
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Dissertations and Theses Collection (Open
Access) Dissertations and Theses

6-2014

Recommendation Support for Multi-Attribute Databases Recommendation Support for Multi-Attribute Databases

Jilian ZHANG
Singapore Management University, jilian.z.2007@phdis.smu.edu.sg

Follow this and additional works at: https://ink.library.smu.edu.sg/etd_coll

 Part of the Databases and Information Systems Commons

Citation Citation
ZHANG, Jilian. Recommendation Support for Multi-Attribute Databases. (2014).
Available at:Available at: https://ink.library.smu.edu.sg/etd_coll/106

This PhD Dissertation is brought to you for free and open access by the Dissertations and Theses at Institutional
Knowledge at Singapore Management University. It has been accepted for inclusion in Dissertations and Theses
Collection (Open Access) by an authorized administrator of Institutional Knowledge at Singapore Management
University. For more information, please email cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/etd_coll
https://ink.library.smu.edu.sg/etd_coll
https://ink.library.smu.edu.sg/etd
https://ink.library.smu.edu.sg/etd_coll?utm_source=ink.library.smu.edu.sg%2Fetd_coll%2F106&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/145?utm_source=ink.library.smu.edu.sg%2Fetd_coll%2F106&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

Recommendation Support for Multi-Attribute Databases

JILIAN ZHANG

SINGAPORE MANAGEMENT UNIVERSITY

2014

Recommendation Support for Multi-Attribute Databases

by

Jilian Zhang

Submitted to School of Information Systems in partial fulfillment of the

requirements for the Degree of Doctor of Philosophy in Information Systems

Dissertation Committee:

HweeHwa Pang (Supervisor/Chair)
Professor of Information Systems
Singapore Management University

Kyriakos Mouratidis (Supervisor)
Associate Professor of Information Systems
Singapore Management University

Hoong Chuin Lau
Professor of Information Systems
Singapore Management University

Nikos Mamoulis
Professor of Computer Science
The University of Hong Kong

Singapore Management University
2014

Copyright (2014) Jilian Zhang

Recommendation Support for Multi-Attribute Databases

by

Jilian Zhang

Abstract

This dissertation studies the subject of providing recommendation support for

multi-attribute databases. Recommendation is an important and very useful

information evaluation mechanism that explores a database of huge volume,

and retrieves from it the interesting data items (tuples) for users based on

their preferences. As a powerful tool for information filtering, recommenda-

tion systems find applications in product promotion, search-engine result rank-

ing, multiple-criteria decision making, etc. As basis for the recommendations,

we consider relational databases that contain items with multiple attributes,

among which we focus on the numerical ones that measure various quantitative

features. We call this type of relational databases multi-attribute databases.

We consider three different yet highly related recommendation tasks and

center this dissertation on the database techniques needed to support those

tasks. In the first task, users represent their preferences on some attributes as a

hyper-rectangle, i.e., query window, and the recommender system returns those

items whose attribute values overlap with or are covered by the query window.

We call this task preference-overlap recommendation. The second task is top-k

recommendation. Here, users express their preferences in the form of weights on

attributes, and the system employs some (usually monotone) scoring function

to find the k items with the highest scores on these attributes. The third task

relates to group recommendation, where the objective is to recommend items,

activities, services, etc, to a group of users with diverse preferences.

To enhance the first recommendation task, we identify an interesting co-

occurrence relationship between data items. Specifically, we propose the con-

cept of direct neighbor (DN). Given a query object q, an item p is a DN of q

if there is some query window that exclusively retrieves q and p. Users can

derive valuable information from DNs, because they represent competing al-

ternatives to q. We extend the DN notion to two variants, namely k-DN and

All-DN. We devise novel and I/O optimal algorithms for DN, k-DN, and All-

DN computation. Due to its semantics of co-existence, the DN query finds

various applications such as competitor analysis, alternative recommendation,

and spatial index optimization.

For the second task, we render support for top-k recommendation by in-

troducing the notion of global immutable region (GIR). The GIR with respect

to a top-k query q is the maximal locus in query vector space, where the top-k

result retrieved by any query vector q′ in the locus remains the same as q. GIR

is a sensitivity indicator that tells the users how robust the recommendation

is and what the alternatives are besides the recommended results. We also

introduce two variants, namely order-insensitive GIR and GIR for non-linear

scoring functions. To derive GIRs efficiently, we propose novel algorithms for

pruning the majority of database items from consideration.

In the third task, we consider support for group formation, which is an

important problem in group recommendation. We formulate the group forma-

tion problem as a bucketization problem, or equivalently a balanced multi-way

number partitioning (BMNP) problem in Artificial Intelligence. BMNP is NP-

hard in nature. We propose three heuristic algorithms to find optimal grouping

solutions, which can achieve a theoretical performance gain of two-thirds over

the existing state-of-the-art algorithm.

Our work in this dissertation provides support to the above three recom-

mendation tasks, by giving to the users additional and valuable information,

along with the result returned by conventional recommender systems. Our

techniques find various applications such as multiple-criteria decision making,

competitor analysis, product promotion, and sensitivity analysis, etc.

Contents

List of Figures iv

List of Tables vi

Publications related to the Dissertation vii

Acknowledgements viii

1 Introduction 1

1.1 Preference-Overlap Recommendation 2

1.2 Top-k Recommendation . 4

1.3 Group Recommendation . 6

1.4 Contributions . 8

1.5 Organization of the Dissertation 10

2 Related Work 11

2.1 Recommender Systems . 11

2.2 Preference-Overlap Recommendation 13

2.3 Top-k Recommendation . 15

2.4 Group Recommendation and Group Formation 17

3 Direct Neighbor Search for Preference-Overlap Recommenda-

tion Support 20

3.1 Motivation . 21

3.2 Preliminaries . 26

i

3.3 Direct Neighbor Search . 31

3.3.1 DN Search in Quadrants 33

3.3.2 DN Search in Stripes . 35

3.3.3 Complete DN Algorithm 37

3.3.4 Arbitrary Object Shapes 40

3.4 K-Direct Neighbor Search . 42

3.5 All-Direct Neighbor Query . 45

3.5.1 Fundamental Properties of DNs 45

3.5.2 The All-DN Algorithm 47

3.6 DN Search in Higher Dimensions 52

3.6.1 Effect of Dimensionality 53

3.6.2 Processing in Three Dimensions 54

3.6.3 Beyond Three Dimensions 57

3.7 Empirical Evaluation . 58

3.7.1 Comparison with Related Query Types 58

3.7.2 Experiments in Two Dimensions 60

3.7.3 Experiments in Higher Dimensions 65

3.8 Summary . 66

4 Global Immutable Region for Top-k Recommendation Support 67

4.1 Motivation . 68

4.2 Preliminaries . 70

4.3 Computing Global Immutable Region 73

4.3.1 Definition of Global Immutable Region 73

4.3.2 Nature of Global Immutable Region 74

4.3.3 Challenges, Assumptions and Setting 76

4.4 Processing in Phase 1 . 77

4.5 Basic Methods for Phase 2 . 79

4.5.1 Skyline Pruning Method 79

4.5.2 Convex Hull Pruning Method 81

ii

4.5.3 Performance Indications 83

4.6 Advanced Solution for Phase 2 84

4.6.1 Rationale of Facet Pruning Method 84

4.6.2 Facet Pruning in Two Dimensions 87

4.6.3 Facet Pruning in Higher Dimensions 90

4.6.4 Correctness Proof of FP 95

4.7 Extensions and Visualization . 98

4.7.1 Order-Insensitive GIR 98

4.7.2 Non-Linear Scoring Functions 100

4.7.3 GIR Visualization . 101

4.8 Experiments . 103

4.9 Summary . 111

5 Bucketization for Group Recommendation 112

5.1 Preliminaries . 113

5.2 Limitations of BLDM . 115

5.3 Algorithms for Balanced Bucketization 116

5.3.1 The LRM algorithm . 116

5.3.2 The Meld Algorithm . 120

5.3.3 The Hybrid Algorithm 123

5.4 Empirical Validation . 124

5.4.1 Impact of Subset Cardinality (b) 124

5.4.2 Impact of the Problem Size (n) 126

5.4.3 Computation Overhead 127

5.5 Summary . 128

6 Conclusion 129

6.1 Dissertation Summary . 129

6.2 Future Work . 133

Bibliography 134

iii

List of Figures

1.1 Example for preference-overlap recommendation 2

1.2 Example for top-k recommendation 4

1.3 Example for group recommendation and group formation 7

3.1 DN and all-DN search . 21

3.2 Example of segment tree and stabbing query at q = 5.8 30

3.3 DN search in quadrants and stripes 32

3.4 Example of DN search . 37

3.5 DN search for arbitrarily shaped objects 39

3.6 2-DNs in NE quadrant (2-skyband) 43

3.7 Properties of quadrant DNs . 46

3.8 Segment tree on the x-extents of objects 47

3.9 Finding west, SW and NW DNs of r11 49

3.10 Inserting r11 into Ty . 50

3.11 DN search in three dimensions 54

3.12 DN search in face and edge partition 56

3.13 Jaccard coefficient of NN and NS sets w.r.t. DN results 59

3.14 Plain DN, effect of N (Synthetic dataset) 62

3.15 K-DN search, effect of K (TCB dataset) 62

3.16 All-DN, effect of N (Synthetic dataset) 64

3.17 K-DN search in 3-D, effect of K (HOTEL dataset) 65

3.18 K-DN search in 4-D, effect of K (HOTEL dataset) 66

iv

4.1 Weight input and GIR-induced bounds 69

4.2 GIR example in 2-dimensional (query) space 75

4.3 Phase 1 example (k = 4, d = 2) 78

4.4 SP example (k = 2, d = 2, data space) 80

4.5 CP example (k = 2, d = 2, data space) 82

4.6 SP and CP effectiveness (n = 1M, k = 20) 83

4.7 Intuition behind FP (k = 2, d = 2, data space) 84

4.8 FP effectiveness (n = 1M, k = 20) 87

4.9 FP example (k = 2, d = 2, data space) 88

4.10 Facets incident to pk (d = 3, data space) 92

4.11 FP example (d = 3, data space) 92

4.12 Second FP example (d = 3, data space) 94

4.13 Illustration of Lemma 4 (d = 2, k = 3, data space) 96

4.14 GIR∗ computation (k = 6, d = 2, data space) 99

4.15 GIR visualization (d = 2, query space) 102

4.16 Ratio of GIR volume to query space volume 104

4.17 Effect of dimensionality d on MaxScore/MinScore ratio 105

4.18 Specialized versus general FP for d = 2 (IND) 106

4.19 Effect of dimensionality d for synthetic data 107

4.20 Effect of dataset cardinality n (IND) 108

4.21 Effect of k for real data . 109

4.22 Order-insensitive GIR, effect of n (IND) 110

4.23 Non-linear scoring functions, effect of k (HOTEL) 110

4.24 Effect of dimensionality d on memory usage 111

5.1 Folding process of BLDM on three 4-tuples 116

5.2 Performance comparison with k fixed at 500 125

5.3 Performance comparison with fixed b 127

v

List of Tables

3.1 Notation . 31

3.2 Heap contents and result formation 38

3.3 Plain DN results . 60

3.4 Number of DNs and NSs . 60

3.5 Memory usage of Incremental vs. Non-Incr. SDN (KB) 63

3.6 All-DN results . 63

4.1 Notation . 77

4.2 Experiment Parameters . 104

4.3 Alternative top-k results at the boundary of the GIR 106

vi

Publications related to the

Dissertation

Listed in reverse chronological order:

1. Jilian Zhang, Kyriakos Mouratidis and HweeHwa Pang. Global Im-

mutable Region Computation. Accepted to ACM SIGMOD Interna-

tional Conference on Management of Data, 2014. (Chapter 4)

2. Jilian Zhang, Kyriakos Mouratidis and HweeHwa Pang. Direct Neigh-

bor Query. Accepted for publication in Information Systems (IS), 2014.

(Chapter 3)

3. HweeHwa Pang, Jilian Zhang and Kyriakos Mouratidis. Enhancing Ac-

cess Privacy of Encrypted B+-Trees. IEEE Transactions on Knowledge

and Data Engineering (TKDE), 2013.

4. Jilian Zhang, HweeHwa Pang and Kyriakos Mouratidis. Heuristic Algo-

rithms for Multi-way Number Partitioning. Proceedings of the Interna-

tional Joint Conference on Artificial Intelligence (IJCAI), 2011. (Chap-

ter 5)

vii

Acknowledgements

The completion of this dissertation would not be possible without the assis-

tance given to me by several people to whom I feel very grateful. I would like

to acknowledge them here.

First of all, I would like to express my gratitude to my supervisor Professor

HweeHwa Pang, who has provided the opportunity for me to pursuit a Ph.D

in School of Information Systems, Singapore Management University (SMU).

I feel very fortunate to be under the supervision of Professor HweeHwa Pang,

who not only academically guided me in every detail, but also enlightened me

on how to work as a professional researcher. It is not easy to measure the

benefits I have received, but I fully comprehend that over the years they have

enabled me to achieve what I have today. I am very grateful to Professor

HweeHwa Pang.

I owe a lot to my co-supervisor Associate Professor Kyriakos Mouratidis,

for the tremendous help and very detailed academic guidance he has given me.

I feel lucky to have had the chance to work closely with Associate Professor

Kyriakos Mouratidis, whose talent and professional spirit have always inspired

me so much. I am grateful to Associate Professor Kyriakos Mouratidis .

I am thankful to Professor Ee-Peng Lim, Professor Steven Miller and Pro-

fessor Stephen E. Fienberg for establishing the Living Analytic Research Cen-

ter (LARC), which provided me with a great opportunity, and a scholarship

as well, to visit Carnegie Mellon University (CMU) from August 2011 to June

2012. I also want to thank Professor Steven E. Fienberg and Professor Ra-

viii

mayya Krishnan, for supervising me during my visit to CMU.

Meanwhile, I want to thank Professor HweeHwa Pang, Associate Professor

Kyriakos Mouratidis, Professor HoongChuin Lau, Professor Robert H. Deng,

Associate Professor Xuhua Ding and Assistant Professor Jialie Shen, for giving

me the opportunity to take their insightful courses or to work together on

research projects and papers.

I would like to thank my dissertation committee members for reviewing

my dissertation and providing comments and feedback: Professor HweeHwa

Pang, Associate Professor Kyriakos Mouratidis, Professor HoongChuin Lau,

and Professor Nikos Mamoulis from The University of Hong Kong (HKU).

I also want to thank the following staff from School of Information Systems

and from LARC, for the administrative support during my Ph.D study in

SMU and my visit to CMU: Ong Chew Hong, Seow Pei Huan, Chua Kian

Peng, Alenzia Wong Poh Luan, Angela Kwek Renfeng, Fong Soon Keat, Nancy

Beatty and Ashley Ferenczy.

ix

Dedicated to Mum, Dad, My Wife, and My Son.

x

Chapter 1

Introduction

With the progress and innovation on web and mobile technologies, users now

have easy access to services such as online shopping, financial investment,

restaurant searching, and job hunting, provided by major companies like Ama-

zon, Yahoo!, Yelp, Monster.com, etc. These merchants manage huge amounts

of information on their products, restaurants, and services into relational data-

bases by recording textual attributes such as reviews, as well as numerical at-

tributes such as price, commission rate, salary, etc. Here, a recorded data item

is also known as tuple, and the database is called a multi-attribute database.

On the database, the companies employ intelligent recommender systems

to identify the most interesting products, stocks, restaurants, hotels, or jobs

for the users, according to their preferences. This process is called recom-

mendation, and the items returned to the users are collectively referred to as

recommendation result or simply recommendations.

Recommender systems are important and powerful information filtering

tools, providing the users with a fast and reliable way to explore possibly huge

databases, so as to efficiently identify the exact information they need or help

significantly narrow down the amount of information to investigate.

Despite the current success of recommender systems, their usability can

be enhanced and extended. For instance, the users may want to know more

1

CHAPTER 1. INTRODUCTION

q

Price (USD)

Area

(ft
2
)

500 1000 1500 2000

50K

100K

150K

200K

250K

p1

p2

p3

p4

p5

p6

p7

p8

p9

p10

0

(a) Recommend tuples covered by window q

q

Price (USD)

Area

(ft
2
)

500 1000 1500 2000

50K

100K

150K

200K

250K

p1

p2

p3

p4

p5

p6

p7

p8

p9

p10

0

(b) Find alternatives (the circled points)

Figure 1.1: Example for preference-overlap recommendation

about the impact of their preference queries, about the items recommended

to them, or about the alternatives not shown in the recommendation list. In

other words, recommendations do not have to be limited to only showing to

the users the recommended result items.

We consider three recommendation tasks, namely preference-overlap recom-

mendation, top-k recommendation, and group recommendation, and elaborate

on how we can provide support to enhance them.

1.1 Preference-Overlap Recommendation

Consider an online property agent who maintains a database storing informa-

tion of the houses that are under its management, including attributes such

as area, price, distance to downtown, etc. A potential customer Alice, in

searching the database, may express her preferences quantitatively by speci-

fying ranges on these attributes, for example, ‘area between 1000 square feet

and 1500 square feet’, and ‘price between $100K and $250K’.

Upon receiving the preference parameters from Alice, the agent searches

the database, with the help of data index structures, like the R-tree [36], and

recommends to Alice those houses with area and price attributes falling si-

multaneously in the ranges of [1000,1500] for area and [100K,250K] for price.

2

CHAPTER 1. INTRODUCTION

Geometrically, these preference ranges correspond to a rectangular query win-

dow in the 2-dimensional ‘area-price’ space (see Figure 1.1(a)). Similarly, a

high-dimensional preference query window, in the form of a hyper-rectangle,

can be defined by taking into account more than 2 attributes at the same time

[61].

We call this recommendation task preference-overlap recommendation, be-

cause here the problem is to scrutinize the tuples in the database, so as to

find those with attribute values that directly cover or that overlap the user’s

preference ranges. For example, in Figure 1.1(a), p5, p6 and p7 fall inside the

query window, thus they are reported as the result. Preference-overlap recom-

mendation is a simple yet very common recommendation problem, and closely

relates to the multidimensional range query [11] and the nearest neighbor query

[64, 39]. We review details of this recommendation task in Chapter 2.

Support for Preference-overlap Recommendation

We consider how to support preference-overlap recommendation. Let us con-

tinue the example of Alice in searching the property agent’s database for in-

teresting houses. The recommendation list consists of houses directly match-

ing Alice’s preference ranges. However, there may be houses outside of the

recommendation list that are very similar (in terms of area and price) to a

recommended one that could be retrieved exclusively with the latter by some

preference ranges. In Figure 1.1(b), for example, the circled points are all

competing alternatives. These alternative houses are direct competitors to the

recommended ones, and may also be of interest to Alice.

To capture this additional information, we introduce the concept of direct

neighbor (DN). Specified an object q, a data object p in the database is a DN

of q if there exists some query window that exclusively retrieves, i.e., covers or

overlaps, q and p. We propose to compute the DNs for each result tuple q in

the recommendation list, which form a collection of possible alternatives that

3

CHAPTER 1. INTRODUCTION

Price (USD)

distance

1km 2km 3km 4km

50K

100K

150K

200K

250K

p1

p2

p3

p4

p5

p6

p7

p8

p9

p10

0

p11

p12

q=<w1,w2>

(a) Recommend top-1 result p2 to the user

Price (USD)

distance

1km 2km 3km 4km

50K

100K

150K

200K

250K

p1

p2

p3

p4

p5

p6

p7

p8

p9

p10

0

p11

p12

q=<w1,w2>
q′

q′′

(b) Find all alternative vectors, e.g., q′, q′′,
such that p2 remains as the top-1 result

Figure 1.2: Example for top-k recommendation

would be valuable for the users’ decision making.

1.2 Top-k Recommendation

Unlike preference-overlap recommendation that considers coverage and overlap

relationships between the user’s preference ranges and the tuples, top-k rec-

ommendation ranks the tuples based on their score, computed with a scoring

function on the attribute values of the tuples.

Continue our earlier example on property search. Alice prefers houses near

to downtown, but she has a relatively tight budget. Thus, she may want to find

a trade-off between price and location, by specifying her query with preference

vector q =< w1, w2 >, where w1 and w2 are numerical weights on the distance

and price attributes, respectively. Alice may indicate (1) a smaller w1, meaning

that she likes houses nearer to the downtown, or (2) a smaller w2, meaning

that she prefers cheaper houses. Meanwhile, she may only want to see a few,

say the top 20, of the most relevant houses. Based on these preferences, the

agent could compute the score of all the houses in the database, by taking the

aggregate w1 ∗ distance + w2 ∗ price, and return to Alice as recommendation

result the 20 houses with the smallest scores.

4

CHAPTER 1. INTRODUCTION

Figure 1.2(a) illustrates an example of top-1 recommendation, where the

scoring function w1 ∗ distance+w2 ∗ price corresponds to a straight line called

sweeping line, and preference vector q is a normal vector to the line. The

sweeping line sweeps the data space from the origin to the top-right corner,

and the first point encountered, i.e., p2, is the top-1 result.

Due to its rich semantics, top-k recommendation has received much at-

tention from industry and academia, and has been employed in applications

such as multiple-criteria decision making, search-engine result ranking, prod-

uct and service recommendation, financial investing, etc [40]. We detail the

related work on top-k recommendation in Chapter 2.

Support for Top-k Recommendation

Here, we show how to provide support to top-k recommendation. We continue

with the example of Alice using preference vector q =< w1, w2 > to look for

the top-20 houses. Suppose that in addition to the 20 houses recommended,

Alice wants to know whether there are competing houses not in the top-20

list, yet having the potential to overtake some houses in the top-20 list. Alice

may also wonder whether this top-20 list will remain the same if she has some

flexibility in her budget. For example, as shown in Figure 1.2(b), Alice may

want to find all the alternative preference vectors, e.g., q′ and q′′, such that

p2 remains as the top-1 result with respect to these vectors. These questions

are equivalent to the problem of how the changes in preferences will affect the

recommendation result.

To answer the problem, we propose the concept of global immutable region

(GIR) for top-k recommendation. Given a top-k query q =< w1, w2 > by the

user, the GIR of q is the maximal locus consisting of all preference queries q′,

such that the top-k result with respect to q′ is the same as q. For any query

outside the GIR, the top-k list will change. The GIR tells Alice the extent to

which fluctuations are allowed on w1 and w2, such that the top-20 list remains

5

CHAPTER 1. INTRODUCTION

unchanged. GIR can be used as a sensitivity measure [66] to evaluate how

robust the recommendation result is when perturbation occurs in the user’s

original preferences. Furthermore, as we will see later, the boundary of the

GIR tells Alice what the competing alternative houses are. The additional

information carried by GIR could help Alice to make a wise purchase decision.

Top-k result sensitivity has been considered recently in [70] and [53]. [70]

proposes a sensitivity measure called STB for top-k queries, which is a max-

imal ball containing query vectors that preserve the top-k result. STB is a

subset of our GIR, meaning that the information provided by STB is less com-

prehensive. [53] introduces a sensitivity measure which we call local immutable

region (LIR). LIR is local in the sense that it only gives an adjustable range

on one query weight, while keeping the remaining weights fixed. This feature

of LIR hinders its usefulness and does not permit concurrent adjustments in

multiple query weights.

1.3 Group Recommendation

The group recommendation task is to recommend relevant items to a group

of users, as shown in Figure 1.3(a), according to their preferences, skill set,

knowledge level, etc [3, 54]. If a group comprises users of diversified features,

it is a heterogeneous group [71]. There are two problems involved in group rec-

ommendation - how to form groups if the group formation plan is not available

in advance, and how to find relevant items for groups. We focus on the group

formation problem.

Consider a school organizing a cohort of students for a study trip, say, to

visit a science laboratory, or to observe the operations in a factory. The stu-

dents may have different levels of interest, background knowledge, etc. More-

over, the school needs to divide the students into groups of certain size so as to

abide by regulations, such as maximal capacity constraint per group, imposed

6

CHAPTER 1. INTRODUCTION

8

8

9

6
7

6

8

9

(a) Recommend items to a group

Heterogeneous groups

2

6

18
16

1

9

9

3

15

8

10

7

(b) Form heterogeneous groups

Figure 1.3: Example for group recommendation and group formation

by the laboratory or factory. The school also wishes to mingle the students

so as to promote peer learning [17] among the students within each group. If

the school forms the groups by strategically mixing students of high level of

background knowledge with students of low level knowledge in heterogeneous

groups, then the students in the same group may greatly benefit from each

other through interactions and peer learning, as revealed by a study on peer

learning effectiveness [41].

The objective of heterogeneous group formation problem is to design a vi-

able partitioning strategy, so as to satisfy certain tangible constraints, such

as capacity, intra-group diversity, and intangible ones, such as promoting peer

learning. We consider a sub-problem of the heterogeneous group formation

problem, by omitting the intra-group diversity constraint while forming the

groups. This sub-problem is closely related to balanced number partition-

ing, which is an important problem in Artificial Intelligence and has many

applications. Unless specified otherwise, in the following we also refer to this

sub-problem as heterogeneous group formation problem. A review of the group

formation problem and group recommendation is given in Chapter 2.

Support for Group Recommendation

Consider our earlier example of a school organizing students for a study trip.

To provide a heterogeneous group formation plan, we have to take into ac-

7

CHAPTER 1. INTRODUCTION

count the capacity constraint on the maximal number of students allowed in

each group to enter the laboratory or factory. This means that we need to

populate each group with the (roughly) same number of students, which is the

maximal capacity, so as to minimize associated costs, such as total visit time,

transportation fee, etc.

On the other hand, hoping to achieve a good peer learning outcome, we

want to evenly distribute students with various quantitative features among

the groups, such that a collective measure, say aggregation, on one of the

students’ features, e.g., knowledge level, is as similar as possible across all

groups. Note that aggregation is one of the most common ways to compute a

collective measurement for groups in the group recommendation problem [3].

Figure 1.3(b) shows an example of heterogeneous groups formation, where

each group contains the same number of users, and the numbers at the side

of each user represents her levels of interest, background knowledge, etc. Al-

though users within a group have diversified numbers, the sums of numbers

across groups are roughly the same.

We treat this heterogeneous group formation problem as a bucketization

problem, which is equivalent to the balanced multi-way number partitioning

problem (BMNP) in Artificial Intelligence [34]. The objective of BMNP is to

bucketize a set of numbers into groups of the same capacity, such that each

group is fully packed with the numbers and the sum of numbers in a group is

as close as possible to every other group.

1.4 Contributions

We focus on three different recommendation tasks, namely preference-overlap

recommendation, top-k recommendation, and group recommendation. We

consider how to support these tasks, by finding additional and useful informa-

tion that is missing in conventional recommender systems. Our contributions

8

CHAPTER 1. INTRODUCTION

in this dissertation are summarized as follows.

1. We introduce the concept of direct neighbor (DN) for preference-overlap

recommendation, and propose a novel query type called direct neighbor

query that retrieves the DNs with respect to a user-specified query ob-

ject. DN relationship has not been investigated before, and it is useful

in various applications such as multiple-criteria decision making, market-

ing, competitor analysis, etc. We propose two novel algorithms, SDN and

CNS, to efficiently compute DNs in large databases. We also study inter-

esting extensions of DN query, namely the k-DN query and the All-DN

query.

2. We propose global immutable region (GIR) for top-k recommendation.

Compared to the LIR proposed in [53], GIR is more useful in that it si-

multaneously captures all the permissible settings of query weights that

represent the user’s preferences. To efficiently compute GIR, we propose

three novel algorithms, namely SP, CP, and FP, based on skyline pro-

cessing and convex hull computation. FP is superior to SP and CP, due

to the fact that FP prunes the majority of the data tuples from consid-

eration. We also expand the problem space by proposing two interesting

extensions of GIR, i.e., order-insensitive GIR and GIR for non-linear

scoring functions, and show how to compute these GIR variants. GIR

can be used in applications such as sensitivity analysis, stock marketing

monitoring, top-k result caching, search-engine result ranking, etc.

3. We investigate the bucketization problem for heterogeneous group for-

mation. We relate the problem to the balanced multi-way number par-

titioning (BMNP) and propose three novel algorithms, LRM, Meld, and

Hybrid. Compared to existing work [51] on BMNP, our LRM algorithm

achieves the best performance on datasets with uniform distribution,

while Meld is the best on datasets with skewed distribution. When we

9

CHAPTER 1. INTRODUCTION

have no prior knowledge of the data distribution, our Hybrid algorithm

can be applied, which combines the strengths of LRM and Meld algo-

rithms.

1.5 Organization of the Dissertation

The work in this dissertation is an aggregation of several research papers we

have published. We organize the papers in this dissertation as follows. In

Chapter 2 we review existing work on recommender systems and the three rec-

ommendation tasks, namely preference-overlap recommendation, top-k recom-

mendation, and group recommendation. In Chapter 3 we study the problem

of providing support to preference-overlap recommendation, and propose to

compute direct neighbors to capture additional useful information. In Chap-

ter 4 we investigate the global immutable region for top-k recommendation,

and highlight its usefulness as a sensitivity measure. In Chapter 5 we con-

sider the bucketization problem for heterogeneous group formation. Finally,

we conclude this dissertation and discuss directions for promising future work

in Chapter 6.

10

Chapter 2

Related Work

In this chapter, we review related concepts and prior work to this dissertation.

For now we only survey general related work on the three recommendation

tasks, namely preference-overlap recommendation, top-k recommendation, and

group recommendation. Detailed discussions on more specific prior work are

given in their respective chapters.

We first review the classical concept of recommender systems and some

existing models. We then describe prior work on preference-overlap recom-

mendation, covering the topics of range query processing and nearest neighbor

query processing. We also review related work on top-k recommendation. We

end this chapter by reviewing prior work on group recommendation.

2.1 Recommender Systems

Recommendation is one of the most frequent activities in our daily life: recom-

mend a book to a close friend, recommend a restaurant to a family, recommend

financial services to an investor, etc. Various recommender systems have been

designed and deployed. As an information filtering mechanism, a recommender

system finds, from a possibly very large database, a subset of the most relevant

data items to the users according to their preferences.

Since the first research work on collaborative filtering in mid-1990s [62],

11

CHAPTER 2. RELATED WORK

recommender systems have attracted a lot of attention from industry and

academia. Many recommendation techniques have been proposed since then,

which can be broadly divided into content-based recommendation techniques

and collaborative recommendation approaches [2].

Content-based recommendation techniques recommend to a user items sim-

ilar to the ones that the user has shown preference for in the past. Content-

based recommendation techniques take into account numerical, sometimes even

textual information of the items [2]. Clustering and decision trees are two com-

monly used techniques for content-based recommendation [38].

Collaborative recommendation approaches provide a user with items that

were preferred in the past by other people sharing similar taste with the user

[59]. This type of recommendation systems is promising and has been adopted

by Amazon, Yelp, IMDB, etc, because they utilize information which is ne-

glected by the content-based recommendation systems. Collaborative filtering

(CF) [2] is one of the most commonly used collaborative recommendation ap-

proaches.

The three recommendation tasks we considered in this dissertation share

some similarities with the above two categories of recommendation systems.

The first task, preference-overlap recommendation, belongs to content-based

techniques, because it considers items that are ‘similar’ to the preference ranges

specified by the users. The second task, top-k recommendation, relates to

content-based recommendation systems, because it retrieves for a user the k

most similar items from the database according to her preferences and the ‘con-

tent’, i.e., attributes, of the items. The third task, group recommendation, has

connections with both categories of recommendation systems, because it takes

into account other users’ quantitative features, such as preferences, knowledge

level, etc. We review related work on the three in the sections that follow.

12

CHAPTER 2. RELATED WORK

2.2 Preference-Overlap Recommendation

Preference-overlap recommendation is the simplest type of recommendation,

where the problem is to indicate data items, i.e., tuples, whose attribute values

overlap with or are fully covered by users’ preference ranges on these attributes.

Preference-overlap recommendation is closely related to range query and near-

est neighbor query – the former retrieves tuples falling in a user-specified hyper-

rectangle on some attributes of interest, while the latter retrieves data items

that are closest to the one specified by the user. These two are fundamental

query types in database systems, and have received extensive attention [61].

Range query originated from the multikey searching problem or multidi-

mensional searching problem in the 1970s and 1980s, which finds applications

in many fields such as database management, statistics, physics, and design

automation [11, 56]. Consider a database D in d-dimensional space, and a

range query q = ([l1, u1], [l2, u2], . . . , [ld, ud]) where li and ui are the lower and

upper bounds on the i-th attribute of D, respectively. Geometrically, this

multi-dimensional range q corresponds to a hyper-rectangle. The objective of

range query processing is to report from D those tuples r = (x1, x2, . . . , xd),

such that li ≤ xi ≤ ui for i = 1, 2, . . . , d; that is, r falls within hyper-rectangle

q.

