
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Dissertations and Theses Collection (Open
Access) Dissertations and Theses

1-2014

Virtualization-based System Hardening against Untrusted Kernels Virtualization-based System Hardening against Untrusted Kernels

Yueqiang CHENG
Singapore Management University, yqcheng.2008@phdis.smu.edu.sg

Follow this and additional works at: https://ink.library.smu.edu.sg/etd_coll

 Part of the Databases and Information Systems Commons, Information Security Commons, and the

Systems Architecture Commons

Citation Citation
CHENG, Yueqiang. Virtualization-based System Hardening against Untrusted Kernels. (2014). 1-179.
Available at:Available at: https://ink.library.smu.edu.sg/etd_coll/105

This PhD Dissertation is brought to you for free and open access by the Dissertations and Theses at Institutional
Knowledge at Singapore Management University. It has been accepted for inclusion in Dissertations and Theses
Collection (Open Access) by an authorized administrator of Institutional Knowledge at Singapore Management
University. For more information, please email cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/etd_coll
https://ink.library.smu.edu.sg/etd_coll
https://ink.library.smu.edu.sg/etd
https://ink.library.smu.edu.sg/etd_coll?utm_source=ink.library.smu.edu.sg%2Fetd_coll%2F105&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/145?utm_source=ink.library.smu.edu.sg%2Fetd_coll%2F105&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1247?utm_source=ink.library.smu.edu.sg%2Fetd_coll%2F105&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/144?utm_source=ink.library.smu.edu.sg%2Fetd_coll%2F105&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

Virtualization-Based System Hardening
Against Untrusted Kernels

YUEQIANG CHENG

SINGAPORE MANAGEMENT UNIVERSITY
2013

Virtualization-Based System Hardening Against
Untrusted Kernels

by
Yueqiang Cheng

Submitted to School of Information Systems in partial fulfillment of the
requirements for the Degree of Doctor of Philosophy in Information Systems

Dissertation Committee:

Robert DENG Huijie (Supervisor / Chair)
Professor of Information Systems
Singapore Management University

Xuhua DING (Co-supervisor)
Associate Professor of Information Systems
Singapore Management University

Debin GAO

Assistant Professor of Information Systems
Singapore Management University

Yongdong WU

Senior Scientist of Infocomm Security Department
Institute for Infocomm Research

Singapore Management University
2013

Copyright (2013) Yueqiang Cheng

Virtualization-Based System Hardening Against
Untrusted Kernels

Yueqiang Cheng

Abstract

Applications are integral to our daily lives to help us processing sensitive I/O data,

such as individual passwords and camera streams, and private application data, such

as financial information and medical reports. However, applications and sensitive

data all surfer from the attacks from kernel rootkits in the traditional architecture,

where the commodity OS that is supposed to be the secure foothold of the system

is routinely compromised due to the large code base and the broad attack surface.

Fortunately, the virtualization technology has significantly reshaped the landscape

of the modern computer system, and provides a variety of new opportunities for us

to protect application and sensitive data.

In this dissertation, we first design and implement a lightweight and reliable

hypervisor Guardian as the system secure foothold, which leverages virtualization

technology and a secure boot and shutdown mechanism to protect itself in its whole

life cycle. Guardian is the first bare-metal hypervisor with integrity and availability

guarantees. Moreover, we extend Guardian to be a framework of secure foothold,

which consists of summarized common security primitives for facilitating our pro-

posed systems and other security services. Based on the reliable secure foothold

(Guardian), we propose AppShield, which protects critical applications through

putting them into isolated execution environments (IEEs). In an IEE, AppShield is

able to reliably and efficiently protect data secrecy and integrity of a critical appli-

cation, as well as the execution integrity, against kernel rootkit attacks. Moreover, it

is able to defend against newly identified threats, which are evidence that protecting

applications against the malicious OS is more difficult than previously realized.

The inputs and outputs of protected application are not protected by AppShield

such that they could be tampered by kernel rootkits. To fix this gap, we propose

a trusted path (TP) scheme, named as Driverguard, to protect I/O flows between

hardware input/output devices and protected applications. DriverGuard is the first

generic approach that protects all kinds of I/O flows with a combination of crypto-

graphic and virtualization techniques. The combination of IEE and TP could protect

almost all applications and sensitive data. But for certain user data, we could do it

better. In this dissertation, we purpose a dedicated system KGuard to protect user

passwords in the increasingly popular online services without needing any IEE and

trusted path. In particular, KGuard does not trust any software components in the

guest kernel and user space (without IEE requirement), and also not leverage any

special hardware to assist the protection.

We implement the prototypes of all the above systems, and evaluate their perfor-

mance overheads. The experiment results show that the performance costs on CPU

computation and device I/O are insignificant.

Table of Contents

1 Introduction 1

1.1 Problem Overview . 1

1.2 Research Objectives . 3

1.2.1 Reliable Secure Foothold 3

1.2.2 Application Protection . 4

1.2.3 I/O Data Protection . 5

1.3 Threat Model . 6

1.4 Metrics . 8

1.5 Terminology . 8

1.6 Dissertation Overview . 9

1.6.1 Dissertation Organization 11

2 Related Work 13

2.1 Application Protection . 13

2.1.1 Self-contained Code Protection 13

2.1.2 Whole Application Protection 14

2.2 I/O Data Protection . 16

2.2.1 Virtualization-based Protection 16

2.2.2 Hardware-based Protection 17

2.2.3 OS-based Protection . 18

2.3 Hypervisor Security . 18

2.4 Root of Trust . 20

i

2.4.1 Software-based Root of Trust 20

2.4.2 Hardware-based Root of Trust 20

3 Reliable Secure Foothold 22

3.1 Problem Definition . 23

3.1.1 Threat Model . 23

3.2 Design of Guardian . 24

3.2.1 Establishing Guardian as a Security Foothold 24

3.2.2 Secure User-Hypervisor Interface 31

3.3 Implementation . 32

3.3.1 System Benchmark . 33

3.4 Summary . 35

4 Application Protection 36

4.1 Synopsis . 37

4.1.1 Threat Model . 37

4.1.2 Desired Properties . 38

4.1.3 AppShield Overview . 38

4.2 Dynamic Address Space Isolation 40

4.2.1 Address Space Isolation 40

4.2.2 Dynamic Isolation . 41

4.3 Secure Context Switch . 47

4.3.1 Transit Module . 47

4.3.2 Event Capture . 49

4.3.3 Context and Address Space Switch 50

4.3.4 Special Considerations . 51

4.4 System Call Adaption . 52

4.4.1 System Call Emulation . 54

4.4.2 Ptrace . 55

4.5 Implementation and Evaluation . 55

ii

4.5.1 Micro Benchmark . 56

4.5.2 Macro Benchmark . 57

4.6 Discussions . 60

4.7 Summary . 61

5 Generic Protection On I/O Flows 62

5.1 Problem Definition . 63

5.1.1 Our Goals . 63

5.1.2 Threat Model and Assumptions 64

5.1.3 Attacks . 65

5.1.4 Security Requirements . 66

5.1.5 Challenges . 67

5.2 Design Rationale . 67

5.3 Design Overview . 69

5.3.1 Protection Mechanism . 69

5.3.2 Access Control Over Critical Regions 71

5.3.3 Cryptographic Components 72

5.3.4 PCB Execution Escorting 72

5.4 Privileged Code Block . 73

5.4.1 Identifying PCB . 74

5.4.2 PCB Format . 74

5.5 Design Details . 75

5.5.1 Driver Context Initialization 75

5.5.2 Checkpoint Deployment 77

5.5.3 PCB Execution Escorting 80

5.5.4 Data Region Access Control 82

5.5.5 Device Control Protection 83

5.5.6 Device Configuration Space Restriction 84

5.5.7 User-Space Device Driver Support 85

iii

5.6 Discussions . 85

5.6.1 Automatically Identifying PCB 85

5.6.2 Full I/O Path Protection 88

5.7 Evaluation . 91

5.7.1 Security Analysis . 91

5.7.2 Security Evaluation . 94

5.7.3 Usage of PCB . 95

5.7.4 Performance Evaluation 95

5.8 Summary . 101

6 Dedicated Protection on User Passwords 102

6.1 Overview . 104

6.1.1 Design Criteria . 104

6.1.2 Design Rationale . 105

6.1.3 Architecture . 108

6.2 Design Details . 109

6.2.1 User-Hypervisor Interaction 109

6.2.2 Keystroke Interception . 112

6.2.3 Handling SSL Session . 115

6.2.4 Security Analysis . 118

6.3 Implementation . 119

6.3.1 KGuard in Hypervisor . 119

6.3.2 Browser Extension and Plugin 121

6.3.3 Hypercall Support In HVM 122

6.4 Performance Evaluation . 123

6.4.1 Overhead for Password Input 123

6.4.2 Overhead for Password Submission 124

6.5 Discussions . 125

6.5.1 Hypervisor Security . 125

iv

6.5.2 Trusted Certificate Updates 126

6.5.3 Sensitive Keyboard Input Protection 126

6.6 Summary . 127

7 Framework For Security Services 128

7.1 Architecture . 128

7.1.1 Security Primitive . 129

7.1.2 Event Log . 130

7.2 Security Utilities . 131

7.2.1 Device Monitoring . 131

7.2.2 Hyper-firewall . 132

7.2.3 Software Runtime Attestation 136

7.2.4 User Presence Attestation For Password Authentication . . . 141

8 Conclusion and Future Work 143

8.1 Look into the Future . 144

v

List of Figures

1.1 Research Objectives. In this dissertation, we focus on the applica-

tion protection and I/O data protection based on a reliable secure

foothold. 4

1.2 AppShield protects an application through an isolated execution en-

vironments built upon Guardian (the reliable secure foothold). The

I/O flows between the protected application and hardware I/O de-

vices are protected by DriverGuard through trusted paths. For user

passwords, they are specifically protected by KGuard. 10

3.1 Protection of the TCB (from power up to power down). The TCB

consists of the Guardian image and the bootloader core. The pro-

tected memory for the TCB image is reserved by Guardian and in-

accessible for the guest OS. 26

3.2 An illustration of the disk layout. 26

3.3 The sequence of secure bootup. 27

3.4 ACPI sleep states. 29

3.5 TCB size. Larger TCB implies more bugs. 33

3.6 The LmBench results on OS operations. 33

3.7 The system benchmark comparison results generated by SPEC CPU

2006. 34

3.8 The I/O-bound benchmark results. 34

vi

4.1 The architecture of AppShield. The data flows (dotted lines) be-

tween the protected Critical APplication (CAP) always go through

the shared buffer and mediated by the shim code. The control flows

(solid lines) between CAP and the OS are mediated by the Transit

Module (TraMod). The execution of transit module are protected

by the hypervisor. 39

4.2 Address Space Isolation. With the trusted AppShield EPT, only the

memory regions of CAP and the shared buffer are accessible, while

with the original EPT, the memory regions except the shared buffer

are inaccessible. 41

4.3 Threats for address space isolation. 42

4.4 Control flow between the CAP and the guest kernel. 47

4.5 The format of transit module . 48

4.6 The AppShield interrupt handler. 48

4.7 Performance Overhead Localization. When the context switches to

CAP, the normal IDT is uninstalled and the secure IDT is installed. . 49

4.8 A typical address space switch always starts with an exit gate and

ends with an entry gate. The commodity OS handles the events that

trigger the address space switch. 51

4.9 SPECint 2006 Result. AppShield introduces insignificant slow-

down comparing with virtualization. 58

4.10 The effects of AppShield protection on computation. 58

4.11 The disk I/O Benchmark. 59

5.1 The concept of privileged code block (PCB). 70

5.2 An illustration of runtime protection, where 0x1234 is an exemplary

memory address with a PTE checkpoint. 72

vii

5.3 The two types of PCB format. (a) A PCB ending with encryption.

Thus, the hypervisor does not need to enforce access control on the

data; (b) A PCB ending with protection requirement. Therefore, the

hypervisor must enforce access control on the data to restrict the

access. 75

5.4 An illustration of five types of regions with same numbering in the

description. 76

5.5 Algorithm for PCB admission. 80

5.6 Interrupt handler for escorting. When there is an interrupt interrupt-

ing the execution of the execution of a PCB, the interrupt handler

restores the protection on the escorted data, and saves the context of

current escorting PCB. 81

5.7 Exception handler for escorting. When a previous interrupted PCB

resumes, the exception handler restores the PCB execution context. . 82

5.8 The shimguard helps Overshadow and DriverGuard to protect the

whole life cycle of the I/O data. Note that the I/O data denoted as

D in the shaded regions are encrypted either by driver PCBs or by

shimguard. 90

6.1 The Architecture of The Password Protection System. 109

6.2 The hypercall mechanism in a HVM domain. 110

6.3 Data structures used by the USB-keyboard. The (grey) input buffer

indicates that it is set inaccessible. Other (white) parts of the whole

data structure are set read-only. 114

6.4 The certificate chain verification. 119

6.5 Three events generated during authentication. The third one is in-

tercepted by the extension. 121

7.1 The architecture of Guardian. 129

7.2 The transmit descriptor circular queue used by the NIC. 133

viii

7.3 The benchmark results with and without hyper-firewall. 135

7.4 An illustration of probabilistic measurement in software runtime at-

testation. 138

7.5 The benchmark results with and without hyper-firewall. 140

ix

List of Tables

4.1 The time cost of the parameter marshalling in a system call. Our

scheme is relatively efficient because we give up the costly crypto-

graphic operations and reduce the switch times. 53

4.2 The configurations of the experiment machine. 55

4.3 Supported system calls. 56

4.4 The micro-benchmark results for address space switch. 57

4.5 The benchmark results of Apache. 60

5.1 The number of PCBs and the average size for each driver used in

our experiments. The drivers labeled with stars are those within the

kernel’s I/O subsystem. The PCB size includes the hypercalls and

the calls to the encryption and decryption functions. 96

5.2 Cost of DriverGuard components 97

5.3 Time cost induced on the guest domain data access 97

5.4 overhead of a protected keyboard I/O 98

5.5 The performance of a USB camera 99

5.6 The turnaround time of fingerprint collection. 99

5.7 The turnaround time of file printing 100

5.8 overhead of the protected sound-card opening 100

5.9 Graphic card performance evaluation with x11pref. 101

6.1 The performance overhead for password input protection in KGuard. 124

x

6.2 The performance overhead of each component for password sub-

mission. 124

6.3 The overall performance measurement in the login procedure. . . . 125

7.1 The runtime cost of each operation in the software runtime attesta-

tion service. 140

xi

Acknowledgments

I am grateful to my advisors, Robert H. Deng and Xuhua Ding, for guiding me

in my research, helping me to develop strong research stills, and encouraging me

to become a better person overall. I am also very grateful to the other members

of my thesis committee, Debin Gao and Yongdong Wu, for their advice and guid-

ance throughout the dissertation process. Their invaluable comments, guidance and

encouragement dramatically helped me clarify my thesis, refine my approach and

broaden my vision of security research. Seeing their work and accomplishments in-

spired me to become a more rigorous researcher. I greatly appreciate the guidance

and assistance of my mentors Virgil Gligor and Adrian Perrig at Carnegie Mellon

University. I would also like to thank all my co-authors and collaborators: Zong-

wei Zhou and Miao Yu, Qijia Wang, Zhi Zhang, Li Deng, for their indispensable

collaboration help.

Finally, I dedicate this dissertation to my wife, Caiyu Lu, for her continuous

love and support, and my son, Haoran Cheng, for the ultimate joy and happiness he

brings to me.

xii

Chapter 1

Introduction

1.1 Problem Overview

Commodity operating systems are ubiquitous in home, commercial, government,

and military settings. The OSes are supposed to be the secure footholds of sys-

tems since they manage the entire resources, so compromising an OS compromises

every program and all security services upon it. In fact, unfortunately, the OSes

are routinely compromised due to the large code base, the broad attack surface and

the buggy loaded modules (drivers). Specifically, modern OSes usually have large

code base. According to the statistics from kernel developers [103], the Linux ker-

nel version 3.5 contains 39096 files with 15.6M SLOC, and its next version (i.e.,

version 3.6) adds 637 files with around 300, 000 SLOC in less than 3 months (i.e.,

71 days). For such large code base, it is impossible for current formal verification

techniques to formally remove all bugs [39]. The broad attack surface is also a

threat for OS security. The statistical results show that the Linux kernel version 3.6

has up to 337 system calls besides many implicit interfaces (e.g., /proc and /sys

virtual file systems) for applications to communicate with the OS. The dynamically

loaded modules and drivers are usually buggy (not fully tested) and they inevitably

increase the complexity of the OS and the number of attack interfaces. All these

factors cause the OS is not a good candidate of secure foothold of a system.

1

Once a part of the monolithic commodity OS is compromised, the whole OS

is compromised and consequently all applications are compromised. Applications

are used in our daily life to process sensitive information, from sensitive I/O data,

such as individual passwords, biometric finger prints and camera streams, to private

application data, such as online banking information, medical reports and email

content. When the OS (secure foothold) is compromised, all data within application

address space are freely accessed by the adversary, and all security protections that

are built upon the OS to intentionally protect the application data are consequently

broken. Thus, a new application protection scheme that should be able to protect

the whole applications address space against the potentially compromised OS is

desired.

Another main threat from the compromised OS is the secrecy of the I/O data,

which are transmitted between the hardware input/output devices and user applica-

tions via the compromised OS. The I/O data usually contains sensitive information,

such as the data rendered from applications, e.g., sound data and printer data, or

generated for applications, e.g., keyboard passwords and fingerprints. In such I/O

data, all network traffics and disk files could be well protected through encryption,

such as the SSL technique can protect network I/O data. However, for the raw I/O

data, such as keyboard inputs, camera streams and fingerprints cannot be protected

through encryption techniques, because they are structured data. The encryption

may break constrains or change the meaning of certain fields, and consequently

cause unpredictable errors. For example, a camera stream consists of header and

data sections that are encoded by the camera device. If we simply encrypt the w-

hole stream, the header information will be lost or wrongly translated, which will

lead to video errors and even crash the camera driver or the corresponding user ap-

plication. In addition, the commodity hardware devices are not encryption-capable.

Thus, the generated data or the received data should be in plain text, such as the

keyboard scan code and the document content receiving by the printer. Once kernel

rootkits know the locations of the buffers caching the plain text, they can reveal and

2

tamper with the data by directly accessing them.

To address the above problems, we need to answer a series of critical research

questions: which component/layer of the system could be the secure foothold?

What security mechanisms can be applied to it to make it reliable while still com-

patible with existing OS and applications? How to protect the whole application

against untrusted OS while still keeping it usable, e.g., allowing it to exchange data

with outside and use the memory as a fashion in the normal setting? How to effi-

ciently protect the secrecy of the I/O data transmitting between hardware input/out-

put devices and applications via the potentially compromised OS? Is the encryption-

capable device necessary? Can we do it better if we only focus on the protection

on one specific I/O data? Furthermore, Based on the secure foothold, what secure

primitives it can provide, and what security services can be built, besides the appli-

cation protection and the I/O data protection?

1.2 Research Objectives

In this dissertation, we aim to answer the above questions. Moreover, we aim to

design and implement several secure virtualization systems to demonstrate and e-

valuate our solutions on today’s hardware and software architecture.

1.2.1 Reliable Secure Foothold

The hypervisor is a promising secure foothold candidate. As a small piece of soft-

ware between the OS and the hardware, the hypervisor has the unique advantages,

in terms of the balance between security and versatility. However, to be a reliable

secure foothold, the hypervisor should meet two critical requirements. Firstly, it

should be secure against attacks from rootkits which can subvert the operating sys-

tem. Secondly, it should be always available throughout the life cycle even when

the OS is corrupted. By virtue of the virtualization, a hypervisor is widely deemed

as software which can resist attacks from an untrusted guest OS. However, no hy-

pervisor can simultaneously satisfy all the above requirements, especially for the

3

Application

Operating
System

I/O Flows

Hypervisor

. . .

Application
Protection

I/O Data
Protection

Reliable
Foothold

Figure 1.1: Research Objectives. In this dissertation, we focus on the application
protection and I/O data protection based on a reliable secure foothold.

availability requirement. It is challenging to achieve the reliability property, be-

cause 1) the kernel rootkits can directly modify or even delete the TCB (including

the hypervisor) images from the disk to make them unavailable. If the hypervisor

chooses to do runtime checking through intercepting disk I/O, it will lead to numer-

ous context switches, reducing the performance of the disk I/O as well as the CPU

utilization; and 2) the rebooting and shutdown mechanism of commodity systems

are complex. The hypervisor should efficiently and completely handle all of them

to ensure the availability before the system really rebooting/shutdown.

In this dissertation, we aim to build a reliable and lightweight secure foothold

with integrity and availability guarantees. Moreover, we aim to extend our secure

foothold to be a framework, which consists of common security primitives that are

potentially needed by our proposed systems and many other security systems. In

this way, people can quickly adopt it to support new security services with no or

minimum customizations.

1.2.2 Application Protection

The application protection is challenging due to the complex memory manage-

ment and the intensive data exchange between the protected applications with

4

outside (e.g., the OS). The approaches like Flicker [57], TrustVisor [56] and

Fides [89] simplify the problem setting by assuming that the protected code is

self-contained with pre-defined inputs and outputs (e.g., inputs are the initial pa-

rameters and outputs are the final returns); and that the protected execution does

not involve dynamic memory allocation or deallocation. Some other system-

s [57, 56, 89, 13, 17, 106, 92, 16, 90] aim to protect the whole application in the

real settings. However, they have various drawbacks, such as high performance

overhead, large Trusted Computing Base (TCB), hardware modifications, or with

a restriction imposed on the protected code. Moreover, several newly identified

threats in Chapter 4 are evidence that protecting applications from malicious OS

is more challenging than previously realized. For example, the malicious OS may

swap two address translation mappings to break the data integrity without directly

accessing the data pages (i.e., mapping reorder attack). It may also illicitly return

an allocated memory region with its virtual addresses occupied by the application

stack (i.e., Iago attack [15]). By doing so, the application may happen to modi-

fy the control data (e.g., return address) in the stack, and thereby compromise the

execution of the victim application.

Thus, in this dissertation, we aim to propose a system to protect an application

with small TCB and low performance loss, as well as no modifications on system

hardware. Moreover, the new scheme should be able to defend against newly iden-

tified attacks.

1.2.3 I/O Data Protection

Application protection can only protect the data within application address space.

For the I/O data out of the protected application (transmitting in the kernel space)

are not protected. Thus, a I/O data protected scheme is desired. In fact, protect-

ing I/O data is to build trusted paths, which are secure channels that assure the

secrecy and/or authenticity of data transfers between a hardware devices and an iso-

lated execution environment. Without a trusted path, an adversary could illicitly

5

obtain sensitive user inputs and the outputs of an application. Traditional trusted

paths are built upon commodity OS, which is not a reliable secure foothold. Thus,

some researchers propose new trusted path schemes to defend against untrusted OS.

However, they all have several drawbacks, such as needing encryption-capable de-

vices [59, 97], and incompatible with legacy applications [109].

Thus, in this dissertation, we aim to propose a generic, secure (against untrusted

OS) and practical (without needing special hardware and compatible with legacy

applications) trusted path scheme for protecting I/O flows on the commodity plat-

forms. It is challenging since it needs to handle all kinds of device I/O, and has no

extra assistance from special hardware.

Password Protection

The combination of IEE and TP could protect almost all applications and sensitive

data. But for certain user data, we could do it better, even in terms of security. In

this dissertation, we aim to propose a dedicated system to protect user passwords

in the increasingly popular online services. To make the new system secure and

practical, it should satisfy several requirements. Firstly, the new system should not

need any trusted information from isolated/trusted components in the guest space.

Secondly, it should not need special hardware to build trusted path. Thirdly, the new

system should be compatible with existing OS and all applications, especially for

legacy web browsers. Fourthly, the new system should be user-friendly, meaning

the interaction interface for web authentication should keep the same. Last but not

the least, the performance overhead and the latency in the whole process of the web

authentication should be insignificant. In this dissertation, we aim to let the new

proposed system support all these five requirements.

1.3 Threat Model

We assume the end-users themselves are security conscious, meaning that they are

aware of the potential dangers/attacks that arise from adversaries. The security-

6

conscious users are willing to enable some protection mechanisms and are wary of

authentication of the availability of the protection, e.g., the user will verify if he/she

gets a secret feedback (a secret message or a flashing signal) when the correspond-

ing protection mechanism is enabled.

We assume that a remote adversary completely controls the guest operating sys-

tems, meaning that the remote adversary is able to launch arbitrary code or appli-

cations to access any system resources, such as I/O ports, Memory-Mapped I/O

(MMIO) and main memory. Specifically, the adversary may 1) get the data stored

in the device memory or I/O ports by manipulating the configuration space of the

target or other devices, 2) intercept the I/O flows that goes through the kernel space

via device drivers, and 3) read user sensitive data from the user space by directly

accessing a particular memory region or following the links in some data structures.

The purposes of the adversary are to break the system foothold (the hypervisor),

and/or get the secrecy of the I/O data.

We assume that the adversary can not compromise the hardware devices whose

behaviors always exactly follow their specifications. We also assume the system

firmware is trusted. In fact, the modern BIOS has a built-in hardware lock mechanis-

m [91] to set itself as read-only so that the OS cannot tamper with it. Furthermore,

the modern BIOS only accepts signed updates [45, 97]. Due to the complexity of the

x86 platform (e.g., optional ROM), this assumption may not always true. Nonethe-

less, it is still possible to validate the system firmware by the proposed attestation

approach [52] or by a trusted system integrator.

The hypervisor is trusted. The load-time integrity of the hypervisor is achieved

through secure boot mechanism [96], and the runtime security is guaranteed by the

virtualization technology. Specifically, the hypervisor isolates its memory region by

configuring Extended/Nested Page Table (EPT/NPT) and IOMMU to stop software

and DMA access driven by hardware. The hypervisor is not as secure as the TPM

chip since several attacks have been discovered to compromise some versions of

hypervisors [94, 27, 49, 69]. However, the security of the hypervisor can be verified

7

by those schemes [99, 98, 5, 69].

1.4 Metrics

We identify several key metrics to evaluate the security, efficiency and practicality

of a protection mechanism.

• Size of Code Base (e.g., SLOC). The size of the TCB should be as small

as possible. The smaller TCB will export less attack surface which may be

used by adversaries to compromise the system, and its security may be proven

through the rigorous formal verification mechanism [39].

• Performance Overhead. The security protection system should only intro-

duce reasonable performance overhead for the protected target (e.g., an ap-

plication) and other components in that system. The poor performance may

dramatically reduce the value of the protection system.

• Compatibility. The compatibility issue should be considered during the de-

sign of a protection system. It is better to be transparent to either the legacy

applications or the operating systems if it is not simultaneously compatible

with both of them.

• Practicality. The whole protection mechanism should be user-friendly for

normal end-users who do not possess or lack security domain knowledge.

Furthermore, the mechanism should be able to be widely deployed without

requiring special hardware (e.g., encryption-capable keyboard).

1.5 Terminology

This section establishes the terminology that is used throughout this dissertation.

• Secure Foothold. A secure foothold is a piece of code with highest privilege

in a system. The secure foothold is trusted and always behaves as expected.

It can bolster various security systems by growing the trust chains.

8

• Isolated Execution Environment (IEE). The execution environment is de-

fined by code S executing on a specific platform. The isolated execution

environment protects the execution of S from any other code.

• Trusted Path (TP). A Trusted Path (TP) is a secure channel that assures the

secrecy and/or authenticity of data transfers between a hardware devices and

an isolated execution environment. Without a trusted path, an adversary could

illicitly obtain sensitive user inputs and the outputs of an application.

• Trusted Computing Base (TCB). The trusted computing base of a computer

system is the set of all hardware, firmware, and software components that

are critical to its security. Once they are compromised by the adversary, the

security properties will be broken.

• Virtualization. Virtualization is a technology that creates, manages, intro-

spects and destroys guest domains (virtual machines). The software that im-

plements virtualization is usually called virtual machine monitor (VMM) or

hypervisor.

1.6 Dissertation Overview

In this dissertation, we leverage virtualization technology to harden system-

s [19, 18, 20, 21]. Specifically, we build a lightweight and reliable hypervisor

(Guardian) as a system secure foothold, which is able to boost computer security and

provide reliable assistance for the end user to cope with various threats. Guardian

as the system secure foothold has two prominent features. The first is a secure boot-

up and shutdown mechanism, which enhances the existing hardware-based secure

bootup by offering integrity and availability protection of the TCB images and crit-

ical information. Another feature is a user-hypervisor interface which allows the

end-user to issue commands to and receive responses from Guardian at runtime.

The interface is secure in the sense that the channel between the end-user and the

hypervisor is authentic and the exchanged information is not exposed to the guest.

9

Application

Operating
System

I/O Flows

Hypervisor

. . .

AppShield

DriverGuard
&

KGuard

Guardian

Figure 1.2: AppShield protects an application through an isolated execution envi-
ronments built upon Guardian (the reliable secure foothold). The I/O flows between
the protected application and hardware I/O devices are protected by DriverGuard
through trusted paths. For user passwords, they are specifically protected by K-
Guard.

Based on Guardian, we propose AppShield, which protects critical applications

by putting them into isolated execution environments (IEE). AppShield is able to

reliably and efficiently protect data secrecy and integrity of a critical application,

as well as its execution integrity, against kernel rootkit attacks. Specifically, App-

Shield leverages the hardware-assisted virtualization techniques [46] to isolate the

application’s address space such that all accesses from the untrusted OS are blocked

except those explicitly authorized by the application through system calls. The pro-

tected application is allowed to utilize the main memory in the same fashion as in

a normal (unprotected) setting, and to access the memory with native speed, i.e.

without encryption/decryption or being intercepted. AppShield localizes the perfor-

mance overhead to the protected application and keeps the performances of those

unprotected applications unaffected.

The inputs and outputs of protected application are not protected by AppShield

so that they could be tampered by the untrusted OS. To fix this gap, we propose

DriverGuard to support trusted paths between the protected application and hard-

ware input/output devices. DriverGuard is a holistic and compact I/O protection

10

system making use of a combination of cryptographic and virtualization techniques.

In particular, the trusted path built by DriverGuard focuses on those devices that ren-

der raw data, e.g., sound cards and printers, or generate raw data for applications,

e.g., seismic sensors and fingerprint scanners. Disk and network I/O are less con-

cerned, because such data could be simply protected through encryption.

The combination of IEE and TP could protect almost all applications and sensi-

tive data. But for certain user data, we could do it better, even in terms of security. In

this dissertation, we purpose a dedicated system KGuard to protect user password-

s in the increasingly popular online services without needing any IEE and trusted

path. In particular, KGuard does not trust any software component in the guest k-

ernel and user space (without IEE requirement), and also not leverage any special

hardware to assist the protection. Note that KGuard is able to protect user pass-

words against all kernel- and application-level key-loggers as well as all kinds of

network eavesdroppers.

Based on the above proposed systems, and many other existing virtualization-

based security systems, we summarize the common security primitives into our

secure foothold (Guardian), upgrading it to be a framework/template of secure

foothold so that it could be easily customized by end users according to their de-

mands to harden their systems. To demonstrate the value of the framework, we

create four security utilities, i.e., hypervisor-based firewall, device monitoring, soft-

ware runtime attestation and user present attestation for password authentication.

The experiment results show that we only need adding a few lines of code to achieve

all these security services, and the performance overheads are insignificant.

1.6.1 Dissertation Organization

The remainder of this dissertation includes the following chapters. Chapter 2 sum-

marizes the related work, and Chapter 3 presents Guardian as a lightweight and

reliable system foothold. Based on Guardian, Chapter 4 describes AppShield that

creates isolated execution environments to protect critical applications. Chapter 5

11

presents a trusted path scheme that is a generic solution to protect all kinds of I/O

data, and Chapter 6 presents KGuard to protect user passwords in the web authenti-

cation services. Chapter 7 summarizes a framework of secure foothold that could be

directly used or customized by end users to harden their systems. Finally, Chapter 8

concludes the dissertation and discusses a few directions for the future work.

12

Chapter 2

Related Work

We first describe isolated execution environment (IEE) approaches, and then we

present the trusted path schemes which aims to protect I/O data. The IEE scheme

are complementary with trusted path mechanism to protect the whole lifecycle of

application and I/O data. Finally we describe the hypervisor security and the root

of trust to illustrate the reasonability of choosing the hypervisor as system secure

foothold.

2.1 Application Protection

There are several approaches proposed to protect application through creating iso-

lated execution environments, and all of them attempted to remove the OS out of

TCB.

2.1.1 Self-contained Code Protection

Flicker [57] system built on the TPM-based Dynamic Root Of Trust (DROT) tech-

nology can build an isolation environment to protect a piece of code and data. Due

to the limitation of the TPM, the latency of the Flicker system is significantly high.

