dependency (M24). We notice that 11 other measures can achieve similar accu-

racy as Tarantula (i.e., having a mean between 26.60% to 27.12%) i.e., J-Measure

(M6), Information Gain (M19), Two-Way Support Variation (M29), Example and

Counterexample Rate (M34), Confidence (M9), Kappa (M5), Sebag (M31), Odd

Multiplier (M33), Interest (M12), Zhang (M35), and One-Way Support (M27).

In our dataset, we have 15 subject programs where each subject program has a

number of buggy versions. Since the accuracy of association measures in localizing

bugs may vary for different programs, we then evaluate the accuracy of the measures

in localizing bugs for each program. Tables 4.12 and 4.13 shows the mean and stan-

dard deviation of each measure in localizing faults for each subject program. Based

on the results, almost half of the measures could localize bugs in buggy versions of

schedule when less than 10% of code is inspected. The measures generally require

50

Association Measures Mean StdDev Association Measures Mean StdDev
Klosgen(M18) 25.24% 27.13% Anderberg(M37) 27.60% 27.30%
Ochiai 25.45% 26.54% Sorensen-Dice(M36) 27.61% 27.28%
Collective Strength(M16) 25.66% 26.86% Ochiai II(M40) 28.23% 28.88%
Normalized Mutual Information(M26) 25.68% 26.38% Gini Index(M7) 28.23% 28.43%
φ-Coefficient(M1) 25.73% 27.07% Leverage(M22) 29.46% 28.12%
Added Value(M15) 25.74% 27.50% Least Contradiction(M32) 33.42% 28.82%
Two-Way Support(M28) 26.03% 27.25% Rogers and Tanimoto(M39) 33.47% 28.85%
Interestingness Weighting Dependency(M24) 26.24% 27.42% Accuracy(M21) 33.68% 28.81%
J-Measure(M6) 26.60% 27.51% Simple-Matching(M38) 33.68% 28.81%
Information Gain(M19) 26.73% 27.53% Odds Ratio(M2) 41.61% 21.34%
Two-Way Support Variation(M29) 26.73% 27.53% Yule’sQ (M3) 41.68% 21.45%
Example and Counterexample Rate(M34) 26.96% 27.12% Yule’s Y (M4) 41.69% 21.44%
Confidence(M9) 26.99% 27.25% Certainty Factor(M14) 41.73% 21.26%
Kappa(M5) 27.04% 27.21% Conviction(M11) 41.73% 21.27%
Sebag(M31) 27.09% 27.18% Relative Risk(M23) 44.82% 22.01%
Odd Multiplier(M33) 27.09% 27.20% Laplace(M10) 45.34% 21.63%
Interest(M12) 27.10% 27.19% Support(M8) 45.44% 21.65%
Zhang(M35) 27.11% 27.17% Goodman and Kruskal(M25) 45.74% 37.82%
One-Way Support(M27) 27.12% 27.26% Coverage(M20) 47.02% 24.37%
Tarantula 27.13% 27.17% Piatetsky-Shapiro’s(M13) 57.37% 24.50%
Jaccard(M17) 27.47% 27.36% Loevinger(M30) 57.57% 25.35%

Table 4.10: Overall mean and standard deviation (in parentheses) of accuracy values
(smaller the better)

more than 10% of the code to be inspected in order to localize bugs for the other

five C programs (i.e., print tokens, schedule2, replace, tcas, and tot info) and the

Java programs.

We observe that the average percentages of code inspected for all measures in

localizing bugs for XML security programs are the same. This is due to the fact that

program elements in those programs are either executed by both failed and passed

test cases, or are not executed at all. Given the above fact, each element only has

two possible dichotomy matrices (i.e., a matrix that is used by association measures

to calculate the suspiciousness score of a program element). Table 4.11 shows two

possible dichotomy matrices for buggy programs of XML Security version 1. As

each possible dichotomy matrix has only two non-zero values, not much informa-

tion can be inferred from the program spectra to rank the program elements, hence

all measures perform similarly.

Hence, not much information can be inferred from the program spectra to rank

the program elements and all measures perform similarly.

We also perform statistical tests for each pair of measures including Tarantula

and Ochiai using Wilcoxon signed rank test [139] to evaluate if some measures are

51

Figure 4.2: Accuracy partial order

52

e Executed e Not Executed
Test
Passed

91 0

Test
Failed

1 0

e Executed e Not Executed
Test
Passed

0 91

Test
Failed

0 1

Table 4.11: Two possible dichotomy matrices for buggy programs of XML Security
version 1: [left] a program element is executed by all test cases; [right] a program
element is not executed at all.

statistically significantly better than others (i.e., p-value is smaller than 0.05). The

Wilcoxon test does not assume that the data should follow certain distribution.

We visualize the statistical significance relationship as a partial order as pre-

sented in Figure 4.2. A link from A to B in the partial order denotes that A is

statistically significantly better than B. The relationships expressed in the partial or-

der are transitive: if A outperforms B, and B outperforms C, then A outperforms

C. To reduce the number of links in the partial order, we omit links that could be

captured by this transitivity property.

Based on the partial order, Klosgen (M18) and Normalized Mutual Informa-

tion (M26) have comparable performance as Ochiai. Klosgen (M18), Normalized

Mutual Information (M26), and Ochiai are significantly better than Tarantula. We

also notice that 7 other measures also perform significantly better than Tarantula

i.e., φ-coefficient (M1), Added Value (M15), Collective Strength (M16), Two-Way

Support (M28), Interestingness Weighting Dependency (M24), Example and Coun-

terexample Rate (M34), and Kappa (M5). Measures that perform comparably with

Tarantula are Interest (M12), One-Way Support (M27), Sebag (M31), Odds Multi-

plier (M33), and Zhang (M35). On the other hand, Piatetsky-Shapiro’s (M13), and

Loevinger (M30) perform worse than other measures for fault localization.

Proportion of Bugs Localized.

For each measure, we plot a curve showing the proportion of code that are investi-

gated (x-axis) vs. the proportion of bugs localized (y-axis) for all dataset. We split

53

Association Measures Programs
print token print token2 schedule schedule2 replace tcas tot info space

φ-Coefficient 21%(25%) 13%(17%) 9%(15%) 47%(24%) 13%(19%) 56%(27%) 19%(15%) *10%(24%)
OddsRatio 43%(19%) 44%(2%) 49%(28%) 53%(7%) 34%(16%) 64%(15%) 49%(20%) 23%(20%)
Yule’sQ 43%(19%) 44%(3%) 48%(28%) 53%(7%) 34%(16%) 64%(15%) 49%(20%) 23%(20%)
Yule’s Y 44%(18%) 44%(3%) 48%(28%) 53%(7%) 34%(16%) 64%(15%) 49%(20%) 23%(20%)
Kappa 28%(26%) 16%(20%) 7%(6%) 51%(24%) 16%(21%) 56%(27%) 21%(16%) *10%(24%)
J-Measure 22%(27%) 11%(13%) 14%(19%) 49%(23%) *12%(18%) 56%(29%) 18%(15%) 12%(25%)
Gini Index 26%(32%) 16%(22%) 12%(12%) 58%(26%) 13%(19%) 58%(29%) 24%(19%) 12%(25%)
Support 43%(17%) 45%(3%) 50%(30%) 56%(8%) 34%(16%) 67%(14%) 51%(20%) 26%(21%)
Confidence 29%(26%) 13%(18%) 7%(6%) 51%(24%) 16%(21%) 57%(27%) 23%(16%) 11%(24%)
Laplace 43%(17%) 45%(3%) 50%(29%) 56%(8%) 35%(16%) 67%(14%) 50%(20%) 25%(20%)
Conviction 42%(16%) 44%(3%) 48%(28%) 53%(7%) 34%(16%) 64%(15%) 49%(20%) 24%(20%)
Interest 29%(26%) 17%(20%) 7%(6%) 51%(24%) 16%(21%) 56%(27%) 22%(16%) 11%(24%)
Piatetsky-Shapiro’s 61%(32%) 77%(16%) 71%(29%) 68%(28%) 64%(22%) 66%(26%) 63%(28%) 50%(18%)
Certainty Factor 42%(16%) 44%(3%) 48%(28%) 53%(7%) 34%(16%) 64%(15%) 49%(20%) 24%(20%)
Added Value 23%(28%) 14%(19%) 7%(10%) 50%(25%) 13%(20%) 56%(28%) 18%(15%) 11%(24%)
Collective Strength 24%(31%) 13%(16%) 11%(20%) 44%(23%) 13%(18%) 55%(27%) 18%(15%) *10%(24%)
Jaccard 26%(26%) 12%(18%) 7%(6%) 50%(24%) 15%(21%) 56%(27%) 21%(15%) 11%(24%)
Klosgen 21%(25%) 11%(15%) 8%(12%) 48%(24%) *12%(19%) 55%(28%) *17%(13%) 11%(24%)
Information Gain 22%(27%) 11%(14%) 14%(19%) 49%(23%) *12%(18%) 56%(29%) 19%(16%) 12%(25%)
Coverage 63%(26%) 63%(20%) 69%(30%) *36%(26%) 53%(23%) *47%(25%) 51%(28%) 40%(24%)
Accuracy 38%(26%) 28%(22%) 11%(5%) 60%(24%) 27%(22%) 60%(29%) 37%(29%) 15%(26%)
Leverage 30%(28%) 20%(22%) 7%(4%) 55%(26%) 17%(20%) 59%(28%) 28%(23%) 14%(25%)
Relative Risk 44%(19%) 45%(3%) 50%(28%) 56%(8%) 35%(16%) 68%(14%) 50%(20%) 23%(20%)
Int. Weighting Dependency 24%(28%) 15%(20%) 8%(9%) 50%(24%) 14%(20%) 56%(27%) 21%(16%) *10%(24%)
Goodman and Kruskal 35%(44%) 30%(44%) 67%(38%) 83%(9%) 40%(40%) 70%(30%) 66%(41%) 19%(31%)
Normalized Mutual Info. 23%(31%) *9%(11%) 16%(27%) 41%(20%) *12%(17%) 54%(27%) *17%(13%) 11%(24%)
One-Way Support 29%(26%) 17%(20%) 7%(6%) 51%(24%) 16%(20%) 57%(27%) 22%(16%) 11%(24%)
Two-Way Support 23%(28%) 14%(19%) 8%(10%) 50%(25%) 13%(18%) 56%(28%) 20%(15%) *10%(24%)
Two-Way Support Variation 22%(27%) 11%(14%) 14%(19%) 49%(23%) *12%(18%) 56%(29%) 19%(16%) 12%(25%)
Loevinger 71%(26%) 78%(21%) 74%(30%) 44%(26%) 65%(22%) 53%(23%) 70%(26%) 61%(25%)
Sebag 29%(26%) 17%(20%) 7%(6%) 51%(24%) 16%(21%) 56%(27%) 22%(16%) 11%(24%)
Least Contradiction 34%(30%) 28%(22%) 11%(5%) 59%(24%) 26%(21%) 60%(29%) 36%(29%) 15%(26%)
Odd Multiplier 29%(26%) 17%(20%) 7%(6%) 51%(24%) 16%(21%) 56%(27%) 22%(16%) 11%(24%)
Example and Counter. 29%(26%) 17%(20%) 7%(6%) 51%(24%) 16%(21%) 56%(27%) 22%(16%) 11%(24%)
Zhang 29%(26%) 17%(20%) 7%(6%) 51%(24%) 16%(21%) 56%(27%) 22%(16%) 11%(24%)
Sorensen-Dice 27%(26%) 16%(20%) 7%(6%) 50%(24%) 15%(21%) 56%(27%) 20%(14%) 11%(24%)
Anderberg 26%(26%) 16%(20%) 7%(6%) 51%(24%) 16%(21%) 56%(27%) 20%(14%) 11%(25%)
Simple-Matching 38%(26%) 28%(22%) 11%(5%) 60%(24%) 27%(22%) 60%(29%) 37%(29%) 15%(26%)
Rogers and Tanimoto 34%(30%) 28%(22%) 11%(5%) 60%(24%) 27%(22%) 60%(29%) 36%(29%) 15%(26%)
Ochiai II 27%(32%) 16%(21%) *6%(4%) 57%(26%) 15%(21%) 57%(28%) 28%(27%) 11%(24%)
Tarantula 29%(26%) 17%(20%) 7%(6%) 51%(24%) 16%(21%) 56%(27%) 22%(16%) 11%(24%)
Ochiai *20%(29%) *9%(10%) 13%(28%) 42%(22%) *12%(19%) 53%(26%) *17%(12%) 11%(24%)

Table 4.12: Detailed means and standard deviations (in parentheses) of percentages
of code inspected to find all bugs in the C programs. The star (*) marks the mea-
sure(s) with the lowest mean and the underline marks measures that have a mean
below 10%.

54

Association Measures Programs
Nano v1 Nano v2 Nano v3 Nano v5 XML-

sec v1
XML-
sec v2

XML-
sec v3

φ-Coefficient *21%(28%) 32%(25%) *31%(30%) 20%(15%) 29%(0%) 31%(0%) 40%(0%)
OddsRatio 45%(18%) 43%(18%) 44%(19%) 23%(10%) 29%(0%) 31%(0%) 40%(0%)
Yule’sQ 44%(18%) 43%(18%) 44%(19%) 25%(14%) 29%(0%) 31%(0%) 40%(0%)
Yule’s Y 44%(18%) 43%(18%) 44%(19%) 25%(14%) 29%(0%) 31%(0%) 40%(0%)
Kappa *21%(28%) 32%(25%) *31%(30%) 20%(15%) 29%(0%) 31%(0%) 40%(0%)
J-Measure 25%(30%) 31%(26%) *31%(30%) 26%(17%) 29%(0%) 31%(0%) 40%(0%)
Gini Index 25%(30%) 32%(25%) *31%(30%) 26%(19%) 29%(0%) 31%(0%) 40%(0%)
Support 67%(11%) 51%(12%) 55%(10%) 41%(18%) 29%(0%) 31%(0%) 40%(0%)
Confidence *21%(28%) 26%(29%) *31%(30%) 20%(15%) 29%(0%) 31%(0%) 40%(0%)
Laplace 67%(11%) 51%(12%) 55%(10%) 41%(18%) 29%(0%) 31%(0%) 40%(0%)
Conviction 44%(18%) 42%(18%) 44%(19%) 25%(14%) 29%(0%) 31%(0%) 40%(0%)
Interest *21%(28%) *26%(29%) *31%(30%) 20%(15%) 29%(0%) 31%(0%) 40%(0%)
Piatetsky-Shapiro’s 52%(20%) 46%(16%) 36%(13%) 46%(22%) 29%(0%) 31%(0%) 40%(0%)
Certainty Factor 44%(18%) 42%(18%) 44%(19%) 25%(14%) 29%(0%) 31%(0%) 40%(0%)
Added Value *21%(28%) *26%(29%) *31%(30%) 20%(15%) 29%(0%) 31%(0%) 40%(0%)
Collective Strength *21%(28%) 31%(26%) *31%(30%) 20%(15%) 29%(0%) 31%(0%) 40%(0%)
Jaccard *21%(28%) 53%(9%) *31%(30%) 19%(15%) 29%(0%) 31%(0%) 40%(0%)
Klosgen *21%(28%) 28%(28%) *31%(30%) 19%(14%) 29%(0%) 31%(0%) 40%(0%)
Information Gain 25%(30%) 32%(25%) *31%(30%) 26%(18%) 29%(0%) 31%(0%) 40%(0%)
Coverage 59%(21%) 47%(19%) 34%(15%) 40%(19%) 29%(0%) 31%(0%) 40%(0%)
Accuracy 25%(30%) 38%(27%) 32%(30%) 24%(21%) 29%(0%) 31%(0%) 40%(0%)
Leverage 25%(30%) 28%(28%) *31%(30%) 24%(17%) 29%(0%) 31%(0%) 40%(0%)
Relative Risk 67%(11%) 51%(12%) 55%(10%) 40%(16%) 29%(0%) 31%(0%) 40%(0%)
Int. Weighting Dependency *21%(28%) 27%(28%) *31%(30%) 20%(15%) 29%(0%) 31%(0%) 40%(0%)
Goodman and Kruskal 29%(35%) 38%(27%) 40%(30%) 42%(30%) 29%(0%) 31%(0%) 40%(0%)
Normalized Mutual Info. *21%(28%) 43%(18%) *31%(30%) 21%(14%) 29%(0%) 31%(0%) 40%(0%)
One-Way Support *21%(28%) *26%(29%) *31%(30%) 21%(18%) 29%(0%) 31%(0%) 40%(0%)
Two-Way Support *21%(28%) 30%(27%) *31%(30%) 20%(13%) 29%(0%) 31%(0%) 40%(0%)
Two-Way Support Variation 25%(30%) 32%(25%) 31%(30%) 26%(18%) 29%(0%) 31%(0%) 40%(0%)
Loevinger 63%(20%) 50%(21%) 35%(15%) 45%(21%) 29%(0%) 31%(0%) 40%(0%)
Sebag *21%(28%) *26%(29%) *31%(30%) 20%(15%) 29%(0%) 31%(0%) 40%(0%)
Least Contradiction 25%(30%) 38%(27%) 32%(30%) 24%(21%) 29%(0%) 31%(0%) 40%(0%)
Odd Multiplier *21%(28%) *26%(29%) *31%(30%) 20%(15%) 29%(0%) 31%(0%) 40%(0%)
Example and counter. *21%(28%) *26%(29%) *31%(30%) 20%(15%) 29%(0%) 31%(0%) 40%(0%)
Zhang *21%(28%) *26%(29%) *31%(30%) 20%(15%) 29%(0%) 31%(0%) 40%(0%)
Sorensen-Dice *21%(28%) 53%(9%) 42%(35%) 19%(15%) 29%(0%) 31%(0%) 40%(0%)
Anderberg *21%(28%) 53%(9%) 42%(35%) 19%(15%) 29%(0%) 31%(0%) 40%(0%)
Simple-Matching 25%(30%) 38%(27%) 43%(35%) 24%(21%) 29%(0%) 31%(0%) 40%(0%)
Rogers and Tanimoto 25%(30%) 38%(27%) 43%(35%) 24%(21%) 29%(0%) 31%(0%) 40%(0%)
Ochiai II 25%(30%) 32%(25%) 42%(35%) 24%(18%) 29%(0%) 31%(0%) 40%(0%)
Tarantula *21%(28%) *26%(29%) *31%(30%) 20%(15%) 29%(0%) 31%(0%) 40%(0%)
Ochiai *21%(28%) 53%(10%) *31%(30%) *18%(15%) 29%(0%) 31%(0%) 40%(0%)

Table 4.13: Detailed means and standard deviations (in parentheses) of percentages
of code inspected to find all bugs in the Java programs.

55

the large graphs into several smaller graphs so that measures that have similar accu-

racies are grouped together, as shown in Figures 4.3, 4.4, 4.5, 4.6, 4.7, and 4.8. For

each graph, we compare the percentage of bugs localized by a number of association

measures with Tarantula and Ochiai.

Figure 4.3 shows three association measures that perform better than Ochiai and

Tarantula or as good as Ochiai. When only 10% of program elements are inspected,

Klosgen (M18) and Added Value (M15) could localize more bugs than Tarantula

and Ochiai—they could localize 47% and 48% of the bugs respectively. Tarantula

and Ochiai could localize 39% and 45% of the bugs respectively. Two-Way Support

(M28) could localize the same proportion of bugs as Ochiai.

When only 10% of program elements are inspected, a number of association

measures could perform better than Tarantula even though they are not as good

as Ochiai, as shown in Figures 4.5 and 4.6. In addition, a number of association

measures could have similar accuracy with Tarantula, as shown in Figure 4.4. When

10% of program elements are inspected, these measures could localize 39 to 40%

of the bugs, while the rest of the measures could not perform as good as Tarantula

and Ochiai. See Figures 4.7 and 4.8 for the proportion of bugs localized for the

measures that perform worse than Tarantula and Ochiai.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

P
e
rc

e
n

ta
g

e
 o

f
B

u
g

 L
o

c
a
li
z
e
d

Percentage of Inspected Elements

M15

M18

M28

Tarantula

Ochiai

Figure 4.3: Comparing M15, M18, and
M28 with Ochiai and Tarantula for all
datasets

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

P
e
rc

e
n

ta
g

e
 o

f
B

u
g

 L
o

c
a
li
z
e
d

Percentage of Inspected Elements

M5

M9

M12

M27

M31

M33

M34

M35

Tarantula

Ochiai

M5, M9, M12, M27, M31, M33, M34, and M35

are similar with Tarantula

Figure 4.4: Comparing M5, M9, M12,
M27, M31, M33 - M35 with Ochiai and
Tarantula for all datasets

56

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

P
e

rc
e
n

ta
g

e
 o

f
B

u
g

 L
o

c
a
li

z
e

d

Percentage of Inspected Elements

M1

M6

M7

M16

M17

Tarantula

Ochiai

Figure 4.5: Comparing M1, M6, M7,
M16, M17 with Ochiai and Tarantula for
all datasets

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

P
e
rc

e
n

ta
g

e
 o

f
B

u
g

 L
o

c
a
li
z
e
d

Percentage of Inspected Elements

M19

M24

M26

M29

M36

M37

M40

Tarantula

Ochiai
M36 and M37 are overlapped

Figure 4.6: Comparing M19, M24, M26,
M29, M36, M37, M40 with Ochiai and
Tarantula for all datasets

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

P
e

rc
e
n

ta
g

e
 o

f
B

u
g

 L
o

c
a

li
z
e

d

Percentage of Inspected Elements

M2

M3

M4

M8

M10

M11

M13

M14

M20

Tarantula

Ochiai

M2, M3, and M4 are overlapped

M8 and M10 are overlapped

M11 and M14 are overlapped

Figure 4.7: Comparing M2 - M4, M8,
M10, M11, M13, M14, M20 with Ochiai
and Tarantula for all datasets

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

P
e
rc

e
n

ta
g

e
 o

f
B

u
g

 L
o

c
a
li
z
e
d

Percentage of Inspected Elements

M21

M22

M23

M25

M30

M32

M38

M39

Tarantula

Ochiai

M21, M32, M38, and M39

are overlapped

Figure 4.8: Comparing M21 - M23, M25,
M30, M32, M38, M39 with Ochiai and
Tarantula for all datasets

57

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

P
e
rc

e
n

ta
g

e
 o

f
B

u
g

 L
o

c
a
li
z
e
d

Percentage of Inspected Elements

M15

M18

M28

Tarantula

Ochiai

Figure 4.9: Comparing M15, M18, and
M28 with Ochiai and Tarantula for C pro-
grams

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

P
e
rc

e
n

ta
g

e
 o

f
B

u
g

 L
o

c
a
li
z
e
d

Percentage of Inspected Elements

M5

M9

M12

M27

M31

M33

M34

M35

Tarantula

OchiaiM5, M9, M12, M27, M31, M33, M34, and M35

are similar with Tarantula

Figure 4.10: Comparing M5, M9, M12,
M27, M31, M33 - M35 with Ochiai and
Tarantula for C programs

4.4.4 Effectiveness for Various Programming Languages.

In this section, we evaluate the accuracy of measures in localizing faults for different

programming languages (C and Java) in terms of the percentage of code inspected

and the proportion of bugs localized. Based on the percentage of code inspected, we

generate two partial orders separately for the C and Java programs to evaluate the

measures that perform better in each of the programming languages. We highlight

measures that are at the top of the partial orders (i.e., no other measures perform

statistically significantly better than them).

We find that for both C and Java programs, Ochiai and Klosgen (M18) are at the

top of the partial order. Besides these two measures, a number of other measures

are also at the top of the partial order in localizing bugs for Java programs, namely

Confidence (M9), Interest (M12), Added Value (M15), Sebag (M31), Example and

Counterexample Rate (M34), Zhang (M35), Tarantula, Interestingness Weighting

Dependency (M24), and Normalized Mutual Information (M26).

Localizing Bugs in C Programs.

Based on the proportion of bugs localized, Added Value (M15) and Klosgen

(M18) could localize more bugs in C programs as compared to Ochiai and Taran-

tula when 10% of code inspected. Added Value (M15) and Klosgen (M18) could

58

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

P
e
rc

e
n

ta
g

e
 o

f
B

u
g

 L
o

c
a
li
z
e
d

Percentage of Inspected Elements

M1

M6

M7

M16

M17

Tarantula

Ochiai

Figure 4.11: Comparing M1, M6, M7,
M16, M17 with Ochiai and Tarantula for
C programs

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

P
e
rc

e
n

ta
g

e
 o

f
B

u
g

 L
o

c
a
li
z
e
d

Percentage of Inspected Elements

M19

M24

M26

M29

M36

M37

M40

Tarantula

Ochiai
M36 and M37 are overlapped

Figure 4.12: Comparing M19, M24, M26,
M29, M36, M37, M40 with Ochiai and
Tarantula for C programs

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

P
e
rc

e
n

ta
g

e
 o

f
B

u
g

 L
o

c
a
li
z
e
d

Percentage of Inspected Elements

M2

M3

M4

M8

M10

M11

M13

M14

M20

Tarantula

Ochiai

M2, M3, and M4 are overlapped

M8 and M10 are overlapped

M11 and M14 are overlapped

Figure 4.13: Comparing M2 - M4, M8,
M10, M11, M13, M14, M20 with Ochiai
and Tarantula for C programs

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

P
e
rc

e
n

ta
g

e
 o

f
B

u
g

 L
o

c
a
li
z
e
d

Percentage of Inspected Elements

M21

M22

M23

M25

M30

M32

M38

M39

Tarantula

Ochiai

M21, M32, M38, and M39

are overlapped

Figure 4.14: Comparing M21 - M23, M25,
M30, M32, M38, M39 with Ochiai and
Tarantula for C programs

localize 54% and 53% of the bugs respectively, while Tarantula and Ochiai could

localize 43% and 52% of total bugs in C programs. Two-Way Support (M28) could

localize 51% of the bugs, which is slightly lower than Ochiai. See Figure 4.9 for

the proportion of bugs localized for different percentage of code inspected of these

measures.

Figures 4.11 and 4.12 show measures that perform better than Tarantula but not

as good as Ochiai. When only 10% of program elements are inspected, they could

localized 45% to 51% of the bugs. The measures are φ-Coefficient (M1), Collective

Strength (M16), J-Measure (M6), Information Gain (M19), Interestingness Weight-

59

ing Dependency (M24), Normalized Mutual Information (M26), Two-Way Support

Variant(M29), Ochiai II (M40), Gini Index (M7), Jaccard (M17), Sorensen-Dice

(M36), and Anderberg (M37).

On the other hand, a number of the measures have similar performance with

Tarantula, as presented in Figure 4.10. They localize 43-44% of the bugs when 10%

of the program elements are inspected. The rest of the association measures could

not outperform Tarantula and Ochiai. See Figures 4.13 and 4.14 for the proportion

of bugs localized when we use these measures.

Localizing Bugs in Java Programs.

For Java programs, Tarantula can have better accuracy in localizing bugs as com-

pared to Ochiai. When 10% of program elements are inspected, Tarantula could

localize 26% of the bugs, while Ochiai could only localize 20% of the bugs. Fig-

ure 4.15 shows measures that have similar performance as Tarantula. They could

localize 26% of the bugs within 10% of code inspected i.e., Confidence (M9), Inter-

est (M12), Added Value (M15), Sebag (M31), Odd Multiplier (M33), Example and

Counterexample Rate (M34), and Zhang (M35).

A number of association measures could also have performance between aran-

tula and Ochiai when 10% of program elements are inspected, as shown in Fig-

ures 4.16, 4.17, and 4.18. The association measures that could not perform as good

as compare to Ochiai and Tarantula are shown in Figures 4.19 and 4.20.

Based on the above results, a number of association measures could perform as

good as Tarantula and Ochiai to localize the bugs that reside in programs written in

different programming languages. The differences in accuracies for localizing bugs

in C and Java programs possibly imply that there could be a specific characteristic of

spectra produced by different program languages that could benefit or disadvantage

spectrum-based fault localization. For example in Java, due to the object oriented

model, more program elements (e.g., class constructors) could be executing together

with the faulty ones, thus obscuring the suspiciousness scores for the actual faults.