To efficiently answer range queries, various data structures have been pro-

posed, such as B+-tree [25], KDB-tree [63], R-tree [36], etc. B+-tree is one of

the most fundamental index structures in database systems, and is used for

efficient 1-dimensional range search for tuples whose search keys are covered

by the user’s query range. For high-dimensional range search, KDB-tree is a

multidimensional index structure that iteratively partitions the data space into

multiple hyper-rectangles in a hierarchical manner. R-tree is another popular

multidimensional index structure, which groups nearby objects together and

represents them with minimum bounding rectangles (MBRs). These MBRs are

treated as objects and grouped in a similar manner in the next higher level of

13

CHAPTER 2. RELATED WORK

the tree.

Range query processing on these multidimensional indices is straightfor-

ward. Given a query range q, starting at the root we recursively check the

nodes down the tree in the following manner. At some internal node of the

tree, if an entry of the node overlaps with q, we recursively visit the subtree be-

low this entry. Otherwise we remove the entry from consideration. Whenever

we encounter a leaf node, the exact information of its data entries is fetched

from the disk file and checked against q. Those data entries that fall inside q

or overlap with q are reported in the query result.

A nearest neighbor query (NN) retrieves from a database the object that

lies closest to a user-specified source point q. For NN processing over datasets

indexed by a spatial access method, the depth-first and best-first paradigms

have been considered in [64] and [39], respectively. The latter is shown to be

superior in I/O cost. Assume that the dataset is indexed by an R-tree. Starting

from the root of the R-tree, encountered index entries e are pushed into a min-

heap with mindist(e, q) as the key, i.e., the minimum distance between the

source point q and the MBR of e. Iteratively, the top entry of the heap is

popped and its corresponding R-tree node is accessed from disk; then, its child

entries are en-heaped. The process is repeated until the first data entry (object)

is popped and reported as the NN. If more nearest neighbors are required, the

process continues and the next data entry popped is the second NN, and so on.

The method is incremental in that it can keep reporting the next NN without

needing to specify in advance how many neighbors are required in total. Also,

it is I/O optimal, i.e., it fetches from disk the minimum possible number of

R-tree nodes.

14

CHAPTER 2. RELATED WORK

2.3 Top-k Recommendation

Top-k recommendation, or equivalently top-k query processing, is a powerful

information exploration and filtering mechanism that provides users with the

k most important tuples from a potentially huge database. In the past decade,

various top-k recommendation models have been proposed and successfully

used in applications such as product recommendation, search-engine result

ranking, multimedia search, etc [40, 32, 5, 75, 42, 52]. Among the top-k query

models, in this dissertation we consider the top-k selection query (for simplicity

we omit ‘selection’ in the following).

In a top-k query model, users express their preferences in the form of

weights on the tuple attributes. Each tuple is implicitly associated with a

score. The score value is given by an (aggregate) scoring function that incorpo-

rates the user-specified weights and the tuple’s attribute values [40]. Consider

a database D of N tuples r = (x1, x2, . . . , xd) in d-dimensional space and a

top-k query with weight vector q = (w1, w2, . . . , wd), where wj is the user’s

preference on the j-th attribute. The scoring function f : D 7→ R maps each

tuple in D to a real value called score. The most common type of scoring

functions is linear, i.e., functions of the form f(r) =
∑i=d

i=1 wixi. The system

ranks all the tuples in D according to their scores, and recommends the top-k

tuples to the user.

Many efficient techniques have been proposed for top-k query processing.

Among them, BRS [73] is a top-k algorithm for low-dimensional data indexed

by a spatial access method (e.g., an R-tree [36]). Designed for the broad class of

monotone scoring functions, BRS applies the branch-and-bound methodology.

Specifically, it uses a max-heap to organize the entries of visited R-tree nodes

so as to access them in decreasing order of their maxscore. The maxscore of an

R-tree node is the largest among the scores of its MBB corners (MBB stands

for the node’s minimum bounding box) and serves as an upper bound for the

score of any record under the node. When a leaf node is accessed, the score

15

CHAPTER 2. RELATED WORK

of the records inside are computed and the interim top-k result is updated

accordingly. BRS terminates when the record with the k-th largest score in

the interim result has a score no smaller than the maxscore of the last R-tree

entry popped from the search heap. BRS is I/O optimal, meaning that it reads

the minimum possible number of pages (R-tree nodes) from the disk.

The threshold algorithm (TA) [32] is another popular method for top-k

query evaluation for queries with monotone scoring function f . Given a data-

base D, TA maintains d lists, where each list Li corresponds to D sorted on

the i-th attribute in descending order. During query evaluation, TA probes

the lists in a round-robin fashion, accessing tuples from the top (i.e., with

the highest attribute value) to the bottom (i.e., with the smallest attribute

value) of the list. For each tuple r encountered in a list, its complete infor-

mation is fetched via random access by looking through the lists or the disk

file holding D, so as to compute the score f(r) =
∑i=d

i=1 wixi, where wi is the

i-th component of user query vector q. The k tuples with the highest scores

encountered so far are kept in a temporary set R, in descending order on their

scores. Let ti be the next attribute value to access in list Li, i ∈ [1, d], and

t∗ = (t1, t2, . . . , td) be a fictitious tuple. TA terminates when the score f(t∗)

is smaller than that of the k-th tuple in R, where R is the top-k result set to

report upon termination. Here t∗ plays the role of threshold for TA to stop.

Top-k query processing is a broad research area that addresses different

topics, depending on the type of data, constraints on the result quality, and

the context of applications. For example, there are studies on top-k joins [75],

top-k monitoring for dynamic databases [52], distributed top-k computation

[5], and top-k evaluation on uncertain data streams [42], to name a few. We

omit the details of these techniques, however, because our work in Chapter 4

of this dissertation centers on exact top-k query processing on static data with

monotone scoring functions. We employ BRS [73] in our top-k computation

module, for its effectiveness and support for spatial index methods such as the

16

CHAPTER 2. RELATED WORK

R-tree [36].

A related problem is the reverse top-k query [79, 78], which involves a

database D and a collection of user preference functions represented as query

vectors. A reverse top-k query returns those query vectors from the collection

that include a given record p ∈ D in their top-k result.

2.4 Group Recommendation and Group For-

mation

Different from the conventional recommendation model that serves a single

user, group recommendation considers a group of similar users and makes

recommendations for the group as a whole [3, 54]. Group recommendation is

useful in applications such as suggesting a movie for friends to watch together,

or choosing a travel destination for a family to visit, etc [71]. The problem

of group recommendation is non-trivial, because sometimes the users within

a group may be so different that their preferences, knowledge level, skill set,

etc, conflict with each other. This type of groups are also called heterogeneous

groups [71]. There are two major problems in group recommendation, that is,

how to form the groups, and how to choose the relevant items for the groups.

Amer-Yahia et al. [3] define the semantics of group recommendation, and

formulate the disagreement among group members. Ntoutsi et al. [54] propose

to cluster the users based on their preferences, such that each group contains

similar users. A group is recommended an item on which the aggregated

preference score over all the users in the group is maximal, compared to the

other items.

While the majority of existing work addresses the formation of groups with

similar users, we focus on forming heterogeneous groups in this dissertation.

As explained in the Introduction, in some applications heterogeneous groups

can benefit group members, such as in promoting peer learning [17, 41]. To

17

CHAPTER 2. RELATED WORK

form heterogeneous groups, our objective is to partition into groups a set of

users with different quantitative features, e.g., preferences and knowledge level,

such that each group contains the same number of users and the aggregate

quantitative features of the group members are as close as possible among the

groups. Our heterogeneous group formation problem is essentially a bucke-

tization problem, or equivalently a balanced multi-way number partitioning

problem. In the following, we provide some background on the bucketization

problem, by revisiting the classic number partitioning problem [34].

Given a finite set of positive integers S = {n1, n2, . . . , nk}, the number

partitioning problem is to partition S into two subsets S1 = {n1
1, n

1
2, . . . , n

1
k1
}

and S2 = {n2
1, n

2
2, . . . , n

2
k2
}, such that the following conditions hold

1. S1 ∪ S2 = S,

2.
∑

n1
i∈S1

n1
i =

∑
n2
j∈S2

n2
j

The optimization version of the number partitioning problem is to modify

the second condition by minimizing the difference between the two sums, that

is, min{
∑

n1
i∈S1

n1
i −

∑
n2
j∈S2

n2
j}.

Number partitioning belongs to a category of NP-hard problems that has

been studied extensively [34]. One of its variants is balanced multi-way number

partitioning (BMNP). The input of BMNP is a set S of n numbers and a

positive integer k; the output is a partition of S into subsets. The subset sum

is the sum of numbers in a subset, and the subset cardinality indicates how

many numbers it contains. The objective in BMNP is to partition S into k

subsets such that (i) the cardinality of each subset is either bn
k
c or dn

k
e numbers,

and (ii) the spread (i.e., the difference) between the maximum and minimum

subset sums is minimized. BMNP has a wide range of applications, including

multiprocessor scheduling [28] and VLSI manufacturing [74].

The KK algorithm [44] is the best approximate method for 2-way parti-

tioning, generating a spread in subset sums in the order of O(1/nα logn) for

18

CHAPTER 2. RELATED WORK

some constant α. [45] proposed CKK, an exact algorithm based on the princi-

ples of KK. CKK produces a global optimal solution for 2-way and multi-way

partitioning, by exhaustively searching a binary tree that covers all possible

combinations of subsets. However, none of the above algorithms can ensure a

balanced partitioning, i.e., equal subset cardinalities. Furthermore, the exact

algorithms like CKK are applicable only to small problem sizes.

The balanced largest-first differencing method (BLDM) is a modification of

KK that guarantees the cardinality of the two subsets produced to be dn/2e

and bn/2c [81]. There have been several attempts to extend BLDM from bal-

anced 2-way to balanced multi-way number partitioning. In [51], a generalized

BLDM, with a time complexity of O(n log n), is proposed to perform balanced

k-way partitioning for k > 2. BLDM, however, does not perform well on

datasets with skewed distributions, or datasets with normal distribution and

the number of partitions being odd at the same time.

19

Chapter 3

Direct Neighbor Search for

Preference-Overlap

Recommendation Support

In this chapter we study a novel query type, called direct neighbor query, which

can provide additional and valuable information to the users for recommenda-

tion support. Two objects in a dataset are direct neighbors (DNs) if a window

selection may exclusively retrieve these two objects. Given a source object, a

DN search computes all of its direct neighbors in the dataset. The DNs de-

fine a new type of affinity that differs from existing formulations (e.g., nearest

neighbors, nearest surrounders, reverse nearest neighbors, etc) and finds appli-

cation in domains where user interests are expressed in the form of windows,

i.e., multi-attribute range selections.

Drawing on key properties of the DN relationship, we develop an I/O op-

timal processing algorithm for data indexed with a spatial access method. In

addition to plain DN search, we also study its K-DN and all-DN variants. The

former relaxes the DN condition – two objects are K-DNs if a window query

may retrieve them and only up to K − 1 other objects – whereas the all-DN

variant computes the DNs of every object in the dataset. Using real, large-

20

CHAPTER 3. DIRECT NEIGHBOR SEARCH FOR PREFERENCE-OVERLAP RECOMMENDATION

SUPPORT

r10

y

r1

r6

r3

r9
r8

r4

r2

r7W1

r5

x

W2

(a) DN example

r10

r1

r6

r3

r9
r8

r4

r2

r7

r5

y

x

(b) Exclusive retrieval region

r10

r1

r6

r3

r9
r8

r4

r2

r7

r5

y

x

(c) All-DN example

Figure 3.1: DN and all-DN search

scale data, we demonstrate the efficiency and practicality of our approach, and

show that it vastly outperforms a competitor constructed from previous work.

3.1 Motivation

We focus on systems and applications where users browse databases via window

queries. Consider a database where objects correspond to available services

or products and are represented as rectangles in a d-dimensional space. A

window query retrieves all the objects that fall inside a user-specified axis-

parallel rectangle. Fig. 3.1(a) illustrates a database with 10 objects in two-

21

CHAPTER 3. DIRECT NEIGHBOR SEARCH FOR PREFERENCE-OVERLAP RECOMMENDATION

SUPPORT

dimensional space. W1, shown with a dashed border, is an example of a window

query that returns r7 and r10 in the result.

Alternative query types, such as nearest neighbors (NN) [64] and reverse

nearest neighbors (RNN) [46], browse data based on the notion of spatial

distance, provided that objects bear geographic coordinates. Inherent in the

distance notion is the assumption that different dimensions can be combined

in a predetermined way into Euclidean distance or another Lp metric.

However, in many settings the data dimensions represent different aspects

of the problem and are not directly comparable to each other. Thus, it is not

meaningful to combine dimensions into a distance measure in determining the

similarity between objects. In such settings, window queries are the only rea-

sonable representation of user interests. An example is on-line property agen-

cies like propertyguru.com.sg, on which owners, agents and developers post

details of units for rental/sale. Potential buyers/tenants may browse available

options by specifying ranges of their desired price and floor-area requirements

(i.e., via window queries). For instance, in Fig. 3.1(a) the two dimensions

could correspond to the rent and floor area, respectively. Another example is

kayak.com. In this portal, users planning to fly between two cities may browse

the available flight options by specifying acceptable ranges for the price and

duration of the flight.

Since user interests are captured by window queries, similarity ought to

be defined based on windows and, specifically, on the potential of data objects

to co-exist in the same query result. Assume that the objects in Fig. 3.1(a)

correspond to alternative services/products. To identify the immediate alter-

natives to r10 (called the source), its provider/manufacturer would want to

know which objects are likely to be retrieved together with r10 by user queries.

Consider alternatives r3 and r1. On one hand, there exist windows that would

retrieve only r3 and the source (r10). On the other hand, for a query to report

the source and object r1, it must necessarily report r3 as well. In this aspect,

22

CHAPTER 3. DIRECT NEIGHBOR SEARCH FOR PREFERENCE-OVERLAP RECOMMENDATION

SUPPORT

r3 is a more immediate competitor/alternative to r10 than r1. To capture this

fact, we define direct neighbors as follows.

Definition 1 Given a dataset S, we define as direct neighbor (DN) of a

source object q any other data object r ∈ S which may be exclusively retrieved

(along with q) by a window query. In other words, there exists an axis-parallel

window that overlaps only with q and r.

A DN query at source q retrieves all its DNs in S. In the example of

Fig. 3.1(a), for source object r10, the result comprises r3, r4, r6, r7 and r9.

Applications of the DN query include competitor and marketability analysis,

recommendation of alternatives, etc.

Competitor Analysis: Identifying the DNs of q could be used to improve

its competitiveness with respect to directly comparable products/services [33],

e.g., via competitor-aware advertisement or appropriate reconfiguration/redesign

of q itself. For instance, the marketing team behind a property (or the airline

offering a flight) would be interested in knowing which its immediate competi-

tors are with respect to the rent-area criteria (airfare-duration), and potentially

reconsider its pricing.

In certain dimensions there may be a clear preference direction (i.e., higher/larger

values may be more desirable). For example, in the property scenario one could

assert that lower price (equivalently, larger size) is generally preferable. The

DN query, being independent of preference directions (if any), would also re-

port properties that are costlier and smaller than the source q, i.e., theoretically

less preferable. Such DNs are also useful for competitor analysis because they

may indicate a potential to, say, mark up the price of q, or more aggressively

advertise it against these competitors, or take into account (qualitative) fac-

tors other than price/area that may be involved in a client’s decision. While

clear preference directions may or may not exist in the data dimensions1, this

1For instance, a dimension could be the storey number where preference of lower, higher
or middle floors is a personal choice [1].

23

CHAPTER 3. DIRECT NEIGHBOR SEARCH FOR PREFERENCE-OVERLAP RECOMMENDATION

SUPPORT

is irrelevant to DN retrieval, its semantics and its applicability.

Exclusive Retrieval Region: The DNs of a source object q also demarcate

its exclusive retrieval region. Any window query that completely lies in this

region and overlaps q is guaranteed to only overlap q. That is, the exclusive

retrieval region defines the maximal search area where q is the only result of a

window query, and by itself provides an indication of the competitiveness and

marketability of q. Fig. 3.1(b) shows the exclusive retrieval region of source

r10. The region is delineated by the DNs of r10 (i.e., r3, r4, r6, r7 and r9). Its

derivation is discussed later in this chapter.

Recommendation of Alternatives: In a system where user queries are

expressed by windows, the DNs are natural candidates for alternative recom-

mendations. That is, if a user is currently viewing object q, the search portal

could suggest the DNs of q as alternatives for consideration. Alternative recom-

mendations are common in property, flight or hotel room search systems, such

as tripadvisor.com and booking.com (where users may browse accommodation

options based on price and average user ratings).

The rationale behind DN formulation is that (since user interests are cap-

tured by windows) the similarity or comparability between two objects q and

r is determined by the number of intervening objects retrieved by any window

query overlapping q and r. In this regard, the definition can be generalized to

provide a partial ordering of competitors based on the number of intervening

objects. That is, the fewer the intervening objects, the more immediate threat

posed by a competitor. This motivates the K-DN formulation, which reaches

a broader set of alternatives by relaxing the DN condition.

Specifically, an object r ∈ S is a K-DN of source q if there is a query

window that intersects r, q and fewer than K other objects in S. K may

or may not be known in advance. The latter case entails incremental K-DN

processing where K can be incremented iteratively without the need to run

the query from scratch, instead resuming it from where it last stopped. K-DN

24

CHAPTER 3. DIRECT NEIGHBOR SEARCH FOR PREFERENCE-OVERLAP RECOMMENDATION

SUPPORT

search finds application in scenarios similar to plain DN, the difference being

that the scope of, say, competitor analysis is wider so that more alternatives

are taken into consideration.

Another variant of DN search with practical relevance is the all-DN query.

An all-DN query computes the DN set of every object in dataset S. As we

explain later, the DN relationship is symmetric. Therefore, the output of the

all-DN query may be visualized as an undirected graph in which the nodes cor-

respond to objects, and the edges to instances of DN relationship. Fig. 3.1(c)

illustrates the all-DN result for our 10-rectangle example. A straightforward,

yet inefficient way to answer the all-DN query is to perform a plain DN search

for each r ∈ S. We develop an algorithm that improves performance by three

orders of magnitude compared to this näıve solution.

The DN definition is irrelevant to the shape of data objects. We center on

rectangular objects with axis-parallel sides, although our techniques also apply

to point data and arbitrarily shaped objects (see Sec. 3.3.4). Our focus on

rectangles is because they are more general than points and probably the most

common/intuitive representation of services and products in multi-dimensional

spaces. The extent of a data object in a dimension could capture a degree of

fuzziness or its intrinsic association with a range of values. For example, each

flight in kayak.com is associated with the range of prices that are offered by

different online ticketing agencies (and potentially in different ticket classes).

Hotel options in tripadvisor.com are associated with a range for price per night,

depending on the exact dates of visit, etc.

As we show later in this chapter, the DN problem and its variants are

meaningful in low-dimensional spaces. We therefore assume that dataset S is

indexed by a spatial access method, such as the R-tree. Our contributions are

summarized as follows:

• We introduce and formalize a new query (DN) and its variants (K-DN

and all-DN);

25

CHAPTER 3. DIRECT NEIGHBOR SEARCH FOR PREFERENCE-OVERLAP RECOMMENDATION

SUPPORT

• We devise I/O optimal algorithms for DN and K-DN queries over data

organized by a spatial index;

• We develop a sophisticated algorithm for all-DN processing that outper-

forms by orders of magnitude a repetitive application of DN search.

The rest of the chapter is organized as follows. Section 3.2 gives preliminary

knowledge of related work. Section 3.3 introduces DN processing, while Section

3.4 and 3.5 present our K-DN and all-DN algorithms, respectively. Section 3.6

then extends DN search to higher dimensions. Section 3.7 empirically evaluates

our techniques, and Section 3.8 summarizes this chapter.

3.2 Preliminaries

As DN processing per se has not been studied before, here we review related

query types, such as nearest neighbor, nearest surrounder, and skyline queries.

We also survey the segment tree, a data structure that we adapt for our frame-

work.

A related problem is nearest surrounder search (NS) [47]. Given a spatial

dataset S and a source point q, an NS query retrieves a setRNS ⊆ S of objects,

each being the nearest neighbor of q with the scope of interest constrained at

some range of angles around q. Objects in RNS collectively cover the whole

angle range [0◦, 360◦] around q; these objects have a clear line of sight from q,

unblocked by other objects. The NS query differs from the conventional NN

query in taking into account directional information of the nearest neighbors.

The method proposed in [47] uses an angular sweeping technique to process

the R-tree that indexes S. This approach also extends to K-tier NS retrieval,

where the line of sight between q and each NS object may cross up to K − 1

others. NS (and K-tier NS) methods exist only for two dimensions and for

point (zero-extent) source objects. NS search and similar visibility queries

(e.g., [68]) are different by definition from our problem, as we also elaborate in

26

CHAPTER 3. DIRECT NEIGHBOR SEARCH FOR PREFERENCE-OVERLAP RECOMMENDATION

SUPPORT

Sec. 3.3. In that section, however, we devise a baseline DN approach (which

works only for two-dimensional data) that uses NS as a building block.

Work on skyline processing ([16, 72]) is also relevant to ours, as will become

clear in the technical description of our contribution. Consider a dataset S

where each object has two attributes, x and y. An object here could correspond

to a transportation option between two specific cities, with attributes price (x)

and total duration (y). Assume that all options have different x and y values.

An object (travel option) r is said to dominate another object r′ if both of r’s

attributes are no larger than those of r′. Essentially, this implies that option r

is preferable to r′ because the former is both cheaper and faster. The skyline of

S comprises all objects that are not dominated by any other object. Branch-

and-bound skyline (BBS) is an I/O optimal skyline algorithm [58] that utilizes

an R-tree on S. BBS accesses the tree nodes in ascending mindist order from

the most “preferable” corner of the data space. In our example, this corner

is the origin of the data space. Once a data object is found, it is added to

the skyline. Subsequently encountered R-tree nodes (or objects) are accessed

(included in the skyline, respectively) only if they are not dominated by any

object currently in the skyline. K-skyband is a generalization of the skyline

that includes all objects dominated by fewer than K others. BBS extends to

K-skyband computation, retaining its I/O optimality.

The skyline query can be used for recommendation of alternatives. How-

ever, its semantics (and therefore its domain of applicability) is different from

DN. The skyline operator is not input-sensitive, meaning that the result is

always the same and it does not depend on any user input. In our transporta-

tion options example, the skyline options (i.e., those not dominated by any

other in the input data) are only dependent on the dataset itself. No input is

input-sensitive–the DN result depends on the source object q and varies with

its extent and location. Another key difference is that the DN query pertains

(and offers an auxiliary decision support mechanism) to systems where the

27

CHAPTER 3. DIRECT NEIGHBOR SEARCH FOR PREFERENCE-OVERLAP RECOMMENDATION

SUPPORT

users browse options via window queries. In contrast, the skyline operator

requires simply a fixed and monotonic preference order in each data dimension

(e.g., the smaller the price/duration of a travel option the better). Despite

the differences in semantics, nature, and application domain, our processing

techniques utilize on (adapted) skyline algorithm as a building block to derive

a subset of DNs.

The dynamic skyline receives as input, in addition to data, a set of query

objects2. Each data object is represented by the vector of its distances from

every query object. A data object belongs to the dynamic skyline if its distance

vector is not dominated by that of any other data object. The distances

between data and query objects can be Euclidean [69], road network distances

[30] or general metric distances [22]. The problem differs from ours in that

(i) DN search involves a single input dataset (data objects only), (ii) dynamic

skylines are defined over (distance) vectors whereas the DN relationship is

defined over rectangles and, most importantly, (iii) DN search captures the

exclusive co-existence of two objects in the result of a window query instead

of the dominance (or not) between them.

In a sense, DN search is related to influence set computation, i.e., identi-

fication of objects that could affect or be affected by a source object q. The

concept of influence sets was introduced in [46], and formulated as a reverse

nearest neighbor search (RNN) at q. The RNN set of q includes those objects

r in a dataset S that have q as their nearest neighbor. RNN processing has

received significant attention; [57] provides a comprehensive survey of existing

work.

By definition, the DN query retrieves different objects than RNN. There

is an interesting similarity though – window queries in DN play the role of

NN queries in RNN. Specifically, given a source object q, DN search (or RNN

search) discovers those objects around which, if a window query (a NN query,

2The concept of dynamic skyline was introduced in [58] to refer to a more general problem.
We focus on its spatial versions due to their higher relevance to DN formulation.

28

CHAPTER 3. DIRECT NEIGHBOR SEARCH FOR PREFERENCE-OVERLAP RECOMMENDATION

SUPPORT

respectively) is issued, the result will exclusively include q. This correspon-

dence implies that the type of influence stemming from the DN relationship is

meaningful in domains where user interests are expressed by window queries,

whereas the influence derived from the RNN relationship is meaningful in ap-

plications where users browse data by NN queries.

There is a similar analogy with the reverse top-K query [77] too. However,

the problem cannot be mapped to ours. For example, the top-K queries/functions

are known in advance, and the influence of q relates to functions rather than

other objects in S. However, it is interesting that a reverse query notion (top-K

in this case) is used to discover entities (functions) influenced by the source.

The reverse skyline query is defined in [29]. That work considers a spatial

version of dominance before reversing it. Specifically, the input includes a

source point q and a set of d-dimensional data points. A data point r is said

to dynamically dominate another r′ with respect to q if the projection of r

on each of the d axes lies closer to q than the corresponding projection of r′.

Now, a data point r belongs to the reverse skyline of q if q is not dynamically

dominated by any other point with respect to r. Although again a connection

exists with our problem, here we consider window queries instead of dynamic

dominance. To further stress the difference, note that reverse skyline is not a

symmetric relationship (i.e., the fact that r belongs to the reverse skyline of q

does not mean that the converse holds too). In contrast, the DN relationship

is symmetric, as explained in Sec. 3.5.

The definition of the all-DN graph resembles to some extent the concept

of Gabriel graph in computational geometry [27]. Given a set S of points in

the Euclidean plane, the Gabriel graph G uses S as its vertex set. There is

an edge between nodes (i.e., points) r and r′ if and only if the circle whose

diameter has r and r′ as endpoints is empty. A fundamental difference between

all-DN graph and Gabriel graph is that the latter is defined strictly for points,

not rectangles. Another distinction is that its edges represent empty circles

29

CHAPTER 3. DIRECT NEIGHBOR SEARCH FOR PREFERENCE-OVERLAP RECOMMENDATION

SUPPORT

3

a:[1,3]

b:[2,9]

2 4 7 9

8

6

a

b c c

b,d

b e

b

c:[4,7] e:[9,10]

d:[6,8]

Figure 3.2: Example of segment tree and stabbing query at q = 5.8

(with specific, fixed diameter) versus axis-parallel rectangular windows (with

arbitrary diagonal). The different edge definition leads to different topologies;

for instance, the Gabriel graph is planar (no edge intersects another) which

is not the case in all-DN graph (e.g., see Fig. 3.1(c)). The Gabriel graph

could be defined under the L∞ norm (instead of the Euclidean), where an

edge between points r and r′ exists if and only if the square with diagonal

corners r and r′ is empty. The problem is still defined only for points (and

the Gabriel graph remains planar). The edges correspond to empty squares

with a specific diagonal versus completely arbitrary axis-parallel windows (with

unknown diagonal and arbitrary side-length proportions).

Our algorithms rely on the segment tree [12]. This is a balanced binary tree

used for efficiently answering stabbing queries on a set of line segments, i.e.,

reporting all segments in a one-dimensional space that envelop a given query

point. Consider a set of line segments S = {s1, s2, ..., sN}, each delimited by

two endpoints. To construct a segment tree on S, we sort the 2N different

endpoints into an ascending sequence P = (p1, p2, ..., p2N). The endpoints in

P divide the one-dimensional space (−∞,∞) into 2N + 1 atomic intervals. A

binary tree T is constructed bottom-up, with the leftmost leaf node covering

the leftmost interval (−∞, p1], the second leaf covering (p1, p2], and so on.

30

CHAPTER 3. DIRECT NEIGHBOR SEARCH FOR PREFERENCE-OVERLAP RECOMMENDATION

SUPPORT

Table 3.1: Notation

Symbol Description
S set of data objects
N cardinality of S
Tx, Ty segment trees on x- and y-extents of objects
Li the object list of leaf node ni in a segment tree
Ii interval covered by leaf node ni in a segment tree
n−, n+ boundary leaf nodes in a segment tree

Each internal node in T covers the union of the intervals of its two children.

Every (internal or leaf) node nj in T stores a segment list Lj containing those

segments of S that completely cover the node’s interval but not the interval of

its parent. To answer a stabbing query at point q, T is traversed from the root,

reporting all the segments in the lists of those nodes nj whose interval envelops

q. The segment tree has O(N logN) construction time, O(logN) insertion

time, and O(κ + logN) query time where κ is the number of segments in the

result.

Fig. 3.2 illustrates a segment tree built on five line segments, a, b, c, d, and

e. The line segments and their exact intervals are depicted at the bottom of

the figure. Inside each tree node we draw the corresponding splitting value

(implicitly defining its covering interval), and next to the node we present its

segment list. Suppose the user issues a stabbing query at point q = 5.8, shown

as a vertical dashed line. The search begins from the root. Comparison with

the splitting value therein (i.e., 6) directs the search to the left child, and in

turn, from that node to its right child, and so on until it reaches a leaf node.

The visited nodes are shown in bold border. The union of the segment lists in

visited nodes forms the query result, i.e., segments {b, c}.

3.3 Direct Neighbor Search

Given a dataset S and a source object q in a d-dimensional space, a data ob-

ject r ∈ S is a direct neighbor (DN) of q if there exists a (d-dimensional) axis-

parallel window that intersects only q and r. Our focus is on low-dimensional

31

CHAPTER 3. DIRECT NEIGHBOR SEARCH FOR PREFERENCE-OVERLAP RECOMMENDATION

SUPPORT

r6

st

East stripe

q
r3

r5

R-tree node

r1

r2 r4

(a) Stripe DN

q

r1

r4qd

r2
r3

MIA

NE quadrant

(b) Quadrant DN

Figure 3.3: DN search in quadrants and stripes

spaces – as we explain in Sec. 3.6.1, the DN problem is meaningful when di-

mensionality is low, because the number of DNs grows quickly with d. For ease

of presentation, we consider two dimensions before extending our methodol-

ogy to more (in Sec. 3.6). We assume rectangular (source and data) objects

with axis-parallel sides. Notwithstanding this, our work applies to point data,

which may be treated as zero-extent rectangles, and to arbitrarily shaped ob-

jects (discussed in Sec. 3.3.4). The objects may or may not overlap. We target

disk-resident datasets S, organized by a spatial index like the R-tree.

Suppose that the data space is [0, Xmax][0, Ymax] and the extent of the

source q is [q.xl, q.xh][q.yl, q.yh]. We perform DN retrieval in the four stripes

and four quadrants of q. The east stripe is the area defined by the right edge

of q, extending horizontally to the right border of the data space, i.e., the

area [q.xh, Xmax][q.yl, q.yh]. The east stripe of an example source q is shown in

Fig. 3.3(a). The north-east quadrant (NE) is the axis-parallel area extending

diagonally from the NE corner of q to the NE corner of the data space, i.e.,

[q.xh, Xmax][q.yh, Ymax]. Fig. 3.3(b) shows the NE quadrant of an example

source q. The other stripes and quadrants are defined accordingly. Note that

q, the four stripes and the four quadrants define a partition of space into

9 regions. We first consider DN search inside the quadrants, proposing two

32

CHAPTER 3. DIRECT NEIGHBOR SEARCH FOR PREFERENCE-OVERLAP RECOMMENDATION

SUPPORT

methods for this, then in the stripes. Objects that intersect q are directly

reported as DNs (we establish the convention that all of these objects belong

to the DN set).

For simplicity, we initially assume that objects in S fall completely inside

a single stripe or quadrant. This assumption is relaxed in Section 3.3.3. Our

objective is to minimize the total processing cost, comprising I/O and CPU

time. Table 3.1 lists the frequently used notation.

3.3.1 DN Search in Quadrants

In Fig. 3.3(b), point qd marks the NE corner of q. A preliminary approach

to derive the DNs in the NE quadrant is to issue a constrained NS search at

qd, limiting the visibility search to the 90◦ angle NE of qd. The surrounders

derived are a superset of the DNs (in NE quadrant). To see this, if rectangle r

is a DN of q, by definition there is a query window that exclusively intersects r

and q. Since r is in the NE quadrant, this query window must include qd. Also,

because this window intersects no other object, there is visibility between qd

and r. Therefore, the quadrant DNs are also NSs. On the contrary, an NS is

not always a DN; e.g., r3 is visible from qd but not a DN (every query window

overlapping r3 and q necessarily intersects r2 and r4 too). Before presenting

how false positives (NSs that are not DNs) can be eliminated, we define the

notion of minimum intersection area.