To minimize the latency, TrustVisor [56] scheme are proposed. By leveraging vir-

tualization technology, TrustVisor virtualizes the physical TPM into Virtual TPM

(VTPMs) and migrate them into hypervisor space. Note that both of them simplify

13

the problem setting by assuming that the protected code is self-contained with pre-

defined inputs and outputs (e.g., inputs are the initial parameters and outputs are

the final returns); and that the protected execution does not involve dynamic mem-

ory allocation or deallocation. Protecting complex environment such as the whole

application or device drivers may lead both schemes to failure.

2.1.2 Whole Application Protection

Secure-Processor-Based Protection. AEGIS [90] and XOM OS [53] are secure-

processor based approaches that provide compartments to isolate one application

from others. Both of them incur poor computability since they require substantial

modifications on the OSes and applications. AEGIS [90] also provide an alternative

implementation, which requires to build security into the OS.

Bastion [12] and SecureME [22] aim to deal with untrusted OS and untrusted

hardware attacks simultaneously with the assistance of a secure processor. Bastion

focuses on the protection of a security module, while SecureME attempts to pro-

vide privacy and integrity for data and code of the application. SecureME requires

modifications on both OSes and applications.

In addition, a Processor-Measured Application Protection Service P-MAPS [72]

is announced by Intel, which is built upon Intel TXT [24] and Intel VT [46] hard-

ware capabilities. P-MAPS provides runtime isolation to protect standard appli-

cations with small TCB. P-MAPS is quite similar to our scheme at a high level.

However, the details of P-MAPS are unavailable for public to conduct an in-depth

comparison.

Microkernel-Based Protection. EROS[81], Perseus[68], Microsoft’s

NGSCB [29] and Nizza [37] are microkernel(or small kernel) based solutions. They

attempt to run commodity OS and untrusted applications in the low-assurance par-

titions, and run the applications with higher security requirements in the high-

assurance partitions, which are isolated and protected by the microkernel itself.

However, all of them incur compatibility issue since they may require splitting or

14

even redesigning on the applications.

Virtualization-Based Protection. The approaches like TERRA [34] and Prox-

os [92] are hypervisor-based trust partitioning systems. They protect applications

by isolating them into trusted domains with application-specific OSes. These sys-

tems incurs large TCB since they include all secure domains inside. In addition,

they are still vulnerable once the application-specific OSes are compromised.

OverShadow [17], CHAOS [16] and SP3 [106] aim to protect the whole ap-

plication execution against malicious application and OSes. However, all of them

need complex encryption and decryption operations on the application data. Obvi-

ously, these additional costly cryptographic operations may reduce the performance

and increase the latency of the whole system, especially for the protected applica-

tion. In addition, none of them claims that they protect applications from the MS

attack. Thus, the data and code integrity may still be broken by potentially compro-

mised OS. InkTag [41] is a new proposed approach, which also protects the whole

application and verifies the OS behaviors through paraverfication technique. The

paraverfication technique needs to modify the source code of the kernel, which is

not always available. Thus, it may lead to the failure of the protection on the close-

source OSes, e.g., Windows. In addition, it is unclear if InkTag can defend against

the new attacks identified in our dissertation 4.

BIOS-Based Protection. Lockdown [97] system relies on a BIOS-assisted

lightweight hypervisor and an ACPI-based mechanism to provide two switchable

worlds - green world for trusted applications and red world for untrusted applica-

tions. Lockdown uses a trusted path built upon LEDs to provide a verifiable pro-

tection. The main drawback of the Lockdown system is the switch latency is too

high. The switch requires 31 seconds on Windows and 13 − 28 seconds on Linux.

SecureSwitch [91] system that is quite similar to Lockdown also leverages a BIOS-

assisted mechanism for secure instantiation and management of trusted execution

environments. The switch latency is relatively smaller. The switch requires 6 sec-

15

onds by using the ACPI standard. Both approaches needs to shut down one world

to run another one, meaning they can not simultaneously execute two worlds.

2.2 I/O Data Protection

We attempt to categorize these relevant trusted path schemes according to the dif-

ferences of their secure foothold.

2.2.1 Virtualization-based Protection

The trusted path [109] proposed by Zhou et al. aims to assure the secrecy and au-

thenticity of I/O data transferred between a periphery device and an application. To

build an exclusive trusted path between the device and the expected application,

the hypervisor fixes the device configuration space which is achieved using Virtu-

al Machine Control Structure/Block, Nested/Extended Page tables and IOMMU to

prevent unauthorized software and DMA access, and interrupt delivery path which

is achieved using Interrupt Remapping features and LAPIC x2APIC mode to make

sure that the interrupt is delivered to expected handler. The expected applications

are extended to support user-level drivers, which directly issue command to devices

through the built trusted path. Obviously, it suffers compatibility issues since appli-

cations are numerous and any new application will need to be modified to satisfy

the trusted path requirements. In comparison, DriverGuard requires modifications

on driver code only. Moreover, DriverGuard does not need to defend against inter-

rupt spoofing attack since it focuses on the secrecy of the I/O data between devices

and applications, and only authorized PCB is able to access the decrypted I/O data.

Even if the unauthorized codes are involved by unintended interrupt, they still can

not access the protected I/O data.

The virtualization-based trusted path schemes are closely related to our work.

BitVisor [84] is a dedicated hypervisor to I/O management. It uses a parapass-

through mechanism whereby access operations on the monitored devices are inter-

cepted and the operations on the other devices pass through without any checking.

16

The interception allows the hypervisor to protect itself and to perform security func-

tions on the device I/O. However this approach does not protect the I/O data in the

kernel space. BitVisor does not claim that they protect the MMIO mapping attacks.

Hypervisors with privileged root domains (e.g., the Dom0 in Xen) are able to

assign different device drivers to separate virtual machines (e.g., driver domains

in Xen) and securely associate them with application virtual machines (e.g., guest

domains in Xen) [23, 8, 6, 75, 104]. These hypervisors isolate the device resources

(i.e., I/O ports and the memory address-space, including MMIO regions) belonging

to a device driver domain from other domains. Note that all these schemes do not

consider the MMIO mapping attacks. Moreover, their TCBs enclose the whole

operating system, which dramatically increases their trusted code bases.

2.2.2 Hardware-based Protection

The Zone Trusted Information Channel (ZTIC) [50] is a dedicated hardware,

which provides a trusted path for users to confirm online transactions. The ZTIC-

based trusted path completely bypasses the legacy channel in the users’ computers.

Bumpy [59] system proposes to protect user keyboard inputs by building a trust

environment. It requires an encryption-capable keyboard and therefore is not appli-

cable to generic devices.

The special-device-based schemes usually combine with cryptographic technol-

ogy to protect the secrets in user and kernel space, such as Bumpy, which usually

requires many mediations on the system. Such medications not only consiquently

affect the compatibility of the scheme, but also often significantly reduce the usabil-

ity, and even make the scheme impractical sometimes.

The UTP system [30] proposes an isolated kernel module to temporally manage

user-centric I/O devices (e.g., keyboard and display) and enables a remote server to

verify that a transaction summary is confirmed by a local keyboard input. BIND

[83] binds data and code and uses cryptographic techniques to guarantee the in-

tegrity of data. However BIND is limited to derived data and can not help on the

17

confidentiality of the I/O data. Both of them require a hardware supported secure

execution environment (e.g., secure kernel based on the AMD’s Secure Execution

Mode chip), which often occurs high latency and significant performance overhead.

2.2.3 OS-based Protection

Langweg et al. [51] propose a COTS-based scheme to solve the confidentiality, in-

tegrity and authenticity of input and output data1. Authors focus on the windows

platform, where the Windows message mechanism is able to be exploited by a ma-

licious program to access the input and output messages (data) which are originally

intended for other applications. By leveraging the advantages of the the DirextX, au-

thors build a secure user interface to directly fetch input data and access the display

hardware in exclusive mode. Trusted paths for browsers [107] focus on providing

a trusted GUI to user, protecting user inputs to the intended browser. These two

schemes only address security issues at the driver-applications interface, whereas

the battlefield of DriverGuard is the entire I/O path. BitE [58] is an approach for

preventing user-space malicious applications from accessing sensitive user input via

a dedicated trusted path between input devices and the target application, and pro-

viding visual verification feedback to the user to prove that the input is really caught

by the expected application.

All of them suffer from a large TCB since they are built atop large operating

systems, and some of them even contains the Window Manager [58].

2.3 Hypervisor Security

Comparing with legacy monolithic Operating Systems, the hypervisor is more se-

cure since its size is relatively smaller and the exported attack surfaces for guest

domains are considerably less. Although there have been several attacks discovered

to compromise some versions of hypervisors [94, 27, 49, 69], the security of the

hypervisor can be enhanced through some existing mechanisms. The TPM-based

1The confidentiality of the input data is not done.

18

authenticated boot can verify the integrity of the hypervisor when being launched,

and the hardware-assisted virtualization technology, i.e., Intel VT-x and AMD V,

is able to significantly reduce the code size of the hypervisor, thereby the attack

surface is reduced. Furthermore, there are some sophisticated framework system-

s [99, 98, 5, 69] proposed to enhance the security of the hypervisor. HyperGuard

[69], HyperCheck [98] and HyperSentry [5] are three System Management Mode

(SMM)-based frameworks to measure and verify the integrity of hypervisors. The

code for the SMM mode are protected by hardware chipset. HyperSafe [99] is a

lightweight approach that protects existing bare-metal hypervisors with a unique

self-protection capability to provide lifetime control flow integrity. In order to e-

liminate the programming bugs in the hypervisor, the rigorous formal verification

mechanism [39] is able to be used to prove the correctness of the hypervisor.

Many hypervisor-based security systems have been designed and reported in the

literature. For instance, a hypervisor can be applied for I/O related protection [84,

19], for kernel integrity protection [78, 71, 100, 65, 4, 60, 105], and for user space

protection [34, 17, 106, 56]. By studying these systems, we identify interception

and manipulation as the hypervisor’s major security primitives which are adopted

in Guardian as well. Our work has remarkable differences with the aforementioned

systems. Guardian caters to the enduser’s security needs, instead of the security of

platform components such as the kernel or a user process. This demands Guardian

to be highly efficient, user friendly and compatible with the operating system and

applications, such that it is suitable for practical use. Most existing systems just

briefly mention the TPM based secure boot for loading the hypervisor. In contrast,

we devise a novel method to establish the hypervisor as the root of trust and show

how to build a variety of security services on top of it.

19

2.4 Root of Trust

2.4.1 Software-based Root of Trust

Software-based ROTs have been proposed and used in [77, 3, 79]. The trust es-

tablishment is based on a challenge-response protocol. A speed-optimized function

(code block) is established as the ROT on a platform if, within an acceptable time

delay, it can compute a correct checksum of memory regions according to a given

challenge. It is based on the assumption that it incurs a noticeably longer delay for

any other implementation of this function. It also has a restriction on both the adver-

sary’s capability, for instance no collusion with a third party, as mentioned in [28])

and the capabilities of the target platforms. In addition, to stop the proxy attack,

it may even require to unplug the network and disable the wireless to physically

cut down the connection with outside. These limitations and requirements lead to

inconvenience or even to impracticability. Thus, software ROTs are unqualified to

be a security foothold for normal users’ computers.

2.4.2 Hardware-based Root of Trust

The hardware-based ROT can be categorized into static ROTs and dynamic ROT-

s. A static ROT is a built-in platform component. When the platform boots up, a

trust chain can be established from the ROT up to the operating system. The TPM

chip [96] is a typical example of static hardware ROT. As a chip on the mother-

board, it is secure against all software attacks. Secure (or authenticated) boot up,

remote attestation and sealed storage are the main security services provided by the

TPM framework. The main disadvantages of TPM are its low speed, inflexibility

and passiveness. Therefore, to support various security services, it usually requires

assistance from certain secure software routine (e.g., hypervisor). IBM’s secure co-

processor [2] is a strong hardware root of trust with such a high price tag that it is

not feasible for the mass market. SMART [28] is a hardware-software co-designed

scheme, where a piece of code works on a modified low-end microcontroller u-

20

nits (MCU) to function as a dynamic ROT. The SwitchBlade architecture [11] can

prevent persistent rootkits from infecting security-critical files (e.g., kernel image)

with an ROT residing on the disk controller. These ROTs may be integrated with

Guardian though carefully design and implementation.

AMD Secure Virtual Machine (SVM) [1] and Intel Trusted Execution Technol-

ogy (TXT) [24] are dynamic ROTs. These new processor features allow a piece of

code to be securely executed in an isolated environment enforced by the hardware.

Despite of their easiness of use, they incur high latency as showed in the Flicker

system [57]. Fortunately, the high latency may be tolerable for the end-users, s-

ince it only required once when the system as well as Guardian boots up. The boot

mechanism of Guardian is compatible with dynamic ROT techniques.

21

Chapter 3

Reliable Secure Foothold

In this chapter, we harness the fast-growing hardware-assisted virtualization tech-

niques to build a tiny but reliable hypervisor as the security foothold for personal

computers. The hypervisor we propose is named as Guardian. Guardian has t-

wo prominent new features which are the enabling techniques for the hypervisor to

become a security foothold. The first is a new secure bootup and shutdown mech-

anism, which enhances the existing hardware-based security boot up by offering

integrity and availability protection of the TCB image and critical information. The

other feature is a secure user-hypervisor interface which allows the end-user to is-

sue commands to and receive responses from Guardian at runtime. The interface

is secure in the sense that the channel between the human end-user and the hyper-

visor is authentic and the exchanged information is not exposed to the guest. We

also propose two practical security utilities based on Guardian. The first is a device

monitor utility, whereby the user can instruct Guardian to monitor the state of pe-

ripheral devices, e.g., a camera. The second is a hyper-firewall whereby Guardian

inspects inbound/outbound network traffic and drops illegal packets. We have im-

plemented Guardian on a desktop with a Linux guest. Guardian consists of around

25K SLOC, and the utilities consist of around 2.1K SLOC. Our experiments show

that Guardian inflicts an insignificant workload to the whole system.

The growing hardware support for virtualization will continue to empower the

22

hypervisor with more effective and stronger security control over commodity plat-

forms with smaller code size and better performance. We envisage that using a

hypervisor as a generic security foothold is a promising direction to greatly boost

up the security for commodity platforms. Our work presented in this chapter is

an important step towards this ultimate goal. We summarize our contributions as

follows:

1. We design and implement Guardian which is the first system to provide both

integrity and availability guarantees. Note that all existing hypervisors do not

achieve the availability guarantee.

2. We design and build a device monitor and a hyper-firewall as two security

utilities on top of Guardian.

In the next section, we present our research objectives and threat model. Then

we present the design of Guardian in Section 3.2. In Section 3.3, we describe the

implementation and the evaluation. Finally, we conclude the chapter in Section 3.4.

3.1 Problem Definition

We aim to provide a tiny and reliable hypervisor as a security foothold for personal

computers. Namely, we undertake to furnish the end-user with a reliable security

basis when the conventional one (typically the operating system) fails. Though the

security foothold, the human user can configure security policies and manage re-

sources in the platform. It not only boosts up the system security, but also facilitates

the end-user to determine the trustworthiness of her system. Note that we do not

attempt to detect and remove malicious software from the platform, nor is to protect

the operating system or a user application.

3.1.1 Threat Model

Since our goal is to assist the end-user, we assume that they are security- conscious

users, who are happy and intended to use our system to protect their systems. We do

23

not consider any human adversary who may have physical access to the system. For

instance, the adversary can issue malicious DMA accesses by inserting extra physi-

cal devices (e.g., a firewire device). A malicious human user can always remove the

hypervisor from the platform.

The adversary in our threat model is malware residing in the operating system

which can subvert the operating system and launch arbitrary attacks. However,

we assume that they can not compromise the hypervisor. Note that the hypervisor

makes use of hardware-assisted virtualization techniques to defend against mali-

cious software accesses and illicit DMA accesses. This assumption can be more

reasonably held if the hypervisor has a tiny code size and simple logic so that only a

small attack interface is exposed to the adversary. Existing techniques [99, 98, 5, 69]

can also be applied to enhance hypervisor security.

We assume that the adversary can not compromise the hardware devices whose

behavior always exactly follow their specifications. We also assume the system

firmware is trusted. In fact, the modern BIOS has a built-in hardware lock mech-

anism [45, 91] to set itself as read-only so that the OS cannot tamper with it. Fur-

thermore, the modern BIOS only accepts signed updates [93, 97]. Due to the com-

plexity of the x86 platform (e.g., optional ROM), this assumption may not always

true. Nonetheless, it is still possible to validate the system firmware by the proposed

attestation approach [52] or by a trusted system integrator.

3.2 Design of Guardian

In this section, we introduce the techniques for establishing Guardian as a security

foothold, and describe the functionalities of the two secure user interfaces.

3.2.1 Establishing Guardian as a Security Foothold

To establish Guardian as a security foothold, it is necessary but not sufficient to

ensure a secure boot. The secure boot alone can only validate the integrity of the

system’s TCB image during booting up, while a reliable security foothold needs

24

both integrity and availability guarantee, so that the system still boots up into a

trusted state even if the TCB image on the hard drive are modified by attackers. We

do not elaborate the details of secure boot (e.g., TPM-based secure boot [96]) to

avoid verbosity as it has been widely used in the literature. Our focus is to explain

how to ensure that the intact TCB image is always available for the boot up. The

TCB of our system consists of the BIOS, the bootloader-core and the Guardian

image. Recall that the BIOS is protected by the hardware and is trusted in our threat

model. Therefore, we intend to protect the bootloader core and the Guardian image

against runtime attacks.

A straightforward approach is for Guardian to intercept and validate every disk

I/O, such that any access to the security critical image residing on the disk is

blocked. Obviously, this solution is costly due to the high overhead and complexity

of a disk I/O interception multiplied by the huge number of disk operations.

We devise a novel scheme without interposing on disk operations. The basic

idea (visualized in Figure 3.1) is that once Guardian is launched, it immediately

relocates its image and the bootloader core from the disk into a protected memory

region prior to launching the guest. Then, Guardian intercepts all power off events,

and writes the protected image back to the disk before cleaning up the memory. In

the following, we describe the details of secure boot up and secure shutdown, which

in tandem with runtime protection bolster the availability of Guardian throughout

its whole life cycle.

Secure Bootup

Figure 3.2 illustrates the disk layout for Guardian, where a special partition, referred

to as the hypervisor-partition, is created during installation to avoid being trespassed

by normal file systems. To allow for a secure boot without increasing the TCB size

and complexity, we make slight changes on the bootloader (e.g., Grub 2). The

BIOS passes the control to the bootloader core in the boot track. The bootloader

core includes the Master Boot Record (MBR), the diskboot image and the basic-

25

Disk Main
Memory

 TCB image

Hypervisor
 Space

Guest Space

Backup

Restore

Guardian
Boots up

Guest
Boots up

Power Up

Guest
Shutdown

Guardian
Shutdown

Backup TCB Runtime Restore TCB Power Down

Figure 3.1: Protection of the TCB (from power up to power down). The TCB
consists of the Guardian image and the bootloader core. The protected memory for
the TCB image is reserved by Guardian and inaccessible for the guest OS.

function image, which provides all basic functions and usually has to load other

modules and configuration files such as grub.cfg to launch an operating system due

to the limited size of the boot track (32KB in maximum).

!"# $%&'())*+,-./0 ".&%1234516)5+,-./0

"))*+78.1'

790+())*:).;08+1)80

<.8;+
$%&'+

=4.8;%.5+
%-./0+

9>?08@%&)8++
?.866)5+

Figure 3.2: An illustration of the disk layout.

Our modification is on the basic-function image only, such that it always launch-

es Guardian before loading other components including the OS. In specific, once the

core is loaded to the CPU by the BIOS (illustrated by Step 1 in Figure 3.3), it check-

s a bit flag in main memory (referred to as VMM flag) which indicates Guardian’s

presence. If VMM flag is not set, i.e., the core immediately passes the control to

Guardian whose image is placed at a fixed disk address upon installation (Step 2 in

Figure 3.3). The address of Guardian is hard-coded into the core, such that it loads

Guardian directly using disk I/O without involving any file system.

26

After occupying the CPU, Guardian loads the TCB image into a reserved mem-

ory region. It then configures the hypervisor page table, the EPT and IOMMU to

ensure that the reserved region is not in the hypervisor or the guest’s space and not

accessible by DMA devices either. Separating the reserved region from the hyper-

visor space ensures no accidental accesses to the region. (As shown later, Guardian

must map the region into its space by re-configuring the page table in order to access

it.)

Finally, Guardian sets VMM flag indicating its presence, and passes the control

back to the bootloader core (Step 3). After asserting the flag is set, the core loads

other modules and configuration files (Step 4) and proceeds to boot up the guest in

the normal way (Step 5).

!"#$

!%%&'%()*+,-%+*

./(+)0(1

./*2&,#$

3+/2&*) 41&+/2&*)

!%%&'%()*+

!"

#"$"%"

&"

Figure 3.3: The sequence of secure bootup.

Device Configuration Space Protection. A rootkit may manipulate the device

configuration space (e.g., the space-overlapping attack [109]) to thwart Guardian

to intercept certain I/O events or access to I/O data. In order to defeat the con-

figuration space manipulations and conflicts/overlapping between different devices,

Guardian is poised to intercept and validate any update to the device configuration

registers after its boot up. Note that these registers are located in the northbridge

chipset [31]. The interception are realized via configuring Virtual-Machine Control

Structure (VMCS) for I/O ports and the EPT for MMIO regions.

27

Secure Shutdown

The guest may modify the Guardian image on the disk. Therefore, when the system

is powered off, the TCB saved in the reserved memory must be written back to

their original locations in the disk for the next round of execution. There exist two

types of shutdown events. One type is the sleep events, where the system enters a

sleep state through the Advanced Configuration and Power-management Interface

(ACPI) [40]; the other is the reboot event, where the system restarts from the BIOS.

Guardian intercepts both types of shutdown events and responds accordingly.

ACPI Sleep. The ACPI sleep event is managed by the Operating System Pow-

er Management (OSPM) subsystem on the modern ACPI-compatible system. Re-

ceiving commands from software (e.g., system call) or external interrupts (e.g., the

System Control Interrupt triggered by pressing the power/sleep button or closing

the laptop lid), the OSPM subsystem sets the PM1a CNT register to force the sys-

tem entering the corresponding sleep state. Note that Guardian prohibits the ACPI

sleep event to be triggered by the optional sleep control and PM1b CNT registers.

Specifically, there is a 32-bit pointer in the Fixed ACPI Table (FADT) pointing to

the PM1b CNT block. Guardian clears this pointer and intercepts accesses to the

PM1b CNT register. The same method is used on the control sleep register.

Guardian intercepts the guest’s sleep command issued to the PM1a CNT reg-

ister. Note that the actual interception method depends on whether the register is

accessed by PIO or MMIO. The former involves VMCS configuration whereas the

latter requires the EPT.

Among the six Sleep states (S0 to S5) defined in the ACPI specification (in

Figure 3.4), the light-sleep (S0 to S3) states are not of concern, because the main

memory remains powered and Guardian remains alive. Therefore, Guardian per-

forms no action. For the soft-off state (S5) where the system will be powered off,

Guardian restores the TCB image back to the respective disk locations by using di-

rect disk I/O operations. Note that Guardian needs to re-activate the disk which has

28

S5 (Soft-Off)

S4 (Hibernate)

S0~S3 (Light-Sleep)

Running
ACPI

Sleep States

Figure 3.4: ACPI sleep states.

been closed (but remains powered) before the ACIP sleep command is issued. In

the end, Guardian clears VMM flag and resumes the intercepted ACPI command

which turns the platform off.

It is slightly more complicated to deal with the hibernation state S4 due to the

need for platform context saving. Guardian needs to save its context into the hy-

pervisor partition, in addition to the restoration work done for S5. For the guest

context, Guardian disables and prohibits the ACPI S4BIOS Transition 1, which by-

passes Guardian as the BIOS directly saves all memory content into the hard disk

including Guardian’s context. Therefore, only the OS-assisted hibernation method

is supported and the OS must write its own context into the disk before hibernation.

Note that after the PM1a CNT register is set, the platform passes the point of

no return, because the ACPI hardware will force the platform to enter S4 or S5

state and no software will be loaded to the CPU. In other words, Guardian is the last

piece of code executed before shutdown, which guarantees the security of the TCB

and critical data resting on the disk.

System Reboot. There are three possible ways to reboot a system. One is ACPI

reset, which is activated by the ACPI reset register. Note that the system will imme-

diately reboot once the reset register is set. The ACPI reset register can be accessed

by port I/O or memory-mapped I/O, which can be intercepted by Guardian through

1It clears the F bit in the Firmware ACPI Control Structure (FACS) and intercepts accesses to
the SMI CMD command register, which is S4BIOS service activation.

29

configuring the VMCS or EPT, respectively. The second way is essentially trig-

gered by the CPU INIT signal. Guardian intercepts the event through configuring

the VMCS.

In the third way, an attacker can switch the CPU to the real mode and jump to the

BIOS entry to reboot the system. The tricky part is that it can bypass the INIT and

ACPI reset mechanisms, meaning that the previous two interception methods will

fail to intercept this one. To intercept it, a straightforward solution is to intercept the

CPU switch from protected mode to real mode. However, the cost will significantly

rise up when legitimate CPU-mode switches take place frequently, e.g., in Windows.

Our solution is to prevent jumping to the BIOS reboot-routine from the guest by

configuring the EPT. Any attempts from the guest OS to reboot the system will

be intercepted by Guardian whose response is to repeat Step 3-5 in secure bootup

without rebooting the whole platform.

Recovery

Guardian provides an alternative secure boot mechanism, where the system is able

to boot up from a trusted-storage, such as a live CD or a read-only USB token. The

bootup sequence is the same as the one described in Section 3.2.1. For convenience,

the end-user can configure the system always boot up from a trusted storage, such

that the system still can boot up into a trusted state.

The secure shutdown procedure may not be triggered due to some unexpected

and irresistible events, e.g., power failure or system crash. Given that such unex-

pected system failure events may lead to the untrustworthiness of the TCB image,

we need the TPM-based secure boot [96] to guarantee that only the trusted image

can be booted. In such cases, the system can not boot up, and the security-conscious

end-users need the recovery mechanism to restore Guardian image. Specifically,

the bootloader in the trusted storage is extended to restore TCB image into the hard

drive. Note that the bootloader originally has the capabilities to read/write the hard

drive, the trusted storage and the main memory. Therefore, we can easily combine

30

these functions to do the recovery.

Guardian Update

The end user can upgrade or patch Guardian in a secure environment. Note that

the whole system is clean and secure before the guest boots up, because there is no

untrusted code executing in the system at that time. Thus, the end user can upgrade/-

patch Guardian at that phase (i.e., the secure boot phase). Specifically, during the

secure boot phase, the end user activates the BUSUI interface of Guardian (details

in Section 3.2.2), where an option is for upgrading or patching Guardian. Following

the guidelines, the end user asks Guardian to load a new or patched Guardian image

into the system and replace the original copy. After the upgrading/patching step, the

system reboots to let the updated Guardian re-control the system.

3.2.2 Secure User-Hypervisor Interface

The secure interface is a duplex channel between the end-user and Guardian without

involving the guest OS. Guardian shields the channel against any access from the

guest. With the interface, the end-user can configure Guardian during its boot-up,

and issue commands during runtime. For the sake of usability and simplicity, we do

not rely on any external device such as a USB token. The user inputs are through

the keyboard while the outputs are via the display in VGA mode.

Guardian provides two secure UIs. One is the Boot Up Secure User Interface

(BUSUI), which is used in the secure boot phase before the guest starts to run.

Since the platform then is in a trustworthy state, the implementation of BUSUI is

straightforward. Guardian utilizes the BIOS services (i.e. INT 0x16 and 0x10)

for input and output. The end-user activates it by holding a special key for a few

seconds. In our current design, a user can deposit a text message to Guardian as a

shared secret and can also input policies.

The other interface is the Run Time Secure User Interface (RTSUI), which is

used after the guest boots up. The RTSUI can be dynamically launched by the end-

user. RTSUI extends the secure user interface in KGuard [18]. Namely, Guardian

31

securely receive inputs of a human user through a keyboard while it securely pro-

duces outputs through the display. Both the input and output paths are inaccessible

to the guest OS. Since the interface in KGuard is only for password input, we extend

it to a command-line interface such that the user can conveniently input commands

and read responses.

3.3 Implementation

We have built a prototype of Guardian on a Dell OptiPlex 990 MT desktop with

an Intel(R) Core(TM) i7-2600 CPU @ 3.40GHz processor2 and 4GB main memo-

ry. Guardian consists of around 25K SLOC for its core functions, which is much

smaller than Xen (263K SLOC for Xen-4.1.2) and Linux (8,143k SLOC for Linux-

2.6.33.20). A comprehensive comparison between Guardian and other hypervisors

is listed in Figure 3.5. Specifically, TrustVisor itself is around 17K SLOC. NO-

VA [88] consists of the microhypervisor (9K SLOC), and several trusted compo-

nents, i.e., a thin user level environment (7K SLOC), and the VMM (20K SLOC).

BitVisor [84] and VMware ESXi are 194K and 200K SLOC, respectively. KVM is

around 200K SLOC, as well as a customized QEMU (140K SLOC). Xen is around

263K SLOC with Dom0 that can be customized to 200K SLOC [47]. Microsoft

Hyper-V uses a Xen-like architecture with a hypervisor (around 100K SLOC) and

Windows Server 2008 (larger than 400K SLOC).

The binary size of Guardian is around 223KB, which is much smaller than

Xen (around 1,264KB for Xen-4.1.2) and Linux (around 134,134KB for Linux-

2.6.33.20) image, and the bootloader core is around 30KB. Guardian reserves

512KB memory space for TCB images and other critical information. Guardian

also provides 11 hypercalls for security services, which is smaller than Xen ex-

ported hypercall surfaces (i.e., 46 hypercalls). Note that Guardian only focus on

the security services, while these systems (e.g., Xen) usually provide many more

2The Hyper-threading mode is disabled since our current hypervisor does not support the multi-
processor mechanism.

32

0

100

200

300

400

500

Li
n

e
s

o
f

So
u

rc
e

 C
o

d
e

 (
K

)

Trusted Computing Base (TCB)

Hypervisor Other Trusted Componets

Figure 3.5: TCB size. Larger TCB implies more bugs.

functional services.

3.3.1 System Benchmark

99 99 99 99 99

61 62

0

20

40

60

80

100

Pe
rf

o
rm

an
ce

 (
%

)

LmBenchmark Results

Figure 3.6: The LmBench results on OS operations.

We first measure the overhead on the OS operations using the LmBench suite.

Figure 3.6 shows the results: socket (local connection), memory operations (i.e.,

read, write and bcopy) and some system calls (i.e., mmap, fork+exec and fork+exit).

However, fork+exec and fork+exit incur higher performance penalties of 39% and

38%, which are heavily dependent on the Intel EPT performance. We do believe that

this could be improved with the performance enhancing of memory virtualization.

We also measure computation performance with Guardian. The results gener-

33

98 99
95

62

99 100 97 97 99

90 90 91

0

20

40

60

80

100

Pe
rf

o
rm

an
ce

 (
%

)

SPEC 2006 Benchmark

Figure 3.7: The system benchmark comparison results generated by SPEC CPU
2006.

ated by the benchmark tool SPEC CPU 2006 (see Figure 3.7) show that Guardian

usually only introduces 0.2% - 10.3% performance loss, and may lead to 38.2%

performance overhead in some extreme cases (i.e., memory intensive operations

with extreme low cache hit rate), which is also dependent on the page operations of

current Intel EPT. Again, we believe that it can be improved in the further.

100 100 99 96 100 96 97

0
10
20
30
40
50
60
70
80
90

100

Pe
rf

o
rm

an
ce

 (
%

)

IO-Bound Benchmark

Figure 3.8: The I/O-bound benchmark results.

For I/O-bound benchmark test, we select a range of benchmark tools, includ-

ing Bonnie, Postmark, Netperf and Linux kernel. For Bonnie, we use a 1GB file

and perform sequential read/write (fread/fwrite) and random access (frandom). For

Postmark, we choose 20,000 files, 100,000 transactions and 100 subdirectories, as

well as all other default parameters. For Netperf, we use another local machine as

the Netperf server, and run both TCP STREAM and UDP STREAM benchmarks

34

to measure basic network performance. For Linux kernel, we compile the Linux-

2.6.33.20 with default configuration. Figure 3.8 shows the results.

3.4 Summary

In this chapter, we have proposed Guardian as a security foothold on the end-user

systems to enhance their security. Specifically, we introduced Guardian whose in-

tegrity and availability were guaranteed by the novel bootup and shutdown tech-

nique. Guardian also provided a secure user interface, through which the end-user

could update the configurations of Guardian or dynamically activate/deactivate a

dedicated security service for the security needs. We have implemented Guardian

and the two utilities. The experiment results show that they are efficient and easy to

use. Our work demonstrates that computer security can be significantly boosted up

by using a tiny and reliable hypervisor.