60

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

P
e
rc

e
n

ta
g

e
 o

f
B

u
g

 L
o

c
a
li
z
e
d

Percentage of Inspected Elements

M9

M12

M15

M31

M33

M34

M35

Tarantula

Ochiai

M9, M12, M15, M27, M31, M33, M34, and M35

are similar with Tarantula

Figure 4.15: Comparing M9, M12, M15,
M31, M33, M34, and M35 with Ochiai and
Tarantula for Java programs

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

P
e

rc
e
n

ta
g

e
 o

f
B

u
g

 L
o

c
a

li
z
e

d

Percentage of Inspected Elements

M1

M5

M6

M7

M16

M17

M18

M19

Tarantula

Ochiai

Figure 4.16: Comparing M1, M5, M6,
M7, M16, M17, M18, M19 with Ochiai and
Tarantula for Java programs

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

P
e

rc
e
n

ta
g

e
 o

f
B

u
g

 L
o

c
a

li
z
e

d

Percentage of Inspected Elements

M21

M22

M24

M32

M38

M39

Tarantula

Ochiai

M21, M32, M38, and M39 are overlapped

Figure 4.17: Comparing M21, M22, M24,
M32, M38, M39 with Ochiai and Tarantula
for Java programs

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

P
e
rc

e
n

ta
g

e
 o

f
B

u
g

 L
o

c
a
li
z
e
d

Percentage of Inspected Elements

M27

M28

M29

M36

M37

M40

Tarantula

Ochiai

M36 and M37 are overlapped

Figure 4.18: Comparing M27 - M29, M35

- M37, M40 with Ochiai and Tarantula for
Java programs

4.4.5 Effectiveness for Various Kinds of Bugs.

In this section, we categorize the bugs into several groups based on the bug-fix

categorization by Pan et al. [105]. The following paragraphs describe our bug cat-

egories and present the effectiveness of the various association measures, including

Tarantula, and Ochiai on different bug categories.

Bug Categories.

Pan et al. [105] describe a number of bug categories based on the way bugs are fixed.

In this work, we refer to their categories to analyze the bugs in our programs. We

61

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

P
e
rc

e
n

ta
g

e
 o

f
B

u
g

 L
o

c
a
li
z
e
d

Percentage of Inspected Elements

M2

M3

M4

M8

M10

M11

M13

M14

Tarantula

Ochiai

M3 and M4 are overlapped

M8 and M10 are overlapped

M11 and M14 are overlapped

Figure 4.19: Comparing M2 - M4, M8,
M10 ,M11 - M14 with Ochiai and Taran-
tula for Java programs

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

P
e

rc
e
n

ta
g

e
 o

f
B

u
g

 L
o

c
a
li

z
e

d

Percentage of Inspected Elements

M20

M23

M25

M26

M30

Tarantula

Ochiai

Figure 4.20: Comparing M20, M23, M25,
M26, M30 with Ochiai and Tarantula for
Java programs

Bug category Total version
Addition/removal of conditional statement (CH-CS) 28
Addition/removal of non-conditional statement (CH-NCS) 10
Change in method calls (CH-MC) 26
Change of assignment expression (AS-CE) 60
Change of if condition expression (IF-CC) 44
Change of loop predicate (LP-CC) 11
Change of return expression (CH-RET) 18
Others (OTH) 3

Table 4.14: Bug categories

categorize the bug in each buggy version based on the bug fix. Buggy versions for

which there is no category are put in the category ”other” (OTH). In addition to bug

categories by Pan et al. [105], we add the category change of return expression (CH-

RET). Thus, we categorize the bug in our programs into 8 categories. Table 4.14

shows the categories and the number of buggy versions for each type of bugs.

We categorize a bug into addition or removal of conditional statement category

(CH-CS) when a bug could be fixed by adding a conditional check statement (e.g. if

statement) or removing an inappropriate check statement. This type of bug occurs

when there is a missing precondition or postcondition check of some variables, or

an extraneous conditional check. Bugs that could be fixed by adding or by removing

statement that is not a conditional check statement are categorized into addition/re-

moval of non-conditional statement (CH-NCS) category. An example of this type

of bug is missing or extraneous assignment statements.

62

The Change in method calls (CH-MC) category includes bugs that can be fixed

by adding or removing a method call in a program, or by changing the parame-

ter values of a method call. Bugs that could be fixed by changing the right hand

side of an assignment expression are categorized into change of assignment expres-

sion (AS-CE) category. When a bug could be fixed by modifying a conditional

expression within an if statement, we categorize the bug into change of if condition

expression (IF-CC) category. Similarly, when a bug could be fixed by modifying a

conditional expression in a looping statement, then we put this bug into change of

loop predicate (LP-CC) category. When a bug could be fixed by changing the value

or the expression in a return statement, then we categorize the bug into change of

return expression (CH-RET) category.

We create a category named other (OTH) to include other bugs that are not

covered by the above categories, e.g., a bug is fixed by changing an if statement to

a for loop statement, etc. As very few bugs (i.e., three bugs) in our dataset are

categorized as other (OTH), we exclude the bugs that belong to this category from

our evaluation.

Effectiveness.

We first evaluate the effectiveness of the various measures on each category by the

first accuracy criterion (i.e., percentage of code inspected). Based on this criterion,

we create several partial orders based on statistically significantly better relation-

ships among the measures. We highlight measures that are at the top of the partial

orders as shown in Table 4.15.

Based on the partial orders, Klosgen (M18) is the only measure that is at the

top of the partial orders for all bug categories. Ochiai, Information Gain (M19),

Normalized Mutual Information (M26), Two-Way Support Variation (M29) are at

the top of the partial orders of six bug categories.

Next, we evaluate the effectiveness of the measures on each bug category by

the second accuracy criterion (i.e., proportion of bugs localized). We compute the

63

Bug category Top Measures
Addition/removal of
conditional statement
(CH-CS)

Klosgen (M18), Ochiai, Information Gain (M19),
Normalized Mutual Information (M26), Two-Way Support Variation
(M29),
Tarantula, φ-Coefficient (M1), Kappa (M5), J-Measure (M6), Confi-
dence (M9), Added Value (M15), Collective Strength (M16), Interest-
ingness Weighting Dependency (M24), One-Way Support (M27), Two-
Way Support (M28), Sebag (M31), Odd Multiplier (M33), Example
and Counterexample Rate (M34), Zhang (M35), Sorensen-Dice (M36),
Anderberg (M37), Interest(M12), Leverage(M22), and Jaccard(M17)

Addition/removal
of non-conditional
statement (CH-NCS)

Klosgen (M18), Ochiai, Information Gain (M19),
Normalized Mutual Information (M26), Two-Way Support Variation
(M29),
φ-Coefficient (M1), Kappa (M5), Gini Index (M7), J-Measure (M6),
Added Value (M15), Collective Strength (M16), Jaccard (M17), In-
terestingness Weighting Dependency (M24), Two-Way Support (M28),
Anderberg (M37), and Ochiai II (M40)

Change in method
calls (CH-MC)

Klosgen (M18), Ochiai, Information Gain (M19),
Normalized Mutual Information (M26), Two-Way Support Variation
(M29),
Tarantula, φ-Coefficient (M1), Confidence (M9), Interest (M12),
Added Value (M15), Collective Strength (M16), Interestingness
Weighting Dependency (M24), One-Way Support (M27), Two-Way
Support (M28), Sebag (M31), Odd Multiplier (M33), Example and
Counterexample Rate (M34), and Zhang (M35)

Change of assign-
ment expression
(AS-CE)

Klosgen (M18), Ochiai, and Normalized Mutual Information (M26)

Change of if condi-
tion expression (IF-
CC)

Klosgen (M18), Ochiai, Information Gain (M19),
Normalized Mutual Information (M26), Two-Way Support Variation
(M29),
and J-Measure (M6)

Change of loop pred-
icate (LP-CC)

Klosgen (M18), Ochiai, Information Gain (M19),
Normalized Mutual Information (M26), Two-Way Support Variation
(M29),
Tarantula, φ-Coefficient (M1), Kappa (M5), Collective Strength
(M16), J-Measure (M6), Gini Index (M7), Confidence (M9), Added
Value (M15), Jaccard (M17), Interestingness Weighting Dependency
(M24), Goodman Kruskal (M25), One-Way Support (M27), Two-
Way Support (M28), Sebag (M31), Example and Counterexample
Rate (M34), Zhang (M35), Sorensen-Dice (M36), Anderberg (M37),
Interest(M12), Leverage(M22), Odd Multiplier (M33), Support(M8),
and Ochiai II (M40)

Change of return ex-
pression (CH-RET)

Klosgen (M18), Information Gain (M19), Two-Way Support Variation
(M29),
J-Measure (M6), Gini Index (M7), Added Value (M15), Interest-
ingness Weighting Dependency (M24), Two-Way Support (M28),
Accuracy(M21), Least Contradiction(M32), Simple-Matching (M38),
and Rogers and Tanimoto (M39)

Table 4.15: Measures that are at the top of the partial orders for each bug category.
The underline marks measures that are at the top of the partial orders of more than
five bug categories.

64

percentage of bugs localized when up to 10% of program elements are inspected, as

shown in Table 4.16.

For each category shown in Table 4.16, different measures have different ef-

fectiveness in localizing bugs when 10% of the code are inspected. The star (*)

marks the measures that could localize the largest number of bugs in each category.

We notice that Added Value (M15) could localize the largest number of bugs in six

categories, while Klosgen (M15) and Two-Way Support (M28) could localize the

largest number of bugs in four bug categories. Ochiai and Tarantula could localize

the largest number of bugs in 3 and 1 categories respectively.

By only inspecting up to 10% of the program elements, bugs in change in

method calls (CH-MC) category are not easy to be localized. The best measure

for this category could only localize 35% of these bugs. Our initial investigation

shows that the bugs in this category often involve more than one faulty line. Hence

multiple program elements must be inspected in order to localize the bugs that be-

long to this category.

On the other hand, the measures can better localize three types of bugs i.e., the

bugs in addition or removal of non-conditional statement (CH-NCS), change of loop

predicate (LP-CC), and change of return expression (CH-RET) categories. The best

measures for each of the three categories can localize up to 70%, 64%, and 61%

of the bugs respectively. We observe that the bugs in these categories often involve

one faulty line which is more localizable than the bugs in the change in method

calls (CH-MC) category. As for the bugs in change of assignment expression (AS-

CE) category and bugs in addition or removal of conditional statement (CH-CS)

category, the best measures of each of the two categories can only localize 48% and

43% of the bugs.

In general, most of the measures could better localize bugs that can be cate-

gorized into addition or removal of non-conditional statement (CH-NCS), change

of loop predicate (LP-CC), and change of return statement (CH-RET) categories.

They could localize at least 50% of these types of bugs. Only 11 measures that

65

Measures CH-CS CH-NCS CH-MC AS-CE IF-CC LP-CC CH-RET
φ-Coefficient(M1) *43% *70% 31% 47% 41% 55% 50%
Odds Ratio(M2) 0% 0% 0% 3% 5% 0% 0%
Yule’s Q(M3) 0% 0% 4% 3% 5% 0% 0%
Yule’s Y(M4) 0% 0% 4% 3% 5% 0% 0%
Kappa(M5) 39% 60% 27% 43% 30% 55% 50%
J-Measure(M6) *43% 60% 23% 45% *48% 36% 50%
Gini Index(M7) 39% 60% 23% 45% 36% 36% 50%
Support(M8) 0% 0% 4% 5% 5% 0% 0%
Confidence(M9) 39% 60% *35% 40% 32% 55% 56%
Laplace(M10) 0% 0% 4% 5% 5% 0% 0%
Conviction(M11) 0% 0% 4% 3% 5% 0% 0%
Interest(M12) 39% 60% *35% 40% 30% 55% 56%
Pietatsky-Shapiro(M13) 4% 0% 4% 8% 2% 0% 0%
Certainty Factor(M14) 0% 0% 4% 3% 5% 0% 0%
Added Value(M15) *43% *70% *35% *48% *48% *64% 56%
Collective Strength(M16) *43% *70% 31% *48% 39% *64% 50%
Jaccard(M17) 39% 60% 27% 43% 32% 55% 50%
Klosgen(M18) 39% *70% 31% *48% *48% 55% *61%
Information Gain(M19) *43% 60% 23% 45% 45% 36% 50%
Coverage(M20) 4% 0% 8% 5% 7% 9% 0%
Accuracy(M21) 36% 40% *35% 37% 18% 18% 39%
Leverage(M22) 36% 40% 31% 35% 27% 55% 56%
Relative Risk(M23) 0% 0% 4% 5% 5% 0% 0%
Int. Weighting Dependency(M24) 39% *70% *35% 43% 39% *64% 56%
GoodMan and Kruskal(M25) 29% 30% 23% 42% 25% 45% 50%
Normalized Mutual Info.(M26) *43% 60% 27% 43% 43% 36% 50%
One-Way Support(M27) 39% 60% *35% 40% 30% 55% 56%
Two-Way Support(M28) *43% *70% 31% 47% 43% *64% 50%
Two-Way Support Variation(M29) *43% 60% 23% 45% 45% 36% 50%
Loevinger(M30) 0% 0% 4% 5% 2% 0% 0%
Sebag(M31) 39% 60% *35% 40% 30% 55% 56%
Least Contradiction(M32) 36% 40% *35% 37% 20% 18% 39%
Odd Multiplier(M33) 39% 60% *35% 40% 30% 55% 56%
Example and Counter.(M34) 39% 60% *35% 40% 30% 55% 56%
Zhang(M35) 39% 60% *35% 40% 30% 55% 56%
Sorensen-Dice (M36) 39% 60% 27% 43% 30% 55% 50%
Anderberg (M37) 39% 60% 27% 43% 30% 55% 50%
Simple-Matching (M38) 36% 40% *35% 37% 18% 18% 39%
Rogers and Tanimoto (M39) 36% 40% *35% 37% 20% 18% 39%
Ochiai II (M40) 39% *70% 31% 45% 39% *64% 50%
Tarantula 39% 60% *35% 40% 27% 55% 56%
Ochiai *43% *70% 27% 45% *48% 55% 50%

Table 4.16: Effectiveness of bug localization for (M1) to (M40) for each bug cat-
egory when up to 10% program elements are inspected. The star (*) marks the
measures that localize bugs the most for each category.

66

could only localize a small number of bugs for each bug category i.e., Cover-

age (M20), Pietatsky-Shapiro (M13), Support (M8), Laplace (M10), Relative Risk

(M23), Yule’s Q (M3), Yule’s Y (M4), Conviction (M11), Certainty Factor (M14),

Loevinger (M30), and Odds Ratio (M2).

4.4.6 Effectiveness on Multiple-bug Versions

We evaluate the effectiveness of association measures, Tarantula and Ochiai, in lo-

calizing multiple bugs in programs. We refer the programs in which more than one

bug could reside as multiple-bug versions. A multiple-bug version of a program

contains a number of bugs where each bug only involves one line in the program

and different bugs affect different lines [5, 66].

We generate 173 multiple-bug versions of C programs as shown in Table 4.17.

To generate these versions of a subject program, we first take the bugs that only

involve one line in the single-bug versions of the subject program. Among these

bugs, we randomly choose a number of bugs (i.e., two or five bugs) and concatenate

the code fragments containing bugs, to make a new version. We refer this version

to as multiple-bug version. We ensure that each bug appears in at least one of the

generated multiple-bug versions. Also, the bugs that we choose to be concatenated

should not involve the same line of code to maintain the effect of each bug.

As the print token and schedule2 programs only have four and five bugs, respec-

tively, that involve one line, the number of possible single-bug fragments that can

be concatenated in each of their multiple-bug versions is limited. In this work, we

only concatenate two possible single-bug fragments in every multiple-bug version

of those two programs so that we could have more versions that contain more than

one bug. For each of those two programs, we generate ten multiple-bug versions.

Thus, we have 20 multiple-bug versions that contain two bugs (minimum number

of multiple bugs).

67

Dataset Num. of Bug in
a Version

Num. of Single
Bug in Dataset

Language Num. of Buggy
Version

print token 2 4 C 10

schedule2 2 5 C 10

print token2 5 9 C 10

replace 5 25 C 32

schedule 5 7 C 9

tcas 5 30 C 41

tot info 5 19 C 23

space 5 19 C 38

Table 4.17: Multiple-bug datasets

For the other programs, we randomly choose five bugs and concatenate the

code fragments containing bugs in every multiple-bug version of these programs.

We generate the same number of multiple-bug versions as the number of its single-

bug versions (including single-bug versions that contain bugs that involve multiple

lines) so that we could have similar number of buggy versions for our evaluation.

For example, there are 38 single-bug versions (including versions that contain bugs

that involve multiple lines) for Space, so we randomly generate 38 multiple-bug

versions for Space, each of which contains five bugs. Thus, we have 153 multiple-

bug versions that contain five bugs (minimum number of multiple bugs).

We evaluate the measures’ effectiveness on versions containing five and two

bugs respectively, as well as their overall effectiveness in multiple-bug versions.

Tables 4.18, 4.19, and 4.20 show the overall means and standard deviations of the

percentage of code that must be inspected by the measures to localize bugs in all

multiple-bug versions, versions containing five bugs, and versions containing two

bugs, respectively.

Generally, the effectiveness of all measures in localizing multiple bugs is not as

good as their effectiveness in localizing a single bug. The overall ranges of means of

percentage of code inspected of the measures to localize all multiple-bug versions

is between 74% and 91%. The measures require an inspection on average between

43% and 87% of the program elements in localizing two bugs in the programs, and

68

Association Measures Mean StdDev Association Measures Mean StdDev
Added Value (M15) 73.88% 23.36% Klosgen (M18) 74.92% 22.39%
One-Way Support (M27) 73.98% 23.50% Ochiai II (M40) 75.07% 22.61%
Collective Strength (M16) 73.99% 23.36% Yule’sQ (M3) 75.34% 20.43%
Ochiai 74.03% 22.95% Yule’s Y (M4) 75.36% 20.38%
φ-Coefficient (M1) 74.1% 22.80% Leverage (M22) 75.76% 21.42%
Tarantula 74.14% 23.28% Odds Ratio (M2) 76.58% 19.99%
Odd Multiplier (M33) 74.16% 23.30% Laplace (M10) 76.61% 19.87%
Zhang (M35) 74.17% 23.28% Gini Index (M7) 76.97% 21.48%
Interest (M12) 74.17% 23.29% Rogers (M39) 77.37% 20.33%
Sebag (M31) 74.17% 23.28% Accuracy (M21) 77.40% 20.34%
Confidence (M9) 74.20% 23.29% Simple-Matching (M38) 77.40% 20.34%
Interestingness Weighting Dependency (M24) 74.20% 23.39% Least Contradiction (M32) 77.41% 20.45%
Kappa (M5) 74.34% 22.99% Information Gain (M19) 77.58% 20.39%
Two-Way Support (M28) 74.36% 22.96% Two-Way Support Variation (M29) 77.58% 20.39%
Jaccard (M17) 74.40% 21.71% J-Measure (M6) 77.60% 20.33%
Relative Risk (M23) 74.43% 22.41% Normalized Mutual Information (M26) 77.79% 20.52%
Certainty Factor (M14) 74.46% 21.09% Support (M8) 77.94% 19.34%
Conviction (M11) 74.46% 21.11% Coverage (M20) 80.72% 17.40%
Example Rate (M34) 74.78% 23.28% Loevinger (M30) 86.24% 15.32%
Sorensen-Dice (M36) 74.79% 21.74% Piatetsky-Shapiro’s (M13) 87.34% 12.69%
Anderberg (M37) 74.81% 21.68% GoodMan Kruskal (M25) 91.31% 9.25%

Table 4.18: Overall mean and standard deviation (in parentheses) of accuracy values
(smaller the better) of all multiple-bug versions

the measures require more inspections (i.e., the ranges of 76% to 92% in localizing

five bugs in the programs. As it is expected, the percentage of code inspected is more

likely to be larger when there are more bugs manifest in programs. Among all of the

measures, the measures that could localize all multiple-bug versions, five bugs, and

two bugs in the programs with the smallest percentage of code inspected are Added

Value (M15), Relative Risk (M23), and Two-Way Support (M28) respectively.

We notice that performance of the measures in localizing five and two bugs in the

programs are different. Tarantula performs better than Ochiai when localizing two

bugs (i.e., 43.05% for Tarantula, 57.75% for Ochiai). In contrast Ochiai performs

slightly better than Tarantula when localizing five bugs in the programs (i.e., 78.14%

for Tarantula, 76.14% for Ochiai).

There are 3 measures (i.e., Added Value (M15), One-Way Support (M16), and

Collective Strength (M16)) that perform better than Tarantula and Ochiai in localiz-

ing all multiple-bug versions in the programs. Among these measures, Added Value

(M15) and Collective Strength (M16) also have good performance in localizing sin-

gle bugs. The overall mean of percentage of code inspected for Added Value (M15)

and Collective Strength (M16) are 25.74% and 25.66% respectively, which are only

69

Association Measures Mean StdDev Association Measures Mean StdDev
Relative Risk (M23) 75.56% 23.17% Confidence (M9) 78.21% 20.59%
Certainty Factor (M14) 76.03% 21.34% Laplace (M10) 78.24% 19.53%
Conviction (M11) 76.04% 21.36% Kappa (M5) 78.35% 20.20%
Ochiai 76.16% 21.33% Example Rate (M34) 78.41% 20.76%
Yule’sQ (M3) 76.71% 20.85% Two-Way Support (M28) 78.46% 20.06%
Yule’s Y (M4) 76.75% 20.81% Ochiai II (M40) 78.52% 20.85%
Jaccard (M17) 77.34% 20.00% Leverage (M22) 79.36% 19.08%
Coefficient (M1) 77.52% 20.67% Support (M8) 79.67% 18.81%
Added Value (M15) 77.74% 21.08% J-Measure (M6) 80.10% 18.98%
Anderberg (M37) 77.78% 19.96% Information Gain (M19) 80.11% 19.04%
Sorensen (M36) 77.78% 19.97% Two-Way Support Variation (M29) 80.11% 19.04%
Collective Strength (M16) 77.92% 20.33% Normalized Mutual Information (M26) 80.22% 18.92%
One-Way Support (M27) 77.97% 20.91% Gini Index (M7) 80.27% 19.66%
Klosgen (M18) 78.10% 20.45% Rogers (M39) 80.74% 18.43%
Odds Ratio (M2) 78.12% 20.27% Accuracy (M21) 80.78% 18.43%
Tarantula 78.14% 20.60% Simple-Matching (M38) 80.78% 18.43%
Odd Multiplier (M33) 78.17% 20.61% Least Contradiction (M32) 80.78% 18.57%
Zhang (M35) 78.18% 20.59% Coverage (M20) 82.64% 16.34%
Interest (M12) 78.18% 20.59% Loevinger (M30) 88.58% 13.68%
Interestingness Weighting Dependency (M24) 78.18% 20.73% Piatetsky-Shapiro’s (M13) 89.52% 11.38%
Sebag (M31) 78.18% 20.59% GoodMan Kruskal (M25) 91.82% 9.61%

Table 4.19: Overall mean and standard deviation (in parentheses) of accuracy values
(smaller the better) of versions containing five bugs

slightly higher than the smallest mean of percentage of code inspected to localize

all single-bug programs (25.24%). In addition, Added Value (M15) and Collective

Strength (M16) are in the top of partial order of 5 and 4 bug categories out of 7

categories.

We also perform statistical tests for each pair of measures including Tarantula

and Ochiai using Wilcoxon signed rank test [139] at 0.05 statistical significance

threshold to see if some measures are statistically significantly better than others

in localizing multiple-bug versions. Table 4.21 shows the measures that are at the

top of the partial order (no other measures that statistically significantly perform

better than the measure) for localizing both all multiple-bug versions, versions con-

taining five bugs, and versions containing two measures. We notice that Added

Value (M15), Collective Strength (M16), Ochiai, Ochiai II (M40), One-Way Sup-

port (M27), Relative Risk (M23), Two-Way Support (M28), and φ-Coefficient (M1)

are at the top of the partial order of all multiple-bug versions and at least at the top

order of one of partial order of two or five bugs versions.

We also plot the curve showing the proportion of code that is investigated (x-

axis) versus the proportion of bugs localized (y-axis) for all multiple-bug versions.

70

Association Measures Mean StdDev Association Measures Mean StdDev
Two-Way Support (M28) 42.95% 19.45% Gini Index (M7) 51.65% 17.95%
Confidence (M9) 43.50% 19.90% Jaccard (M17) 51.90% 21.55%
Interest (M12) 43.50% 19.90% Sorensen-Dice (M36) 51.90% 21.55%
One-Way Support (M27) 43.50% 19.90% Anderberg (M37) 52.10% 21.24%
Sebag (M31) 43.50% 19.90% Ochiai 57.75% 28.46%
Odd Multiplier (M33) 43.50% 19.90% Information Gain (M19) 58.25% 20.44%
Zhang (M35) 43.50% 19.90% Two-Way Support Variation (M29) 58.25% 20.44%
Tarantula 43.50% 19.90% J-Measure (M6) 58.40% 20.54%
Kappa (M5) 43.60% 19.92% Normalized Mutual Information (M26) 59.25% 23.20%
Interestingness Weighting Dependency (M24) 43.75% 20.21% Conviction (M11) 62.40% 14.45%
Collective Strength (M16) 43.90% 23.58% Certainty Factor (M14) 62.40% 14.45%
Added Value (M15) 44.35% 18.65% Laplace (M10) 64.15% 18.33%
Example Rate (M34) 47.00% 23.27% Support (M8) 64.70% 18.65%
φ-Coefficient (M1) 47.95% 21.76% Odds Ratio (M2) 64.80% 12.85%
Leverage (M22) 48.20% 18.38% Yule’sQ (M3) 64.80% 12.85%
Ochiai II (M40) 48.65% 17.84% Yule’s Y (M4) 64.80% 12.85%
Klosgen (M18) 50.60% 22.10% Relative Risk (M23) 65.80% 12.75%
Accuracy (M21) 51.60% 15.29% Coverage (M20) 66.00% 18.64%
Least Contradiction (M32) 51.60% 15.29% Loevinger (M30) 68.35% 15.69%
Simple-Matching (M38) 51.60% 15.29% Piatetsky-Shapiro’s (M13) 70.70% 9.55%
Rogers (M39) 51.60% 15.29% GoodMan Kruskal (M25) 87.40% 4.17%

Table 4.20: Overall mean and standard deviation (in parentheses) of accuracy values
(smaller the better) of versions containing two bugs

Num. of Bugs in a
Version

Top Measures

Two and five bugs Ochiai, Added Value (M15), Relative Risk (M23), Ochiai II (M40),
Collective Strength (M16), One-Way Support (M27),
Two-Way Support (M28), and φ-Coefficient (M1)

Five bugs Ochiai, Relative Risk (M23), and Ochiai II (M40)

Two bugs Ochiai, Added Value (M15), Collective Strength (M16),
One-Way Support (M27), Two-Way Support (M28),
Klosgen (M18), Confidence (M9), Interest (M12), Interestingness
Weighting Dependency (M24), Kappa (M5), Odd Multiplier (M33),
Sebag (M31), Zhang (M35), and Tarantula

Table 4.21: Measures that are at the top of the partial orders for different types of
multi-bug versions. The underline marks measures that are at the top of the partial
orders of two types of multiple-bug versions.

71

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

P
e
rc

e
n

ta
g

e
 o

f
B

u
g

 L
o

c
a
li
z
e
d

Percentage of Inspected Elements

M15

Tarantula

Ochiai

Figure 4.21: M15, Ochiai, and Tarantula
for all multiple-bug programs

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

P
e
rc

e
n

ta
g

e
 o

f
B

u
g

 L
o

c
a
li
z
e
d

Percentage of Inspected Elements

M1

M5

M16

M18

M23

M24

M28

Tarantula

Ochiai

Figure 4.22: M1, M5, M16, M18, M23,
M24, M28, Ochiai, and Tarantula for all
multiple-bug programs

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

P
e

rc
e
n

ta
g

e
 o

f
B

u
g

 L
o

c
a

li
z
e

d

Percentage of Inspected Elements

M7

M17

M36

M37

M40

Tarantula

Ochiai

M36 and M37 are overlapped

Figure 4.23: M7, M17, M36, M37, M40,
Ochiai, and Tarantula for all multiple-bug
programs

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

P
e

rc
e
n

ta
g

e
 o

f
B

u
g

 L
o

c
a

li
z
e

d

Percentage of Inspected Elements

M9

M12

M27

M31

M33

M34

M35

Tarantula

Ochiai

M9, M12, M27, M31, M33, M34, and M35

are similar with Tarantula

Figure 4.24: M9, M12, M27, M31, M33,
M34, M35, Ochiai, and Tarantula for all
multiple-bug programs

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

P
e

rc
e
n

ta
g

e
 o

f
B

u
g

 L
o

c
a
li

z
e

d

Percentage of Inspected Elements

M6

M8

M10

M19

M21

M22

M26

M29

M32

M38

M39

Tarantula

Ochiai

Figure 4.25: M6, M8, M10, M19, M21,
M22, M26, M29, M32, M38, M39, Ochiai,
and Tarantula for all multi-bug programs

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

P
e
rc

e
n

ta
g

e
 o

f
B

u
g

 L
o

c
a
li
z
e
d

Percentage of Inspected Elements

M2

M3

M4

M11

M13

M14

M20

M30

Tarantula

Ochiai

M3 and M4 are overlapped

M11 and M14 are overlapped

Figure 4.26: M2, M3, M4, M11, M13,
M14, M20, M30, together with Ochiai and
Tarantula for all multi-bug programs

72

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

P
e
rc

e
n

ta
g

e
 o

f
B

u
g

 L
o

c
a
li
z
e
d

Percentage of Inspected Elements

M5

M16

M24

M28

Tarantula

Ochiai

Figure 4.27: M5, M16, M24, M28, Ochiai,
and Tarantula for versions containing two
bugs

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

P
e
rc

e
n

ta
g

e
 o

f
B

u
g

 L
o

c
a
li
z
e
d

Percentage of Inspected Elements

M1

M15

M18

M34

Tarantula

Ochiai

Figure 4.28: M1, M15, M18, M34, Ochiai,
and Tarantula for two-bug versions

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

100% 200% 300% 400% 500% 600% 700% 800% 900% 1000%

P
e

rc
e
n

ta
g

e
 o

f
B

u
g

 L
o

c
a
li

z
e

d

Percentage of Inspected Elements

M6

M7

M17

M19

M26

M29

M36

M40

Tarantula

Ochiai

M6, M19, and M26 are overlapped

Figure 4.29: M6, M7, M17, M19, M26,
M29, M36, Ochiai, and Tarantula for two-
bug versions

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

P
e

rc
e
n

ta
g

e
 o

f
B

u
g

 L
o

c
a

li
z
e

d

Percentage of Inspected Elements

M9

M12

M27

M31

M33

M35

Tarantula

Ochiai

M9, M12, M27, M31, M33, M35, and

Tarantula are overlapped

Figure 4.30: M9, M12, M27, M31, M33,
M35, Ochiai, and Tarantula for versions
containing two bugs

We split the large graphs into several smaller graphs by grouping measures that

have similar accuracies, as shown in Figures 4.21, 4.24, 4.22, 4.23, 4.25, and 4.26.