Definition 2 The Minimum Intersection Area (MIA) of an object r

(lying in a specific quadrant) is the axis-parallel rectangle defined by qd and

the closest corner of r to qd.

The striped area in Fig. 3.3(b) is the MIA of r4. It is easy to see that any

query window that intersects an object r and q must envelop the MIA of r.

This leads to the following crucial observation.

33

CHAPTER 3. DIRECT NEIGHBOR SEARCH FOR PREFERENCE-OVERLAP RECOMMENDATION

SUPPORT

Observation 1 An object r (lying in a specific quadrant) is a DN if and only

if its MIA intersects no other object.

Observation 1 helps to disqualify NSs that are not DNs. Let RNS be the

set of constrained NSs. In a straightforward application of the observation, we

may check for every r ∈ RNS whether its MIA intersects any other object in S;

if so, r is disqualified. The remaining NSs are the DNs. This approach would

require multiple window queries in S (as many as the total number of NSs),

incurring considerable I/O overhead. On a closer inspection, the overhead can

be eliminated. Specifically, if there exist objects in S that overlap the MIA of

a candidate r ∈ RNS , at least one of them will be visible from q, and therefore

already in RNS . This implies that we need to check the MIA of r only against

objects in RNS , rather than against the entire S.

We term the above approach constrained NS (CNS). Its main drawback is

that it accesses a superset of the strictly needed objects (e.g., r3 in Fig. 3.3(b)).

In our experiments with real and synthetic data (Table 3.4) the number of NSs

is an order of magnitude larger than that of actual quadrant DNs, leading to a

large false positive ratio. Accessing these false positives translates to unneces-

sary I/Os. Also, NS queries require a significant amount of computations, due

to the angular sweeping mentioned in Sec. 3.2. Observation 1 paves the way

for a more efficient (and I/O optimal) method, named skyline DN (SDN), via

Lemma 1.

Lemma 1 The DNs of q in a quadrant are exactly the skyline objects in this

quadrant, with qd as origin and each object represented by its closest corner to

qd.

Proof 1 By definition, a point p is dominated by those and only those points

p′ that fall inside the rectangle defined by p and the origin, called dominating

rectangle of p. Thus, p is a skyline point if and only if its dominating rectangle

is empty. In our context, since the skyline is defined on the objects’ corners

34

CHAPTER 3. DIRECT NEIGHBOR SEARCH FOR PREFERENCE-OVERLAP RECOMMENDATION

SUPPORT

that are closest to qd, the dominating rectangles of these corners correspond

to the MIAs of the respective objects. From Observation 1 it follows that the

skyline and quadrant DN sets are identical.

Based on Lemma 1, SDN computes the DNs in each quadrant using the

I/O optimal BBS algorithm [58].

3.3.2 DN Search in Stripes

An object r is a DN of q in a stripe, say the east, if a rectangle can be found

to exclusively intersect r and q’s right edge st, i.e., there exists a horizontal

ray from some point on st to a point on r’s left edge that intersects no other

object. In Fig. 3.3(a), for example, the east stripe DNs of q are r1, r2, r3. To

identify such DNs, we sweep from st to the right, examining objects r (in the

east stripe) in increasing r.xl order. For each object r encountered, we check if

the previously considered objects in this stripe (collectively) block r from st.

If not, r is a DN. The search terminates when the DNs discovered so far block

all the remaining objects in the stripe.

To iteratively discover objects in increasing r.xl order, we utilize the R-tree

on S. The process is similar to a best-first incremental NN search at q, as

described in Sec. 3.2, where the sorting key of the min-heap is mindist from

st. The difference is that the search is constrained to the east stripe and that

R-tree nodes that are blocked from st by already encountered DNs are pruned

(i.e., not visited). In Fig. 3.3(a), for instance, the illustrated R-tree node that

holds r5 and r6 is pruned (not accessed at all) during the search because it

is fully blocked by the previously reported DNs r1, r2, r3. Object r4, although

popped from the search heap, also fails the visibility check and is excluded

from the DN set. The I/O optimality of the best-first NN algorithm in [39], in

conjunction with the pruning of blocked nodes, guarantees optimality for the

stripe DN search too.

35

CHAPTER 3. DIRECT NEIGHBOR SEARCH FOR PREFERENCE-OVERLAP RECOMMENDATION

SUPPORT

Lemma 2 The stripe DN algorithm is I/O optimal.

Proof 2 As long as the left edge of (the MBR of) an R-tree node n is not col-

lectively blocked by the DNs of q, the node must be accessed because it may hold

DNs. To prove the lemma, we must show that only such nodes are accessed.

In our algorithm, a prerequisite to visit a node n is that the DNs found thus

far do not completely block it from q. To complete the proof, we show that the

remaining DNs, i.e., those found after visiting n, cannot block any part of its

left edge. This is obvious – since R-tree entries and DNs are encountered (i.e.,

popped from the search heap of the incremental NN search) in increasing order

of distance from q, all DNs found after visiting n are further from q and hence

cannot possibly block any part of n.

To efficiently perform the “visibility” check for objects and R-tree nodes

encountered during the incremental NN search, we use an adaptation of the

segment tree. When the search begins, we initialize an empty segment tree TE.

The first NN of q in the stripe is a DN (by definition it cannot be blocked by

any other object), and its y-extent is inserted into TE. Before our incremental

NN search visits any R-tree node, the y-extent of the node’s MBR is probed

against TE to detect whether any part of its left edge is exposed to st. If

completely blocked, it is pruned (ignored). The same check is performed for

every discovered NN r. If r is not (completely) blocked, it is reported as a DN,

and its y-extent is inserted into TE.

In our adapted segment tree, segments are stored only at the leaves of

TE. Those segments that are included in the list of an internal node in a

conventional segment tree are instead replicated in the lists of all its descendant

leaves. To check an object (or internal R-tree node) with extent [yl, yh], we

issue a stabbing query on TE at point yl. Let n− be the leaf of TE that covers

yl. We traverse the leaves to the right of n− until we reach the leaf n+ that

covers yh. If any of the segment lists between n− and n+ is empty, the object

(or R-tree node) passes the test, i.e., a part of its left edge is exposed to st.

36

CHAPTER 3. DIRECT NEIGHBOR SEARCH FOR PREFERENCE-OVERLAP RECOMMENDATION

SUPPORT

q

r4

r3

r2
r1

r8

r7

r6

r5

r10
r9

N1

N2

N3

N4

N5

x

y

5 10 15 20 25 30 35 40 45 50

5

10

15

20

25

30

35

40

r11
r12
N6

N8

N7

N9

North stripe

E
ast stripe

NE quadrant

Figure 3.4: Example of DN search

DN search in the other three stripes is similar. Note that the y-extents are

used in searching the east and west stripes, while the x-extents are used for

the north and south ones.

3.3.3 Complete DN Algorithm

In general, an object may intersect q and/or more than one quadrant or stripe.

Essentially, the extent of q, the four stripes and the four quadrants partition

the data space into 9 disjoint regions. If an object r intersects more than one

region, r is conceptually divided into parts, each falling entirely within one

of the regions3. The parts are processed independently for the corresponding

stripe/quadrant. The final set of reported DNs is the union of the objects

that intersect q, and the DNs that are found in the stripes and quadrants.

The following discussion refers to our advanced DN algorithm that uses the

efficient SDN technique for quadrant search (the case for CNS is similar).

3Note that this is an implicit partitioning used only for the processing of the specific DN
query. It is not persistent, i.e., it does not affect the representation of r on the disk.

37

CHAPTER 3. DIRECT NEIGHBOR SEARCH FOR PREFERENCE-OVERLAP RECOMMENDATION

SUPPORT

Table 3.2: Heap contents and result formation

Step Heap Contents Result
1 < N7, 1 >< N8, 4 >< N9, 23 > ∅

2
< N2, 1 >< N8, 4 > ∅
< N1, 13 >< N9, 23 >

3
< r4, 1 >< N8, 4 >< r3, 5 > ∅
< N1, 13 >< N9, 23 >

4
< N8, 4 >< r3, 5 > {r4}< N1, 13 >< N9, 23 >

5
< N3, 4 >< r3, 5 >< N4, 10 > {r4}< N1, 13 >< N9, 23 >

6
< r5, 4 >< r3, 5 >< r6, 9 > {r4}< N4, 10 >< N1, 13 >< N9, 23 >

7 < N4, 10 >< N1, 13 >< N9, 23 > {r4, r5, r3, r6}

8
< r7, 10 >< N1, 13 > {r4, r5, r3, r6}< r8, 17 >< N9, 23 >

9
< r1, 13 >< r8, 17 > {r4, r5, r3, r6, r7}< r2, 18 >< N9, 23 >

10 < N9, 23 > {r4, r5, r3, r6, r7, r1, r8}
11 ∅ {r4, r5, r3, r6, r7, r1, r8}

The search for objects that intersect q, and for DNs in the stripes and

quadrants can be performed concurrently, in a single traversal of the R-tree in

order to avoid unnecessary I/Os in re-reading R-tree nodes. This is possible,

because the search in each quadrant or stripe visits R-tree nodes in increasing

distance from q. This means that there can be a single search heap (sorted

on mindist(e, q) of encountered R-tree entries e) that serves all the 8 quad-

rant/stripe searches. During the R-tree traversal, four skyline lists (one per

quadrant) and four segment trees (one per stripe) are maintained. Entries

(objects) with zero mindist intersect q, and are therefore accessed (reported

as DNs) directly. A detailed pseudo-code for this complete, single-traversal

DN search is provided in the Appendix.

Since the BBS and stripe DN components of our algorithm are I/O optimal

(as proven in [58] and Lemma 2), and since we also avoid re-fetching the same

nodes from disk, the overall DN method is I/O optimal, i.e., it performs the

minimum possible number of I/Os for the given R-tree structure.

Example 1 We illustrate our complete DN algorithm with Fig. 3.4. For

38

CHAPTER 3. DIRECT NEIGHBOR SEARCH FOR PREFERENCE-OVERLAP RECOMMENDATION

SUPPORT

r1

st

East stripe

q
r3

r2r1 r4r1 r2

(a) Stripe DN

r1 r4

q

qd

r3

NE quadrant

r2

(b) Quadrant DN

Figure 3.5: DN search for arbitrarily shaped objects

simplicity, we only show the NE quadrant, and north and east stripes. Table

3.2 shows the search heap contents and the DN set in various stages. First,

we read the root of the R-tree on S, and push its three entries N7, N8, N9 into

the search heap. We then pop the top entry N7, fetch it from disk and en-heap

its children. This process continues until we pop object r4 in step 3. It falls in

the north stripe and we directly insert it into the result set and into the north

segment tree TN . In step 6, we pop r5 which intersects the NE quadrant and the

east stripe. We conceptually partition r5 and treat each portion as a separate

object in the respective quadrant/stripe. It is a DN in both the NE quadrant and

the east stripe, and is thus appended to the result. It is also inserted into the

NE skyline and into TE (the east segment tree). Subsequently popped objects

r3 and r6 are also DNs, and are inserted into TN and TE, respectively. In

step 9, object r2 is popped after r1 and r8. It fails the visibility check against

TN (because it is completely blocked by r3 and r4) and is discarded. Step 10

pops index entry N9 which intersects the NE quadrant and the east stripe. We

conceptually divide N9 into two portions. Its portion in the east stripe fails

the visibility check against TE, and its second portion is dominated by the DNs

already in the NE skyline (i.e., r5). Thus, N9 is ignored (not read from disk).

At that stage the heap is empty, and the DN search terminates with result set

39

CHAPTER 3. DIRECT NEIGHBOR SEARCH FOR PREFERENCE-OVERLAP RECOMMENDATION

SUPPORT

{r4, r5, r3, r6, r7, r1, r8}.

An issue worth mentioning regards the exclusive retrieval region (ERR) of

q, described in Introduction. By definition, this region is bounded by the DNs.

In a quadrant, the bound is the skyline over the quadrant’s DNs. In a stripe,

the ERR includes the area that is not blocked by the stripe’s DNs. In other

words, the ERR can be derived by iteratively subtracting from the entire space

the area that is dominated by each quadrant DN and the area that is blocked

by each stripe DN (where dominance and horizontal blocking are defined by

the specific quadrant or stripe, as explained in Sec. 3.3 and 3.3.2).

3.3.4 Arbitrary Object Shapes

So far we have focused on rectangular objects. Our techniques, however, extend

easily to arbitrary object shapes.

Stripe DNs. The stripes are processed similarly to rectangular objects.

The difference is that the object lists of the segment tree (used for a specific

stripe) hold both the MBR and the exact geometry of each discovered DN. In

checking the visibility of an R-tree node, the exact geometries in the object lists

are only taken into account when their MBRs intersect that of the R-tree node

in question. Visibility check for a leaf node entry (i.e., MBR of a data object)

proceeds similarly, except that if the MBR intersects (the actual geometry

of) a DN, the object’s exact geometry must also be fetched to complete the

check. Consider, for example, Fig. 3.5(a) and DN search in the east stripe.

Assume that r1 is the only DN found so far. The next encountered node is r2,

which overlaps the MBR of r1. The exact geometry of r1 is also overlapping

the MBR of r2, and we can only determine whether the latter is a DN by

fetching its own exact geometry too. The comparison reveals that a part of r2

is unblocked and therefore it is a DN. On the other hand, we may infer that

r3 is not a DN without fetching any exact object geometries, because its MBR

does not overlap that of r1, and it is fully blocked by it.

40

CHAPTER 3. DIRECT NEIGHBOR SEARCH FOR PREFERENCE-OVERLAP RECOMMENDATION

SUPPORT

Quadrant DNs. The quadrant search traverses the R-tree of S following

the BBS strategy as normal. An internal R-tree node is loaded only if it is not

dominated by any existing skyline object. The MBR of a skyline object can

be used for quick dominance check. If the R-tree node does not intersect the

MBR, dominance (or not) is definitively decided based on their closest corners

to q. If there is overlap, the skyline object’s exact geometry must be taken

into account.

When a leaf node entry is popped (i.e., the MBR of a data object), we check

whether the MBR is dominated by any object already in the skyline. If not, we

fetch the exact geometry of the corresponding object from the disk and push it

into the heap with its actual minimum distance from q as the key value. If the

object is popped subsequently, we check (using its exact geometry) whether it

is dominated by any existing skyline object. If not, it is added to the skyline

and to the DN set.

In Fig. 3.5(b), for instance, assume that we have discovered one DN so far,

r1. We can infer that r3 is not a DN using only MBR information; the MBR

of r3 does not overlap that of r1 and is also dominated by it. In contrast, when

we encounter r2 we cannot make a safe conclusion based on its MBR (because

it overlaps r1); therefore, we fetch its exact geometry, and en-heap it with its

actual distance as key. When the latter is popped again, we compare its exact

geometry with that of r1 and determine that a part of it is not dominated.

Thus, r2 is also a DN. A detail regards the dominance check between exact

geometries represented as polygons: object r2 is not dominated by r1 because

one of its polygon vertices (the left-most in this case) is not dominated by any

vertex of r1.

41

CHAPTER 3. DIRECT NEIGHBOR SEARCH FOR PREFERENCE-OVERLAP RECOMMENDATION

SUPPORT

3.4 K-Direct Neighbor Search

An intuitive way to compute a broader spectrum of “neighbors” is to relax the

DN condition to allow up to some number of intervening objects in the query

window (in addition to q and each of its DNs). Specifically, an object r ∈ S

is a K-DN of q if and only if there exists a query window that intersects q, r,

and no more than K − 1 other objects. The K-DN query is a generalization

of plain DN (the latter corresponds to K = 1).

Stripe K-DNs. Following a similar definition to plain DN, an object r is

a K-DN of q in a stripe, say the east, if there exists a horizontal ray from any

point on q’s right edge st to a point on r’s left edge that cuts through fewer

than K other objects. In Fig. 3.3(a), for example, the 2-DNs of q in the east

stripe include the 1-DNs r1, r2, r3, plus objects such as r4, r5, and r6 which can

be “reached” from q via a horizontal ray that cuts across exactly one other

object. In the case of r4 the intervening object is r2.

Identifying K-DNs in a stripe is similar to plain DN. Take the east stripe

as example. A stripe-constrained, incremental NN query is posed at st (i.e.,

the right side of q), examining objects r in increasing r.xl order. Whenever a

K-DN is found, it is inserted into the segment tree TE. When the constrained

NN search considers whether to visit (i.e., read from disk) an internal node of

the R-tree, we probe TE and examine all its leaf nodes that overlap the y-extent

of the R-tree node. If at least one of them has fewer than K objects in its

list, the R-tree node is visited. Data objects r discovered in the NN search are

reported as K-DNs if they pass the same test, or disqualified otherwise. The

stripe DN operation is I/O optimal, with the constrained NN search following

the best-first paradigm [39] in conjunction with pruning R-tree nodes that fail

the segment tree test. The proof is similar to Lemma 2.

Quadrant K-DNs. The definition of MIA and Observation 1 extend to

K > 1. Let r be an object in a quadrant. As established in Sec. 3.3, any

query window that intersects both q and r must completely envelop the MIA

42

CHAPTER 3. DIRECT NEIGHBOR SEARCH FOR PREFERENCE-OVERLAP RECOMMENDATION

SUPPORT

q

r1

r4qd

r2
r3

NE quad.

r6

r5

r7

Figure 3.6: 2-DNs in NE quadrant (2-skyband)

of r. Thus, the necessary and sufficient condition for r to be a K-DN is that

its MIA intersects fewer than K other objects.

CNS can be used to retrieve such objects using a K-tier (90◦-constrained)

NS query. However, this inherits the deficiencies identified in Sec. 3.3, namely

that a superset of the actual K-DNs is returned, which entails unnecessary

I/Os and a post-processing (filtering) step. As we show in the experiments,

the problem is exacerbated as K increases, because a larger fraction of the NSs

are not DNs.

On the other hand, Lemma 3 extends SDN to K > 1, enabling I/O optimal

processing. Let qd be the corner of q that anchors the quadrant to be processed.

Recall that the K-skyband is a generalization of the skyline that includes

objects that are dominated by fewer than K others.

Lemma 3 The K-DNs of q in a quadrant are exactly the K-skyband objects

in the quadrant, with qd as origin and each object represented by its closest

corner to qd.

Proof 3 Let r ∈ S be an object in the quadrant of qd. The necessary and

sufficient condition for r to be a K-DN is that its MIA intersects fewer than

43

CHAPTER 3. DIRECT NEIGHBOR SEARCH FOR PREFERENCE-OVERLAP RECOMMENDATION

SUPPORT

K other objects. Any object r′ in the quadrant of qd that overlaps r’s MIA has,

by definition, its closest corner to qd inside the MIA, and vice versa. Hence, r

is a K-DN if and only if its MIA contains fewer than K closest-to-qd corners

of other objects, i.e., it is dominated by fewer than K objects.

Fig. 3.6 illustrates a 2-DN search in the NE quadrant of q. The bold

staircase line corresponds to the 2-skyband boundary, implying that anything

that does not touch this boundary and lies further NE from it (i.e., further to

the right and top), is dominated by at least 2 objects. The 2-skyband comprises

objects whose closest corner to q either falls on the staircase line (like r6) or

lies SW from it (like r1). The 2-DN set (equivalently, the 2-skyband) includes

r1, r2, r4, r5, r6, r7. Object r3 is not a 2-DN because it is dominated by r2

and r4. The K-DNs in each quadrant can be computed with the I/O optimal

K-skyband BBS algorithm of [58].

Similar to the complete plain DN case in Sec. 3.3.3, all the K-DNs (in

the stripes or quadrants, or those intersecting q) can be retrieved in a single

traversal of the R-tree that indexes S, yielding an overall I/O optimal solution.

Furthermore, adopting the branch-and-bound paradigm in the SDN-based K-

DN method for the stripes and the quadrants lends two desirable properties,

namely, that the method is progressive and incremental. Progressive implies

that DNs can be reported as they are discovered, without waiting for the

algorithm to terminate. The incremental nature of our method implies that

there is no need to fix K in advance. Should the user originally specify a

K value that turns out to be too small, the retrieval of DNs for a larger K

does not need to start from scratch, but can resume from where the previous

(smaller K) search stopped. Of course, to support incremental processing,

pruned R-tree nodes and rejected objects cannot be discarded, but must be

kept (sorted on increasing distance from q) in anticipation of an increase in K.

Example 2 Consider the example in Figure 3.4, and assume q retrieves K-

DNs with K = 2. The K-DN search differs from DN search in the way it

44

CHAPTER 3. DIRECT NEIGHBOR SEARCH FOR PREFERENCE-OVERLAP RECOMMENDATION

SUPPORT

prunes non-result objects. We focus on pruning and omit other details for

simplicity. The search is exactly the same as before until step 10 in Table 3.2,

where r2 is kept as a 2-DN because, while using the north segment tree TN to

verify the visibility of r2, we find that only r4 is blocking it from q. Next we

have to check N9, since parts of it are blocked by only one object according

to the east segment tree TE. Children r9 and r10 of N5 pass the check, since

none of them is separated by two or more objects from q. In the NE quadrant,

r11 is a 2-DN whereas r12 is not, because the MIA of r12 intersects r5 and

r11. Now the heap becomes empty, and the search terminates with result set

{r4, r5, r3, r6, r7, r1, r8, r2, r9, r11, r10}.

3.5 All-Direct Neighbor Query

Another extension to DN search is the all-DN (ADN) query. Given a set of

objects S, an ADN query computes for each object in S all its DNs. A straight-

forward way to process ADN queries is to apply a plain DN search using, in

turn, each object r ∈ S as the source. Clearly, this approach is inefficient.

Performance can be improved if the entire R-tree is loaded in memory to avoid

multiple reads from the disk (since all of its contents need to be accessed any-

way). However, the CPU cost remains a major drawback. In the following

we describe an algorithm for ADN processing that significantly reduces the

processing time of individual DN retrievals, by sharing computations among

them.

3.5.1 Fundamental Properties of DNs

We begin with observations/properties of DN relationship.

Observation 2 The DN relationship is symmetric.

By definition, if object r′ is a DN of another object r, there exists a query

window intersecting only r′ and r, regardless of whether r′ lies in a stripe or

45

CHAPTER 3. DIRECT NEIGHBOR SEARCH FOR PREFERENCE-OVERLAP RECOMMENDATION

SUPPORT

MIA

r1

r2

r4

r

r5

r3

qd

r6

(a) DNs in SW quadrant

r1

r3

r6

r

r5

r4

r7

qdr2

(b) DNs in NW quadrant

Figure 3.7: Properties of quadrant DNs

quadrant of r. Thus, r is a DN of r′ too.

According to Observation 2, the ADN query requires finding the DNs in

only two quadrants and two stripes of each object instead of four. For example,

we may consider only the NW and SW quadrants, and only the west and south

stripes. The rationale is that if another object r′ is a DN with respect to, say,

the NE quadrant of r, then r′ will definitely identify r as a DN in its SW

quadrant.

Observation 3 formulates an important property of quadrant DNs. We take

the SW and NW quadrants as an example, and illustrate in Fig. 3.7.

Observation 3 Given a rectangle r and its set of DNs in the SW (or NW)

quadrant, there exists a portion on the right side of each of these DNs that is

horizontally unblocked from the vertical edge of the quadrant.

Fig. 3.7(a) illustrates that the DNs in the SW quadrant of r are all visible

via horizontal rays shot from the vertical quadrant edge (i.e., the vertical half-

line with qd as initial point). The DNs are shown with solid border, and the

horizontal rays are shown as arrows. Observation 3 follows from Observation

1. DN r4, for instance, is definitely “visible” by some horizontal ray, because

its MIA (and therefore the bottom edge of the MIA) intersects no other object.

The converse, however, is not true; in other words, not all objects visible via

horizontal rays are DNs. The two objects with dashed border (r3, r6) are both

46

CHAPTER 3. DIRECT NEIGHBOR SEARCH FOR PREFERENCE-OVERLAP RECOMMENDATION

SUPPORT

r2

r1

x

r3

y

r4

r5

r6

I1 I2 I3 I4 I5 I6 I7 I8

(a) Objects and x-intervals

n1 n2 n3 n4 n5 n6 n7 n8

L1:{}

L2:{r2,r1}
L3:{r2}
L4:{r2,r3}
L5:{}

L6:{r4,r5}

L7:{r5,r6}
L8:{}

(b) Tx and object lists

Figure 3.8: Segment tree on the x-extents of objects

visible but are not DNs. The situation in the NW quadrant is similar (see Fig.

3.7(b)).

Our ADN algorithm, presented next, builds on the above observations to

achieve efficient processing.

3.5.2 The All-DN Algorithm

Our approach aims to maximize computation sharing among DN retrievals of

the objects in S. It achieves this by using two segment trees, Tx and Ty, and

performing a sweep of the data space from left to right. Based on Observation

2, we compute for each r ∈ S its DNs in the SW and NW quadrants, and the

west and south stripes.

Fetching all the objects4 from disk, we first construct a segment tree Tx on

their x-extents. Each leaf node nxk in Tx is associated with a list Lxk of objects

whose x-extents overlap the interval corresponding to nxk. Objects stored in Lxk

are maintained in ascending order on their lower y-values. Fig. 3.8 illustrates

a segment tree on the x-extents of 6 objects. Fig. 3.8(a) shows on the x-axis

the intervals Ixk associated with each leaf, and Fig. 3.8(b) presents the tree

structure and the object lists Lxk of the leaves. Note that the superscript x

indicates the dimension indexed by the segment tree, but is omitted from the

4Note that any ADN algorithm has to read S from the disk. Also, the size of Tx is
manageable, as we show in experiments. In seriously memory-constrained systems, a disk-
based segment tree can be used [4].

47

CHAPTER 3. DIRECT NEIGHBOR SEARCH FOR PREFERENCE-OVERLAP RECOMMENDATION

SUPPORT

figure for clarity.

In constructing Tx, we do not insert objects one by one. Instead, Tx is

bulk-loaded. After sorting the objects in S on their lower x-values, we use the

resulting 2|S| + 1 x-intervals (and their object lists) as leaf nodes. Then, we

build the segment tree bottom-up.

After constructing Tx, we scan from its leftmost leaf node to the rightmost.

For each leaf nxk, we consider the objects in its list in ascending lower y-value

and compute their DNs (in the SW and NW quadrants, and in the west and

south stripes). After processing all the objects in the list, we proceed to the

next leaf node, until all the leaves are visited. The details are as follows.

South stripe DNs. Suppose {nx1 , nx2 , ..., nx2|S|+1} is the sequence of leaf

nodes in Tx. Starting from the leftmost leaf’s list and moving to the right, we

identify as DNs (in the south stripe) every pair of successive objects 〈ri, ri+1〉 in

the list. Correctness is obvious, since by definition there is no object between

ri and ri+1 in the x-interval of the corresponding leaf. Consider, for example,

Fig. 3.9. The list for node nxk contains (among others) objects r10 and r11. Due

to the sorting of the list on lower y-value, r10 and r11 are placed consecutive

to each other and, hence, they are correctly reported as DNs.

The remaining DNs (west, SW, NW) are also discovered during the afore-

mentioned left-to-right scanning of Tx. This task is facilitated by a second

segment tree Ty, similar to Tx, which however (i) is built on the y-extents of

objects, and (ii) is incrementally populated. Ty is empty initially. On en-

countering an object r in some Tx node for the first time, we insert it into

Ty (according to its y-extent). The objects in the leaves of Ty are sorted in

ascending order on their upper x-value. In the following we explain how Ty

enables the retrieval of the remaining three types of DNs and helps in sharing

computations in the ADN retrieval.

West stripe DNs. Whenever an object r is inserted into a leaf node nyk

of Ty, we immediately identify the last object in nyk as a DN with respect to

48

CHAPTER 3. DIRECT NEIGHBOR SEARCH FOR PREFERENCE-OVERLAP RECOMMENDATION

SUPPORT

r8

r4

r3

r1

x

r5

y

r7

r10

r11

r6

r2

r9

nk nk+1

...

...

...

...

...

s
e

Figure 3.9: Finding west, SW and NW DNs of r11

the west stripe of r. This is because that object has the largest upper x-value

among all the objects to the left of r, in the y-interval that corresponds to nyk.

Continuing the example in Fig. 3.9, Fig. 3.10(a) and 3.10(b) illustrate the leaf

node lists in Ty before and after the insertion of r11. For clarity, the superscript

y is omitted from the leaf names, and leaves irrelevant to the example are not

shown. The insertion creates a new leaf in Ty, and r11 is appended in the

object lists of ny13, n
y
14, n

y
15. The rightmost objects in these lists are r11’s west

DNs (r4 in Ly13, along with r9 in Ly14 and Ly15).

NW and SW DNs. Ty is used for efficient NW and SW DN search too.

Without loss of generality, assume that no pair of objects have exactly the

same lower or upper x-value. Consider again the scanning of leaf nodes in Tx

in the process of retrieving the south and west DNs. For each leaf nxk, the left

bound of its associated interval is due to either the lower or upper x-value of

an object. In Fig. 3.9, for instance, the left bound of nxk is due to the lower

x-value of r11, whereas the left bound of nxk+1 is due to the upper x-value of

r11. For leaf nodes of the former category, we compute the NW and SW DNs

of the responsible object; i.e., when considering nxk we compute the NW/SW

49

CHAPTER 3. DIRECT NEIGHBOR SEARCH FOR PREFERENCE-OVERLAP RECOMMENDATION

SUPPORT

Leaf of Ty Object list

n1 {r8}

n2 {r8, r10}

n3 {r10}

n4 {r3}

n5 {r3,r6}

n6 {r6}

n7 {}

n8 {r2,r7}

n9 {r2,r5,r7}

n10 {r1,r5}

n11 {r1}

n12 {r4}

n13 {r4,r9}

n14 {r9}

 (a) Before insertion

Leaf of Ty Object list

n1 {r8}

n2 {r8,r10}

n3 {r10}

n4 {r3}

n5 {r3,r6}

n6 {r6}

n7 {}

n8 {r2,r7}

n9 {r2,r5,r7}

n10 {r1,r5}

n11 {r1}

n12 {r4}

n13 {r4,r11}
n14 {r4,r9,r11}

n15 {r9,r11}

 (b) After insertion

Figure 3.10: Inserting r11 into Ty

DNs of r11, whereas no NW/SW processing is needed for nxk+1.

We now focus on nxk and the SW processing for r11. By definition, all the

SW DNs of r11 are inside the gray area in Fig. 3.9, i.e., inside the region

[0, r11.xl][r10.yh, r11.yl]. Note that this “stripe” is delimited by r10, the preced-

ing object in the list of nxk. Since the left bound of nxk is attributed to r11.xl

and r10 is in Lxk too, it holds that r10.xl < r11.xl, i.e., there is a portion of r10

protruding to the left of nxk. This portion of r10 disqualifies any object lower

than the gray area from being a SW DN of r11.

To identify the DNs in the gray area, we use Observation 3 as a filtering step

to produce an (inclusive) list R of candidate SW DNs. Specifically, we utilize

Ty to retrieve those objects in the gray area that are horizontally unblocked

from the left of line segment se (shown in the figure). The process is similar

to retrieving an object’s west DNs using Ty. Fig. 3.10(b) shows the state of

Ty when processing r11. The leaves that overlap se (on the y-extent) are ny4

up to ny12. R is formed by collecting the last (i.e., rightmost) objects in the

50

CHAPTER 3. DIRECT NEIGHBOR SEARCH FOR PREFERENCE-OVERLAP RECOMMENDATION

SUPPORT

lists of these Ty leaves, i.e., R = {r4, r1, r5, r7, r6, r3}. The leaves of Ty are

scanned from ny12 towards ny4 (i.e., from higher y-values to lower ones), leading

to an inherent sorting ofR according to upper y-values. This sorting facilitates

subsequent refinement.

The refinement step eliminates non-DN entries from R based on Lemma 1,

i.e., by finding the skyline objects in it. Due to the inherent ordering in R, the

time needed for skyline processing is linear to |R|. We scan R from the first to

the last object, i.e., in decreasing upper y-value. The first object, r4, must be a

SW DN as its highest y-value means that it cannot be dominated by any other

candidate. For each subsequent candidate r in R to be a skyline object (i.e., a

DN), it must have an upper x-value larger than that of the last identified DN.

Note that this single comparison saves considerable computations compared to

checking r for dominance against all the skyline objects found. In our example,

the second candidate, r1, is not a DN because its upper x-value is smaller than

that of r4. The third candidate, r5, passes this check against r4 and becomes

the last reported DN. Thus, the fourth candidate, r7, is checked against r5

only (as opposed to the entire skyline). Object r7 is reported as a DN, and

subsequently disqualifies r6 and r3, leading to r4, r5 and r7 being the final SW

DNs of r11.