35

Chapter 4

Application Protection

In this chapter, we propose AppShield, a novel system which reliably and efficiently

protects data secrecy and integrity of a critical application, as well as its execution

integrity, against rootkit attacks. AppShield leverages the hardware-assisted vir-

tualization techniques [46] to isolate the application’s address space such that all

accesses from the kernel are blocked except those explicitly authorized by the ap-

plication through system calls. The protected application utilizes the main memory

in the same fashion as in a normal (unprotected) setting. It accesses the memory

with native speed, i.e. without encryption/decryption or being intercepted, and it

can request the kernel to (de)allocate memory buffers. AppShield achieves perfor-

mance isolation since those unprotected applications are not affected and do not

have performance loss. We have implemented a prototype of AppShield which con-

sists of a bare-metal hypervisor with roughly 29K SLOC and a tiny kernel module

of around 2K SLOC. We have experimented the prototype with several applica-

tions (e.g., Apache and VIM) and run a suite of benchmark tests. The experiment

results demonstrate that AppShield incurs insignificant performance costs in CPU

computation, disk I/O and network I/O.

ORGANIZATION. In the next section, we define the problem by specifying the

threat model, our objectives and the AppShield overview. In Section 4.2, we de-

scribe the dynamic address space isolation together with newly identified threats.

36

The secure and efficient address space switch, and the support of legal data ex-

changes is described in Section 4.3 and Section 4.4, respectively. The implementa-

tion and evaluation are shown in Section 4.5. Finally, we discuss several issues in

Section 4.6, and conclude this chapter in Section 4.7.

4.1 Synopsis

4.1.1 Threat Model

In this work, we consider an adversary who remotely controls the OS on the target

platform by a rootkit and attempts to attack a critical application by tampering with

its data and/or execution. The adversary can run arbitrary code and launch DMA

operations in the victim platform. Nonetheless the adversary can not physically

control it.

Our aim is to protect a critical application execution integrity and data security

against such an adversary. We do not consider protection of its availability. Neither

do we protect the application’s raw I/O inputs and final data outputs1. Side channel

attacks are also out of scope of our study.

We suppose that no malicious data input can subvert the control flow of the crit-

ical application. It is orthogonal to our objectives to enhance code security (e.g.,

fixing bugs) of the protected applications. The platform’s chipset and all periph-

eral devices are trusted in the sense that they operate exactly following their spec-

ifications and do not contain Trojan-Horse circuits or microcode that respond to

commands of the adversary.

In our model, a bare-metal hypervisor is trusted since it can be protected with

secure boot/DRTM (e.g., Intel TXT) and hardware virtualization technology. Fur-

thermore, the hypervisor can leverage some existing hypervisor protection schemes

(e.g., HyperSafe [99], HyperSentry [5], HyperCheck [98]) to further enhance its se-

curity. Note that the hypervisor can intercept and emulate the SMM operations so

1The critical application may encrypt its disk and network data. Existing secure I/O path schemes
like [19, 109] can protect the raw I/O inputs

37

that SMM-based attacks cannot subvert it.

4.1.2 Desired Properties

It is desirable for a security solution for the stated problem to have the following

properties. Firstly, the application’s behavior should be preserved by the protection

mechanism. The application is not assumed to be a piece of self-contained code and

is entitled to issue system calls as in a normal setting. For instance, it can request

the OS to allocate a memory buffer even though the OS is not trusted.

Secondly, the security mechanism should have minimum performance impact on

the protected application and on the platform as a whole. The performance require-

ment has twofold implications. Ideally, the protected application should be able

to access the main memory with the native speed. Therefore, hypervisor-based in-

terposition and memory buffer encryption/decryption should be avoided since they

take a significant toll on memory access delays. Moreover, the mechanism should

only incur localized performance overhead, without affecting the performance of

unprotected applications and the OS.

Lastly, the TCB of the security mechanism should small and simple, which en-

sures that the risk of subverting the TCB is kept minimal. This property precludes

the approach of using a trusted virtual machine where the TCB encloses an operat-

ing system.

In this chapter, we present the design and implementation of AppShield which

is the first of its kind meeting the security requirement with all the aforementioned

properties. AppShield uses a tiny hypervisor on the bare-metal machine to protect

a critical application against the untrusted OS. Its overview is described in the next

section.

4.1.3 AppShield Overview

The fundamental idea of AppShield is to isolate the target application’s context

(registers) and address space from the kernel and other applications, while allowing

38

it to issue system calls and utilize the memory in a dynamic fashion. The rootkit

cannot access its memory space, except those memory buffers explicitly exported

to the kernel by its system calls. In the rest of the chapter, we use CAP to denote

the critical application that is under AppShield’s protection.

Apps

Commodity
OS

Hypervisor

Transit Module

CAP
Shared
Buffer

Trusted Trusted Shim

Data Flow

Untrusted

Control Flow

Figure 4.1: The architecture of AppShield. The data flows (dotted lines) between
the protected Critical APplication (CAP) always go through the shared buffer and
mediated by the shim code. The control flows (solid lines) between CAP and the
OS are mediated by the Transit Module (TraMod). The execution of transit module
are protected by the hypervisor.

Figure 7.1 depicts the architecture of AppShield. It consists of a bare-metal

hypervisor, a transit module in the guest kernel space and a shim code in the user

space. Both the transit module and the shim code are safeguarded by the hypervisor

to defend against attacks from the guest kernel. CAP runs in an address space

isolated from the rest of the guest domain, while the guest OS and those unprotected

applications on the platform run unaffected. The page table of CAP is managed

by the guest OS, but the updates are intercepted and verified by the hypervisor to

defend against various attacks (Section 4.2.2). CAP’s system calls are mediated

by the trusted shim code which is essentially a wrapper of libc libraries. The

main task of the shim is to marshal the system call parameters by exporting the data

needed by the system call routine into the shared buffer accessible to the kernel.

39

Since events like interrupts and system calls causes context switches between CAP

and the guest kernel, the transit module responds to the event, facilitates the context

switches, and prevents the context switch from being manipulated by the rootkit.

4.2 Dynamic Address Space Isolation

Dynamic address space isolation is the bedrock of AppShield. In this section, we

first elaborate how the hypervisor isolates a pre-defined address space of CAP.

Then, we explain how the isolation is dynamically adapted to the changes of the

memory boundary at runtime. While our description follows Intel virtualization

technology, the approach is applicable with AMD’s as well.

4.2.1 Address Space Isolation

In a nutshell, the physical memory assigned to the guest is divided into two sepa-

rated regions by the hypervisor. One region is used for CAP while the other is for

the guest OS and other applications. The memory dichotomy as depicted in Fig-

ure 4.2 is realized by two suites of EPTs maintained by the hypervisor, respectively.

In this way, the virtual addresses of the guest OS and other applications are never

mapped to a physical address dedicated to the protected application, and vice versa.

The hardware enforced address space isolation ensures that the guest OS and the

protected application cannot directly access each other, provided that all EPTs are

properly set and applied. For the sake of clarification, we use AppShield EPT to

refer to the ones dedicated for CAP. In the following, we only focus on the EPT

configuration. The details of applying the proper EPT are described in Section 4.3

which elaborates the context switches between CAP and the guest OS.

The hypervisor exports two hypercalls for CAP to activate and deactivate the

protection. The activation hypercall is issued before CAP’s main function is en-

tered. In response, the hypervisor obtains the CR3 register value from the VMCS

and traverses the page table entries belonging to the application, so that it locates

all pages within the address space, including the shared libraries. (Note that the

40

Accessible Inaccessible

AppShield EPT Untrusted EPT

Mappings

Memory Regions
of CAP

Other Memory
Regions

Shared Buffer

Figure 4.2: Address Space Isolation. With the trusted AppShield EPT, only the
memory regions of CAP and the shared buffer are accessible, while with the original
EPT, the memory regions except the shared buffer are inaccessible.

page fetching during the traversal forces the guest kernel to load share libraries into

the memory.) Both the traversed guest PTEs and the pages pointed by them con-

stitute the physical memory region that needs to be separated from the guest. The

hypervisor creates the AppShield EPT for this region and marks the corresponding

entires in the original EPT as inaccessible, so that the guest cannot visit the isolated

region. Once the application’s code and data are isolated, the hypervisor can vali-

date its launch-time integrity, supposing that it has been priorly authenticated by a

signature or an HMAC tag.

Through the deactivation hypercall, CAP notifies the hypervisor to disable the

protection. In response, the hypervisor destroys the AppShield EPT and restores the

entries in the original EPTs. Note that the deactivation hypercall can only be issued

by CAP. Any deactivation requests from malicious guest OS and other unprotected

applications will be rejected by the hypervisor.

4.2.2 Dynamic Isolation

One of the main challenges of isolating a full-fledge application is that its memory

region evolves over time, due to dynamic memory allocation and deallocation as

a result of relevant system calls (e.g., brk) which are in turn invoked by the corre-

41

sponding memory usage functions (e.g., malloc and free) in the libc library.

The semantics of these system calls are preserved in AppShield as the guest

OS still manages the memory resources for CAP through the guest page table. Al-

though the hypervisor protects the guest page table used by CAP, the guest kernel

may manipulate the virtual and/or physical address of the new buffer to attack CAP

without direct access to the latter’s memory space. We identify several such attacks

below.

Address Manipulation

VA VB VC VD VE VF

PB PC PA PF PD PE

VA VB VC VD VE VF

PB PC PA PF PD PE

VA VB VC VD VE VF

PB PC PA PF PD PE

VA VB VC VD VE

PB PC PA PF PD PE

(a) Legal Mappings

(d) Mapping Reorder (c) Double Mapping

(b) Mapping Overlap

Old Mapping Current Mapping

Existing Buffer Page New Buffer Page Overlapped Page

Figure 4.3: Threats for address space isolation.

In general, address manipulation attacks can be launched by the kernel in re-

sponse to any system calls that result in page table updates. Without loss of gener-

ality, we use buffer allocation as an example to illustrate the attacks.

Suppose a CAP’s buffer contains three consecutive pages at virtual address

42

VA, VB and VC respectively and CAP requests a new buffer. In a normal scenari-

o, the newly allocated buffer’s virtual address and physical addresses do not overlap

with any existing one, as illustrated in Figure 4.3-(a), where they are at virtual ad-

dress VD, VE and VF . In the following, we show four types of manipulation attacks.

Mapping Overlap Attack. The malicious kernel may overlap two memory re-

gions in the virtual address space. As illustrated in Figure 4.3-(b), the new buffer

is set to the pages located at VC to VE . The overlapping leads to undesired mod-

ifications of data in PC when the application attempts to update the first page of

the allocated buffer. Obviously this threat could break the data integrity, and it may

also subvert the control flow of the application, if the overlapping memory is in the

application stack and the modifications change the stored return address(es). In fact,

the mapping overlapping is a type of Iago attack [15].

Double Mapping Attack. The double-mapping attack maps two or more virtual

pages to one physical page in the user space. As shown in Figure 4.3-(c), a write

to VA affects the result of a read operation at VF . This attack is more stealthy than

the mapping-overlap attack, as the physical addresses are transparent to the code

running in the virtual space which is not tampered with at all.

Mapping Reorder Attack. The mapping-reorder attack is to reorder the existing

address mappings between the virtual addresses and the physical addresses. As

shown in Figure 4.3-(d), CAP retrieves wrong data when it reads from VF . As a

result, CAP’s data or control flow can be manipulated by the malicious kernel.

Mapping Release Attack. The mapping-release attack is to release one or more

existing mappings without any system call requests driven by the protected applica-

tion. The mapping-release could induce the hypervisor to give up the protection of

those pages since they are not in the protected addresses space any more. By doing

so, the guest OS can freely access the data on those released pages.

43

Information Collection

Most applications and shared libraries trust OS by default, and they all miss the

verification of the OS behaviors in the memory allocation and deallocation. To fix

this loophole, AppShield has to verify if the memory updates follow the requests of

the application and are not manipulated.

To verify the OS behaviors in memory updates, we should know the existing

memory layout, determine the intent of the application relevant to memory updates

and interpret the page table updates operated by the untrusted OS. The existing

memory layout (the mapping relationship between guest virtual addresses to guest

physical addresses) can be collected from the guest page table of the CAP. The

collected information is reliable since it is collected by the hypervisor and the page

table has been protected to prevent any update.

To determine the intent of the application relevant to memory updates, one pos-

sible way is to allow the hypervisor to intercept all system calls that are potentially

used by the CAP to allocate or deallocate memory. In order to correctly interpret

the memory updates information (i.e., the based address and the size), the hyper-

visor has to know the exact semantic meaning of all parameters and return values.

It inevitably increases the complexity of the hypervisor and thereby dampens its

security. In this chapter, the trusted shim running in the user space closely works

with the CAP. Thus, it knows the system calls used by the CAP and their semantic

meanings, e.g., the parameter of the malloc is the memory size and the return value

is the based address of the new allocated buffer. Through several hypercalls, the

trusted shim is able to securely synchronize such information with the hypervisor.

To intercept and interpret page table updates, one possible solution is to allo-

cate a dedicated Guest Page Table (GPT) in the address space of the CAP, and the

hypervisor or transit module manages its updates. By doing so, the security of the

page table is guaranteed but the complexity of the hypervisor or transit module will

dramatically increase, which further takes a toll on the overall system security. An-

44

other possible way is the paraverfication technique [41]. However it requires costly

modifications of OS code. To achieve good compatibility and make the hypervisor

and transit module small and simple, we choose the solution that is similar to the

management of the page table in paravirtualization, e.g., Xen [6]. Specifically, the

page table created by the untrusted OS for the CAP is set read-only, but the manage-

ment is still handled by the untrusted OS. The updates referring to the CAP memory

regions are intercepted and verified by the hypervisor. Note that during the valida-

tion procedure, the hypervisor gets the original and the new value of the page table

slot, together with the virtual address according to the slot position. Considering the

updated address and comparing the original value with the new one, the hypervisor

obtains the meaning of the current update, and thereby can validate the page table

update.

Verification Details

In page table update verification, the hypervisor and the shim code jointly enforce

the following policies for protecting the address space of a CAP.

1. The page table of CAP should be non-writable for the untrusted guest OS.

Any update should be intercepted by the hypervisor.

2. The newly added memory region should not conflict/overlap with any existing

memory regions, no matter the conflicts happen in virtual address space (no

mapping overlap) or physical address space (no double mapping).

3. Once the mappings between guest virtual addresses and guest physical ad-

dresses are fixed, they are not allowed to re-map (e.g., no mapping reorder).

4. The memory regions can be released only if the CAP requires to release them

(no malicious release), and the page data should be cleaned before allowing

the guest OS to manage/access it (no data leakage).

Essentially, the mapping overlap attack is the conflicts in the virtual address s-

pace. Thus, the verification algorithm can be put into the trusted shim, since it is

45

protected and aware of virtual addresses. Specifically, the trusted shim is able to

know all memory regions used by the CAP by collecting such information in the

memory-related system calls. For example, the trusted shim can know the size of

the memory-mapped region through the second parameter of mmap and the base

address through the return value. Such information stored in an ordered list is inac-

cessible for the untrusted guest OS since the address space of the CAP is isolated

by the hypervisor. For each new allocated memory region, the trusted shim veri-

fies it with existing ones. If there is no overlap, it then updates the maintained list

and passes the execution flow to the CAP; otherwise it will issue a hypercall to the

hypervisor to inform the policy violation.

To defend against double mapping and mapping reorder attacks in the page table

updates, the hypervisor has to interpret the old mapping Mo and the new mapping

Mn, and analyze the intent of this update. If the guest OS is to build a new mapping

(i.e., Mo is empty and Mn points to a guest physical page), the hypervisor verifies

if the new pointed physical page is occupied before. If it is already occupied, it is

a double mapping attack; otherwise the update is approved. If the guest OS aims to

remap/reorder the mappings (i.e., both Mn and Mo point to guest physical pages),

the hypervisor directly rejects it.

If the guest OS aims to free an old mapping (i.e., Mo points to a guest physical

page while Mn is empty), the hypervisor verifies if CAP requires the guest OS to

release this memory page. The information about the released memory pages is pro-

vided by the trusted shim through hypercalls. Those potentially released memory

pages are stored in a list in the hypervisor space. By searching the list, the hyper-

visor decides if the current page is the one that CAP aims to release. If it is not,

the hypervisor rejects the update; otherwise it approves it and updates the list by

deleting the corresponding record. Note that the data on the releases memory page

is cleaned by the trusted shim once it gets the release requests from the CAP.

46

4.3 Secure Context Switch

Events like system calls, interrupts and exceptions, lead to context switches be-

tween CAP and the kernel. Different from traditional user-kernel context switch,

the switch between CAP and the kernel involves address space switches, since they

run in two address spaces.

Entry Gates

Commodity OS

Exit Gates

CAP

Transit Module

Address Space Boundary

Figure 4.4: Control flow between the CAP and the guest kernel.

When CAP is in execution, the transit module in AppShield handles all inter-

rupts and prevents the kernel from exploiting the context switch to attack CAP. Its

main tasks are to facilitate the context switch and to safeguard CAP’s context infor-

mation. It also notifies the hypervisor to perform address space switch. As shown

in Figure 4.4, when an interrupt is raised, the control flow leaves from CAP to the

kernel. Once the event is processed by the kernel, the flow goes back to CAP. We

proceed to elaborate the details of context switch.

4.3.1 Transit Module

The transit module is a self-contained kernel module with its execution being pro-

tected by the hypervisor using the mechanism described in [82]. Specifically, the

memory regions occupied by the transit module is isolated by the hypervisor, such

that the untrusted commodity OS can not modify the data and the code. The control

flows of the transit module always start from the pre-defined addresses.

The transit module has two sections (Figure 4.5), which are page aligned for

facilitating memory protection. The first section is the public section which contains

47

Public
Section

Private
Section

Page Aligned

Entry Gates

…

…

Exit Gates

Figure 4.5: The format of transit module

information that is read-only for the transit module and the commodity OS. The

second section is the private section which contains private data. Accesses to the

private section are only allowed if they are from the transit module; other accesses

originated from outside of the transit module are blocked by the hypervisor.

Exit Gate

Entry Gate

Original
Interrupt
Handler

Address Space Boundary

AppShield
Interrupt
Handler

Figure 4.6: The AppShield interrupt handler.

The transit module consists of a set of interrupt handlers called AppShield in-

terrupt handlers. An AppShield interrupt handler is composed of two code stubs

(Figure 4.6). One is called the entry gate which is located in the public section and

the other is called the exit gate which is in the private section. The control flow of

48

the transit module always starts from one of the entry/exit gates. The exit gate han-

dles the context switch from CAP in protection to the guest kernel while the entry

gate handles the switch back to CAP. More details are presented in Section 4.3.3.

4.3.2 Event Capture

We do not use the hypervisor to intercept the interrupt events as this method sig-

nificantly affects the platform performance. When AppShield is activated, the hy-

pervisor loads the AppShield Interrupt Descriptor Table (IDT) which is dedicated

to CAP under protection, and protects it from be modified by the guest kernel by

setting its region as read-only.

The AppShield IDT contains the pointers pointing to the AppShield interrupt

handlers. The hypervisor installs the AppShield IDT to the CPU occupied by CAP

by setting its IDTR register. Consequently, the AppShield interrupt handlers be-

come the first responders to interrupts on the CPU. When the guest OS is running,

it uses the original IDT and interrupt handlers. The switch of the two IDTs follows

the switch of the address space. As illustrated in Figure 4.7, the original IDT is

uninstalled and the secure IDT is installed for the CAP execution.

…

AppShield Interrupt Handler

AppShield Interrupt Handler

AppShield Interrupt Handler

AppShield
IDT

Original
IDT A

d
d

re
ss

 S
p

ac
e

Sw
it

ch

…

Original Interrupt Handler

Original Interrupt Handler

Original Interrupt Handler

Figure 4.7: Performance Overhead Localization. When the context switches to
CAP, the normal IDT is uninstalled and the secure IDT is installed.

By using two sets of interrupt handlers, our design achieves performance over-

head localization, because the transit module is only invoked when CAP is inter-

rupted. AppShield is not involved when other applications and the guest OS are

49

running.

4.3.3 Context and Address Space Switch

Figure 4.8 depicts the control flow of event handling with two context switches at

the exit gate and the entry gate. When an interrupt is raised during CAP’s execu-

tion, the exit gate of the AppShield interrupt handler kicks off the context switch.

Under the protection of the hypervisor, the exit gate first prepares a buffer and saves

CAP’s context in the transit module’s private section. It then creates a dummy con-

text for the kernel to execute within. Note that the dummy context should not be

randomly generated since some context information is used by the kernel to serve

the application. For instance, the EIP should point to the corresponding interrupt

handler so that the original handler can serve the interrupt. Specifically, we only

need to hide the information in the general registers (i.e., EAX, EBX, ECX, EDX,

ESI, EDI, EBP) since they may contain sensitive CAP data. In the case of system

call context switch, we also need to keep the parameters in the corresponding regis-

ters. Moreover, to allow the execution flow to come back to the transit module, the

return address of the dummy context is set to point to the corresponding entry gate.

In the end, the exit gate then issues a hypercall to inform the hypervisor to restore

the original page tables so that the interrupt handler in the guest kernel can properly

execute.

Once the guest interrupt handler finishes its process, the control is returned to

the entry gate. The entry gate issues a hypercall to request the hypervisor to restore

the AppShield EPT. After ensuring that the request is indeed from the legitimate

entry gate, the hypervisor restores the AppShield EPT and installs the AppShield

IDT, so that the entry gate can properly restore the saved context and resume the

interrupted CAP execution.

50

Exit Gate

1. Save the context
2. Prepare dummy

context
3. Issue hypercall to

switch address space

Entry Gate

OS
Execution

1. Issue hypercall to
switch address space

2. Restore the original
context

3. Continue the previous
execution

Figure 4.8: A typical address space switch always starts with an exit gate and ends
with an entry gate. The commodity OS handles the events that trigger the address
space switch.

4.3.4 Special Considerations

Fast-System-Call Cost Localization

The platforms equipped with new processor and chipset support fast system call

mechanisms (i.e., SYSENTER/SYSCALL, SYSEXIT/SYSRET), which are inde-

pendently proposed by Intel and AMD, respectively. The SYSENTRER/SYSCAL-

L traps the CPU to the kernel mode and the SYSEXIT/SYSRET transfers the CPU

back to the user mode. In this chapter we choose one pair (i.e., SYSENTER/SY-

SEXIT) to illustrate.

The SY SENTER instruction sets the registers (i.e., CS, EIP, SS and ESP)

according to values specified by the operating system in certain Model-Specific

Registers (MSR), and triggers the CPU to trap into the kernel mode. To localize

the performance overhead to CAP, the hypervisor also prepares two sets of MSR

registers. One set is used for CAP, where the EIP value in the corresponding MSR

(i.e., SYSENTER EIP MSR) is modified to point to the new system call handler

prepared by the transit module. By doing so, all fast system calls will be intercepted

by the transit module. Another set is used for the unprotected applications as usual.

The two sets of registers are switched following the switches of the address spaces.

Note that the context backup and restoration are still handled by the pairs of the exit

and entry gates.

51

Multi-Thread Execution

AppShield supports multi-thread execution of CAP. The child threads could be user

threads, which are completely maintained by CAP in user space, or light weight

processes scheduled by the guest OS and sharing the same address space with their

parent.

The user threads do not have their own contexts since they do not have the kernel

structure for scheduling. Therefore, they are transparent to AppShield. In contrast,

light weight process threads may have multiple user contexts for CAP, since each of

them has its own corresponding structures (e.g., kernel stack) for scheduling. These

threads may run in parallel and trap into the guest OS simultaneously. Therefore, by

using the base addresses of their kernel stacks as the identifiers, the transit module

can distinguish each of them, and save/restore the respective contexts.

4.4 System Call Adaption

The system call from CAP to the guest kernel exposes some CAP data since they

are passed to the guest as parameters. AppShield provides a spatio-temporal pro-

tection [22] for the data involved in the system call. It ensures that the guest OS can

only access the authorized data (spatial protection) during the execution of the sys-

tem call (temporal protection). The previous sections have explained that temporal

protection is achieved by address space isolation and secure context switch. In this

section, we describe how AppShield enforces spatial protection through system call

adaption.

A majority of system calls do not need the OS to access the application address

space to get further information, since all needed information in the parameters

(e.g., close) or even without needing any parameters (e.g., getpid). These calls are

passed to the guest OS without any adaption.

Those system calls whose parameters contain pointers (e.g., a pointer pointing

to the file name in open), need adapting. To ensure spatial protection, researchers

52

have proposed two possible solutions. The first approach [17] is to interact with the

hypervisor multiple rounds to safely move the decrypted data into a shared/public

buffer. The other approach [22] does not allocate a new buffer. Instead, it decrypts

the data in the original buffer and allows the OS to directly access the buffer. Both

solutions use expensive cryptographic technique, which dramatically reduces the

application performance if the application frequently issues system calls. In addi-

tion, the multiple round interaction (with the hypervisor) is another source of the

performance loss. We summarize the time cost of the parameter marshalling in a

system call in two typical schemes (i.e., Overshadow and SecureME) together with

our scheme in Table 7.1. Overshadow needs 8 context switches and costly cryp-

tographic operations, and SecureME also needs cryptographic operations together

with 2 context switches. For our scheme, we only need 2 context switches for one

system call.

Crypto. Operations Data Movement Context Switch (#)
OverShadow

√ √
8

SecureME
√ √

2
AppShield X

√
2

Table 4.1: The time cost of the parameter marshalling in a system call. Our scheme
is relatively efficient because we give up the costly cryptographic operations and
reduce the switch times.

In our scheme, the trusted shim creates a shared region (buffer) in its user space,

and issues a hypercall to inform the hypervisor that the shared region is accessible

for the guest OS. In this way, the guest OS can only access the data within the

shared region, but cannot access any other regions within the user space of the CAP,

achieving the spatial protection.

To adapt system calls, the shim developers should understand the semantic

meaning of each system call. Specifically, they should know the meaning of the

parameters and the return values. In addition, they should know the direction of the

data exchange, e.g., from application perspective, the buffer referred to by the pa-

rameter is for receiving data from the guest OS, or caching the data that will be sent

53

out. Getting such semantic information, they are ready for the system call adaption.

Specifically, for the data that the CAP attempts to send out, the shim simply moves

the data into a buffer allocated in the shared region, and updates the corresponding

parameter to refer to the new buffer. To receive data from the guest OS, the shim

should reserve a buffer in the shared region. The shim then saves the base address

of the original buffer, and updates the corresponding parameter to refer to the re-

served one. When the system call returns, the shim copies the received data into the

original buffer and continues the execution.

4.4.1 System Call Emulation

There are several system calls whereby the system call adaption technique is not

applicable to resolve the conflicts between the system call purpose and our security

requirements. Specifically, such system calls are not designed for exchanging data.

Instead, they are for introspecting or manipulating the application by accessing or

modifying internal status.

The first is Futex (i.e., fast user mutex), which provides a method for an ap-

plication to wait for a value at a given address, and a method to wake up other

applications waiting on a particular address. The implementation of Futex not only

directly accesses the process memory, but also binds some information (e.g., a hash

bucket) with the address. Therefore, if we simply apply the system call adapting

technique to Futex, the semantic information may be bound to a wrong address,

which may lead to the failure of Futex.

The rest are the system calls used in the signal-handling, where the guest OS

needs to prepare a temporary execution context for the application and transfers the

execution control to a pre-registered handler to handle the corresponding signal. The

critical security issue here is that the guest OS needs to be authorized to manipulate

the application context. Such authorization may be exploited to reveal and tamper

with the application data, e.g., involve a function to send plain text outside. To

revoke the authorization from the guest OS, we have to emulate it.

54

Configurations Descriptions
CPU Intel i7-2600 with 3.40GHZ
Memory 3GB DDR3 1333MHZ
Network Card Intel Device 1502 with 1Gbps
Disk ATA 7200RPM
OS Ubuntu 10.04 with Kernel 2.6.32.59

Table 4.2: The configurations of the experiment machine.

4.4.2 Ptrace

The ptrace system call is not allowed for CAP since its working mechanism requires

the guest OS to directly read the content of the user space, or to modify the data or

even code of the specific addresses, which is completely conflicts with our security

requirements. We should not emulate this system call since it opens the door for the

malicious guest OS to read/write the whole address space of the CAP.

4.5 Implementation and Evaluation

We have implemented a prototype of AppShield on a PC whose specification is

listed in Table 4.2. The prototype consists of a dedicated hypervisor running on the

bare-metal hardware, and a Linux loadable module as the transit module. The code

base of the hypervisor is around 29K SLOC with 218KB binary size. The transit

module consists of around 2K SLOC, and the trusted shim is around 1K SLOC.

Trusted Shim

We do not modify the source code of the application and the shared libraries, instead

we create the shim as a wrapper of libc, and allow it to intercept the function calls

that are supposed to call the libc functions. Specifically, on the Linux system, an

application usually needs shared libraries at runtime, and the dynamic linker load-

s those shared libraries in whatever order it needs them. However, when you set

LD PRELOAD to a shared library, that file will be loaded before any other li-

braries, including the libc library. Preloading a library means that its functions will

be used before others of the same name in later libraries, allowing a function to be

55

System Calls

Files
open, close, read, write, chdir

writev, access, fstat64, uname, poll, fcntl
statfs64, fstatfs64, getdents64, getdents

stat64, lseek, llseek, getcwd, fchdir, ioctl

Network
bind, listen, accept,

sendto, recvfrom, accept4, select
connect, send, recv, getsockname

Memory mmap2, munmap, mremap, brk, mprotect

Process
getpid, gettid, getgroups32, set thread area

getuid, geteuid, getgid, getegid
exit groud, tgkill, getrlimit, exit

Time time, clock gettime, gettimeofday
Others futex, rt sigaction, rt sigprocmask, sigaltstack

Table 4.3: Supported system calls.

intercepted. We use this feature in our implementation, saving the cost of the source

code modification.

The trusted shim needs to do some initializations and preparations for the pro-

tection and the interception, such as allocating the shared buffer, and informing the

hypervisor to protected the application. However, those functions for intercepting

system calls are passively invoked, meaning those functions will not execute until

the application explicitly call them. To solve this problem, we resort to another fea-

ture - constructor function. A constructor function marked with .init will be called

by the dynamic linker when the library is loaded. The trusted shim supports 56

system calls (listed in Table 4.3) in the current implementation.

We evaluate the impacts of AppShield by running both macro- and micro-

benchmark kits.

4.5.1 Micro Benchmark

In the micro benchmark, we evaluate the cost of the address space switch (Ta-

ble 4.4). An address space switch event can be divided into three parts: protection

mode switch, context backup and restoration. The protection mode switch includes

a hypercall, IDTR and EPT switching. The context backup consists of saving 17

registers (including general, flag and control registers) and creating a dummy con-

56

Operation Time (µs)
Out of Protected Address Space 1.72

Back to Protected Address Space 1.33
Context Backup 0.11

Context Restoration 0.08

Table 4.4: The micro-benchmark results for address space switch.

text. The context restoration is to load all the saved registers. The cost of domain

switch is relatively high, because it contains the costly memory access from hyper-

visor space to guest space, i.e., inserting the return address to the kernel stack. All

three costs constitute the latency for the system to handle a particular interrupt or

exception. The cost for a system call is for address-space switch cost and param-

eter marshalingt. The parameter marshaling cost varies for different system calls.

For instance, there is no such cost for getpid, while we need it to copy data from

user space to the shared region in write. Thus, we do not measure them individu-

ally, but choose to evaluate the whole application performance overhead in macro

benchmark.

4.5.2 Macro Benchmark

AppShield Impacts on Performance

SPEC CINT2006 [25] is an industry-standard benchmark intended for measuring

the performance of the CPU and memory. We executed SPEC CINT2006 in two se-

tups: system with virtualization, and the system with AppShield. Figure 4.9 shows

the results.

Comparing the impact of running the workload in a system with a bare-metal

hypervisor, we calculate the overhead added by the additional virtualization layer.

Based on the virtualization impacts, AppShield imposes an additional 0.01% slow-

down on average. The primary source of virtualization overhead is VM exits due to

interrupts and privileged instructions [35].

57

0

100

200

300

400

500

600

700

800

VMM AppShield Time(s)

Figure 4.9: SPECint 2006 Result. AppShield introduces insignificant slowdown
comparing with virtualization.

Computation Effects

We measure the AppShield protection on computation programs. In our experi-

ment, we measure three encryption algorithms (i.e., AES, RC4 and RSA), which is

adopted from OpenSSL 0.9.8k project. We run these algorithms to encrypt/decrypt

messages with different lengths, from 32bytes to 2048 bytes. The measurement re-

sults in Figure 4.10 show that the protection effects on the computation programs is

quite small.

0

100

200

300

400

500

600

AES RSA RC4 AES RSA RC4

VMM AppShield

Message Length 32B Message Length 256B Message Length 2048B Time (ms)

Figure 4.10: The effects of AppShield protection on computation.