For each graph, we compare a number of association measures with Tarantula and

Ochiai. Figure 4.21 shows a measure (i.e., Added Value (M15)) that could localize

similar number of buggy versions as compared to Ochiai when less than 10% of

the code is inspected. Added Value (M15) as well as Ochiai could localize 1% of

multiple-bug versions when less than 10% of the code is inspected. When more

than 40% of the code is inspected, Added Value (M15) could localize more buggy

versions than Tarantula and Ochiai. Figures 4.22 and 4.23 show measures that could

73

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

P
e

rc
e
n

ta
g

e
 o

f
B

u
g

 L
o

c
a

li
z
e

d

Percentage of Inspected Elements

M21

M22

M32

M37

M38

M39

Tarantula

Ochiai

M21, M32, M38, and M39 ar e overlapped

Figure 4.31: M21, M22, M32, M37, M38,
M39, M40, Ochiai, and Tarantula for two-
bug versions

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

P
e
rc

e
n

ta
g

e
 o

f
B

u
g

 L
o

c
a
li
z
e
d

Percentage of Inspected Elements

M2

M3

M4

M8

M10

M11

M13

M14

M20

M23

M25

M30

Tarantula

Ochiai

M3 and M4 are overlapped

M11 and M14 are

overlapped

Figure 4.32: M2–M4, M8, M10, M11,
M13, M14, M20, M23, M25, M30, Ochiai
and Tarantula for two-bug versions

localize similar numbers of buggy versions as compared to Ochiai when less than

10% of the code is inspected and they also have similar performance with Tarantula

and Ochiai.

On the other hand, Tarantula could not localize any multi-bug version within

10% of code inspection. Measures that have similar performance with Tarantula

are shown in Figure 4.24. Measures that perform worse than Tarantula and Ochiai

are shown in Figures 4.25 and 4.26. In this work, we omit showing the curves for

versions that contain five bugs because the curves are similar to the curves for all

multiple-bug versions.

We also plot the curves showing the proportion of code that is investigated (x-

axis) vs. the proportion of bugs localized (y-axis) for versions that contain two bugs,

as shown in Figures 4.27, 4.30, 4.28, 4.29, 4.31, and 4.32. A number of measures

could localize more bugs as compared to Tarantula and Ochiai when more than

10% of code is inspected, as shown in Figures 4.27, while several measures shown

in Figure 4.30 have the same performance as Tarantula. Figure 4.28 shows measures

that could localize more bugs as compared to Ochiai when more than 10% of code

is inspected. The rest of the measures could not outperform Tarantula and Ochiai.

See Figures 4.29, 4.31, and 4.32 for the details of these measures. We summarize

the findings of this section in the answer for RQ6 in the next section.

74

4.5 Discussion

In this section, we summarize the answers to the research questions mentioned in

Chapter 1.

RQ1. Are vanilla or off-the-shelf association measures accurate enough in lo-

calizing faults? We are interested to find if off-the-shelf association measures are

powerful enough to locate bugs. Based on the mean accuracy values of the mea-

sures, the 40 association measures could localize all the bugs when an average of

25–58% of the program elements are inspected. Fifty percent of the association

measures are able to help find bugs by inspecting an average of 25–27% of ele-

ments, while Tarantula and Ochiai require developers to inspect approximately 27%

and 26% of program elements respectively.

RQ2. Among 40 association measures, which of the association measures are

the most accurate for localizing faults? Next, we are interested to find which as-

sociation measures are better than others in localizing single-bug programs. The an-

swer to this research question is the partial order shown in Figure 4.2. Two off-the-

shelf association measures are at the top of the partial order namely: Klosgen (M18),

and Normalized Mutual Information (M26). They perform comparably to Ochiai.

They are statistically significantly better than Tarantula and the other off-the-shelf

association measures. We also highlight 7 other measures that perform statistically

significantly better than Tarantula i.e., φ-coefficient (M1), Added Value (M15), Col-

lective Strength (M16), Two-Way Support (M28), Interestingness Weighting Depen-

dency (M24), Example and Counterexample Rate (M34), and Kappa (M5).

RQ3. What is the relative performance of off-the-shelf association measures as

compared to well-known suspiciousness measures (in particular, Tarantula and

Ochiai) for fault localization? We also would like to know the relative accuracy of

the association measures versus those of well-known suspiciousness measures for

fault localization for single-bug versions. When only 10% of the code is inspected,

Klosgen (M18) and Added Value (M15) could localize more bugs than Tarantula and

75

Ochiai. They could localize 47% and 48% of the bugs respectively, while Tarantula

and Ochiai could localize 39% and 45% of the bugs respectively.

RQ4. Is the accuracy of off-the-shelf association measures, of Tarantula, and

of Ochiai, in localizing faults for programs written in C, different from their

accuracy in localizing faults for programs written in Java? We find that most

measures perform better for the C programs than the Java programs. We compute

two partial orders of the 40 association measures, Tarantula, and Ochiai, by per-

forming statistical significance tests based on their percentages of code inspected in

localizing bugs in C and Java programs. For the C programs, Ochiai and Klosgen

(M18) are the measures that are at the top of the partial orders (i.e., no measures

are statistically significantly better than them). For the Java programs, a number of

measures are at the top including Ochiai, Klosgen (M18), Confidence (M9), Inter-

est (M12), Added Value (M15), Sebag (M31), Example and Counterexample Rate

(M34), Zhang (M35), Tarantula, Interestingness Weighting Dependency (M24), and

Normalized Mutual Information (M26). When up to 10% of the code is inspected,

Klosgen (M18) and Added Value (M15) could localize more bugs in C programs

than Ochiai and Tarantula. Tarantula and Ochiai could localize 43% and 52% of the

bugs respectively, while Klosgen (M18) and Added Value (M15) could localize 54%

and 53% of the bugs. For the Java programs, Tarantula, Confidence (M9), Interest

(M12), Added Value (M15), Klosgen (M18), Odd Multiplier (M33), Interestingness

Weighting Dependency (M24), One-Way Support (M27), Sebag (M31), Example

and Counterexample Rate (M34), and Zhang (M35) could localize the largest num-

ber of bugs as compared to Ochiai (i.e., 26% of the bugs could be localized within

10% of code inspected). Ochiai, on the other hand, could only localize 20% of the

bugs.

RQ5. What is the effectiveness of off-the-shelf association measures, Taran-

tula, and Ochiai in localizing different types of bugs? In terms of the percentage

of code inspected, we also compute several partial orders (one per bug category)

76

by performing statistical significance tests. Tarantula is at the top of three partial

orders. Ochiai, Information Gain (M19), Normalized Mutual Information (M24),

and Two-Way Support Variation (M29) are at the top of six partial orders. Klosgen

(M18) is at the top of seven partial orders. In terms of proportion of bugs local-

ized, Klosgen (M18) could also localize the most number of bugs for all categories

as compared to other measures. The categories of bugs that could be better local-

ized by most of the measures are addition or removal of non-conditional statements

(CH-CS), change of loop predicates (LP-CC), and change of return expression (CH-

RET).

RQ6. What is the accuracy of off-the-shelf association measures, Tarantula,

and Ochiai in localizing bugs in multiple-bug programs? When localizing mul-

tiple bugs in programs, no measure performs better than in localizing a single

bug in the programs. The percentages of code inspected to localize all bugs in

all multi-bug versions, versions containing five bugs, and versions containing two

bugs are 74% to 91%, 76% to 92%, and 43% to 84% respectively. Measures that

are at the top of the partial order for localizing all multiple-bug versions are Added

Value (M15), Collective Strength (M16), Ochiai, Ochiai II (M40), One-Way Support

(M27), Relative Risk (M23), Two-Way Support (M28), and φ-Coefficient (M1). We

notice that Added Value (M15) and Collective Strength (M16) also have good ac-

curacies in localizing single-bug programs. The overall means of the percentage of

code inspected for Added Value (M15) and Collective Strength (M16) are 25.74%

and 25.66%, respectively, which are only slightly larger than the smallest mean of

percentage of code inspected to localize all single-bug programs (25.24%). Also,

Added Value (M15) and Collective Strength (M16) are at the top of partial order of

5 and 4 bug categories out of 7 categories.

Based on our results, we find that there is no single best measure for all cases.

For localizing C and Java programs containing a single bug, Klosgen (M18) could

localize the bug with the smallest average of percentage of code inspected. Also,

when we evaluate the effectiveness of the measures to localize different bug cat-

77

egories, Klosgen (M18) could outperform other measures for all bug categories.

While in localizing multiple bugs, Added Value (M15) could localize bugs with

the smallest average of percentage of code inspected. We notice that Added Value

also has good accuracy in localizing single bugs; its accuracy is only slightly lower

than that of Ochiai and Klosgen.

We also find that the effectiveness of association measures in localizing faults

can be different for different buggy programs. The formula of association measures

and the program spectra of buggy programs are two important factors that greatly

affect the effectiveness of the measures in localizing faults. The score assigned

by an association measure to each program element depends on the values of its

dichotomy matrix (i.e., a matrix that associates the executions of a program element

with the occurrence of a program failure) which is derived from the program spectra.

When some program elements have the same dichotomy matrix, the scores assigned

to the elements are the same. Hence it is hard to differentiate which element is

more likely to be the faulty element. Lack of variety in scores assigned to program

elements may not benefit the association measures in localizing faults.

Based on our results, association measures as well as the two well-known mea-

sures require larger number of program elements to be inspected to localize bugs in

XML security programs. We observe that many program elements in these buggy

programs obtain the same scores. The values of their dichotomy matrices indicate

that many program elements are either being executed or not executed at all. There-

fore, having test cases that produce program spectra that can provide information

about the number of times a program element is executed and not executed by failed

test cases, as well as executed and not executed by correct test cases would be help-

ful to differentiate the likelihood of each program element to be the faulty element

(as more unique score assigned to each program element).

Nevertheless, it remains challenging to determine under which case each mea-

sure can better localize the bugs. The formula of an association measures only in-

dicates the association strength between the executions of a program element with

78

the occurrence of a failure. However, the effectiveness of an association measure

in localizing faults is affected by the scores of program elements collectively, that

determines the relative ordering of the faulty elements. This chapter emphasizes

on investigating whether or not there is a benefit of employing association mea-

sures for fault localization. Further study is required to investigate the characteristic

of cases under which an association measure can successfully localize faults with

minimum percentage of code inspected. Both formula of association measures and

characteristic of program spectra or bugs are important factors to be studied.

In addition, localizing bugs in multiple-bug programs requires much more code

to be inspected than localizing bugs in single-bug programs. Future research is re-

quired to improve the effectiveness of the technique in localizing bugs in multi-

bug programs. Also, it can be interesting future work to explore ways to compose

various measures together so that the combined meta-measure may perform better

for all cases than individual measures.

4.6 Threats to Validity

Threats to construct validity refers to the suitability of our evaluation criteria. In

this work, we use two criteria: percentage of program elements inspected to find all

bugs, and proportion of bugs localized when at most a given percentage of program

elements are inspected. We believe these two criteria reasonably measure the effec-

tiveness of a fault localization approach. They have also been used before in prior

studies on fault localization [6, 65].

Threats to internal validity include bias and human errors. The accuracy of a

measure in localizing bugs is influenced by the granularity level considered during

program instrumentation and trace generation (statement, basic block, or method

levels). Different granularity levels may produce different accuracies since there

would be a different total numbers of elements which would affect the percentages

of inspected elements. We choose to use block-hit spectra in our evaluation since it

79

has a suitable balance between instrumentation cost and bug-revealing power, and

our study focuses on comparing the effectiveness of different association measures

on the same spectra. We hypothesize that the relative performance of different asso-

ciation measures on other spectra may remain the same as that on block-hit spectra,

but it remains an interesting future work for us to verify. Also, we manually instru-

ment the C programs; we might miss instrumenting some blocks or add extraneous

instrumentation code. For Java programs, we automatically instrument the pro-

grams ; there could be some errors in our implementation. We manually assign the

bugs into categories; there might be some errors in our assignments. We carefully

checked the instrumented programs and assigned bug category labels to minimize

such errors.

Threats to external validity refers to the generalizability of our findings. We

have tried to reduce this threat by considering a number of programs of various

sizes written in two popular programming languages: C and Java.

4.7 Conclusion

In this work, we investigate the effectiveness of a comprehensive number of asso-

ciation measures for fault localization. These measures gauge the strength of asso-

ciation between two variables expressible as a dichotomy matrix. We consider and

compare 40 association measures with two well-known fault localization measures,

namely Tarantula and Ochiai.

For programs that contain a single bug, we find that Klosgen outperforms Ochiai

and Tarantula in terms of the average percentage of code that must be inspected.

Many measures, including Normalized Mutual Information, J-Measure, Informa-

tion Gain, Two-Way Support Variation, Example and Counterexample Rate, Confi-

dence, Kappa, Sebag, Odd Multiplier, Interest, Zhang, and One-Way Support out-

perform Tarantula. The percentages of code that must be inspected for different

buggy program versions are different; such percentage values for each measure form

80

a distribution, and we employ statistical significance tests to compare the accuracy

of different measures. We find that three measures, Klosgen, Normalized Mutual

Information, and Ochiai can be statistically significantly better than other measures

when localizing single-bug program. In terms of proportions of bugs found when up

to 10% of code is inspected, Klosgen outperforms Ochiai. Also, Klosgen, Ochiai,

φ-coefficient, Added Value, Collective Strength, Two-Way Support, Interestingness

Weighting Dependency, Example and Counterexample Rate, and Kappa outperform

Tarantula. Thus, we can conclude that association measures are also promising to

be used for fault localization.

We find that most measures perform better for the C programs than the Java pro-

grams. For the C programs, in terms of proportions of bugs localized, Added Value

and Klosgen outperform Ochiai and Tarantula. For the Java programs, in terms of

proportions of bugs localized, Tarantula, Confidence, Interest, Added Value, Klos-

gen, Relative Risk, Loevinger, Normalized Mutual Information, Odd Multiplier,

Example and Counterexample Rate, and Least Contradiction measures, outperform

the other measures and Ochiai.

We have also grouped the bugs into 7 categories and analyze the effectiveness

of the measures to localize each category of bugs. The categories of bugs that

could be better localized by most of the measures are addition or removal of non-

conditional statements (CH-CS), change of loop predicates (LP-CC), and change

of return expression (CH-RET). Klosgen is among the best measures for all bug

categories.

The effectiveness of all measures in localizing multiple bugs in programs is

not as good as localizing buggy programs that contain a single bug. Added Value

could localize the bugs with the smallest percentage of inspected code. There are

also other measures that have comparable performance as Added Value, i.e., Ochiai,

Relative Risk, Ochiai II, Collective Strength, One-Way Support, Two-Way Support,

and φ-Coefficient.

Based on our results, we find that there is no single best measure for all cases.

81

While there are several measures that perform statistically comparable for localiz-

ing single-bug programs, Klosgen could localize bugs with the smallest on average

percentage of code inspected. As for localizing multi-bug programs, Added Value

could localize bugs with the smallest on average percentage of code inspected, but

a number of measures have comparable performance as well. Thus, solely based on

fault localization accuracy, Klosgen and Added Value can be best measures to use.

Dataset. Our dataset and tool are made publicly available at: http://www.

mysmu.edu/phdis2009/lucia.2009/jsme/Dataset.htm.

82

http://www.mysmu.edu/phdis2009/lucia.2009/jsme/Dataset.htm
http://www.mysmu.edu/phdis2009/lucia.2009/jsme/Dataset.htm

Chapter 5

Fusing Fault Localizers

As we have demonstrated in Chapter 4, for various bugs, the best techniques to

localize the bugs may differ due to the characteristics of the buggy programs and

their program spectra. In this chapter, we leverage the diversity of existing spec-

trum-based fault localization techniques to better localize bugs using data fusion

methods. Our proposed approach requires no training data and is able to adapt itself

for various kinds of spectra and bugs.

We organize this chapter as follows. Section 5.1 presents the motivation and

main contribution of this chapter. Section 5.2 provides a motivating example to

illustrate the benefit of our data fusion approach and Section 5.3 elaborates our

approach. We present our experiment results that demonstrate the effectiveness of

our approach in Section 5.4 and finally conclude our work in Section 5.5.

5.1 Variations in Effectiveness of Localizing Faults

Many fault localization techniques have been proposed to locate the root cause of

a program failure by analyzing the program traces (i.e., the abstraction of program

behaviors). Spectrum-based fault localization techniques [3,27,31,65,84,151] com-

pare the spectra of correct and failed executions to identify program elements (i.e.,

statements, blocks, methods, and components) that are likely to be the root cause of

83

a program failure. These techniques often use statistical analysis to assign a suspi-

ciousness score to each program element based on its likelihood to be faulty. The

higher the score, the more suspicious an element is. A list of the most suspicious

program elements is then presented to developers for inspection. As discussed in

Chapter 4, the best performing spectrum-based fault localization techniques vary for

different buggy programs. Some techniques can rank faulty elements at the top po-

sitions for some buggy programs, while for other buggy programs, they rank faulty

elements low in the list.

In this chapter, we aim to better localize the bugs by leveraging diversity of

existing spectrum-based fault localization techniques (in particular 40 association

measures used in Chapter 4, Tarantula [65], and Ochiai [3]). Since these techniques

are lightweight, we could inexpensively obtain suspiciousness scores for program

elements by using different techniques. Different from the approach proposed by

Santelices et al. [122] that analyze several types of program spectra using a sin-

gle technique, we combine many techniques that analyze a single type of program

spectra (i.e., block hit spectra).

Data fusion methods have been proposed in the domain of information retrieval

to rank the most relevant documents such that the relevant ones are in the top posi-

tions by combining the ranking information from different retrieval systems [142].

We incorporate data fusion methods with the goal of ranking the faulty program

elements higher in the list by combining the scores or ranks assigned to program

elements by different fault localization techniques. Our approach, referred to as

Fusion Localizer, normalizes the suspiciousness scores of different fault lo-

calization techniques, selects fault localization techniques to be fused, and com-

bines the selected techniques using a data fusion method. We propose 20 variants

of Fusion Localizer that use different score normalization, technique selec-

tion, and data fusion methods.

Related to our work, Wang et al. [137] propose an approach that linearly com-

bines the scores of a number of association measures to rank faulty program el-

84

ements. Their approach generates a weight for each association measure using

genetic algorithm based on a set of training data i.e., program traces of the past

program failures and the corresponding faults of the past failures. However, such

training data could be unavailable e.g., if developers did not archive the program

traces and the corresponding faults. Archiving program traces of past failures can

consume a lot of storage. Even when traces are not archived but test cases to gen-

erate the traces are available, regenerating such program traces using the test cases

may take time especially for large programs. Furthermore, the bugs and failures

in the training set may not be representative enough to generalize to other buggy

programs, which could limit the effectiveness of the approach. Different from this

technique, our approach can compute the weight for each fault localization tech-

nique and select the techniques to be fused without requiring any training data.

Furthermore, our approach is bug specific – it adaptively chooses a different set of

techniques to be fused for different buggy programs based on their program spectra.

We have evaluated our approach on a commonly used benchmark dataset con-

sisting of 10 small to medium sized programs written in C and Java, and our own

dataset consisting of 30 real bugs collected from 3 larger programs – namely Rhino,

Lucene, and Ant. We compare our approach against a number of state-of-the-art

spectrum-based fault localization techniques that also do not require training data

and analyze a single type of program spectra, i.e., Ochiai [3], theoretically best

spectrum-based fault localization techniques [143], and theoretically best genetic

programming (GP) based fault localization techniques [144]. Our experiment re-

sults show that our approach outperforms these techniques. The best performing

variants of Fusion Localizer (i.e., zZero−One,Bias
CombANZ and zZero−One,Overlap

CombANZ) statisti-

cally significantly outperform the state-of-the-art spectrum-based fault localization

techniques. These best variants require statistically significantly smaller average

percentage of code inspected to locate faulty elements as compared to the best per-

forming state-of-the-art fault localization techniques (i.e., 21% vs. 24%). When

developers only inspect 10% of the most suspicious program elements, these best

85

variants could improve the percentage of bugs localized by the best performing

state-of-the-art fault localization techniques by 11% to 26%. Furthermore when de-

velopers only inspect the top 10 most suspicious program blocks, these best variants

could improve the number of bugs localized by the best performing state-of-the-art

fault localization techniques by 23% to 26%.

The main contributions of this chapter are as follow:

1. We leverage diversity of 40 association measures evaluated in Chapter 4, Taran-

tula [65], and Ochiai [3] to better localize bugs using data fusion methods.

2. We provide a bug specific approach that adaptively selects a set of techniques

to be fused for each buggy program.

3. We propose an approach that does not require any training data (e.g., program

traces of the past program failures) to select which techniques to be fused to

better localize bugs in programs.

4. We show that combining the lists of most suspicious program elements recom-

mended by different fault localization techniques (i.e., association measures,

Tarantula, and Ochiai) using data fusion methods can improve the effectiveness

in localizing faults and significantly outperform the state-of-the-art spectrum-

based fault localization techniques.

5.2 Motivating Example

This section provides an illustration of the benefit of the use of data fusion to lever-

age different techniques to help ranking faulty program elements such that the faulty

ones are in the top positions. Figure 5.1 contains a sample program code, excerpted

from one of our subject programs, i.e., the method gser of the program tot info,

version 8. In this example, we divide the code into five blocks. The bug is in Block

5 where the value assigned to a variable temp is incorrectly calculated.

Various spectrum-based fault localization techniques, such as Ochiai [3], Klos-

86

gen [75], and Pietatsky Shapiro [108], can be used to assign suspiciousness scores

to each program block. Based on these scores, developers could inspect the program

blocks starting from the most suspicious blocks. Figure 5.1 shows the suspicious-

ness score of each program blocks as output by Ochiai, Klosgen, and Pietatsky

Shapiro. These scores are computed by analyzing the program traces collected dur-

ing the executions of the test cases that come with the program (i.e, tot info).1

According to Ochiai and Klosgen, the most suspicious program blocks are

Blocks 3 to 5, followed by Block 1, then Block 2. The ranks of Blocks 1 and 2

would be 4 and 5. According to Ochiai and Klosgen, Blocks 3 to 5 obtain the same

score. Among the three blocks, we do not know which block developers would

inspect first, thus we assign the worst case rank to these blocks. The worst case

rank that either Blocks 3 to 5 is inspected by developers would be 3. According to

Pietatsky Shapiro, Blocks 2 and 5 are the most suspicious program blocks, followed

by Blocks 3, 4, and 1. Since Blocks 2 and 5 obtain the same score, the worst case

rank that either Blocks 2 or 5 is inspected by developers using this measure would

be 2. In this example, locating the faulty block based on the recommendation by

Pietatsky Shapiro requires examining fewer blocks than when using the recommen-

dations of Ochiai and Klosgen.

A simple data fusion method to combine a set of techniques is CombSUM [41,

42]. CombSUM can be used to combine the scores output by Ochiai, Klosgen, and

Pietatsky Shapiro to produce a new score for each program block. For each program

block, the new score is calculated by summing up the normalized scores given by

Ochiai, Klosgen, and Pietatsky Shapiro. As the ranges of the scores produced by

these techniques may differ one another, we may need to normalize the scores to

make them comparable. In this example, we normalize the scores using zero-one

score normalization.2 From Figure 5.1, the CombSUM score for Block 5 is 1 + 1 +

1 = 3. We also compute the CombSUM score for the other blocks similarly. Finally,

1Please refer to [3] and Tables 4.5 for the formulas used to compute the suspiciousness scores.
2We elaborate the details of the normalization process in Section 5.3.

87

we find that Block 5 is the most suspicious block as it has the highest score among all

of the blocks. Using the list of most suspicious blocks recommended by CombSUM,

developers could locate the faulty block by only inspecting the first block, which is

more effective than using the list of most suspicious blocks recommended by either

Ochiai, Klosgen, or Pietatsky Shapiro. In this example, we show that a data fusion

method can be used to boost the effectiveness of fault localization techniques.

5.3 Fusion Localizer

In this section, we present our approach that incorporates data fusion methods to

locate the source of a program failure. The overview of this approach is presented

in Section 5.3.1. We elaborate three main steps of our approach namely score nor-

malization, technique selection, and data fusion in Sections 5.3.2, 5.3.3, and 5.3.4

respectively.

5.3.1 Overview

Our approach combines the scores produced by different spectrum-based fault lo-

calization techniques to produce a new ranking with the goal of improving fault

localization effectiveness. In this work, we employ spectrum-based fault localiza-

tion techniques because they are lightweight and have good accuracy. Nevertheless,

it is also possible to use other fault localization techniques that can assign scores to

program elements. The overall framework of our approach named Fusion Localizer

is shown in Figure 5.1.

The input to our approach is a set of spectrum-based fault localization tech-

niques which computes the suspiciousness scores of all program elements in a

buggy program. In this work, we use two well-known spectrum-based fault local-

ization techniques: Tarantula [65,66] and Ochiai [4,6], as well as the 40 association

measures that have been studied for fault localization as in Chapter 4.

88

B
lo

ck
ID

P
ro

gr
am

E
le

m
en

ts

S
us

pi
ci

ou
s

S
co

re
s

N
or

m
al

iz
ed

S
co

re
s

C
om

bS
U

M
O

ch
ia

i
K

lo
sg

en
P

ie
ta

ts
ky

S
ha

pi
ro

O
ch

ia
i

K
lo

sg
en

P
ie

ta
ts

ky
S

ha
pi

ro

1

do
ub

le
a,

x;

0.
82

0.
31

-0
.0

4
0.

79
0.

9
0.

75
2.

44

do
ub

le
ap

,d
el

,s
um

;

in
tn

;

do
ub

le
te

m
p;

if
(x

<
=

0.
0

);

2
{r

et
ur

n
0.

0}
0.

39
0.

06
0

0
0

1
1

3
de

l=
su

m
=

1.
0
/

(a
p

=
a)

;
0.

93
0.

34
-0

.1
5

1
1

0
2

fo
r(

n
=

1;
n
<
=

IT
M

A
X

;+
+n

){

4
su

m
+=

de
l*

=
x
/

++
ap

;
0.

93
0.

34
-0

.1
5

1
1

0
2

if
(A

bs
(d

el
)<

A
bs

(s
um

)*
E

P
S

){

5

/*
B

U
G

S
:s

up
po

se
d

to
be

:*
/

0.
93

0.
34

0
1

1
1

3
/*

te
m

p=
su

m
*e

xp
(-

x+
a*

lo
g(

x)
-L

G
am

m
a(

a)
)*
/

te
m

p=
su

m
*e

xp
(x

+a
*lo

g(
x)

-L
G

am
m

a(
a)

);

re
tu

rn
te

m
p;
}}

Ta
bl

e
5.

1:
A

n
ex

am
pl

e
of

us
in

g
a

da
ta

fu
si

on
m

et
ho

d.

89

Different fault localization techniques use different formulas to calculate suspi-

ciousness scores. Each formula has its own characteristics, especially in terms of the

range and distribution of the suspiciousness scores computed using it. Thus, nor-

malizing the scores is essential so that scores produced by different measures can be

compared with one another. For every technique, we normalize the suspiciousness

scores that are assigned to program elements into a new set of scores that falls in

the range of between zero and one. Section 5.3.2 elaborates on the methods that we

use in this work to normalize the scores.

After the scores are normalized, our approach then adaptively selects techniques

to be fused together based on the spectra of the buggy program. Our goal is to

select a set of techniques that complement one another well for a particular buggy

program. Some techniques could perform worse when they are grouped together

to localize a particular bug. As we demonstrate in Section 5.4, incorporating all 42

techniques does not result in the best performance. Section 5.3.3 elaborates on the

methods that we use in this work to select the techniques.