A symmetric filter-and-refine procedure is used to retrieve the NW DNs of

r11. The difference is that the corresponding (gray) search area is refined by

r12, the next object in the list of nxk. If r11 is the last object in Lxk, the search

area extends upwards to the boundary of the data space. Also, the traversal

of Ty nodes that fall in the search area is performed in increasing y-order,

leading to an R that is sorted on the lower (instead of the upper) y-value of

the candidate objects.

Note that the filtering and refinement steps (for either SW or NW DNs)

have a cost linear to the size of R, since no sorting is required in the skyline

computation. The latter is taken care of by the structure of Ty. There is

51

CHAPTER 3. DIRECT NEIGHBOR SEARCH FOR PREFERENCE-OVERLAP RECOMMENDATION

SUPPORT

Algorithm 3.1: ADN

Input: a set S of objects
Output: set RDN of DN pairs in S

1 build segment tree Tx on x-extents of objects in S;
2 Nx ← sequence of leaf nodes of Tx;
3 initialize an empty segment tree Ty;
4 RDN = ∅;
5 for i = 1 to |Nx| do
6 let Lxi be the object list of node nxi ;
7 for each object rj in Lxi do
8 append the pair 〈rj−1, rj〉 to RDN ;
9 if left bound of nxi is due to rj.xl then

10 RDN = RDN∪ SearchGrayArea(Tx, Ty, rj);
11 insert rj into Ty according to its y-extent;
12 for each leaf nyk covered by [rj.yl, rj.yh] do
13 append the pair 〈rj, r′〉 to RDN , where r′ is the last

object in the list of nyk;

14 return RDN ;

thus only a one-time cost in inserting each encountered object into Ty which,

once spent, is utilized by all the subsequently considered objects. This avoids

many unnecessary computations (compared to independent DN retrievals for

every r ∈ S). Finally, the algorithm extends trivially to all-K-DN processing,

following a methodology similar to Sec. 3.4.

The detailed ADN algorithm is given in Algorithm 3.1. Line 8 finds DN

pairs from the north and south stripes, line 10 searches for SW and NW DNs

in the gray area (using Algorithm 3.2), whereas line 13 identifies the west and

east stripe DNs.

3.6 DN Search in Higher Dimensions

Our methodology extends beyond two dimensions while retaining its I/O op-

timality. In this section we discuss the three-dimensional case (i.e., d = 3) and

then generalize to more dimensions. Prior to that, however, we establish that

DN search is meaningful primarily in low-dimensional spaces, and justify our

focus on this setting.

52

CHAPTER 3. DIRECT NEIGHBOR SEARCH FOR PREFERENCE-OVERLAP RECOMMENDATION

SUPPORT

Algorithm 3.2: SearchGrayArea

Input: Tx, Ty, an object rj
Output: NW and SW DNs of rj

1 RSW = ∅;
2 issue a stabbing query on Ty at rj.yl;
3 let n+ be the resulting leaf node in Ty;
4 scan from n+ towards the leaves with smaller y-values until reaching the

boundary of a leaf n− whose last object’s upper x-value satisfies
xh > rj.xl;

5 let R be the sequence of the last objects in the lists for the leaves
between [n+, n−];

6 while R is not empty do
7 remove the first object r′ from R;
8 let r′′ be the last added DN to RSW ;
9 if r′.xh > r′′.xh then append 〈rj, r′〉 to RSW ;

10 RNW = ∅;
11 issue a stabbing query on Ty with rj.yh;
12 let n− be the resulting leaf node in Ty;
13 scan from n− towards the leaves with greater y-values until reaching the

boundary of a leaf n+ whose last object’s upper x-value satisfies
xh > rj.xl;

14 let R be the sequence of the last objects in the lists for the leaves
between [n−, n+];

15 while R is not empty do
16 remove the first object r′ from R;
17 let r′′ be the last added DN in RNW ;
18 if r′.xh > r′′.xh then append 〈rj, r′〉 to RNW ;

19 return RSW ∪RNW ;

3.6.1 Effect of Dimensionality

A hyper-rectangle q in d dimensions has 2d vertices – in two-dimensional terms,

vertices correspond to corners. Equivalently, each of the vertices defines a

space partition. In a way similar to quadrants, the DNs in each of these

2d partitions coincide with the skyline objects (the details of why this is the

case are discussed later in this section). On the other hand, it is known that

the number of skyline points increases exponentially with dimensionality [83].

Since the DN set is a superset of 2d skylines (each of exponential cardinality

with d), the number of DNs increases at least exponentially with d. In other

words, in high dimensionality the DN set includes a large fraction of the dataset

S. This limits the usefulness of the query, since the very motivation of the DN

53

CHAPTER 3. DIRECT NEIGHBOR SEARCH FOR PREFERENCE-OVERLAP RECOMMENDATION

SUPPORT

q

(a) Partitions

q

y

x

z
qd

(b) Vertex partition at qd

Figure 3.11: DN search in three dimensions

problem is to identify a small subset of S as immediate competitors of q.

Its diminishing selective power with d suggests that it is more meaningful in

low dimensional spaces (a feature common in many queries, like skylines [83],

NNs [14], etc). Furthermore, in practice, window queries in applications like

propertyguru.com.sg and kayak.com (mentioned in Introduction) typically do

not involve more than three or four dimensions. Notwithstanding this, our DN

processing methodology extends to d > 2 and remains I/O optimal (regardless

of dimensionality).

3.6.2 Processing in Three Dimensions

In three dimensions, the source and data objects are three-dimensional boxes,

and S is indexed by a 3-D R-tree. The DN relationship is expressed in terms

of 3-D window queries, i.e., two objects are DNs if and only if they can be

exclusively intersected by some axis-parallel box. The geometry of the source

object q includes 8 vertices, 6 faces, and 12 edges. Each of these elements

defines a partition, which leads to 27 partitions in total (including box q itself)

as shown in Fig. 3.11(a).

The treatment of vertices is similar to that of quadrants in two dimensions.

Consider the partition defined by vertex qd in Fig. 3.11(b). The MIA of an

object r that falls in this partition is the three-dimensional box with a diagonal

54

CHAPTER 3. DIRECT NEIGHBOR SEARCH FOR PREFERENCE-OVERLAP RECOMMENDATION

SUPPORT

from qd to the vertex of r that is closest to qd. Lemma 1 extends trivially to

three dimensions; the DNs in a vertex partition are the skyline objects in this

partition with the vertex (i.e., qd) as origin. BBS can be used to compute the

3-D skyline in an I/O optimal way [58]. Note that CNS is no longer applicable,

because there is currently no NS algorithm for more than two dimensions.

Faces are handled like stripes in 2-D, the difference being that a spatial

access method (e.g., a main-memory 2-D R-tree) is used instead of a segment

tree for visibility check. An incremental NN search is initiated at the face,

directed outside of q. Denote the face as st and its 2-D R-tree as Tst. The

projections of encountered DNs on st (projections are necessarily rectangular)

are inserted into Tst. The incremental NN search in the index of S prunes

nodes and ignores objects whose projections on st are entirely covered by DN

projections already in Tst.
5

In Fig. 3.12(a), the rectangles on face st are the projections of three objects

(numbered according to the subscripts of the objects). r1 is the first NN of st,

and is thus a DN. Object r2 is not a DN because its projection is fully covered

by that of r1. If r2 were the MBR of an index node, it would be pruned. On

the other hand, r3 is a DN because it is not fully blocked by r1. At this stage,

Tst includes the projections of r1 and r3 (i.e., of the DNs found so far).

Edges require special treatment. Each edge ed has two fixed dimensions

and one variable. In Fig. 3.12(b), the x and y dimensions are fixed (every point

on ed has the same x and y coordinates) while z is variable. The MIA of an

object r in the partition of ed is the box defined by ed and the closest edge of

r that is parallel to ed. Objects that could potentially disqualify r from being

a DN must first of all dominate it in the fixed dimensions (x and y). Such

a dominating object r′ ∈ S disqualifies the part of r that overlaps with its z

5To perform this check, when considering an object r (or an index node), we process a
window query in Tst to retrieve all the DN projections (rectangles) that overlap with that
of r. After subtracting these rectangles from the projection of r using a polygon clipping
algorithm [76], we check whether there is a residual. If so, the object (or node) passes the
test.

55

CHAPTER 3. DIRECT NEIGHBOR SEARCH FOR PREFERENCE-OVERLAP RECOMMENDATION

SUPPORT

r1q

st

r2
r31

2

3

(a) Face partition at st

q

r1 r2
ed

{ {

Projection of r1

Projection of r2

(b) Edge partition at ed

Figure 3.12: DN search in face and edge partition

extent (if there is any overlapping). In Fig. 3.12(b), for instance, r1 dominates

r2 in the subspace of fixed dimensions (i.e., the x : y plane). In the variable

dimension (z), the z-extent of r1 only partially covers that of r2 (see their

projections on ed), and disqualifies only that part of r2. The remaining part

of r2 may still be exclusively intersected (along with q) by a three-dimensional

window query, i.e., r2 is a DN.

Formally, an object r in the partition of edge ed is a DN if and only if the

objects that dominate it in the fixed dimensions do not collectively cover its

extent in the variable dimension. The proof resembles that of Lemma 1 and

is omitted. We adapt BBS to perform DN search in the partition of ed. The

algorithm proceeds like a skyline computation, i.e., with an incremental NN

search at ed. A node is visited (or an object included in the DN set) if the

DNs found so far that dominate it in the fixed dimensions, do not collectively

cover its entire extent in the variable dimension. The search inherits the I/O

optimality of BBS algorithm.

The DN search inside q and in the partitions defined by vertices, faces and

edges can be completed in a single R-tree traversal, similar to Sec. 3.3.3, which

guarantees overall I/O optimality.

56

CHAPTER 3. DIRECT NEIGHBOR SEARCH FOR PREFERENCE-OVERLAP RECOMMENDATION

SUPPORT

3.6.3 Beyond Three Dimensions

The geometry of a d-dimensional hyper-rectangle q includes d types of elements;

e.g., in two dimensions we have vertices and edges (defining quadrants and

stripes), while in three dimensions we additionally have faces. Every element

has m fixed dimensions and d − m variable ones, where 1 ≤ m ≤ d. When

m = d the element is a vertex, and a skyline search retrieves exactly the DN

set in the corresponding partition. In all other cases (m < d), an object r can

only be disqualified by objects that dominate it in the fixed dimensions. Each

of these dominating objects disqualifies the portion of r that overlaps with

it in the variable dimensions. Note that this applies also to the m = 1 case

(e.g., stripes in two dimensions, or faces in three) where there is a single fixed

dimension, and dominance degenerates to closeness to q (thus the incremental

NN search on the fixed dimension that we used previously for stripes and

faces). Each of these partitions can be processed with BBS where a node or

object is pruned if the already discovered DNs that dominate it in the fixed

dimensions, collectively cover its entire extent in the variable dimensions. The

DN search for all the partitions (and for DNs inside q) can be performed in a

single R-tree traversal, thus guaranteeing I/O optimality.

Regarding K-DN search in higher dimensions, it follows the principles pre-

sented in this section. Under the same generalized definition of dominance

(which takes into account fixed and variable dimensions), K-DN search dis-

qualifies/prunes R-tree nodes and data objects that are dominated by at least

K result objects found so far. All-DN extension is similar to Sec. 3.5, where

all objects are loaded into a segment tree on one dimension, and an (incre-

mentally populated) R-tree on the remaining dimensions plays the role of Ty

to facilitate dominance checking.

57

CHAPTER 3. DIRECT NEIGHBOR SEARCH FOR PREFERENCE-OVERLAP RECOMMENDATION

SUPPORT

3.7 Empirical Evaluation

In this section, we evaluate our algorithms using real and synthetic data. For

the two-dimensional experiments, we obtained three real datasets from the R-

tree portal6, namely LB, TCB and CA. LB and CA contain 53K and 2.2M

MBRs, respectively, of roads and streets in Long Beach and California. TCB

contains 556K MBRs of residential blocks in four American states. The distri-

bution in CA is highly skewed, whereas LB and TCB are more evenly spread

out. The MBRs in each of them are treated as data objects in the experi-

ments. To control the dataset cardinality, we also produced synthetic data

with the generator of Theodoridis et al. from the R-tree portal7. The gen-

erated rectangles are distributed in a [0, 10000][0, 10000] space uniformly, and

have a side-length of 10 units on average.

Our evaluation also includes higher-dimensional experiments. For these,

we use the HOTEL dataset (from hotelsbase.org), which contains 418,843 ho-

tel records with four attributes, namely stars, price, number of rooms, and

number of facilities. We normalized the dataset to a [0, 10000]4 space. Since

hotel records correspond to points, we extended them to hyper-rectangles with

average side-length of 10 units.

All the datasets are indexed with R∗-trees [8], using a page size of 4KBytes.

The algorithms are implemented in C++, and run on a Ubuntu machine with

a 2GHz Intel Core Duo CPU and 2 GBytes of main memory.

3.7.1 Comparison with Related Query Types

Before investigating processing performance, it is essential to quantify how

different the results of this new query (DN) are from those of related query

types, namely, nearest neighbors (NN) and nearest surrounders (NS). First,

we process K-DN queries for K = 1 to K = 6 and record the result sets (in

6http://www.rtreeportal.org
7http://www.rtreeportal.org/software/SpatialDataGenerator.zip

58

CHAPTER 3. DIRECT NEIGHBOR SEARCH FOR PREFERENCE-OVERLAP RECOMMENDATION

SUPPORT

1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

Ja
cc

ar
d

co
ef

fic
ie

nt

 K

NS query
NN query

(a) LB

1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

Ja
cc

ar
d

co
ef

fic
ie

nt

 K

NS query
NN query

(b) TCB

1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

Ja
cc

ar
d

co
ef

fic
ie

nt

 K

NS query
NN query

(c) CA

1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

Ja
cc

ar
d

co
ef

fic
ie

nt

 K

NS query
NN query

(d) Synthetic

Figure 3.13: Jaccard coefficient of NN and NS sets w.r.t. DN results

this experiment we focus merely on the composition of the result). Then, we

process NN and NS queries at (the centroid of) the same source objects as DN

search8. In the NN case, we produce as many NNs as the cardinality of the

corresponding K-DN set. In the NS case, we retrieve K-tier NSs for the same

K value as the respective K-DN set.

To compare the result sets, we compute the Jaccard similarity coefficient, a

standard means to measure similarity between sets [49]. The Jaccard coefficient

of two sets A and B is defined as the cardinality of their intersection divided

by the cardinality of their union, i.e., as |A∩B||A∪B| . Fig. 3.13 plots the Jaccard

coefficient of NN and NS results with DN sets for different K values.

There are three key observations. First, NN sets have a higher similarity to

DNs than NSs. A reason for this is that we “favor” NN by producing the same

number of NNs as DNs (this number could not be known in advance, unless we

8Recall that there exist NS methods only for point sources in two-dimensional domains.

59

CHAPTER 3. DIRECT NEIGHBOR SEARCH FOR PREFERENCE-OVERLAP RECOMMENDATION

SUPPORT

run a K-DN query first); on the other hand, K-tier NS sets have very different

(i.e., larger) cardinality than K-DNs. Second, the more oblong the objects in a

dataset, the more the NN and NS results deviate from the DNs. This explains

why in LB, CA, and Synthetic the Jaccard similarity is considerably smaller

that TCB – objects in TCB have an average aspect ratio of 1.908, whereas the

average aspect ratios in LB, CA, and Synthetic are 6.631, 5.920, and 3.857,

respectively. The final observation is that similarity generally drops for larger

K. This is expected, because as K increases, so do the sizes of the compared

result sets, and therefore the differences between the semantics of the queries

become more pronounced.

Table 3.3: Plain DN results

Dataset
of I/Os CPU time (msec)

SDN CNS SDN CNS
LB 29 61 24 306

TCB 17 129 61 313
CA 22 174 67 400

Synthetic 55 112 74 226

Table 3.4: Number of DNs and NSs

Dataset Stripe DNs Quad. DNs NSs
LB 12 6 72

TCB 14 3 53
CA 11 10 69

Synthetic 11 13 126

3.7.2 Experiments in Two Dimensions

Plain DN results. We first consider plain DN search in two dimensions.

We compare our SDN-based algorithm versus the baseline CNS-based method,

denoted in the charts as SDN and CNS, respectively. For fairness, we enhanced

the latter with a single-traversal optimization (similar to that in Sec. 3.3.3)

to avoid multiple reads of the same R-tree nodes. Moreover, its NS search

component uses the most efficient algorithm proposed in [47] (termed Sweep

60

CHAPTER 3. DIRECT NEIGHBOR SEARCH FOR PREFERENCE-OVERLAP RECOMMENDATION

SUPPORT

in that work). Performance is measured in terms of I/O cost and CPU time.

Note that due to the single traversal feature of both algorithms, the existence

or not of a cache does not affect the I/O cost (because the R-tree nodes are

accessed at most once).

For each line in Table 3.3, we use one of the four datasets as S and choose

the source object at random among its rectangles. In this experiment, the

cardinality of Synthetic is set to 100K. Every reported measurement is the

average over 100 queries (at different source objects). CNS incurs 2 to 8 times

more I/Os (in LB and CA, respectively). The reason is that the majority

of quadrant NSs are false positives, i.e., they are not actually DNs. Table

3.4 illustrates the average number of stripe DNs, quadrant DNs, and NSs.

The number of NSs is an order of magnitude larger than actual quadrant DNs,

which implies a large false positive ratio in CNS and translates to a considerable

number of (unnecessary) I/Os. Furthermore, turning again to Table 3.3, CNS

requires significantly more CPU time. The reason is not only that there are

too many NSs, but also that angular search in CNS is more complex than

skyline computation.

In Fig. 3.14, we examine the effect of dataset cardinality N on the perfor-

mance of CNS and SDN. We use synthetic data to effectively vary N from 10K

to 500K. The results show that although both algorithms incur proportionally

higher costs with a larger N , SDN continues to maintain a substantial lead

over CNS. At N = 500K, for instance, SDN incurs around half the I/O cost of

CNS, and one third the CPU time.

K-DN results. We evaluate SDN and CNS for K-DN search. For brevity,

we present results only for the TCB dataset (the trends and relative perfor-

mance for the other datasets are similar). In Fig. 3.15, we vary K from 1 to

6 and measure the I/O cost and CPU time of the algorithms. Each plotted

value is the average over 100 randomly chosen source objects. CNS incurs one

to two orders of magnitude more I/Os than SDN (in Fig. 3.15(a)). The gap

61

CHAPTER 3. DIRECT NEIGHBOR SEARCH FOR PREFERENCE-OVERLAP RECOMMENDATION

SUPPORT

0 100 200 300 400 500

50

100

150

200

250

300

N (X1000)

of

 I/
O

s

SDN
CNS

(a) # of I/Os

0 100 200 300 400 500
0

200

400

600

N (X1000)

C
P

U
 ti

m
e

(m
se

c.
)

SDN
CNS

(b) CPU time

Figure 3.14: Plain DN, effect of N (Synthetic dataset)

1 2 3 4 5 6
0

200

400

600

K

of

 I/
O

s

SDN
CNS

(a) # of I/Os

1 2 3 4 5 6

10
2

10
3

10
4

K

C
P

U
 ti

m
e

(m
se

c.
)

SDN
CNS

(b) CPU time

Figure 3.15: K-DN search, effect of K (TCB dataset)

in CPU time is even wider (in Fig. 3.15(b)); CNS requires several seconds to

process a DN query, whereas SDN spends less than 100msec in all cases. SDN’s

superior performance is due to its I/O optimal and CPU-efficient BBS search.

In contrast, CNS wastes I/O and CPU time on the numerous false positives

(NSs that are not DNs). The problem is exacerbated as K increases from 1 to

6 (corresponding to 1-tier to 6-tier NS retrieval); the average number of NSs

found by CNS grows from 53 to 6593 per query, among which there are only 3

to 10 actual DNs.

Next, we repeat the previous experiment and examine the space require-

ments in the incremental version of SDN versus knowing K in advance9. Table

3.5 presents the peak memory consumption of the incremental and plain (i.e.,

9Note that the two versions have identical I/O cost and practically the same CPU time,
i.e., the performance of incremental SDN matches the SDN curves in Fig. 3.15.

62

CHAPTER 3. DIRECT NEIGHBOR SEARCH FOR PREFERENCE-OVERLAP RECOMMENDATION

SUPPORT

Table 3.5: Memory usage of Incremental vs. Non-Incr. SDN (KB)

SDN K = 1 K = 2 K = 3 K = 4 K = 5 K = 6
Incr. 21.3 22.7 24.7 26.4 28.7 30.6
Plain 20.8 21.9 24.1 25.8 27.5 28.9

Table 3.6: All-DN results

Dataset
CPU time (sec) Memory (MB)
ADN sADN ADN sADN

LB 1 1714 3.6 2.6
TCB 40.5 25389 52.6 25
CA 67.8 49967 82.3 46.9

Synthetic 5.1 10823 9.5 4.8

non-incremental) SDN for different K values. The former utilizes only 2% to

6% more space. The dominant factor in space consumption is heap size, which

is the same in both methods. The extra space in the incremental version is due

to storing nodes and objects that would normally be pruned. Compared to the

heap size, this overhead is minimal. When K = 6, for example, the maximum

number of heap entries is 1165, while the number of pruned nodes/objects is

69.

All-DN results. We examine the performance of our all-DN algorithm

described in Section 3.5, which we denote as ADN. For baseline, we construct

a competitor, termed straightforward ADN (sADN), that invokes SDN for

each object in the dataset. For fairness, our implementation of sADN utilizes

Observation 2, i.e., DNs are computed only for two of the stripes and two of

the quadrants. Here we focus on CPU time as the main performance metric,

since both algorithms load the entire dataset in memory. We also measure

the space requirements to verify practicality. As shown in Table 3.6, ADN

achieves substantial performance gains over sADN for all datasets, owing to

two factors.

First, for every object r ∈ S, sADN constructs four segment trees to store

the DNs in the stripes. This is repeated for every object. ADN avoids this

deficiency by maintaining two global segment trees. Furthermore, ADN finds

the stripe DNs with negligible effort (recall that it identifies as south stripe

63

CHAPTER 3. DIRECT NEIGHBOR SEARCH FOR PREFERENCE-OVERLAP RECOMMENDATION

SUPPORT

100 200 300 400 500
10

0

10
1

10
3

10
5

N(× 1000)

C
P

U
 ti

m
e

(s
ec

.)

ADN
sADN

(a) CPU time

100 200 300 400 500
0

2

4

6x 10
4

N(× 1000)

M
em

or
y

us
ag

e
(K

by
te

s)

ADN
sADN

(b) Memory

Figure 3.16: All-DN, effect of N (Synthetic dataset)

DNs every pair of successive objects in the leaf node lists in Tx). The west

stripe DNs are also computed inexpensively, while inserting r into Ty.

Second, sADN needs to perform dominance checks in two quadrants of ev-

ery object r ∈ S. In contrast, ADN finds the candidate SW (or NW) DNs of

each object ri with a linear scan of the leaf nodes in Ty that cover the y-extent

between ri and ri−1 (ri+1, respectively), i.e., between ri and the preceding

(succeeding) object in the object list Lxk that includes ri. Filtering false posi-

tives is also performed with a simple comparison per candidate. Obviously, an

arithmetic comparison is much cheaper than a dominance check. In LB, for

instance, ADN scans 62 leaves in Ty per object on the average, whereas sADN

performs 515 dominance checks per object. This leads to another significant

gain for ADN.

Turning to the memory consumption in Table 3.6, we observe that ADN

uses about twice the space of sADN. This is because ADN maintains two

segment trees in memory. Even so, the space requirements of ADN are well

within the capacity of modern PCs. For example, ADN occupies around 82

MBytes for the CA dataset, which contains 2.2M MBRs. As explained in Sec.

3.5.2, under strict memory constraints, we could resort to a disk-based segment

tree [4].

Continuing the evaluation of ADN, in Fig. 3.16 we examine scalability with

dataset cardinality N . ADN is consistently three orders of magnitude faster

64

CHAPTER 3. DIRECT NEIGHBOR SEARCH FOR PREFERENCE-OVERLAP RECOMMENDATION

SUPPORT

1 2 3 4 5 6
0

500

1000

1500

2000

2500

K

#o
f I

/O
s

(a) # of I/Os

1 2 3 4 5 6
0

1

2

3

4

5
x 10

5

K

C
P

U
 ti

m
e

(m
se

c.
)

(b) CPU time

Figure 3.17: K-DN search in 3-D, effect of K (HOTEL dataset)

than sADN (between 1300 and 4500 times), with double the memory footprint.

3.7.3 Experiments in Higher Dimensions

The remaining experiments evaluate our methodology in higher dimensions.

We use HOTEL as the four-dimensional dataset, and we also extract its first

three dimensions to form the three-dimensional dataset. CNS does not apply

here (because NS methods exist only for two dimensions). Hence, we focus on

the nature of the problem and on the performance of SDN.

In Fig. 3.17 and 3.18 we assess the performance of SDN versus K on three-

dimensional and four-dimensional data, respectively. The trend is similar to

Fig. 3.15, but the cost is considerably higher than in two dimensions. The

main reason is that the number of DNs increases with d, as elaborated in

Sec. 3.6.1. For instance, the number of DNs (K = 1) in the two-dimensional

synthetic dataset with 100K objects is 24, versus 673 in three dimensions (for

the same dataset cardinality). In the HOTEL dataset, the number is 7308

in three dimensions, and 10385 in four dimensions. Another reason is that,

for a fixed cardinality, space becomes sparser in higher dimensions [14], which

causes the search area to expand. Finally, the R-tree structure itself degrades

with dimensionality, thus reducing the effectiveness of pruning. For a given

dataset and R-tree structure, however, SDN is I/O optimal, i.e., the shown

65

CHAPTER 3. DIRECT NEIGHBOR SEARCH FOR PREFERENCE-OVERLAP RECOMMENDATION

SUPPORT

1 2 3 4 5 6
0

2000

4000

6000

8000

10000

K

#o
f I

/O
s

(a) # of I/Os

1 2 3 4 5 6
0

2

4

6

8
x 10

5

K

C
P

U
 ti

m
e

(m
se

c.
)

(b) CPU time

Figure 3.18: K-DN search in 4-D, effect of K (HOTEL dataset)

I/O cost is the smallest possible by any exact, non-precomputation algorithm.

3.8 Summary

In this chapter, we introduce a new query, called direct neighbor (DN) search,

which can be used as a tool to provide the users with additional and valuable

information for recommendation support. Two objects in a dataset are DNs

if it is possible for a window query to overlap these objects and no other. A

DN query retrieves all the DNs of a given source object. DN search and its

variants, K-DN and all-DN, have wide applicability in competitor analysis.

We present algorithms for DN, K-DN and all-DN search. Experiments on

real and synthetic data verify that our algorithms vastly outperform baseline

solutions built upon existing work.

66

Chapter 4

Global Immutable Region for

Top-k Recommendation Support

A top-k recommendation, or equivalently top-k query, shortlists the k records

in a dataset that best match the user’s preferences. To indicate her preferences,

the user typically determines a numeric weight for each data dimension (i.e.,

attribute). We refer to these weights collectively as the query vector. Based

on this vector, each data record is implicitly mapped to a score value (via a

weighted sum function). The records with the k largest scores are reported as

the result. In this chapter we propose an auxiliary feature to standard top-k

query processing. Specifically, we compute the maximal locus within which the

query vector incurs no change in the current top-k result. In other words, we

compute all possible query weight settings that produce exactly the same top-k

result as the user’s original query. We call this locus the global immutable region

(GIR). The GIR can be a powerful tool for top-k recommendation support,

and it can be used as a guide to query vector readjustments, as a sensitivity

measure for the top-k result, as well as to enable effective result caching. We

develop efficient algorithms for GIR computation, and verify their robustness

using a variety of real and synthetic datasets.

67

CHAPTER 4. GLOBAL IMMUTABLE REGION FOR TOP-K RECOMMENDATION SUPPORT

4.1 Motivation

Consider a service like HungryGoWhere.com or Yelp.com, where users rate and

search for restaurants. The former, for instance, maintains for each registered

restaurant the average user ratings in terms of food quality, ambience, value

for money, and service. Users looking for restaurants base their decisions on

these four factors, yet different users weigh each factor differently.

A user interested in dining options can provide a numeric weight for each

decision factor and request for a personalized recommendation of, say, the top-

10 restaurants according to her preferences. Through those weights, which we

collectively refer to as the query vector, each restaurant is implicitly associated

with a score value, computed as the weighted sum of its four average ratings.

The online service may employ an off-the-shelf top-k processing algorithm to

report the 10 restaurants with the largest scores.

In this work we propose to supplement the top-k result with a global im-

mutable region (GIR). The GIR indicates all the possible weight settings for

which the current top-k recommendation holds. For the common case of linear

scoring functions, the GIR is a convex polytope in query space, wherein the

query vector may freely shift without inducing any changes in the result. In

our restaurant example, the query space involves four dimensions, each corre-

sponding to the weight for a factor, e.g., the first axis refers to the weight w1

for food quality, the second to the weight w2 for ambience, etc; the GIR is a

4-dimensional polytope in that space. The GIR can be used to guide weight

readjustment, for the purpose of sensitivity analysis, as well as for effective

top-k result caching.

Suppose that the user in our restaurant example requests for a top-10 rec-

ommendation, using an interface like the text-boxes/slide-bars in Figure 4.1(a)

or the radar chart in Figure 4.1(b), which captures preferences in the form of

movable locations on each of the four axes. Assuming weights in the range

from 0 to 100, the user requests for a top-10 recommendation by specifying

68

CHAPTER 4. GLOBAL IMMUTABLE REGION FOR TOP-K RECOMMENDATION SUPPORT

70

60

Service

Value

50Ambience

60Food Quality

(a) Text input and slide-bars

A
m
b
ie
n
c
e

Food Quality

Value

S
e
rv
ic
e

(b) Radar chart

Figure 4.1: Weight input and GIR-induced bounds

query vector q = (60, 50, 60, 70) – this implies a weight w1 = 60 for food qual-

ity, w2 = 50 for ambience, etc. Should the user decide to explore alternative

recommendations, she may change the weights and reissue the query. Primar-

ily, she would want to avoid a blind readjustment that induces no change in

the top-10 result. At the same time, she would need a sense of how drastically

each weight affects the recommendation, so as to avoid overly radical changes.

Using the GIR, we may derive a lower and an upper bound mark on each

slide-bar (like those shown in Figure 4.1(a)) in between which the correspond-

ing weight value induces no change in the result. Furthermore, we can inform

the user what the new result will be at each of these bounds. Figure 4.1(b)

represents the same bounds in the form of an inner and an outer solid polygon

that connect the “tipping points” on the four axes.

GIR computation finds application in sensitivity analysis as well. Effective

decision support involves providing the user with both a recommendation, and

a measure of its robustness [23, 65]. For example, a robust top-k result would

offer the user higher confidence in her decision, while a sensitive one would

trigger deeper deliberation. An intuitive robustness measure for a top-k result

is the ratio of the GIR volume to the volume of the entire query space. This

ratio determines the probability that a randomly and uniformly generated

query vector would have the same top-k result as the user’s query. The higher

this probability, the more robust the result. This measure of robustness was

69

CHAPTER 4. GLOBAL IMMUTABLE REGION FOR TOP-K RECOMMENDATION SUPPORT

proposed in [70], without however considering efficient approaches to compute

it.

Another application of GIR computation is result caching. Suppose that

previous top-k results are maintained, along with their GIRs. If the query

vector of a new request falls within the GIR of a cached result, the latter

can be directly reported. Even if k in the new query is larger than that of

the cached result, it is still desirable to report the available (highest-scoring)

recommendations immediately [72], before producing the rest of the top-k list.

Note that this is orthogonal to top-k view materialization [26, 80], since the

requested result either matches exactly a cached one or not.

In this chapter we develop scalable algorithms for GIR computation. We

determine the conditions under which changes in the query vector invalidate

the result, represent them in computational geometric terms, and make crucial

observations that enable fast processing. Along the way, our GIR algorithms

also compute the new top-k result should the query vector shift to any point

on the GIR boundary. We verify the generality and efficiency of our methods

using real and synthetic data with different characteristics.

4.2 Preliminaries

As the notion of GIR builds on the top-k query, we first review top-k pro-

cessing. Next, we survey safe regions for spatial queries, per-dimension (local)

immutable regions for top-k queries, and sensitivity analysis in operations re-

search. We also briefly cover convex hull computation, a foundation for our

algorithms.

Given a database D and a scoring function, a top-k query retrieves the

k records from D that achieve the highest scores. Top-k queries have been

studied in various domains, including relational databases [40], middle-ware

information systems [32], joins [75], and dynamic databases [5, 42, 82].