58

Disk I/O Benchmark

The disk I/O benchmark includes three sub-benchmarks to evaluate the overhead in

disk reading, writing and copying. Disk I/O benchmark reads/writes data from/to

files with different sizes. In our experiments, the file size is 64MB, and the read-

/write granularity is from 512B to 4MB. Experiments with a larger file and a smaller

buffer result in more system calls, and consequently introduce more context switch-

es. However, with the increasing of the buffer size, the performance is better, which

is also proved by the experiment results in Figure 4.11. Note that the overhead is

mainly introduced by data copy and context backup/restoration in parameter mar-

shaling.

0

500

1000

1500

2000

2500

3000

3500

4000

VMM AppShield VMM AppShield VMM AppShield

Read Write Copy

512B 4KB 32KB 256KB 4MB MB/S

Figure 4.11: The disk I/O Benchmark.

Network I/O Benchmark

We measured the network performance with the Apache web server. The Apache

is configured as worker mode with one main process and 20 threads. We run the

standard ab matchmarking tool included in the Apache utility tools. We execute

10,000 web requests, at the concurrency level of 100 to fetch the default index page.

The web client and the Apache server are in the same LAN. The Apache web server

59

Linux AppShield Overhead
Apache Throughput 320.65 req/s 316.84 req/s 1.01x

Connection Time (ms)
Processing 160 163 1.01x

Waiting 131 135 1.03x

Table 4.5: The benchmark results of Apache.

serves requests with 1.20% overhead in throughput, and about 3.05% overhead in

waiting time and 1.86% overhead in processing time. The overhead is reasonable

since Apache may cache the frequently requested pages, without issuing disk I/O

for each request.

4.6 Discussions

I/O Data Protection

To keep the hypervisor and the transit module small and simple, we do not integrate

the device drivers into them, while choose to reuse the legacy ones in the untrusted

OS. It means that the untrusted OS have the chance to reveal or tamper with the input

data of the CAP. For the file and network data, we can use cryptographic techniques

to protect them, e.g., all file and network data are encrypted with the CAP private

key. However, the data like keyboard input and mouse input are passed from the

devices in plain text, meaning that the untrusted OS is able to get the content or

even arbitrarily modify them. To protect such data, we can integrate the trusted

path [19, 109] with our AppShield technique.

Fine-Grained Protection

Currently, we focus on the whole application protection, while the AppShield tech-

nique can be adapted to protect self-contained high-assurance components. To

achieve this, we can split the application into low- and high-assurance partitions,

and only protect the high-assurance components. In addition, the high-assurance

components that are aware of the existence of the AppShield can explicitly commu-

nicate with the hypervisor to request more fine-grained protections or certain special

services, e.g., the online transaction service.

60

Verifiable Protection

End users usually require a proof (verifiable protection) to indicate the state of the

protection. There are several approaches proposed to provide a secure feedback

channel. Bumpy [59], ZTIC [50], Lockdown [97] and Trusted Path [109] attempt to

use a dedicated (extra) hardware device (e.g., USB token and mobile) as the trusted

monitor, while KGuard [18] and Guardian [21] build a visual verification on the

display. We can integrate the the visual verification into our hypervisor since it does

not need dedicated devices. Note that the visual verification is only involved when

the first time the CAP is isolated.

4.7 Summary

In this chapter, we have presented the designed and implementation of AppShield,

which reliably and flexibly protects critical applications with complete isolation,

rich functionalities and high efficiency. We have implemented the prototype of

AppShield with a small bare-metal hypervisor. We have evaluated the performance

impacts on CPU computation, disk I/O and network I/O using micro and macro

benchmarks. The experiments show thatAppShield is lightweight and efficient.

61

Chapter 5

Generic Protection On I/O Flows

In this chapter, we aim to protect data flows between applications and devices a-

gainst an untrusted kernel throughout the entire I/O lifecycle. In particular, we fo-

cus on those devices that render raw data, e.g., sound cards and printers, or generate

raw data for applications, e.g., seismic sensors and fingerprint scanners. We are less

concerned with disks and network adaptors, because these devices deal with derived

data from applications. Therefore, a straightforward solution to protect the disk I/O

and the network I/O is to encrypt the data before and after I/O operations.

In this work, we present DriverGuard, a holistic and compact I/O protection sys-

tem making use of a combination of cryptographic and virtualization techniques.

We implement DriverGuard with slight changes on the device drivers and the Xen

hypervisor. Our experiments with several I/O devices demonstrate that DriverGuard

imposes little overhead to the system and causes unnoticeable delays to user appli-

cations. DriverGuard is complementary to many user space protection schemes

such as Overshadow [17], and SP3 [106]. A composition of DriverGuard and a

user-space protection scheme can protect the whole lifecycle of data processing.

Our work is also remarkably different from secure I/O [84] and driver code

security [78]. Secure I/O copes with those attacks misusing the I/O mechanism (es-

pecially DMA operations) for illegal memory accesses. Driver code security tackles

software attacks, such as return-address attacks [14] and code injection attacks [55],

62

which gain the root privilege by subverting drivers. Although these attacks do not

necessarily target at the I/O data, they are one of the threats considered in our study.

Our work is similar to the trusted path proposed by Zhou et al. [109]. Their trusted

path aims to assure the secrecy and authenticity of data transfers through a trusted

path from the new inserted user-level driver to the device, while our work focuses

on the protection of the secrecy of the I/O data through a trusted path built upon the

legacy drivers.

ORGANIZATION The next section describes the problem as well as the threat

model, security requirements and main challenges in Section 5.1, and explain the

design rationale in Section 5.2. We describe the design overview, privileged code

block and design details of DriverGuard in Section 5.3, 5.4 and 5.5, respectively.

Section 5.6 discusses the automatical PCB identification and the full path I/O pro-

tection, and Section 5.7 shows the evaluation of DriverGuard through experiments

and performance measurements. Finally, we conclude this chapter in Section 5.8.

5.1 Problem Definition

In this section we state our goals together with the threat model, and present the

possible attacks and the main challenges we are facing.

5.1.1 Our Goals

There are several approaches [17, 106] proposed to protect the data in the user space.

Therefore, in this chapter we focus on the I/O flow protection in the kernel space.

Specifically, we attempt to propose an approach to defend against attacks that get

the value of the I/O data from device interfaces and kernel-space buffers. More

specifically, we focus on the protection of the raw I/O data that is generated from or

send to devices. Disk I/O and network I/O are not in the scope of our study, because

neither disks nor network adaptors produce or render raw data. In fact, data stored

in disks or transmitted across networks are actually generated by user applications.

Therefore, they can be protected using user-level encryption techniques (e.g., using

63

SSL to protect the network data). Note that the devices mentioned in the chapter are

hardware/physical devices rather than virtual devices.

The second goal is to propose a generic solution to protect all kinds of I/O flows

on different machines and different devices. We attempt to make our system to be

compatible with commodity operating systems and legacy applications.

5.1.2 Threat Model and Assumptions

In our threat model, we consider the malicious software residing in the guest as

the adversary. The malware may compromise the kernel through attacks like ROP

[80, 9, 14] and code injection [55]. As a result, the adversary can take full control

of the guest, e.g., launching arbitrary code and issuing any DMA requests.

We assume that malware can not subvert the hypervisor. This assumption is

reasonable since the TPM-based secure boot scheme can guarantee the load time

integrity of the hypervisor, and the virtualization technology can prevent malicious

software and illicit DMA accesses driven by the guest OSes in runtime. In addi-

tion, some proposed hypervisor-protection schemes [99, 98, 5, 69] can be applied

to ensure the hypervisor’s security.

We trust the end user, and assume that the adversary can not physically control

the system. We assume that the hardware devices always behave according to their

specifications. We also assume the system firmware is trusted as in [45, 91, 93, 97].

The modern BIOS has a built-in hardware lock mechanism to set itself as read-

only and only accepts signed updates, so that the OS cannot tamper with it. Due to

the complexity of the x86 platform (e.g., optional ROM), this assumption may not

always be true. Nonetheless, it is still possible to validate the system firmware by the

proposed attestation approach [52] or by a trusted system integrator. Furthermore,

for the computers in an organization, the security-savvy system administrator can

simplify the system boot settings, such as disabling unnecessary option ROMs.

In this work, we only focus on uniprocessor platforms. Attacks from multi-

core or multi-processor are out of scope of our discussion. Note that it is not our

64

interest in this chapter to study how to check the trustworthiness of a device driver.

We assume that a trusted authority1 signs every device driver to be installed. The

hypervisor can validate the integrity of device drivers by verifying the signatures.

Neither the denial-of-service attacks nor the side channel attacks (e.g., [85]) are in

the scope of our work.

Although the security and functionality of DriverGuard are independent of user

space protection, the benefits are maximized if DriverGuard joins schemes such as

Overshadow [17] and SP3 [106] to safeguard the entire I/O data life cycle covering

both kernel and user spaces. We will discuss this issue in Section 5.6.2.

5.1.3 Attacks

According to the characteristics of driver operations, we spell out attacks targeting

at the I/O data. From the above typical I/O flow, we can find out many possible

attack targets to get the value of the I/O data. We summarize all attack targets into

three categories: device I/O interface, the kernel space data buffer, and the user-

space data buffer.

• Attacks on device I/O interfaces. The device I/O interfaces include PIO,

MMIO and DMA descriptors. For PIO and MMIO, a rootkit may launch the

I/O-port or MMIO mapping attack [109] to intercept or manipulate the device

I/O, or directly access the interface to get the I/O data. It may also attempt to

modify the DMA descriptor to induce the device sending or fetching the I/O

data to or from the memory regions controlled by the rootkit.

• Attacks on kernel space data regions. This type of regions include all driver

allocated memory regions. A rootkit can keep probing and reading the target

I/O data, or be triggered by some special event (e.g., external interrupt) to

access the I/O data directly from these regions. It is hard for the kernel to

defend against such attacks because the rootkit has the same privilege as the

1To avoid increasing the TCB size, we suppose that the platform administrator signs every driver
to be installed in the platform. The hypervisor is pre-configured with the administrator’s public key.

65

kernel. Another attack is that the rootkit calls the driver’s legitimate routine

to access the data.

• Attacks on user space data regions. The user space regions are wildly open

for a kernel rootkit. Once the I/O data is in the user space, the rootkit is able

to bypass kernel- and user-level protections to directly access it. Such attacks

can be defended by serval user-space protection approaches [17, 106].

5.1.4 Security Requirements

Given that the locations of the I/O data can be categorized into two types: device

interface (including PIO, MMIO and DMA) and main memory, we summarize all

required security properties of the I/O flow protection on each of them.

For the data in the device interface, we require that malicious code can not access

or manipulate the data. The security properties are stated as:

• SP0: The physical addresses and I/O ports of all device interfaces can not be

updated once they are fixed by the BIOS during the system boots up.

• SP1: Any access on the data or to update data transfer parameters through

the device interface should be intercepted and verified.

• SP2: Only accesses from trusted code blocks are granted.

For the data in the main memory, we require that only the trusted code blocks

are able to read the protected I/O data, and the executions of the trusted code blocks

are protected. The security properties are summarized as follows:

• SP3: If the I/O data in a memory buffer is readable (plain text), access control

must be enforced and only granted the trusted code blocks can access it.

• SP4: If the I/O data in a memory buffer is unreadable (cipher text), any code

blocks are able to access it without triggering any verification mechanism.

66

• SP5: If a trusted code block is interrupted to give up CPU during its execu-

tion, its execution context must be saved and restored when it occupies CPU

again.

5.1.5 Challenges

We now discuss the challenges in designing a system that provides the guarantee of

confidentiality of the I/O data over the lifetime of the system. The first challenge is

the complexity of the I/O sub-system. Different devices have different interfaces to

communicate with the system. For instance, cameras use USB interface while the

PS/2 keyboard is attached to the system with the PS/2 interface. Furthermore, for

the same device with the same version, different platforms (e.g., Linux or Microsoft

Windows) have different driver implementations. The diversity and complexity dra-

matically increase the difficulties to build a generic solution to protect all I/O flows.

The second challenge is the complex and intensive interactions between drivers

and the kernel. Most driver functions are dependent on the kernel exported func-

tionalities. For instance, the driver memory allocation and deallocation are heavily

dependent on the kernel memory management component. The heavy dependence

and intensive interactions make it extremely hard to distinguish if an access on the

protected I/O data is driven by the benign driver or by the compromised kernel.

The third challenge comes from the power of attackers. Once attackers compro-

mise the kernel, they are able to gain the kernel (highest) privilege, which allows

attackers’ code to freely access any memory regions and I/O ports. On the other

hand, it is hard for the buggy monolithic kernel to completely defend against soft-

ware attacks due to the large size and numerous attack surfaces.

5.2 Design Rationale

A straightforward approach is that the hypervisor arbitrates whether a control flow

can access the I/O data. It requires the hypervisor to introspect driver operations,

which is difficult to implement due to the semantic gap (e.g., lack of details of driver

67

operations) between the hypervisor and the driver. Considering the complexity of

I/O operations, the workload on the hypervisor will inevitably expand its code size,

and may significantly downgrade the whole system performance.

Isolation is a widely used method to protect program executions. To apply iso-

lation on I/O data protection, one may propose location isolation or execution iso-

lation. Location isolation is to place device drivers and the kernel’s I/O subsystem

into a separated domain, e.g., a driver domain or Dom0 in Xen, or the hypervisor’s

space, e.g., VMware, so that malware in the guest kernel can not attack them direct-

ly. These approaches are efficient in terms of I/O performance. Nonetheless, the

resulting protection is weak because the TCB size is increased significantly due to

the drivers and the I/O subsystem.

In the execution isolation, the device drivers still reside in the untrusted guest

kernel while their executions are escorted in a secure environment established by

the hypervisor, similar to TrustVisor [56] and Overshadow [17]. The generic exe-

cution isolation is not applicable for I/O data protection, because I/O operations are

featured with frequent hardware interrupts and intensive driver-kernel interactions.

Note that if the I/O subsystem is also enclosed in the execution isolation, it suffers

from the same drawback as in the location isolation approach.

We adopt the idea of execution isolation, however, at a micro-level. It is well-

known that most of the driver code is for housekeeping purposes, such as error

handling, resource allocation and cleaning up [33], with only a small portion deal-

ing with I/O data transferring. We further observe that among the code for data

transferring, only a few code blocks, e.g., an encoding function, need to process the

I/O data, while the majority of them just move the data from one memory location

to another without necessarily knowing the content. Based on these observations,

we design DriverGuard as a fine-grained I/O protection mechanism, which enforces

access control on the device interfaces and encrypts the I/O data once it is moved

into memory. To let the device driver work properly, DriverGuard distinguishes

those security-sensitive driver code (around 1% of the driver code according to our

68

experiments) from the rest. Only these identified code blocks are granted to access

device interface, and access decrypted I/O data. Other code blocks is only able to

access encrypted I/O data. In the meantime, DriverGuard protects the execution of

security-sensitive code block to prevent malicious code from accessing the I/O data.

Different from the hypervisor introspection technology, those access controls do not

impose comprehensive semantic logics on DriverGuard. Hence, its performance is

on par with the location isolation solution, however, the security strength is much

stronger.

5.3 Design Overview

By and large, DriverGuard is constructed using three lightweight protection tech-

niques as the building blocks: cryptography, access control and runtime protection.

We use cryptographic techniques to protect all I/O data without interfering with

most of the driver and the kernel executions. For regions holding data which cannot

be protected by encryption, we resort to DriverGuard to enforce access control. The

plaintext data can only be accessed by a few designated driver code blocks, which

are trusted and whose executions are safeguarded by our runtime protection mecha-

nism. We refer to these code blocks as privileged code blocks (PCBs) in the rest of

the chapter. By protecting the execution of PCBs, we successfully ensure the whole

I/O data security with minimal overhead since PCBs only constitute a tiny fraction

of the driver code.

5.3.1 Protection Mechanism

A high level view of DriverGuard’s protection mechanism is as follows. Once the

hypervisor boots up, it fixes all physical addresses and I/O ports of all device in-

terfaces by setting read-only on the configuration space registers, and rejects any

update requests from the guest OS [109] (achieve SP0). All device interfaces re-

lated to protected I/O flow are enforced access control by the hypervisor, so that

any access from the guest must be trapped into the hypervisor (achieve SP1). If

69

the access is from a PCB (i.e., command-PCB or computation-PCB), the hypervi-

sor grants the access, otherwise rejects it (achieve SP2). Receiving the I/O data

from device interface, a PCB may attempt to read the content of data to do some

computations, such as encoding or decoding operations. Before the PCB is off the

CPU, the PCB is designed to either require the hypervisor set access control back

on the data if it is readable2 (achieve SP3) or encrypt the data into cipher text with

the key (achieve SP4, and see more in Section 5.3.4), which is generated by the

key-PCB and only accessible by PCBs. Non-PCBs are free to move the ciphertext

to anywhere without any constrains from the hypervisor. Figure 5.1(a) and Figure

5.1(b) illustrate the difference between a PCB’s and a non-PCB’s I/O data accesses.

Since the PCBs never actively give up the CPU until its execution flow ends, the

off-CPU event must be triggered by external interrupts or exceptions. Based on this

observation, the hypervisor enables interception mechanisms on all interrupts and

exceptions during the PCB execution. If the interception mechanism is triggered,

the hypervisor restores protection on the I/O data. Furthermore, the hypervisor also

protects the PCB execution context to avoid indirect data leakage (achieve SP5).

!"#$%&

'()*+(&

,-+./&
0+(1+2&

+1345+67&
89:&5;/;&

<=>+(*).4(&

'+*)3+&

(a) A PCB, e.g., encode function,
accesses the I/O data in plaintext.

!"#$%"&

'(%)*&
+%",%-&

./012*/2()%"34&

%,."10*%5&
678&59*9&

:10%"$#)/"&

!%$#.%&

;%;.0134&

(b) A non-PCB, e.g., the mem-
cpy function, accesses the encrypt-
ed I/O data.

Figure 5.1: The concept of privileged code block (PCB).

In Section 5.1.2, we assume that every driver is signed by a trusted entity such

as the platform’s administrator. To ensure the initial integrity of the PCBs in a
2The PCB is able to get enough semantic information to know if the I/O data is readable or not.

70

driver, we further assume that they have been explicitly labeled in the driver code

before being signed and installed. Therefore, the signature on the driver code also

ensures the integrity of PCBs. (We will discuss PCB identification methods in Sec-

tion 5.4.1.) Next, we explain the design details of three building blocks and leave

the discussion of their integration in Section 5.5, since it involves the details of I/O

operations.

5.3.2 Access Control Over Critical Regions

Since we do not rely on encryption-capable devices, encryption is not applicable

for data used by the hardware. To cordon off illicit accesses to the data, we utilize

the hypervisor’s access control mechanism. In general, the data regions are classi-

fied into memory regions and I/O ports, for which we apply different access control

methods by leveraging the hardware features and the virtualization techniques avail-

able in the platform.

To intercept accesses to a protected memory region, DriverGuard sets the at-

tribute bits in the corresponding Page Table Entries (PTEs), clears the correspond-

ing IOPL bits, and sets up the I/O bitmap to intercept accesses to an I/O port. Note

that the protected memory addresses are machine addresses not guest physical ad-

dresses (or named pseudo physical addresses). We use checkpoints3 in the rest of

the chapter to refer to both the IOPL bits and the PTEs marked by the hypervisor for

the purpose of access interception. Although the aforementioned protection tech-

niques are used in many existing schemes, e.g., [17, 67], we are confronted with two

new problems. First, given a memory buffer, the hypervisor must make sure that the

kernel can not bypass the checkpoint to access the region, which is challenging for

memory regions allocated by the kernel. Secondly, the hypervisor must ensure that

the sensitive I/O data is indeed placed in the region with a checkpoint. The first

problem demands a careful page table walk checking while the second demands the

I/O control integrity checking.

3Our definition of checkpoint has no relation with the checkpoint for rollback in distributed sys-
tems.

71

5.3.3 Cryptographic Components

We introduce to the device driver a symmetric-key encryption function and a de-

cryption function, both of which can be called by any code. However, any write

access to the function code is denied by the hypervisor. We also add a key gen-

eration function to the driver as a PCB. The security of the I/O data relies on the

secrecy of the driver’s key, rather than the secrecy of the decryption function, which

complies with the famous Kerckhoff’s principle. The driver’s secret key is securely

generated based on a secret random seed supplied by the hypervisor. The secret

key is securely stored in a kernel space buffer priorly appointed by the driver and

can only be accessed by the driver’s PCBs. This prevents any unauthorized code

from decrypting the driver’s data, even though the decryption function can be called

arbitrarily.

5.3.4 PCB Execution Escorting

The third building block in DriverGuard is the runtime protection mechanism that

prevents a PCB’s execution from deviating its expected behaviors. The protection

is requested at the PCB’s entry and is relinquished at the exit via hypercalls. The

hypervisor agrees to admit a control flow into the escorting only when the request

is issued from the driver’s PCB, and agrees to discharge a flow from escorting only

when the request is issued from the PCB presently under escorting. The PCB is

registered to DriverGuard during the kernel boot up process (details in Section 5.5).

0x1234

flow routine

checkpoint
lifted

0x1234 0x1234

checkpoint
restored

checkpoint
lifted

off CPU on CPU

Figure 5.2: An illustration of runtime protection, where 0x1234 is an exemplary
memory address with a PTE checkpoint.

The PCB under the escorting is granted by the hypervisor to access the critical

72

data such as the driver’s secret key and the I/O data, or to issue I/O commands.

In our design, the hypervisor temporarily restores the access on those regions for

the PCB, and withdraws the access right at the exit of escorting. Therefore, no

duplicated exceptions or page faults will be raised despite that the PCB may access

the same region multiple times within one escorted execution. An escorted PCB

can be scheduled off from the CPU for various reasons. In that case, the hypervisor

intercepts these events and restores all checkpoints. Meanwhile, it also securely

saves the driver’s runtime stack and sets up a breakpoint for the PCB’s upcoming

CPU occupation. As a result, other code’s accesses to the protected regions are

denied. Figure 5.2 depicts a scenario of escorting.

5.4 Privileged Code Block

We consider three types of PCBs in a driver. One is computation-PCBs which refers

to the driver code blocks making computation on the I/O data, e.g., an encoding

function. The second is command-PCBs which refers to the driver code blocks

issuing data transfer parameters to the device. This type of code is security sensitive

because their executions determine the locations of plaintext I/O data. The third is

key-PCBs which refers to the driver code blocks initializing the driver’s encryption

key. Each driver generates its own key in the driver initialization step, such as in

module init.

There are several properties of PCB summarized as follows: 1) It is self-

contained in the sense that there is no extra function calls to kernel functions; 2)

It does not contain indirect call or indirect jump (e.g., no call using function point-

er), meaning that the control flow is static; and 3) It does not have any dynamic data

dependence except for the parameters. These properties call for driver developers’

prudence in driver coding such that the driver code is friendly to PCB identification.

73

5.4.1 Identifying PCB

Given that the key-PCB is added by the DriverGuard scheme, we only illustrate

how to identify the other two types of PCB from the driver code. Following the I/O

data flow, the sophisticated driver developers are able to identify all functions that

operate on the I/O data, and thereby label all PCB candidates in these functions.

If some PCB candidates are not naturally satisfy the above listed PCB properties,

there are some guidelines for the driver developers to modify them into PCBs.

Obviously, it is easy to achieve the second property by carefully programming.

To achieve the first property, the developer can replace external function calls with

its own code if they are simple (like inline functions). If they are hard to be replaced,

the developer may either move these function calls out of the PCB candidate if they

do not effect the behavior of the driver, or divide the PCB candidate into two PCBs

with the function call as the separator. In order to achieve the third property, the

developer could assign the dynamic dependence data to the static or global data

variables. To facilitate the protection on these variables, developers are able to put

them in a particular region (e.g., a pre-reserved page) with compiling flags. Note

that the labeled driver can be distributed after the PCB-labeling work is done.

5.4.2 PCB Format

A PCB is always capsulated by a pair of hypercalls for escorting. The entry hy-

percall is a start escort hypercall that requires DriverGuard to start to protect the

execution of the PCB, and the exit hypercall is an end escort hypercall that informs

DriverGuard to end the PCB execution protection. There are two possible formats

for a PCB. One format of the PCB is ended with encryption on the protection data.

Such PCBs are usually in the intermediate parts of a driver, where the driver does

some process operations on the I/O data whose output is ready for the later stage.

The other is ended with protection requirement which is to request DriverGuard

to block all accesses on the protected regions. Such PCBs usually directly work

74

with device (e.g., updating I/O buffer for DMA transferring) or user-level applica-

tions (e.g., copying data into user space). We illustrate their different formats in

Figure 5.3.

!"#$"%&!'($")*
+(,-(.#/0*1&'$2,-(.)*
3*
+(,-(.#/0*1#"#*,$('&!!)*
3*
&.'$2,-(.)*
&45"%&!'($")*

!"#$"%&!'($")*
+(,-(.#/0*1&'$2,-(.)*
3*
+(,-(.#/0*1#"#*,$('&!!)*
3*
$&67&!"%,$("&'-(.)*
&45"%&!'($")*

(a)

!"#$"%&!'($")*
+(,-(.#/0*1&'$2,-(.)*
3*
+(,-(.#/0*1#"#*,$('&!!)*
3*
&.'$2,-(.)*
&45"%&!'($")*

!"#$"%&!'($")*
+(,-(.#/0*1&'$2,-(.)*
3*
+(,-(.#/0*1#"#*,$('&!!)*
3*
$&67&!"%,$("&'-(.)*
&45"%&!'($")*

(b)

Figure 5.3: The two types of PCB format. (a) A PCB ending with encryption.
Thus, the hypervisor does not need to enforce access control on the data; (b) A PCB
ending with protection requirement. Therefore, the hypervisor must enforce access
control on the data to restrict the access.

We assume that the PCB interface is trusted and well-designed/implemented,

without malicious intention to leak I/O data to outside. In fact, it is true in almost

all cases especially for the ones in the driver interfaces since they are usually well

defined in the specification.

5.5 Design Details

We build DriverGuard on top of the Xen hypervisor to protect the drivers running

in a Linux guest domain. We systematically examine every step in I/O operations,

from the device discovery to the application’s (or device’s) data fetching. In order to

adaptively protect the driver operations, the hypervisor needs to store certain context

information about the driver. We start with driver context initialization since it is

performed by the hypervisor during the guest domain bootstrapping.

5.5.1 Driver Context Initialization

The context information of drivers are securely stored in three types of tables in the

hypervisor space. A device table specifies the management relation between a driver

75

and a device by paring their identifiers. For every protected driver, the hypervisor

maintains a PCB table and a region table. The former stores the entry and exit

addresses of all PCBs of the driver while the latter specifies the memory regions and

the I/O ports to protect. There are five types of regions in the region table: 1) the

application buffer; 2) the memory buffer allocated by the driver for data processes;

3) the I/O data buffer such as DMA buffers ; 4) the device interface, including the

I/O ports or MMIO regions and DMA descriptor queues; and 5) the buffer holding

the driver’s secret key. Figure 5.4 depicts their locations in the system.

!"#$%"&
'((&)&*&

+&

,-".&-(/%"& 0".1"2&-(/%"&

!.$#".& 3&4&

Figure 5.4: An illustration of five types of regions with same numbering in the
description.

Device Table Initialization When a guest kernel image is uncompressed, the

hypervisor inserts a hook function to the kernel to inform the hypervisor about the

device-driver association via a hypercall. The hypervisor then initializes the device

table accordingly. The hypervisor also sets the checkpoints for the kernel structure

maintaining the device-driver association. Whenever a driver takes the ownership of

a device, the hypervisor intercepts the event and updates the device table properly.

PCB Table Initialization We assume that all PCBs in a driver have been man-

ually identified and delimited by a pair of hypercalls, i.e., an escorting-entry hyper-

call and an escorting-relinquish hypercall. The hypervisor scans the driver code to

record the addresses of escorting-entry hypercalls and of the respective escorting-

relinquish hypercalls. It puts these pairs into the PCB table. In Section 5.6.1, we

will discuss how to automatically identify PCBs.

Region Table Initialization The regions used by a driver can either be the

default ones chosen by the manufacturer/the kernel or set by the driver. In the

first case, the hypervisor updates them when the driver is loaded as in the device

76

discovery step. In the latter case, the driver informs the hypervisor via a hypercall

about the protected regions or I/O ports.

Driver Key Initialization Each driver has a dedicated key-PCB to initialize

its own encryption key. In the key-PCB, key initialization algorithm first issues a

hypercall to get a random seed from hypervisor, and then saves the generated key

into its key buffer. The key generation process is only run once, and escorted by

hypervisor (see escorting details in section 5.5.3).

5.5.2 Checkpoint Deployment

Given a memory region or an I/O port, the hypervisor sets up the corresponding

checkpoint to intercept and verify potentially malicious accesses. The detailed de-

ployment method is dependent on the virtualization environment.

Memory Region Checkpoint

For a memory page A, the hypervisor walks through the page tables through the

CR3 register to locate the corresponding PTE pointing to it. The hypervisor sets the

attribute bits on the PTE to specify different access rights. To set a page read-only,

the PAGE RW bit is cleared; and to set a page non-access, the PAGE PRESENT

bit is cleared. Note that all protected regions are in kernel space and all processes

share one kernel space mapping. In the paravirtualization setting, only the hyper-

visor is able to update page tables. In the hardware-assisted virtualization setting,

a Shadow Page Table (SPT) or Extended/Nested Page Table (EPT/NPT) is used to

translate virtual addresses into machine addresses, and the SPT/EPT/NPT is only

updated by the hypervisor. Although the mechanism of the SPT is a little bit d-

ifferent from the one of EPT/NPT, i.e., the SPT requires the hypervisor to control

over the guest page table while the EPT/NPT do not need, the page-access-checking

mechanisms are essentially the same, since the final access right to a page is deter-

minate by the page table, i.e., SPT/EPT/NPT, handled by the hypervisor. Therefore,

those checkpoints can not be removed by the malicious kernel. Note that in the

hardware-assisted virtualization environment, the hypervisor enforces access on the

77

machine address, not the pseudo physical address or virtual address.

Given that the granularity of the memory protection is in the page-level, we

should carefully deal with the I/O data buffers that are not page-aligned or mixed

with other data in a single page. There are two options to solve the problem. One is

to request I/O buffer at the length of pages. In fact, to accelerate the performance,

many device drivers have such allocation feature. For example, the USB camera

driver allocates a large memory pool in page level for data caching. The other op-

tion is to let the hypervisor emulate the operations that access other data. In Driver-

Guard, we choose the second option to avoid changes on driver code. Although

emulation incurs performance loss, the likelihood of its occurrence is low. This is

because the checkpoints are only deployed on device interfaces used immediately

after or before I/O, and other data are protected by encryption.

Legitimacy of Memory Region When the hypervisor attempts to set up a

checkpoint, it checks whether the machine memory page can be reached by an-

other unauthorized PTE. In other words, the kernel is not allowed to bypass the

checkpoint to visit a machine memory page. Therefore, the hypervisor must ensure

that there exists no unchecked virtual-to-machine address translation for memory

pages with checkpoints.

We leverage the hypervisor’s memory management mechanism to tackle this

issue. The Xen hypervisor maintains a page info structure for every ma-

chine memory page. The count info field in this structure records the num-

ber of usages of a machine memory pages. For a page allocated to a guest, its

count info is actually 2, because the hypervisor itself is holding it4. There-

fore, on setting up a PTE checkpoint, the hypervisor checks if the correspond-

ing counter is 2. In addition, we modify the hypervisor’s do mmu update and

do update va mapping to prevent the kernel from crafting a trapdoor path for

existing checkpoints. These functions are used by the guest kernel to update page

4Before a machine memory page is allocated to a guest OS, the hypervisor holds it first and sets
the PGC allocated bit. Therefore, the page’s count info is already 1 before being allocated
to the guest.

78

tables. In this way, for any page table update, the hypervisor checks whether the

requested update increases the usage counter of any machine memory page with a

checkpoint.

In the hardware-assisted virtualization environment, the hypervisor does not set

two PTEs pointing to the same machine address. To enforce this property, the SP-

T/EPT/NPT update algorithm can be extended to verify it. Note that the legacy

hypervisors, such as Xen, do not export any interface for the guest to manage the

SPT/EPT/NPT.

I/O Port Checkpoint

I/O ports is separated from the memory address space, and the accesses to such

I/O ports need a set of special instructions, e.g., inb and outb. A successful access

must go through the IOPL checking and I/O bitmap checking. Any access will be

blocked once its priority is lower than the priority specified in the IOPL. Even if

the access pass the IOPL checking, it is still blocked if the corresponding bit is

set in the I/O bitmap. To prevent the malicious guest kernel from accessing the

protected I/O ports, the hypervisor clears the IOPL bits of EFLAGS of the guest’s

CPU. Namely, it sets the I/O privilege level to 0, such that the hardware always

checks the I/O bitmap for PIO instructions because the paravirtualized kernel runs

in Ring 1. Then, the hypervisor sets the bits corresponding to the protected I/O ports

such that a PIO instruction will cause a general protection exception.