Given a set of normalized scores from the selected techniques, we combine the

scores using a number of existing data fusion methods. A new set of scores would

then be assigned to program elements for the given buggy program. These new

scores can then be used to create a new list for developer’s inspection. Section 5.3.4

elaborates on the methods that we use in this work to fuse the normalized scores of

selected fault localization techniques.

5.3.2 Step 1: Score Normalization

In this work, we apply two score normalization methods: Zero-One score normal-

ization [142] and Reciprocal ranking normalization [85, 142]. Each of them can be

used as the first step of Fusion Localizer. The following paragraphs discuss how

these normalization methods work.

1) Zero-One Score Normalization: This method transforms scores from different

90

Figure 5.1: Overview of Fusion Localizer

fault localization techniques into the same range, i.e., zero to one. The method

works as follows.

Let n be the total number of techniques andm be the total number of program el-

ements for a given buggy program, then si(ej) denotes the score of the j-th program

element, assigned by the i-th technique, where 1 ≤ j ≤ m and 1≤ i ≤ n. Further-

more, let max si denote the maximum score produced by the i-th technique, and

min si denote the minimum score produced by the i-th technique. The normal-

ized score of the j-th program element given by the i-th technique, is calculated as

follows:

s normi(ej) =
si(ej)−min si
max si −min si

2) Reciprocal Rank Normalization: Instead of directly normalizing a list of scores

produced by different techniques, this method considers the ranks of program ele-

ments and transforms them into normalized scores. The method works as follows.

Let n be the total number of techniques and m be the total number of program

91

elements in a buggy program. Also, let ri(ej) denote the rank of the j-th program

element, assigned by the i-th technique, where 1 ≤ j ≤ m and 1≤ i ≤ n. The nor-

malized score of the j-th program element, ranked by the i-th technique is calculated

as follows:

s normi(ej) =
1

ri(ej)

5.3.3 Step 2: Technique Selection

We adapt overlap-based selection [142] and bias-based selection [113] to se-

lect a subset of techniques to be fused together from a set of fault localization

techniques.These methods are instance (or bug) specific since the selected tech-

niques could be different for different programs. Also, they require no training data

to select techniques. Each of them can be used as the second step of Fusion Local-

izer. We elaborate how we adapt these methods for fault localization as follows.

1) Overlap-Based Selection: This method selects techniques to be fused together

based on the overlap between the list of top-K most suspicious program elements

produced by a fault localization technique and the top-K lists produced by other

techniques. By default, we set K to be 10% of the total number of program elements

that the input buggy program has. If this number is less than 10, we set K to 10.

This method then measures the overlap rate of the results returned by each tech-

nique with the results of other techniques and favors the techniques for which the

results overlap less than other techniques. Hence more possible failure-relevant pro-

gram elements could be covered. The overlap rate of each technique with other

techniques is computed as follows:

Definition 5.3.1 (Overlap Rate) Let Lall be a set of program elements that appear

in at least one of the top-K lists produced by the set of fault localization techniques.

Also, let Li be a set of program elements that appear in the top-K list of the i-th

92

Technique Top 5 Most Suspicious Blocks
T1 Block 2, Block 3, Block 4, Block 7, Block 8

T2 Block 4, Block 5, Block 6, Block 7, Block 9

T3 Block 1, Block 4, Block 5, Block 6, Block 8

T4 Block 4, Block 5, Block 6, Block 8, Block 10

Table 5.2: Example: Overlap-based selection

technique but not in the top-K lists of other techniques. The overlap rate of the i-th

technique with the other techniques is calculated as follows:

o ratei =
|Lall| − |Li|
|Lall|

Example: Given a buggy program, consider four techniques (i.e., T1, T2, T3, and

T4) that return the top 5 most suspicious program elements (i.e., program blocks) as

shown in Table 5.2.

Based on Table 5.2, the set of program blocks returned by at least one of the four

techniques, denoted by Lall, is {Block 1, Block 2, Block 3, Block 4, Block 5, Block

6, Block 7, Block 8, Block 9, Block 10}. T1 recommends two program blocks that

are not recommended by the other techniques, i.e., L1={Block 2, Block 3}. T2, T3,

and T4 each recommends one block that is not recommended by other measures –

L2={Block 9}, L3={Block 1}, and L4={Block 10}. Hence, the overlap rate of T1

among the other techniques can be calculated as (10−2)
10

= 0.8. The overlap rate of

the other 3 techniques can be similarly computed – they are (10−1)
10

= 0.9.

After calculating the overlap rate of each technique, we sort the techniques in as-

cending order of their overlap rates and select the top-N techniques. In this way, we

aim to include techniques that have more unique results (i.e., top-K lists). By de-

fault, we set N to be 50% of all input techniques.

2) Bias-Based Selection: This method selects a subset of techniques to be fused

based on the bias rate of each technique towards the norm considering the top-K

lists returned by each technique. By default, we set K to be 10% of the total number

of program elements that the input buggy program has. If this number is less than

93

10, we set K to 10.

This method represents each technique as a vector of zeroes and ones represent-

ing whether each of the program elements occurs in its top-K list. It also constructs

the norm which is a vector containing the number of top-K lists each program ele-

ment belongs to. This method then computes a bias rate for each technique based

on a similarity coefficient (i.e., cosine similarity) and favors the techniques that are

more biased towards the norm. The bias rate for each technique is computed as

follows:

Definition 5.3.2 (Bias Rate) Let n be the number of input techniques and m be the

number of program elements that appear in a top-K list produced by at least one of

the techniques. Let Li be a vector of zeros and ones that represents whether each

program element appears in the top-K list of the i-th technique, where 1 ≤ i ≤ n.

The normLall is a vector containing the number of top-K lists each program element

appears in. Let Sim(Li, Lall) be the similarity between the vector Li and the vector

Lall, computed based on cosine similarity [146]. Given Sim(Li, Lall), the bias rate

of the i-th technique is calculated as follows:

Bias(Li, Lall) = 1− Sim(Li, Lall)

Sim(Li, Lall) =

∑m
j=1 Lj × Lallj√∑m

j=1 L
2
j ×

√∑m
j=1 L

2
allj

Example: Based on Table 5.2, the set of program blocks that appear in at least

one top-5 lists is {Block 1, Block 2, Block 3, Block 4, Block 5, Block 6, Block 7,

Block 8, Block 9, Block 10}. Block 4 is recommended by four techniques, while

Blocks 5, 6, and 8 are recommended by three techniques. Block 7 is recommended

94

by two techniques, and the rest of the blocks are recommended by only one tech-

nique. From these pieces of information, the norm Lall is {1, 1, 1, 4, 3, 3, 2, 3, 1,

1}. To calculate the bias rate of T1 to the norm, i.e., Bias(L1, Lall), we first calculate

the similarity score of this technique with the norm Lall. The similarity score of

L1 with the norm Lall is 0.6822 which is calculated as follows:

Sim(L1, Lall) =
(1 + 1 + 4 + 2 + 3)√

5× 52

Based on the similarity score, the bias rate of T1 is 1− 0.6822 = 0.37. The bias

rate of the other techniques can be computed in a similar way. The bias rate of T2 is

1− 13√
5×52

= 0.19. T3 has the same bias rate as T4, i.e., 1− 14√
5×52

= 0.13. For each

technique, we calculate the bias rate of the results and sort them in decreasing order

of their bias rates. We then select the top-N techniques, with the aim of including

techniques that are less similar towards the norm. By default, we set N to be 50%

of the input fault localization techniques.

5.3.4 Step 3: Data Fusion

Our approach adapts an unsupervised data fusion method proposed in the informa-

tion retrieval domain to combine normalized scores from the selected fault localiza-

tion techniques. In this work, we adapt five well-known unsupervised data fusion

methods, namely CombSUM [41, 42], CombMNZ [41, 42], CombANZ [41, 42],

correlation-based fusion methods [142], and Borda count [14]. Each of them can be

used as the third step of Fusion Localizer.

The following paragraphs elaborate how the five popular fusion methods can be

adapted for fault localization. We use the example shown in Figure 5.1 to illustrate

how each method works.

1) CombSUM: This method combines the scores of different techniques, by sim-

ply summing up their scores. This method assumes that each technique is equally

important.

95

Example. Based on the example in Figure 5.1, the set of new scores of Blocks

1 to 5 would be {2.44, 1, 2, 2, and 3}.

2) CombANZ: This method combines the scores from different techniques, by com-

puting the average of the non-zero scores. Let the j-th program element be denoted

as ej , the i-th technique be denoted as Ti, and the score assigned to program element

ej by technique Ti be denoted as Ti(ej). Suppose there are n techniques and mej

denotes the number of techniques that assign a non-zero score to ej , CombANZ

calculates the new score for ej as follows:

Score(ej) = 1/mej ×
n∑
i=1

Ti(ej)

Example. Based on the example in Figure 5.1, the set of new scores of Blocks

1 to 5 are {2.44
3
, 1

1
, 2

2
, 2

2
, 3

3
}={0.81, 1, 1, 1, 1}.

3) CombMNZ: CombMNZ is a variant of CombANZ; it multiplies the sum of all

the scores for a given element with the number of techniques that assign a non-

zero score to the element. Let the j-th program element be denoted as ej , the i-

th technique be denoted as Ti, and the score assigned to program element ej by

technique Ti be denoted as Ti(ej). Suppose there are n techniques and mej denotes

the number of systems that give a non-zero score to ej , CombMNZ calculates the

new score for ej as follows:

Score(ej) = mej ×
n∑
i=1

Ti(ej)

Example. Based on the example in Figure 5.1, the set of new scores of Blocks 1 to

5 is {2.44× 3, 1× 1, 2× 2, 2× 2, 3× 3} = {0.732, 1, 4, 4, 9}.

4) Correlation-based methods: Different from the above methods, correlation-based

methods assume each technique is not equally important. The importance of a

96

technique is represented by its weight. Based on the weights of the techniques,

these methods linearly combine (i.e., sum up) the scores assigned by different tech-

niques multiplied by their weights. Let the j-th program element be denoted as

ej , and the score assigned to program element ej by the i-th technique be denoted

as Ti(ej). Then, let wi denote the weight assigned to the i-th technique and n be

the number of techniques. The new score of program element ej is calculated as

follows:

Score(ej) =
n∑
i=1

wi × Ti(ej) (5.1)

The following paragraphs describe the weight calculation procedures of two

correlation-based methods: CorrA and CorrB.

4.1) CorrA: This method computes the correlation among the techniques based on

the overlap of the lists of top-N most suspicious program elements returned by the

techniques. The method aims to minimize the domination of a certain group of

techniques that tend to return similar results, by assigning a heavier weight to a

technique that has less correlation with other techniques.

Let the sets of top-N most suspicious program elements returned by the i-th and

j-th techniques be denoted as Li and Lj respectively, where i 6= j. The overlap ratio

between Li and Lj is calculated as follows:

OverlapRatioij = 2× |Li
⋂
Lj|

2×N

Suppose, there are n techniques, we calculate the weight of the i-th technique,

based on the average of its overlap ratio with other techniques to be fused together

as follows:

wi = 1− 1

n− 1

n∑
j=1,2,..,j 6=i

OverlapRatioij

97

Example. Based on the example in Table 5.1 and the top 3 most suspicious

program elements returned by each technique, the overlap ratio between Ochiai and

Klosgen is 1, while the ratio between Ochiai and Piatetsky Shapiro is 0.33. Thus,

the weight assigned to Ochiai is 1-1.33
2

=0.335. In the same way, the weights of

Klosgen and Piatetsky Shapiro are 0.335 and 0.67 , respectively. The set of new

scores for these blocks can be calculated using these weights and Equation 5.1 – it

is {1.07, 0.67, 0.67, 0.67, 1.34}.

In this work, we denote the variant of the CorrA that calculates the correlation

among the measures based on the top 10% of the most suspicious program elements

by CorrA Top10% and another variant that is based on the top 50% of the most

suspicious program elements as CorrA Top50%.

4.2) CorrB: CorrB is a correlation-based method that also computes the weight of a

technique based on the overlap of its list of top-N most suspicious program elements

with other lists produced by other techniques. Let the list of top-N most suspicious

program elements returned by the i-th technique be denoted as Li. For a program

element e, let us denote the number top-N lists it belongs to as list(e). Let Lall

denote a set of program elements which appear in at least one of the lists produced

by the techniques. Suppose there are n techniques to be fused, the weight of the i-th

technique can be calculated as follows:

wi = 1−
(
∑

e∈Li
list(e))− |Li|

|Li| × |Lall|

where |Li| denotes the number of elements returned by the i-th technique and |Lall|

denotes the number of elements that appear in at least one of the lists returned by

the techniques.

Example. Based on the example in Table 5.1 and the top 3 most suspicious pro-

gram elements returned by each technique, LOchiai, LKlosgen, and LPietatsky Shapiro

are {Block 3, Block 4, Block 5}, {Block 3, Block 4, Block 5}, and {Block 2, Block

98

1, Block 5} respectively. Thus, Lall is {Block 1, Block 2, Block 3, Block 4, Block

5}. Also, list(Block3), list(Block4), and list(Block5) are 2, 2, and 3 respectively.

From the above, the weight assigned to Ochiai is 1-7−3
3×5

= 0.73. In the same way, the

weights of Klosgen and Piatetsky Shapiro are 0.73 and 0.87, respectively. There-

fore, the set of new scores for these blocks calculated using Equation 5.1 is {1.87,

0.87, 1.46, 1.46, 2.33}.

In this work, we denote the variant of the CorrB method which calculates

the correlation among the measures based on the top 10% of the most suspi-

cious program elements by CorrB Top10% and another variant of the CorrB

method which is based on the top 50% of the most suspicious program elements

as CorrB Top50%

5) Borda count: This method converts the normalized scores that are assigned to

program elements by each selected technique into ranks – program elements with

higher scores are given smaller ranks. For each element, this method sums up the

ranking points of an element given by a set of techniques. The ranking point of an

element given by a technique is defined as the substraction of the element’s rank in

the list produced by the technique from the total number of program elements in the

input buggy program.

Let ej denotes the j-th program element and ri(ej) the rank assigned to program

element ej by the i-th technique. Also, let Ne denotes the number of program

elements and n the number of techniques. The new score of program element ej is

then calculated using Borda count as follows:

Score(ej) =
n∑
i=1

(Ne − ri(ej))

Example. Table 5.3 shows the ranking points for each program block in Fig-

ure 5.1 given by Ochiai, Klosgen, and Piatetsky Shapiro. The set of new scores for

Blocks 1 to 5 based on the summation of their ranking points is {4, 3, 4, 4, 7}.

99

Block Ranks Ranking Points
Block 1 {4, 4, 3} {1, 1, 2}
Block 2 {5, 5, 2} {0, 0, 3}
Block 3 {3, 3, 5} {2, 2, 0}
Block 4 {3, 3, 5} {2, 2, 0}
Block 5 {3, 3, 2} {2, 2, 3}

Table 5.3: Example of Ranks And Ranking Points Given By Ochiai, Klosgen, and
Piatetsky Shapiro

5.4 Empirical Evaluation

In this section, we present the subject programs used in our evaluation, our evalua-

tion metrics, and our experiment results. We also discuss some threats to validity.

5.4.1 Dataset

We evaluate the effectiveness of data fusion methods presented in Section 5.3.4 to

localize faults in 230 buggy programs. Each buggy program contains a single bug

that could span across multiple program elements. Table 5.4 briefly describes our

subject programs.

In this work, we evaluate eight subject programs written in C: one real program,

namely space, from the Software-artifact Infrastructure Repository (SIR) [125]

and the seven Siemens programs [58, 125], namely print tokens, print tokens2, re-

place, schedule, schedule2, tcas, and tot info. Each of the eight programs has a

number of buggy versions. We manually instrument these buggy programs at block

level. After excluding buggy versions that could not be reached by our instrumen-

tation, e.g., bugs in global variable declarations, we evaluate 154 buggy versions.

We also analyze two real Java programs from the SIR [125] namely:

NanoXML [122] and XML-Security [122]. In this work, we analyze four versions

of NanoXML (i.e., NanoXML v1, NanoXML v2, NanoXML v3, and NanoXML

v5) and three versions of XML-Security (i.e., XML-Security v1, XML-Security v2,

and XML-Security v3). Similarly, each of these programs has multiple buggy ver-

100

sions and we instrument them at block level. After excluding buggy versions that

have no failed test case, we evaluate 46 buggy versions.

As previously shown in Table 2.1, the above subject programs have often been

used to evaluate many fault localization techniques. Despite their popularity, the

size of the above subject programs are relatively small. Most of the bugs in the

above subject programs are also synthetic rather than real. Thus, we create another

dataset consisting of 30 real bugs from three larger programs namely Rhino [33],

Lucene [2], and Ant [1]. Rhino bugs and test suite are obtained from the iBugs

repository which was created by Dallmeier and Zimmermann [33]. Lucene and Ant

bugs and test suite are obtained from their bug tracking and version control systems

following the procedure described by Dallmeier and Zimmermann [33]. In particu-

lar, we consider Lucene bugs that were reported for versions 2.0 to 3.1, and Ant bugs

that were reported for versions 1.5.1 to 1.9.2. Kawrykow and Robillard observed

that not all changes made to fix a bug are essential; many of them are cosmetic

changes or simple refactorings that do not change the behavior of a program [71].

Thus, to find the root cause of a real bug (i.e., the buggy program blocks), we need

to manually inspect the code that are changed to fix the bug. To help us in the

manual inspection, we only include Rhino, Lucene, and Ant bugs whose fixes only

change at most five lines of code. Among these bugs, we also only choose bugs that

have at least one faulty test case covering the faulty lines.

5.4.2 Evaluation Criteria

A fault localization technique (either using data fusion or not) generates a list of

most suspicious program elements for developers’ inspection. We evaluate the ef-

fectiveness of a fault localization technique in localizing faults based on the follow-

ing commonly used metrics:

1) Percentage of Code Inspected: For each bug, we measure the percentage of

program blocks that a developer needs to inspect to locate all the faulty program

101

Dataset LOC Num. of Buggy Version Num. of Test Cases
print token 478 5 4,130
print token2 399 10 4,115
replace 512 31 5,542
schedule 292 9 2,650
schedule2 301 9 2,710
tcas 141 36 1,608
tot info 440 19 1,051
space 6,218 35 13,585
NanoXML v1 3,497 6 214
NanoXML v2 4,007 7 214
NanoXML v3 4,608 9 216
NanoXML v5 4,782 8 216
XML security v1 21,613 6 92
XML security v2 22,318 6 94
XML security v3 19,895 4 84
Rhino 49k 11 20-152
Lucene 88k 9 1,072-1,154
Ant 264k 10 1,024-1,555

Table 5.4: Dataset descriptions

elements. The percentage of program blocks that needs to be inspected depends on

the rank of the faulty program elements in the list. We report the average percentage

of code (i.e., program blocks) inspected over all the bugs.

2) Proportion of Bugs Localized: We compute the proportion of bugs that can

be localized when developers inspect up to a certain percentage of program blocks.

3) Absolute Amount of Code Inspected: As studied by Panin and Orso [106],

developers may only inspect a certain number of most suspicious program elements

recommended by an automatic debugging tool. Thus, we also compute the number

of bugs that can be localized when developers inspect up to E program blocks. In

this study, we set E to 10.

5.4.3 Experiment Results

We evaluate the effectiveness of various variants of our approach to localize faults.

We denote a variant of Fusion Localizer as zX,Y
Z where X specifies a score nor-

malization method (i.e., Zero-One or Reciprocal), Y specifies a technique selection

102

method (i.e., Overlap or Bias), and Z specifies a data fusion method such as Com-

bANZ, CorrA Top10%, CorrA Top50%, CorrB Top10%, CorrB Top50%, Comb-

SUM, CombMNZ, or Borda count.

Their effectiveness is compared with the effectiveness of the well-known

spectrum-based fault localization techniques, namely Tarantula [65] and Ochiai [4,

6]. We also compare with the theoretically best spectrum-based fault localization

techniques [143] namely Naish1, Naish2, Binary, Wong1, and Russel & Rao, as

well as the theoretically best genetic programming (GP) based fault localization

techniques namely GP02, GP03, GP13, and GP19 [144].

Percentage of Code Inspected

In terms of average percentage of code inspected to localize all bugs, twelve vari-

ants of Fusion Localizer perform better than the state-of-the-art fault localization

techniques. These variants fuse the techniques using CombANZ, CorrA Top10%,

CorrA Top50%, CorrB Top10%, CorrB Top50%, CombSUM, and CombMNZ by

first normalizing the scores using Zero-one normalization and selecting the tech-

niques using either the bias-based or overlap-based method. They could achieve

smaller average percentage of code inspected (i.e., 21.36% to 23.78%) as compared

to the best performing state-of-the-art fault localization technique (i.e., Naish2).

Among the state-of-the-art fault localization techniques, Naish2 achieves the small-

est average percentage of code to be inspected (i.e., 24.63%), followed by GP13

(i.e., 24.78%) and Ochiai (i.e., 25.29%). See Table 5.5 for the details of average

percentage of code inspected for the above variants of Fusion Localizer and the

state-of-the-art fault localization techniques.

To investigate whether the differences in the average percentage of code in-

spected between our twelve variants and the best performing state-of-the-art fault

localization techniques (i.e., Naish2, GP13, and Ochiai) are significant or not, we

perform a statistical significance test namely Wilcoxon signed rank test [139] at

5% significance level. This statistical test does not assume that the data should

103

Technique Average Technique Average

zZero−One,OverlapCombANZ 21.36% Naish2 24.63%

zZero−One,BiasCombANZ 21.39% GP13 24.78%

zZero−One,BiasCombSUM 22.94% Ochiai 25.29%

zZero−One,OverlapCorrB Top50% 23.11% GP03 25.82%

zZero−One,OverlapCombSUM 23.15% Tarantula 26.77%

zZero−One,OverlapCorrB Top10% 23.23% GP19 31.60%

zZero−One,OverlapCombMNZ 23.31% Naish1 34.40%

zZero−One,BiasCorrB Top10% 23.33% GP02 39.48%

zZero−One,BiasCorrB Top50% 23.38% Russel&Rao 42.48%

zZero−One,OverlapCorrA Top10% 23.56% Binary 52.04%

zZero−One,BiasCombMNZ 23.78% Wong1 86.26%

zZero−One,BiasCorrA Top10% 23.78%

Table 5.5: Average Percentage of Code Inspected to Localize All Bugs.

follow normal distribution. Based on the significance tests, zZero−One,Bias
CombANZ and

zZero−One,Overlap
CombANZ significantly outperform Naish2 with p-values equal to 0.0135

and 0.02284, respectively. They also significantly outperform GP13 and Ochiai

with p-values less than 0.05. The other ten variants could only significantly out-

perform Ochiai with p-values less than 0.05. Table 5.6 lists the p-values when we

compare each of the best performing Fusion Localizer variants with each of the best

performing state-of-the-art fault localization techniques using Wilcoxon signed rank

test.

Furthermore, we plot the improvements of the best performing variant of Fu-

sion Localizer, namely zZero−One,Bias
CombANZ over the three best performing state-of-the-

art fault localization techniques namely Naish2, GP13, and Ochiai for each of the

buggy versions in Figures 5.2, 5.3, and 5.4 respectively. We plot the improvements

made by zZero−One,Bias
CombANZ because it achieves the most significant improvement over

Naish2 (i.e., the lowest p-value over Naish2). The improvement is based on the

difference in percentage of code inspected. The graphs only show the buggy ver-

sions where the improvements are either positive (our technique performs better)

or negative (our technique performs worse). There are 87 buggy versions in which

104

Fusion Localizer Variant p-value

over Ochiai

p-value

over GP13

p-value

over Naish2

zZero−One,OverlapCombANZ 1.70e-07 0.0182 0.0228

zZero−One,BiasCombANZ 3.12e-05 0.0104 0.0135

zZero−One,BiasCombSUM 4.30e-06 0.2464 0.2736

zZero−One,OverlapCorrB Top50% 1.54e-06 0.2966 0.2985

zZero−One,OverlapCombSUM 1.75e-06 0.5985 0.6189

zZero−One,OverlapCorrB Top10% 1.21e-05 0.5495 0.5642

zZero−One,OverlapCombMNZ 1.24e-05 0.6354 0.7402

zZero−One,BiasCorrB Top10% 4.09e-06 0.2047 0.2464

zZero−One,BiasCorrB Top50% 2.90e-06 0.2981 0.2948

zZero−One,OverlapCorrA Top10% 1.00e-05 0.4842 0.5231

zZero−One,BiasCombMNZ 0.0032 0.7860 0.8588

zZero−One,BiasCorrA Top10% 1.74e-05 0.3065 0.3065

Table 5.6: Statistical Significance Test Results

zZero−One,Bias
CombANZ improves Naish2 and GP13. As compared to Ochiai, it has better

performance for 91 buggy versions. In addition, there are 66, 65, and 88 buggy

versions in which zZero−One,Bias
CombANZ performs the same as Naish2, GP13, and Ochiai

respectively. Based on the figures, our best variant outperforms the three best per-

forming state-of-the-art fault localization techniques for most of the buggy versions.

Figure 5.2: Improvement of zZero−One,Bias
CombANZ over Naish2 in Terms of Percentage of

Code Inspected

105

Figure 5.3: Improvement of zZero−One,Bias
CombANZ over GP13 in Terms of Percentage of

Code Inspected

Figure 5.4: Improvement of zZero−One,Bias
CombANZ over Ochiai in Terms of Percentage of

Code Inspected

106

Technique %Bug Technique %Bug

zZero−One,OverlapCombANZ 46.96% zZero−One,BiasCombMNZ 38.70%

zZero−One,BiasCombANZ 46.52% GP03 38.70%

zZero−One,BiasCombSUM 43.48% GP02 37.83%

zZero−One,OverlapCombSUM 43.48% Tarantula 37.39%

zZero−One,BiasCorrB Top10% 43.48% Naish2 36.96%

zZero−One,OverlapCorrB Top10% 43.48% GP13 36.96%

zZero−One,OverlapCorrA Top10% 43.48% Naish1 36.09%

zZero−One,BiasCorrA Top10% 43.04% GP19 29.13%

zZero−One,BiasCorrB Top50% 43.04% Russel&Rao 5.65%

zZero−One,OverlapCorrB Top50% 42.61% Binary 4.78%

Ochiai 42.17% Wong1 3.04%

zZero−One,OverlapCombMNZ 41.30%

Table 5.7: Proportion of Bug Localized When Only 10% of Blocks are Inspected.

Proportion of Bugs Localized

We also evaluate the number of buggy versions in which the faulty program el-

ements could be found when developers inspect a certain percentage of program

elements (i.e., program blocks). Table 5.7 shows the proportion of bug localized

when developers only inspect the top 10% of the most suspicious program elements

produced by the state-of-the-art fault localization techniques and our twelve vari-

ants that have better average percentage of code inspected than the best performing

state-of-the-art fault localization techniques.

When 10% of the most suspicious program elements are inspected,

zZero−One,Overlap
CombANZ and zZero−One,Bias

correlation−based can localize more bugs as compared to the

other variants of Fusion Localizer and the state-of-the-art fault localization tech-

niques. They can localize 46.96% and 46.52% of the bugs, while the best perform-

ing state-of-the-art fault localization technique (i.e., Ochiai) can localize 42.17% of

the bugs. Naish2 and GP13 can localize only 36.96% of the bugs. Thus, these two

best variants could improve the best performing state-of-the-art fault localization

techniques by 11.26% to 26.95%.

In addition, there are eight other variants of Fusion Localizer which can localize

107

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

P
e

rc
e

n
ta

g
e
 o

f
B

u
g

 L
o

c
a

li
z
e

d

Percentage of Inspected Elements

Naish2

GP13

Ochiai

Figure 5.5: Comparing zZero−One,Bias
CombANZ , zZero−One,Overlap

CombANZ with Naish2, GP13, and
Ochiai

more bugs than the best performing state-of-the-art fault localization technique (i.e.,

Ochiai) when 10% of program elements are inspected. They can localize 42.17% to

43.48% of the bugs. Thus, our best variants can improve number of bugs that can

be localized when developers only inspect a small percentage of code.

Furthermore, we plot the proportion of bug localized using our two best variants

(i.e., zZero−One,Overlap
CombANZ and zZero−One,Bias

CombANZ), Naish2, GP13, Ochiai, and Tarantula

when different percentage of program elements are inspected, as shown in Fig-

ures 5.5. Based on the figure, our two best variants can localize more bugs when

different percentages of program elements are inspected as compared to the best

performing state-of-the-art fault localization techniques.