70

CHAPTER 4. GLOBAL IMMUTABLE REGION FOR TOP-K RECOMMENDATION SUPPORT

The most relevant existing study is [53], which determines immutable re-

gions on individual decision factors. An immutable region there takes the form

of a validity interval for an isolated query weight, assuming that all the other

weights are kept constant. One interval is defined for each decision factor. We

term those local immutable regions (LIRs) to distinguish from the GIR. In the

context of Figure 4.1, [53] produces the same original marks and inner/outer

polygons. However, due to the local nature of the LIRs, it cannot support si-

multaneous readjustments to multiple weights. More importantly, if a weight

wi is updated, the immutable regions for all the other factors are invalidated,

even if the new value of wi remains within its LIR. Referring to Figure 4.1

again, if w3 shifts to 40 (which is still inside its permissible range) the tech-

nique in [53] needs to compute from scratch new LIRs for all the remaining

factors. At the heart of LIR computation lie a pruning and a thresholding

technique, both of which are tailored to LIRs and are inapplicable to GIR for-

mation. Note that we may trivially derive LIRs from the GIR (as we discuss

in Section 4.7.3), but the reverse does not hold.

Another related work is [70] which considers uncertain scoring functions and

proposes methods to compute representative top-k results. It also introduces

two sensitivity measures, STB (i.e., stability of an ordering wrt. weights)

and LIK (i.e., ordering likelihood). Given a top-k query with a linear scoring

function, STB computes the largest ball around the query vector (in query

space) where the top-k result remains the same. This ball is enclosed in (i.e.,

a subset of) our GIR, the latter being the maximal locus that preserves the

result. Moreover, STB requires a scan of the dataset, which is prohibitive for

large disk-resident data.

LIK defines a sensitivity measure that is equivalent to the ratio of the GIR

volume to the volume of the query space. Other than the definition, however,

[70] is not concerned with efficiency. It sketches an approach based on half-

71

CHAPTER 4. GLOBAL IMMUTABLE REGION FOR TOP-K RECOMMENDATION SUPPORT

space1 intersection that scans the entire dataset. With a time complexity of

O(n2d−2
), it is impractical for sizable databases. In Section 4.3.3 we sketch a

straightforward approach to compute the GIR which, although it has a superior

complexity of O(nd/2) (compared to LIK), it is still hugely impractical, thus

motivating the elaborate techniques in this chapter.

In location-based services, while processing spatial queries such as nearest

neighbors and window queries, servers face the problem of frequent index main-

tenance and result re-computation as data objects move around and update

their locations. Safe region techniques are designed to alleviate this problem by

assigning to each mobile object an area, known as safe region, within which it

is guaranteed not to alter the result of any spatial query in the system [60, 55].

Safe region techniques are inapplicable to our problem, since they consider the

notion of spatial proximity, as opposed to the score-based ranking involved in

top-k processing.

Another topic that is related to GIR is sensitivity analysis in operations

research, which addresses how changes in the input parameters affect the out-

put of a model [67, 37]. This includes studying to what extent the input is

allowed to change, so that the output continues to be optimal. There are two

approaches. The first, one-factor-at-a-time (OFAT), varies one input factor

while fixing the rest. Although simple to use, OFAT is known to miss out op-

timal combinations, as it cannot capture the interaction among multiple input

parameters. This motivates the second approach, named multi-parameter sen-

sitivity analysis (MPSA). MPSA varies multiple input factors simultaneously

and observes the changes (in terms of variance) in the model output under the

combined influence of the inputs. Techniques for MPSA include standardized

regression, differential analysis, factorial experimental design, and Fourier am-

plitude sensitivity test. OFAT is also known as local sensitivity analysis, and

MPSA as global sensitivity analysis. In a sense, the LIRs in [53] are analogous

1A half-space is either of the two parts into which a hyperplane divides a coordinate
space. In two dimensions, it is a half-plane.

72

CHAPTER 4. GLOBAL IMMUTABLE REGION FOR TOP-K RECOMMENDATION SUPPORT

to OFAT, while our GIR to MSPA. Both the OFAT and MPSA techniques,

however, consider the effect of different inputs to the variance of a value (i.e.,

the model’s output). In our problem, instead, the output changes refer to

updates in the order or composition of a top-k result.

Our solutions touch upon and employ convex hull computation algorithms.

The convex hull of a dataset D in a d-dimensional space is the smallest convex

set that encloses all the records in D. Given a set S of points in d-dimensional

space. For any subset S ′ = {p1, ..., pk} ⊆ S, and any nonnegative numbers

λ1, ..., λk such that
∑k

i=1 λi = 1, if the combination
∑k

i=1 λipi ∈ S, then S

is a convex set. In two dimensions, the hull is a convex polygon, whereas in

higher dimensions it is a convex polytope [13]. The boundary of the hull is

represented by vertices (i.e., data records) and facets. Algorithms for efficient

convex hull computation in two and three dimensions include gift-wrapping

[19], Graham’s scan [35], and Chan’s algorithm [18]. For higher dimensions,

Quickhull [7] and Clarkson’s algorithm [24] are the most common, with a time

complexity of O(nd/2). Our solutions share some of the key operations in

Clarkson’s algorithm. Its crux is to incrementally build the hull by processing

the data records one by one. If the current record lies above one or more facets

of the hull (i.e., it is not enclosed by the hull), these facets are replaced by new

ones that include the new record.

4.3 Computing Global Immutable Region

4.3.1 Definition of Global Immutable Region

We consider top-k processing in a low-dimensional space. The dataset D con-

sists of n records. Each record p ∈ D has an identifier and d numeric attributes

x1, x2, ..., xd (also referred to as dimensions). The top-k query is defined by a

vector of weights q = (w1, w2, ..., wd), called the query vector, which can be seen

as a d-dimensional point. For ease of presentation, we assume that the data

73

CHAPTER 4. GLOBAL IMMUTABLE REGION FOR TOP-K RECOMMENDATION SUPPORT

space and query space are normalized, i.e., data attributes and query weights

have values in the range [0, 1]. The score of a data record p with respect to q is

given by the dot product S(p, q) = q · p =
∑d

i=1wixi. This definition of S(p, q)

is equivalent to what is also commonly referred to as a linear scoring function.

The result R of the query is a list of k records with the highest scores in D,

sorted in decreasing score order. In other words, R = {p1, p2, ..., pk} where pi

is the record with the i-th highest score (1 ≤ i ≤ k).

When the query vector q changes, we say that R is preserved if both its

composition and the score order among its members are unaltered. The prob-

lem we address in this chapter is the computation of the maximal locus in

the query space where R is preserved. We call this locus the global immutable

region (GIR) of q.

Definition 3 Global immutable region (GIR). Given a dataset D and a

top-k query q with result R = {p1, p2, ..., pk}, the GIR is the locus of all vectors

q′ in query space where

1. S(pi, q
′) ≥ S(pi+1, q

′) for each i ∈ [1, k), and

2. S(pk, q
′) ≥ S(p, q′) for every record p ∈ D\R.

4.3.2 Nature of Global Immutable Region

A first step to understanding the problem is to determine the shape of the

GIR. For the score order within result R to be preserved, k − 1 conditions

must hold, each of the form S(pi, q
′) ≥ S(pi+1, q

′) (for i ∈ [1, k)). For the k-th

result record pk to remain ahead of all the non-result records p, another n− k

conditions must hold, each of the form S(pk, q
′) ≥ S(p, q′). Due to the form of

the scoring function, each of these n−1 conditions corresponds to a half-space

in query space, whose defining hyperplane passes through the origin2. The

2Consider for example condition S(pk, q
′) ≥ S(p, q′), which in dot product notation is

pk · q′ ≥ p · q′ ⇒ (pk− p) · q′ ≥ 0. Since vector (pk− p) is fixed (with attribute values in both
records being constant), the inequality implies that q′ lies on a half-space that is bounded
by hyperplane (pk − p) · q′ = 0. The latter passes through the origin of the query space.

74

CHAPTER 4. GLOBAL IMMUTABLE REGION FOR TOP-K RECOMMENDATION SUPPORT

q=(0.6,0.5) w1

w2

1

1
0
0

GIR

q′=(0.3,0.2)

Figure 4.2: GIR example in 2-dimensional (query) space

top-k result is preserved if and only if the query vector remains within the

intersection of these n − 1 half-spaces. This intersection constitutes the GIR

of the query. Any intersection of half-spaces (and therefore the GIR too) is by

definition a convex polytope.

Figure 4.2 shows how the GIR looks in 2-dimensional space (i.e., d = 2).

Query vector q = (0.6, 0.5) represents the user’s original weight setting. In two

dimensions, each of the n−1 conditions derived from Definition 3 corresponds

to a half-plane (instead of a half-space), whose defining line (instead of defining

hyperplane) passes through the origin. Their intersection (i.e., the GIR) is a

wedge like the one shown shaded in the figure. Any query vector lying inside

this area (like the depicted q′ = (0.3, 0.2)) is guaranteed to preserve the top-k

result. Furthermore, this is the maximal locus in the query space where result

R is preserved.

Without loss of generality, each line that bounds the GIR corresponds to

one of the original n − 1 conditions. This implicitly determines what the

new top-k result will be if the query shifts to a particular line. For instance,

assume that the upper bounding line of the GIR corresponds to condition

S(pk, q
′) ≥ S(p, q′), where p is a non-result record. If the query is adjusted

to fall on this line, the new result will be the same as the current one, except

75

CHAPTER 4. GLOBAL IMMUTABLE REGION FOR TOP-K RECOMMENDATION SUPPORT

that p will replace the k-th record in R. If the bounding line corresponds to

condition S(pi, q
′) ≥ S(pi+1, q

′), the resulting update in R is that pi+1 overtakes

record pi in score, i.e., the perturbation is a reordering between pi and pi+1 in

the result.

In the following we focus on the GIR computation. Determining the exact

result perturbation when the query moves to the boundary of the GIR happens

along the way, by identifying the record responsible for each of the half-spaces

that bound the GIR.

4.3.3 Challenges, Assumptions and Setting

Our goal is to develop efficient GIR computation algorithms that are scalable

to large datasets. The discussion in the previous session hints at a possible

GIR computation approach, based on half-space intersection. However, deriv-

ing the n − 1 half-spaces stated in Definition 3 requires scanning the entire

dataset, and incurs a large data access cost. Furthermore, performing the in-

tersection of n − 1 half-spaces requires an excessive amount of computations,

specifically, Ω(nd/2) which explodes for large datasets. The main challenge we

address is how to reduce the number of records/half-spaces considered so as

to minimize (i) the data access cost to retrieve those records, and (ii) the pro-

cessing time for half-space intersection, while still guaranteeing correct/exact

GIR computation.

Targeted at large scale, low-dimensional datasets, we assume that D is

indexed by a spatial access method. Our implementation employs the ubiq-

uitous R∗-tree [9], though our techniques apply directly to other space- or

data-partitioning indices. The index and data could reside in memory or on

disk, the latter being our default setting (although we evaluate our techniques

in both scenarios).

When a query q is posed, prior to GIR computation, its top-k result R

must be retrieved. For this we employ the state-of-the-art BRS technique [73],

76

CHAPTER 4. GLOBAL IMMUTABLE REGION FOR TOP-K RECOMMENDATION SUPPORT

Symbol Description

d Data dimensionality

D Dataset in [0, 1]d

n Number of records in D

p A data record in D

q User query (vector in [0, 1]d)

S(p, q) Score of p w.r.t. q

R Top-k result

pi The i-th record in R (1 ≤ i ≤ k)

SL Skyline of D\R
CH Convex hull of D\R
CH′ Convex hull of set {pk} ∪D\R

Table 4.1: Notation

yet our work is not directly dependent on the choice of top-k algorithm. To

facilitate subsequent GIR-related processing, we maintain all the data records

encountered by BRS (but not included in the top-k result), as well as its search

heap.

After the top-k result is produced, GIR computation commences. That

comprises two phases. The first derives an interim GIR based on the first set

of conditions in Definition 3 (considering only records in R). The second phase

shrinks the interim GIR according to the second set of conditions (imposed by

non-result records).

The examples given in this chapter may refer to either the query space or

the data space. Thus, we explicitly indicate in the figure captions which of the

two spaces is considered. In Table 4.1 we summarize the notation used in the

chapter.

4.4 Processing in Phase 1

Given the original top-k result R, the first phase derives an interim GIR from

the first set of conditions in Definition 3. There are k − 1 conditions, each

defining a half-space in query space. The interim GIR in Phase 1 is obtained

by intersecting these half-spaces. Formally, the interim GIR is the following

77

CHAPTER 4. GLOBAL IMMUTABLE REGION FOR TOP-K RECOMMENDATION SUPPORT

x1 x2 p · q
p1 .54 .5 .516

p2 .5 .48 .488

p3 .52 .35 .418

p4 .4 .4 .4

w2

w1

0
.0
4
w

1
+
0
.0
2
w

2
=
0 0.12w1-0.05w2=0

1

1 -0
.0
2
w

1 +
0
.1
3
w

2 =
0

q q′

(a) Top-k records (b) Half-planes in query space

Figure 4.3: Phase 1 example (k = 4, d = 2)

polytope in query space:

i=k−1⋂
i=1

{q′|q′ ∈ [0, 1]d such that (pi − pi+1) · q′ ≥ 0} (4.1)

Consider a query with q = (0.4, 0.6) and k = 4. Suppose that a top-k

algorithm (BRS in our implementation) reports in the result records p1, p2, p3,

and p4, whose attributes and scores are shown in Figure 4.3(a). Phase 1

commences by deriving the half-plane that preserves the order between p1 and

p2, i.e., half-plane (p1 − p2) · q′ ≥ 0 ⇒ 0.04w1 + 0.02w2 ≥ 0. Figure 4.3(b)

represents the half-plane by its bounding line (0.04w1 + 0.02w2 = 0) in the

query space. Similarly, preserving the order between p2 and p3 defines the

half-plane (p2− p3) · q′ ≥ 0⇒ −0.02w1 + 0.13w2 ≥ 0. In turn, p3 and p4 define

(p3 − p4) · q′ ≥ 0⇒ 0.12w1 − 0.05w2 ≥ 0. The interim GIR is the striped area

at the intersection of the three half-planes. Any query vector in this area is

guaranteed to uphold the score order among the four result records. We use

a 2-dimensional example here for ease of presentation. The process is very

similar in higher dimensions.

Phase 1 is fast because the number of result records k is typically much

smaller than the number of non-result records that need to be considered. It

is also uniform across all methods in our framework. The distinction among

them lies entirely in Phase 2, the bottleneck in GIR computation.

78

CHAPTER 4. GLOBAL IMMUTABLE REGION FOR TOP-K RECOMMENDATION SUPPORT

4.5 Basic Methods for Phase 2

Phase 2 further shrinks the GIR to ensure that no non-result record can over-

take the k-th result record pk in score. As explained in Section 4.3, the effi-

ciency of this phase hinges on the ability to reduce the number of non-result

records examined. In this section, we present two basic methods for pruning

the set D\R to safely discard records that could not affect the GIR.

4.5.1 Skyline Pruning Method

The first method relies on the skyline operator [16]. The skyline of a set

includes only those members that are not dominated by any other member.

In our context, we say that record p dominates another record p′ if the value

of p in every dimension is no smaller than the corresponding value of p′, and

the two records differ on at least one dimension. Due to the definition of

dominance, record p could have a score no smaller than p′ under any monotone

scoring function [40] (which is a superclass of the linear scoring functions we

assume). Since the score of p′ never exceeds that of p regardless of the query

vector, record p′ cannot overtake the current pk before p overtakes pk. In other

words, S(p, q′) ≥ S(p′, q′) for any q′ ∈ [0, 1]d so, by satisfying the condition

S(pk, q
′) ≥ S(p, q′), our GIR automatically also upholds S(pk, q

′) ≥ S(p′, q′).

Hence, it is safe to ignore p′ in GIR computation.

To generalize, we may safely prune the set D\R by retaining only the

records in its skyline SL. The final GIR can be derived by intersecting the

interim GIR from Phase 1 with the half-spaces formed from inequalities (pk −

p)·q′ ≥ 0 for each record p ∈ SL. We term this approach Skyline Pruning (SP).

Figure 4.4 shows a 2-dimensional example where k = 2, the dataset comprises

records p1, p2, ..., p15, and the result includes p1 and p2. The skyline SL of the

non-result records includes p3, p4, ..., p9, which are the only records considered

by SP in Phase 2. Records that fall in the shaded area are dominated by at

79

CHAPTER 4. GLOBAL IMMUTABLE REGION FOR TOP-K RECOMMENDATION SUPPORT

x1

p3

p2

p1

p4

p5

p6

p7

p8

Skyline

p9

p10

p11

p12

p13 p14

Result tuplesx2

p15

Figure 4.4: SP example (k = 2, d = 2, data space)

least one member of the skyline.

Although SP can potentially disqualify many records from D\R, the cardi-

nality of the skyline may still be large. As an indication, the number of records

in SL is in the order of O((log n)d−1) [10] for independent data, while there

are common (e.g., anti-correlated) distributions where the cardinality is even

higher.

In terms of implementation, the state-of-the-art algorithm for skyline com-

putation on spatial access methods is BBS [58], which follows the branch-and-

bound paradigm. It utilizes an R-tree on the dataset to incrementally retrieve

nearest neighbors (NNs) to the top corner of the data space, i.e., to point

(1, 1, ..., 1). The first NN is guaranteed to be in the skyline, and is used to

prune the part of the space it dominates. Then, the next NN is retrieved in

the remaining part of the space; it is also included in the skyline and used to

further prune the search space. The process continues until no more NNs can

be found in the non-dominated part of the space.

To see how BBS applies in our situation, recall that (before GIR compu-

tation) the top-k result was produced by BRS, and that we have retained its

search heap and all the non-result records that were encountered during its

execution. We initialize SL by computing the skyline of the encountered non-

result records (using any main memory algorithm [16]), and then invoke BBS

80

CHAPTER 4. GLOBAL IMMUTABLE REGION FOR TOP-K RECOMMENDATION SUPPORT

on the retained search heap to consider records that may belong to SL but

were not accessed during BRS execution. Recall that the search heap of BRS

is organized on maxscore. That is, in our BBS execution, instead of incremen-

tally retrieving NNs to the top corner of the data space, we retrieve records

in decreasing S(p, q) order. This does not affect the correctness of BBS, since

the distance from the top corner of the data space (in vanilla BBS) can be

replaced by any monotone scoring function to determine the retrieval order

[58]. Another modification is that any record p retrieved by BBS is inserted

into SL only if it is not dominated by any of its members, while if p dominates

any existing members, the latter are removed from SL.

4.5.2 Convex Hull Pruning Method

Our second basic solution for Phase 2 prunes non-result records based on the

concept of the convex hull. If we treat the records of a dataset as points in

d-dimensional space and compute their convex hull, the geometric properties

of the hull guarantee that the top-1 record under any linear scoring function

(defined over the same d dimensions) lies on the hull3 [50, 20].

Let CH be the convex hull of the non-result records. The above property

guarantees that for any query vector q′ ∈ [0, 1]d and any record p′ that is

strictly enclosed by CH (as opposed to lying on it), there is at least one record

p on the hull (i.e., p ∈ CH) such that S(p, q′) ≥ S(p′, q′). This implies that p′

cannot overtake the current k-th result record pk until some record on the hull

has overtaken pk. Hence, only records on CH could affect the GIR.

Utilizing the above observation directly would prune D\R by retaining

only those records that fall on its convex hull. Nevertheless, we can do better.

To exemplify, Figure 4.5 illustrates the convex hull of the non-result records,

assuming the same setting/dataset as Figure 4.4. The records that lie on (as

opposed to inside) CH are p3, p4, p6, p8, p9, p15, p13, p10. However, we observe

3When we say that a record “lies on” or “belongs to” the hull, we mean that it lies on
the boundary of the hull.

81

CHAPTER 4. GLOBAL IMMUTABLE REGION FOR TOP-K RECOMMENDATION SUPPORT

x1

p3

p2

p1

p4

p5

p6

p7

p8

Skyline

p9

p10

p11

p12

p13 p14

Result tuplesx2

p15

Convex hull

Figure 4.5: CP example (k = 2, d = 2, data space)

that p15, p13, p10 are dominated by p4, and could therefore not affect the GIR

(by the same reasoning as in SP). This observation gives rise to our second

baseline algorithm, Convex Hull Pruning (CP), which considers in Phase 2

only those non-result records that belong to the skyline and at the same time

fall on the convex hull of D\R, i.e., records p ∈ SL ∩ CH. Referring to the

example in Figure 4.5, CP considers only records p3, p4, p6, p8, p9.

In implementing CP, we first retrieve the skyline of D\R, using the same

BBS-based approach as SP. Following that, we compute the convex hull of

the skyline records only (using Clarkson’s algorithm [24]). This hull is shown

shaded in the example of Figure 4.5. The records that lie on the hull are used

for half-space intersection with the interim GIR from Phase 1 to derive the

final GIR. An alternative approach would be to compute the convex hull be-

fore disqualifying the dominated among its records. This would be inefficient,

because it would access parts of the space that are too far (and irrelevant)

from the GIR, like the vicinity of p15, p13, p10 in Figure 4.5. Moreover, the only

existing convex hull algorithm that utilizes a spatial index [15] applies only to

2-dimensional space.

82

CHAPTER 4. GLOBAL IMMUTABLE REGION FOR TOP-K RECOMMENDATION SUPPORT

2 3 4 5 6 7 8

10
1

10
2

10
3

10
4

10
5

10
6

10
7

d

C
ar

di
na

lit
y

of
 S

L

Independent
Anti−correlated
Correlated

(a) Cardinality of SL

2 3 4 5 6 7 8

10
1

10
2

10
3

10
4

10
5

10
6

10
7

d

C
ar

di
na

lit
y

of
 S

L∩
C

H

Independent
Anti−correlated
Correlated

(b) Cardinality of SL ∩ CH

Figure 4.6: SP and CP effectiveness (n = 1M, k = 20)

4.5.3 Performance Indications

We now provide preliminary indications of the performance (and shortcomings)

of SP and CP. We use three types of synthetic datasets (independent, anti-

correlated, and correlated) with cardinality 1M each. We defer the description

of these data, but note that they are standard benchmarks for preference-based

queries.

Figure 4.6(a) plots, for different dimensionalities, the number of records

that belong to the skyline of D\R, i.e., the non-result records that SP needs

to process in Phase 2. As anticipated, although SP prunes a large fraction of

D\R, it still needs to consider numerous records. The problem is exacerbated

with growing d.

CP retains only the records in SL ∩ CH, i.e., a subset of those examined

in SP. In Figure 4.6(b) we present the number of records remaining after CP

pruning in the same setting as Figure 4.6(a). CP aggressively reduces the

number of non-result records in Phase 2. However, its effective pruning comes

at the price of a convex hull computation over SL, which entails substantial

processing time.

83

CHAPTER 4. GLOBAL IMMUTABLE REGION FOR TOP-K RECOMMENDATION SUPPORT

x1

p3

p2
p1

p4

p5

p6

p7

p8

p9

p10

p11

p12

p13 p14

k-th result
x2

p15

q

(a) Tilting around pk

x1

p3

p2
p1

p4

p5

p6

p7

p8

p9

p10

p11

p12

p13 p14

k-th result
x2

p15

q

(b) Determining facets

Figure 4.7: Intuition behind FP (k = 2, d = 2, data space)

4.6 Advanced Solution for Phase 2

The shortcomings of SP and CP motivate the development of an efficient and

scalable Phase 2 algorithm that also copes better with dimensionality. We

call this method Facet Pruning (FP). To provide the intuition behind it, we

explore the nature of top-k query.

4.6.1 Rationale of Facet Pruning Method

In Figure 4.7(a) we assume the same dataset and top-k query as in Figures 4.4

and 4.5. Computing the top-k result can be seen as scanning the data space

from its top corner (i.e., point (1, 1)) towards the origin, with a line (or hy-

perplane, in higher dimensions). The orientation of the line is fixed, and it is

determined by the query vector4. The first encountered record has the highest

score, the second encountered record has the next highest score, and so on.

The search stops after finding k data records, which form the result R.

In our example, the sweeping line would first encounter p1 and stop when

it hits p2 (recall that k = 2). The line position when it hits pk ≡ p2 is defined

by equation w1x1 + w2x2 = S(pk, q) and is drawn in bold in Figure 4.7(a).

4 Vector q is a normal vector to the sweeping line (or hyperplane, for d > 2), meaning
that it is perpendicular to the line (or hyperplane, respectively).

84

CHAPTER 4. GLOBAL IMMUTABLE REGION FOR TOP-K RECOMMENDATION SUPPORT

It partitions the data space into two regions – all records above the line have

higher scores than pk and belong to R, whereas records below the line have

lower scores (than pk) and are not among the top-k. Any records on the line

have the same score as pk (yet, without loss of generality, we assume that there

are no ties).

For now, let us ignore reorderings within R, and focus on the second set

of conditions in Definition 3, which ensure that no non-result record overtakes

pk in score. Returning to Figure 4.7(a) and the nature of top-k processing, a

tilt in the orientation of the sweeping line is equivalent to a shift in the query

vector. Assume that we pin the sweeping line at pk but allow it to rotate. A

rotated position of the line is permissible if it keeps all non-result records below

it. This implies that pk still scores higher than them, and the query vector q′

that corresponds to the new line orientation preserves R.

Consider a clockwise rotation in Figure 4.7(a). The first record hit by the

line (i.e., p8) bounds the permissible clockwise rotations, because any further

tilting would perturb the result (p8 would score higher than the current pk ≡

p2). Similarly, the permissible anticlockwise rotations are bounded by p4. Any

other non-result record cannot provide a stricter rotation bound than p4 and

p8.

We make a crucial observation that hints at a general methodology to

identify records like p4 and p8. In Figure 4.7(b) we show the convex hull of set

{pk}∪D\R (i.e., the set of non-result records extended by pk). The two facets

that are incident5 to pk on the hull (i.e., facets p4, p2 and p2, p8) correspond to

the records of interest (p4 and p8, respectively).

This is aligned with the property of the convex hull that each of its facets

keeps all the records on one of its sides (specifically, the one toward the interior

of the hull), which holds for any dimensionality [13]. Since the sweeping line

5A record and a facet are incident to each other if the record lies at a corner of the facet.
In two dimensions, for example, a facet is a line segment, and it is incident to the two records
at its endpoints.

85

CHAPTER 4. GLOBAL IMMUTABLE REGION FOR TOP-K RECOMMENDATION SUPPORT

(or the sweeping hyperplane, in higher dimensions) is pinned at pk, its permis-

sible orientations are determined only by the facets of the convex hull that are

incident to pk. We call the records that are incident to those facets critical.

They are the only non-result records that could affect the GIR.

Intuitive as this fact may sound, translating it into an efficient Phase 2

algorithm is challenging. Let CH′ denote the convex hull of set {pk}∪D\R. A

näıve implementation would compute CH′, get the hull facets that are incident

to pk, collect their incident records (i.e., the critical records), and derive the

GIR using only these records for half-space intersection. Convex hull compu-

tation, however, has a time complexity of Ω(nd/2), which is equivalent to the

complexity of the exhaustive half-space intersection described in Section 4.3.3

(actually, convex hull computation and half-space intersection are dual to each

other [13]). The situation becomes worse if one considers that there is no

off-the-shelf convex hull algorithm for disk-resident data in more than two

dimensions.

To alleviate the problem, our FP approach computes only the relevant part

of the convex hull, i.e., only the hull facets that are incident to pk. This

approach provides scalability with respect to both dataset cardinality and di-

mensionality. We thoroughly demonstrate this fact in Section 4.8, yet here we

provide some preliminary empirical evidence that substantiates the FP ratio-

nale. In Figures 4.8(a) and 4.8(b) we plot the total number of facets in CH′ and

the number of facets that are incident to pk, for the same setting as Figure 4.6.

The charts suggest that FP needs to compute/consider only a very small frac-

tion of the hull facets. We remark that a critical record may be incident to

more than one facet, i.e., the number of critical records may be smaller than

the number of facets shown in Figure 4.8(b). For example, for independent

data and d = 4, there are 45 facets incident to pk and 16 critical records, while

for d = 6 the number of incident facets is 1258 and that of critical records is

98.

86

CHAPTER 4. GLOBAL IMMUTABLE REGION FOR TOP-K RECOMMENDATION SUPPORT

2 3 4 5 6 7 8
10

0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

10
9

d

N
o.

 o
f f

ac
et

s
on

 C
H

 ′

Independent
Anti−correlated
Correlated

(a) Facets on CH′

2 3 4 5 6 7 8
10

0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

10
9

d

N
o.

 o
f f

ac
et

s
in

ci
de

nt
 to

 p
k

Independent
Anti−correlated
Correlated

(b) Facets incident to pk

Figure 4.8: FP effectiveness (n = 1M, k = 20)

Next, we present the detailed FP algorithm. We distinguish between the

FP versions for d = 2 (discussed in Section 4.6.2) and d > 2 (covered in

Section 4.6.3), because the nature of 2-dimensional space allows for special-

purpose enhancements.

4.6.2 Facet Pruning in Two Dimensions

The convex hull/incident facet observation exemplified in Figure 4.7(b) is gen-

eral and particularly useful for d > 2. In the special case of 2-dimensional

space, however, the visualization in Figure 4.7(a) already suggests an effective

processing methodology. That is, FP needs to simply identify the two records

that constrain the rotation of the sweeping line around pk in the clockwise

and anticlockwise directions. Recall that some of the records in D\R have al-

ready been fetched from the disk by BRS during the initial top-k computation,

and kept in memory, as explained in Section 4.3.3. Let T denote this set of

records. The remaining non-result records are on the disk and are accessible

via the R-tree on D.

FP consists of two steps. The first considers T and identifies two candidate

critical records or, equivalently, interim facets incident to pk. The second

refines those facets by exploring data from the disk (using the index), until it

identifies the two actual critical records.

87

CHAPTER 4. GLOBAL IMMUTABLE REGION FOR TOP-K RECOMMENDATION SUPPORT

x1

p3

p2

p4

p5

p6

p7

p8

q

p1

Anticlockwise facet

C
lo

c
k
w

is
e

 fa
c
e

t

Dominance

region of p2

p9

p10

x2

(a) First step

x2

x1

p3

p2

p11

p7

q

p1

Interim position

p12
N1

N3

p14

p13

Final position

N5

N2

N4

(b) Second step

Figure 4.9: FP example (k = 2, d = 2, data space)

The first step starts by removing from T the records that are dominated

by pk, as they cannot overtake it in score under any query vector q′ ∈ [0, 1]2.

Then, it angularly sorts the remaining records in T . That is, for every record

p ∈ T , it computes the angle by which the sweeping line must rotate (in the

anticlockwise direction) in order to hit p. It then picks as candidate critical

records the two with the minimum and maximum angles. The minimum-angle

record corresponds to the anticlockwise interim facet, and the maximum-angle

record to the clockwise interim facet.

We demonstrate the first step of FP in Figure 4.9(a), where T includes

records p3, p4, ..., p10. We first remove p9 and p10 from T because they are

dominated by pk ≡ p2. The angle for each of the remaining records in T is

illustrated by a curved two-headed arrow. The minimum-angle record is p3,

while p7 is the maximum-angle one. These records define the interim facets

p3, p2 and p2, p7. Note that if the area above the dominance region of p2 was

empty (i.e., if p3, p4, p5 were not there), the anticlockwise interim facet would be

the line segment between p2 and its projection on the vertical axis. Similarly,

if p6, p7, p8 were not there, the clockwise interim facet would connect p2 with

its projection on the horizontal axis.

In the second step of FP we consider non-result records that were not

88

CHAPTER 4. GLOBAL IMMUTABLE REGION FOR TOP-K RECOMMENDATION SUPPORT

encountered during top-k computation (i.e., records not fetched from the disk

as yet), utilizing the R-tree on D and the retained search heap of BRS. We

iteratively pop the heap, using its maxscore key as is. If the popped entry

corresponds to an R-tree node, and the minimum bounding box (MBB) of the

node lies completely below the interim facets, we prune/ignore it. Alternatively

(i.e., if at least a part of the MBB is above an interim facet), we fetch the node

from the disk. If it contains index entries (i.e., it is an internal node of the

R-tree), we push its children into the heap, with key equal to their maxscore

according to q. On the other hand, if it contains data records (i.e., it is a leaf

of the R-tree), we consider each of these records p as follows. If p lies above an

interim facet, we update the facet to connect pk with p; otherwise, we ignore p.

The process terminates when the heap becomes empty, reporting the interim

facets as the final ones. Our implementation uses the beneath-and-beyond

technique in [7] to check whether an MBB or record lies below the interim

facets.