It is relatively easier to set up I/O checkpoint in hardware-assisted virtualiza-

tion. More specifically, the hardware-assisted virtualization technique supports that

the hypervisor itself can intercept all instructions that access a particular I/O port

through a dedicated I/O bitmap in the hypervisor space. Therefore, the hypervisor

simply activates the I/O bitmap mechanism by setting the 25th bit of the processor-

based VM-Execution control vector and then sets the bits in the bitmap correspond-

ing to all protected I/O ports.

79

5.5.3 PCB Execution Escorting

PCB Admission

A driver’s PCB starts with the hypercall which takes as the parameter the buffer

address it requests to access. To admit a PCB, the hypervisor checks whether the

hypercall is issued from the instruction whose address is registered in the PCB table.

If not, the hypervisor rejects the request.

For an admitted PCB, the hypervisor protects its stack as follows. The hyper-

visor allocates a dummy stack for the PCB. Therefore, an admitted PCB has two

runtime stacks. A genuine stack is used for the PCB’s execution while the dummy

stack is used for untrusted code sharing the same execution flow due to interrupts.

The usage of dummy stacks will be explained in the next subsection. Figure 5.5

below describes the details of the PCB admission algorithm, where InEscorting is

a flag bit indicating the current execution state.

Admission Algorithm:

1) Fetch the EIP value stored at the top of the current guest kernel stack, which is the return address
of the hypercall.
2) If EIP does not match any entry in the PCB table, return error.
3) If the address of requested buffer is legitimate, then

a) set InEscorting to 1;
b) If the guest’s kernel stack segment is not a dummy stack, then

(i) allocate a dummy stack at the reserved space.
(ii) save the machine addresses of the dummy stack and the present stack as

(MA′
ss,MAss). Return 0.
c) else, switch to the corresponding genuine stack. Return 0.

6) Return -1 as an error message for admission failure.

Figure 5.5: Algorithm for PCB admission.

Escorting

Once a PCB is admitted by the hypervisor, its execution is escorted and the check-

points for the buffers are temporarily lifted. The essence of escorting is that the hy-

pervisor intercedes whenever the PCB is scheduled off from the CPU, which occurs

due to the hardware interrupts. This situation opens the door to the kernel attacks,

80

because the kernel may occupy the CPU and could access the PCB’s runtime stack

and data. To defend against such attacks, the hypervisor should be able to enforce

access control on the data and stack before the potentially malicious kernel occupy

the CPU. In the virtualization environment, the hypervisor is able to configure the

system to give priority to itself to occupy the CPU. Specifically, all hardware inter-

rupts are sent to the hypervisor prior to sending to the guest domain. Therefore, the

hypervisor is able to 1) restore the checkpoints and 2) replace the runtime stack with

the dummy stack allocated in PCB admission. The hypervisor also sets a breakpoint

to intercept the events that the PCB is re-scheduled to the CPU.

We explain below how the hypervisor handles an interrupt through interrup-

t handler do IRQ and a debug exception through the debug exception handler

do debug in addition to its normal process.

Interrupt To switch to a dummy stack, the hypervisor only replaces the content of

the PTE for the present stack with the machine page number of the dummy stack

allocated during admission. This change is transparent to any guest process, since

the address in the ESP register remains the same. Hence, the guest kernel is not

able to access the true stack while the subsequent execution can use the dummy

stack without being affected. The algorithm for stack switching and checkpoint

restore is shown in Figure 5.6.

IRQ-handler Algorithm:

(1) If InEscorting = 0, return.
(2) Restore the checkpoints that are removed during escorting.
(3) Switch to the dummy stack, by setting the PTE for the guest’s stack base to point to MA′

ss.
(4) Set InEscorting = 0.
(5) Set a local breakpoint at the instruction pointed by EIP . Save the address pair in EIP and
ESP .
(6) Return and pass the control to the default interrupt handler.

Figure 5.6: Interrupt handler for escorting. When there is an interrupt interrupting
the execution of the execution of a PCB, the interrupt handler restores the protection
on the escorted data, and saves the context of current escorting PCB.

Debug Exception When a debug exception occurs, the hypervisor’s do debug func-

81

tion is called before the event is forwarded to the guest kernel. All breakpoints used

by the hypervisor are local breakpoints. Therefore, they are triggered only for the

present process. There are two types of local breakpoints used in DriverGuard.

Setting a breakpoint at the EIP is to intercept the event of PCB resuming. For

this type of breakpoint, the hypervisor enters into escorting only when both EIP

and ESP values match the previously saved pair. The details are shown in the

following algorithm in Figure 5.7.

Debug-handler Algorithm: Breakpoint address stored in EIP, the stack address stored in ESP

/* Enter into Escorting */
(1) If there exists a saved (EIP′,ESP′) pair, s.t. ESP′ = ESP and EIP′ = EIP, then

(a) remove the breakpoint at EIP;
(b) Restore to the genuine stack by replacing the stack PTE with MAss.
(c) Set InEscorting = 1, and return 0.

(2) Return -1 as an error message.

Figure 5.7: Exception handler for escorting. When a previous interrupted PCB
resumes, the exception handler restores the PCB execution context.

PCB Exit

To exit from the hypervisor escorting, the PCB issues another hypercall. The hyper-

visor checks if InEscorting is set. If not, it returns an error message; otherwise, it

clears InEscorting flag. The PCB should also issue a hypercall to protect its data if

the data are left in plaintext. The hypervisor sets no more breakpoints and processes

interrupts and exceptions in the normal way.

5.5.4 Data Region Access Control

A potentially malicious access to a memory region with a checkpoint caus-

es a page fault and an access to an I/O port with a checkpoint throws out

a general protection exception. Therefore, we modify the hypervisor’s page

fault routine do page fault and the general protection exception handler

do general protection. In the former, the hypervisor gets the address of

the trapped instruction from EIP and the address being checked from CR2, while in

82

the latter, the I/O port number is enclosed in the instruction.

If the access is granted by the hypervisor, the event will not be forwarded to the

guest kernel. In that case, The legitimate flow continues to execute the intercepted

instruction without being re-scheduled due to the page fault as the guest kernel does

not observe this exception. For unauthorized accesses, the page fault or exception

is passed to the guest kernel. DriverGuard is compatible with memory mapping for

page sharing because the checkpoints are deployed at the PTEs. A buffer mapped to

two addresses has two PTE checkpoints. In the following, we elaborate the details

of region access control according to all types of regions except the control region.

I/O Buffer The addresses of I/O buffers are obtained within an escorted

command-PCB. Since the I/O buffer contains the data to/from the device, they are

not protected by encryption. The hypervisor blocks all accesses not from an escort-

ed PCB. For an input buffer containing the data from the device, the driver always

encrypts the data before moving them to other locations, whereas for an output

buffer the driver must decrypt the data after copying them to the output buffer.

Driver Buffer Driver buffers temporarily hold data for processing. When the

data in those buffers are encrypted, the hypervisor does not set up checkpoints for

them. Only when the escorted PCB is temporarily scheduled off from the CPU, the

hypervisor sets up the checkpoints against all accesses as the data are in plaintext.

In this case, the PCB notifies the hypervisor about the buffer address.

Key Buffer The key buffer holds the secret encryption key used by the driver.

The hypervisor allows the key to be read only from the instructions from the en-

cryption/decryption functions and is currently in escorting mode. Thus, a non-PCB

can not access the encryption key.

5.5.5 Device Control Protection

As explained in Section 5.5.1, the control region’s addresses can be obtained in the

initialization phase for certain devices. The hypervisor denies all write accesses to

the region not from an escorted PCB. Furthermore, it is also crucial to maintain the

83

consistency between the I/O buffer address specified in an I/O command which is

sent to the control region and the buffer addresses requested by the device driver.

This is because the kernel may manipulate the I/O command such that the device

uses an unprotected I/O buffer for transferring. To defend against such attacks,

the driver’s command-PCB informs the hypervisor the locations of the I/O buffers

in use, such as the DMA buffer and the DMA descriptor queue. The hypervisor

inserts them in the region table and sets up the checkpoints accordingly. Therefore,

it ensures that the I/O buffer in use is always protected.

5.5.6 Device Configuration Space Restriction

The physical addresses and the I/O ports of all devices are decided by the device

configuration registers. All these configuration registers are located in the north-

bridge chipset [31]. There are two possible methods to access them. One is through

I/O ports. The I/O port CONFIG ADDRESS (i.e., 0xCF8) is used to selec-

t a dedicated device whose configuration space is updated through the I/O port

CONFIG DATA (i.e., 0xCFC). The other method is through MMIO. Typically

there is a continuous 256MB memory region reserved by the system for all devices.

Any access to this region will trigger the chipset to propagate the configuration

throughout the whole system. In order to avoid the configuration space conflicts

(e.g., MMIO mapping attack) between different devices, the privileged code (e.g.,

the hypervisor) is able to verify the update requests by setting access control on the

above I/O ports and the reserved memory mapped region.

In order to defend against I/O-port and MMIO mapping attacks, DriverGuard

restricts the updates on the physical addresses and I/O ports of device interfaces.

According to the above descriptions, DriverGuard sets checkpoints on the I/O ports

0xCF8 and 0xCFC, or the reserved memory region. The details of the checkpoint

refers to Section 5.5.2. Any update (write) operations will be rejected. This restric-

tion does not lower the runtime performance of the system since the configuration

operation is normally done once at the bootup phase of the system.

84

5.5.7 User-Space Device Driver Support

When a device is managed by a user-space driver, the I/O data is directly transferred

between a user space buffer and the device interface without any intermediary ker-

nel space buffers. According to our threat model in Section 5.1.2, the user space

memory regions are well protected by schemes like Overshadow. However, those

schemes are not sufficient for I/O protection because they do not protect the device

interface. Thus, we need to instrument the driver code with hypercalls to fix the pro-

tection gap. The inserted hypercalls update the information of the device interface

to DriverGuard and request it to enforce access control on the device interface. Re-

call that all the user space driver code is protected. Thus, we do not need to identify

PCBs for user-space drivers.

5.6 Discussions

In this section, we discuss the automatic PCB identification process, and the whole

life cycle of protection on the I/O flows with the cooperations of DriverGuard and

other user space approaches.

5.6.1 Automatically Identifying PCB

Ideally, a fully automated PCB identification algorithm can discover PCBs in a de-

vice driver with no false positives and no misses. False positives lead to unneeded

overhead while misses result in loopholes for the adversary to attack. However,

it remains as an open problem how to design such a PCB identification algorithm

for a driver’s source code or binary code. In this chapter, we make analysis of the

challenges and propose a best-effort solution.

Recall that we defined three types of PCBs in Section 5.4. We only need to

discover computation-PCBs and command-PCBs, as the key-PCBs are new function

inserted to the driver. Labeling command-PCBs is straightforward, since they are

featured with special instructions (e.g., inb and outb) involving the device interface

85

(e.g., I/O ports) or special memory region (e.g., MMIO). Many existing techniques

can be used to identify the related statements, e.g., interprocedural points-to analysis

technique [38] and the slicing techniques [86, 101, 62]. For instance, in the slicing

techniques, we select the device interface (e.g., the I/O ports) as the seed, and the

slicing tool can find out all statements that directly access the seed.

The computation-PCBs are the code blocks computing on the I/O data (e.g.,

mapping the scan code into key code in the keyboard driver). Identifying the

computation-PCBs is a challenging task since it involves code and data semantics.

To the best of our knowledge, existing code analysis techniques (e.g., forward and

backward slicing, and thin slicing) are not sufficiently intelligent to distinguish code

semantics. Another challenge is the abundant usage of function pointers in drivers,

which makes it infeasible to determine execution flows through a static code analy-

sis. This issue is aggravated by the fact that most drivers are essentially a collection

of disjointed functions, instead of a single executable. The executions of driver

functions are usually integrated with kernel execution. It is therefore difficult to

map out all possible execution flow given existing code analysis techniques.

We propose a semi-automatic method for computation-PCB identification, with

automated tools for coarse-grained scope defining on a large scale of code and hu-

man efforts for fine-grained refinement on small scale code fragments. Given a

driver’s source code which is a set of functions, the basic idea is to firstly pick up

functions related to I/O data, then identify PCBs within each chosen function. In

a nutshell, the procedure is divided into three steps: 1) to select functions which

potentially contain PCBs; 2) to identify PCB statements in each function selected

in previous step; and 3) to form all PCB blocks from the statements discovered in

Step 2.

Step 1: Function Candidate Selection Drivers are highly structured code to con-

form to hardware interface specifications, such as providing file operation interfaces

like open, read and close. According to hardware specifications, I/O flows

86

must originate at those designated interfaces. Therefore, those interface functions

which do not process I/O data, as well as functions solely called by them, are exclud-

ed from our search scope. For instance, the interface function poll corresponding to

the select system call usually does not access the I/O data, while allows a program

to monitor and wait until one or more of driver/device states become ready for some

class of I/O operations. The interface functions like read and write usually handle

I/O data for the requests of the applications. For ease of presentation, we use F to

denote the set of interface functions with I/O flows.

We then map out the execution flows (and therefore I/O data flows) starting from

functions in F , so that all dependent functions are examined. For this purpose, we

first manually identify the I/O data used in F , because the exact locations of I/O

data in those functions are implementation specific, e.g., in the function parame-

ters or predetermined buffers. Then, we use the I/O data as the seed to perform

dynamic taint analysis [64, 48] to identify functions involved in I/O flow5. Since

the dynamic taint analysis does not guarantee covering all execution paths, manual

efforts are needed to check missed functions. Lastly, we extend F to enclose al-

l functions picked up either manually or by the tool. For each function in F , we

identify computation-PCB in the next step.

Step 2: PCB Statement Identification In each selected function, we attempt to

identify from the function body the PCB-candidate statements where I/O data are

involved. Using the I/O data in Step 1 as the seed, we apply the slicing tools [86, 62]

to label all seed-related statements in the function body. Note that the resulting state-

ment set contains non-PCB statements for two reasons. Firstly, according to [74],

slicing techniques may introduce false positive in statement discovering. Secondly,

it is likely that some statements correctly identified by the slicing tools are not for

I/O data computation, since the slicing technique does not take code semantics into

consideration. For instance, statements that copy I/O data between memory buffers

5Although the method for dynamic taint analysis is applicable to drivers in principle, we have not
found any existing tool suitable for this task.

87

do not satisfy the definition of computation-PCB. We suggest to manually examine

the slicing results to filter out non-PCB statements.

Step 3: PCB Formation The last step is to organize the PCB statements in Step

2 into PCBs and instrument them with hypercalls. If each PCB statement is treated

as a PCB block, its performance toll will significantly rise up. For each function

in F , our algorithm scans the statements identified in Step 2 with several rounds of

iterations. In the first iteration, adjacent PCB statements are grouped into one PCB

block. In the second iteration, the algorithm attempts to merge separated PCBs in

order to reduce the total number of PCBs. If two PCBs are in the same basic block

(i.e. a straight-line sequence of code with one entry point and one exit) and the

number of non-PCB statements between the PCBs are less than a predetermined

parameter κ, then these two PCBs are merged together with the non-PCB statement

in between into a new PCB. Note that κ is used to tune the balance between the

size of PCB and the number of PCBs. This iteration continues until no new PCB is

generated. In the end, two hypercalls are inserted for each formed PCB as described

in Section 5.4.

It is better for the driver developers to do the PCB identification since 1) they

know best, and 2) it may increase the market share due to the extra security services.

In addition, the identification process is only done once, and the results can be de-

livered anywhere. For a particular system, the hypervisor does not need to maintain

a universal list (including all PCBs), while it manages the PCB list only for the

drivers loaded in the system. Maintaining the PCB list that are never used will lead

to unnecessary cost and may increase the TCB size, especially for the hypervisor.

5.6.2 Full I/O Path Protection

As illustrated in Figure 5.4, a full I/O path in general consists of the user-space

buffers allocated by the application, the kernel-space buffers allocated by the driver

and/or kernel, and the I/O interface buffer such as a DMA buffer. DriverGuard

ensures the security of the latter two while a user-space protection scheme (e.g.,

88

Overshadow [17], SP3 [106] or SecureME [22]) secures the first type of buffers. To

have a seamless integration, the key issue is to ensure that the kernel segment of the

I/O path correctly joins the intended application’s user space segment, as a device

is shared among multiple applications.

This issue has twofold implications. One is that the location of the user space

buffer allocated by the target application must be securely passed to the driver, such

that the driver can deliver (fetch) I/O data to (from) the right place. The other is that

the data during the user-kernel space transition must be securely handled. When the

I/O data is transferred between the application’s buffer and a kernel buffer, it should

be ensured that no security gap exists during the transition. In other words, both

buffers should be protected either by encryption or hypervisor-based access control

while allowing data flow between them.

We propose below a design integrating DriverGuard with Overshadow as illus-

trated in Figure 5.8. Note that Overshadow makes use of a cloaked shim which is

introduced as a trusted component in user space. The shim code in Overshadow

plays the role of protecting data exchange between the application and the kernel

using system calls. We propose to add a new function named as shimguard in the

cloaked shim. Shimguard in the cloaked shim handles inbound and outbound da-

ta before and after system calls and correctly locates the application buffer for I/O

data.

Before an application issues a system call to activate an I/O operation, the shim-

guard is involved by the cloaked shim. The shimguard first updates the identity

of the application, the identity of the buffer and the identity of the target driver to

the hypervisor. The identity of the application is the unique address space identi-

fier (ASID) maintained by the hypervisor as proposed in Overshadow. If current

ASID is the trusted application, the hypervisor accepts the hypercall, otherwise it

will reject the hypercall. The identity of the buffer is its memory region represented

in machine address. The start and end virtual addresses of the buffer are provided

by the shimguard using the hypercall, and the corresponding machine addresses are

89

D" Shimguard" D"
Outbound"
Plain3Text"

Outbound"
Cipher3Text"

Driver"PCBs"

D" Shimguard" D"
Inbound"
Plain3Text"

Inbound"
Cipher3Text"

Driver"PCBs"

Da
ta
"

Pr
oc
es
sin

g "

User"Space" Kernel"Space"

Figure 5.8: The shimguard helps Overshadow and DriverGuard to protect the whole
life cycle of the I/O data. Note that the I/O data denoted as D in the shaded regions
are encrypted either by driver PCBs or by shimguard.

collected by the hypervisor. Note that the virtual addresses alone can not used as the

identity of the buffer since they may represent a different buffer in another virtual

pace. The identity of the device driver can be got by using the name of the device

provided through the hypercall since the device and driver mapping relationship is

maintained by the hypervisor. The hypervisor generates a unique AES encryption

key for the received 3-tuple of identities. Both the 3-tuple and the corresponding

key are inserted into a table in the hypervisor space. For clarity purpose, we use

shim-key to denote the AES key save in couple with the 3-tuple identifiers.

We use a read operation as an example to illustrate how to protect the I/O path

starting from the device interface to the application buffer. The protection over the

kernel space segment is the same as described in previous sections. When the PCB

of the driver moves the I/O data into a user space buffer denoted asAddr, it requests

the shim-key for Addr from the hypervisor. The hypervisor releases the shim-key

on the condition that there exists an entry in the previous table containing both the

requesting driver’s identity and the machine address of Addr. If successful, the

driver PCB encrypts the I/O data and transfer the cipher text to Addr. When the

cloaked shim is triggered to fetch the data from Addr, the shimguard function re-

quests the shim-key from the hypervisor. The hypervisor releases it on the condition

that there exists an entry in the previous table containing both the requesting appli-

90

cation’s ASID and the machine address of Addr. If successful, the shim deciphers

the encrypted I/O data and passes it to the application.

The operations for outbound data flow is similar to the description above. Note

that the shim-key in different from the the encryption key used by the driver de-

scribed in previous sections. The shim-key is application specific and is the same

as that used in Overshadow, whereas the driver has its own encryption key. The key

generation and management are trusted as it is generated by the hypervisor in the

hypervisor space and protected in the guest space.

5.7 Evaluation

We implement DriverGuard and run experiments on six peripheral devices to eval-

uate its security and performance. The devices are a USB keyboard, a web camera,

a fingerprint reader, a sound card, a printer and a graphic card.

5.7.1 Security Analysis

Driver Security

As we know drivers are usually buggy. Attackers are able to compromise the driver

through these vulnerabilities to hijack the control flow or data flow of the driver to

attempt to get the I/O data. Fortunately, attackers can not get the I/O data as long

as the integrity of driver’s PCBs are kept under the protection of the DriverGuard.

Even if attackers completely control other parts of the driver, they are only able to

access encrypted I/O data or are directly rejected since all these accesses are not

from PCBs. Smart attackers may attempt to call a PCB to get I/O data. However,

this attempt would fail because 1) the control flow of the PCB is static, and 2) I/O

data is either encrypted or set protection by the hypervisor according to the design

of the PCB (Section 5.3.4) when the control flow is out of PCB . The confidentiality

of the I/O data is dependent on the trustworthiness of PCBs, not other parts of the

driver or kernel. Therefore, attackers can not get any benefits from buggy device

drivers.

91

ROP Attack

The Return-Oriented Programming (ROP) attack is a very powerful attack since it

does not need to inject malicious code but drives legitimate code to do malicious be-

haviors. However, the ROP attack can not get the protected I/O data in our system

due to the design of the PCB and the DriverGuard protection. More specifically, in

our design, the executions of PCBs are protected by the hypervisor and the control

flows of PCBs are static. Therefore, attackers can not hijack any PCB control flows.

Furthermore, only the execution flows that start from recorded start escort hyper-

calls are able to access decrypted I/O data. Any other execution flows that have no

escorting request or with unrecorded requests are rejected.

DMA Attack

Our scheme relies on IOMMU to defend against DMA-based attacks, whereby a

rootkit instructs a DMA device to read/write a memory region. IOMMU can defend

against this type of attacks if the checkpoints are set on I/O page tables as well. If

IOMMU is not available, an alternative approach is to intercept DMA request with

shadow DMA descriptor mentioned in BitVisor [84]. Nonetheless due to its high

runtime cost, the shadow DMA descriptor is more amiable to slow devices with

infrequent usage, e.g. a fingerprint reader.

Interrupt Spoofing Attack

The interrupt spoofing attack are proposed in [109], which attempts to induce the

device driver operating on incomplete or inconsistent data by processing spoofed

interrupts. Obviously, the interrupt spoofing attack may lead to the device driver’s

misbehavior. However, it can not help attackers to access the I/O data, since it is

only readable for trusted PCBs.

Side Channel Attacks

Side channel attacks (e.g., [102, 85]) can be used by the adversary to infer secret

data. Since the adversary in our model refers to malwares residing in the guest

92

OS, the hardware-based side-channels such as power consumption are not feasible

for the adversary. The adversary can launch other attacks by observing the timing

difference between two I/O events (e.g., keystrokes) or the contents in a CPU cache,

which is weak than the adversary considered in chip-card security. In addition,

existing side channel attacks mainly target cryptographic data, such as a decryption

key or a password. It is unknown whether generic I/O data is subject to these attacks

as well.

Our current design does not take side-channel attacks into consideration. To

counter these attacks, DriverGuard should deploy a special AES implementation

resisting side-channel attacks. The hypervisor should clean up the CPU caches

whenever a PCB is scheduled off from the CPU. It can also generate random I/O

events to defeat timing analysis. The main challenge is how to deal with side-

channel attacks without increasing the hypervisor’s complexity and incurring more

overhead.

Attacks on Multi-core Platform

On a multi-core platform, it is possible that while a PCB runs in one core accessing

the I/O data, the subverted guest kernel on another core can also access them using

the same page table used by the PCB. This attack can be countered using hardware-

assisted virtualization supporting EPT or NPT.

The hypervisor prepares a dedicated EPTs for PCBs so that they have access

permissions to those protected checkpoints. The non-PCB code such as the un-

trusted guest kernel use the normal EPT/NPT, in which the checkpoint regions are

set as inaccessible. Whenever a PCB starts to occupy a CPU core, the hypervi-

sor installs the dedicated EPTs (e.g., triggered by the start escort hypercall) for the

corresponding core. When it gives up the CPU core, the normal EPTs are restored

(e.g., triggered by the end escort hypercall). Since instructions on other cores do

not have the dedicated EPTs, they cannot access the protected region when the PCB

is in execution. Note that the EPTs are solely managed by the hypervisor. The guest

93

kernel does not the privilege to manipulate the EPTs.

5.7.2 Security Evaluation

To validate the design of DriverGuard, we evaluate its effectiveness in several ex-

periments.

Known Attacks

To the best of our knowledge, the only publicly known kernel-level attacks on I/O

devices are keyloggers. We have downloaded and tested three kernel-level keylog-

gers and none of them can successfully acquire the keystrokes. The first keylogger6

directly reads the keyboard I/O ports 0x0060 and 0x0064 using a fake interrupt

handler. It fails because the fake interrupt handler does not belong to the authorized

keyboard driver PCBs. Thus, it cannot access the I/O port or get the decryption key.

The second keylogger7 modifies the keyboard driver’s data structure and installs a

malicious function handler. Since the malicious function handler is not admitted

by the hypervisor as a PCB, it can only access encrypted keystrokes without being

allowed to use the secret key. The third keylogger8 modifies the system call table to

replace read function with a malicious one. The malicious read function first calls

the original read, and then steals data from the user space buffer that is passed as

parameter. This rootkit fails because the read function only copies the encrypted

keystroke. After the driver places the ciphertext in the application buffer and opens

it for the application, the hypervisor denies all kernel level accesses.

Synthetic Experiments

We introduce three synthetic attacks to read protected I/O data, and the results show

that the DriverGuard successfully prevents all of them. More specifically, in the first

experiment, we attempt to modify one byte in the protected MMIO region. Driver-

Guard catches the write operation through a page-fault exception. DriverGuard

6http://www.phrack.org/issues.html?issue=59&id=14
7http://goo.gl/DpOBc
8http://packetstormsecurity.org/files/view/25677/kernel.

keylogger.txt

94

http://www.phrack.org/issues.html?issue=59&id=14
http://goo.gl/DpOBc
http://packetstormsecurity.org/files/view/25677/kernel.keylogger.txt
http://packetstormsecurity.org/files/view/25677/kernel.keylogger.txt

rejects the operation once it verifies the caught operation is not from an identified

PCB. In the second experiment, we try to read the protected I/O data in a driver

buffer, where the data is encrypted. We are only able to get the cipher text since the

newly introduced code is not able to get the encryption key to decrypt it. In the third

attack, we introduce a piece of code to call a PCB to get the protected I/O data. The

attack fails as the data is encrypted when the execution flow is out of the PCB.

5.7.3 Usage of PCB

In our experiments, we manually identify all PCBs on the source code of device

drivers and the drivers in the kernel’s I/O subsystems, e.g., a host controller driver.

It is straightforward to identify command-PCBs and key-PCBs, because key-PCBs

are introduced by DriverGuard while command-PCBs are the code accessing port

I/O, MMIO or structures used by devices (e.g., frame list of UHCI). Identifying

computation-PCB requires the semantic knowledge of the code. We trace the I/O

data to spot code segments computing on the I/O data. Note that code segments for

copying or moving data are not PCBs.

Table 5.1 lists all the involved drivers (except for the graphic driver since it

uses user-level driver) used in our experiments and the number of PCBs in each of

them. We find that a driver typically has only around ten PCBs and each PCB has

approximately 15 lines of code without making function calls (except the encryption

and decryption functions). The total PCB code only account for 1v3% of the driver

code. The tiny size of PCB and its simple logic allow for high security assurance,

as compared to protecting the execution of thousands of lines of driver code.

5.7.4 Performance Evaluation

We experiment with DriverGaurd on a PC with Intel(R) Core(TM)2 Duo CPU

E7200 @2.53GHz, 4GB main memory, running Xen 4.0.0 and a PV guest domain

with Linux kernel 2.6.31.13. DriverGuard adds around 1.7K SLOC to the Xen

hypervisor. Our performance evaluation includes a cost measurement of Driver-

95

Driver Size (LOC) # of PCBs Avg. PCB
Size (LOC)

Device

keyboard 4964 11 17 keyboard
HID∗ 12771 13 10 keyboard
UVC driver 7838 7 11 camera
EHCI∗ 10011 6 15 camera
HDA-Intel 47825 8 6 sound card
Sound-core∗ 18722 5 4 sound card

devio 1628 7 12
printer, finger-
print reader

UHCI∗ 7600 5 14
printer, finger-
print reader

Table 5.1: The number of PCBs and the average size for each driver used in our
experiments. The drivers labeled with stars are those within the kernel’s I/O sub-
system. The PCB size includes the hypercalls and the calls to the encryption and
decryption functions.

Guard’s component functions and a set of application tests with six devices. We

remark that the I/O characteristic is favorable to our scheme as peripheral devices

are usually much slower than the CPU. Therefore, DriverGuard does not affect the

driver performance since the device speed is the performance bottleneck.

We choose 128-bit RC4 as the encryption cipher in our implementation rather

than AES encryption, because RC4’s compact code is easier to protect and does not

significantly expand the PCB size,

Component Cost Evaluation

We instrument the DriverGuard code to measure the CPU cycles consumed by its

main components including the escort hypercalls, the interrupt handler do IRQ, the

debug handler do debug, the page fault handler do page fault and the general

protection exception handler do general protection The results are shown

in Table 5.2. Note that the encryption cost within a PCB comprises the overhead of

the secret key access which incurs one page fault and the hypervisor’s checkpoint

removal.

We also test the time cost induced by DriverGuard to data movements in the

guest domain, including I/O port data and memory buffer transferring. The cost is

96

Components CPU cycles
do IRQ 844
do debug 739
do page fault 961
do general protection 1813
Encryption 1KB within a PCB 23355

Table 5.2: Cost of DriverGuard components

due to the interceptions triggered by the checkpoints. We choose two commonly

used functions: inb and memcpy. inb reads one byte from a serial port while we run

memcpy to copy 12K bytes from one buffer to another. Both the port and the mem-

ory buffer are protected by DriverGuard checkpoints and the functions are allowed

to access. The test results are shown in Table 5.3.

memcpy inb
Normal (in CPU cycles) 1884 2738

DriverGuard (in CPU cycles) 3026 2939
overhead (%) 1142 (60.62%) 201 (7.3%)

Table 5.3: Time cost induced on the guest domain data access

As shown in Table 5.3, the overhead for protecting memory data flow is rather

high (about 60%). Therefore, a severe performance drop will be seen in I/O flows

involving frequent memory data movement. In fact, most device drivers are opti-

mized to reduce the number of memory copying. A widely used practice is for the

driver to maintain a large cache buffer and memory copying is invoked only when

the cache is full.

Driver Performance Measurement

We test three input devices (keyboard, camera and fingerprint reader) and three out-

put devices (printer, sound card, and the graphic card). For each device, we evaluate

the performance overhead and latency for the device drivers and user applications.

Keyboard When a user presses a key on the keyboard, an interrupt is generated

by the hardware. The interrupt handler of the HID driver is invoked to get the key

97

code and to send it into a tty buffer through the keyboard driver. Following that,

an event is raised to trigger sys read, which has been sleeping on the event. When

being waked up, sys read transfers the key value from the keyboard driver’s buffer

to a user space memory address. In our experiment, we measure the time cost of

the interrupt handler which moves the data from the keyboard to the tty buffer. The

results are shown in Table 5.4. Although the protected keyboard I/O is slower than

the unprotected one, it does not affect the application because the overhead (i.e.,

0.085ms) is still negligible as compared the speed of human keystrokes.

key code transfer
Normal 0.053ms

DriverGuard 0.138ms
overhead (%) 0.085ms (160.40%)

Table 5.4: overhead of a protected keyboard I/O

Camera The web camera in our experiment is managed by the default Linux UVC

driver. When the camera is opened by an application, it continuously collects video

data and sends them to the application. The UVC driver’s interrupt handler moves

and decodes the captured data from the camera into a video frame, which resides in

the driver’s buffer mapped to the user space. The user application can directly use

the frame data like normal user-space data without any kernel-to-user-space data

movement.

We run a command line program called capture-example9 which reads the cam-

era data continuously. We measure the time overhead of the UVC interrupt handler

and the application’s waiting time for getting new data, which is a key factor to the

quality of the generated video stream. The results are shown in Table 5.5.

The interrupt handler’s cost grows 10 times when under the protection of Driver-

Guard. The main overhead is due to the encryption on the camera data, which are

4 pages long. Nonetheless, the drivers spends much more time in waiting for the

9It can be downloaded from http://v4l2spec.bytesex.org/spec/
capture-example.html.