Absolute Amount of Code Inspected

We also investigate the number of bugs that can be localized when only a small num-

ber of program elements (i.e., 10 basic blocks) are inspected. Table 5.8 shows that

our twelve variants can localize more bugs than the state-of-the-art fault localization

techniques. They can localize 78 to 91 bugs, while the best performing state-of-the-

art fault localization technique (i.e., Ochiai) can only localize 74 bugs. Amongst

our variants, zZero−One,Bias
CombANZ can localize the largest number of bugs as compared to

108

Technique Hit@10 Technique Hit@10

zZero−One,BiasCombANZ 91 Ochiai 74

zZero−One,OverlapCombANZ 87 Naish1 73

zZero−One,OverlapCombSUM 87 Naish2 73

zZero−One,BiasCorrA Top10% 86 GP13 72

zZero−One,OverlapCorrA Top10% 86 GP03 71

zZero−One,BiasCorrB Top10% 85 GP02 64

zZero−One,OverlapCorrB Top10% 85 Tarantula 56

zZero−One,BiasCorrB Top50% 85 GP19 51

zZero−One,OverlapCorrB Top50% 84 Russel&Rao 3

zZero−One,BiasCombSUM 84 Binary 3

zZero−One,OverlapCombMNZ 84 Wong1 0

zZero−One,BiasCombMNZ 78

Table 5.8: Number of Bugs Localized When Only Up To 10 Most Suspicious Pro-
gram Elements Are Inspected (i.e., Hit@10)

the other techniques. Its relative improvement over Ochiai, Naish2, and GP13 are

23%, 25%, and 26% respectively. These results also show that our best variants can

substantially improve the number of bug localized when developers only inspect a

small number of program elements.

5.4.4 Discussion

In this section, we first discuss the effect of score normalization on the performance

of Fusion Localizer. We then describe the effect of technique selection on the per-

formance of Fusion Localizer. Next, we describe the effect of varying the number

of techniques to be fused together. At the end of this section, we describe some

threats to validity.

Effect of Score Normalization. To investigate the effect of the score normalization

step, we disable this step and evaluate the effectiveness of the resultant solution. We

find that without score normalization, the performance of the best performing vari-

ant of Fusion Localizer is not as good as the best performing variant that normalizes

the scores.

109

Without normalization, the average percentage of program block inspected to

localize all bugs achieved by the best variant is 30.28% which is larger than the

result of the best variant that normalizes the scores (i.e., 21.36%). When developers

only inspect up to 10% of program blocks, the best variant that does not normalize

the scores can only localize 30% of the bugs which is smaller than the percentage

of bugs that are successfully localized by the best variant that normalizes the scores

(i.e., 46.96%). Also, when inspecting up to 10 program blocks, the number of bugs

localized by the best variant that does not normalize the scores is not even half of

those achieved by the best variant that normalizes the scores (38 bugs vs. 91 bugs).

Therefore, normalization is an important step to improve the performance of Fusion

Localizer.

Effect of Technique Selection. To investigate the effect of the technique selection

step, we disable this step and evaluate the effectiveness of the resultant solution.

When we fuse all 42 fault localization techniques, the performance of the best vari-

ant is worse than the best variant that employs technique selection. When the tech-

nique selection step is disabled, on average, the best variant can localize all bugs

when 22.27% of code are inspected, which is not as good as the result achieved by

the best variant that employs technique selection (i.e., 21.36%). When developers

only inspect up to 10% of program blocks, the best variant that does not use tech-

nique selection localizes a smaller percentage of bugs than the percentage localized

by the best variant that uses technique selection (i.e., 46.52% vs. 46.96%). Simi-

larly, when developers only inspect up to 10 program blocks, the best variant that

does not use technique selection localizes a smaller number of bugs than the num-

ber localized by the best variant that employs technique selection (i.e., 87 vs. 91).

Therefore, applying technique selection can improve the performance of Fusion

Localizer.

Effect of Number of Techniques to be Fused. To evaluate the effect of the number

of techniques to be fused by our Fusion Localizer, we use one of our best variants

110

(i.e., zZero−One,Bias
CombANZ) and set the number of techniques to be selected to top 25%,

top 50%, top 75%, and all of the techniques. Let us refer to the 4 sub-variants of

zZero−One,Bias
CombANZ as V25, V50, V75, and V100. By default Fusion Localizer selects

top 50% of the techniques. We find that the average percentage of code inspected

to locate all bugs are 27.13%, 21.36%, 21.88%, and 22.27% for V25, V50, V75,

and V100 respectively. When developers only inspect the top 10% of the code,

the percentage of bugs localized by V25, V50, V75, and V100 are 30%, 46.96%,

46.52%, and 46.52% respectively. When developers only inspect the top 10 program

blocks, the number of bugs localized by V25, V50, V75, and V100 are 57, 91, 87,

and 87 respectively. The results show that selecting the top 50% of the techniques

(the default option) is the best setting.

Threats to Validity. Threats to internal validity relates to errors in our experiments.

We have checked our implementation but there could be bugs that we do not notice.

Threats to external validity relates to the generalizability of our findings. We have

analyzed 230 bugs from 13 programs written in C and Java. The programs vary

from small to large programs. The bugs vary from synthetic to real bugs. In the

future, we plan to reduce this threat to external validity further by investigating

more bugs from more systems written in various programming languages. Threats

to construct validity relates to the suitability of our evaluation metrics. We have

used common metrics used to analyze past fault localization studies [4, 6, 31, 65,

66, 137]. We have also used another metric (i.e., Hit@10) to address the concern

raised by Parnin and Orso [106]. Hit@10 only considers the performance of a fault

localization tool when a small number of program elements (in our case: program

blocks) are inspected. The measure was previously used by information retrieval

(IR) based bug localization studies that find buggy program files given a textual bug

report [115, 120, 136, 154].

111

5.5 Conclusion

In this chapter, we propose an approach named Fusion Localizer to fuse a number

of spectrum-based fault localization techniques. Our propose approach consists of

three steps: score normalization, technique selection, and data fusion. We investi-

gate two score normalization methods, two technique selection methods, and five

data fusion methods resulting in twenty variants of Fusion Localizer. Fusion Lo-

calizer does not require any training data, i.e., execution traces of past relevant pro-

gram failures, to select the set of techniques to be fused. This allows our approach

to be used for new programs or programs where program spectra of past relevant

bugs are unavailable. Furthermore, our approach is bug specific in which the set of

techniques to be fused is adaptively selected for each buggy program based on its

spectra.

We evaluate our approach using a common benchmark dataset and a dataset

that contains real bugs from three medium to large programs. Our evaluation

shows that the best performing variants of Fusion Localizer (i.e., zZero−One,Bias
CombANZ

and zZero−One,Overlap
CombANZ) statistically significantly outperform the state-of-the-art

spectrum-based fault localization techniques (i.e., Ochiai, theoretically best

spectrum-based fault localization techniques, and theoretically best genetic pro-

gramming (GP) based fault localization techniques). Our best variants require

smaller average percentage of code inspected to locate faulty elements as compared

to the best performing state-of-the-art fault localization techniques (i.e., 21% vs.

24%). When developers only inspect 10% of the most suspicious program ele-

ments, these best variants could improve the best performing state-of-the-art fault

localization techniques (i.e., Ochiai, Naish2, and GP13) by 11% to 26%. Further-

more when developers only inspect the top 10 most suspicious program blocks,

these best variants could improve the best performing state-of-the-art fault local-

ization techniques by 23% to 26%. In addition, there are many other variants of

Fusion Localizer that can outperform the state-of-the-art fault localization tech-

112

niques (albeit not statistically significantly). These variants use CorrA Top10%,

CorrB Top10%, CorrB Top50%, CombSUM, and CombMNZ to fuse the selected

techniques, by first normalizing the scores using Zero-One normalization and by

selecting the techniques using the bias-based or overlap-based selection methods.

113

Chapter 6

Active Refinement of Clone Anomaly

Reports

In this chapter, we propose an approach that complements spectrum-based fault lo-

calization for cases in which test cases or program spectra are not available to be

analyzed to locate faults in programs. In the absence of program spectra, clone-

based anomaly detection techniques can find real bugs on large systems, neverthe-

less these techniques often have a high false positive rate. In order to reduce the false

positive rate of such techniques, we propose an active learning method to re-rank

anomaly reports produced by a clone-based anomaly detection technique so that the

anomaly reports that contain faults would appear in the top positions for developers’

inspection.

We organize this chapter as follows. Section 6.1 presents the motivation and

main contribution of this chapter. In Section 6.2, we review the concept of clone-

based anomaly detection. In Section 6.3, we describe our overall active refinement

framework which iteratively invokes a refinement engine. We elaborate this engine

in Section 6.4. Our evaluation metric is described in Section 6.5. In Section 6.6, we

describe our evaluation results on three large software systems. We conclude and

mention potential future work in Section 6.7.

114

6.1 Code Clones for Bug Detection

Code clones, or pieces of similar code, commonly occur in large software sys-

tems [19, 86] for various reasons, which range from improper code reuse via the

prevalent copy-and-paste practice, to the introduction of redundant code to improve

runtime efficiency and/or reliability of systems. Code clones have attracted much

research interest resulting in various studies on detecting code clones [17,19,62,69],

tracking and managing code clones [36,57,101], and examining the harmfulness or

usefulness of code clones [68, 70, 72].

One important use of code clones is their applicability in detecting bugs [43,53,

64, 68, 78, 81]. These clone-based anomaly detection tools look for inconsistencies

among code clones in every clone group (i.e., a group of code fragments similar

to each other) and report them as anomalies (i.e., potential bugs). For example,

Li et al. [81] look for different identifier names among clones and check whether

all names are changed consistently; Jiang et al. [64] look at syntactic structures of

the code surrounding every clone, in addition to the identifier names in clones, and

report differences as anomalies. These tools have found a number of true positives

of diverse characteristics from large systems, such as the Linux kernel and Eclipse.

Figure 6.2 shows a true positive from the Linux kernel: there is a missing null-check

on the tmp variable in the code fragment 2. Such a detection is possible because

most parts of the two code fragments (after the if condition) are detected as clones,

and the code surrounding the clones (which are the variable declaration and the if

condition) shows some structural differences (no if in code fragment 2).

However, the set of reported anomalies can be huge, containing hundreds or

even thousands of reports. Among these anomalies, only a small proportion are true

positives; others are benign variations among clones in a clone group, which are

intended changes rather than mistakes. Verifying whether these anomalies are true

or not can be painstaking and time-consuming. Developers tend to give up if many

of the first set of anomaly reports that they check are false positives. For example,

115

Case 1: Without refinement
Jack is presented with 500 bug reports.He investigates the first 100, and can
find five true positives. If the bugs are mission critical, it’s worth the effort.

Case 2: With refinement
Jack is presented with 500 bug reports. As he navigates through the bug
reports and labels each of them as true bugs or false positives, the system
automatically reorders the remaining unlabeled bug reports. He can now
find ten true positives after investigating 100 reports. Jack’s productivity in
finding bugs is doubled.

Table 6.1: Informal illustration: Refinement process

Jiang et al. [64] report that among more than 800 reports generated by their tool for

the Linux kernel, only 57 are true bugsor bad programming styles. Gabel et al. [43]

apply more advanced filtering techniques based on textual similarity and sequence

alignment on inconsistent clones detected from a large commercial code base. They

report that among 500 manually checked anomaly reports (out of 8103 in total), 149

may be true bugs and 109 may be code smells, while for the rest they are unsure.

Hence, reducing the manual effort in locating true positives in clone-based anomaly

reports is an important task for the wide adoption of such tools.

In this chapter, we propose an active-learning and user-feedback directed ap-

proach to help alleviate the problem of false positives. The task is challenging as

there are only a few true positives embedded in a mass of false positives. Our idea

is to actively, iteratively incorporate user feedback to refine anomaly reports. Users

are presented anomaly reports one by one; when a user labels a report as a false

positive or true positive, our system actively updates the remaining set of anomaly

reports. In so doing, we aim to make true positives appear earlier in the list of

all anomaly reports according to this information. Thus, we provide a feedback

loop between bug detection tools and developers, and help to improve the quality of

anomaly reports and reduce the effort of manual investigation. Table 6.1 presents

two scenarios for an informal illustration.

Now we describe how this active refinement of anomaly reports could be per-

formed. Conceptually, we divide the space of possible clone groups into four quad-

116

Rigid

Flexible

Inconsistent Consistent

True Positive

Figure 6.1: Clone group’s four quadrants

rants as shown in Figure 6.1. The columns separate clone groups that have inconsis-

tencies from those that do not; the rows separate clone groups that allow variations

(i.e., flexible) from those that do not (i.e., rigid). A rigid clone group is a set of

clones where variations among clones are harmful; a flexible clone group is a set of

clones where variations are benign.1 Current clone-based anomaly detection tools

would separate clone groups in the two quadrants on the left from those in the two

quadrants on the right. However, clone groups in the bottom left quadrant would

be all false positives since the inconsistent changes in those clones are allowed or

intentional and should not be reported as anomalies. The goal of our approach is to

learn a discriminative model to provide the likelihood of a clone group belonging to

the top left quadrant (i.e., rigid but inconsistent) versus belonging to the bottom left

quadrant (i.e., flexible and inconsistent). Then, this model can be used to re-sort the

list of anomaly reports and make true positives appear earlier.

We observe that false positives could be similar to one another in certain ways.

For example, consider the code snippets in Figure 6.3 containing two clone groups

with two clones each. All of code snippets involve the same number of if state-

ments, || operators, function calls, and assignments, but they are quite different

from the true positive shown in Figure 6.2. Thus, the intuition of our approach

is that false positives may have similar characteristics among themselves, but they

have different characteristics from true positives, and the differences between false

and true positives could be leveraged to build a discriminative model.

In order to characterize the similarities and differences among clones, we con-

1Both notions allow gapped clones, and are orthogonal to the concept of gapped clones.

117

vert each clone group into a set of features. These features are built from the var-

ious syntactical patterns in the clones of each group. A discriminative model is

a composition of features that collectively captures the differences between false

and true positives. Often such models are built from a fixed static training dataset,

e.g., [22, 79]. However, in our bug refinement process, the training dataset is incre-

mentally updated as a new anomaly report is inspected and marked by a developer

as either a false or true positive, and we would like to build our discriminative model

based on such a dynamic training dataset.

We propose a framework consisting of a refinement engine that leverages user

feedbacks and is iteratively invoked. Developers need to take action on anomaly

reports, to either get bugs fixed or discard them. Our feedback is from such actions

and no extra effort is needed. The refinement engine is composed of a feature ex-

tractor, a pre-processor, and a classifier, arranged in a pipeline. It takes in the given

feedback, to build and refine the discriminative models. The resultant discrimina-

tive model in each iteration is used to refine the remaining uninvestigated anomaly

reports.

We evaluate our framework on three sets of clone anomaly reports for three

large programs: the Linux kernel (C), Eclipse, and ArgoUML (Java) [64] extracted

by a clone-based anomaly detection tool. Our evaluation shows that compared to

the original ordering of bug reports, we can improve the average percentage of true

positives found, an evaluation metric adopted from the test case prioritization com-

munity [37], by 11%, 87%, and 86% for the Linux kernel, Eclipse, and ArgoUML

respectively. We further discuss these improvements in Section 6.6.

The main contributions of this work are as follows:

118

C
o
d
e

F
r
a
g
m
e
n
t

1

C
o
d
e

F
r
a
g
m
e
n
t

2

F
i
l
e
:

l
i
n
u
x
-
2
.
6
.
1
9
/
f
s
/
s
y
s
f
s
/
i
n
o
d
e
.
c

2
1
9
:

s
t
r
u
c
t

d
e
n
t
r
y

*

d
e
n
t
r
y

=

s
d
-
>
s
_
d
e
n
t
r
y
;

2
2
0
:

2
2
1
:

i
f

(
d
e
n
t
r
y
)

{

/
*

t
h
e

f
o
l
l
o
w
i
n
g

p
a
r
t
s

a
r
e

d
e
t
e
c
t
e
d

a
s

c
l
o
n
e
s

*
/

2
2
2
:

s
p
i
n
_
l
o
c
k
(
&
d
c
a
c
h
e
_
l
o
c
k
)
;

2
2
3
:

s
p
i
n
_
l
o
c
k
(
&
d
e
n
t
r
y
-
>
d
_
l
o
c
k
)
;

2
2
4
:

i
f

(
!
(
d
_
u
n
h
a
s
h
e
d
(
d
e
n
t
r
y
)

&
&

d
e
n
t
r
y
-
>
d
_
i
n
o
d
e
)
)

{

2
2
5
:

d
g
e
t
_
l
o
c
k
e
d
(
d
e
n
t
r
y
)
;

2
2
6
:

_
_
d
_
d
r
o
p
(
d
e
n
t
r
y
)
;

2
2
7
:

s
p
i
n
_
u
n
l
o
c
k
(
&
d
e
n
t
r
y
-
>
d
_
l
o
c
k
)
;

2
2
8
:

s
p
i
n
_
u
n
l
o
c
k
(
&
d
c
a
c
h
e
_
l
o
c
k
)
;

2
2
9
:

.
.
.
.
.
.

F
i
l
e
:

l
i
n
u
x
-
2
.
6
.
1
9
/
d
r
i
v
e
r
s
/
i
n
f
i
n
i
b
a
n
d
/
h
w
/
i
p
a
t
h
/
i
p
a
t
h
_
f
s
.
c

4
5
6
:

s
t
r
u
c
t

d
e
n
t
r
y

*
t
m
p
;

4
5
7
:

4
5
8
:

t
m
p

=

l
o
o
k
u
p
_
o
n
e
_
l
e
n
(
n
a
m
e
,

p
a
r
e
n
t
,

s
t
r
l
e
n
(
n
a
m
e
)
)
;

4
5
9
:

4
6
0
:

s
p
i
n
_
l
o
c
k
(
&
d
c
a
c
h
e
_
l
o
c
k
)
;

4
6
1
:

s
p
i
n
_
l
o
c
k
(
&
t
m
p
-
>
d
_
l
o
c
k
)
;

4
6
2
:

i
f

(
!
(
d
_
u
n
h
a
s
h
e
d
(
t
m
p
)

&
&

t
m
p
-
>
d
_
i
n
o
d
e
)
)

{

4
6
3
:

d
g
e
t
_
l
o
c
k
e
d
(
t
m
p
)
;

4
6
4
:

_
_
d
_
d
r
o
p
(
t
m
p
)
;

4
6
5
:

s
p
i
n
_
u
n
l
o
c
k
(
&
t
m
p
-
>
d
_
l
o
c
k
)
;

4
6
7
:

s
p
i
n
_
u
n
l
o
c
k
(
&
d
c
a
c
h
e
_
l
o
c
k
)
;

4
6
8
:

.
.
.
.
.
.

C
o
d
e

F
r
a
g
m
e
n
t

1

C
o
d
e

F
r
a
g
m
e
n
t

2

F
i
l
e
:

l
i
n
u
x
-
2
.
6
.
1
9
/
f
s
/
s
y
s
f
s
/
i
n
o
d
e
.
c

2
1
9
:

s
t
r
u
c
t

d
e
n
t
r
y

*

d
e
n
t
r
y

=

s
d
-
>
s
_
d
e
n
t
r
y
;

2
2
0
:

2
2
1
:

i
f

(
d
e
n
t
r
y
)

{

/
*

t
h
e

f
o
l
l
o
w
i
n
g

p
a
r
t
s

a
r
e

d
e
t
e
c
t
e
d

a
s

c
l
o
n
e
s

*
/

2
2
2
:

s
p
i
n
_
l
o
c
k
(
&
d
c
a
c
h
e
_
l
o
c
k
)
;

2
2
3
:

s
p
i
n
_
l
o
c
k
(
&
d
e
n
t
r
y
-
>
d
_
l
o
c
k
)
;

2
2
4
:

i
f

(
!
(
d
_
u
n
h
a
s
h
e
d
(
d
e
n
t
r
y
)

&
&

d
e
n
t
r
y
-
>
d
_
i
n
o
d
e
)
)

{

2
2
5
:

d
g
e
t
_
l
o
c
k
e
d
(
d
e
n
t
r
y
)
;

2
2
6
:

_
_
d
_
d
r
o
p
(
d
e
n
t
r
y
)
;

2
2
7
:

s
p
i
n
_
u
n
l
o
c
k
(
&
d
e
n
t
r
y
-
>
d
_
l
o
c
k
)
;

2
2
8
:

s
p
i
n
_
u
n
l
o
c
k
(
&
d
c
a
c
h
e
_
l
o
c
k
)
;

2
2
9
:

.
.
.
.
.
.

F
i
l
e
:

l
i
n
u
x
-
2
.
6
.
1
9
/
d
r
i
v
e
r
s
/
i
n
f
i
n
i
b
a
n
d
/
h
w
/
i
p
a
t
h
/
i
p
a
t
h
_
f
s
.
c

4
5
6
:

s
t
r
u
c
t

d
e
n
t
r
y

*
t
m
p
;

4
5
7
:

4
5
8
:

t
m
p

=

l
o
o
k
u
p
_
o
n
e
_
l
e
n
(
n
a
m
e
,

p
a
r
e
n
t
,

s
t
r
l
e
n
(
n
a
m
e
)
)
;

4
5
9
:

4
6
0
:

s
p
i
n
_
l
o
c
k
(
&
d
c
a
c
h
e
_
l
o
c
k
)
;

4
6
1
:

s
p
i
n
_
l
o
c
k
(
&
t
m
p
-
>
d
_
l
o
c
k
)
;

4
6
2
:

i
f

(
!
(
d
_
u
n
h
a
s
h
e
d
(
t
m
p
)

&
&

t
m
p
-
>
d
_
i
n
o
d
e
)
)

{

4
6
3
:

d
g
e
t
_
l
o
c
k
e
d
(
t
m
p
)
;

4
6
4
:

_
_
d
_
d
r
o
p
(
t
m
p
)
;

4
6
5
:

s
p
i
n
_
u
n
l
o
c
k
(
&
t
m
p
-
>
d
_
l
o
c
k
)
;

4
6
7
:

s
p
i
n
_
u
n
l
o
c
k
(
&
d
c
a
c
h
e
_
l
o
c
k
)
;

4
6
8
:

.
.
.
.
.
.

Fi
gu

re
6.

2:
A

sa
m

pl
e

bu
g

(m
is

si
ng

nu
ll-

ch
ec

k)
re

ve
al

ed
by

co
nt

ex
tu

al
in

co
ns

is
te

nc
y

am
on

g
cl

on
es

in
a

cl
on

e
gr

ou
p

fr
om

th
e

L
in

ux
ke

rn
el

–
co

m
pa

re
lin

es
22

1
&

22
4

in
co

de
fr

ag
m

en
t1

w
ith

lin
es

45
9

&
46

2
in

co
de

fr
ag

m
en

t2
.

G
#

C
o
d
e

C
l
o
n
e

1

C
o
d
e

C
l
o
n
e

2

1
F
i
l
e
:

l
i
n
u
x
-
2
.
6
.
1
9
/
f
s
/
n
f
s
d
/
n
f
s
3
x
d
r
.
c

4
2
3
:

i
f

(
!
(
p

=

d
e
c
o
d
e
_
f
h
(
p
,

&
a
r
g
s
-
>
f
h
)
)

4
2
4
:

|
|

!
(
p

=

d
e
c
o
d
e
_
f
i
l
e
n
a
m
e
(
p
,

&
a
r
g
s
-
>
n
a
m
e
,

&
a
r
g
s
-
>
l
e
n
)
)

4
2
5
:

|
|

!
(
p

=

d
e
c
o
d
e
_
s
a
t
t
r
3
(
p
,

&
a
r
g
s
-
>
a
t
t
r
s
)
)
)

4
2
6
:

r
e
t
u
r
n

0
;

F
i
l
e
:

l
i
n
u
x
-
2
.
6
.
1
9
/
f
s
/
n
f
s
d
/
n
f
s
x
d
r
.
c

3
4
4
:

i
f

(
!
(
p

=

d
e
c
o
d
e
_
f
h
(
p
,

&
a
r
g
s
-
>
f
f
h
)
)

3
4
5
:

|
|

!
(
p

=

d
e
c
o
d
e
_
f
h
(
p
,

&
a
r
g
s
-
>
t
f
h
)
)

3
4
6
:

|
|

!
(
p

=

d
e
c
o
d
e
_
f
i
l
e
n
a
m
e
(
p
,

&
a
r
g
s
-
>
t
n
a
m
e
,

&
a
r
g
s
-
>
t
l
e
n
)
)
)

3
4
7
:

r
e
t
u
r
n

0
;

2
F
i
l
e
:

l
i
n
u
x
-
2
.
6
.
1
9
/
d
r
i
v
e
r
s
/
h
w
m
o
n
/
l
m
8
7
.
c

6
8
8
:

i
f

(
(
e
r
r

=

d
e
v
i
c
e
_
c
r
e
a
t
e
_
f
i
l
e
(
&
n
e
w
_
c
l
i
e
n
t
-
>
d
e
v
,

6
8
9
:

&
d
e
v
_
a
t
t
r
_
i
n
6
_
i
n
p
u
t
)
)

6
9
0
:

|
|

(
e
r
r

=

d
e
v
i
c
e
_
c
r
e
a
t
e
_
f
i
l
e
(
&
n
e
w
_
c
l
i
e
n
t
-
>
d
e
v
,

6
9
1
:

&
d
e
v
_
a
t
t
r
_
i
n
6
_
m
i
n
)
)

6
9
2
:

|
|

(
e
r
r

=

d
e
v
i
c
e
_
c
r
e
a
t
e
_
f
i
l
e
(
&
n
e
w
_
c
l
i
e
n
t
-
>
d
e
v
,

6
9
3
:

&
d
e
v
_
a
t
t
r
_
i
n
6
_
m
a
x
)
)
)

6
9
4
:

g
o
t
o

e
x
i
t
_
r
e
m
o
v
e
;

F
i
l
e
:

l
i
n
u
x
-
2
.
6
.
1
9
/
d
r
i
v
e
r
s
/
h
w
m
o
n
/
g
l
5
2
0
s
m
.
c

6
1
5
:

i
f

(
(
e
r
r

=

d
e
v
i
c
e
_
c
r
e
a
t
e
_
f
i
l
e
(
&
n
e
w
_
c
l
i
e
n
t
-
>
d
e
v
,

6
1
6
:

&
d
e
v
_
a
t
t
r
_
i
n
4
_
i
n
p
u
t
)
)

6
1
7
:

|
|

(
e
r
r

=

d
e
v
i
c
e
_
c
r
e
a
t
e
_
f
i
l
e
(
&
n
e
w
_
c
l
i
e
n
t
-
>
d
e
v
,

6
1
8
:

&
d
e
v
_
a
t
t
r
_
i
n
4
_
m
i
n
)
)

6
1
9
:

|
|

(
e
r
r

=

d
e
v
i
c
e
_
c
r
e
a
t
e
_
f
i
l
e
(
&
n
e
w
_
c
l
i
e
n
t
-
>
d
e
v
,

6
2
0
:

&
d
e
v
_
a
t
t
r
_
i
n
4
_
m
a
x
)
)
)

6
2
1
:

g
o
t
o

e
x
i
t
_
r
e
m
o
v
e
_
f
i
l
e
s
;

G
#

C
o
d
e

C
l
o
n
e

1

C
o
d
e

C
l
o
n
e

2

1
F
i
l
e
:

l
i
n
u
x
-
2
.
6
.
1
9
/
f
s
/
n
f
s
d
/
n
f
s
3
x
d
r
.
c

4
2
3
:

i
f

(
!
(
p

=

d
e
c
o
d
e
_
f
h
(
p
,

&
a
r
g
s
-
>
f
h
)
)

4
2
4
:

|
|

!
(
p

=

d
e
c
o
d
e
_
f
i
l
e
n
a
m
e
(
p
,

&
a
r
g
s
-
>
n
a
m
e
,

&
a
r
g
s
-
>
l
e
n
)
)

4
2
5
:

|
|

!
(
p

=

d
e
c
o
d
e
_
s
a
t
t
r
3
(
p
,

&
a
r
g
s
-
>
a
t
t
r
s
)
)
)

4
2
6
:

r
e
t
u
r
n

0
;

F
i
l
e
:

l
i
n
u
x
-
2
.
6
.
1
9
/
f
s
/
n
f
s
d
/
n
f
s
x
d
r
.
c

3
4
4
:

i
f

(
!
(
p

=

d
e
c
o
d
e
_
f
h
(
p
,

&
a
r
g
s
-
>
f
f
h
)
)

3
4
5
:

|
|

!
(
p

=

d
e
c
o
d
e
_
f
h
(
p
,

&
a
r
g
s
-
>
t
f
h
)
)

3
4
6
:

|
|

!
(
p

=

d
e
c
o
d
e
_
f
i
l
e
n
a
m
e
(
p
,

&
a
r
g
s
-
>
t
n
a
m
e
,

&
a
r
g
s
-
>
t
l
e
n
)
)
)

3
4
7
:

r
e
t
u
r
n

0
;

2
F
i
l
e
:

l
i
n
u
x
-
2
.
6
.
1
9
/
d
r
i
v
e
r
s
/
h
w
m
o
n
/
l
m
8
7
.
c

6
8
8
:

i
f

(
(
e
r
r

=

d
e
v
i
c
e
_
c
r
e
a
t
e
_
f
i
l
e
(
&
n
e
w
_
c
l
i
e
n
t
-
>
d
e
v
,

6
8
9
:

&
d
e
v
_
a
t
t
r
_
i
n
6
_
i
n
p
u
t
)
)

6
9
0
:

|
|

(
e
r
r

=

d
e
v
i
c
e
_
c
r
e
a
t
e
_
f
i
l
e
(
&
n
e
w
_
c
l
i
e
n
t
-
>
d
e
v
,

6
9
1
:

&
d
e
v
_
a
t
t
r
_
i
n
6
_
m
i
n
)
)

6
9
2
:

|
|

(
e
r
r

=

d
e
v
i
c
e
_
c
r
e
a
t
e
_
f
i
l
e
(
&
n
e
w
_
c
l
i
e
n
t
-
>
d
e
v
,

6
9
3
:

&
d
e
v
_
a
t
t
r
_
i
n
6
_
m
a
x
)
)
)

6
9
4
:

g
o
t
o

e
x
i
t
_
r
e
m
o
v
e
;

F
i
l
e
:

l
i
n
u
x
-
2
.
6
.
1
9
/
d
r
i
v
e
r
s
/
h
w
m
o
n
/
g
l
5
2
0
s
m
.
c

6
1
5
:

i
f

(
(
e
r
r

=

d
e
v
i
c
e
_
c
r
e
a
t
e
_
f
i
l
e
(
&
n
e
w
_
c
l
i
e
n
t
-
>
d
e
v
,

6
1
6
:

&
d
e
v
_
a
t
t
r
_
i
n
4
_
i
n
p
u
t
)
)

6
1
7
:

|
|

(
e
r
r

=

d
e
v
i
c
e
_
c
r
e
a
t
e
_
f
i
l
e
(
&
n
e
w
_
c
l
i
e
n
t
-
>
d
e
v
,

6
1
8
:

&
d
e
v
_
a
t
t
r
_
i
n
4
_
m
i
n
)
)

6
1
9
:

|
|

(
e
r
r

=

d
e
v
i
c
e
_
c
r
e
a
t
e
_
f
i
l
e
(
&
n
e
w
_
c
l
i
e
n
t
-
>
d
e
v
,

6
2
0
:

&
d
e
v
_
a
t
t
r
_
i
n
4
_
m
a
x
)
)
)

6
2
1
:

g
o
t
o

e
x
i
t
_
r
e
m
o
v
e
_
f
i
l
e
s
;

Fi
gu

re
6.