In Figure 4.9(b) we demonstrate the second step of FP, continuing the

example of Figure 4.9(a). The interim facets p3, p2 and p2, p7 from the first

step are shown as solid lines. Records p1, p2, p3, and p7 that are already known

to the algorithm, are represented as solid points. Records shown as hollow

points are on the disk and have not been encountered yet. In the beginning

of the process, the search heap of BRS is assumed to include index entries

that correspond to R-tree nodes N5, N4, N1 (stated here in decreasing order of

maxscore). The first entry popped from the heap corresponds to N5. A part

of its MBB lies above the clockwise facet p2, p7. Hence, node N5 is fetched

from the disk. It includes two records, p13 and p14, none of which lies above

p2, p7. Therefore, the clockwise facet remains as is. The second popped entry

corresponds to N4, which lies completely below both interim facets and is thus

ignored.

The next popped entry corresponds to N1. The node is read from the

89

CHAPTER 4. GLOBAL IMMUTABLE REGION FOR TOP-K RECOMMENDATION SUPPORT

disk, since part of its MBB is above the anticlockwise interim facet p3, p2. The

two child entries in N1 point at N2 and N3, which are pushed into the heap

(with key equal to their maxscore according to q). The heap is popped again,

producing the entry of N2. Node N2 is fetched from the disk, because it is not

completely below facet p3, p2. Between records p11, p12 contained in the node,

p11 lies above the anticlockwise facet. The facet is therefore updated to p11, p2,

shown as a dashed line in the figure. The last entry popped from the heap

corresponds to N3, which is below both the current facets and hence ignored.

The heap is now empty and the final facets derived are p11, p2 and p2, p7. The

correctness of the second step relies on the fact that (i) any pruned index

entry or data record lies below both interim facets and therefore is unable to

update either of them, and (ii) the process terminates only when the search

heap becomes empty.

The facets derived by FP indicate the critical records, e.g., in Figure 4.9

the critical records are p11 and p7. From these records, we derive half-planes

(p2−p11) ·q′ ≥ 0 and (p2−p7) ·q′ ≥ 0, respectively, that embody the second set

of conditions in Definition 3. The GIR from Phase 1 is intersected with those

two half-planes to produce the final GIR. We summarize FP in Algorithm 4.1.

Lines 1-2 implement the first step of FP to compute the interim anticlockwise

and clockwise facets fa and fc, respectively. Lines 3-16 correspond to the

second step of FP, while Lines 17-19 intersect the interim GIR from Phase 1

with the half-planes derived from critical records pa, pc to produce the final

GIR.

4.6.3 Facet Pruning in Higher Dimensions

In more than two dimensions, a top-k query q can be seen as a sweeping

hyperplane (to which the query vector is perpendicular). Following the FP

paradigm, if we pin the sweeping hyperplane at pk and allow it to rotate

freely in any direction, the critical records are those (among the non-result

90

CHAPTER 4. GLOBAL IMMUTABLE REGION FOR TOP-K RECOMMENDATION SUPPORT

Algorithm 4.1: Facet Pruning

Input: heap H of BRS, query vector q, k-th result pk
Output: Final GIR

1 T ← set of non-result records encountered by BRS;
2 fa, fc ← InterimFacets(T, q, pk);
3 while H is not empty do
4 Pop the top entry e from H;
5 if e is below both facets fa, fc then
6 Continue;

7 if e corresponds to a leaf node then
8 Fetch the node from the disk;
9 for each record p in the node do

10 if p is above fa then
11 Update fa to p, pk;

12 if p is above fc then
13 Update fc to pk, p;

14 if e corresponds to an internal node then
15 Fetch the node from the disk;
16 Push all the child entries of the node into H;

17 pa, pc ← records incident to fa and fc, respectively;
18 Intersect GIR from Phase 1 with half-planes (pk − pa) · q′ ≥ 0 and

(pk − pc) · q′ ≥ 0;
19 Return GIR;

records) that bound its movement, so as to keep all non-result records under

the hyperplane. To visualize, we use a 3-dimensional example in Figure 4.10.

The figure illustrates the convex hull CH′ of set {pk} ∪D\R and the sweeping

plane that is pinned at pk. The goal in FP is to compute the hull facets that

are incident to pk so as to collect the critical records. In our example, there

are five such facets (shown shaded) that lead to five incident/critical records,

excluding pk.

Before we present algorithmic details, we note that a facet is a (d − 1)-

dimensional object that is generally defined by d records. A ridge is a (d− 2)-

dimensional object representing the intersection of two neighboring facets. For

d = 3, the ridge is a line segment where two facets meet, and it is defined by

the two records at its endpoints. In Figure 4.10 we point out a ridge at the

intersection of a shaded and a normal facet.

91

CHAPTER 4. GLOBAL IMMUTABLE REGION FOR TOP-K RECOMMENDATION SUPPORT

x1

x2

x3
q

pk

Ridge

Figure 4.10: Facets incident to pk (d = 3, data space)

p5

p6

p7

x1

p8

q

x2

x3 pk

(a) Processing record p8

p5

p6

p7

x1

p8

q

x2

x3 pk

(b) Updated set of facets F

Figure 4.11: FP example (d = 3, data space)

The main idea in FP is to avoid computing the entire hull by maintaining

only the facets that are incident to pk. This is carried out in two steps, at the

heart of which lies a strategy that incrementally updates the set of incident

facets as new records are considered. The first considers the set T of non-result

records encountered by BRS, and the second those still on the disk.

First Step of FP

The first step starts by discarding/removing from T those records that are

dominated by pk. Then, it draws d records6 from T and computes a con-

vex hull on these records and pk (note that the cost to compute the convex

6If T contains fewer than d records, we may use instead the projections of pk on each
of the d axes. This is equivalent to our strategy in Section 4.6.2 when the first step of FP
encountered empty areas around the dominance region of pk.

92

CHAPTER 4. GLOBAL IMMUTABLE REGION FOR TOP-K RECOMMENDATION SUPPORT

hull of d + 1 records is trivial). The hull facets that are incident to pk are

maintained in set F , while the rest are discarded. Consider the 3-dimensional

example in Figure 4.11(a) where p5, p6, p7 are drawn from T . From the con-

vex hull of p5, p6, p7, pk, we keep in F the three facets incident to pk, i.e.,

(pk, p5, p6), (pk, p6, p7), and (pk, p7, p5). The bottom facet (p5, p6, p7) is not in-

cident to pk and is discarded.

Next, we process each record p in T and incrementally update F . If p lies

below all the facets in F , it is discarded. Otherwise, we update F following a

process reminiscent of Clarkson’s algorithm, yet focused on facets incident to

pk only.

Specifically, we initialize a set Fv and place in it all the facets from F that

p lies above of. In Figure 4.11(a) the only facet that is below p8 is (pk, p5, p6).

Then, we collect all the ridges that are shared between a facet in Fv and a facet

in F\Fv. In the literature these are called horizon ridges. In our example the

horizon ridges are p5, pk, p6, pk and p5, p6. Among them, we keep only those

incident to pk (i.e., the former two). We update F by (i) removing the facets

that belong to Fv, and (ii) inserting one new facet for each of the retained

horizon ridges (the new facets are formed by connecting p with the respective

ridge). Figure 4.11(b) shows the updated F after processing p8. Observe that

facet (pk, p5, p6) is removed and is replaced by two new facets. The first is

defined by p8 and horizon ridge p5, pk, and the second by p8 and p6, pk. Note

that the striped facet was never created nor inserted in the updated F . That

facet would not be incident to pk, and we avoided its unnecessary formation

through our strategy to discard those horizon ridges that were not incident to

pk (i.e., ridge p5, p6).

In Figure 4.12(a) we apply the above methodology to an alternative scenario

where p8 lies above two facets instead of just one, i.e., in this case Fv includes

(pk, p5, p6) and (pk, p6, p7). We stress that p6, pk is not a horizon ridge in this

case, because it is formed by facets that are both in Fv. The horizon ridges

93

CHAPTER 4. GLOBAL IMMUTABLE REGION FOR TOP-K RECOMMENDATION SUPPORT

p5

p6

p7

x1

p8

q

x2

x3 pk

(a) Processing record p8

p5

p6

p7

x1

q

x2

x3 pk

p8

(b) Updated set of facets F

Figure 4.12: Second FP example (d = 3, data space)

are p5, p6, p6, p7, p5, pk and p7, pk. The former two are discarded because they

are not incident to pk. The latter two are used in tandem with p8 to create

two new facets, (pk, p8, p5) and (pk, p7, p8), as shown in Figure 4.12(b). These

new facets are inserted into F , while those in Fv are removed from F . Striped

facets are shown for completeness, but were never formed nor placed into F .

We optimize the first step with a heuristic. Recall that in the beginning

of this step, we draw d records from T to (build a convex hull and) form the

initial set F . Instead of a random choice, we pick the d records from T with

the maximum values along each of the d dimensions. The rationale is that

many non-result points are likely to lie below the formed facets, and thus be

pruned directly later on.

Second Step of FP

In the second step we refine F by considering non-result records that have not

been encountered (not fetched into memory) before. F is updated gradually as

we pop entries from the search heap of BRS. The exploration of the R-tree is

similar to the 2-dimensional case. Index nodes are pruned (ignored) if they lie

completely below each facet in F ; otherwise, they are read from disk. When

an internal node is read, its child entries are pushed into the heap with key set

to their maxscore according to q. When a leaf node is read, each of its records

94

CHAPTER 4. GLOBAL IMMUTABLE REGION FOR TOP-K RECOMMENDATION SUPPORT

is checked against F , the latter being updated if the record lies above some of

its facets. The update process is identical to the description in Section 4.6.3.

The process terminates when the heap becomes empty, and the critical records

are collected from the final set F . Every critical record p is mapped into a

half-space of the form (pk − p) · q′ ≥ 0 and intersected with the interim GIR

from Phase 1 in order to produce the final GIR7.

Although the visual examples used in Section 4.6.3 are for d = 3, both steps

of the FP methodology apply to higher dimensions without modification, by

simply using the conventional notions of facets and ridges in the respective

space.

We conclude the discussion about FP with a note on its complexity. Ac-

cording to [21], the number of facets on CH′ is O(nd/2), while the number of

facets incident to a record on the hull (e.g., to pk) is O(n
d
2
−1). Computing

these facets is the bottleneck in FP. FP uses a process based on Clarkson’s

algorithm, whose complexity for the entire hull is O(nd/2). Following a similar

reduction to [21], the cost to compute only the facets incident to pk is O(n
d
2
−1).

4.6.4 Correctness Proof of FP

Although the rationale behind FP looks intuitive, the correctness guarantee of

FP is non-trivial. In the following, we give a formal proof of the correctness of

FP for GIR computation.

Lemma 4 Given a dataset D, a top-k query q with result R = {p1, p2, ..., pk},

and the convex hull CH′ of set {pk}∪D\R. Suppose V and Vk are the vertices

of CH′ and the vertices incident to pk respectively. To ensure that no point in

D\R can overtake pk, it suffices to consider Vk only for GIR computation.

Proof 4 According to Definition 3, GIR is determined by two sets of con-

ditions, where the first set requires that pi+1 cannot overtake pi in the top-k

7An optimization is possible where the interim GIR from Phase 1 is mapped into facets
and can be incorporated into the first step of Phase 2 to further “tighten” the criteria for
fetching nodes from the disk in the second step of Phase 2.

95

CHAPTER 4. GLOBAL IMMUTABLE REGION FOR TOP-K RECOMMENDATION SUPPORT

x1

p6

p2

p1

p4

p5 p3

p7

p8

p9

p10

p11

p12

p13
p14

Result tuples
x2

p15

Convex hull

δ

+ε
fh*

fh

(a) p4 overtakes p3 after hf is tiled to h∗f

x1

p6

p2

p1

p4

p5

p3

p7

p8

p9

p10

p11

p12

p13
p14

Result tuples
x2

p15

Convex hull

+ε
fh*

fh

−ε

(b) p4 overtakes p3 first than ∀p ∈ V , p /∈ Vk

Figure 4.13: Illustration of Lemma 4 (d = 2, k = 3, data space)

result for i ∈ [1, k), whereas the second one ensures that any non-result point

p ∈ D\R cannot overtake pk. Here we consider non-result points for the second

set of conditions.

Consider the convex hull CH′ of set {pk} ∪ D\R. Since the non-result

points inside CH′ cannot overtake pk under any monotone scoring function,

we discard them and consider the vertices of CH′ only. Let V and Vk be the set

of vertices of CH′ and the set of vertices that are incident to pk, respectively.

Note that pk ∈ V and Vk ⊂ V . We prove that (1) every p ∈ Vk may overtake

pk, and (2) by forcing every p ∈ Vk not to overtake pk, no point in V \Vk can

overtake pk.

Given a point p ∈ Vk, there exists a facet f of CH′ that has p and pk lie on it.

Suppose the supporting hyperplane of f is hf , then for any query hyperplane q

that overlaps hf , the scores of p and pk are the same. The Euclidean distance

from p to hf is 0. Let the shortest distance from some point in R\{pk} to

hf be δ > 0. We anchor hf at pk and tile hf a little bit below p, and stop

immediately when p is no long on hf (see a 2-dimensional example in Figure

4.13(a)). Assuming the tiled hyperplane is h∗f and the distance from p to h∗f

is ε+ > 0, then it is possible that ε+ ≤ δ, e.g., ε+ = δ
2
. This means that after

tilting, p and every point in R\{pk} may be swept first by h∗f before pk. Thus,

96

CHAPTER 4. GLOBAL IMMUTABLE REGION FOR TOP-K RECOMMENDATION SUPPORT

by regarding h∗f as a query hyperplane, p may overtakes pk as the k-th result,

i.e., the new top-k result will change to R∗ = R\{pk} ∪ {p}. Since p is chosen

arbitrarily from Vk, every point in Vk has the potential to overtake pk. Hence,

while computing GIR we need to monitor each of the points in Vk, so as to

ensure that none of them can overtake pk.

Next we prove that by forcing every p ∈ Vk not to overtake pk, no point in

V \Vk can overtake pk. Consider a points p ∈ Vk. Suppose f is the facet of CH′

that has p and pk lie on it, and hf is the supporting hyperplane of f . According

to definition of convex hull, all points of CH′, other than p and pk, lie below

hf . Let p′ be the point in V \Vk that is nearest to hf and ε− be the distance

from p′ to hf , then we have ε− < 0. Similarly, we anchor hf at pk and tilt hf

towards p′. We denote the tiled hyperplane by h∗f , and let ε+ be the distance

from p to h∗f . We stop tilting immediately when p lies above h∗f , i.e., when ε+

satisfies 0 < ε+ < |ε−|. Then we must have (1) p′ still lies below h∗f , (2) p

lies above h∗f , and (3) pk is on h∗f . Given arbitrarily small positive value of ε+

and by treating h∗f as query hyperplane, among the three points p, p′ and pk,

h∗f will always encounter p first when sweeping through the data space. This

means that if we monitor every point p ∈ Vk such that the query hyperplane

does not hit p before pk, then every point p′ ∈ V \Vk cannot be swept by the

query hyperplane before pk (see Figure 4.13(b)).

Based on the above discussion, we have proven that (1) every p ∈ Vk may

overtake pk, and (2) by ensuring that no point in Vk can overtake pk, every point

p′ ∈ V \Vk cannot overtake pk. Therefore, when identifying critical records for

GIR computation it is enough for FP to consider only the set Vk, i.e., the

vertices of the convex hull of {pk} ∪D\R that are incident to pk.

97

CHAPTER 4. GLOBAL IMMUTABLE REGION FOR TOP-K RECOMMENDATION SUPPORT

4.7 Extensions and Visualization

In this section we extend our methodology to order-insensitive GIR, discuss

the handling of non-linear scoring functions, and describe possible GIR visu-

alization techniques.

4.7.1 Order-Insensitive GIR

A variant of the GIR problem arises when the user or application is concerned

only about the composition of the top-k result (but not the order of records in

it). The order-insensitive GIR is the maximal locus in query space where the

composition of R is preserved. We denote it as GIR∗.

Definition 4 Order-insensitive GIR (GIR∗). Given a dataset D and a

top-k query q with result R = {p1, p2, ..., pk}, the GIR∗ is the locus of all vectors

q′ in query space where

S(pi, q
′) ≥ S(p, q′)

for each i ∈ [1, k] and every record p ∈ D\R.

The GIR∗ is defined by looser conditions than the (order-sensitive) GIR,

and hence it fully encloses the latter. Definition 4 suggests a straightforward

processing approach. Consider a result record pi ∈ R. Let GIRi be the GIR

derived if we (skip Phase 1 and) apply Phase 2 by having pi play the role

of pk, using any of the methods in Sections 4.5 or 4.6. GIRi is the maximal

region in query space where S(pi, q
′) ≥ S(p, q′) for every record p ∈ D\R. By

Definition 4, the GIR∗ is the intersection of the GIRi regions for each i ∈ [1, k],

i.e., GIR∗ =
⋂i=k
i=1 GIRi.

To optimize this process, we observe that not every record in R could affect

the GIR∗. In Figure 4.14(a), where k = 6 and R = {p1, ..., p6}, we consider the

convex hull of R. Any record pj inside the hull (e.g., p3) can be ignored. The

rationale is similar to CP in Section 4.5.2. For every query vector q′ there is at

98

CHAPTER 4. GLOBAL IMMUTABLE REGION FOR TOP-K RECOMMENDATION SUPPORT

q

p1

p2

p3

p4

p5

p6

p7

p8 p9

p10

p13

p14

p15

x2

x1

p16

p17 p18

p19

p11

p12

(a) Result pruning

p1

p2

p3

p4

p5

p6

p7

p8 p9

p10

p13

p14

p15

x2

x1

p16

p17 p18

p19

p11

p12

(b) Facet sets F5 and F6

Figure 4.14: GIR∗ computation (k = 6, d = 2, data space)

least one result record pi that lies on the hull, such that S(pi, q
′) ≤ S(pj, q

′).

Thus, for any non-result record p to overtake pj in score, p would first have to

overtake a result record that lies on the hull.

Further result pruning is possible. Observe that p2 dominates p5, i.e., for

every query vector q′ ∈ [0, 1]d, p5 scores lower than p2. Hence, any non-result

record would have to overtake p5 before it can reach p2 in score. That is, we

can safely disregard all result records that dominate at least another record

in R. This strategy prunes p2, p1, p4 (the first dominates p5 and the other two

p6).

In summary, we disregard result records that (i) lie inside the convex hull

of R or (ii) dominate at least one other record in R. We denote by R− the re-

maining result records. In our example, R− = {p5, p6}. Subsequent processing

follows SP, CP or FP.

SP and CP produce the GIRi region for each pi ∈ R− in the same way as

in Section 4.5, and report
⋂i=|R−|
i=1 GIRi as GIR∗. Note that SL and SL ∩ CH

over the non-result records (in SP and CP, respectively) are computed once

and used for all GIRi derivations.

FP, in its first step, considers the set T of non-result records encountered

during top-k computation. For every pi ∈ R−, it computes the set Fi of facets

99

CHAPTER 4. GLOBAL IMMUTABLE REGION FOR TOP-K RECOMMENDATION SUPPORT

that are incident to pi (on the convex hull of set {pi}∪T). This is done in the

same fashion as in Sections 4.6.2 or 4.6.3, depending on dimensionality.

In the second step, FP maintains the Fi sets concurrently as it fetches new

non-result records from the disk. The process is similar to Section 4.6. The

main difference is that index nodes (that are popped from the search heap) are

only pruned if they lie below all the facets in every Fi set. Also, each record p

fetched from disk is checked against all the Fi sets and used to update those

that include at least one facet below p. When the search heap becomes empty,

each Fi set is used to derive the respective GIRi region. Finally, FP reports

GIR∗ =
⋂i=|R−|
i=1 GIRi.

Continuing our example, Figure 4.14(b) illustrates facet sets F5 and F6.

Each facet in F5 determines a half-space of the form (p5 − p) · q′ ≥ 0. The

intersection of these half-spaces is GIR5. Region GIR6 is derived similarly, and

FP reports GIR∗ = GIR5 ∩GIR6.

4.7.2 Non-Linear Scoring Functions

Our main focus in this chapter is on linear scoring functions. While CP and FP

(rely on convex hull properties that) may not extend to more general function

types, SP can handle a broader class of functions. The following discussion

considers the original (order-sensitive) GIR, but it translates easily to the GIR∗

context too.

There are two components in SP, namely, (i) pruning non-result records,

and (ii) using the remaining non-result records to form the GIR. SP pruning

applies to any monotone8 scoring function. In other words, the only non-result

records that could overtake the k-th record in R, under any such function, are

guaranteed to belong to the skyline of D\R [40].

Identifying the non-result records that could affect the GIR helps to limit

8We follow the convention that the larger a record’s attributes the higher its score. A
scoring function S(p, q) is monotone iff for any dimension i ∈ [1, d] and for any pair of records
p, p′ with p.xi ≥ p′.xi and p.xj = p′.xj ∀j 6= i, it holds that S(p, q) ≥ S(p′, q).

100

CHAPTER 4. GLOBAL IMMUTABLE REGION FOR TOP-K RECOMMENDATION SUPPORT

the number of conditions in Definition 3. Forming the GIR, however, requires

translating these conditions to a locus in query space. If the scoring function

is of the form S(p, q) =
∑d

i=1wigi(p), where each gi(p) is a function over the

attributes of p, the GIR is derived using half-space intersection as per normal.

To see this, the GIR is defined by conditions of the form S(p, q′) ≥ S(p′, q′) for

various pairs of records p, p′. Condition S(p, q′) ≥ S(p′, q′) can be rewritten

as
∑d

i=1wigi(p) ≥
∑d

i=1wigi(p
′) ⇒

∑d
i=1wi(gi(p) − gi(p′)) ≥ 0. Since we are

comparing specific records p and p′, the factors (gi(p) − gi(p′)) are constants,

and thus the condition corresponds to a half-space in query space. That is,

Phase 1 and Phase 2 may employ plain half-space intersection to produce the

GIR.

For scoring functions that do not belong to the above category, conditions

of the form S(p, q′) ≥ S(p′, q′) no longer correspond to half-spaces. This im-

plies that the GIR is no longer a convex polytope but a general convex set.

Exact representation of the GIR in such cases is computationally expensive

or not possible at all, which would call for approximate GIR representation

techniques, such as polytope approximation, Monte Carlo simulation, etc [70].

4.7.3 GIR Visualization

One of the GIR applications is to give the user a sense of the weight shift

required to induce a change in the top-k result. Being a d-dimensional poly-

tope, GIR is challenging to visualize for d > 2. We describe two possible

visualization options.

Assuming that the GIR is already derived using any of our methods,

the first visualization technique computes the maximum-volume axis-parallel

hyper-rectangle (MAH) that (i) contains the query vector q and (ii) lies com-

pletely inside the GIR. This is an instance of the bichromatic rectangle prob-

lem, for which several algorithms are available [6, 31]. Figure 4.15(a) shows

the MAH in a 2-dimensional query space. The MAH can be visualized easily

101

CHAPTER 4. GLOBAL IMMUTABLE REGION FOR TOP-K RECOMMENDATION SUPPORT

w1

w2

1

1
0

0

q

GIR
R

a
n

g
e

 o
n

 w
2

Range on w1

MAH

(a) MAH

w1

w2

1

1
0

0

q

GIRδ

γ

R
a
n

g
e

 o
n

 w
2

Range on w1

α β

(b) Interactive projection

Figure 4.15: GIR visualization (d = 2, query space)

by projecting its sides on the different axes, producing for example bounds like

those in Figure 4.1. The advantage of this approach is that the bounds are

fixed as long as the query vector remains inside the MAH. The disadvantage

is that the MAH is a subset of the GIR.

An alternative is the interactive projection approach, which does not sac-

rifice maximality (i.e., it allows exploration of the full extent of the GIR) but

requires on-the-fly readjustment of the bounds plotted on the interface. Con-

sider the query vector in Figure 4.15(b). We first find the horizontal projections

of q on the GIR, i.e., points α and β, and map them on the w1 axis to derive

an upper and lower bound for w1 like those in Figure 4.1. Similarly, we project

q vertically on the GIR (getting points γ and δ) and produce the bounds for

w2. Note that the derived ranges are equivalent to the LIRs in [53]. Should

the user shift the query vector (by varying one or multiple weights), we may

interactively re-project the new location of q on the GIR, and redraw on-the-fly

the new permissible ranges for each factor. That is, as the user shifts q (within

the GIR), she sees the bounds for each factor being adjusted in real time.

102

CHAPTER 4. GLOBAL IMMUTABLE REGION FOR TOP-K RECOMMENDATION SUPPORT

4.8 Experiments

In this section we evaluate the efficiency of the SP, CP, and FP algorithms,

using synthetic and real datasets. The synthetic datasets include Independent

(IND), Correlated (COR), and Anti-correlated (ANTI), which are standard

benchmarks for preference-based queries [16]. IND is uniformly and indepen-

dently distributed. In COR, records that have a large value in one dimension

tend to have large values in the other dimensions too. In ANTI, a record with

a large value in one dimension tends to have small values in the rest. We also

use real datasets HOUSE and HOTEL (from ipums.org and hotelsbase.org,

respectively). HOUSE contains 315,265 records, each with six attributes rep-

resenting an American family’s expenditure in gas, electricity, water, heating,

insurance, and property tax. HOTEL contains 418,843 hotel records with four

attributes, namely stars, price, number of rooms, and number of facilities. All

attributes are normalized to [0, 1]. The datasets are indexed by an R∗-tree

using 4KByte disk pages.

In the default setting, we place data and indices on the disk and evaluate

performance in terms of CPU and I/O time9. However, the CPU charts in

isolation indirectly also evaluate the scenario where data and indices are kept

in memory. Unless otherwise specified, we compute the order-sensitive GIR.

We present total CPU and I/O times, accounting for Phases 1 and 2. A buffer

for disk pages cannot improve I/O time, since none of the methods fetches

the same index or data page twice. Thus, we do not use one. All methods

are implemented in C++ and use the Qhull library (qhull.org) for half-space

intersection. Experiments are run on a PC with Intel Core2Duo 3GHz CPU.

Table 4.2 summarizes the investigated parameters, along with their tested

values and defaults (in bold). With the real datasets we control only the last

parameter (i.e., k). Each reported measurement is the average over 100 random

9Note that SP and CP have identical I/O cost, because they access the disk through the
same BBS process.

103

CHAPTER 4. GLOBAL IMMUTABLE REGION FOR TOP-K RECOMMENDATION SUPPORT

Parameter Range of values

Dimensionality, d 2, 3, 4, 5, 6, 7, 8

Dataset cardinality, n 0.5M, 1M, 5M, 10M, 20M

Top-k result size, k 5, 10, 20, 50, 100

Table 4.2: Experiment Parameters

2 3 4 5 6 7 8

−15

−10

−5

0

d

Lo
g 10

(V
ol

um
e)

Independent
Anti−correlated
Correlated

(a) Varying d (Synthetic)

5 10 20 50 100

−15

−10

−5

0

k
Lo

g 10
(V

ol
um

e)

HOUSE
HOTEL

(b) Varying k (Real data)

Figure 4.16: Ratio of GIR volume to query space volume

queries.

We first provide insight into the nature of the GIR. In Figure 4.16 we

present the ratio of GIR volume to the volume of the query space, which

coincides with the sensitivity measure discussed in the Introduction and the

LIK probability in [70]. In Figure 4.16(a) we use synthetic data and vary d. The

GIR volume drops exponentially with d, and Figure 4.8(b) provides the reason.

As d increases, so does the number of facets incident to pk, which implies that

more conditions (half-spaces) bound the GIR. The GIR is the largest in COR

and the smallest in ANTI, because COR has the fewest incident facets among

our synthetic data, while ANTI has the most (as shown in Figure 4.8(b)). The

trends in Figure 4.16(a) also reveal an interesting fact about the nature of

the top-k query itself; the alternative top-k results become dramatically less

distinguishable as d grows. In Figure 4.16(b) we plot the volume ratio versus

k for the real data. A larger k implies more half-spaces induced from the first

set of conditions in Definition 3, leading to a smaller GIR.

Our solutions can be applied to general dimensionalities, while in our exper-

iments we focus on dimensionalities up to d = 8. This is due to several reasons.

104

CHAPTER 4. GLOBAL IMMUTABLE REGION FOR TOP-K RECOMMENDATION SUPPORT

2 3 4 5 6 7 8 9 1011121314151617181920

10
1

10
2

10
3

d

M
ax

S
co

re
/M

in
S

co
re

MaxScore/MinScore

Figure 4.17: Effect of dimensionality d on MaxScore/MinScore ratio

First, performance deterioration (and lack of usefulness) with dimensionality is

common to fundamental problems like nearest neighbors (NN) [14] and convex

hull computation [7]. Top-k and GIR computation share that characteristic.

For NN search, [14] shows that in as few as 10 dimensions, the distance (from

a query location) to the nearest data record approaches the distance to the

farthest record in the dataset.

This is also the case for top-k queries, i.e., the score of the top record

approaches the score of the lowest-scoring record in the entire dataset. In Fig-

ure 4.17 we plot the ratio of the maximum score (MaxScore) to the mini-

mum score (MinScore) across the entire dataset (using the default 1 million

IND data); the y-axis of the figure is in logarithmic scale10. The resemblance

to the trends in [14] is striking (see Fig. 7 in [14]). The increase in dimen-

sionality tends to make all records equally preferable. Along the same lines,

Figure 4.16(a) shows that the GIR volume drops exponentially with dimen-

sionality, meaning that the distinguishability among alternative top-k results

drops dramatically with d.

Next, we investigate the usefulness of GIR in providing recommendation

support with alternatives. Specifically, GIR provides the user with alternative

top-k results when the query vector shifts to any location on the boundary of

the GIR. These results may be “one perturbation away” from her original re-

10For the experiment to be meaningful, the query vectors are normalized such that∑d
i=1 wi = 1 which ensures that the score of any record is between 0 and 1 in all dimensions.

105

CHAPTER 4. GLOBAL IMMUTABLE REGION FOR TOP-K RECOMMENDATION SUPPORT

Dataset Average No. of Alternative Results

IND 8

ANTI 7.6

COR 8.9

HOTEL 8.25

HOUSE 14.41

Table 4.3: Alternative top-k results at the boundary of the GIR

0.51 5 10 20
0

20

40

60

80

100

Dataset cardinality (in millions)

C
P

U
 ti

m
e

(m
se

c.
)

General FP
FP

(a) Effect of n

5 10 20 50 100
0

20

40

60

80

100

120

k

C
P

U
 ti

m
e

(m
se

c.
)

General FP
FP

(b) Effect of k

Figure 4.18: Specialized versus general FP for d = 2 (IND)

sult, but their number (and information conveyed) is considerable. In Table 4.3

we show how many these alternative top-k results are, for all datasets used in

the experiments in the default setting. In addition to these alternatives, the

GIR boundary also tells the user what circumstances (weight adjustments) are

needed to derive each of them. The alternative results are derived along the

way with GIR computation.

In Section 4.6.2 we present a FP algorithm specifically designed for 2-d case,

while in Section 4.6.3 we give a general FP algorithm for general dimensionality.

in Figure 4.18 below, we compare our specialized 2-d algorithm (as presented in

Section 4.6.2, labeled “FP” in the figure) with the general-dimensionality FP

applied for the 2-d case (labeled “General FP” in the figure). We vary n and k

and measure the CPU time on the IND dataset. Note that the algorithms make

identical accesses to the disk (thus I/O charts are omitted). Our specialized

algorithm improves CPU time by 11% to 21%.

In Figure 4.19 we study the effect of dimensionality d on the performance

of SP, CP, and FP, using synthetic data. All the charts for this experiment are

106

CHAPTER 4. GLOBAL IMMUTABLE REGION FOR TOP-K RECOMMENDATION SUPPORT

2 3 4 5 6 7 8
10

2

10
3

10
4

10
5

10
6

10
7

d

C
P

U
 ti

m
e

(m
se

c.
)

CP
SP
FP

(a) CPU time (IND)

2 3 4 5 6 7 8

10
1

10
2

10
3

10
4

10
5

10
6

d

I/O
 ti

m
e

(m
se

c)

CP
SP
FP

(b) I/O time (IND)

2 3 4 5 6 7 8

10
1

10
2

10
3

10
4

10
5

d

C
P

U
 ti

m
e

(m
se

c.
)

CP
SP
FP

(c) CPU time (COR)

2 3 4 5 6 7 8

10
1

10
2

10
3

10
4

d

I/O
 ti

m
e

(m
se

c)

CP
SP
FP

(d) I/O time (COR)

2 3 4 5 6 7 8
10

2

10
3

10
4

10
5

10
6

10
7

10
8

d

C
P

U
 ti

m
e

(m
se

c.
)

CP
SP
FP

(e) CPU time (ANTI)

2 3 4 5 6 7 8

10
1

10
2

10
3

10
4

10
5

10
6

d

I/O
 ti

m
e

(m
se

c)

CP
SP
FP

(f) I/O time (ANTI)

Figure 4.19: Effect of dimensionality d for synthetic data

in logarithmic scale. FP outperforms SP and CP in all cases, with SP being

the runner-up. The largest differences are observed for ANTI, where FP takes

53 to 2700 times shorter I/O time than SP, and 1.3 to 47 times shorter CPU

time. The difference is smaller in COR (because there are fewer skyline records

than in IND and ANTI), with FP, however, still performing 9.6 to 224 times

fewer I/Os and 1.8 to 24 times fewer computations. Interestingly, the CPU

107

CHAPTER 4. GLOBAL IMMUTABLE REGION FOR TOP-K RECOMMENDATION SUPPORT

0.51 5 10 20
10

1

10
2

10
3

10
4

Dataset cardinality (in millions)

C
P

U
 ti

m
e

(m
se

c.
)

CP
SP
FP

(a) CPU time

0.5 1 5 10 20

10
1

10
2

10
3

10
4

10
5

10
6

Dataset cardinality (in millions)

I/O
 ti

m
e

(m
se

c)

CP
SP
FP

(b) I/O time

Figure 4.20: Effect of dataset cardinality n (IND)

time of CP is longer than SP. Although CP prunes more records, its expensive

convex hull computation outweighs the benefits of pruning (an issue discussed

at the end of Section 4.5.3).