98

http://v4l2spec.bytesex.org/spec/capture-example.html
http://v4l2spec.bytesex.org/spec/capture-example.html

camera’s data generation. Thus the cost of the interrupt handler does not cause

the overall performance degradation. We test video chatting using Empathy 2.30.2,

which is an graphic instant messenger. The experiment results do not show notice-

able delays to the human users.

interrupt handler waiting time
Normal 0.023ms 33.24ms
DriverGuard 0.259ms 33.38ms
overhead (%) 0.236ms (1026.09%) 0.14ms (0.42%)

Table 5.5: The performance of a USB camera

Fingerprint-Reader Our fingerprint reader is the Upek Touchchip fingerprint sen-

sor. In our evaluation experiment, we choose Fingerprint GUI 10 as the application

which uses the default Linux driver devio to communicate with the fingerprint read-

er. When the fingerprint reader is active, the driver’s interrupt handler continuously

loads the collected fingerprint data into its buffers, which are then fetched by Fin-

gerprint GUI by calling the ioctl function. In our experiments, we measure the

whole I/O session of fingerprint collection. The results are shown in Table 5.6.

Printer The printer in our experiments is HP Officejet 7210 and the device driver

fingerprint collection
Normal 2.61s

DriverGuard 2.63s
overhead (%) 0.02s(0.77%)

Table 5.6: The turnaround time of fingerprint collection.

in use is devio. We use OpenOffice to print documents via a print-process running in

the background. The print process opens the printer and issues ioctl to send data to

the printer. After sending out the data, the print-process waits for a signal sent back

by the printer to close the printer. In our experiments, we measure the turnaround

time between the printer open and the printer close. The results are shown in Ta-

ble 5.7.
10http://www.n-view.net/Appliance/fingerprint/index.php

99

http://www.n-view.net/Appliance/fingerprint/index.php

1 page 2 pages 4 pages 8 pages
Normal 15.74s 27.36s 56.65s 120.75s
DriverGuard 16.19s 27.73s 58.15s 122.40s
overhead (%) 0.45s (2.86%) 0.37s (1.35%) 1.50s (2.65%) 1.65s (1.37%)

Table 5.7: The turnaround time of file printing

Sound Card The sound card in our test is Intel Corporation 82801I (ICH9 Fam-

ily) HD Audio and the driver in use is HDA Intel. We run the application Totem

which plays MP3 files. Totem places its sound data into a user space buffer, which

is mapped into the DMA buffer specified by the driver. When the music is in play-

ing, Totem directly sends data into mapped DMA region in user space, and issues

ioctl to synchronize and update information. The hardware fetches the data from

the DMA buffer directly without the driver’s involvement. Hence, DriverGuard is

only involved in protecting the control region so that the kernel can not change the

location of the DMA buffer in use.

Specifically, DriverGuard sets the sound card MMIO, the status and control re-

gion read-only after the probing stage. It rejects any update on the DMA descriptor

base address. DriverGuard also denies any access to the DMA buffer from the ker-

nel. Therefore, there is no cost for DriverGuard during music playing, though the

cost in opening the sound card is high, which is shown in Table 5.8.

sound card open
Normal 7.8µs

DriverGuard 12.3µs
overhead (%) 4.5µs (57.7%)

Table 5.8: overhead of the protected sound-card opening

Graphic Card We test DriverGuard with the graphic card. Since Xen 4.0.0 in our

testing platform does not support Direct Rendering Manager (DRM), we have to

run a guest Linux without DRM where the X Window sever directly manages all

display outputs. The X Window server runs in the user space and does not use any

kernel-level drivers. In a nutshell, it simply copies the display data to a designated

100

memory buffer reserved by BIOS for the graphic card.

According to the design, we implement a loadable kernel module as the Trust-

ed Loadable Module, which collects the reserved physical region, the user-space

mapping region and the page table base address of the X Window server during the

system booting. To defend the kernel’s data stealing, DriverGuard grants the X Win-

dow server to access these protected regions and denies all accesses from the kernel

or other user processes. We test the display performance with x11perf, which is a

10subs 100subs
Normal 45.6 µs 55.5 µs

DriverGuard 45.8 µs 55.5 µs
overhead (%) 0.2 µs (0.44%) 0

Table 5.9: Graphic card performance evaluation with x11pref.

graphic card performance measurement tool. We run the command x11perf -repeat

100 -reps 10 -subs 10 100 -circulate to measure the graphic card performance with

and without DriverGuard protection. The results in Table 5.9 show the performance

overhead is rather small. The reason is that when the X Window server accesses the

protection region, there is only one page fault exception which is for the first access.

After lifting the checkpoints, further access will not trigger any exception until it is

switched off.

5.8 Summary

We have proposed DriverGuard which is a hypervisor-based system protecting I/O

flows between devices and applications, especially for devices generating data or

rendering data. DriverGuard protects I/O device control, I/O data transfer and a

driver’s data processing, against attacks from the untrusted guest kernel. It is fea-

tured with fine granularity protection, strong security assurance and low overhead.

It only adds around 1.7K SLOC to the Xen hypervisor and a few lines to the driv-

er code. DriverGuard can work jointly with user-space data protection schemes to

safeguard the entire data lifecycle.

101

Chapter 6

Dedicated Protection on User

Passwords

Password based authentication is the primary method for a remote server to check

a user’s identity. In a typical web authentication, a user password is transferred

from the keyboard to the kernel, then to the browser before being sent out over the

network to the web server through an SSL channel. One of the main threats to

password authentication is kernel/application keyloggers which steal the password

from its transferring path.

Any countermeasure to keyloggers must cope with both the attacks on the appli-

cation which forwards the password to a remote server, and the attacks on the I/O

path, namely from the keyboard to the application. Virtualization based isolation is

the main approach as used in [26, 36, 32, 10], where either the browser or the entire

OS is isolated as a protected environment. This approach usually incurs significant

cost due to the large code to isolate and the security assurance is not strong, though

it addresses other related security problems, e.g., phishing attacks. Another ap-

proach, as suggested in Bumpy [59] and BitE [58], is to use an encryption-capable

keyboard to protect the I/O path and rely on the latest processor features to isolate

the application. However, most commodity platforms at present are not equipped

with the needed keyboard.

102

In this chapter, we propose a novel system to protect passwords against keylog-

gers in remote authentication without using a special keyboard or isolation protec-

tion like [26, 36, 32, 10]. Note that in the typical remote authentication setting, it is

unnecessary for the user’s platform (including the OS and the application) to know

the actual user password as long as it can forward the authentication information to

the server properly. Therefore, the high level idea of our work is that a hypervisor

intercepts the user’s password input; and whenever the application needs to submit

the password to the server through an SSL channel, it traps to the hypervisor which

performs the desired encryption. In other words, the normal SSL connection be-

tween the application and the server is split into non-cryptographic operations and

cryptographic operations, such that the latter are accomplished by the hypervisor

holding the password.

In our system, the cleartext password is never exposed to the operating system

or the application. As a result, a keylogger can only get a ciphertext version. The

system is highly efficient because no extra computation or communication cost is

incurred as compared to normal password authentication, except the keyboard inter-

ception and the trapping. It is entirely transparent to the operating system, though

the application needs to have a plug-in in order to split the SSL operations. Further-

more, the system is user friendly as it results in little user experience change. (Note

that anti-phishing is not in the scope of our work.)

In the rest of the chapter, we present the design and implementation details of

our password protection system named as KGuard. It is for password based web

authentication using Firefox. We also report its performance in experiments with

commercial websites such as Gmail. A novel building block of our system is a

secure user-hypervisor interaction channel that allows a user to authenticate a hy-

pervisor, which in itself is of research value as it addresses one of the challenges

recently identified in [108]. KGuard can be extended for other password authen-

tication systems (e.g., SSH) by replacing the browser plugin with the one for the

application.

103

In the next section, we present an overview in Section 6.1 with the emphasis

on the methodology used in our design. In Section 6.2, we describe the details

of our design. The implementation details and performance results are shown in

Section 6.3 and Section 6.4, respectively. We discuss several important issues in

Section 6.5 and conclude this chapter in Section 6.6.

6.1 Overview

This section presents an overview of our work. We explain the design criteria and

the rationale we follow, including the trust model and a high level explanation of

our approach. We also show the architecture of the proposed system.

6.1.1 Design Criteria

Ideally, a password protection system should meet the following criteria. Firstly,

the protection should offer the strongest security assurance. It should be able to

defeat attacks from rootkits which subvert the operating system, as kernel rootkit

keyloggers are not uncommon in the cyberspace.

From the practicability perspective, the protection should induce little or no

modification on the operating system and is fully compatible with existing browser-

s. This is due to the fact that proprietary operating systems such as Windows and

Mac OS are more widely used than open-source operating systems.

Furthermore, the password security should not be attained at the price of the

easy-of-use of password authentication. On the user side, the protection scheme

should be as simple as possible and does not require user possession of extra de-

vices, such as a USB token and a mobile phone. On the server side, no changes

should be needed. Last but not the least, the protection system should incur low

cost. The cost is measured in terms of both the time delay during the password au-

thentication session and the overall computation load on the platform. It is crucial

that the user should not experience noticeable delay in an authentication session.

104

6.1.2 Design Rationale

In order to meet the criteria, we carefully assess a variety of design options. The

foremost issue to consider is the trust model, i.e. which component in the platform

can be considered as trustworthy.

Trust Model

We do not trust the operating system and applications running on top of it, in the

sense that they can be compromised and attempt to steal user passwords. Therefore,

safeguarding user password necessitates a root of trust which should not be sub-

verted by rootkits. One candidate for the root of trust is the TPM chip [96], which

is expected to resist all software attacks. Nonetheless, despite of its high security

assurance, the TPM chip offers rather primitive and inflexible functionalities and is

slow in computation. These drawbacks make it ill-suited for password protection.

In this work, we choose the hypervisor (a.k.a. virtual machine monitor or VM-

M) as the root of trust, as in [78, 84, 17]. The main benefit is that it allows us

to develop desirable protection functions within the hypervisor, and therefore facili-

tates the design and the implementation. The hypervisor is not as secure as the TPM

chip since several attacks have been discovered to compromise some versions of hy-

pervisors [94, 27, 49, 69]. However, the security of the hypervisor can be ensured

by three measures. Our design is based on hardware-assisted virtualization, such as

Intel VT-x and AMD V, which significantly reduces the virtualization code of the

hypervisor. In addition, TPM-based authenticated bootup can verify the integrity of

the hypervisor when being launched. Thirdly, the hypervisor in our system is only

for protection in a normal personal desktop setting, rather than a cloud server with

a full-fledged virtualization for multiple VMs. Therefore, those unneeded services

from the hypervisor are turned off so that only a minimal attack surface is exposed

to the guest OS.

A secure hypervisor is capable to dynamically protect memory regions and I/O

ports against direct malware accesses. In addition to that, the hypervisor also uses

105

IOMMU to enforce the similar policies against malicious DMA operations launched

by malware.

Protection Method

There exist several candidate methods to protect user passwords against rootkits.

One is to follow the isolation approach as shown in [56]. The execution of rou-

tines processing the password is isolated from the rest of the platform to cordon

off attacks. This method is not compatible with our design criteria because of its

low performance. The frequent interrupt caused by user keystrokes for password in-

putting induces the expensive system thrashing between the protection mode and the

regular mode. In addition, the isolation approach faces the difficulty of extracting

appropriate Pieces of Application Logic (PAL) due to the complexity of the kernel’s

keyboard input processing and the browser’s web page processing. Another possi-

ble method could be to escort the password data flow as shown in DriverGuard [19].

Nonetheless, this approach requires code modifications on the drivers, which does

not satisfy our compatibility requirement. Moreover, DriverGuard by itself does not

guarantee the security of password in the application level.

In this work, our method is based on the characteristics of password authentica-

tion. Firstly, passwords are typically sent to a remote server through SSL/TLS. It is

not necessary for the local host to know the password in use. Secondly, passwords

are fed to the system through keystrokes which can be intercepted by the hypervisor.

Based on these two observations, the basic idea of our protection method is to in-

tercept the password keystrokes and then securely inject them back to the SSL/TLS

connection established by the browser, however, with its cryptographic operations

performed by the hypervisor. Therefore, the password is encapsulated using the

web server’s public key following the SSL/TLS specification without any exposure

to the operating system or the browser.

106

Security Properties

The main challenge of realizing the proposed protection method is the gap between

the hypervisor and the security-conscious user. In existing platforms, a user only

interfaces with the operating system through the application, e.g., a browser.

This gap entails three problems to solve. The first is about the timing for protec-

tion. It is undesirable for the hypervisor to intervene in all keyboard inputs. Ideally,

the protection is only activated by the user whenever needed. The on-demand pro-

tection brings up the second challenge: how the user is assured that the hypervisor

is protecting the password input. Note that the operating system may cheat the us-

er by simulating the hypervisor’s behavior. Last but not the least, the hypervisor’s

SSL traffic assembling must use a proper public key certificate for encapsulation.

Ideally, the hypervisor is capable of verifying whether the certificate belongs to the

intended web server.

In this work, we design a dynamic secure channel for user-hypervisor interaction

which bypasses the operating system. While the hypervisor’s protection mechanism

is dormant, the channel allows a security-conscious user to activate it through a key

combination. In addition, the channel allows the user to verify whether it is indeed

active. Note that it is not necessary for the hypervisor to authenticate the origin of

the keystrokes, because a faked activation key combination, e.g., from the malware

instead of the user, does not lead to password leakage1.

For the aforementioned third problem, our design achieves the same level of

security as the standard browser’s dealing with SSL certificates, because a certificate

misuse is essentially the traditional man-in-the-middle attack on SSL. Similar to

the browser’s certificate verification, the hypervisor ensures that the certificate is

genuine and matches the SSL connection.

1The faked activation key combination can be considered as a denial of service attack. It will
be quickly spotted by a user because as shown later, the hypervisor will respond to the user with a
secret message pre-shared with the user.

107

6.1.3 Architecture

We consider a platform with an operating system running on top of a hypervisor.

A user uses a web browser to login to a remote server by supplying the password.

KGuard is designed to protect the user password from being stolen by kernel/appli-

cation rootkits. The architecture of KGuard consists of three components:

1. A secure user-hypervisor interaction channel allows the user to activate or

deactivate the password protection and authenticate the hypervisor. A user

toggles the protection by pressing a prescribed key combination. In response,

the hypervisor securely displays (on the screen) a secret message pre-shared

with the user.

2. A routine in the hypervisor intercepts user keystrokes after the protection is

activated. It also validates the authentication server’s public key certificate

supplied by the browser and encapsulates the password using encryption.

3. A browser plugin splits the SSL connection for password submission. Specif-

ically, it requests the hypervisor to perform the needed cryptographic opera-

tions in an SSL connection and handles other non-cryptographic operations

by itself.

Note that the hypervisor only performs cryptographic operations. It does not

establish any SSL connection with the server. In a web authentication, the browser

may establish multiple SSL connections. Only the one submitting the password is

split by the plugin to get the needed cryptograms from the hypervisor. The benefit

of this design is that it does not entail extra computation and communication cost

and it can keep the hypervisor small without including the support for SSL.

The following diagram illustrates the architecture of our password protection

system.

108

!
!!!!!

"#$!

"#$!

%%&!'()*+!

,-.)($!

/(0#12(!

3%!

45"2(6710(! "#$!

0'82(!
!79".'!

Figure 6.1: The Architecture of The Password Protection System.

6.2 Design Details

In this section, we provide the details of our design for each of the components

mentioned above. Note that we use the terms “KGuard” and “hypervisor” inter-

changeably in the rest of the chapter since KGuard is a part of the hypervisor.

6.2.1 User-Hypervisor Interaction

The user-hypervisor interaction channel is a duplex channel. In one direction, a user

sends an activation command to the hypervisor by requesting the operating system

to issue a hypercall. In the other direction, the hypervisor (on receiving the user’s

command) securely displays a secret message on the screen. Therefore, the user can

verify whether the hypervisor receives the command or not.

Hypervisor Protection Activation

There exist several approaches for activation. One alternative design is for the hy-

pervisor to listen to a prescribed hardware event, such as keystrokes, plugging a

USB device etc. These methods can bypass the operating system. Nevertheless, it

requires extra work from the hypervisor which has to keep listening to all events

and filter them properly. In our system, we do not favor this approach because 1)

109

we aim to minimize the load on the hypervisor, especially when the protection is

not needed; and 2) bypassing the operating system is not necessary because no data

is sent to the hypervisor for activation. In addition, the user can verify the activation

by checking the returned secret message from the hypervisor.

In our design, the operation system is the medium transferring the user’s activa-

tion command to the hypervisor. Specifically, we design an application routine, e.g.

a browser extension, and install a new module to the OS, e.g. a virtual device on

Windows. The application routine listens to a prescribed key combination. When

the event is captured, it issues a system call which triggers the new module to issue

a hypercall. This process is depicted in Figure 6.2.

Hypervisor

Browser

Kernel
Modules

Hypercall
Table

System call

Hypercall

Initializing

Map it into
virtual space

1

2

Figure 6.2: The hypercall mechanism in a HVM domain.

Note that the guest OS in an HVM is not aware of the existence of the hypervisor.

The dash lines in Figure 6.2 illustrates how the hypercall mechanism is step up. The

hypervisor initializes a hypercall table and then the installed OS module maps the

table into the kernel space. The module exports an interface (i.e., a system call) to

applications. After getting input parameters from applications via system calls, the

module is invoked by the kernel automatically and forwards these parameters to the

hypervisor through hypercalls, in the same fashion as the system call mechanism.

In response to the activation hypercall, the hypervisor clears the keyboard input

buffer, starts to intercept the keyboard strokes as described in Section 6.2.2, and

authenticates itself to the user as shown in the next subsection.

110

Visual Verification of Hypervisor Protection

The verification of hypervisor protection requires an output interface. To ensure

its security, the output should not be captured or manipulated by malware in the

guest OS. Otherwise, the guest can impersonate the hypervisor and give the user an

illusion that the protection is activated.

The basic idea of our visual verification is that the hypervisor securely outputs to

the monitor a secret text message chosen beforehand by the user. Note that without

involving the operating system, the monitor automatically and periodically fetches

the display data directly from a memory region called the display buffer, whose

location is determined by the hardware [42], and then it renders them on the screen.

The hypervisor shows the secret message to the user by writing it into the display

buffer. To prevent the operating system from attacking the secret, the hypervisor

clears the PAGE PRESENT attribute bit of the corresponding page table entries.

As a result, any guest access will be denied by the hardware.

The details of the visual verification are described below. Initially, the user

chooses a random text message as his/her long term secret shared with the hypervi-

sor. When the hypervisor boots up, the secret message is passed to the hypervisor

as a booting parameter, which is the reason why the secret has to be text. Once

taking control, the hypervisor stores the secret message into its own space. Since

the hypervisor boots up before the operating system, the OS is not able to access

this secret. To display it on a monitor in the graphics mode, the hypervisor derives

the graphic version of the secret message by using the corresponding font bitmap

for each character.

After receiving the activation hypercall, the hypervisor substitutes a part of the

display buffer with the secret graphic data. As a result, the user secret message is

displayed on the screen. The location of the message on the screen depends on its

offset in the display buffer. Note that it is unnecessary to choose random locations.

In addition, the hypervisor properly sets the attribute bits of the page table entries

111

covering the graphic secret. Secret uploading and attribute bit setting up are an

atomic operation. In other words, the hypervisor occupies the CPU without yielding

it to the operating system until the attributes are set.

The hypervisor then sets up a timer whose duration is configured by the user

during bootup. When the timer expires, the hypervisor restores the original display

data, and finally returns the page access rights back to the guest OS.

Hypervisor Protection Deactivation

Protection deactivation requires a stronger authentication on the user than protec-

tion activation, since malware may attempt to impersonate the user to terminate the

protection. Note that once the protection is activated, the hypervisor has cleared all

previous data in the keyboard input buffer and intercepts all new keystrokes. As

a result of the interception, no software can access the keyboard input buffer, ei-

ther directly or through DMA operations, as explained in Section 6.2.2. Only the

physical keyboard strokes can place inputs to the buffer.

Therefore, the hypervisor in KGuard is pre-configured with a deactivation com-

mand. Once it intercepts the command during its protection, it switches to the

no-protection state by releasing the access control on the keyboard input buffer.

6.2.2 Keystroke Interception

After getting the activation key-combination command from the user, the hypervisor

starts keystroke interception. Since the key stroke code is directly delivered to the

guest’s memory by the hardware using DMA, keystroke interception means that the

hypervisor retrieves the keyboard scan code before the guest.

One potential approach is for the hypervisor to intercept all interrupts and inter-

venes if needed. The main drawbacks of this approach are twofold. This approach

may fail because the guest OS can keep scanning the keyboard input buffer without

waiting for the interrupt. Therefore, the guest OS may have the luck of getting the

data prior to the interrupt. Secondly, the interrupt number can be shared by several

devices. The hypervisor has to determine whether the interrupt is for the keyboard.

112

Furthermore, the interrupt by itself does not provide sufficient information for the

hypervisor to locate the data.

Since locating the keyboard input buffer is an indispensable step, we let the

hypervisor intercept the guest access on the keyboard input buffer, rather than in-

terrupt interception. This method reduces the burden of the hypervisor as the guest

OS manages all interrupts and is forced by the hardware to alert the hypervisor for

the scan code retrieval. For this purpose, the hypervisor sets up page-table based

access control on both the keyboard I/O control region storing I/O commands and

the keyboard input buffer storing the scan code. IOMMU is also configured such

that no DMA command can be issued to access these protected regions. Conse-

quently, both the guest OS’s keyboard I/O command issuance and its data retrieval

are intercepted by KGuard. For the I/O control, KGuard emulates the operations;

for the data retrieval, it replaces the user keystroke with a dummy one and saves the

original input into a buffer in the hypervisor space.

The actual access control mechanism for the keyboard input buffer depends on

the keyboard interface. A PS/2 keyboard usually uses PIO to transfer data whereas a

USB-keyboard uses DMA. It is easy to deal with port I/O keyboards. The technique

for controlling I/O port has been demonstrated in [19].

The access control for USB-keyboard is more complex due to the USB archi-

tecture.

Figure 6.3 explains the main data structures used by the so-called Universal

Host Controller hardware. Locating the keyboard input buffer starts with a 32-

bit register called FLBASEADD. Its content is the base address of a list of frame

pointers. A frame pointer points to a list of Transfer Descriptors (TDs). A TD

specifies the necessary I/O parameters for one DMA operation, including the input

buffer address. After completing one keyboard I/O, the guest OS must either update

the current TD or insert a new TD in order to read the next keyboard input. The

keystroke interception for a USB keyboard follows the steps below.

113

Frame List Base
Address Register

Frame List

Frame Pointer

Frame Pointer

…
 …

Frame Pointer

Frame Pointer

TD

TD

TD

TD

TD

TD

TD

TD

TD

QH QH

TD

TD

TD

Keyboard Input Buffer

TD: Transfer Descriptor

QH: Queue Head

Figure 6.3: Data structures used by the USB-keyboard. The (grey) input buffer
indicates that it is set inaccessible. Other (white) parts of the whole data structure
are set read-only.

Step 1. KGuard freezes the present frame list and all TDs by setting FLBASEADD

and all memory regions occupied by the frame list data structure as read-only

using I/O bitmap and page table respectively. Therefore, any attempts from

the guest OS to relocate the input buffer will be monitored by KGuard.

Step 2. KGuard locates the keyboard input buffer following the path used by the

host controller. The keyboard input buffer is then set as inaccessible.

Step 3. When the guest OS attempts to read the keyboard input buffer, a page-fault

is generated and passes the control to KGuard which saves the scan code

(which is one password character) in the input buffer and replaces it with a

dummy one, and sets the buffer as read-write. The guest OS can have a full

access to this buffer.

Step 4. When the guest OS prepares for the next keyboard I/O by updating the TD,

a page-fault is generated. In response, KGuard emulates the update operation.

To prevent malware from providing faked keystrokes, the hypervisor clears

the content in the keyboard input buffer, which ensures that the data fetched

in Step 3 is indeed from the keyboard.

114

Note that KGuard responds differently on the keyboard input buffer and the

I/O region because one keyboard I/O only involves one TD update but may incur

multiple accesses to the buffer depending on the driver’s needs. Our approach avoids

unnecessary hypervisor involvements.

We further remark that the keyboard interception is only activated based on the

user’s command. With the cooperation from the user, the incurred cost is therefore

minimal to the platform’s overall performance and it is reasonable for KGuard to

treat all the intercepted keystrokes as the password. Even in case that the user and

KGuard are out of synchronization, no user secret is compromised and the user can

easily reset the protection.

6.2.3 Handling SSL Session

A normal web authentication may involve one SSL session comprising one or mul-

tiple SSL connections. Typically, when the user clicks a button for password sub-

mission, the browser sends out the encrypted password with other necessary infor-

mation through an SSL connection.

In our system, the browser is deprived of the privilege of handling the password,

because the encryption of the password and other authentication information must

be performed in the hypervisor space, instead of in the untrusted guest domain. For

this purpose, we design a dedicated browser extension for posting authentication

information to the server through SSL. To achieve both security and compatibility,

the extension is only responsible for non-critical operations in the SSL connection,

while all cryptographic operations, such as master key generation and data encryp-

tion, are exported to KGuard.

The extension captures the login event and initiates a new SSL connection with

the server. All keys used in this SSL connection are newly derived and only known

by KGuard and the server. Note that this new connection will be immediately closed

after the login event. Therefore, the browser does not need to maintain any extra

connection. In the new SSL connection, the extension obtains the server’s public

115

key certificate. At the same time, it prepares a data blob containing all the data

needed by the web server (except the password), e.g., the user name. It then submits

to the hypervisor the data blob together with the server certificate. The hypervisor

merges the blob with the intercepted user password, and encrypts them following the

SSL specifications, on the condition that the provided public key certificate is valid.

On receiving the resulting ciphertext from the hypervisor, the extension prepares

the SSL data and sends them to the server. If the authentication succeeds, the server

usually returns a URL with some cookies, which are decrypted by the hypervisor

and forwarded to the extension. The extension then sets the cookies and redirects

the browser to the URL. Now the extension terminates its SSL connection. Since

neither the extension nor the browser possesses the keys for the SSL connection

used for password submission, this SSL connection cannot be reused by the browser.

To avoid verbosity, we do not recite how the hypervisor generates the master key

and performs the encryption, because it strictly follows the SSL/TLS specification.

Out of the same reason, we do not explain how the extension prepares the data blob

and the SSL traffic. However, it is worthwhile to elaborate how the server’s public

key certificate is validated by the hypervisor. Since we do not trust any software in

the guest domain, the certificate forward by the extension to the hypervisor can be a

malicious one. If the adversary has the corresponding private key, the hypervisor’s

password encryption will be decrypted by the adversary. We leave the details of the

browser extension in Section 6.3 because it is browser specific and more relevant to

usability than security.

Server Certificate Verification

Certificate verification has long been considered as a thorny problem due to the

trust on the public key infrastructure. The problem is even more complicated in

our case because limited information is provided to the hypervisor for the sake of

minimizing the hypervisor’s size. Note that phishing detection is not within the

scope of our study. Therefore, the criterion of a certificate’s validity is not whether

116

it matches the web server the user intends to login. Instead, a certificate is deemed

as trusted as long as its root CA is trusted by the user.

In our system, the user may choose to trust all pre-loaded root CA certificates

or import CA certificates she trusts. Once the user obtains a repository of trusted

(root) certificates, the crux of our system is how the user securely passes them to the

hypervisor. The difficulty is that the hypervisor does not have a file system and the

whole guest is not trusted. The solution we propose relies on an additional trusted

platform, or alternatively, the user may consider his/her platform in the initial state

is trustworthy. On such a trusted platform, cryptographic tools such as OpenSSL,

can be used to compute a HMAC key Hk and computes HMACs for each of the

trusted certificate. Then, the user imports all trusted certificates as well as their cor-

responding HMAC tags into a file on the untrusted platform running with KGuard.

During the platform’s rebooting, the HMAC key Hk is passed to the hypervisor as

a parameter. Therefore, the hypervisor knows whether a certificate is trusted by the

user by checking its HMAC tag. Instead of using HMAC, the user may also apply

digital signatures and pass the public key to the hypervisor, though this approach

is not preferred because of its longer key and higher computation cost. Note that

these above procedure is only executed once, i.e. for the first time using KGuard.

All HMAC tags in the file are able to be reused after rebooting.

In runtime, the certificate verification proceeds as follows.

Step 1. The browser extension receives the public key certificate from the server

and composes a certificate chain such that the last certificate in the chain is a

trusted certificate imported by the user. For ease of description, we denote the

certificate chain as (Cert0, · · · , Certk) where Cert0 is the server’s certificate

and Certi is the issuer of Certi−1 for 1 ≤ i ≤ k. In most cases in practice,

k = 1 or 2. Note that only Certk is the trusted certificate while all others are

not. It is not necessary to obtain the issuer for Certk even if it is not a root,

because it is already trusted.

117

Step 2. The extension transfers (Cert0, · · · , Certk, σ) to KGuard, where σ is the

HMAC tag for Certk. In addition, the extension transfers the server’s host

name to KGuard. The transferring is accomplished by a hypercall.

Step 3. In response, KGuard first checks whether σ is a valid HMAC for Certk

using the HMAC key provided by the user during bootup. If the checking

fails, KGuard rejects the certificate chain and aborts.

Step 4. KGuard then verifies the certificate chain in the same ways as the browser’s

verification, by treating Certk as a trusted CA. Namely, it checks Certi’s

signatures with the public key in Certi+1 for 0 ≤ i ≤ k − 1, and make sure

that they are not expired, and checks whether Cert0’s subject name matches

the given server hostname (domain name). If all certificates pass the checking,

KGuard accepts Cert0 as the server’s public key and uses it to encrypt the

pre-master secret key in the current SSL connection.

The hypervisor calculates an HMAC value of each certificate in the verified

certification chain, and returns them back to the guest if the certificate chain passes

all checks. The browser inserts the certificate with its HMAC tag into the trusted

certificate repository. This is to save the hypervisor’s verification time when this

certificate is reused in the user’s future logins. Note that the new website certificates

are accepted once the root certificate is trusted by the user.

6.2.4 Security Analysis

The security of the proposed password protection mechanism relies on the security

of the hypervisor and the user cooperation. With the assumption on both condi-

tions, the user-hypervisor channel ensures that the password is typed in only when

KGuard is in position for keystroke interception, which saves the real password in

the hypervisor space. The hypervisor and the guest space isolation enabled by the

virtualization techniques prevents the guest from accessing the password. When the

browser runs an SSL connection to submit the password, all cryptographic opera-

118

tions are performed by the hypervisor. The browser and the guest OS only get the

ciphertext of the password. The hypervisor security is discussed in the Section 6.5.

Build A Cert-Chain
(Cert0,…, Certk)

Get Server
Certificates

Send Cert-Chain, HMAC Tag
δ And hostname To KGuard

IS δ valid
For Certk

Cert-Chain
Verification Failed

NO

YES

Verify Each
Certi

FAILED

PASS

NO

YES

Hostname ?=
Cert0 Subject Name

Generate New HMAC
Value δi for Certi

SUCCESS

FAILED

Figure 6.4: The certificate chain verification.

The hypervisor calculates an HMAC value of each certificate in the verified

certification chain, and returns them back to the guest if the certificate chain passes

all checks. The browser inserts the certificate with its HMAC tag into the trusted

certificate repository. This is to save the hypervisor’s verification time when this

certificate is reused in the user’s future login sessions.

6.3 Implementation

6.3.1 KGuard in Hypervisor

We have built a prototype of KGuard on Xen 4.1.0 on a desktop with an Intel(R)

Core(TM) i7 CPU-860 @2.80GHz processor and 4GB main memory. We choose a

USB-keyboard as the experiment device. The implementation of KGuard does not

depend on the design of Xen and can be easily migrated to other hypervisors.

KGuard consists of around 1500 SLOC for its main functions except crypto-

graphic functions. We import the needed crypto functions (about 5000 SLOC) from

[76]. The main cost is due to AES and RSA algorithms which need about 3500

SLOC. Nonetheless, comparing with the Xen code base (around 225,000 SLOC),

119

we only increase the code size 2.885%. In fact, most of the code in Xen are not

used by our system. Therefore, it is one of our future work to customize Xen for

KGuard.

Visual Verification

One of the implementation issues about the user’s visual verification of the hyper-

visor verification is to choose a proper secret message. It is similar to a password

in the sense that it should not be random enough to resist dictionary attacks, and it

should be easy to remember. Since the user does not type in the message at runtime,

the message can be much longer than a password. For instance, we choose the string

”ApBlE@8s BaeuT ifu10O” as the user secret in our experiment.

Another issue is the position of the text message on the screen. We do not change

the position for two reasons. Firstly, it does not enhance the security. If malware can

breach the access control, it may grab the entire display buffer data. Secondly, from

the usability perspective, it is inconvenient for users to find the message over the

whole screen. We choose the top-left corner of the screen as the location because it

is less likely to be overlapped with the web page in use.