3:
Fa

ls
e

po
si

tiv
e

cl
on

e
gr

ou
ps

in
L

in
ux

K
er

ne
l.

E
ac

h
ro

w
is

a
pa

ir
of

in
co

ns
is

te
nt

cl
on

es
th

at
do

no
tc

or
re

sp
on

d
to

bu
gs

.
E

ac
h

pa
ir

of
cl

on
es

in
vo

lv
e

th
e

sa
m

e
nu

m
be

rs
of
i
f

st
at

em
en

ts
,|
|

op
er

at
or

s,
fu

nc
tio

n
ca

lls
,a

nd
as

si
gn

m
en

ts
.

119

1. We present the topic of refining clone anomaly reports.

2. We propose an active learning approach to incrementally refine anomaly

reports with user feedback.

3. We present an engine that learns discriminative models that can assign the

likelihood of each anomaly report being a false positive.

4. We evaluate our proposed approach on three large systems—the Linux Ker-

nel, Eclipse, and ArgoUML—with promising results.

6.2 Clone-Based Anomaly Detection

Clone-based bug detection techniques [64, 81] are based on code clone detection

and the concept of contextual consistency. The intuition behind the technique is that

code clones should be inherently similar to each other, and inconsistent changes to

the clones themselves or their surrounding code (which are called contexts) may

indicate unintentional changes, bad programming styles, and bugs [64].

We summarize the technique as follows:

1. It uses a code clone detection tool, DECKARD [62], to detect code clones in

programs. The output of this step is a set of clone groups, where each clone

group is a set of code pieces that are syntactically similar to each other (a.k.a.

clones);

2. Then, it locates the locations of every clone in the source code and generates

parse (sub)trees for them;

3. Next, it detects inconsistencies among the parse trees of the clones and their

contexts, e.g., whether the clones contain different numbers of unique iden-

tifiers, and how the language constructs of the contexts are different. The

inconsistencies are heuristically ranked based on their potential relationship

with bugs. Inconsistent clones unlike to be buggy are also filtered out.

4. Finally, it outputs a list of anomaly reports, each of which indicates the loca-

tion of a potential bug in the source code, for developers to inspect.

120

It has been reported that this technique has a high false positive rate, even though

it can find true bugs of diverse characteristics that are difficult to detect by other

techniques. For example, among more than 800 reported bugs for the Linux Kernel,

only 40 are true bugs and another 17 are bad programming style; among more than

400 reported bugs for the Eclipse, only 21 are true bugs and 17 are issues with bad

programming style [64].

6.3 Overall Refinement Framework

To alleviate a high false positive rate of anomaly reports produced by clone-based

anomaly detection tools, we propose an active learning approach that can dynam-

ically and continually refine anomaly reports based on user feedback; each item of

feedback is immediately incorporated by our approach into the ordering of anomaly

reports to move newly possible true positive reports up in the list while moving

likely false positives towards the end of the list.

Our proposed approach is shown in Figure 6.4. It is composed of five parts

corresponding to the boxes in the figure.2 We refer to them as Blocks 1 to 5 (counter-

clockwise from left to right).

Anomaly Detection
System

Refinement
Engine

<<Refinement Loop>>

1

5

User
Feedback

4

Sorted
Bug Reports 2

First Few Bug
Reports 3

Figure 6.4: Active refinement process

2A square, a trapeze, and a parallelogram represent a process, a manual operation, and data
respectively.

121

Block 1 represents a typical batch-mode clone-based anomaly detection system.

Given a program, the system identifies parts of the program that are different from

the norm, where the norm corresponds to the common characteristics in a clone

group. Then, the set of anomalies or bugs (i.e., Block 2) is presented for manual

user inspection.

We extend such a clone-based anomaly detection system by incorporating in-

cremental user feedback through the feedback and refinement loop starting at Block

2 followed by Blocks 3, 4, and 5, and back to Block 2. At Blocks 3 and 4, a user

is presented with a few bug reports and is asked to provide feedbacks on whether

the reports are false or true positives. This feedback is then fed into our refinement

engine (i.e., Block 5) to update the original or intermediate lists of bug reports.

With user feedback, the refinement engine analyzes the characteristics of both

false positives and true positives labeled by users and hypothesizes about other false

positives and true positives in the list based on various classification and machine

learning techniques. The resulting hypotheses are then used to rearrange the re-

maining bug reports. It is possible that a true positive, that is originally ranked

low, is moved up in the list; a false positive, that is originally ranked high, may be

“downgraded” or pushed down in the list.

The active refinement process repeats and users are asked for more feedbacks.

With more iterations, more feedback is received, and a better hypothesis can be

made for the remaining unlabeled reports.

The ultimate goal of our refinement process is to produce a better ordering of

bug reports so that true positive reports are listed ahead of false positives, which we

refer to as the bug report ordering problem. With a better ordering, true positives can

be identified earlier without the need to investigate the entire report list. With fewer

false positives appearing early in the list, a developer can be encouraged to continue

investigating the rest of the reports and can find more bugs in a fixed period of time.

If all (or most) of the true positives appear early, a developer may stop analyzing

the anomaly reports once he or she finds many false positives.

122

6.4 Refinement Engine

Input: Bug Report List

Feature Extraction From Source Code

Classification

Pre-Processing

Feature
Selection

Balancing

Reordered Input

Discriminative Model

2

3

4

1

5

6

Figure 6.5: Refinement engine

This section further elaborates our refinement engine. Our refinement engine

takes in a list of anomaly reports and refines it by reordering. Each anomaly report

is a set of code clones (i.e., a clone group) which contain inconsistencies among the

clones. Given a list of anomaly reports, ordered either arbitrarily or with some ad-

hoc criteria, and user-provided labels (i.e., true positives or false positives) for some

of the reports, our refinement process reorders unlabeled anomaly reports based on

the predicted likelihood of each of them being true positives. Figure 6.5 shows

our refinement engine that is composed of three main blocks: feature extraction,

pre-processing (including feature selection and data balancing), and classification.

The feature extraction aims to transform each clone group into a set of features;

each feature is a quantitative value that represents a certain property of the code. We

refer this set of features to as a data point. In our case, we apply feature extraction

to each inconsistent clone group reported by the clone anomaly detection tool and

collect a set of data points (a.k.a. a dataset) for all clone groups in the reported list.

123

This feature set is then fed to the preprocessor, which analyzes the data points,

and may remove some features or data points from the dataset. Its goal is to smooth

over data “noise” as much as possible before classification.

The classifier then takes a preprocessed dataset to train a classification model

that can discriminate features belonging to one class from the other. In our setting,

the two classes are false positives and true positives. We use class labels (False

and True) to indicate whether a clone group is a false or true positive. This trained

model in turn is used to predict the class labels of the reported clone groups that

have received no user feedback. We also design our classification engine to provide

the degree of likelihood for a clone group to be in each of the two classes, which is

used as a key to sort unlabeled clone groups.

6.4.1 Feature Extraction

Our feature extraction component analyzes parse trees which are commonly used to

represent programs written in various languages. As a benefit, it is easier to adopt

our refinement engine to code written in different programming languages.

A parse tree node is labeled with information to represent various program con-

structs e.g., for, switch, etc. Each clone is reported as a sub-tree rooted in a par-

ticular node in a parse tree. The feature extraction constructs parse trees for every

reported inconsistent clone group and traverses the trees to collect features. More

specifically, it performs the following two steps:

1) Tree Construction: For each clone in the anomaly reports, we invoke a parser

on the source file containing the clone to construct a parse tree for the file; each

node in the tree contains a label indicating its type (e.g., for, if, assignment,

etc.). Then, we locate the root node of the subtree that corresponds to the clone.

We refer to this subtree as a clone tree. We also locate the scope of the clone which

is the first ancestor node of this subtree in the source file and refer to the subtree

rooted at this ancestor node as a clone ancestor tree.

124

Clone ancestor trees correspond to more code than clone trees. They may con-

tain more useful information that helps in deciding whether an anomaly report is

false or true positive. Thus, we extract features from clone ancestor trees.

2) Representing Clone Ancestor Trees as Features: We define five sets of

features that could be extracted from a clone ancestor tree, namely: basic, pair,

proportional-basic, proportional-pair, and rich. Consider a clone group CG con-

taining a set of clones corresponding to a set of clone ancestor trees, the five sets of

features are defined in Definitions 6.4.1, 6.4.2, 6.4.3, 6.4.4, and 6.4.5. Rich features

belong to the most comprehensive feature set that is a superset of the other four

feature sets. Our engine would convert the clone ancestor trees into rich features.

Code clone 1:
...
decode_sattr3(p, &args->attrs)
...

Code clone 2:
...
decode_filename(p, &args->tname, &args->tlen)
...

Type Count

Call 2

Name 2

Expr-list 2

Expr 2

Basic

Type Count

Call / Name 2

Call / Expr-
list

2

Expr-list /
Expr

2

Pair

Type Proportion

Call / Name 100%

Call / Expr-list 100%

Expr-list / Expr 100%

Prop-Pair

Type Proportion

Call 100%

Name 100%

Expr-list 100%

Expr 100%

Prop-Basic

Type Value

Num 2

Avg 5.5

Other

Call

Name
Expr-

list

Expr Expr

Call

Name
Expr-

list

Expr ExprExpr

Rich

Clone Group

Figure 6.6: Feature extraction

Definition 6.4.1 (Basic Features) The basic feature set (Basic) of a clone group

CG is the set of type-count pairs in which each pair contains a node type and the

number of parse trees in CG having that particular type. For example, considering

the trees in Figure 6.6, the basic feature set contains the following pairs: 〈Call, 2〉,

〈Name, 2〉, 〈Expr-list, 2〉, and 〈Expr, 2〉. Mathematically, Basic(CG) =

125

∣∣∣∣∣∣∣
(t, |CS|), where

CS = {c ∈ CG | c has a node of type t} ∧ |CS| > 0

∣∣∣∣∣∣∣

Definition 6.4.2 (Pair Features) The pair feature set (Pair) of a clone group CG

is the set of type-count pairs in which each pair contains a pair of node types and

the number of parse trees in CG having that particular pair. For example, con-

sidering the trees in Figure 6.6, the pair feature set contains the following pairs:

〈Call/Name, 2〉, 〈Call/Expr-list, 2〉, and 〈Expr-list/Expr, 2〉. Mathematically,

Pair(CG) =

∣∣∣∣∣∣∣∣∣∣
((t1, t2), |CS|), where

CS = {c ∈ CG | ∃n1,n2∈c.n1 & n2 are connected ∧

n1 is of type t1 ∧ n2 is of type t2} ∧ |CS| > 0

∣∣∣∣∣∣∣∣∣∣

Definition 6.4.3 (Proportional Features—Basic)

The proportional-basic feature set (Prop-Basic) of a clone group CG is the set

of type-count pairs in which each pair contains a node type and the propor-

tion of parse trees in CG having that particular type. For example, considering

the trees in Figure 6.6, the Prop-Basic feature set contains the following pairs:

〈Call, 100%〉, 〈Name, 100%〉, 〈Expr-list, 100%〉, and 〈Expr, 100%〉. Mathemat-

ically, PrBasic(CG) =

∣∣∣∣∣∣∣
(t, |CS||CG|), where

CS = {c ∈ CG | c has a node of type t} ∧ |CS| > 0

∣∣∣∣∣∣∣

126

Definition 6.4.4 (Proportional Features—Pair)

The proportional-pair feature set (Prop-Pair) of a clone group CG is the set of

type-count pairs in which each pair contains a pair of node types and the pro-

portion of parse trees of CG having that particular pair. For example, consider-

ing the trees in Figure 6.6, the Prop-Pair feature set contains the following pairs:

〈Call/Name, 100%〉, 〈Call/Expr-list, 100%〉, and 〈Expr-List/Expr, 100%〉.

Mathematically, PrPair(CG) =

∣∣∣∣∣∣∣∣∣∣
((t1, t2), |CS||CG|), where

CS = {c ∈ CG |∃n1,n2∈c.n1 & n2 are connected ∧

n1 is of type t1 ∧ n2 is of type t2} ∧ |CS| > 0

∣∣∣∣∣∣∣∣∣∣

Definition 6.4.5 (Rich Features) The rich feature set (Rich) of a clone group CG is

the union of the Basic, Pair, Prop-Basic, Prop-Pair feature sets, plus two additional

features: the number of clones in CG (Num), and the average size of the clones

in CG (Avg). For example, considering the trees in Figure 6.6, the Rich feature

set is the union of other features sets plus two additional features: 〈Num, 2〉, and

〈Avg, 5.5〉. Mathematically, Rich(CG) =

Basic(CG) ∪ Pair(CG) ∪ PrBasic(CG) ∪

PrPair(CG) ∪ {(Num, |CG|), (Avg, Σc∈CG.|c|
|CG|)}

6.4.2 Preprocessing

We consider two pre-processing options: feature selection and dataset re-balancing.

Feature selection is to reduce the number of features by removing unimportant ones.

Unimportant features are noise and are good to be removed. In addition, as our

127

clone anomaly report typically contains many more false positives than true posi-

tives, the false positive reports are more likely to get selected as training data. Our

classifier uses this training data to learn to discriminate the true positives from the

false positives. In order to make the classifier work effectively, we need to reduce

the number of false positives in the training data so that it is the same as the number

of true positives. By doing so, we produce a discriminative model that is not biased

towards always labeling unknown reports as false positives. We refer this process to

as dataset re-balancing.

1) Feature Selection: Various approaches have been proposed to select impor-

tant features. Information gain has been widely used to evaluate the usefulness of a

feature, e.g., [112]. If we use c to denote the class labels (true positive [+ve class]

vs. false positive [−ve class]), and use f to represent a feature, then the information

gain of f is defined as in Eq.(6.1).

IG(c|f) = H(c)−H(c|f) (6.1)

where H(c) = −
∑

ci∈{±ve} P (ci) logP (ci) is the entropy and H(c|f) =

−
∑
P (f)

∑
ci∈{±ve} P (ci|f) logP (ci|f) is the conditional entropy given the fea-

ture f .

We select important features based on information gain as implemented in the

Weka toolkit [140] using its default configuration.

2) Dataset Re-balancing: In our dataset, we can group our data into two classes

i.e., data that corresponds to true positive reports and data that corresponds to false

positive reports. To re-balance the dataset, we reduce the number of data points

in the larger class (e.g., false positives). We retain all data points in the smaller

class (e.g., true positives). For each data point in the smaller class, we find the most

similar data points in the larger class and retain it. We use cosine similarity [50]

to measure the similarity between two feature sets corresponding to the two data

points. Other data points in the larger class are dropped. This is motivated by the

nearest neighbor approach by Renieris and Reiss that localizes bugs by comparing

128

the nearest faulty and correct executions [116]. In their setting, they also have the

issue of unbalanced dataset: correct executions are much more common than faulty

ones.

6.4.3 Classification

The classification block takes preprocessed datasets and learns a discriminative

model that discriminates true positives from false ones. We refer to the true and

false positives as class labels. The purpose of a discriminative model is to take an

unlabeled datapoint (i.e., a datapoint or an anomaly report that is not known to be

a true positive or a false positive) and assign a class label to it. To produce a dis-

criminative model, the classifier learns from a given labeled training data points. In

our case, the training data points are the clone reports that have been investigated

by developers to be true positives or false positives.

In this work, we use a variant of nearest neighbor classification scheme, namely

nearest neighbor with non-nested generalization (NNGe) [90]. Nearest neighbor

classification has been proved successful for various tasks, e.g., [133]. Also, this

technique matches our intuition: an instance similar to known false positives is

likely to be a false positive. Our initial study showed that NNGe performs no worse

than other common classification approaches.

As the name suggests, nearest neighbor classification labels unknown data with

the same label as its nearest neighbor. The time needed to build a model would be

small as it only involves index building and distance calculation [96].

The nearest neighbor approach can not generalize or group several data points

together, which potentially reduces its accuracy in classification. Salzberg [121] ex-

tends the approach with generalization. Rather than loading all data points into

memory, the training phase constructs multi-dimensional rectangles (i.e., hyper-

rectangles) that generalize a few data points in a multi-dimensional space. This

approach has poor performance on some settings due to nested generalization (i.e.,

129

hyper-rectangles are contained inside other hyper-rectangles or overlap with one an-

other) [138]. Martin [90] addresses this issue by proposing nearest neighbor with

non-nested generalization, called NNGewhich we use in this work. In particular, we

use the implementation available in Weka [140] with its default distance function.

In this work, we extend NNGe to output the likelihood for a data point dp to be-

long to each of the two classes (i.e., true positives (T) and false positives (F)). Let’s

refer to the set of exemplars as D, the set of exemplars that refers to true positive re-

ports is denoted asDT , and the set of exemplars that refers to false positive reports is

denoted as DF . Also, considering an exemplar d, let sim(dp, d) = 1− dist(dp, d),

where dist(dp, d) is the distance between dp and the exemplar d which ranges from

0 to 1. The relative similarity of a data point to true positive class as compared to

false positive class (i.e., RS(dp)) is represented by the normalized similarity of the

data point dp to all data points in DT as compared to all data points in DF . We

compute RS(dp) as follows.

RS(dp) =
|
∑

dT∈DT
sim(dp, dT)|
|DT |

−
|
∑

dF∈DF
sim(dp, dF)|
|DF |

Based on this relative similarity, we measure the likelihood that an anomaly re-

port is a true positive (i.e., LH(dp)) and re-sort the bug reports in descending order

of this likelihood. Bug reports with higher likelihood are more likely to be true

positives and would be listed first. This likelihood is computed as follows:

LH(dp) = 0.5 +
RS(dp)

2

6.4.4 Concrete Refinement Process

Algorithm 1 is the pseudo-code of our refinement process. The inputs are the list

of bug reports (BR) from a bug detection tool, the initial number of bug reports to

be labeled (k), and the feedback pool size (p). The process would be bootstrapped

130

by manually labeling the first k bug reports which are used to train an initial model

(Lines 1–5). The classification model is then used to re-sort the unlabeled bug

reports (Line 6). The next top p reports are presented for user feedback (Lines 7–8).

We only repeat the refinement process after p new feedback are obtained. Then, the

feedback is incorporated by learning a new discriminative model and applying it to

the remaining unlabeled bug reports in the refinement loop (Lines 3–14). When the

false positive rate goes too high, it is likely that there are no more true positives

among the remaining uninvestigated bug reports. The user can choose to stop the

refinement process (Lines 10–11).

With accumulated user feedback (Lines 8 and 13), the refinement process can

incrementally improve the classification and ranking accuracy of the discriminative

models so that true positives can be ranked higher.

Algorithm 1 Clone report refinement process
Input: BR: Bug Reports

k: Initial set of bug reports to be labeled
p: Feedback pool size

Output: Re-ordered Bug Reports

1: Let BK = Select the first k bug reports
2: Label all bug reports in BK (manual)
3: Let FK = Features extracted from BK
4: Perform pre-processing on FK
5: Let M = Classification model created from FK
6: Refine BR using M
7: Let BP = Select the new top p unlabeled bug reports
8: Ask for user feedback on bug reports in BP
9: Let FPRate = Compute false positive rate
10: If FPRate is too high (based on user feedback)
11: Stop
12: Else
13: Set BK = BK ∪ BP
14: Goto 3

131

6.5 Evaluation Criteria

In this section we define a suitable metric to measure the quality of the re-sorted

bug reports to evaluate the effectiveness of our active refinement process.

Our refinement process is effective if it could re-sort the reports such that all

reports corresponding to true positives are listed first. As an illustration, consider

a scenario where our refinement process starts with a set of k labeled bug reports

and there are m true positive reports among the remaining unlabeled reports. The

ideal situation happens when all m other true positives are listed in the (k + 1)th to

(k +m)th positions after the refinement process. The worst case happens when the

true positives are listed as the last m reports after refinement.

To measure the quality of the refinement process, we adapt a measure proposed

in test case prioritization area—average percentage faults detected (APFD) [37].

There are a number of similarities between test case prioritization and our problem.

In test case prioritization, test cases need to be sorted (i.e., prioritized) in the order

of their likelihood to reveal program failures. Also, there is a need to measure and

compare the quality of different test case orderings.

In [37], a graph capturing the cumulative proportion of faults captured as more

test cases are run is plotted. APFD, defined as the area under this curve, measures

the rate of fault detection. In our work, we use the same concept and plot a graph

capturing the cumulative proportion of true positives found as more anomaly reports

are inspected by users. We refer to this graph as the cumulative true positives curve.

In the cumulative true positives curve, a larger area under the curve indicates that

more true positives are found by developers early, which means that the refinement

process effectively re-sorts the anomaly reports. Consider the sample graphs in

Figure 6.7 and assume that there are five true positives among 10 reports. Each

of the five increments in each of the two cumulative curves corresponds to when

each of the five true positives is found. The left curve shows the cumulative of true

positives that can be found using the original list. Using this list, the true positives

132

0

20

40

60

80

100

10 20 30 40 50 60 70 80 90 10
0

Cumulative True Positives Curve

%
T

ru
e

Po
si

ti
ve

s
F

ou
nd

% Bug Reports Investigated

APPF=62%

0

20

40

60

80

100

10 20 30 40 50 60 70 80 90 10
0

Cumulative True Positives Curve

%
T

ru
e

Po
si

ti
ve

s
F

ou
nd

% Bug Reports Investigated

APPF=72%

Original
APPF Improvement = (70-62)/62 = 12.9%

Refined

Figure 6.7: Computing and Comparing APPF

are found at positions 1, 2, 3, 7, and 8, hence the developers can find the five true

positives by inspecting the first eight reports. The right curve shows the cumulative

of true positives that can be found using the refined list produced by the refinement

process. Using this list, the developers can find all five true positives by inspecting

only the first five reports i.e., the true positives are found at positions 1, 2, 3, 4, and 5.

Therefore, by performing the same number of inspections (which may correspond

to the time budget of a developer in real-world situations), the developer could find

more true positives using the refined report list than using the original list.

The idea of using APFD as the evaluation criteria for bug finding is also used by

Kremenek and Engler [77]. Following the same idea, we define average percentage

true positives found (APPF) as the area under the cumulative true positives curve.

Our goal is to improve the APPF score which measures the rate of true positives

found. We illustrate APPF improvement computation in Figure 6.7.

6.6 Empirical Evaluation

In this section, we describe our experimental settings, our evaluation results, and

the threats to validity.

133

6.6.1 Settings and Results

1) Settings: We evaluate our approach on clone-based anomaly reports for three

real programs written in different programming languages: the Linux kernel (C

program), Eclipse and ArgoUML (Java programs). We analyze the reports gener-

ated by Jiang et al. [64]. We choose these reports as they contain a large number of

false positives. There are more than 800 anomaly reports (i.e., clone groups) for the

Linux kernel, and only 57 of them are true positives or programming style issues.

There are more than 400 anomaly reports for Eclipse, and only 38 of them are true

positive. There are more than 50 anomaly reports for ArgoUML, and only 15 of

them are true positive.

Finding a few true positives on the large number of false positives is a challeng-

ing task that would stress test the usability of our approach. Jiang et al. [64] have

manually labeled all the reported inconsistent clone groups from the Linux kernel

and Eclipse as either true positives or false positives. We manually label the reported

inconsistent clone groups from ArgoUML. We use these clone groups and their la-

bels to simulate initial and incremental user feedbacks as inputs to our refinement

engine.

The tool of Jiang et al. [64] returns the list of anomalies in a particular order.

We take the ordering returned by the tool and refine it. Following the steps in

Section 6.4, we initially take the first k labeled clone groups. We set k to 50 for

Eclipse since there is only one true positive among the first 50 bug reports. We also

use k = 50 for the Linux kernel. Since there are only 50 inconsistent clone groups

reported for ArgoUML, we set its k to 10. We set the feedback pool size (i.e., p) to

1. We thus iteratively refine the bug reports when each feedback is received. Inthis

work, we repeat the refinement process until all anomaly reports are inspected.

2) Evaluation Results: We improve APPF by 11%, 87%, and 86% for the Linux

kernel, Eclipse, and ArgoUML bug reports respectively. These measures mean that

within a limited period of time, a developer may find more true positives in the

134

System Top-5 Re-orderings
Linux 694 7→ 18, 672 7→ 64, 760 7→ 131, 770 7→ 179,

792 7→ 206
Eclipse 373 7→ 4, 348 7→ 11, 394 7→ 29, 388 7→ 43, 370 7→ 49
ArgoUML 40 7→ 12, 35 7→ 15, 34 7→ 11, 29 7→ 9, 23 7→ 8

Table 6.2: Top-5 re-orderings. x 7→ y means that a report of a true positive at
position x is reordered to position y.

Top Feature Info. Gain
1 extdefP 0.015941
2 extdef 1P 0.015941
3 program##extdefsP 0.015941

Table 6.3: Top 3 features based on their Information Gain: Linux kernel. The ##
symbol is the separator between two features for a pair feature set. The P superscript
denotes a proportional feature.

Linux kernel, Eclipse, and ArgoUML. The improvement for the Linux kernel is not

as great as Eclipse and ArgoUML. The bugs in the Linux kernel often involves iden-

tifier changes (e.g., variations in variable names, function names, type names, etc.)

which are not well captured by our feature sets. Our feature sets are mostly based

on syntactical node types which perform well in capturing the bugs in Eclipse and

ArgoUML that often involve conditionals. In future, we plan to add more features

to construct better discriminative models for Linux and more programs.

The top-5 successful re-orderings for the Linux kernel, Eclipse and ArgoUML

are shown in Table 6.6.1. We highlight sample bugs that are successfully reordered.

Figure 6.8 shows a buggy clone group in Linux that is reordered from position 694

to 18. The bug is related to an early unlock of a variable. Figure 6.9 shows a

bug from Eclipse that is successfully reordered from position 373 to 4. The bug

is similar to the bug in Figure 6.2; it misses a null-check in code fragment 2, and

was reported to developers and fixed. For ArgoUML, a bug shown in Figure 6.10 is

reordered from position 40 to 12. This bug is related to a missing validation before

a variable is used in the next statement.