In Figure 4.20 we investigate the effect of dataset cardinality n, varying it

from 0.5M to 20M tuples. Due to lack of space, we show results for IND only

– the trends are similar for COR and ANTI. CPU and I/O times naturally

increase with n in all methods. The important finding is that FP scales much

better with cardinality, as a result of focusing only on the (relatively few)

convex hull facets that are incident to pk. In terms of I/O cost, it outperforms

the runner-up (SP) by 460 to 1748 times, and by 2.8 to 16.5 times in terms of

CPU cost.

In Figure 4.21 we assess the effect of k using the real datasets. A larger

k implies more records in T , i.e., more non-result records encountered during

top-k computation by BRS. The larger T leads to an increase in CPU time.

On the other hand, the effect of k on I/O cost involves two conflicting factors.

A larger T implies that most critical records (in FP) and skyline records (in

SP/CP) have already been fetched from disk (by BRS). This leads to a slight

decrease in I/O cost for all methods in HOTEL. In HOUSE, however, due to

its higher dimensionality (six instead of four) and different distribution, the

inclusion of more records in the top-k result (and thus their exclusion from

108

CHAPTER 4. GLOBAL IMMUTABLE REGION FOR TOP-K RECOMMENDATION SUPPORT

5 10 20 50 100
0

100

200

300

400

500

600

k

C
P

U
 ti

m
e

(m
se

c.
)

CP
SP
FP

(a) CPU time (HOTEL)

5 10 20 50 100
0

1000

2000

3000

4000

5000

k

I/O
 ti

m
e

(m
se

c)

CP
SP
FP

(b) I/O time (HOTEL)

5 10 20 50 100
0

200

400

600

800

1000

k

C
P

U
 ti

m
e

(m
se

c.
)

CP
SP
FP

(c) CPU time (HOUSE)

5 10 20 50 100
0

2000

4000

6000

8000

10000

12000

k

I/O
 ti

m
e

(m
se

c)

CP
SP
FP

(d) I/O time (HOUSE)

Figure 4.21: Effect of k for real data

D\R) deprives the skyline computation module (BBS) of records with high

dominating/pruning power and “widens” the skyline, thus raising the I/O

cost for SP and CP. In contrast, FP is independent of the skyline, and its I/O

cost slightly decreases with k in this dataset as well.

In Figure 4.22 we evaluate our algorithms for the computation of order-

insensitive GIR. We set all parameters to their defaults and vary n (for IND

data). The trends are similar to Figure 4.20, however, the cost of all methods

increases. The reason is that, as explained in Section 4.7.1, multiple result

records need to be considered against the non-results (as opposed to just con-

sidering pk against them).

Returning to the default, order-sensitive GIR, in Figure 4.23 we consider

non-linear scoring functions. Using HOTEL and varying k, we investigate the

performance of SP for (monotone) functions S(p, q) = w1x
4
1 + w2x

3
2 + w3x

2
3 +

109

CHAPTER 4. GLOBAL IMMUTABLE REGION FOR TOP-K RECOMMENDATION SUPPORT

0.51 5 10 20
10

2

10
3

10
4

Dataset cardinality (in millions)

C
P

U
 ti

m
e

(m
se

c.
)

CP
SP
FP

(a) CPU time

0.5 1 5 10 20

10
1

10
2

10
3

10
4

10
5

10
6

Dataset cardinality (in millions)

I/O
 ti

m
e

(m
se

c)

CP
SP
FP

(b) I/O time

Figure 4.22: Order-insensitive GIR, effect of n (IND)

5 10 20 50 100
0

100

200

300

400

500

600

k

C
P

U
 ti

m
e

(m
se

c.
)

Polynomial
Mixed
Linear

(a) CPU time

5 10 20 50 100
0

1000

2000

3000

4000

5000

k

I/O
 ti

m
e

(m
se

c)

Polynomial
Mixed
Linear

(b) I/O time

Figure 4.23: Non-linear scoring functions, effect of k (HOTEL)

w4x
1
4 and S(p, q) = w1x

2
1 + w2e

x2 + w3 log x3 + w4
√
x4 (recall that HOTEL is

4-dimensional). We label the functions as “Polynomial” and “Mixed”, respec-

tively. “Linear” is included for the sake of comparison.

SP performance is similar for all functions. That is because skyline compu-

tation by BBS is independent of the function type (thus the comparable I/O

cost), which in turn leads to a similar number of half-spaces to intersect for

GIR derivation (thus the comparable CPU time). Results with other monotone

functions are similar and omitted in order not to clutter the charts.

In Figure 4.24 we investigate the memory usage of our algorithms. We set

all parameters to their default and vary d (for IND data). As d increases, the

memory requirement of SP remains the smallest, while the requirement of CP

110

CHAPTER 4. GLOBAL IMMUTABLE REGION FOR TOP-K RECOMMENDATION SUPPORT

2 3 4 5 6 7 8
0

1000

2000

3000

4000

5000

6000

d

M
em

or
y

us
ag

e
(M

B
yt

es
)

CP
SP
FP

(a) Memory usage (IND)

2 3 4 5 6 7 8
0

1

2

3

4
x 10

4

d

M
ax

. h
ea

p
si

ze
 (

#e
nt

rie
s)

CP
SP
FP

(b) Max. heap size (IND)

Figure 4.24: Effect of dimensionality d on memory usage

jumps significantly, as shown in Figure 4.24(a). This is due to the excessive

number of facets, in the order of O(nd/2), maintained by CP. In contrast, FP

only stores O(nd/2−1) facets, an order of magnitude smaller than that of CP.

In terms of heap size, as shown in Figure 4.24(b), FP maintains the smallest

search heap compared to SP and CP, because the facets maintained by FP can

prune more index/data nodes.

4.9 Summary

In this chapter we study the problem of global immutable region (GIR) com-

putation, which can provide the users with insightful and valuable information

for top-k recommendation support. Assuming a top-k query with a linear scor-

ing function, the GIR indicates all the possible weight settings that produce

exactly the same result as the original query. The GIR can be used as a guide

for query weight refinement, as a sensitivity measure, and as a means for result

caching. We propose a suite of scalable algorithms that exploit the geometric

properties of the problem to achieve efficient GIR computation.

111

Chapter 5

Bucketization for Group

Recommendation

In this chapter, we consider the heterogeneous group formation problem in

group recommendation, which essentially is a bucketization problem. This

problem is related to the number partitioning problem in Artificial Intelligence,

or the balanced multi-way number partitioning (BMNP) problem in particu-

lar. Specifically, BMNP seeks to split a collection of numbers into subsets, or

groups, with (roughly) the same cardinality and subset sum.

The BMNP problem is NP-hard, and there are several exact and approx-

imate algorithms for it. However, existing exact algorithms solve only the

simpler, balanced two-way number partitioning variant, whereas the most ef-

fective approximate algorithm, BLDM, may produce widely varying subset

sums. In this chapter, we introduce LRM algorithm that lowers the expected

spread in subset sums to one-third that of BLDM for uniformly distributed

numbers and odd subset cardinalities. We also propose Meld, a novel strategy

for skewed number distributions. A combination of LRM and Meld leads to a

heuristic technique that consistently achieves a narrower spread of subset sums

than BLDM.

112

CHAPTER 5. BUCKETIZATION FOR GROUP RECOMMENDATION

5.1 Preliminaries

Number partitioning is a category of NP-complete problems that has been

studied extensively. One of its variants is balanced multi-way number parti-

tioning (BMNP). The input of BMNP is a set S of n numbers and a positive

integer k; the output is a partition of S into subsets. The subset sum is the

sum of numbers in a subset, and the subset cardinality indicates how many

numbers it contains. The objective in BMNP is to partition S into k sub-

sets such that (i) the cardinality of each subset is either bn
k
c or dn

k
e numbers,

and (ii) the spread (i.e., the difference) between the maximum and minimum

subset sum is minimized. BMNP has a wide range of applications, including

multiprocessor scheduling [28] and VLSI manufacturing [74].

BMNP is NP-hard [28]. To deal with its hardness, most existing approaches

focus on suboptimal solutions (where the spread is higher than the minimum

possible). Among them, BLDM is currently the most effective; originally pro-

posed for balanced 2-way partitioning in [81], it was subsequently generalized

to arbitrary k in [51]. BLDM first divides S into k-tuples (i.e., batches of k

numbers). Then it selects and folds two of them, i.e., it couples their numbers

and places the k produced pair sums into a new k-tuple, aiming to offset the

variation within the original tuples. Folding continues iteratively until a sin-

gle k-tuple remains; each of its elements corresponds to one of the k returned

subsets.

As BLDM is currently the most effective approximate algorithm for BMNP,

we examine it in detail. Given a set of numbers S, BLDM performs balanced

k-way partitioning as follows. First, S is padded with zero-value numbers, so

that n = |S| = bk for some integer b. The numbers in S are then sorted in

descending order. The sorted sequence, denoted by (v1, v2, ..., vn), is split into

b disjoint k-tuples pi = (v(i−1)k+1, v(i−1)k+2, ..., vik), for 1 ≤ i ≤ b. The spread

in each pi is δ(pi) = v(i−1)k+1 − vik. Next, BLDM repeatedly replaces the two

k-tuples pi and pj with the largest spreads with a new k-tuple p′; p′ is the

113

CHAPTER 5. BUCKETIZATION FOR GROUP RECOMMENDATION

result of folding pi with pj, by adding the first (largest) value in pi with the

last (smallest) value in pj, the second (largest) value in pi with the second

last (smallest) in pj, and so on. This process continues until a single k-tuple

remains; each of the k elements in this tuple corresponds to one subset of the

produced partitioning. The pseudocode of BLDM and the fold operation is

given in Algorithms 5.1 and 5.2, respectively.

Algorithm 5.1: BLDM(P1, P2, . . . , Pb)

1 Set P = {P1, P2, . . . , Pb};
2 while |P| > 1 do
3 Let Pα be the tuple in P with highest spread δ(Pα);
4 P = P\{Pα};
5 Let Pβ be the tuple in P with highest spread δ(Pβ);
6 P = P\{Pβ};
7 Pγ = Fold(Pα, Pβ);
8 P = P ∪ {Pγ};

Algorithm 5.2: Fold(Pα, Pβ)

Input: m-tuple Pα = [vα,1, vα,2, . . . , vα,m] and Pβ = [vβ,1, vβ,2, . . . , vβ,m]
Output: m-tuple Pγ = [vγ,1, vγ,2, . . . , vγ,m]

1 for i = 1 to m do
2 vγ,i = vα,i + vβ,m−i+1;

3 Sort the frequencies in Pγ in ascending order;

While efficient, BLDM often produces partitions very far from optimal. We

demonstrate that its spread is particularly high when the numbers in S follow

a roughly uniform or a skewed distribution, and identify the reasons behind

this. Motivated by these weaknesses, we propose heuristic algorithms LRM

and Meld, each tailored to uniform and skewed data respectively. We prove

analytically and empirically in the sections that follow, that LRM reduces the

expected spread to one third that of BLDM for uniform data. Meld, on the

other hand, is shown to be significantly more effective than BLDM for non-

uniform distributions (e.g., Zipf, normal, etc). Finally, we incorporate LRM,

Meld and BLDM into a Hybrid algorithm that dynamically adapts to different

data characteristics.

114

CHAPTER 5. BUCKETIZATION FOR GROUP RECOMMENDATION

5.2 Limitations of BLDM

Although BLDM is efficient, it performs poorly in two general scenarios. We

explain each scenario with the aid of an example.

Example 3 Consider a balanced 4-way partitioning on set S = {12, 11, 10,

9, 8, 7, 6, 5, 4, 3, 2, 1}. BLDM divides S into three 4-tuples p1 = (12, 11, 10, 9),

p2 = (8, 7, 6, 5) and p3 = (4, 3, 2, 1). Then, the two 4-tuples with largest spread,

say p1 and p2 (since all the 4-tuples have the same spread of 3), are folded to

form a new 4-tuple p′ = (17, 17, 17, 17). Next, p′ is folded with p3, yielding the

final 4-tuple (21, 20, 19, 18). Tracing back the numbers that contributed to the fi-

nal tuple, we derive the 4-way partitioning ({12, 5, 4},{11, 6, 3},{10, 7, 2},{9, 8, 1}),

with a spread in subset sums of 21−18 = 3. This spread is as high as that of the

original 4-tuples. In comparison, an optimal solution is ({12, 5, 2},{11, 8, 1},{10, 7, 3},

{9, 6, 4}), with a spread of just 1.

The scenario in Example 3 occurs when the numbers in S follow a uniform

(or roughly uniform) distribution and b is odd. In folding pairs of k-tuples,

BLDM essentially offsets their spreads against each other. Since all the ini-

tial k-tuples have nearly the same spread (for uniform data), when b is odd

BLDM will succeed in canceling out pairs of k-tuples as it is designed to do,

leaving nothing to compensate for the last remaining k-tuple. Consequently,

the reported partitioning inherits the spread of this last k-tuple. Figure 5.1

illustrates this situation in a uniform data scenario where k = 4 and b = 3.

Each number is represented as a bar with height equal to its value. Folding p1

and p2 leaves no space for spread offsetting when p3 is appended to derive the

final k-tuple.

Example 4 Consider a balanced 4-way partitioning on set S = {60, 52, 40,

26, 19, 16, 14, 12, 10, 9, 6, 5}. After dividing S into three 4-tuples p1 = (60, 52, 40, 26),

p2 = (19, 16, 14, 12) and p3 = (10, 9, 6, 5), BLDM folds p1 and p2 first, since

they have the largest spreads of 34 and 7. The resulting 4-tuple p′ = (72, 66, 56, 45)

115

CHAPTER 5. BUCKETIZATION FOR GROUP RECOMMENDATION

(a) three 4-tuples with
the same spread

(b) after folding
p1 and p2

(c) folding finished

p1

p3

p2

p3

Figure 5.1: Folding process of BLDM on three 4-tuples

is then folded with p3, yielding the final 4-tuple (77, 72, 65, 55). Thus, the re-

ported partitioning is ({60, 12, 5}, {52, 14, 6}, {40, 16, 9}, {26, 19, 10}), with spread

77−55 = 22. In contrast, the optimal solution ({60, 6, 5}, {52, 10, 9}, {40, 14, 12},

{26, 19, 16}) has a spread of only 10.

The scenario illustrated in Example 4 occurs when the numbers in S follow

a skewed distribution. The poor performance of BLDM stems from the k-

tuple boundaries imposed right at the beginning, causing each subset sum in

the final solution to be derived from exactly one number in each initial k-tuple.

If the spread δ of some k-tuple is so large as to dominate the total spread, Σ,

of all the other k-tuples, then BLDM is unable to obtain a final k-tuple with

a spread narrower than δ − Σ.

The shortcomings of BLDM highlighted above need to be addressed, owing

to the abundance of both uniformly distributed and of highly skewed data in

real applications.

5.3 Algorithms for Balanced Bucketization

5.3.1 The LRM algorithm

In this section, we introduce an algorithm motivated by the first scenario where

BLDM works poorly, i.e., uniformly distributed numbers with odd subset car-

116

CHAPTER 5. BUCKETIZATION FOR GROUP RECOMMENDATION

dinality b. We begin with the case of b = 3, before extending to larger odd

values of b.

The rationale of LRM is as follows. Let there be three k-tuples p1, p2 and p3

with means of µ1, µ2 and µ3, respectively. If folding the initial k-tuples could

achieve a perfect balanced partitioning, each subset sum in the final k-tuple

would be equal to µ1+µ2+µ3. Targeted at this ideal subset sum, we design our

algorithm to fold the three tuples simultaneously (instead of performing two

consecutive pair-wise folds). Specifically, we optimistically form each subset

from the leftmost1 (L) number vL in one tuple, the rightmost (R) number vR

in another tuple, and a compensating number somewhere in the middle (M)

of the remaining tuple that is closest to
∑i=3

i=1 µi − vL − vR. This gives rise to

LRM.

In forming a subset sum, LRM always performs the M operation (to pop

a compensating number) in the input tuple that currently has the smallest

spread2. The L and R operations are carried out on the tuples presently having

the largest and second largest spreads, respectively. This is meant to reduce

the chance of picking a compensating number that might be more useful for a

subsequent subset sum; since the compensating number comes from the tuple

with the smallest spread, the impact of a suboptimal choice (of compensating

number) is small because the tuple is likely to hold other numbers with a similar

value. Note that the strategy of picking the leftmost and rightmost numbers

from the tuples currently having the highest spreads is consistent with the

largest-first differencing strategy in KK [44] and BLDM [51]. Algorithm 5.3

describes the LRM method.

To illustrate LRM, we refer again to Example 1 where we have p1 =

(12, 11, 10, 9), p2 = (8, 7, 6, 5), p3 = (4, 3, 2, 1), and µ1 + µ2 + µ3 = 19.5.

1Since each k-tuple is sorted in descending order, its leftmost number has the maximum
positive offset from the mean, whereas the rightmost number has the maximum negative
offset.

2We say “currently” because as numbers are removed from the tuples, their spread is
updated to reflect their remaining contents.

117

CHAPTER 5. BUCKETIZATION FOR GROUP RECOMMENDATION

At first, LRM arbitrarily picks p1 and p2 for the L and R operations, as all

three tuples have the same spread of 3. Popping 12 from p1 and 5 from p2, it

chooses the compensating number from p3 to be 2, because it has the closest

value to 19.5 − 12 − 5 = 2.5. This produces the first subset {12, 5, 2}. Now

the spread in the remainders p1 = (11, 10, 9), p2 = (8, 7, 6) and p3 = (4, 3, 1)

becomes 2, 2 and 3, respectively, causing LRM to pick p3 and p1 for the L and

R operations in the second round. With numbers 4 from p3 and 9 from p1, 6 is

chosen as the compensating number in p2 that is nearest to 19.5− 4− 9 = 6.5,

leading to the second subset {4, 9, 6}. Repeating this process, we get the

third and fourth subsets, {3, 10, 7} and {1, 11, 8}. The final partitioning of

({12, 5, 2}, {4, 9, 6}, {3, 10, 7}, {1, 11, 8}), with a spread of only 1, matches the

optimal solution and is a major improvement over BLDM’s spread of 3.

Proposition 1 Consider three k-tuples p1, p2 and p3, comprising numbers that

follow a uniform distribution. By combining p1, p2 and p3 simultaneously, LRM

generates a k-tuple p′ with an expected spread δ(p′) that is one third of that

generated by BLDM.

Proof. Given that the numbers in S are uniformly distributed, the three

input k-tuples have roughly the same spread of, say, δ. Moreover, the expected

difference between successive numbers in p1, p2 and p3 is C = δ
k−1 . In each

round of LRM, let pL, pR and pM denote the k-tuples that produce the leftmost

(vL), rightmost (vR) and compensating (vM) numbers. Let µL, µR and µM

denote the respective mean of the tuples. The subset sum generated is:

vL + vR + vM =
3∑
i=1

µi + (vL − µL) + (vR − µR) + (vM − µM) (5.1)

The LRM strategy removes numbers from the k-tuples according to a rotating

pattern:

118

CHAPTER 5. BUCKETIZATION FOR GROUP RECOMMENDATION

Round p1 p2 p3

1 leftmost rightmost middle

2 rightmost middle leftmost

3 middle leftmost rightmost

4 2nd leftmost 2nd rightmost middle

5 2nd rightmost middle 2nd leftmost

. . .

Thus, the leftmost number of a tuple is always matched with the rightmost

number of another tuple, the 2nd leftmost number is matched with the 2nd

rightmost number, etc. So, we have (vL− µL) ≈ (µR− vR), and Formula (5.1)

simplifies to:

vL + vR + vM =
3∑
i=1

µi + (vM − µM) (5.2)

vM−µM is small in the early rounds, but grows gradually as the numbers in the

middle of the tuples are used up. In round i ∈ [1, k], |vM−µM | = (b i−1
6
c+0.5)C

for even k, whereas |vM − µM | = (d i+3
6
e − 1)C for odd k. Therefore, the

last two rounds produce subset sums that, respectively, fall below and above∑3
i=1 µi by the widest margin, and the difference between those two subset

sums determines the final spread of the partitioning solution. In fact, the final

spread is twice the value |vM − µM | of the final round k, so:

spread =

 2(bk−1
6
c+ 0.5) δ

k−1 for even k

2(dk+3
6
e − 1) δ

k−1 for odd k
(5.3)

Recall that BLDM yields a final spread of δ, so the spread ratio of LRM w.r.t.

BLDM converges to 1:3 for large k. 2

LRM extends easily to odd values of b larger than 3. Specifically, the three

k-tuples with the largest spreads are combined through LRM into an interim

k-tuple with a small expected spread. The interim and the remaining k-tuples

are iteratively folded pairwise, in the manner of BLDM, to cancel out their

spreads until we are left with a single tuple. LRM has a time complexity of

119

CHAPTER 5. BUCKETIZATION FOR GROUP RECOMMENDATION

O(n log n), as we need to keep the numbers in each k-tuple sorted so as to find

compensating numbers in logarithmic time (see line 7 in Algorithm 5.3).

Algorithm 5.3: LRM

Input: k-tuples p1, p2 and p3 with means µ1, µ2 and µ3

Output: a final k-tuple
1 Sum = µ1 + µ2 + µ3;
2 p′ = ∅;
3 while |p′| < k do
4 let pL, pR, pM be the input k-tuple with the largest, second largest,

and smallest spread, respectively;
5 vL = the leftmost number removed from pL;
6 vR = the rightmost number removed from pR;
7 vM = the compensating number removed from pM that is closest to

(Sum− vL − vR);
8 p′ = p′ ∪ {vL + vR + vM};
9 return p′;

5.3.2 The Meld Algorithm

Our second algorithm is designed to handle skewed data, the second scenario

in which BLDM falls short. In case of skewed data, some k-tuples (e.g., tuple

p1 in Example 4) have a particularly large spread that cannot be effectively

canceled out by folding with the remaining, smaller-spread k-tuples.

For ease of presentation, we consider the case where we have three input

k-tuples (i.e., b = 3) before generalizing to arbitrary b. Let the tuples be p1,

p2 and p3 and suppose that the spread in p1 is larger than the spread of the

other two combined, i.e., δ(p1) > δ(p2) + δ(p3). Assuming that δ(p2) > δ(p3),

BLDM would fold p1 with p2, and then the interim tuple with p3; this achieves

a final spread that is no less than δ(p1)− δ(p2)− δ(p3) > 0.

To avoid the pitfall, we deviate from BLDM’s principle of eliminating the

spread whenever a pair of k-tuples is folded, because in certain occasions a

large interim spread may be needed to counterbalance the excessive spread

of another k-tuple. Specifically, we combine p2 and p3 into an interim tuple

p′ with a spread δ(p′) that is larger than δ(p2) + δ(p3) and as close to δ(p1)

120

CHAPTER 5. BUCKETIZATION FOR GROUP RECOMMENDATION

as possible, so that the subsequent folding of p′ with p1 can cancel out their

respective spreads.

Our Meld algorithm achieves this by “melding” p2 and p3, that is, by

uniting p2 = (v2,1, . . . , v2,k) and p3 = (v3,1, . . . , v3,k) into a common sorted

sequence p∪ = (v1, v2, . . . , v2k−1, v2k), and then pairing its numbers so that

the produced k-tuple p′ has values that are (almost) uniformly spaced in[
µ2 + µ3 − δ(p1)

2
, µ2 + µ3 + δ(p1)

2

]
. We first identify in p∪ two number pairs

A = {vi, vj} and B = {vl, vm} that add up to give vi + vj and vl + vm at

the two extreme ends of p′, such that (vi + vj) − (vl + vm) ≈ δ(p1). The

next two number pairs A′ = {v′i, v′j} and B′ = {v′l, v′m}, intended for the

second position from the left and right of p′, are chosen to meet condition

(v′i + v′j) − (v′l + v′m) ≈ δ(p1) − δ−; δ− = 2δ(p1)
k−1 is the desired rate of decline

among the numbers in p′. This process is repeated to complete p′.

In pairing the numbers in p∪ as explained above, one may suggest using

an exhaustive search. However, with O(k2) possible pairs, it takes O(k4) time

to compute the difference between any two of them. Recall that n = bk, so

the time complexity is O(n4), making exhaustive search impractical for large

n. Instead, we adopt a heuristic search strategy.

As shown in Algorithm 5.4 (lines 4 and 5), in the first iteration we place the

largest (v1) and smallest (v2k) numbers of p∪ into pairs A and B, respectively.

For the second number in A, we scan from v2k−1 back to v2. Simultaneously, we

scan from v2 to v2k−1 to complete B. The scan stops as soon as we encounter vi

and v2k−i+1 such that (v1+v2k−i+1)−(v2k+vi) ≥ δ(p1) for some 2 ≤ i ≤ 2k−1;

these numbers complete the pairs, i.e., A = {v1, v2k−i+1} and B = {vi, v2k}.

The four chosen numbers are removed from p∪, and we proceed to find the

next two pairs A and B (see lines 4 to 14). The process is repeated until p∪

becomes empty or it is left with two numbers only (see lines 6 to 8). The

complexity of Meld is O(k2), since in the worst case it takes O(k2) steps to

process all the numbers in p∪.

121

CHAPTER 5. BUCKETIZATION FOR GROUP RECOMMENDATION

Algorithm 5.4: Meld

Input: k-tuple p1, p2 and p3 with δ(p1) > δ(p2) + δ(p3)
Output: a final k-tuple p′

1 p∪ = p2 ∪ p3, sort p∪ in descending order;

2 δ− = 2δ(p1)
k−1 ; p′ = ∅;

3 while |p∪| > 0 do
4 let v1 be the largest number in p∪;
5 let v|p∪| be the smallest number in p∪;
6 if |p∪| = 2 then
7 p′ = p′ ∪ {v1 + v|p∪|};
8 break out of the while loop;

9 for i = 2 to |p∪| − 1 do
10 if (v1 + v|p∪|−i+1)− (v|p∪| + vi) ≥ δ(p1) then
11 break out of the for loop;

12 p′ = p′ ∪ {v1 + v|p∪|−i+1} ∪ {v|p∪| + vi};
13 Remove v1, v|p∪|, vi, v|p∪|−i+1 from p∪;
14 δ(p1) = δ(p1)− δ−;

15 fold p1 with p′ and store the result in p′;
16 return p′;

To illustrate the algorithm, we apply Meld to Example 4, where S =

{60, 52, 40, 26, 19, 16, 14, 12, 10, 9, 6, 5}. Here p∪ = p2∪p3 = {19, 16, 14, 12, 10, 9, 6, 5},

δ(p1) = 60− 26 = 34 and δ− = 34 ∗ 2/3 = 22.7. After initializing A = {19, }

and B = {5, }, Meld scans from 6 towards 16 to complete A and from 16 to 6

for B. The scan produces numbers 16 and 6, without satisfying the condition

in line 10 of Algorithm 5.4. The iteration is completed by adding 19 + 16 and

6 + 5 to p′, and removing these four numbers from p∪. The next iteration

starts with 14 in A and 9 in B. The scan in lines 9 to 11 yields A = {14, 12}

and B = {10, 9}, again without passing the test in line 10. Now we have

p′ = (19 + 16, 6 + 5, 14 + 12, 9 + 10)=(35, 26, 19, 11). Folding p1 with p′ pro-

duces the final partitioning (60+11, 52+19, 40+26, 26+35) = (71, 71, 66, 61),

with an optimal spread of 10, and achieving a 50% improvement over BLDM’s

spread of 22.

The following proposition shows formally that melding p2 and p3 indeed

achieves the objective of a wider spread than folding.

Proposition 2 Melding k-tuples p2 and p3 produces a k-tuple p′ in which each

122

CHAPTER 5. BUCKETIZATION FOR GROUP RECOMMENDATION

element is the sum of two numbers in p2 ∪ p3, such that δ(p′) ≥ δ(p2) + δ(p3).

Proof. Since the numbers in every k-tuple are sorted in descending order by

construction, we have:

δ(p2) + δ(p3) = (v2,1−v2,k) + (v3,1−v3,k) = (v2,1 +v3,1)− (v2,k +v3,k)(5.4)

Now consider the number pairs A and B found in the first iteration of Algo-

rithm 5.4. If the scan in lines 9 to 11 completes without passing the test in line

10, A holds the two largest numbers v1 and v2 in p∪, and v1 + v2 ≥ v2,1 + v3,1;

moreover, B has the two smallest numbers v2k−1 and v2k in p∪, and v2k−1+v2k ≤

v2,k + v3,k. Thus, δ(p′) ≥ δ(p2) + δ(p3). If the scan terminates early, then

A = {v1, v2k−i+1} and B = {vi, v2k} lead to δ(p′) = (v1 + v2k−i+1)− (vi + v2k)

that is just above δ(p1), so δ(p′) > δ(p2) + δ(p3). 2

Meld extends to situations where S is split into more than three k-tuples.

We repeatedly test whether the three k-tuples pi, pj and pl with the largest

spreads satisfy the condition δ(pi) > δ(pj) + δ(pl). If so, we perform melding

to combine them into a new k-tuple; if not, we resort to a folding operation

on pi and pj. Through this combination of melding and folding operations, we

eventually obtain a single k-tuple that represents the final partitioning.

5.3.3 The Hybrid Algorithm

Where the numbers to be partitioned are known (or have been tested) to follow

a uniform or skewed distribution, the LRM and Meld algorithms introduced

in the earlier sections can be applied to produce high-quality partitioning so-

lutions. To cope with arbitrary input data without a priori knowledge of their

distribution, we incorporate LRM, Meld and the folding operation of BLDM

into a Hybrid algorithm. Specifically, whenever the three k-tuples pi, pj and pl

with the largest spreads satisfy condition δ(pi) > δ(pj)+δ(pl), Meld is executed;

otherwise, we invoke LRM or folding, depending on whether the number of re-

maining k-tuples is odd or even. This process is repeated until we are left with

123

CHAPTER 5. BUCKETIZATION FOR GROUP RECOMMENDATION

a single k-tuple. Hybrid simply switches between Meld and LRM, according to

the comparison results of at most O(n) conditions δ(pi) > δ(pj) + δ(pl). Since

the time complexities of Meld and LRM are O(n2) and O(n log n), respectively,

the time complexity of Hybrid is also O(n2).

5.4 Empirical Validation

To investigate how LRM, Meld and Hybrid perform relative to BLDM, we

implemented them in C++ and tested them on a PC equipped with an Intel

Core Duo 2GHz CPU and 2GB memory. We employ three kinds of datasets:

(a) The first contains numbers that are normally distributed with a mean of

1000 and variance from 0.1×mean to 1.0×mean; (b) The second dataset is

uniformly distributed, with numbers drawn from [0, 2000]; (c) The last dataset

follows a Zipf distribution f(x) = 1
xθ

in [0, 10000], with θ from 0.1 to 2. Each

reported measurement is the average over 100 trials.

5.4.1 Impact of Subset Cardinality (b)

In the first experiment, we measure the spread as we vary the subset cardinality

b from 3 to 50 (because LRM and Meld are designed for b ≥ 3), while fixing

the number of subsets k to 500; this setting corresponds to a balanced 500-way

partitioning. In tandem with the varying b, the dataset size n increases from

3× 500 to 50× 500.

For the uniform dataset, we report the results separately for odd and even

b, because LRM is designed specifically for odd b settings. Figure 5.2(a) shows

the spreads for odd b values, with b = 3, 5, 7..., 49 on the x-axis. The results

confirm that LRM achieves 1
3

the spread of BLDM, as proven in Proposition 1.