The third concerns in visual verification is the performance overhead due to the

slow speed of the display memory. It requires twice display memory access for

the hypervisor to save the present content and to write the secret message. In our

implementation, we use the following trick to save one display memory access. We

do not save the original data. Instead, we impose the font bitmap of characters in the

message upon the existing content. By performing the XOR operation, all the bits

corresponding to the characters are flipped. As a result, the shape of the character is

displayed on the screen. Although the content is not saved, it can be recovered by

running the XOR operations again.

Note that our current implementation requires to work with the VGA compatible

graphics cards.

120

6.3.2 Browser Extension and Plugin

Benefiting from the virtualization features of the Intel processor, we launch a hard-

ware virtual machine (HVM) running Windows. The HVM guest domain runs a in-

stallation of Windows 7 Professional version with default configuration. We choose

the popular firefox (version 3.6) as the test browser, and extend it with a plug-in and

an extension.

The main part of the browser plug-in is based on CyaSSL v22. It interacts with

the hypervisor using hypercalls to build a separated SSL channel with a web server.

Specifically, The plug-in interacts the hypervisor in the SSL handshake phase for

four times: to transfer the server certificate chain; to provide the key materials for

pre-master key generation; to provide the authentication data for encryption; and to

provide a finish-message to terminate the SSL handshake phase. The plugin finishes

the SSL protocol and forwards the server response data to the browser extension.

Post Data Checking
And Adjustment

HTTP Header
Generation And

Post Data Collection

HTTP Request Event

A Separated SSL
Channel In Plug-in

1
Click Login Button

The Browser SSL
Connection

Mouse Click Event

Web Services (e.g.,
Twitter)

2

3

Form Submit Event

Figure 6.5: Three events generated during authentication. The third one is inter-
cepted by the extension.

The browser extension is implemented using Firefox XML User interface Lan-

guage (XUL) and JaveScript. One of the tasks of the extension is to listening to the
2CyaSSL is a C-Langue SSL library for embedded and realtime operating systems, and in regular

desktop and enterprise environments [54]

121

user activation key combination and then sends a hypercall to KGuard. The other

two tasks are to integrate the password protection with the browser. The first task is

to intercept the authentication data submitted to the server. Since KGuard is trans-

parent to the browser, it proceeds as usual in password submission though with a

dummy password.

The events generated by Firefox after the login button is clicked are shown in

Figure 6.5. We choose to intercept the HTTP Request Event, the last event right

before Firefox is about to pass the data to the SSL layer. The benefit of this choice

is that this event implies that the browser has prepared all the data (including the

HTTP header) expected by the web server. Therefore, the extension does not need

to handle the nuisance of gathering all kinds of POST data required by the web

server.

The second task is to navigate the browser to the destination URL that is in the

server response packages. After receiving the response packages returned by the

plug-in from its own SSL channel, the extension extracts the cookies and the redi-

rection URL by parsing the header and body. It updates the cookies in the browser,

and requests it to refresh the current page to the redirection URL. For the following

connections, no matter whether they are HTTPS or HTTP connections, the browser

will send the request with corresponding cookies, and continue the web session as

normal. Note that the browser is not aware of the existence of the separated SSL

connection, thanks to the statelessness of HTTP and HTTPS protocols.

6.3.3 Hypercall Support In HVM

In the Windows kernel space, we build a virtual device module using the Windows

Driver Kit (WDK) [61]. The module first uses the instruction CPUID to find reg-

isters that contain the size and the location of the hypercall table. Then it maps the

hypercall table into its own memory space. Using the mapped hypercall table, the

module is able to issue hypercalls to communicate with the hypervisor.

The module also exports a DeviceIOControl interface for application usage. Ac-

122

cording to the dwIoControlCode parameter in the DeviceIOControl interface, the

module can request different services by issuing different types of hypercalls to the

hypervisor.

6.4 Performance Evaluation

We have run experiments and evaluated the performance and usability with legiti-

mate web servers, including Google, Groupon, Twitter and Amazon, and Microsoft

Hotmail. We divide the total authentication session into two phases to facilitate

the evaluation. The first phase is user password input and the second is password

submission. We have measured the time overhead in each of them. Note that our

protection is the ”on-demand” mode, therefore, there are no extra cost for the system

when the protection is inactive.

6.4.1 Overhead for Password Input

Table 6.1 lists the time costs for the procedures taking place during a user’s pass-

word inputting. The password input phase begins with protection activation and

ends with protection deactivation. The main overhead is due to the hypervisor’s

responses to the activation/deactivation command and its interception of keyboard

strokes. The activation cost mainly includes a guest system call, a hypercall, a

series of access control setup, and two accesses on the display memory. The deacti-

vation cost only includes the removal of access control on the relevant regions. The

keystroke-interception cost is the CPU time spent for intercepting one keystroke.

It includes two exceptions, emulation of the refreshing of TD and processing the

keystroke.

Note that the user secret message is written to the display memory, instead of

the main memory. Its speed is much slower than the main memory chip. There-

fore, the secret message displaying dominates the overhead of protection activation.

Nonetheless, it is still negligible to the user as compared to the human keystroke

speed. The removal of the secret message is not considered as the overhead, be-

123

cause with a high likelihood, it is completed between the user’s two keystrokes.

Components
Protection
Activa-
tion

Protection
Deactiva-
tion

Keystroke
Intercep-
tion

Displaying
Message

Time 1.71ms 3.5µs 0.12µs 1.67ms

Table 6.1: The performance overhead for password input protection in KGuard.

6.4.2 Overhead for Password Submission

In the password submission procedure, we evaluate the extra operations introduced

by our scheme, i.e. those not appearing in normal web authentication. The extra

operations include the extension’s HTTP Request event interception and extracting

data from the login (POST) request, which cost about 4ms in total. Note that the

extension is written in JavaScript, whose best timing granularity is in milliseconds.

The extra operations also include transferring data between the guest and the hy-

pervisor; HMAC verification for the certificate’s trustworthiness. The measurement

results are listed in Table 6.2.

Event interception
and data extraction

Data transferring
cost during in
hypercalls

HMAC computa-
tion

Time 4ms 1.38ms 0.02ms

Table 6.2: The performance overhead of each component for password submission.

We have also measured the turnaround time to evaluate the overall delay a user

may experience with KGuard. The turnaround time refers to the period from the

moment when the login button is clicked, to the moment when the browser begins

refreshing the page. We have tested KGuard with Twitter and a local web server

which resides in the same platform with the browser so that no network delay vari-

ation disturbs the results. The results are shown in Table 6.3. Note that the results

from the tests with Twitter are not sufficiently accurate due to the large variance of

network round trip time.

124

Login without KGuard Login with KGuard Extra Cost
Twitter 1.10s 1.11s 10ms
Local Web Site 201ms 207ms 6ms

Table 6.3: The overall performance measurement in the login procedure.

6.5 Discussions

6.5.1 Hypervisor Security

The hypervisor security is the bedrock of the proposed password protection system.

It is known that both the code size and the interfaces affect the hypervisor security.

According to [7, 66], the size of the source code is proportional to the number of

vulnerabilities (bugs). We choose Xen for our prototype building instead of the

other mainstream hypervisor VMware ESXi, because the former has a smaller code

size according to [88] and is open source. In principle, KGuard can also be built

on those tiny hypervisors developed by researchers, such as SecVisor [78], BitVisor

[84] and Nova [88]. Unfortunately, they are not supported by the Intel processor

used in our platform.

As mentioned in [63], interfaces are the main source of critical errors. In the

current Xen hypervisor, all default hypercalls for a HVM domain are only used

during HVM loading. Therefore, we turn off all of them to enhance security to

minimize the attack surface.

In the future work, we aim to reduce the hypervisor code size by removing

unnecessary code. Besides the basic hardware virtualization functions, our initial

study shows that the functionalities required by KGuard include: 1) memory man-

agement, including data transferring and address translation between the guest and

the hypervisor; 2) access control on all I/O ports and memory regions; 3) intercep-

tions on interrupts and exceptions; 4) basic crypto algorithms, such as RSA, AES

and SHA1; 5) certain instruction emulations; and 6) asynchronization support (e.g.,

timer).

125

6.5.2 Trusted Certificate Updates

The user may need to insert or delete entries in the trusted certificate repository. It is

relatively straightforward to add a new trusted certificate. The user simply calculates

the HMAC value on a clean system and adds the certificate and its HMAC into the

repository.

However, it is costly to revoke a trusted certificate from the repository. One solu-

tion is that the user chooses a new HMAC key and re-computes the HMAC tags for

all trusted certificates excluding those revoked ones. Once the new key is updated

to the hypervisor, the revoked certificates will not pass the verification. Alterna-

tively, the user can prepare a Certificate Revocation List (CRL) whose integrity is

protected by the HMAC tag. Whenever the plugin sends the server certificate to the

hypervisor, the CRL is attached. The hypervisor then checks whether the certificate

in use is on the CRL. Both methods have pros and cons. The former requires more

user involvement while the latter increases the hypervisor’s code size and causes

more runtime overhead.

6.5.3 Sensitive Keyboard Input Protection

The KGuard system proposed in this chapter focuses on password protection. We

can easily extend it to protect other sensitive inputs from the keyboard, such as

CAPTCHA, credit card numbers or driver license numbers. KGuard is able to inter-

cept and replace the sensitive inputs whenever the user activates the protection. By

inserting them back into an SSL/TLS connection or forwarding them to a trusted

domain, all sensitive inputs are free from malware attacks.

The challenge is to maintain the user’s experience. For a normal password input,

the browser only displays a string of ’∗’. The user feels the same even if KGuard re-

places the original password with dummy ones. However, for other types of inputs,

the user may feel discomfort when seeing dummy characters instead of the expected

ones. Another issue on the user interface is how a user determines the correctness

126

of the input, since a wrong key may have been pressed accidentally. One possible

solution is that KGuard echoes each input on the screen in the same ways as in the

visual verification. Alternatively, KGuard can display the entire input string and

ask for user confirmation. This method does not work well for protecting a large

amount of sensitive inputs (e.g., private document editing) due to the heavy load on

the hypervisor and the slow responses. In addition, it would add too much code into

the hypervisor and possibly weakens the security strength.

6.6 Summary

We has presented a virtualization based password input protection system, which

is composed of a novel user-hypervisor interaction channel, a keyboard stroke in-

terception mechanism, and a hypervisor-based SSL client. Our method does not

require specialized hardware and is fully transparent to the operating system and

the browser. The prototype implementation and testing have demonstrated that the

protection system incurs insignificant overhead on the platform and maintains the

user-friendliness of password authentication in web services.

127

Chapter 7

Framework For Security Services

Based on the above proposed systems, and many other existing virtualization-based

security systems, such as the systems proposed in [84, 17, 16, 41, 109, 56, 89], we

summarize the common security primitives into our secure foothold (Guardian), up-

grading it to be a framework/template of secure foothold for personal systems that

could be directly used or customized by end users according to their demands to

harden their systems, without needing to build them from scratch. To demonstrate

the framework, we create four security utilities, i.e., hypervisor-based firewall, de-

vice monitoring, software runtime attestation and user present attestation for pass-

word authentication. The experiment results show that we can simply add a few

lines of code to achieve all these security services.

7.1 Architecture

An overview of the framework architecture is illustrated in Figure 7.1. At the cen-

ter of Guardian is the event dispatcher which interacts with a secure user inter-

face and four security primitives. The architecture also comprises an event log,

Guardian’s long term secrets and state information. The functioning of Guardian is

event-driven. To respond to an event from the guest or the hardware, the dispatcher

dispatches it to the proper facility for processing. Note that bridging the semantic

gap is not the purpose of Guardian.

128

!"#$%&'()*+ ,-&)*')$./-+

0)%#1*)2)-&+

0%-"$13%./-+

4*5$&/+
6-7"-)+

8
#)
*+

,-
&)
*9%

')
+

3/7+ #&%&)++

Figure 7.1: The architecture of Guardian.

7.1.1 Security Primitive

The crypto engine supports pseudo random number generation, SHA-1, AES and

RSA operations. The other three security primitives consist of measurement, inter-

ception, and manipulation, which are used to access and manipulate the states of the

system resources and enforce access control on them. These four primitive security

functions are the building blocks for constructing high-level security utilities shown

in Section 7.2.

Measurement Similar to the measurement in TPM based attestation [73],

Guardian’s measurement computes hash digests on memory regions or hardware re-

sources, e.g, I/O ports and MSR values. As compared to TPM based measurement,

our measurement is performed using a relatively shorter trust chain since the former

usually requires a kernel level attestation agent. Furthermore, since Guardian exe-

cutes in the host mode with the full privilege to access all resources in the platform,

the trustworthiness of the results is the same as the trustworthiness of Guardian. In

the TPM’s case, its measurement can be trusted only when the attestation agent is

trusted to run in a secure environment, which has weaker assurance than the TPM

chip itself.

Interception Interception is often used for two purposes. One is to interpose

on the guest execution so as to enforce access control policies or to monitor the

guest’s behavior. Guardian can set PTE attribute bits on the EPT and IOMMU

129

tables to regulate accesses to all memory regions, and can configure VMCS for

register accesses.

The other usage of interception is for Guardian to handle external events prior

to the OS. The events typically intercepted are the interrupts by peripheral devices

and those by software, e.g., a system call. Most interceptions rely on the supported

from the hardware virtualization technology, for instance, the events listed in [46].

Note that rather than intercepting all events, Guardian only performs interception

based on its configuration and user commands.

Manipulation The manipulation function is for Guardian to modify the plat-

form status or set up the guest context. For instance, by manipulating the VMCS,

Guardian can change the CPU mode of the guest or change the access permission

on a particular I/O port. Manipulation also includes emulation. Guardian supports

two types of emulation: instruction emulation and event injection.

In short, measurement, interception and manipulation are the three basic security

tools Guardian can use. As explained above, their functioning solely relies on the

hypervisor and the hardware feature. The guest OS does not have the privilege to

tamper with the operations.

7.1.2 Event Log

The event log is for the end-user’s postmortem on attacks or incidents. In our design,

Guardian records those security sensitive events. For instance, the build-in camera

is turned on only for a fraction of a second, or the network card is turned to the

promiscuous mode.

Note that Guardian does not support any file systems. Therefore, the logs are

stored in the hypervisor partition in the hard disk. Guardian protects them from

being read, modified or deleted by the guest. When booting up, it moves the logs

from the disk into a protected memory region in the hypervisor space. To add a new

log entry during runtime, it encrypts the log and writes to the memory region. Upon

power off, it writes all encrypted logs back to the hypervisor-partition. Note that the

130

logs do not belong to the TCB, although they are protected in a similar way.

7.2 Security Utilities

When designing security utilities based on Guardian, we endeavor to deal with

threats plaguing normal end-users and system administrators. To this end, we pro-

pose the following utilities. More specifically, we provide two local services, i.e.,

device monitor and software runtime attestation, two network utilities, i.e., user p-

resence attestation and hyper-firewall. We also evaluate their performance. The

experiment results show that the modifications on Guardian is small and they all

introduce insignificant performance overhead.

7.2.1 Device Monitoring

A rootkit can misuse a peripheral device without the user’s consent. For instance, it

can quickly turn on the camera of a laptop to take a picture of the user and then turn

it off. In a stealthy manner, it can also turn a network adaptor into the promiscuous

mode so as to sniff the entire LAN traffic. We develop a Guardian utility to monitor

the states of the camera and the network interface. In case of risky device usage, the

end-user is alerted via the hypervisor-user interface or a beep sound. Note that the

beep cannot be stopped by the adversary, because Guardian is able to intercept all

accesses to that device.

Camera Control. Our design considers an external camera attached to the plat-

form through a USB interface. (It can also be extended for a built-in camera.) The

USB port is controlled by an EHCI [44] or UHCI [43] controller. In either case, a

frame list, with its base address specified by the PERIODICLISTBASE register, is

used to queue I/O commands. To enable the camera, the driver must insert a transfer

descriptor or TD to the frame list. The host controller automatically fetches it from

the queue and responds properly.

Upon the user’s activation command, the camera control utility makes use of

the interception primitive to set read-only on the region for the base register, the

131

frame list and the TD queue. If it detects a new TD with the open command

UVC SET CUR for the camera, it alerts the user through a beep sound.

NIC Promiscuous Mode Control. The control on the network interface is sim-

pler than EHCI. The Unicast Promiscuous Enabled (UPE) bit and the Multicas-

t Promiscuous Enabled (MPE) in the Receive ConTroL Register (RCTL) are the

flags that turns on the NIC’s promiscuous mode. The monitoring utility intercepts

the accesses to RCTL. Once the UPE bit or the MPE bit is set, an alert is raised to

the user.

Note that Guardian and its utilities are not burdened with the complicated task

of device management, for instance, to block illegal operations. This is to keep the

hypervisor size small and more reliable.

Device Monitoring Evaluation

The device management component consists of 1.2K SLOC. Currently Guardian

supports to monitor camera and network card working modes. It can be extended to

support other similar devices, such as a microphone.

We experiment with a USB Logitech web camera attached on an EHCI host

controller. Note that the monitoring has no effect on the camera’s performance as

the scheme does not intercept runtime commands and data transferring.

The network card mode monitor is built upon the Intel 82579LM Gigabit Net-

work Card, whose registers are accessed using MMIO. The experiment results pro-

duced by network benchmark tool netperf [70] prove that the monitor service al-

most does not affect the network I/O throughout. Note that the device management

service does not require any modifications in the guest kernel or device drivers.

7.2.2 Hyper-firewall

Recent attacks have shown that both application-level and OS-level firewalls can

be disabled by rootkits. One solution proposed recently is the VMwall [87], which

isolates the firewall in a separated domain (i.e., the Dom0 in the Xen setting). How-

ever, this approach dramatically increases the TCB size and requires the user to run

132

two domains concurrently.

We propose in this section a more elegant and stronger solution called hyper-

firewall as the firewall functions in the hypervisor space. The basic idea is that a

Guardian utility interposes on network I/O. It drops illegal packets if their TCP/IP

headers are not compliant to the firewall policies set by the end-user through the

secure UI. Since Guardian does not comprise any NIC driver, this utility does not

significantly increase Guardian’s code size. The main challenge is how to intercept

network packets in an efficient way. Before presenting the details, we briefly explain

the network I/O mechanism.

Head
Register

Tail
Register

Descriptors
owned by NIC

Transmit Descriptor Circular Buffer

TDBA Registers

TDBAH TDBAL

Transmit Descriptor
Base Address (TDBA)

Descriptor

Packet Buffer In
Guest Space

Packet Buffer In
Hypervisor Space

Descriptor

Figure 7.2: The transmit descriptor circular queue used by the NIC.

The packet transmission mechanism is illustrated in Figure 7.2. The NIC makes

use of a ring buffer (essentially a circular queue) to store transmit descriptors which

point to the packets to transmit. The ring buffer has its base address saved in the

TDBAL and TDBAH registers, has its size saved in the TDLENL and TDLENH

registers, and has a head register and a tail register pointing to the queue head and

tail respectively. The NIC always dequeues the descriptor pointed by the head regis-

ter, and then fetches the corresponding packet. After retrieval, it advances the head

pointer. The tail pointer is maintained by the device driver. To send a new packet,

133

the driver enqueues one or multiple descriptors. Then, the tail pointer is also ad-

vanced. The NIC only uses the descriptors between the head and the tail. It stops

transmission when the two pointers collide.

The packet receiving mechanism is analogous to the transmission mechanism.

It also has a ring buffer storing receive descriptors, and has its own base address

registers, length registers, and the head and tail registers. Initially, the driver allo-

cates a set of fixed length DMA buffers, and enqueues the corresponding descriptors

into the ring queue. When receiving packets, the NIC stores them into those pre-

allocated DMA buffers, updates the corresponding descriptors, and advances the

head pointer accordingly. Finally, it throws out an interrupt to notify the driver to

fetch the packets according to the descriptors. Since the packet sending and receiv-

ing mechanisms are different, we design two interposition schemes, respectively.

Note that the registers used by NICs may be different. To support all NICs, we can

provide a profile which can provide necessary information for Guardian to under-

stand register meanings.

Outbound Packet Filter Guardian uses the EPT to intercept all write accesses the

TDBAL, TDBAH, TDLENL and TDLENH registers so that Guardian can always

locate the legitimate ring buffer. Similarly, it sets up the EPT and IOMMU tables,

such that the head register can only be updated by the NIC1, and all accesses to

the tail register are intercepted by Guardian. Lastly, it sets the entire ring buffer as

read-only.

When a write access to the ring buffer is intercepted by Guardian, it checks

whether the write overwrites an existing descriptor which has not been fetched by

the NIC. If so, the access is blocked; otherwise, Guardian emulates the write. When

a write access to the tail register is intercepted, Guardian performs the following. (1)

It checks whether the packets pointed by the descriptors between the present tail and

the new tail are compliant with the firewall policies; (2) It copies all legal packets

1In the current hardware specification, the driver is not able to instruct the NIC to update the
header register

134

to the hypervisor space and updates those descriptors accordingly so that the NIC

can fetch them from their new locations; for illegal packets, it sets the packet-length

field in their descriptors as zero; (3) It emulates the tail update.

Once the packets are moved to the hypervisor space, their descriptors are not

allowed to be changed. Note that packets are much smaller than a memory page.

Therefore, relocating them into the hypervisor space avoids undesirable page faults

as compared to protecting them in the guest space.

Inbound Packet Filter The inbound packet filter mechanism is similar to its out-

bound counterpart. By enforcing access control on those control registers and the

ring buffer for the receiving descriptor, Guardian locates the DMA buffers allocat-

ed by the driver. To retrieve a packet, the driver first fetches the receive descriptor

which triggers a page fault. Guardian then performs the packet inspection according

to the firewall policies, and drops illegal ones.

Hyper-firewall Evaluation

64 128 256 512 1K 2K 4K 8K 16K
Packet Length (in Bytes)

70

75

80

85

90

95

N
et

w
or

k
Th

ro
ug

hp
ut

 (M
B/

S)

without firewall
with firewall

Figure 7.3: The benchmark results with and without hyper-firewall.

The packet filter service is built on the Intel Corporation 82579LM Gigabit Net-

work Card, and does not add any code into the guest OS. Current hyper-firewall

supports adding policies on inbound and outbound packets. For the outbound pack-

ets, hyper-firewall restricts the region of the target destination (e.g., external IP ad-

dresses), and for the inbound packets, hyper-firewall restricts the connection ports

135

(e.g., SSH port 22). All hyper-firewall policies can be enabled and disabled through

the RTSUI. All experiments show the hyper-firewall works well. We tested the net-

work I/O performance with benchmark tool netperf [70]. When we only enable

outbound policy, the performance results show that our hyper-firewall only intro-

duces (0.096% - 0.064%) performance overhead; when we enable inbound and out-

bound policies, the hyper-firewall introduces (18.29% - 0.26%) performance over-

head. Note that the short packet setting generates more interceptions. Thus its

performance is relatively low. Note that the monitoring of NIC does not affect the

I/O speed of other derives. The packet filter service only adds 0.9K SLOC into

Guardian.

7.2.3 Software Runtime Attestation

A rootkit may tamper with the execution of a process. For instance, the rootkit

starves the antivirus process or manipulates its execution flow by inserting mali-

cious code or running ROP (Return Oriented Programming) attack. We develop a

Guardian-based attestation mechanism for a challenger (in a trusted environment)

to check the runtime states of a process over a period of time.

Our goal is not to protect a process from being manipulated, but to monitor

the runtime states. In our design, Guardian plays the role of a trusted observer

securely reporting the runtime measurements to the challenger. It is the latter’s task

to determine whether the process runs properly and to take actions if necessary.

Described below are the details of the attestation scheme taking place between

an attester platform equipped with Guardian and a remote challenger, e.g., a VPN

gateway. To check the runtime context of a target software P on the attester, the

challenger sends the program’s identity to an untrusted agent in the attester’s kernel

level. The agent then obtains the CR3 register value for the corresponding process

and passes it to Guardian.

Guardian measure P ’s execution within a time window consisting of multiple

CPU occupations. Out of the performance consideration, Guardian does not per-

136

form measurements for all occupations. Instead, for each occupation, it tosses an

independent random coin (with a pre-configured probability ρ) to decide whether

to measure the context. Since the coin is kept secret by Guardian, the guest has no

advantage in predicting which occupation is measured.

A runtime context measurement encloses (1) all CPU registers; (2) the user s-

tack; (3) the code page for the current execution with N (e.g., 2) randomly chosen

code pages from nearby regions. For every occupation, Guardian also measures the

consumed CPU cycles. When the time window expires, Guardian computes c as the

sum of consumed CPU cycles, and compiles all measurements of sampled CPU oc-

cupation into one data blob D. It computes a signature σ upon (c,D, T imestamp)

using its RSA private key. It also prepares a message file M which consists of

c, T imestamp, the snapshots of CPU registers, the stacks and the addresses of all

measured code pages. In the end, (σ,M) are passed to the attestation agent and

forwarded to the challenger. Since the challenger has P ’s binary code (with the

dependent libraries), she recovers D fromM by using the sampled code page ad-

dresses. By enclosing the addresses instead of the actual pages, the size of M is

greatly reduced.

It is not straightforward to measure process P ’ context as it appears. With an

illustration in Figure 7.4, we explain our design details below. Guardian intercepts

every CR3 update so that it can detect when P is about to occupy the CPU by check-

ing the new CR3 value and when it is about to leave the CPU. At both moments,

Guardian gets the clock reading and obtains the occupation duration. However, CR3

switches are not the right moments for measurement. When CR3 is about to load

P ’s page tables, P ’s context is actually not loaded yet. Therefore, a malicious k-

ernel may cheat after CR3 loading. When CR3 is about to offload P ’s page table,

the present code is the kernel’s scheduling routine. The malicious kernel can cheat

as well. We remark that the kernel can not manipulate the timer interrupts which

is a hardware interrupt. Therefore, when the coin toss indicates a measurement,

Guardian intercepts the timer interrupts, one of which will trigger the measurement.

137

A typical CPU time slice for a process is in the range 10ms−200ms [95], while the

timer interval is 1ms or smaller. Since one occupation comprises of multiple timer

interrupts, Guardian chooses a random one for measurement, so that the malicious

kernel can not predict the timing.

!"#$%&&'!' #()%"'*"#$%&&%&'#"'+%",%-'

'./0''
&12($)'

'./0''
&12($)'

'./0''
&12($)'

'./0''
&12($)'

'./0''
&12($)'

'./0''
&12($)'

.!3'

4%5&6"%4%,(' 4%5&6"%4%,('
724%"'

2,(%""6*('

Figure 7.4: An illustration of probabilistic measurement in software runtime attes-
tation.

In summary, the attestation is essentially to randomly sample the runtime con-

text. The whole execution is divided into multiple occupations and one occupation

comprises multiple timer interrupts. Guardian uses a probability token to determine

which occupation to measure, and then use another probability token to determine

interrupt to use. These random tokens can be pre-computed in order to save runtime

cost.

Verification of Runtime Attestation

The challenger may perform the basic hash-comparison verification as in the TPM-

based attestation scheme, from which the challenger knows which code pages are

executed. To have stronger security assurance, the challenger can make uses the

call graph (or control flow graph) to do further verification. With the pre-computed

call graphs for the target process and its dependent libraries, the challenger locates

the corresponding functions for sampled IP values in the temporal order returned by

Guardian, and validates whether there exists a valid execution path crossing those

functions.

For platforms enabling the Address Space Layout Randomization (ASLR)

138

mechanism2, the challenger needs the runtime memory layout (e.g., the layout infor-

mation in the /proc/[pid]/maps), which can be collected and reported by a loadable-

module in the guest.

Comparing with TPM-based attestation, which usually focuses on the load-time

integrity and/or static properties, the hypervisor-based software runtime attestation

provides richer semantics with runtime information, from which the challenger

could make right and timely response for the identified misbehaviors. As men-

tioned earlier, our attestation requires a much shorter trust chain than TPM-based

attestation.

We acknowledge that runtime attestation may not capture all execution misbe-

haviors due to the performance considerations and the time gap between two snap-

shots. Therefore, some tricky attacks may be missed if they can clean the traces

before the next measurement. To increase the accuracy, the end-user can increase

the frequency of the sampling. In the extreme case, the end-user can configure

Guardian to measure each single step of the process. We leave it as our future work

to devise more efficient attestation scheme with stronger security assurance.

Software Runtime Attestation Evaluation

In our experiment, the system gets the HPET-supported timer interrupt every 1/4ms,

and the target process ”firefox” is roughly scheduled per 2 − 3ms. An untrusted

loadable kernel module forwards request and response messages between Guardian

and the challenger. Each time the target process occupies the CPU, it has 1/ρ chance

to be measured. The parameter ρ is configurable and currently chosen as 0x0100.

Each runtime states measurement produces 4280 bytes log data. In our experiment,

the monitor time on the target process is about 524.21s, and the CPU-occupation

time is about 98.54s. Figure 7.5 illustrates the distribution of the measured code

pages and the really-used code pages. During the monitor period, the target process

uses 1647 code pages, where 419 pages are measured by Guardian. As illustrated

2Note that the current commodity operating system (e.g., Windows and Linux) only randomize
dynamic-link libraries.

139

in Figure 7.5, some pages are not measured in the selected time period. Therefore,

some attacks may be successful in our measurement setting. It is an interesting

topic to improve the scheme to make sure that it precisely measures the execution

of a process with low performance overhead.

0 200 400 600 800 1000 1200 1400 1600

1647 code pages being executed

1

10

100

of

 o
cc

ur
an

ce
 (i

n
lo

g
sc

al
e)

executed pages
measured pages

Figure 7.5: The benchmark results with and without hyper-firewall.

Note that the hash function used in the attestation is SHA1, and the the length

of the private key in the sign operation is 1024 bits. The timestamp is directly

read from Real-Time Clock (RTC) in the COMS. The software runtime attestation

services only adds 0.5K SLOC into Guardian. Table 7.1 shows the performance

results on the following operations: 1) time measurement when the target process

on CPU and off CPU, 2) runtime states measurement, and 3) the sign operation.

Operations Runtime Cost
On-CPU Time Measurement 0.03µs
Off-CPU Time Measurement 0.03µs
Runtime States Measurement 0.17ms
Sign 2.64ms

Table 7.1: The runtime cost of each operation in the software runtime attestation
service.

140

7.2.4 User Presence Attestation For Password Authentication

Password authentication is another area which can benefit from using a hypervisor.

One example is KGuard [18] which protects the password secrecy against rootkits.

Another possible application is that the hypervisor generates the second factor by

storing a secret or computing a one-time PIN.

Instead of protecting password secrecy, our interest is to design an authentica-

tion system resilient to password theft. The idea of our system is that Guardian

attests to the authentication server that the user is present at a particular momen-

t. This can be applied for accessing an organization’s critical servers, as it greatly

mitigates the damage of password theft either by malware or through social engi-

neering. An outside adversary knowing the password can not login using his own

computer due to the absence of Guardian with the certified RSA private key. Nei-

ther can the malware residing in the legitimate user’s computer, because Guardian

does not vouch for it.

The design is as follows. The end-user logins to the server in the normal way,

except that she activates the user-presence attestation before entering the password,

and deactivates it afterwards, both of which are through the secure hypervisor-user

interface in Section 3.2.2. To attest to user-presence, Guardian locks the keyboard

and intercepts the keyboard I/O as in running the RTSUI. Namely, it sets the EPT

and IOMMU page tables so as to intercept all direct accesses from the guest and to

block all DMA accesses (except from the keyboard). This access control is not for

protection keystroke secrecy. Instead, it ensures that the only allowed write access

to the I/O buffer is the keyboard’s DMA operation. When Guardian intercepts the

guest interrupt handler’s read access to the I/O buffer, it checks whether the present

key-code is different from the prior one. (Note that typing a key generates two

interrupts with two different key-codes for key-down and key-up, respectively.) If

so, Guardian generates an RSA signature on the current time; otherwise, Guardian

does not produce any signature. The current time is directly collected from hardware

141

(i.e., COMS), whose interfaces (i.e., I/O ports) are enforced access control using

VMCS by Guardian, so that the guest can only read the time information but can not

manipulate it. Guardian’s signature is then exported to the guest though a hypercall

and forwarded to the server. The server verifies the signature and checks whether

the gap between the signed time and the time of authentication is acceptable.

It is well-known that the drawback of using a clock in attestation is that it leaves

a short time window for attacks. One remedy is to use a challenge-response scheme,

which however incurs one additional round of network flow.

Our scheme can be integrated with authentication schemes without a graphic

interface, e.g., a secure terminal. It is compatible with automatic login, since the

user can still activate attestation and type the keyboard.

Note that both the runtime attestation and the user presence attestation require

that Guardian’s RSA public key can be correctly verified by the challenger. For

cooperate users, the public keys in use can be certified through a common PKI. We

also remark that the proposed user presence authentication is not compatible with

automatic password submission.

User Presence Attestation Evaluation

The user presence attestation service is built using a Dell USB-keyboard attached on

the EHCI host controller. A loadable module listens to the activation command (e.g.,

CTRL+ALT+PAGEUP). The sign algorithm is the same as the one in the software

runtime attestation. We built a client and a server to simulate the login procedure.