To further investigate which program elements (i.e., features as described in

Section 6.4.1) may be better bug indicators, we compute the information gain [95]

135

C
o
d
e

 F
ra

g
m

e
n
t

1
C

o
d

e
 F

ra
g

m
e
n
t

2

F
ile

:
lin

u
x-

2
.6

.1
9
/d

ri
ve

rs
/n

e
t/

w
ir

e
le

ss
/b

cm
4
3

xx
/b

cm
4
3

xx
_
sy

sf
s.

c

3
4
7
:

st
ru

ct
b

cm
4
3

xx
_
p
ri
va

te
 *

b
cm

=
 d

e
v_

to
_

bc
m

(d
e
v)

;
…

3
5
1
:

m
u
te

x_
lo

ck
(&

(b
cm

)-
>

m
u
te

x)
;

3
5
2
:

sw
itc

h
 (

b
cm

4
3
xx

_
cu

rr
e
n

t_
p

h
y(

b
cm

)-
>

ty
p

e)
 {

3
5
3
:

ca

se
 B

C
M

4
3

xx
_
P

H
Y

T
Y

P
E

_
A

:
…

3

6
2
:

d
e
fa

u
lt:

3
6
3
:

a

ss
e

rt
(0

);
3

6
4
:

}
3

6
5
:

m
u
te

x_
u
n

lo
ck

(&
(b

cm
)-

>
m

u
te

x)
;

F
ile

:
lin

u
x-

2
.6

.1
9
/d

ri
ve

rs
/n

et
/w

ir
e
le

ss
/b

cm
4
3
xx

/b
cm

4
3

xx
_

w
x.

c

6
1
5

:
st

ru
ct

b
cm

4
3
xx

_
p
ri
va

te
 *

b
cm

=
 b

cm
4

3
xx

_
p
ri
v(

n
e
t_

d
e
v)

;
…

6
1
8

:
m

u
te

x_
lo

ck
(&

b
cm

->
m

u
te

x)
;

6
1
9

:
m

o
d
e

 =
 b

cm
4
3
xx

_
cu

rr
e
n

t_
ra

d
io

(b
cm

)-
>

in
te

rf
m

o
d

e
;

6
2
0

:
m

u
te

x_
u
n

lo
ck

(&
b
cm

->
m

u
te

x)
;

6
2
1

:
sw

itc
h
 (

m
o

d
e
)

{
6

2
2

:

ca

se
 B

C
M

4
3
xx

_
R

A
D

IO
_

IN
T

E
R

F
M

O
D

E
_
N

O
N

E
:

…
6

3
2

:

d
e

fa
u
lt:

6
3
3

:

a
ss

e
rt

(0
);

6
3
4

:
..

Fi
gu

re
6.

8:
R

ep
or

to
fa

tr
ue

po
si

tiv
e

in
L

in
ux

th
at

is
re

or
de

re
d

fr
om

po
si

tio
n

69
4

to
18

C
o
d
e

F
r
a
g
m
e
n
t

1

C
o
d
e

F
r
a
g
m
e
n
t

2

F
i
l
e
:

e
c
l
i
p
s
e
-
c
v
s
2
0
0
7
0
1
0
8
/
o
r
g
.
e
c
l
i
p
s
e
.
d
e
b
u
g
.
c
o
r
e
/
c
o
r
e
/
o
r
g
/

e
c
l
i
p
s
e
/
d
e
b
u
g
/
i
n
t
e
r
n
a
l
/
c
o
r
e
/
L
a
u
n
c
h
C
o
n
f
i
g
u
r
a
t
i
o
n
.
j
a
v
a

2
5
3
:

i
f

(
f
i
l
e

!
=

n
u
l
l
)

{

2
5
4
:

/
/

v
a
l
i
d
a
t
e

e
d
i
t

2
5
5
:

i
f

(
f
i
l
e
.
i
s
R
e
a
d
O
n
l
y
(
)
)

{

2
5
6
:

I
S
t
a
t
u
s

s
t
a
t
u
s

=

R
e
s
o
u
r
c
e
s
P
l
u
g
i
n
.

g
e
t
W
o
r
k
s
p
a
c
e
(
)
.
v
a
l
i
d
a
t
e
E
d
i
t
(
n
e
w

I
F
i
l
e
[
]

{
f
i
l
e
}
,

n
u
l
l
)
;

2
5
7
:

i
f

(
!
s
t
a
t
u
s
.
i
s
O
K
(
)
)

{

2
5
8
:

t
h
r
o
w

n
e
w

C
o
r
e
E
x
c
e
p
t
i
o
n
(
s
t
a
t
u
s
)
;

2
5
9
:

.
.
.
.
.
.

F
i
l
e
:

e
c
l
i
p
s
e
-
c
v
s
2
0
0
7
0
1
0
8
/
o
r
g
.
e
c
l
i
p
s
e
.
d
e
b
u
g
.
c
o
r
e
/
c
o
r
e
/
o
r
g
/

e
c
l
i
p
s
e
/
d
e
b
u
g
/
i
n
t
e
r
n
a
l
/
c
o
r
e
/
L
a
u
n
c
h
C
o
n
f
i
g
u
r
a
t
i
o
n
W
o
r
k
i
n
g
C
o
p
y
.
j
a
v
a

3
1
0
:

.
.
.
.
.
.

3
1
1
:

/
/

v
a
l
i
d
a
t
e

e
d
i
t

3
1
2
:

i
f

(
f
i
l
e
.
i
s
R
e
a
d
O
n
l
y
(
)
)

{

3
1
3
:

I
S
t
a
t
u
s

s
t
a
t
u
s

=

R
e
s
o
u
r
c
e
s
P
l
u
g
i
n
.

g
e
t
W
o
r
k
s
p
a
c
e
(
)
.
v
a
l
i
d
a
t
e
E
d
i
t
(
n
e
w

I
F
i
l
e
[
]

{
f
i
l
e
}
,

n
u
l
l
)
;

3
1
4
:

i
f

(
!
s
t
a
t
u
s
.
i
s
O
K
(
)
)

{

3
1
5
:

t
h
r
o
w

n
e
w

C
o
r
e
E
x
c
e
p
t
i
o
n
(
s
t
a
t
u
s
)
;

3
1
6
:

.
.
.
.
.
.

C
o
d
e

F
r
a
g
m
e
n
t

1

C
o
d
e

F
r
a
g
m
e
n
t

2

F
i
l
e
:

e
c
l
i
p
s
e
-
c
v
s
2
0
0
7
0
1
0
8
/
o
r
g
.
e
c
l
i
p
s
e
.
d
e
b
u
g
.
c
o
r
e
/
c
o
r
e
/
o
r
g
/

e
c
l
i
p
s
e
/
d
e
b
u
g
/
i
n
t
e
r
n
a
l
/
c
o
r
e
/
L
a
u
n
c
h
C
o
n
f
i
g
u
r
a
t
i
o
n
.
j
a
v
a

2
5
3
:

i
f

(
f
i
l
e

!
=

n
u
l
l
)

{

2
5
4
:

/
/

v
a
l
i
d
a
t
e

e
d
i
t

2
5
5
:

i
f

(
f
i
l
e
.
i
s
R
e
a
d
O
n
l
y
(
)
)

{

2
5
6
:

I
S
t
a
t
u
s

s
t
a
t
u
s

=

R
e
s
o
u
r
c
e
s
P
l
u
g
i
n
.

g
e
t
W
o
r
k
s
p
a
c
e
(
)
.
v
a
l
i
d
a
t
e
E
d
i
t
(
n
e
w

I
F
i
l
e
[
]

{
f
i
l
e
}
,

n
u
l
l
)
;

2
5
7
:

i
f

(
!
s
t
a
t
u
s
.
i
s
O
K
(
)
)

{

2
5
8
:

t
h
r
o
w

n
e
w

C
o
r
e
E
x
c
e
p
t
i
o
n
(
s
t
a
t
u
s
)
;

2
5
9
:

.
.
.
.
.
.

F
i
l
e
:

e
c
l
i
p
s
e
-
c
v
s
2
0
0
7
0
1
0
8
/
o
r
g
.
e
c
l
i
p
s
e
.
d
e
b
u
g
.
c
o
r
e
/
c
o
r
e
/
o
r
g
/

e
c
l
i
p
s
e
/
d
e
b
u
g
/
i
n
t
e
r
n
a
l
/
c
o
r
e
/
L
a
u
n
c
h
C
o
n
f
i
g
u
r
a
t
i
o
n
W
o
r
k
i
n
g
C
o
p
y
.
j
a
v
a

3
1
0
:

.
.
.
.
.
.

3
1
1
:

/
/

v
a
l
i
d
a
t
e

e
d
i
t

3
1
2
:

i
f

(
f
i
l
e
.
i
s
R
e
a
d
O
n
l
y
(
)
)

{

3
1
3
:

I
S
t
a
t
u
s

s
t
a
t
u
s

=

R
e
s
o
u
r
c
e
s
P
l
u
g
i
n
.

g
e
t
W
o
r
k
s
p
a
c
e
(
)
.
v
a
l
i
d
a
t
e
E
d
i
t
(
n
e
w

I
F
i
l
e
[
]

{
f
i
l
e
}
,

n
u
l
l
)
;

3
1
4
:

i
f

(
!
s
t
a
t
u
s
.
i
s
O
K
(
)
)

{

3
1
5
:

t
h
r
o
w

n
e
w

C
o
r
e
E
x
c
e
p
t
i
o
n
(
s
t
a
t
u
s
)
;

3
1
6
:

.
.
.
.
.
.

Fi
gu

re
6.

9:
R

ep
or

to
fa

tr
ue

po
si

tiv
e

in
E

cl
ip

se
th

at
is

re
or

de
re

d
fr

om
po

si
tio

n
37

3
to

4

136

C
o
d
e

 F
ra

g
m

e
n
t

1
C

o
d
e

 F
ra

g
m

e
n
t2

F
ile

:
/a

rg
o
u
m

l/s
rc

/a
rg

o
u

m
l-

a
p
p
/s

rc
/o

rg
/a

rg
o
u

m
l/u

m
l/d

ia
g
ra

m
/U

M
L
M

u
ta

b
le

G
ra

p
h

S
u
p

p
o
rt

.ja
va

3
3
1
:

if
(e

d
g
e

 in
st

a
n
ce

o
f

C
o

m
m

e
n
tE

d
g
e

)
{

3
3
2
:

…

3
3
3
:

 }
 e

ls
e
 if

 (
M

o
d
e
l.g

e
tF

a
ca

d
e
()

.is
A

R
e

la
tio

n
sh

ip
(e

d
g
e
)

3
3
4
:

 ||

 M
o

d
e
l.g

e
tF

a
ca

d
e
()

.is
A

T
ra

n
si

tio
n

(e
d
g
e

)

3

3
5
:

 ||

 M
o

d
e
l.g

e
tF

a
ca

d
e
()

.is
A

A
ss

o
ci

a
tio

n
E

n
d

(e
d
g
e

))
{

3
3
6
:

re

tu
rn

 M
o
d

e
l.g

e
tU

m
lH

e
lp

e
r(

).
g
e
tD

e
st

in
a

tio
n

(e
d
g
e
);

3

3
7

}
e
ls

e
 if

 (
M

o
d

e
l.g

e
tF

a
ca

d
e
()

.is
A

L
in

k(
ed

g
e
))

 {

3
3
8
:

..

3
3
9
:

}

F
ile

:
/a

rg
o
u
m

l/s
rc

/a
rg

o
u

m
l-

a
p
p
/s

rc
/o

rg
/a

rg
o
u

m
l/u

m
l/d

ia
g
ra

m
/U

M
L
M

u
ta

b
le

G
ra

p
h

S
u
p

p
o
rt

.ja
va

3
6
0
:

if
(e

d
g
e

 in
st

a
n
ce

o
f

C
o

m
m

e
n
tE

d
g
e

)
{

3
6
1
:

…

3
6
2
:

 }
 e

ls
e
 if

 (
M

o
d
e
l.g

e
tF

a
ca

d
e
()

.is
A

A
ss

o
ci

a
tio

n
(e

d
g

e
))

 {

3
6
3
:

L

is
t

co
n

n
s

=
 n

e
w

A

rr
a

yL
is

t(
M

o
d
e
l.g

e
tF

a
ca

d
e

()
.g

e
tC

o
nn

e
ct

io
n

s
(e

d
g
e
))

;

3

6
4
:

re

tu
rn

 c
o
n

n
s.

g
e

t(
1

);

3

6
5
:

 }
 e

ls
e
 if

 (
M

o
d
e
l.g

e
tF

a
ca

d
e
()

.is
A

R
e

la
tio

n
sh

ip
(e

d
g
e
)

3

6
6
:

 ||

 M
o

d
e
l.g

e
tF

a
ca

d
e
()

.is
A

T
ra

n
si

tio
n

(e
d
g
e

)

3

6
7
:

 ||

 M
o

d
e
l.g

e
tF

a
ca

d
e
()

.is
A

A
ss

o
ci

a
tio

n
E

n
d

(e
d
g
e

))
{

3
6
8
:

re

tu
rn

 M
o
d

e
l.g

e
tU

m
lH

e
lp

e
r(

).
g
e
tD

e
st

in
a

tio
n

(e
d
g
e
);

3

6
9

}
e
ls

e
 if

 (
M

o
d

e
l.g

e
tF

a
ca

d
e
()

.is
A

L
in

k(
ed

g
e
))

 {

3
7
0
:

..

3
7
1
:

}

Fi
gu

re
6.

10
:R

ep
or

to
fa

tr
ue

po
si

tiv
e

in
A

rg
oU

M
L

th
at

is
re

or
de

re
d

fr
om

po
si

tio
n

40
to

12

137

Top Feature Info. Gain
1 BOOL OR TKP 0.01898
2 conditional or expression ## 0.01898

conditional or expressionP

3 BOOL OR TKB 0.01898

Table 6.4: Top 3 features based on their Information Gain: Eclipse. The B super-
script denotes a basic feature while P superscript denotes a proportional feature

Top Feature Info. Gain
1 local variable declaration statementB 0.145772
2 variable initializerB 0.145772
3 block statement ## 0.145772

local variable declaration statementB

Table 6.5: Top 3 features based on their Information Gain: ArgoUML

of each feature in Linux and Eclipse bug reports. Information gain is frequently

used to find important features that differentiate two contrasting datasets (i.e., in our

case, true positives and false positives), e.g., [112].

The top 3 features for Linux kernel, Eclipse, and ArgoUML are shown in Ta-

ble 6.6.1, 6.4, and 6.5. We notice that the individual features have low information

gain. Thus, a single feature may not be able to distinguish true positives from false

positives, composing them into a discriminative model is however more effective in

improving true positives rate.

Based on the list of the top features, one could intuitively infer that if a clone

from Eclipse involves inconsistent changes related to conditionals, it is more likely

to be buggy. For ArgoUML, the inconsistent changes that involve variable decla-

ration and initialization are more likely to be buggy, e.g., a declared variable being

used without further validation (e.g., null checking), inappropriate type of a vari-

able, etc. Discriminative features using information gain could mean that the fea-

tures are either highly related to buggy clones or highly related to non-buggy clones.

In the Linux kernel, if a clone involves inconsistent changes related to global defi-

nitions (e.g., extdef), it is more likely not a bug. Overall, the features used in our

approach can be useful to discriminate the anomaly reports that contain bugs from

those that are false positives.

138

6.6.2 Threats to Validity

Threat to construct validity corresponds to the suitableness of our evaluation metric.

In this study we have adapted a measure commonly used in test case prioritization,

which also needs to re-sorts (i.e., prioritize) test cases. Their goal is to find an

optimal ordering of test cases that would identify the failures early. They measure

the quality of an ordering using average percentage faults detected (APFD). We

propose a similar measure referred to as average percentage of true positives found

(APPF). Like APFD that measures the rate of fault detection, APPF measures the

rate of true positives found. We believe that this measure is relevant in measuring

the performance of a refinement framework. A higher APPF score indicates that

within the same period of time a developer can find more true positives.

Threat to internal validity corresponds to the ability of our experiments to cor-

relate the independent and dependent variables. The threat could be manifested due

to experimental or human errors. The labels of the bug reports are manually de-

cided by Jiang et al. [64] which might be prone to errors. Still, the authors have

taken some precautions to prevent these from happenning – at least two people are

assigned to label each inconsistent clone group; for any discrepancy, a third person

would break the tie.

Threat to external validity corresponds to the generalizability of our result. We

have performed a study on three large real systems that are written in two most

popular programming languages: C and Java. Although these help, there is still a

threat to external validity. In the future, we plan to investigate more systems written

in various programming languages.

6.7 Conclusion

Code clones have been widely studied in the literature. Various techniques have

been proposed to recover clones from a code base. One important usage of clones is

139

to find bugs by detecting inconsistencies among members of the same clone group.

These correspond to bugs that might arise due to inconsistent updates among paral-

lel code fragments or violations of a common programming practice.

Past techniques, e.g., [64], have demonstrated the ability of clone-based bug

detection tools to detect true positives in large systems. However, the tools also

return a substantial number of false positives. This could affect the usability of such

a system as a developer could spend a lot of time in performing a debugging activity.

The system might be futile in the end, if the reported anomaly turns out to be a false

alarm.

Our work addresses this issue by proposing an approach to automatically re-

fine bug reports by incorporating user feedback. Rather than having a static sorted

list of bug reports, our bug report list is dynamic. As a user investigates the top

few bug reports and feedback to the system, the system automatically re-sorts the

remaining uninvestigated bug reports, and thus refines it accordingly. This refine-

ment process is performed multiple times when more feedback is available. For

each refinement, we perform feature extraction, pre-processing (feature selection

and dataset re-balancing), and discriminative model learning.

We evaluate the quality of a list of ordered bug reports using average percentage

of true positives found (APPF) that measures the rate of true positives. We evaluate

our refinement process on three sets of clone-based anomaly reports from three

large real programs: the Linux kernel (C), Eclipse, and ArgoUML (Java). A clone-

based anomaly detection tool is used to produce the clone anomaly reports of the

programs. The results show that, compared to the original ordering of bug reports,

our approach can improve APPF by 11%, 87%, and 86% for Linux kernel, Eclipse,

and ArgoUML respectively.

140

Chapter 7

Conclusion

7.1 Summary of Contributions

We summarize our contributions as follows:

1. Many fault localization techniques have been proposed to facilitate debugging

activities. Most of them attempt to pinpoint the location of bugs (i.e., localize

bugs) based on a set of failing and correct executions and expect developers to

investigate a certain number of located program elements to find faults. These

techniques thus assume that faults are localizable, i.e., only one or a few lines

of code that are close to one another are responsible for each fault. However,

in reality, are faults localizable?

This dissertation has investigated hundreds of real faults in several software

systems, and has found that a number of faults that often involve a few lines

of code or a few methods. However, a substantial number of faults (i.e., 30%

of the faults) still manifest in a single line of code and more than 60% of the

faults are localizable within one method.

2. To localize faults in programs, spectrum-based fault localization is a promis-

ing approach to automatically locate root causes of failures quickly. Two well-

known spectrum-based fault localization techniques, Tarantula and Ochiai,

141

measure how likely a program element is a root cause of failures based on

profiles of correct and failed program executions. These techniques are con-

ceptually similar to association measures that have been proposed in statistics,

data mining, and have been utilized to quantify the relationship strength be-

tween two variables of interest (e.g., the use of a medicine and the rate of

recovery).

This dissertation has viewed fault localization as a measurement of the re-

lationship strength between the execution of program elements and program

failures. This dissertation has investigated the effectiveness of 40 association

measures from the literature in localizing faults for single-bug and multiple-

bug programs. This dissertation has found that there is no best single mea-

sure for all cases. Klosgen and Ochiai outperform other measures in localiz-

ing faults in single-bug programs. On average, Added Value could localize

the faults in multiple-bug programs with the smallest percentage of code in-

spected, whereas a number of other measures have similar performance. As

developers need to inspect more elements in multiple-bug programs, the ac-

curacy of the measures in localizing multi-bug programs is expected to be

lower than localizing faults in single-bug programs, which provokes future

research.

3. For various bugs, the best techniques to localize the bugs may differ due to

the characteristics of the buggy programs and their program spectra. This

dissertation has leveraged the diversity of existing spectrum-based fault lo-

calization techniques to better localize bugs using data fusion methods. Our

proposed approach consists of three steps: score normalization, technique

selection, and data fusion. This dissertation has investigated two score nor-

malization methods, two technique selection methods, and five data fusion

methods resulting in twenty variants of Fusion Localizer. Our approach is

bug specific in which the set of techniques to be fused are adaptively selected

142

for each buggy program based on its spectra. Also, it requires no training

data, i.e., execution traces of the past buggy programs. Our evaluation have

demonstrated that our approach can significantly improve the effectiveness

of existing state-of-the-art fault localization techniques. Compared to these

state-of-the-art techniques, the best variants of Fusion Localizer can statisti-

cally significantly reduce the amount of code to be inspected to find all bugs,

increase the proportion of bugs localized when developers only inspect the

top 10% most suspicious program elements by more than 10%, and increase

the number of bugs that can be successfully localized when developers only

inspect up to 10 program blocks by more than 20%.

4. To complement spectrum-based fault localization for cases in which test cases

or program spectra are not available to be analyzed to locate faults in pro-

grams, this dissertation have proposed an approach to re-rank anomaly re-

ports produced by a clone-based anomaly detection technique. A clone-based

anomaly detection tool extracts clone groups, finds a piece of code in the

group that are different from the rest, and flags it as an anomaly. Although

clone-based anomaly detection can find real bugs on large systems, the num-

ber of false positives is often very high. The excessive number of false pos-

itives could easily impede broad adoption of clone-based bug detection ap-

proaches.

This dissertation has improved the true positive rate found when a devel-

oper analyzes clone anomaly reports. The idea is to control the number of

anomaly reports a user can see at a time and actively incorporate user feed-

back to continually refine the anomaly reports. Our system first presents the

top few anomaly reports from a list of reports generated by a tool in its de-

fault ordering. Users then either accept or reject each of the reports. Based

on the feedback, our system automatically and iteratively refines a classifica-

tion model for anomalies and reorders the rest of the reports. The goal is to

143

present the true positives to the users earlier than the default ordering. The

rationale of the idea is based on our observation that false positives among

the inconsistent clone groups could share common features (in terms of code

structure, programming patterns, etc.), and these features can be learned from

the incremental user feedback.

This dissertation has evaluated the proposed refinement process on three

sets of clone-based anomaly reports from three large real programs: the

Linux Kernel (C), Eclipse, and ArgoUML (Java), extracted by a clone-based

anomaly detection tool. As compared to the original ordering of bug reports,

our approach can improve the rate of true positives found (i.e., true positives

are found faster) by 11%, 87%, and 86% for Linux kernel, Eclipse, and Ar-

goUML, respectively.

7.2 Future Work

Based on our findings in this dissertation, several issues remains worthy for

investigation. This dissertation has shown that a substantial proportion of faults can

be localizable within a few line of code, while others spread across a larger number

of lines of code. Localizing the bugs that are not localizable within a few lines

of code is challenging. Studying the relationships among the faulty lines could be

useful to better localize bugs that manifest in multiple lines of code. Designing

techniques that can help developers locate faults that are not localizable within a

few lines of code will benefit software debugging task.

Assuming that faults are localizable within a few line of code, we have pro-

posed association measures to be used in locating faults. Our empirical study have

demonstrated that the accuracy of these association measures as well as two well-

known spectrum-based fault localization techniques in localizing multiple bugs in a

program is lower than their accuracy in localizing a single bug in a program. The

144

program spectra collected from a program that contains multiple bugs could not dis-

tinguish the effect of one bug from the other. Future research is required to improve

the ability of fault localization approaches in localizing multiple bugs in programs.

One possibility is to rerun a fault localization approach every time a bug is found

and analyze the new ranked list to find the next bug.

In addition, fault localization techniques that we have proposed assume that

developers could locate the bugs by inspecting the list of most suspicious code

recommended by the fault localization techniques. As pointed out by Parnin and

Orso [106], showing the right contexts for developers to understand the root causes

of a bug would be useful to guide developers to find the bugs. Therefore, we plan

to extend our approach by providing additional information to developers to guide

them to locate bugs in programs. Information about how faulty codes relate to one

another and the way developers locate the bugs (e.g., information or logic used by

developers to locate bugs) could be helpful in providing useful guidance for devel-

opers to locate the faulty lines. A user study will be needed to investigate to what

extent this additional information helps developers in finding faulty code.

Many software systems developed today are written in multiple programming

languages, e.g., Java, JavaScript, etc. In this work, we only evaluate the effective-

ness of our approach in localizing faults for software written in one language, i.e.,

C or Java. In the future, we want to consider software that are written in multiple

programming languages. We also plan to integrate our fault localization techniques

into popular IDEs and debugging tools such as Eclipse and Visual Studio.Net for

wider adoption.

The effectiveness of our approach to refine anomaly reports is affected by the

features being used to discriminate the true positive from false positive reports. In

order to be more effective in refining the anomaly reports, we need to incorporate

more features that can capture wider range of bugs. Also, it would be advantageous

to extend our refinement engine by providing developers with information about

how likely additional true positives remain in the unchecked anomaly reports. By

145

providing this information, developers could have better idea when to stop investi-

gating the reports and they could save more time and effort.

Our active refinement approach can help in refining anomaly reports produced

by clone detection tools. It would be interesting to extend our approach to refine

other anomaly reports such as those produced by various bug finding tools, e.g.,

FindBugs, PMD, JLint, etc. Hence, we could potentially improve the adoption of

these tools by reducing the rate of false positives.

146

Bibliography

[1] Ant. http://svn.apache.org/.

[2] Lucene-JIRA. https://issues.apache.org/jira/browse/LUCENE.

[3] R. Abreu. Spectrum-based fault localization in embedded software., 2009.

[4] R. Abreu, P. Zoeteweij, R. Golsteijn, and A. J. C. van Gemund. A practical evalution
on spectrum-based fault localization. The Journal of System and Software, 82:1780–
1792, 2009.

[5] R. Abreu, P. Zoeteweij, and A. J. van Gemund. Spectrum-Based Multiple Fault
Localization. In IEEE/ACM International Conference on Automated Software Engi-
neering (ASE’09), Auckland, New Zealand, 2009.

[6] R. Abreu, P. Zoeteweij, and A. J. C. van Gemund. On the Accuracy of Spectrum-
based Fault Localization. In Mutation Testing: Academic and Industrial Conference
Practice and Research Techniques (TAICPART-MUTATION’07), 2007.

[7] C. Aggarwal and P. S. Yu. A new framework for itemset generation. In Symposium
on Principles of Database Systems (PODS’98), 1998.

[8] R. Agrawal and R. Srikant. Fast algorithms for mining association rules. In Proceed-
ings of the 20th International Conference on Very Large Data Bases (VLDB’94),
1994.

[9] A. Agresti. An Introduction to Categorical Data Analysis. John Wiley & Sons, 1996.

[10] R. B. Altman and T. E. Klein. Challenges for biomedical informatics and pharma-
cogenomics. Annu. Rev. Pharmacol. Toxicol., 42:113–133, 2002.

[11] M. Anderberg. Clustering Analysis for Applications. London, Academic Press, 1973.

[12] S. Artzi, J. Dolby, F. Tip, and M. Pistoia. Directed test generation for effective fault
localization. In Proceedings of the 19th International Symposium on Software Testing
and Analysis(ISSTA’10), 2010.

[13] S. Artzi, J. Dolby, F. Tip, and M. Pistoia. Practical fault localization for dynamic
web applications. In Proceedings of the 32nd International Conference on Software
Engineering (ICSE’10), 2010.

[14] J. A. Aslam and M. Montague. Models for metasearch. In Proceedings of the 24th
annual international ACM SIGIR conference on Research and development in infor-
mation retrieval (SIGIR’01), pages 276–284. ACM, 2001.

147

http://svn.apache.org/
https://issues.apache.org/jira/browse/LUCENE

[15] A. Avizienis, J.-C. Laprie, B. Randell, and C. Landwehr. Basic concepts and taxon-
omy of dependable and secure computing. IEEE Transactions on Dependable and
Secure Computing, 1(1):11–33, 2004.

[16] G. Baah, A. Podgurski, and M.J.Harrold. Mitigating the confounding effects of pro-
gram dependences for effective fault localization. In Proceedings of the 19th ACM
SIGSOFT Symposium and the 13th European Conference on Foundations of Software
Engineering (FSE’11), pages 146–156, 2011.

[17] B. S. Baker. Finding clones with Dup: Analysis of an experiment. IEEE Transactions
on Software Engineering (TSE’07), 2007.

[18] A. Bandyopadhyay and S. Ghosh. On the effectiveness of the tarantula fault local-
ization technique for different fault classes. In IEEE 13th International Symposium
on High-Assurance Systems Engineering (HASE’11), pages 317–324, 2011.

[19] I. D. Baxter, C. Pidgeon, and M. Mehlich. DMS c©: Program transformations for
practical scalable software evolution. In Proceedings of the 26th International Con-
ference on Software Engineering (ICSE’04), 2004.

[20] B. Beizer. Software Testing Techniques. International Thomson Computer Press,
Boston, 2nd edition, 1990.

[21] B.Jiang, W.K.Chan, and T.H.Tse. On practical adequate test suites for integrated
test case prioritization and fault localization. In Proceedings the 11th International
Conference on Quality Software (QSIC’11), pages 21–30, 2011.

[22] A. Bosch, A. Zisserman, and X. Munoz. Scene classification using a hybrid gener-
ative/discriminative approach. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 2008.

[23] C. Boyapati, R. Lee, and M. Rinard. Ownership types for safe programming: Pre-
venting data races and deadlocks. In ACM SIGPLAN Notices, volume 37, pages
211–230. ACM, 2002.

[24] S. Brin, R. Motwani, J. D. Ullman, and S. Tsur. Dynamic itemset counting and
implication rules for market basket analysis. In Proceedings of 1997 ACM SIGMOD
Int. Conf. Management of Data (SIGMOD’97), pages 255–264, Tucson, AZ, May
1997.