Meld performs as poorly as BLDM, which is not surprising; since the condition

for melding is never met for k-tuples with nearly equal spreads, Meld resorts

to folding operations instead. Hybrid is slightly inferior to LRM, because the

124

CHAPTER 5. BUCKETIZATION FOR GROUP RECOMMENDATION

3 9 19 29 39 49
0

200

400

600

Subset Cardinality (b)

S
pr

ea
d

BLDM
Hybrid
LRM
Meld

(a) Uniform Dist. (b is odd)

0 10 20 30 40 50
0

5

10

15

20

Subset Cardinality (b)

S
pr

ea
d

BLDM
Hybrid
Meld

(b) Uniform Dist. (b is even)

0 10 20 30 40 50
0

2000

4000

6000

8000

10000

Subset Cardinality (b)

S
pr

ea
d

BLDM
Hybrid
LRM
Meld

(c) Zipf Dist.

0 10 20 30 40 50
0

200

400

600

800

1000

1200

Subset Cardinality (b)

S
pr

ea
d

BLDM
Hybrid
LRM
Meld

(d) Normal Dist.

Figure 5.2: Performance comparison with k fixed at 500

former may invoke LRM multiple times (instead of just once), which is not

ideal for uniformly distributed data.

Figure 5.2(b) illustrates the spread for uniformly distributed data and even

b values, with b = 4, 6, 8..., 50 on the x-axis (for even b LRM degenerates

to BLDM and is thus omitted from the chart). BLDM achieves partitioning

solutions with very small spreads. This graceful performance is possible only

because in this experiment there is an even number of k-tuples with similar

spreads that successfully offset each other. Since the execution conditions for

LRM and melding are not met, Hybrid relies exclusively on folding operations,

leading to the same partitioning solutions as BLDM. Likewise for Meld.

Next, we turn to the results obtained with the Zipf dataset, depicted in

Figure 5.2(c). Due to space limitation, the figure only includes results for

θ = 1.2 (where about 95% of the numbers fall in 20% of the data space).

Clearly, BLDM does not handle skewed data well, for the reasons discussed in

125

CHAPTER 5. BUCKETIZATION FOR GROUP RECOMMENDATION

Section 5.2. The pure LRM exhibits similar performance as BLDM because,

even when b is odd, the data skew in the Zipf distribution is too high to be

offset by applying LRM only once on the first three k-tuples. In comparison,

Meld handles skewed data successfully, especially for b > 10. We note that

Meld works even better in (omitted) experiments with a higher θ. Hybrid

behaves similarly to Meld, since it invokes the melding operation extensively.

Turning to normally distributed data, we plot results for a variance of

0.6 × mean in Figure 5.2(d) (the relative performance of the algorithms is

similar across all variances tested). Meld and Hybrid outperform BLDM vastly,

producing partitioning solutions with spreads less than 1
10

of those generated

by BLDM when b ranges from 18 to 50. The reason for this interesting result

lies in the property of the normal distribution, which contains relatively few

large and small numbers, while the majority of the values cluster around the

mean. Thus, when the dataset S is carved into k-tuples, the first few have steep

spreads, followed by many tuples with smaller and smaller spreads, before the

pattern reverses. Meld and Hybrid are able to offset those k-tuples with large

spreads in the early iterations, before switching to folding operations until

termination. BLDM and LRM, however, are not adept at handling such data.

5.4.2 Impact of the Problem Size (n)

The next experiment studies the effect of the dataset size, i.e., n, on the vari-

ous algorithms. We increase n progressively from 8, 000 to 160, 000 while fixing

the subset cardinality b. We report only results for b = 16 (as well as b = 15

for uniform data); results for other b settings follow a similar trend to those

shown here. Note that k increases in tandem with n, from 500 to 10, 000. For

b = 15 and uniform data (Figure 5.3(a)) LRM and Hybrid are consistently

better than BLDM. In Figure 5.3(b), for b = 16 and uniform data, as n in-

creases, the spreads produced by all the algorithms drop and then remain close

to zero, verifying that even cardinalities are generally easier to handle. For Zipf

126

CHAPTER 5. BUCKETIZATION FOR GROUP RECOMMENDATION

0 50 100 150
0

50

100

150

200

Problem Size n (X1000)

S
pr

ea
d

BLDM
Hybrid
LRM
Meld

(a) Uniform Dist. (b=15)

0 50 100 150
0

1

2

3

4

5

Problem Size n (X1000)

S
pr

ea
d

BLDM
Hybrid
Meld

(b) Uniform Dist. (b=16)

0 50 100 150
0

2000

4000

6000

8000

10000

12000

Problem Size n (X1000)

S
pr

ea
d

BLDM
Hybrid
LRM
Meld

(c) Zipf Dist. (b=16)

0 50 100 150
0

500

1000

1500

Problem Size n (X1000)

S
pr

ea
d

BLDM
Hybrid
LRM
Meld

(d) Normal Dist. (b=16)

Figure 5.3: Performance comparison with fixed b

numbers, Figure 5.3(c) shows that Meld and Hybrid outperform BLDM consis-

tently by about 17% across different n settings. For normally distributed data

(Figure 5.3(d)), Meld and Hybrid achieve spreads that are about 10% to 34%

those of BLDM. Across all experiments in Figure 5.3, the relative performance

of LRM, Meld, Hybrid and BLDM is stable with respect to n, because it is

the data distribution that has a larger effect on their effectiveness.

5.4.3 Computation Overhead

Finally, we consider the CPU overhead of the various algorithms. At n =

25, 000 and k = 500, BLDM executes in under 80 ms in all of our experiments.

Despite having the same time complexity O(n log n) as BLDM, the actual

CPU time incurred by LRM is higher, at about 100 ms. In contrast, Meld and

Hybrid are more computationally intensive, owing to the melding operation;

their CPU times are less than 600 ms for the normal distribution, 780 ms for

127

CHAPTER 5. BUCKETIZATION FOR GROUP RECOMMENDATION

the Zipf data, and 200 ms for the uniform dataset. Nevertheless, LRM, Meld

and Hybrid are all practical, having very reasonable execution times. It is

worth mentioning that even for one million numbers (with, say, k = 500 and

normal distribution) they all complete in less than 4 seconds.

5.5 Summary

In this chapter, we study the bucketizatoin problem for heterogeneous group

formation in group recommendation. The bucketization problem is equivalent

to a balanced k-way number partitioning problem. With the goal of design-

ing practical solutions for large problem settings, we introduce two heuristic

methods. The first, called LRM, utilizes a predictable pattern of adding num-

bers across three batches of k, to produce k partial sums that are similar in

magnitude. The second method, Meld, employs a (seemingly counterintuitive)

strategy of melding two batches of k numbers into a batch of k widely vary-

ing partial sums, before offsetting them against another high-variance batch.

Furthermore, we combine LRM and Meld into a Hybrid algorithm that dynam-

ically adapts to different data characteristics. Extensive experiments confirm

the effectiveness of LRM and Meld for uniform and skewed data, respectively,

while Hybrid consistently produces high-quality partitioning solutions within

short execution times.

128

Chapter 6

Conclusion

In this chapter, we summarize the dissertation by reviewing the problem of

recommendation support for multi-attribute databases and the work we have

accomplished in the dissertation. Finally, we discuss some promising future

work.

6.1 Dissertation Summary

In this dissertation we focus on three recommendation tasks, namely preference-

overlap recommendation, top-k recommendation, and group recommendation.

We show how each of the tasks may be augmented with additional useful in-

formation for effective recommendation support.

In Chapter 3, we propose the concept of direct neighbor (DN) for preference-

overlap recommendation. Given a query object q, an object p is a DN of q if

there exists some query window that exclusively retrieves p and q. DN offers

useful information that could be submitted to the users along with the rec-

ommendation result. For instance, the DNs of a query object q collectively

define an exclusive retrieval region (see Figure 3.1(b) in Chapter 3), which is

a polygon that only covers q and no other objects. This region could help a

user to adjust her preferences q in searching for more alternatives, or to mon-

itor whether any new items overlap with her region of interest. To compute

129

CHAPTER 6. CONCLUSION

DNs, we analyze the nature of the problem and propose efficient, I/O-optimal

algorithms based on skyline processing and segment trees. We also introduce

practical variants of DN query, i.e., the k-DN query and the All-DN query, and

we provide novel and efficient solutions for each variant.

One limitation of our work in Chapter 3 is that different from NN query

and top-k search, DN query itself cannot tell the relative importance among

DNs according to their distance to query source q, because the DN concept is

not based on distance, rather, it is defined by query windows. On the other

hand, as dimensionality explodes, the number of DNs increases exponentially,

hindering the usefulness of DN query. Also, similar to other queries such as NN

query, the performance of our techniques for DN query will degenerate, due to

the inability of spatial index structures to handle high-dimensional data.

In Chapter 4 we study the problem of global immutable region (GIR) com-

putation for top-k recommendation. Given a user’s top-k query q, the GIR is

the maximal locus containing all query vectors q′, such that the top-k result

with respect to q′ is the same as for q. In other words, GIR is the maximal

polyhedron, within which q can be adjusted freely without altering the top-k

result.

GIR conveys insightful information to the users. For example, GIR can tell

the users how aggressive they should be when adjusting their preferences in

order to get new recommendations, or how robust the recommendation result

is if there are some perturbations in their preferences. Hence, GIR can be used

in applications such as sensitivity analysis, top-k result caching, etc.

In Chapter 4 we answer several questions relating to the problem of GIR

computation.

1. What does a GIR look like geometrically?

2. Can we efficiently compute the GIR, when the database is very large?

3. Can we compute the GIR for top-k recommender systems with non-linear

130

CHAPTER 6. CONCLUSION

scoring functions?

For the first question, we formally define the concept of GIR based on

properties of top-k query and half-space intersection [27], which reveal the

shape and nature of GIR. With that understanding, we are able to identify

the relationship between GIR and other sensitivity measures, i.e., STB and

LIR, proposed in [70] and [53], respectively. To derive GIR, we devise three

algorithms, namely skyline pruning (SP) and convex hull pruning (CP), as well

as an advanced technique called facet pruning (FP). We show both analytically

and empirically that FP is superior to SP and CP, because it computes a small

proportion of facets of a convex hull, and subsequently only maintains this set

of facets. The second problem is thus answered by our FP method completely.

We give an affirmative answer to the third question, by showing that our SP

method is capable of dealing with any monotone scoring functions, while CP,

due to the nature of convex hull, can support certain types of concave functions.

We also consider a variant of GIR, i.e., order-insentitive GIR, that omits the

constraint on relative ordering among the top-k recommendations and only

enforces the constraint of preserving the composition of the recommendation

list.

Our work of GIR computation has several limitations. Firstly, GIR com-

putation is based on the assumption that each attribute of the data is from a

total-ordered (numerical) domain. If some attributes are from partial-ordered

domains, then our techniques cannot be applied, because the top-k computa-

tion, half-space intersections, and convex hull construction require that any

two tuples are comparable with respect to each of the attributes. Secondly, as

we have shown in section 4.7.2, the proposed CP and FP methods may not be

able to deal with more general function types, due to the nature of convex hull

that the two methods rely on.

We address the group formation problem in group recommendation in

Chapter 5. The task of group recommendation is to recommend items to

131

CHAPTER 6. CONCLUSION

a group of users with similar quantitative features, e.g., preferences, skill set,

knowledge level, etc [3, 54]. Besides recommending items to groups, the prob-

lem of group formation is also an important issue in group recommendation

[3]. We focus on heterogeneous group formation, where a heterogeneous group

consists of users with diversified quantitative measures [71]. Heterogeneous

groups can be very useful in applications such as education and learning [17],

where they promote peer learning [41].

We treat the heterogeneous group formation problem as a bucketization

problem which is equivalent to the balanced multi-way number partitioning

in Artificial Intelligence. The goal of our bucketization problem is to find a

grouping plan which partitions a collection of objects with different quantita-

tive measures into a number of groups, such that each group holds the same

number of objects, and for any two groups G1 and G2, the accumulated value

of quantities of all objects in G1 is as close as possible to that of G2.

To solve the bucketization problem, we propose three algorithms, namely

LRM, Meld, and Hybrid. LRM and Meld perform better on datasets with

uniform and skewed distribution, respectively, while Hybrid is superior when

the data distribution is not known.

The limitation of our work in Chapter 5 is that our techniques, i.e., LRM

and Meld, are tailored for specific data distributions, thus none of them can

consistently achieve the best performance on all data distributions. Even the

Hybrid method, that combines the merits of LRM and Meld, still does not

perform well on data with uniform distribution when subset cardinality is odd.

To summarize, in this dissertation we consider three different recommen-

dation tasks, and study how to provide recommendation support for the users

with useful and additional information. We have also designed effective and

scalable techniques to compute this additional information.

132

CHAPTER 6. CONCLUSION

6.2 Future Work

We conclude this dissertation by outlining several interesting and promising

research problems for further work.

A direction for future work is DN search for containment queries that are

not axis-parallel windows but arbitrary regions. Another challenging direc-

tion regards the exploding number of DNs with dimensionality – it would

be useful to devise techniques that prioritize among the DNs and possibly

choose/compute only a subset of them.

Another direction of improvement regards our global immutable region

(GIR) for top-k recommendation. Our techniques in Chapter 4 are for ex-

act GIR computation. It would be meaningful to design techniques that can

give an approximate GIR under some user constraints, such as error bound

or limited response time. This extension will be useful in time-critical appli-

cations such as online business analysis, real-time product recommendation,

online stock market monitoring, etc.

133

Bibliography

[1] Apartments - floor preference? Website.

http://www.indianrealestateboard.com/forums/showthread.php/7938-

Apartments-Floor-Preference.

[2] Gediminas Adomavicius and Alexander Tuzhilin. Toward the next gener-

ation of recommender systems: A survey of the state-of-the-art and possi-

ble extensions. IEEE Transactions on Knowledge and Data Engineering,

17(6):734–749, 2005.

[3] Sihem Amer-Yahia, Senjuti Basu Roy, Ashish Chawlat, Gautam Das, and

Cong Yu. Group recommendation: Semantics and efficiency. Proceedings

of the VLDB Endowment, PVLDB, 2(1):754–765, 2009.

[4] Lars Arge, Darren Erik Vengroff, and Jeffrey Scott Vitter. External-

memory algorithms for processing line segments in geographic information

systems. Algorithmica, 47(1):1–25, 2007.

[5] Brian Babcock and Chris Olston. Distributed top-k monitoring. In Pro-

ceedings of the ACM SIGMOD International Conference on Management

of Data, SIGMOD, pages 28–39, 2003.

[6] Jonathan Backer and J Mark Keil. The bichromatic rectangle problem in

high dimensions. In Proceedings of the 21st Annual Canadian Conference

on Computational Geometry, CCCG, pages 157–160, 2009.

134

BIBLIOGRAPHY

[7] C. Bradford Barber, David P. Dobkin, and Hannu Huhdanpaa. The quick-

hull algorithm for convex hulls. ACM Transactions on Mathematical Soft-

ware, 22(4):469–483, 1996.

[8] Norbert Beckmann, Hans-Peter Kriegel, Ralf Schneider, and Bernhard

Seeger. The r*-tree: An efficient and robust access method for points and

rectangles. In Proceedings of the ACM SIGMOD International Conference

on Management of Data, SIGMOD, pages 322–331, 1990.

[9] Norbert Beckmann, Hans-Peter Kriegel, Ralf Schneider, and Bernhard

Seeger. The r*-tree: An efficient and robust access method for points and

rectangles. In Proceedings of the ACM SIGMOD International Conference

on Management of Data, SIGMOD, pages 322–331, 1990.

[10] J. L. Bentley, H. T. Kung, M. Schkolnick, and C. D. Thompson. On the

average number of maxima in a set of vectors and applications. Journal

of the ACM, 25(4):536–543, 1978.

[11] Jon Louis Bentley and Jerome H. Friedman. Data structures for range

searching. ACM Computing Survey, 11(4):397–409, 1979.

[12] Jon Louis Bentley and Derick Wood. An optimal worse case algorithm for

reporting intersections of rectangles. IEEE Transactions on Computers,

100(7):571–577, 1980.

[13] Mark De Berg, Otfried Cheong, Marc Van Kreveld, and Mark Overmars.

Computational geometry: algorithms and applications. Springer, 2008.

[14] Kevin S. Beyer, Jonathan Goldstein, Raghu Ramakrishnan, and Uri Shaft.

When is ‘nearest neighbor’ meaningful? In Proceedings of the 7th Inter-

national Conference on Database Theory, ICDT, pages 217–235, 1999.

[15] Christian Böhm and Hans-Peter Kriegel. Determining the convex hull in

large multidimensional databases. In Proceedings of the 3rd International

135

BIBLIOGRAPHY

Conference on Data Warehousing and Knowledge Discovery, DaWaK,

pages 294–306, 2001.

[16] Stephan Börzsönyi, Donald Kossmann, and Konrad Stocker. The skyline

operator. In Proceedings of the 17th IEEE International Conference on

Data Engineering, ICDE, pages 421–430, 2001.

[17] David Boud, Ruth Cohen, and Jane Sampson. Peer Learning in Higher

Education: Learning from & with Each Other. Psychology Press, 2001.

[18] Timothy M Chan. Optimal output-sensitive convex hull algorithms in two

and three dimensions. Discrete and Computational Geometry, 16(4):361–

368, 1996.

[19] D. R. Chand and S. S. Kapur. An algorithm for convex polytopes. Journal

of the ACM, 17(1):78–86, 1970.

[20] Yuan-Chi Chang, Lawrence Bergman, Vittorio Castelli, Chung-Sheng Li,

Ming-Ling Lo, and John R. Smith. The onion technique: Indexing for

linear optimization queries. In Proceedings of the ACM SIGMOD Inter-

national Conference on Management of Data, SIGMOD, pages 391–402,

2000.

[21] Bernard Chazelle. An optimal convex hull algorithm and new results on

cuttings. In FOCS, pages 29–38, 1991.

[22] Lei Chen and Xiang Lian. Efficient processing of metric skyline queries.

IEEE Transactions on Knowledge and Data Engineering, 21(3):351–365,

2009.

[23] H. Christopher Frey and Sumeet R. Patil. Identification and Review of

Sensitivity Analysis Methods. Risk Analysis, 22(3):553–578, 2002.

136

BIBLIOGRAPHY

[24] Kenneth Clarkson, Kurt Mehlhorn, and Raimund Seidel. Four results

on randomized incremental constructions. Computational Geometry,

3(4):185–212, 1993.

[25] Douglas Comer. Ubiquitous B-Tree. ACM Computing Surveys, 11(2),

1979.

[26] Gautam Das, Dimitrios Gunopulos, Nick Koudas, and Dimitris Tsirogian-

nis. Answering top-k queries using views. In Proceedings of 32nd Inter-

national Conference on Very Large Data Bases, VLDB, pages 451–462,

2006.

[27] Mark de Berg, Otfried Cheong, Marc van Kreveld, and Mark Overmars.

Computational Geometry: Algorithm and Applications. Springer-Verlag,

2008.

[28] M. Dell’Amico and S. Martello. Bounds for the cardinality constrainted

p||cmax problem. Journal of Scheduling, 4:123–138, 2001.

[29] Evangelos Dellis and Bernhard Seeger. Efficient computation of reverse

skyline queries. In Proceedings of 33rd International Conference on Very

Large Data Bases, VLDB, pages 291–302, 2007.

[30] Ke Deng, Xiaofang Zhou, and Heng Tao Shen. Multi-source skyline query

processing in road networks. In Proceedings of the 23rd IEEE International

Conference on Data Engineering, ICDE, pages 796–805, 2007.

[31] Jonathan Eckstein, Peter L Hammer, Ying Liu, Mikhail Nediak, and

Bruno Simeone. The maximum box problem and its application to data

analysis. Computational Optimization and Applications, 23(3):285–298,

2002.

[32] Ronald Fagin, Amnon Lotem, and Moni Naor. Optimal aggregation algo-

rithms for middleware. Journal of Computer and System Sciences, JCSS,

66(4):614–656, 2003.

137

BIBLIOGRAPHY

[33] Craig S. Fleisher and Babette E. Bensoussan. Business and Competitive

Analysis: Effective Application of New and Classic Methods. FT Press,

2007.

[34] Michael R. Garey and David S. Johnson. Computers and Intractability:

A Guide to the Theory of NP-Completeness. W. H. Freeman, New York,

NY, 1979.

[35] Ronald L Graham. An efficient algorithm for determining the convex hull

of a finite planar set. Information Processing Letters, 1(4):132–133, 1972.

[36] Antonin Guttman. R-trees: A dynamic index structure for spatial search-

ing. In Proceedings of the ACM SIGMOD International Conference on

Management of Data, SIGMOD, pages 47–57, 1984.

[37] D. M. Hamby. A review of techniques for parameter sensitivity analy-

sis of environment models. Environmental Monitoring and Assessment,

32(2):135–154, 1994.

[38] Jiawei Han, Micheline Kamber, and Jian Pei. Data mining: concepts and

techniques. Morgan Kaufmann, 2006.

[39] Gı́sli R. Hjaltason and Hanan Samet. Distance browsing in spatial

databases. ACM Transactions on Database Systems, 24(2):265–318, 1999.

[40] I. F. Ilyas, G. Beskales, and M. A. Soliman. A survey of top-k query

processing techniques in relational database systems. ACM Computing

Surveys, 40(4), 2008.

[41] Clement Kirabo Jackson and Elias Bruegmann. Teaching students and

teaching each other: the importance of peer learning for teachers. Amer-

ican Economic Journal: Applied Economics, 1(4):85–108, 2009.

138

BIBLIOGRAPHY

[42] C. Jin, K. Yi, L. Chen, J. X. Yu, and X. Lin. Sliding-window top-k queries

on uncertain streams. In Proceedings of the VLDB Endowment, PVLDB,

pages 301–312, 2008.

[43] Ibrahim Kamel and Christos Faloutsos. On packing r-trees. In Proceedings

of the 2nd ACM International Conference on Information and Knowledge

Management, CIKM, pages 490–499, 1993.

[44] N. Karmarkar and R. Karp. The differencing method of set partitioning.

Technical Report UCB/CSD 82/113, University of California, Berkeley,

CA, 1982.

[45] R. Korf. A complete anytime algorithm for number partitioning. Artificial

Intelligence, 106(2):181–203, 1998.

[46] Flip Korn and S. Muthukrishnan. Influence sets based on reverse near-

est neighbor queries. In Proceedings of the ACM SIGMOD International

Conference on Management of Data, SIGMOD, pages 201–212, 2000.

[47] Ken C.K. Lee, Wang Chien Lee, and Hong Va Leong. Nearest surrounder

queries. In Proceedings of the 22nd IEEE International Conference on

Data Engineering, ICDE, pages 85–94, 2006.

[48] Scott T. Leutenegger, J. M. Edgington, and Mario A. Lopez. Str: A

simple and efficient algorithm for r-tree packing. In Proceedings of the

13th IEEE International Conference on Data Engineering, ICDE, pages

497–506, 1997.

[49] Michael Levandowsky and David Winter. Distance between sets. Nature,

234:34–35, 1971.

[50] J Matousek and O. Schwarzkopf. Linear optimization queries. In Proceed-

ings of the ACM Symposium on Computational Geometry, pages 16–25,

1992.

139

BIBLIOGRAPHY

[51] Wil Michiels, Jan H. M. Korst, Emile H. L. Aarts, and Jan van Leeuwen.

Performance ratios for the differencing method applied to the balanced

number partitioning problem. In Symposium on Theoretical Aspects of

Computer Science, STACS, pages 583–595, 2003.

[52] Kyriakos Mouratidis, Spiridon Bakiras, and Dimitris Papadias. Continu-

ous monitoring of top-k queries over sliding windows. In Proceedings of

the ACM SIGMOD International Conference on Management of Data,

SIGMOD, pages 635–646, 2006.

[53] Kyriakos Mouratidis and HweeHwa Pang. Computing immutable regions

for subspace top-k queries. In Proceedings of the VLDB Endowment,

PVLDB, pages 73–84, 2013.

[54] I. Ntoutsi, K. Stefanidis, K. Norvag, and H. Kriegel. gRecs: A group

recommendation system base on user user clustering. In Proceedings of

the 17th International Conference on Database Systems for Advanced Ap-

plications, DASFAA, pages 299–303, 2012.

[55] Sarana Nutanong, Rui Zhang, Egement Tanin, and Lars Kulik. The v*-

diagram: a query-dependent approach to moving knn queries. In Proceed-

ings of the VLDB Endowment, PVLDB, pages 1095–1106, 2008.

[56] Bernd-Uwe Pagel, Hans-Werner Six, Heinrich Toben, and Peter Wid-

mayer. Towards an analysis of range query performance in spatial data

structures. In Proceedings of the 12th ACM Symposium on Principles of

Database Systems, PODS, pages 214–221, 1993.

[57] Dimitris Papadias and Yufei Tao. Reverse nearest neighbor query. In

Encyclopedia of Database Systems, pages 2434–2438. 2009.

[58] Dimitris Papadias, Yufei Tao, Greg Fu, and Bernhard Seeger. Progressive

skyline computation in database systems. ACM Transactions on Database

Systems, 30(1):41–82, 2005.

140

BIBLIOGRAPHY

[59] Resnick Paul, Iacovou Neophytos, Suchak Mitesh, Bergstrom Peter, and

Riedl John. GroupLens:an open architecture for collaborative filtering

of netnews. In Proceedings of ACM Conference on Computer Supported

Cooperative Work, CSCW, pages 175–186, 1994.

[60] Sunil Prabhakar, Yuni Xia, Dmitri V. Kalashnikov, Walid G. Aref, and

Susanne E. Hambrusch. Query indexing and velocity constrained index-

ing: Scalable techniques for continuous queries on moving objects. IEEE

Transactions on Computers, 51(10):1124–1140, 2002.

[61] Raghu Ramakrishnan and Johannes Gehrke. Database management sys-

tems. Osborne/McGraw-Hill, 2000.

[62] Paul Resnick and Hal R Varian. Recommender systems. Communications

of the ACM, 40(3):56–58, 1997.

[63] John T Robinson. The KDB-tree: a search structure for large multidi-

mensional dynamic indexes. In Proceedings of the ACM SIGMOD In-

ternational Conference on Management of Data, SIGMOD, pages 10–18,

1981.

[64] Nick Roussopoulos, Stephen Kelley, and Frédéic Vincent. Nearest neigh-

bor queries. In Proceedings of the ACM SIGMOD International Confer-

ence on Management of Data, SIGMOD, pages 71–79, 1995.

[65] Andrea Saltelli, Karen Chan, E Marian Scott, et al. Sensitivity analysis.

Wiley New York, 2000.

[66] Andrea Saltelli, Marco Ratto, Terry Andres, Francesca Campolongo, Jes-

sica Cariboni, Debora Gatelli, Michaela Saisana, and Stefano Tarantola.

Global sensitivity analysis: the primer. John Wiley & Sons, 2008.

[67] Andrea Saltelli, Stefano Tarantola, and K.P.-S Chan. A quantitative

model-independent method for global sensitivity analysis of model out-

put. Technometrics, 41(1):39–56, 1999.

141

BIBLIOGRAPHY

[68] Beomjoo Seo and Roger Zimmermann. Edge indexing in a grid for highly

dynamic virtual environments. In Proceedings of the 14th ACM Interna-

tional Conference on Multimedia, pages 402–411, 2006.

[69] Mehdi Sharifzadeh, Cyrus Shahabi, and Leyla Kazemi. Processing spatial

skyline queries in both vector spaces and spatial network databases. ACM

Transactions on Database Systems, 34(3):14, 2009.

[70] Mohamed A. Soliman, Ihab F. Ilyas, Davide Martinenghi, and Marco

Tagliasacchi. Ranking with uncertain scoring functions: semantics and

sensitivity measures. In Proceedings of the ACM SIGMOD International

Conference on Management of Data, SIGMOD, pages 805–816, 2011.

[71] Rafael Sotelo, Yolanda Blanco-Fernandez, Martin Lopez-Nores, Alberto

Gil-Solla, and Jose J Pazos-Arias. Tv program recommendation for groups

based on muldimensional tv-anytime classfications. IEEE Transactions on

Consumer Electronics, 55(1):248–256, 2009.

[72] Kian-Lee Tan, Pin-Kwang Eng, and Beng Chin Ooi. Efficient progressive

skyline computation. In Proceedings of 27th International Conference on

Very Large Data Bases, VLDB, pages 301–310, 2001.

[73] Yufei Tao, Vagelis Hristidis, Dimitris Papadias, and Yannis Papakon-

stantinou. Branch-and-bound processing of ranked queries. Information

Systems, 32(3):424–445, 2007.

[74] L. Tasi. The modified differencing method for the set partitioning problem

with cardinality constraints. Discrete Applied Mathematics, 63:175–180,

1995.

[75] P. Tsaparas, T. Palpanas, Y. Kotidis, N. Koudas, and D. Srivastava.

Ranked join indices. In Proceedings of the 19th IEEE International Con-

ference on Data Engineering, ICDE, pages 277–288, 2003.

142

BIBLIOGRAPHY

[76] Bala R. Vatti. A generic solution to polygon clipping. Communications

of the ACM, 35(7):56–63, 1992.

[77] Akrivi Vlachou, Christos Doulkeridis, Yannis Kotidis, and Kjetil Nørv̊ag.

Reverse top-k queries. In Proceedings of the 26th IEEE International

Conference on Data Engineering, ICDE, pages 365–376, 2010.

[78] Akrivi Vlachou, Christos Doulkeridis, Yannis Kotidis, and Kjetil Nørv̊ag.

Monochromatic and bichromatic reverse top-k queries. IEEE Transactions

on Knowledge and Data Engineering, 23(8):1215–1229, 2011.

[79] Akrivi Vlachou, Christos Doulkeridis, Kjetil Norvag, and Yannis Kotidis.

Branch-and-bound algorithm for reverse top-k queries. In Proceedings of

the ACM SIGMOD International Conference on Management of Data,

SIGMOD, pages 481–492, 2013.

[80] Min Xie, Laks V. S. Lakshmanan, and Peter T. Wood. Efficient top-

k query answering using cached views. In Proceedings of the ACM In-

ternational Conference on Extending Database Technology, EDBT, pages

489–500, 2013.

[81] B. Yakir. The differencing algorithm LDM for partitioning: A proof of a

conjecture of Karmarkar and Karp. Mathematics of Operations Research,

21(1):85–99, 1996.

[82] K. Yi, H. Yu, J. Yang, G. Xia, and Y. Chen. Efficient maintenance of

materialized top-k views. In Proceedings of the 19th IEEE International

Conference on Data Engineering, ICDE, pages 189–200, 2003.

[83] Zhenjie Zhang, Yin Yang, Ruichu Cai, Dimitris Papadias, and Anthony

K. H. Tung. Kernel-based skyline cardinality estimation. In Proceedings

of the ACM SIGMOD International Conference on Management of Data,

SIGMOD, pages 509–522, 2009.

143

	Recommendation Support for Multi-Attribute Databases
	Citation

	List of Figures
	List of Tables
	Publications related to the Dissertation
	Acknowledgements
	Introduction
	Preference-Overlap Recommendation
	Top-k Recommendation
	Group Recommendation
	Contributions
	Organization of the Dissertation

	Related Work
	Recommender Systems
	Preference-Overlap Recommendation
	Top-k Recommendation
	Group Recommendation and Group Formation

	Direct Neighbor Search for Preference-Overlap Recommendation Support
	Motivation
	Preliminaries
	Direct Neighbor Search
	DN Search in Quadrants
	DN Search in Stripes
	Complete DN Algorithm
	Arbitrary Object Shapes

	K-Direct Neighbor Search
	All-Direct Neighbor Query
	Fundamental Properties of DNs
	The All-DN Algorithm

	DN Search in Higher Dimensions
	Effect of Dimensionality
	Processing in Three Dimensions
	Beyond Three Dimensions

	Empirical Evaluation
	Comparison with Related Query Types
	Experiments in Two Dimensions
	Experiments in Higher Dimensions

	Summary

	Global Immutable Region for Top-k Recommendation Support
	Motivation
	Preliminaries
	Computing Global Immutable Region
	Definition of Global Immutable Region
	Nature of Global Immutable Region
	Challenges, Assumptions and Setting

	Processing in Phase 1
	Basic Methods for Phase 2
	Skyline Pruning Method
	Convex Hull Pruning Method
	Performance Indications

	Advanced Solution for Phase 2
	Rationale of Facet Pruning Method
	Facet Pruning in Two Dimensions
	Facet Pruning in Higher Dimensions
	Correctness Proof of FP

	Extensions and Visualization
	Order-Insensitive GIR
	Non-Linear Scoring Functions
	GIR Visualization

	Experiments
	Summary

	Bucketization for Group Recommendation
	Preliminaries
	Limitations of BLDM
	Algorithms for Balanced Bucketization
	The LRM algorithm
	The Meld Algorithm
	The Hybrid Algorithm

	Empirical Validation
	Impact of Subset Cardinality (b)
	Impact of the Problem Size (n)
	Computation Overhead

	Summary

	Conclusion
	Dissertation Summary
	Future Work

	Bibliography