[25] J. Carey, N. Gross, M. Stepanek, and O. Port. Software hell. Business Week, pages
391–411, 1999.

[26] H. Cheng, D. Lo, Y. Zhou, X. Wang, and X. Yan. Identifying bug signatures using
discriminative graph mining. In Proceedings of the 18th International Symposium on
Software Testing and Analysis(ISSTA’09), 2009.

[27] T. M. Chilimbi, B. Liblit, K. Mehra, A. V. Nori, and K. Vaswani. Holmes: Effective
statistical debugging via efficient path profiling. In 2009 IEEE 31st International
Conference on Software Engineering (ICSE’09), pages 34–44. IEEE Computer So-
ciety, May 2009.

[28] J.-D. Choi, K. Lee, A. Loginov, R. O’Callahan, V. Sarkar, and M. Sridharan. Efficient
and precise datarace detection for multithreaded object-oriented programs. In ACM
SIGPLAN Notices, volume 37, pages 258–269. ACM, 2002.

148

[29] P. Clark and R. Boswell. Rule induction with cn2: Some recent improvements. In
Machine Learning - EWSL-91, page 151163, 1991.

[30] H. Cleve and A. Zeller. Locating causes of program failures. In Proceedings of the
27th International Conference on Software Engineering (ICSE’05), pages 342–351,
St. Louis, Missouri, May. 2005.

[31] C.Liu, X. Yan, L. Fei, J. Han, and S. Midkiff. Sober: Statistical model-based bug
localization. In Proc. of Joint Meeting of European Software Engineering Conference
and ACM SIGSOFT Symposium on the Foundations of Software Engineering (ESEC
/ SIGSOFT FSE ’05), Lisbon, Portugal, Sep. 2005.

[32] J. Cohen. A coefficient of agreement for nominal scales. Educational and Psycho-
logical Measurement, 20(1):37–46, 1960.

[33] V. Dallmeier and T. Zimmermann. Extraction of bug localization benchmarks from
history. In Proceedings of the twenty-second IEEE/ACM international conference on
Automated software engineering (ASE’07), pages 433–436, 2007.

[34] L. R. Dice. Measures of the amount of ecologic association between species. In
Ecology, 1945.

[35] H. Do, S. G. Elbaum, and G. Rothermel. Supporting controlled experimentation with
testing techniques: An infrastructure and its potential impact. Empirical Software
Engineering: An International Journal, 10(4):405–435, 2005.

[36] E. Duala-Ekoko and M. P. Robillard. Tracking code clones in evolving soft-
ware. In Proceedings of the 29th International Conference on Software Engineering
(ICSE’07), 2007.

[37] S. Elbaum, A. Malishevsky, and G. Rothermel. Test case prioritization: A family of
empirical studies. IEEE Transactions on Software Engineering (TSE’02), 28:159–
182, 2002.

[38] D. Engler and K. Ashcraft. Racerx: effective, static detection of race conditions and
deadlocks. In ACM SIGOPS Operating Systems Review, volume 37, pages 237–252.
ACM, 2003.

[39] A. Feldman and A. van Gemund. A two-step hierarchical algorithm for model-based
diagnosis. In Proceedings of the 21st National Conference on On Artificial Intelli-
gence, pages 827–833, Boston, Massachusetts, 2006. AAAI Press.

[40] C. Flanagan and S. N. Freund. Atomizer: a dynamic atomicity checker for multi-
threaded programs. ACM SIGPLAN Notices, 39(1):256–267, 2004.

[41] E. A. Fox, M. P. Koushik, J. Shaw, R. Modlin, D. Rao, et al. Combining evidence
from multiple searches. In The first text retrieval conference (TREC-1), pages 319–
328. US Department of Commerce, National Institute of Standards and Technology,
1993.

[42] E. A. Fox and J. A. Shaw. Combination of multiple searches. NIST SPECIAL PUB-
LICATION SP, pages 243–243, 1994.

149

[43] M. Gabel, J. Yang, Y. Yu, M. Goldszmidt, and Z. Su. Scalable and systematic de-
tection of buggy inconsistencies in source code. In Proceedings of the 25th Annual
ACM SIGPLAN Conference on Object-Oriented Programming, Systems, Languages,
and Applications (OOPSLA’10), 2010.

[44] L. Geng and H. Hamilton. Interestingness measures for data mining: A survey. In
ACM Computing Surveys, 2006.

[45] C. Gini. Variability and mutability, contribution to the study of statistical distributions
and relations. Studi Economico-Giuricici della R. Universita de Cagliari, 3(part 2)(i-
iii):3–159, 1912.

[46] L. Goodman and W. Kruskal. Measures of association for cross classifications. Jour-
nal of the American Statistical Association, 49:732–764, 1954.

[47] D. Gopinath, R. N. Zaeem, and S. Khurshid. Improving the effectiveness of spectra-
based fault localization using specifications. In In Proceedings of the 27th IEEE/ACM
International Conference on Automated Software Engineering (ASE’12), pages 40–
49, 2012.

[48] N. Gupta, H. He, X. Zhang, and R. Gupta. Locating faulty code using failure-
inducing chops. In Proceedings of the 20th IEEE/ACM international Conference
on Automated software engineering (ASE’05), pages 263–272, 2005.

[49] B. Hailpern and P. Santhanam. Software debugging, testing, and verification. IBM
Systems Journal, 41:4–12, 2002.

[50] J. Han and M. Kamber. Data Mining Concepts and Techniques. Morgan Kaufmann,
2nd edition, 2006.

[51] D. J. Hand, H. Mannila, and P. Smyth. Principles of Data Mining. MIT Press, 2001.

[52] M. Harrold, G. Rothermel, K. Sayre, R. Wu, and L. Yi. An empirical investigation of
the relationship between spectra differences and regression faults. Software Testing,
Verification and Reliability, 10(3):171–194, 2000.

[53] Y. Hayase, Y. Y. Lee, and K. Inoue. A criterion for filtering code clone related
bugs. In Proceedings of the 2008 workshop on Defects in large software systems
(DEFECTS’08), 2008.

[54] J. F. Healey. Statistics: A Tool for Social Research. Wadsworth Publishing, 8th
edition, 2008.

[55] S. Heckman and L. Williams. On establishing a benchmark for evaluating static
analysis alert prioritization and classification techniques. In Proceedings of the Sec-
ond ACM-IEEE International Symposium on Empirical Software Engineering and
Measurement (ESEM’08), pages 41–50, 2008.

[56] K. Herzig and A. Zeller. Untangling changes. September 2011.

[57] Y. Higo, S. Kusumoto, and K. Inoue. A metric-based approach to identifying refac-
toring opportunities for merging code clones in a java software system. Journal of
Software Maintenance, 20(6):435–461, 2008.

150

[58] M. Hutchins, H. Foster, T. Goradia, and T. Ostrand. Experiments of the effectiveness
of dataflow- and controlflow-based test adequacy criteria. In Proceedings of the 16th
International Conference on Software Engineering (ICSE’94), pages 191–200, 1994.

[59] P. Jablonski and D. Hou. CReN: A tool for tracking copy-and-paste code clones
and renaming identifiers consistently in the IDE. In Proceedings of the 22nd Annual
ACM SIGPLAN Conference on Object-Oriented Programming, Systems, Languages,
and Applications workshop on eclipse technology eXchange, 2007.

[60] S. Jarzabek and S. Li. Eliminating redundancies with a “composition with adap-
tation” meta-programming technique. In Proceedings of the 11th ACM SIGSOFT
Symposium on Foundations of Software Engineering 2003 held jointly with 9th Eu-
ropean Software Engineering Conference (ESEC/FSE’03), 2003.

[61] D. Jeffrey, N. Gupta, and R. Gupta. Fault localization using value replacement. In
International Symposium on Software Testing and Analysis (ISSTA’08), 2008.

[62] L. Jiang, G. Misherghi, Z. Su, and S. Glondu. DECKARD: Scalable and accurate tree-
based detection of code clones. In Proceedings of the 29th International Conference
on Software Engineering (ICSE’07), 2007.

[63] L. Jiang and Z. Su. Context-aware statistical debugging: from bug predictors to faulty
control flow paths. In Proceedings of the twenty-second IEEE/ACM International
Conference on Automated Software Engineering (ASE’07), pages 184–193. ACM,
2007.

[64] L. Jiang, Z. Su, and E. Chiu. Context-based detection of clone-related bugs. In Pro-
ceedings of the the 6th joint meeting of the European software engineering confer-
ence and the ACM SIGSOFT symposium on The foundations of software engineering
(ESEC/SIGSOFT FSE’07), 2007.

[65] J. Jones and M. Harrold. Empirical evaluation of the tarantula automatic fault-
localization technique. In Proceedings of the 20th IEEE/ACM international Con-
ference on Automated software engineering (ASE’05), 2005.

[66] J. Jones, M. Harrold, and J. Stasko. Visualization of test information to assist fault
localization. In Proceedings of the 24th International Conference on Software Engi-
neering (ICSE’02), pages 467–477, Orlando, Florida, May. 2002.

[67] J. A. Jones, J. F. Bowring, and M. J. Harrold. Debugging in parallel. In Proceedings
of the 16th International Symposium on Software Testing and Analysis (ISSTA’07),
pages 16–26, 2007.

[68] E. Juergens, F. Deissenboeck, B. Hummel, and S. Wagner. Do code clones mat-
ter? In Proceedings of the 31st International Conference on Software Engineering
(ICSE’09), 2009.

[69] T. Kamiya, S. Kusumoto, and K. Inoue. CCFinder: A multilinguistic token-based
code clone detection system for large scale source code. IEEE Transactions on Soft-
ware Engineering (TSE’02), 2002.

[70] C. Kapser and M. W. Godfrey. “cloning considered harmful” considered harmful.
In Proceedings the 13th Working Conference on Reverse Engineering (WCRE’06)),
2006.

151

[71] D. Kawrykow and M. P. Robillard. Non-essential changes in version histories.
In Proceedings of the 33rd International Conference on Software Engineering
(ICSE’11), pages 351–360, 2011.

[72] M. Kim, V. Sazawal, D. Notkin, and G. Murphy. An empirical study of code clone
genealogies. In Proceedings of the 10th European Software Engineering Conference
held jointly with 13th ACM SIGSOFT International Symposium on Foundations of
Software Engineering (ESEC/FSE’05), 2005.

[73] S. Kim and M. D. Ernst. Which warnings should i fix first? In ESEC-FSE, 2007.

[74] S. Kim, T. Zimmermann, E. J. W. Jr., and A. Zeller. Predicting faults from cached his-
tory. In Proceedings of the 29th International Conference on Software Engineering
(ICSE’07), 2007.

[75] W. Klosgen. Explora: A multipattern and multistrategy discovery assistant. In Ad-
vances in Knowledge Discovery and Data Mining, 1996.

[76] R. Komondoor and S. Horwitz. Using slicing to identify duplication in source code.
In Static Analysis, pages 40–56. Springer, 2001.

[77] T. Kremenek and D. Engler. Z-ranking: Using statistical analysis to counter the
impact of static analysis approximation. In SAS, pages 295–315, 2003.

[78] J. Krinke. A study of consistent and inconsistent changes to code clones. In Pro-
ceedings of the 14th Working Conference on Reverse Engineering(WCRE’07), 2007.

[79] J.-G. Lee, J. Han, X.Li, and H. Cheng. Mining discriminative patterns for classifying
trajectories on road networks. IEEE Transactions on Knowledge and Data Engineer-
ing, 23(5):713–726, 2011.

[80] M. Leszak, D. E. Perry, and D. Stoll. A case study in root cause defect analy-
sis. In Proceedings of the 21st International Conference on Software Engineering
(ICSE’00), pages 428–437, 2000.

[81] Z. Li, S. Lu, S. Myagmar, and Y. Zhou. CP-Miner: A tool for finding copy-paste and
related bugs in operating system code. In OSDI, 2004.

[82] B. Liblit and A. Aiken. Building a better backtrace: Techniques for postmortem
program analysis. Technical Report CSD-02-1203, UC Berkeley, 2002.

[83] B. Liblit, A. Aiken, A. X. Zheng, and M. I. Jordan. Bug isolation via remote pro-
gram sampling. In Proceedings ACM SIGPLAN 2003 Conference on Programming
Language Design and Implementation (PLDI 2003), pages 141–154, San Diego, CA,
June 2003.

[84] B. Liblit, M. Naik, A. X. Zheng, A. Aiken, and M. I. Jordan. Scalable statistical
bug isolation. In Proceedings ACM SIGPLAN 2005 International Conference on
Programming Language Design and Implementation (PLDI’05), June 2005.

[85] D. Lillis, F. Toolan, R. Collier, and J. Dunnion. Probfuse: a probabilistic approach to
data fusion. In Proceedings of the 29th annual international ACM SIGIR conference
on Research and development in information retrieval, pages 139–146. ACM, 2006.

152

[86] S. Livieri, Y. Higo, M. Matsushita, and K. Inoue. Very-large scale code clone analysis
and visualization of open source programs using distributed ccfinder. In Proceedings
of the 29th International Conference on Software Engineering (ICSE’07), 2007.

[87] S. Lu, J. Tucek, F. Qin, and Y. Zhou. Avio: detecting atomicity violations via access
interleaving invariants. In ACM SIGOPS Operating Systems Review, volume 40,
pages 37–48. ACM, 2006.

[88] S. K. Lukins, N. A. Kraft, and L. H. Etzkorn. Bug localization using latent dirichlet
allocation. Information and Software Technology, 52(9):972–990, 2010.

[89] R. Manevich, M. Sridharan, S. Adams, M. Das, and Z. Yang. PSE: Explaining pro-
gram failures via postmortem static analysis.

[90] B. Martin. Instance-based learning : Nearest neighbor with generalization. In Dis-
sertation, University of Waikato, Hamilton, New Zealand, 1995.

[91] W. Mayer, R. Abreu, M. Stumptner, and A. van Gemund. Prioritising model-based
debugging diagnostic reports. In Proceedings of the International Workshop on Prin-
ciples of Diagnosis (DX), 2009.

[92] W. Mayer and M. Stumptner. Abstract interpretation of programs for model-based
debugging. In Proceedings of the 20th International Joint Conference on Artificial
Intelligence (IJCAI’07), pages 471–476, 2007.

[93] W. Mayer and M. Stumptner. Model-Based Debugging – State of the Art And Future
Challenges. Electronic Notes in Theoretical Computer Science (ENTCS), 174(4),
2007.

[94] W. Mayer and M. Stumptner. Evaluating models for model-based debugging. In
Proceedings of the 2008 23rd IEEE/ACM International Conference on Automated
Software Engineering (ASE’08), pages 128–137, 2008.

[95] T. M. Mitchell. Machine Learning. McGraw-Hill, March 1997.

[96] A. Moore. An introductory tutorial on KD-Trees. Technical Report 209, Computer
Laboratory, University of Cambridge, 1991. Extract from Andrew Moore PhD Dis-
sertation: Efficient Memory-based Learning for Robot Control.

[97] L. Naish, H. J. Lee, and K. Ramamohanarao. A model for spectra-based software
diagnosis. ACM Transactions on software engineering and methodology (TOSEM),
20(3):11, 2011.

[98] N.DiGiuseppe and J.A.Jones. Semantic fault diagnosis: Automatic natural-language
fault descriptions. In Proceedings of the ACM SIGSOFT 20th International Sympo-
sium on the Foundations of Software Engineering (FSE’12), page 23, 2012.

[99] R. H. Netzer and B. P. Miller. Improving the accuracy of data race detection, vol-
ume 26. ACM, 1991.

[100] A. T. Nguyen, T. T. Nguyen, J. Al-Kofahi, H. V. Nguyen, and T. N. Nguyen. A topic-
based approach for narrowing the search space of buggy files from a bug report. In
Proceedings the 26th IEEE/ACM International Conference on Automated Software
Engineering (ASE’11), pages 263–272. IEEE, 2011.

153

[101] T. T. Nguyen, H. A. Nguyen, N. H. Pham, J. M. Al-Kofahi, and T. N. Nguyen. Clone-
aware configuration management. In Proceedings the 24th IEEE/ACM International
Conference on Automated Software Engineering(ASE’09), 2009.

[102] A. Ochiai. Zoogeographic studies on the soleoid fishes found in japan and its neigh-
bouring regions. In Bull Jnp Soc Sci Fish, 1957.

[103] M. Ohsaki, S. Kitaguchi, K. Okamoto, H. Yokoi, and T. Yamaguchi. Evaluation
of rule interestingness measures with a clinical dataset on hepatitis. In Proc. of the
8th European Conference on Principles of Data Mining and Knowledge Discovery
(PKDD 2004), pages 362–373, 2004.

[104] T. J. Ostrand and E. J. Weyuker. Collecting and categorizing software error data in
an industrial environment. Journal of Systems and Software, 4(4), 1984.

[105] K. Pan, S. Kim, and E. J. W. Jr. Toward an understanding of bug fix patterns. Empir-
ical Software Engineering, 14(3):286–315, 2009.

[106] C. Parnin and A. Orso. Are automated debugging techniques actually helping pro-
grammers? In Proceedings of the 20th International Symposium on Software Testing
and Analysis (ISSTA’11), pages 199–209, 2011.

[107] D. E. Perry and C. S. Stieg. Software faults in evolving a large, real-time system: a
case study. In Software Engineering-ESEC’93, pages 48–67, 1993.

[108] G. Piatetsky-Shapiro. Discovery, analysis, and presentation of strong rules. In Knowl-
edge Discovery in Databases, 1991.

[109] A. Podgurski, D. Leon, P. Francis, W. Masri, M. Minch, J. Sun, and B. Wang. Au-
tomated support for classifying software failure reports. In Proceedings of the 25th
International Conference on Software Engineering (ICSE’03), pages 465–477, 2003.

[110] A. Podgurski and L. Pierce. Retrieving reusable software by sampling behavior. ACM
Transactions on Software Engineering and Methodology (TOSEM’93), 1993.

[111] M. Prvulovic and J. Torrellas. Reenact: Using thread-level speculation mechanisms
to debug data races in multithreaded codes. In Proceedings the 30th Annual Interna-
tional Symposium on Computer Architecture, pages 110–121. IEEE, 2003.

[112] J. Quinlan. C4.5: Programs for Machine Learning. Morgan Kaufmann, 1993.

[113] R. R. Nuray and F. Can. Automatic ranking of information retrieval systems using
data fusion. Information Processing & Management, 42(3):595–614, 2006.

[114] D. C. Rajapakse and S. Jarzabek. Using server pages to unify clones in web applica-
tions: A trade-off analysis. In Proceedings of the 29th International Conference on
Software Engineering (ICSE’07), 2007.

[115] S. Rao and A. Kak. Retrieval from software libraries for bug localization: a compar-
ative study of generic and composite text models. In Proceedings of the 8th Working
Conference on Mining Software Repositories (MSR’11), pages 43–52. ACM, 2011.

[116] M. Renieris and S. Reiss. Fault localization with nearest neighbor queries. In Pro-
ceedings. 18th IEEE International Conference on Automated Software Engineering
(ASE’03), pages 141–154, 2003.

154

[117] T. Reps, T. Ball, M. Das, and J. Larus. The use of program profiling for software
maintenance with applications to the year 2000 problem. Springer, 1997.

[118] J. Rogers and T. T. Tanimoto. A computer program for classying plants. In Science,
1960.

[119] J. R. Ruthruff, J. Penix, J. D. Morgenthaler, S. Elbaum, and G. Rothermel. Predicting
accurate and actionable static analysis warnings: an experimental approach. In Pro-
ceedings of the 30th International Conference on Software Engineering (ICSE’08),
2008.

[120] R. K. Saha, M. Lease, S. Khurshid, and D. E. Perry. Improving bug localization using
structured information retrieval. In ASE, pages 345–355, 2013.

[121] S. Salzberg. A nearest hyperrectangle learning method. Machine Learning, 1991.

[122] R. Santelices, J. Jones, Y. Yu, and M. Harrold. Lightweight fault-localization using
multiple coverage types. In Proceedings of the 31st International Conference on
Software Engineering (ICSE’09), 2009.

[123] S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and T. Anderson. Eraser: A dy-
namic data race detector for multithreaded programs. ACM Transactions on Com-
puter Systems (TOCS), 15(4):391–411, 1997.

[124] E. Shortliffe and B. Buchanan. A model of inexact reasoning in medicine. Mathe-
matical Biosciences, 23:351379, 1975.

[125] Siemens, M. Harrold, and G. Rothermel. Aristotle Analysis System – Siemens Pro-
grams, HR Variants. http://www.cc.gatech.edu/aristotle/Tools/subjects/.

[126] B. Sisman and A. C. Kak. Incorporating version histories in information retrieval
based bug localization. In Proceedings the 9th IEEE Working Conference on Mining
Software Repositories (MSR’12), pages 50–59. IEEE, 2012.

[127] P. Smyth and R. Goodman. An information theoretic approach to rule induction from
databases. IEEE Trans. Knowledge and Data Eng., 4(4):301–316, 1992.

[128] R. R. Sokal and C. Michener. A statistical method for evaluating systematic relation-
ships. In Univ Kans Sci Bull, 1958.

[129] T. Sorensen. A method of establishing groups of equal amplitude in plant sociology
based on similarity of species content and its application to analyses of the vegetation
on danish commons. In Vidensk Selsk Biol Skr, 1948.

[130] C. D. Sterling and R. A. Olsson. Automated bug isolation via program chipping.
Software: Practice and Experience (SP&E), 37(10):1061–1086, August 2007. John
Wiley & Sons, Inc.

[131] S. Tallam, C. Tian, and R. Gupta. Dynamic slicing of multithreaded programs for
race detection. In Proceeding the 24th IEEE International Conference on Software
Maintenance (ICSM’08), 2008.

[132] P.-N. Tan, V. Kumar, and J. Srivastava. Selecting the right interestingness measure for
association patterns. In Proc. 2002 ACM SIGKDD Int. Conf. Knowledge Discovery
in Databases (KDD’02), pages 32–41, Edmonton, Canada, July 2002.

155

[133] S. Tan. An effective refinement strategy for knn text classifier. Expert Syst. Appl.,
2006.

[134] G. Tassey. The economic impacts of inadequate infrastructure for software testing.
National Institute of Standards and Technology. Planning Report 02-3.2002, 2002.

[135] V. Wahler, D. Seipel, J. W. von Gudenberg, and G. Fischer. Clone detection in source
code by frequent itemset techniques. In Proceedings the 4th IEEE International
Workshop on Source Code Analysis and Manipulation (SCAM’04), 2004.

[136] S. Wang and D. Lo. Version history, similar report, and structure: Putting them
together for improved bug localization. In Proceedings the 22nd International Con-
ference on Program Comprehension (ICPC’14), 2014.

[137] S. Wang, D. Lo, L. Jiang, Lucia, and H. C. Lau. Search-based fault localization. In
Proceedings of the 26th IEEE/ACM International Conference on Automated Engi-
neering (ASE’11), pages 556–559, 2011.

[138] D. Wettschereck and G. Dietterich. An experimental comparison of the nearest-
neighbour and nearest-hyperrectangle algorithms. Machine Learning, 1994.

[139] F. Wilcoxon. Individual comparisons by ranking methods. Biometrics Bulletin avail-
able: http://www.jstor.org/stable/3001968, 1:80–83, 1945.

[140] I. H. Witten and E. Frank. Data Mining: Practical machine learning tools and
techniques. Morgan Kaufmann, 2nd edition, 2005.

[141] W. E. Wong, V. Debroy, R. Gao, and Y. Li. The dstar method for effective software
fault localization. IEEE Transactions on Reliability.

[142] S. Wu. Data Fusion in Information Retrieval, volume 13. Springer, Heidelberg,
2012.

[143] X. Xie, T. Y. Chen, F. Kuo, and B. Xu. A theoretical analysis of the risk evalua-
tion formulas for spectrum-based fault localization. ACM Transactions on Software
Engineering and Methodology (TOSEM), 22(4):31, 2013.

[144] X. Xie, F. Kuo, T. Y. Chen, S. Yoo, and M. Harman. Provably optimal and human-
competitive results in sbse for spectrum based fault localisation. In Search Based
Software Engineering, pages 224–238. Springer, 2013.

[145] M. Xu, R. Bodı́k, and M. D. Hill. A serializability violation detector for shared-
memory server programs. In ACM SIGPLAN Notices, volume 40, pages 1–14. ACM,
2005.

[146] R. B. Yates and B. R. Neto. Modern information retrieval, volume 463. ACM press
New York, 1999.

[147] S. Yoo. Evolving human competitive spectra-based fault localisation techniques. In
Search Based Software Engineering, pages 244–258. Springer, 2012.

[148] G. U. Yule. On the association of attributes in statistics. Philosophical Transcriptions
of the Royal Society, A194:257–319, 1900.

[149] G. U. Yule. On the methods of measuring association between two attributes. Journal
of the Royal Statistical Society, 75:579–642, 1912.

156

[150] A. Zeller. Isolating cause-effect chains from computer programs. In Proceedings
of the 10th ACM SIGSOFT symposium on Foundations of Software Engineering
(ASE’02), pages 1–10, 2002.

[151] A. Zeller. Why Programs Fail: A Guide to Systematic Debugging. Morgan Kauf-
mann, 2 edition, 2009.

[152] X. Zhang, N. Gupta, and R. Gupta. Locating faults through automated predicate
switching. In Proceedings of the 28th International Conference on Software Engi-
neering (ICSE’06), 2006.

[153] X. Zhang, N. Gupta, and R. Gupta. Pruning dynamic slices with confidence. In ACM
SIGPLAN Notices, volume 41, pages 169–180. ACM, 2006.

[154] J. Zhou, H. Zhang, and D. Lo. Where should the bugs be fixed? more accurate
information retrieval-based bug localization based on bug reports. In Proceedings
the 34th International Conference on Software Engineering (ICSE’12), pages 14–24,
2012.

[155] T. Zimmermann, N. Nagappan, H. Gall, E. Giger, and B. Murphy. Cross-project
defect prediction: a large scale experiment on data vs. domain vs. process. In Pro-
ceedings of the the 7th joint meeting of the European software engineering confer-
ence and the ACM SIGSOFT symposium on The foundations of software engineering
(ESEC/FSE’09), 2009.

157

	Ranking-based approaches for localizing faults
	Citation

	1 Introduction
	1.1 Automatic Software Fault Localization
	1.2 Research Problems
	1.3 Contributions
	1.4 Dissertation Outline

	2 Literature Review
	2.1 Empirical Studies on Bugs
	2.2 Fault Localization
	2.2.1 Spectrum-Based Fault Localization.
	2.2.2 Model-Based Fault Localization.

	2.3 Code Clone Analysis and Clone-Based Bug Detection
	2.4 Bug Prediction and Triage

	3 Empirical Study on Fault Locations
	3.1 Are Faults Localizable?
	3.2 Empirical Study Setup
	3.2.1 Evaluation Dataset
	3.2.2 Extracting Faults from Changes
	3.2.3 Research Questions on Locality of Faults

	3.3 Results and Discussion
	3.3.1 RQ1: Are Faults Localizable?
	3.3.2 RQ2: Are Severe Faults Localizable?
	3.3.3 Threats to Validity

	3.4 Conclusion

	4 Employing Association Measures for Fault Localization
	4.1 Association Measures for Localizing Faults
	4.2 Concepts & Definitions
	4.2.1 Spectrum-Based Fault Localization
	4.2.2 Dichotomous Association

	4.3 Association Measures
	4.3.1 Constructing a Dichotomy Matrix
	4.3.2 Association Measures
	4.3.3 From Association to Suspiciousness

	4.4 Empirical Evaluation
	4.4.1 Datasets
	4.4.2 Evaluation Metrics
	4.4.3 Evaluation Results
	4.4.4 Effectiveness for Various Programming Languages.
	4.4.5 Effectiveness for Various Kinds of Bugs.
	4.4.6 Effectiveness on Multiple-bug Versions

	4.5 Discussion
	4.6 Threats to Validity
	4.7 Conclusion

	5 Fusing Fault Localizers
	5.1 Variations in Effectiveness of Localizing Faults
	5.2 Motivating Example
	5.3 Fusion Localizer
	5.3.1 Overview
	5.3.2 Step 1: Score Normalization
	5.3.3 Step 2: Technique Selection
	5.3.4 Step 3: Data Fusion

	5.4 Empirical Evaluation
	5.4.1 Dataset
	5.4.2 Evaluation Criteria
	5.4.3 Experiment Results
	5.4.4 Discussion

	5.5 Conclusion

	6 Active Refinement of Clone Anomaly Reports
	6.1 Code Clones for Bug Detection
	6.2 Clone-Based Anomaly Detection
	6.3 Overall Refinement Framework
	6.4 Refinement Engine
	6.4.1 Feature Extraction
	6.4.2 Preprocessing
	6.4.3 Classification
	6.4.4 Concrete Refinement Process

	6.5 Evaluation Criteria
	6.6 Empirical Evaluation
	6.6.1 Settings and Results
	6.6.2 Threats to Validity

	6.7 Conclusion

	7 Conclusion
	7.1 Summary of Contributions
	7.2 Future Work