Before typing into the user name and password, the user pressed the activation key

combination to enable the user-presence-attestation service. Guardian signed the

timestamp of the first keystroke. Later the server checked the username, password

and the login-timestamp to verify if the user is able to login. The experiments

show that the user presence attestation service can be easily integrated with current

communication protocol (e.g., SSL/TLS) to enhance the login security. Note that

the user presence attestation service adds 0.2K SLOC into Guardian.

142

Chapter 8

Conclusion and Future Work

In this dissertation, we proposed several systems to harden a system. Specifically,

we designed and implemented a lightweight and reliable hypervisor Guardian as

the system secure foothold, which is the first bare-metal hypervisor with integri-

ty and availability guarantees. Guardian leveraged virtualization technology and a

secure boot and shutdown mechanism to protect itself in the whole life cycle. More-

over, we extended Guardian to be a framework of secure foothold, which consisted

of summarized common security primitives for facilitating our proposed systems

and other security services in the future. Built upon Guardian, AppShield created

isolated execution environments for protecting critical applications. In an IEE, the

secrecy and integrity of code and data together with the execution integrity are guar-

anteed. In addition, the application can use the memory and issue system calls in

the same fashion as in a normal setting.

As the inputs and outputs of the protected applications are not protected by

Appshield, we proposed DriverGuard to protect them by building trusted paths be-

tween the protected application and hardware input/output devices. DriverGuard is

a generic I/O protection system protecting all kinds of I/O flows with combination of

cryptographic and virtualization techniques. We also proposed a dedicated system

KGuard to protect passwords in the increasingly popular online services. KGuard

efficiently and securely built a trusted path from the keyboard to the remote web

143

server, against all system key-loggers, as well as all kinds of network eavesdropper-

s. Note that the trusted paths built by DriverGuard and KGuard did not leverage any

special hardware.

We implemented the prototypes of all the above systems, and evaluated their

performance overheads. The experiment results showed that the performance costs

on CPU computation and device I/O are insignificant.

8.1 Look into the Future

One of the main reasons why malware is rampant in today’s computers is the failure

of the operating system’s security protection, which in turn is caused by its enor-

mous code size and complexity. A strategic architecture change by taking security

into consideration may combat malware more efficiently and effectively. It is not

impossible that the future platform architecture encloses the hypervisor as the se-

cure foothold functioning as a trustworthy security delegate between the operating

system and hardware. The OS and the hypervisor jointly form a holistic security

framework against malicious software. We do not expect the hypervisor to protect

the OS from being subverted (which is intractable in our view). Instead, the OS and

the hypervisor can jointly provide reliable access control and monitoring services

for applications and the enduser. The operating system can define security policies

based on the user demands, while the hypervisor enforces them by relying on the

hardware. Since policies are essentially data, it is easier to check their integrity. In

addition, the hypervisor can also provide a series of security services to the OS and

applications in an on-demand fashion, such as a strong isolation, whereby the user

has the flexibility to choose between security and performance.

The systems and techniques proposed in this dissertation has laid a solid foun-

dation towards trustworthy systems. In the following, we attempt to propose new

security services based on them or extend them to harden new platforms.

• Whole Platform ROP Defence. Return-Oriented Programming (ROP) is a

144

sophisticated exploitation technique that is able to drive target application-

s/OSes to perform arbitrary unintended operations by constructing a gadget

chain reusing existing small code sequences (gadgets). To detect and prevent

ROP attacks, many solutions are proposed. However, none of them is the w-

hole system protection scheme, where the proposed scheme protects all user

applications and the OS simultaneously. The hypervisor beneath OS is able

to protect itself from all guest ROP attacks, and at the same time, it is able to

efficiently access both kernel and user spaces in real time. All these make it

possible to propose a hypervisor-based scheme to support the whole system

against ROP attacks. In the future work, we aim to design and implement a

whole platform protection system to efficiently defend against ROP attacks.

• Application Protection with Availability Guarantee. All existing in-VM

solutions that are able to protect applications through isolated execution en-

vironments cannot ensure the availability of the protected applications. It

means that the compromised OS is able to shutdown or halt the protected ap-

plications, preventing them from occupying the CPU to run their services. If

we put the scheduler which can explicitly put the protected applications on

the CPU into the hypervisor space, the size and the complexity of the hyper-

visor will increase. Moreover, the frequent hypervisor-guest context switches

will dramatically reduce the performance of the whole platform, especially

for the protected applications. In the future work, we aim to seek a solution to

achieve the availability with low performance overhead and minimum TCB

expansion.

• File Access Control On Untrusted OS. Traditional file access control is an

OS-based mechanism to prevent illicit access from applications. The security

of the access control completely relies on the trustworthiness of the OS. Once

the OS is compromised, kernel rootkits will freely access/modify/delete any

files. To enforce file access control upon an untrusted OS, a hypervisor-based

145

file access control is needed. To build such mechanism, the main challenges

are from the semantic gap and the performance consideration. Specifically,

a hypervisor is usually not equipped with disk drivers and file systems due

to security considerations (i.e., keeping hypervisor small and simple), which

cause that the hypervisor misses the file-level information even if it is able

to intercept disk I/O. In addition, the frequent context switches due to the

interception on the disk I/O will dramatically reduce the speed of disk I/O

and the CPU utilization. In the future work, we aim to seek a solution to

efficiently and reliably enforce file access control.

• Secure Foothold for Mobile. Mobile phones are integral to our daily lives.

A mobile phone usually contains a lot of sensitive personal information and

many third-party applications, which attracts the adversary’s attention. At

the same time, the new mobile phones are designed to efficiently support

virtualization and TrustZone technologies simultaneously. All these make it

possible to deploy new virtualization-based and/or TrustZone-based secure

foothold to harden mobile systems. Based on the new secure foothold, many

security services could be built. In the future work, we aim to seek a way to

build a new reliable and lightweight mobile secure foothold to facilitate the

design and the implementation of mobile security services.

• Secure Foothold for Cloud Instance (VM). Our current technology is able to

create a reliable secure foothold for personal computers, but it will fail in the

cloud computing setting. Specifically, in a cloud platform, a hypervisor has

been executed before the guest instance (VM) starts to run. In this way, the

secure foothold of the guest instance is not able to get the highest privilege of

the whole system that has been occupied by the platform hypervisor. Facing

such situations, in the future work, we aim to seek a new technology to create

a reliable secure foothold for the guest instance, and make it coexist with the

hypervisor of the platform.

146

Bibliography

[1] AMD. Secure virtual machine architecture reference manual. Technical report, 2005.

[2] T. W. Arnold and L. P. Van Doom. The ibm pcixcc: a new cryptographic coprocessor
for the ibm eserver. IBM J. Res. Dev., 48(3-4):475–487, May 2004.

[3] S. Arvind, P. Adrian, v. D. Leendert, and K. Pradeep. Swatt: Software-based attesta-
tion for embedded devices. In Proceedings of the IEEE Symposium on Security and
Privacy, May 2004.

[4] A. M. Azab, P. Ning, E. C. Sezer, and X. Zhang. Hima: A hypervisor-based integrity
measurement agent. In Proceedings of the 2009 Annual Computer Security Applica-
tions Conference, ACSAC ’09, pages 461–470, Washington, DC, USA, 2009. IEEE
Computer Society.

[5] A. M. Azab, P. Ning, Z. Wang, X. Jiang, X. Zhang, and N. C. Skalsky. Hypersentry:
enabling stealthy in-context measurement of hypervisor integrity. In Proceedings
of the 17th ACM conference on Computer and communications security, CCS ’10,
pages 38–49, New York, NY, USA, 2010. ACM.

[6] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neugebauer, I. Pratt,
and A. Warfield. Xen and the art of virtualization. In SOSP ’03: Proceedings of the
nineteenth ACM symposium on Operating systems principles, pages 164–177, New
York, NY, USA, 2003. ACM.

[7] V. R. Basili and B. T. Perricone. Software errors and complexity: an empirical inves-
tigation0. Commun. ACM, 27:42–52, January 1984.

[8] K. Borders and A. Prakash. Securing network input via a trusted input proxy. In
Proceedings of the 2nd USENIX workshop on Hot topics in security, HOTSEC’07,
pages 7:1–7:5, Berkeley, CA, USA, 2007. USENIX Association.

[9] E. Buchanan, R. Roemer, H. Shacham, and S. Savage. When good instructions go
bad: Generalizing return-oriented programming to RISC. In P. Syverson and S. Jha,
editors, Proceedings of CCS 2008, pages 27–38. ACM Press, Oct. 2008.

[10] S. Bugiel, A. Dmitrienko, K. Kostiainen, A.-R. Sadeghi, and M. Winandy. Truwal-
letm: secure web authentication on mobile platforms. In Proceedings of the Second
international conference on Trusted Systems, INTRUST’10, pages 219–236, Berlin,
Heidelberg, 2011. Springer-Verlag.

[11] K. R. B. Butler, S. McLaughlin, T. Moyer, and P. D. McDaniel. New security archi-
tectures based on emerging disk functionality. IEEE Security and Privacy Magazine,
September 2010.

147

[12] D. Champagne and R. Lee. Scalable architectural support for trusted software. In
High Performance Computer Architecture (HPCA), 2010 IEEE 16th International
Symposium on, pages 1–12. IEEE, 2010.

[13] D. Champagne and R. B. Lee. Scalable architectural support for trusted software. In
M. T. Jacob, C. R. Das, and P. Bose, editors, HPCA, pages 1–12. IEEE Computer
Society, 2010.

[14] S. Checkoway, L. Davi, A. Dmitrienko, A.-R. Sadeghi, H. Shacham, and
M. Winandy. Return-oriented programming without returns. In A. Keromytis and
V. Shmatikov, editors, Proceedings of CCS 2010, pages 559–72. ACM Press, Oct.
2010.

[15] S. Checkoway and H. Shacham. Iago attacks: why the system call api is a bad
untrusted rpc interface. In Proceedings of the eighteenth international conference on
Architectural support for programming languages and operating systems, ASPLOS
’13, pages 253–264, New York, NY, USA, 2013. ACM.

[16] H. Chen, F. Zhang, C. Chen, Z. Yang, R. Chen, B. Zang, P. Yew, and W. Mao.
Tamper-resistant execution in an untrusted operating system using a virtual machine
monitor. Technical Report FDUPPITR-2007-0801, Parallel Processing Institute, Fu-
dan University, August 2007.

[17] X. Chen, T. Garfinkel, E. C. Lewis, P. Subrahmanyam, C. A. Waldspurger, D. Boneh,
J. Dwoskin, and D. R. K. Ports. Overshadow: A virtualization-based approach to
retrofitting protection in commodity operating systems. In (ASPLOS ’08), Seattle,
WA, USA, Mar. 2008.

[18] Y. Cheng and X. Ding. Virtualization based password protection against malware in
untrusted operating systems. In Proceedings of the 5th International Conference on
Trust & Trustworthy Computing, Vienna, Austria, 2012. Spring.

[19] Y. Cheng, X. Ding, and R. H. Deng. Driverguard: a fine-grained protection on i/o
flows. In Proceedings of the 16th European conference on Research in computer
security, ESORICS’11, pages 227–244, Berlin, Heidelberg, 2011. Springer-Verlag.

[20] Y. Cheng, X. Ding, and R. H. Deng. Appshield: Protecting applications against
untrusted operating system. Technique Report, 2013.

[21] Y. Cheng, X. Ding, and R. H. Deng. User oriented computer protection with hy-
pervisor as root of trust. submitted to Network and Distributed System Security
Symposium (NDSS), 2013.

[22] S. Chhabra, B. Rogers, Y. Solihin, and M. Prvulovic. Secureme: a hardware-software
approach to full system security. In Proceedings of the international conference on
Supercomputing, ICS ’11, pages 108–119, New York, NY, USA, 2011. ACM.

[23] P. Colp, M. Nanavati, J. Zhu, W. Aiello, G. Coker, T. Deegan, P. Loscocco, and
A. Warfield. Breaking up is hard to do: security and functionality in a commodity
hypervisor.

[24] I. CORPORATION. Intel trusted execution technology (intel txt) c software devel-
opment guide. Dec 2009.

[25] S. P. E. Corporation. Spec cint2006. http://www.spec.org/.

148

[26] R. S. Cox, J. G. Hansen, S. D. Gribble, and H. M. Levy. A safety-oriented platform
for web applications. In Proceedings of IEEE Symposium on Security and Privacy,
2006.

[27] CVE-2008-0923. http://cve.mitre.org/cgi-bin/cvename.cgi-?name=cve-2008-0923,
2008.

[28] K. Eldefrawy, A. Francillon, D. Perito, and G. Tsudik. SMART: Secure and Minimal
Architecture for (Establishing a Dynamic) Root of Trust. In NDSS&12, 19th Annu-
al Network and Distributed System Security Symposium, February 5-8, San Diego,
USA, San Diego, UNITED STATES, 02 2012.

[29] P. England, B. Lampson, J. Manferdelli, M. Peinado, and B. Willman. A trusted open
platform. Computer, 36(7):55–62, July 2003.

[30] A. Filyanov, J. M. McCune, A.-R. Sadeghi, and M. Winandy. Uni-directional trusted
path: Transaction confirmation on just one device. In Proceedings of the IEEE/IFIP
Conference on Dependable Systems and Networks, June 2011.

[31] S. Fleming. Accessing pci express configuration registers using intel chipsets. otech-
nical report, 2008.

[32] S. Gajek, H. Löhr, A.-R. Sadeghi, and M. Winandy. Truwallet: trustworthy and mi-
gratable wallet-based web authentication. In Proceedings of the 2009 ACM workshop
on Scalable trusted computing, STC ’09, pages 19–28, New York, NY, USA, 2009.
ACM.

[33] V. Ganapathy, M. J. Renzelmann, A. Balakrishnan, M. M. Swift, and S. Jha. The
design and implementation of microdrivers. In Proceedings of the 13th internation-
al conference on Architectural support for programming languages and operating
systems, ASPLOS XIII, pages 168–178, New York, NY, USA, 2008. ACM.

[34] T. Garfinkel, B. Pfaff, J. Chow, M. Rosenblum, and D. Boneh. Terra: a virtu-
al machine-based platform for trusted computing. In Proceedings of the 9th ACM
Symposium on Operating Systems Principles, pages 193–206, New York, NY, USA,
2003. ACM.

[35] A. Gordon, N. Amit, N. Har’El, M. Ben-Yehuda, A. Landau, A. Schuster, and D. T-
safrir. Eli: bare-metal performance for i/o virtualization. In Proceedings of the sev-
enteenth international conference on Architectural Support for Programming Lan-
guages and Operating Systems, ASPLOS XVII, pages 411–422, New York, NY, US-
A, 2012. ACM.

[36] C. Grier, S. Tang, and S. King. Secure web browsing with the OP web browser. In
Proceedings of IEEE Symposium on Security and Privacy, 2008.

[37] H. Hartig, M. Hohmuth, N. Feske, C. Helmuth, A. Lackorzynski, F. Mehnert, and
M. Peter. The nizza secure-system architecture. In Collaborative Computing: Net-
working, Applications and Worksharing, 2005 International Conference on, pages
10–pp. IEEE, 2005.

[38] N. Heintze and O. Tardieu. Ultra-fast aliasing analysis using cla: a million lines
of c code in a second. In Proceedings of the ACM SIGPLAN 2001 conference on
Programming language design and implementation, PLDI ’01, pages 254–263, New
York, NY, USA, 2001. ACM.

149

[39] C. L. Heitmeyer, M. Archer, E. I. Leonard, and J. McLean. Formal specification
and verification of data separation in a separation kernel for an embedded system. In
Proceedings of the 13th ACM conference on Computer and communications security,
CCS ’06, pages 346–355, New York, NY, USA, 2006. ACM.

[40] Hewleet-Packard, Intel, Microsoft, Phoenix, and Toshiba. Advanced configuration
and power interface specification. (Revision 3.0b), Oct. 2006.

[41] O. S. Hofmann, S. Kim, A. M. Dunn, M. Z. Lee, and E. Witchel. Inktag: secure
applications on an untrusted operating system. In Proceedings of the eighteenth
international conference on Architectural support for programming languages and
operating systems, ASPLOS ’13, pages 265–278, New York, NY, USA, 2013. ACM.

[42] IBM. IBM VGA Technical Reference Manual. Website. http://www.mca-
mafia.de/pdf/ibm vgaxga trm2.pdf.

[43] Intel. Universal host controller interface (uhci) design guide. Mar. 1996.

[44] Intel. Enhanced host controller interface specification for universal serial bus. Mar.
2002.

[45] Intel. Intel i/o controller hub 9 (ich9) family datasheet. 2008.

[46] Intel. Intel 64 and ia-32 architectures software developer’s manual combined vol-
umes: 1, 2a, 2b, 2c, 3a, 3b and 3c. Oct. 2011.

[47] E. Keller, J. Szefer, J. Rexford, and R. B. Lee. Nohype: virtualized cloud infras-
tructure without the virtualization. In Proceedings of the 37th annual international
symposium on Computer architecture, ISCA ’10, pages 350–361, New York, NY,
USA, 2010. ACM.

[48] V. P. Kemerlis, G. Portokalidis, K. Jee, and A. D. Keromytis. libdft: practical dy-
namic data flow tracking for commodity systems. In Proceedings of the 8th ACM
SIGPLAN/SIGOPS conference on Virtual Execution Environments, VEE ’12, pages
121–132, New York, NY, USA, 2012. ACM.

[49] S. T. King, P. M. Chen, Y.-M. Wang, C. Verbowski, H. J. Wang, and J. R. Lorch.
Subvirt: Implementing malware with virtual machines. In Proceedings of the 2006
IEEE Symposium on Security and Privacy, pages 314–327, Washington, DC, USA,
2006. IEEE Computer Society.

[50] I. Z. R. Lab. Security on a stick, Oct. 2008.

[51] H. Langweg. Building a trusted path for applications using cots components. In In
Proceedings of NATO RTO IST Panel Symposium on Adaptive Defence in Unclassi-
fied Networks, 2004.

[52] Y. Li, J. M. McCune, and A. Perrig. Viper: verifying the integrity of peripherals’
firmware. In Proceedings of the 18th ACM conference on Computer and communi-
cations security, CCS ’11, pages 3–16, New York, NY, USA, 2011. ACM.

[53] D. Lie, C. A. Thekkath, and M. Horowitz. Implementing an untrusted operating
system on trusted hardware. In Proceedings of the nineteenth ACM symposium on
Operating systems principles, SOSP ’03, pages 178–192, New York, NY, USA, 2003.
ACM.

150

[54] S. C. Limited. CyaSSL Embedded SSL Library.
http://www.yassl.com/yaSSL/Products-cyassl.html.

[55] A. Lineberry. Malicious code injection via /dev/mem. In Black Hat, Mar. 2009.

[56] J. M. McCune, Y. Li, N. Qu, Z. Zhou, A. Datta, V. Gligor, and A. Perrig. Trustvisor:
Efficient tcb reduction and attestation. In Proceedings of the 2010 IEEE Symposium
on Security and Privacy, SP ’10, pages 143–158, Washington, DC, USA, 2010. IEEE
Computer Society.

[57] J. M. McCune, B. J. Parno, A. Perrig, M. K. Reiter, and H. Isozaki. Flicker: an ex-
ecution infrastructure for tcb minimization. In Proceedings of the 3rd ACM SIGOP-
S/EuroSys European Conference on Computer Systems 2008, Eurosys ’08, pages
315–328, New York, NY, USA, 2008. ACM.

[58] J. M. McCune, A. Perrig, and M. K. Reiter. Bump in the ether: a framework for
securing sensitive user input. In Proceedings of the annual conference on USENIX
’06 Annual Technical Conference, pages 17–17, Berkeley, CA, USA, 2006. USENIX
Association.

[59] J. M. McCune, A. Perrig, and M. K. Reiter. Safe passage for passwords and other
sensitive data. In Proceedings of the Symposium on Network and Distributed Systems
Security (NDSS), Feb. 2009.

[60] C. G. Michael, W. Zhi, S. Deepa, L. Jinku, J. Xuxian, L. Zhenkai, and L. Siarhei.
Transparent protection of commodity os kernels using hardware virtualization. In
SecureComm, pages 162–180, 2010.

[61] Microsoft. About the Windows Driver Kit (WDK). Website. http://goo.gl/DfSRi.

[62] M. Mock, D. C. Atkinson, C. Chambers, and S. J. Eggers. Improving program slicing
with dynamic points-to data. SIGSOFT Softw. Eng. Notes, 27(6):71–80, Nov. 2002.

[63] D. G. Murray, G. Milos, and S. Hand. Improving xen security through disaggrega-
tion. In Proceedings of the fourth ACM SIGPLAN/SIGOPS international conference
on Virtual execution environments, VEE ’08, pages 151–160, New York, NY, USA,
2008. ACM.

[64] J. Newsome and D. Song. Dynamic taint analysis: Automatic detection, analysis,
and signature generation of exploit attacks on commodity software. In Proceedings
of the Network and Distributed Systems Security Symposium, Feb. 2005.

[65] D. A. S. d. Oliveira and S. F. Wu. Protecting kernel code and data with a
virtualization-aware collaborative operating system. In Proceedings of the 2009
Annual Computer Security Applications Conference, ACSAC ’09, pages 451–460,
Washington, DC, USA, 2009. IEEE Computer Society.

[66] T. J. Ostrand and E. J. Weyuker. The distribution of faults in a large industrial soft-
ware system. In Proceedings of the 2002 ACM SIGSOFT international symposium
on Software testing and analysis, ISSTA ’02, pages 55–64, New York, NY, USA,
2002. ACM.

[67] B. D. Payne, M. Carbone, M. Sharif, and W. Lee. Lares: An architecture for secure
active monitoring using virtualization. In Proceedings of the 2008 IEEE Symposium
on Security and Privacy, pages 233–247, Washington, DC, USA, 2008. IEEE Com-
puter Society.

151

[68] B. Pfitzmann, J. Riordan, C. Stüble, M. Waidner, and A. Weber. The perseus system
architecture. In VIS, pages 1–18, 2001.

[69] W. Rafal, R. Joanna, and T. Alexander. Xen 0wning trilogy. Technical report, 2008.

[70] J. Rick. Network Performance Benchmark Tool - Netpref.
http://www.netperf.org/netperf/.

[71] R. Riley, X. Jiang, and D. Xu. Guest-transparent prevention of kernel rootkits with
vmm-based memory shadowing. In Proceedings of the 11th international symposium
on Recent Advances in Intrusion Detection, RAID ’08, pages 1–20, Berlin, Heidel-
berg, 2008. Springer-Verlag.

[72] R. Sahita, U. Warrier, and P. Dewan. Dynamic software application protection. Intel
Corporation, Apr, 2009.

[73] R. Sailer, X. Zhang, T. Jaeger, and L. van Doorn. Design and implementation of
a tcg-based integrity measurement architecture. In SSYM’04: Proceedings of the
13th conference on USENIX Security Symposium, pages 16–16, Berkeley, CA, USA,
2004. USENIX Association.

[74] R. Santelices, Y. Zhang, S. Jiang, H. Cai, and Y. jie Zhang. Quantitative program
slicing: Separating statements by relevance. Technique report, Apr. 2012.

[75] S. Saroiu and A. Wolman. I am a sensor, and i approve this message. In Proceedings
of the Eleventh Workshop on Mobile Computing Systems & Applications, HotMobile
’10, pages 37–42, New York, NY, USA, 2010. ACM.

[76] L. Sawtooth, Consulting. Ctaocrypt embedded cryptography library.
http://www.yassh.com/yaSSL/Docs CTao Crypt Usage Reference.html.

[77] A. Seshadri, M. Luk, A. Perrig, L. van Doorn, and P. Khosla. Scuba: Secure code
update by attestation in sensor networks. In Proceedings of the 5th ACM workshop
on Wireless security, WiSe ’06, pages 85–94, New York, NY, USA, 2006. ACM.

[78] A. Seshadri, M. Luk, N. Qu, and A. Perrig. Secvisor: a tiny hypervisor to provide
lifetime kernel code integrity for commodity oses. In Proceedings of twenty-first
ACM SIGOPS symposium on Operating systems principles, SOSP ’07, pages 335–
350, New York, NY, USA, 2007. ACM.

[79] A. Seshadri, M. Luk, E. Shi, A. Perrig, L. van Doorn, and P. Khosla. Pioneer: ver-
ifying code integrity and enforcing untampered code execution on legacy systems.
In Proceedings of the twentieth ACM symposium on Operating systems principles,
SOSP ’05, pages 1–16, New York, NY, USA, 2005. ACM.

[80] H. Shacham. The geometry of innocent flesh on the bone: Return-into-libc without
function calls (on the x86). In S. De Capitani di Vimercati and P. Syverson, editors,
Proceedings of CCS 2007, pages 552–61. ACM Press, Oct. 2007.

[81] J. Shapiro. EROS: A capability system. PhD thesis, University of Pennsylvania, 1999.

[82] M. I. Sharif, W. Lee, W. Cui, and A. Lanzi. Secure in-vm monitoring using hardware
virtualization. In Proceedings of the 16th ACM conference on Computer and com-
munications security, CCS ’09, pages 477–487, New York, NY, USA, 2009. ACM.

152

[83] E. Shi, A. Perrig, and L. V. Doorn. Bind: A fine-grained attestation service for secure
distributed systems. In Proceedings of IEEE Symposium on Security and Privacy,
pages 154–168, 2005.

[84] T. Shinagawa, H. Eiraku, K. Tanimoto, K. Omote, S. Hasegawa, T. Horie, M. Hirano,
K. Kourai, Y. Oyama, E. Kawai, K. Kono, S. Chiba, Y. Shinjo, and K. Kato. Bitvisor:
a thin hypervisor for enforcing i/o device security. In Proceedings of the 2009 ACM
SIGPLAN/SIGOPS international conference on Virtual execution environments, VEE
’09, pages 121–130, New York, NY, USA, 2009. ACM.

[85] D. X. Song, D. Wagner, and X. Tian. Timing analysis of keystrokes and timing at-
tacks on ssh. In Proceedings of the 10th conference on USENIX Security Symposium
- Volume 10, SSYM’01, pages 25–25, Berkeley, CA, USA, 2001. USENIX Associa-
tion.

[86] M. Sridharan, S. J. Fink, and R. Bodik. Thin slicing. In Proceedings of the 2007
ACM SIGPLAN conference on Programming language design and implementation,
PLDI ’07, pages 112–122, New York, NY, USA, 2007. ACM.

[87] A. Srivastava and J. Giffin. Tamper-resistant, application-aware blocking of mali-
cious network connections. In Proceedings of the 11th international symposium on
Recent Advances in Intrusion Detection, RAID ’08, pages 39–58, Berlin, Heidelberg,
2008. Springer-Verlag.

[88] U. Steinberg and B. Kauer. Nova: A microhypervisor-based secure virtualization ar-
chitecture. In Proceedings of the European Conference on Computer Systems, 2010.

[89] R. Strackx and F. Piessens. Fides: selectively hardening software application com-
ponents against kernel-level or process-level malware. In Proceedings of the 2012
ACM conference on Computer and communications security, CCS ’12, pages 2–13,
New York, NY, USA, 2012. ACM.

[90] G. E. Suh, D. Clarke, B. Gassend, M. van Dijk, and S. Devadas. Aegis: architec-
ture for tamper-evident and tamper-resistant processing. In Proceedings of the 17th
annual international conference on Supercomputing, ICS ’03, pages 160–171, New
York, NY, USA, 2003. ACM.

[91] K. Sun, J. Wang, F. Zhang, and A. Stavrou. Secureswitch: Bios-assisted isolation
and switch between trusted and untrusted commodity oses. In Proceedings of the
19th Annual Network and Distributed System Security Symposium, 2012.

[92] R. Ta-Min, L. Litty, and D. Lie. Splitting interfaces: making trust between applica-
tions and operating systems configurable. In Proceedings of the 7th symposium on
Operating systems design and implementation, OSDI ’06, pages 279–292, Berkeley,
CA, USA, 2006. USENIX Association.

[93] P. Technologies. Trustedcore: Foundation for secure CRTM and BIOS implemen-
tation. https://forms.phoenix.com/whitepaperdownload-/docs/trustedcore wp.pdf,
2006.

[94] The Blue Pill. http://blackhat.com/presentations/bh-usa-06/BH-US-06-
Rutkowska.pdf.

153

[95] L. Torrey, J. Coleman, and B. Miller. A comparison of interactivity in the linux 2.6
scheduler and an mlfq scheduler. Software: Practice and Experience, 37(4):347–364,
2007.

[96] Trusted Computing Group. TPM main specification. Main Specification Version 1.2
rev. 85, Feb. 2005.

[97] A. Vasudevan, B. Parno, N. Qu, V. Gligor, and A. Perrig. Lockdown: A safe and
practical environment for security applications (cmu-cylab-09-011). 2009.

[98] J. Wang, A. Stavrou, and A. Ghosh. Hypercheck: a hardware-assisted integrity mon-
itor. In Proceedings of the 13th international conference on Recent advances in
intrusion detection, RAID’10, pages 158–177, Berlin, Heidelberg, 2010. Springer-
Verlag.

[99] Z. Wang and X. Jiang. Hypersafe: A lightweight approach to provide lifetime hyper-
visor control-flow integrity. In Proceedings of the 2010 IEEE Symposium on Security
and Privacy, SP ’10, pages 380–395, Washington, DC, USA, 2010. IEEE Computer
Society.

[100] Z. Wang, X. Jiang, W. Cui, and X. Wang. Countering persistent kernel rootkits
through systematic hook discovery. In Proceedings of the 11th international sym-
posium on Recent Advances in Intrusion Detection, RAID ’08, pages 21–38, Berlin,
Heidelberg, 2008. Springer-Verlag.

[101] M. D. Weiser. Program slices: formal, psychological, and practical investigations of
an automatic program abstraction method. PhD thesis, Ann Arbor, MI, USA, 1979.
AAI8007856.

[102] A. M. White, A. R. Matthews, K. Z. Snow, and F. Monrose. Phonotactic reconstruc-
tion of encrypted voip conversations: Hookt on fon-iks. In Proceedings of the 2011
IEEE Symposium on Security and Privacy, SP ’11, pages 3–18, Washington, DC,
USA, 2011. IEEE Computer Society.

[103] WikiPedia. Souce line of code. http://en.wikipedia.org/wiki/Source lines of code.

[104] P. Willmann, S. Rixner, and A. L. Cox. Protection strategies for direct access to
virtualized i/o devices. In Proceedings of USENIX Annual Technical Conference,
2008.

[105] X. Xiong, T. P. State, D. Tian, and P. Liu. Practical protection of kernel integrity for
commodity os from untrusted extensions. NDSS, 2011.

[106] J. Yang and K. G. Shin. Using hypervisor to provide data secrecy for user appli-
cations on a per-page basis. In Proceedings of the fourth ACM SIGPLAN/SIGOPS
international conference on Virtual execution environments, VEE ’08, pages 71–80,
New York, NY, USA, 2008. ACM.

[107] Z. E. Ye, S. Smith, and D. Anthony. Trusted paths for browsers. ACM Trans. Inf.
Syst. Secur., 8(2):153–186, 2005.

[108] M. Zaharia, S. Katti, C. Grier, V. Paxson, S. Shenker, I. Stoica, and D. Song. Hy-
pervisors as a foothold for personal computer security: An agenda for the research
community. Technical report, Jan 2012.

154

[109] Z. Zhou, V. D. Gligor, J. Newsome, and J. M. McCune. Building verifiable trust-
ed path on commodity x86 computers. In Proceedings of the IEEE Symposium on
Security and Privacy, May 2012.

155

	Virtualization-based System Hardening against Untrusted Kernels
	Citation

	1 Introduction
	1.1 Problem Overview
	1.2 Research Objectives
	1.2.1 Reliable Secure Foothold
	1.2.2 Application Protection
	1.2.3 I/O Data Protection

	1.3 Threat Model
	1.4 Metrics
	1.5 Terminology
	1.6 Dissertation Overview
	1.6.1 Dissertation Organization

	2 Related Work
	2.1 Application Protection
	2.1.1 Self-contained Code Protection
	2.1.2 Whole Application Protection

	2.2 I/O Data Protection
	2.2.1 Virtualization-based Protection
	2.2.2 Hardware-based Protection
	2.2.3 OS-based Protection

	2.3 Hypervisor Security
	2.4 Root of Trust
	2.4.1 Software-based Root of Trust
	2.4.2 Hardware-based Root of Trust

	3 Reliable Secure Foothold
	3.1 Problem Definition
	3.1.1 Threat Model

	3.2 Design of Guardian
	3.2.1 Establishing Guardian as a Security Foothold
	3.2.2 Secure User-Hypervisor Interface

	3.3 Implementation
	3.3.1 System Benchmark

	3.4 Summary

	4 Application Protection
	4.1 Synopsis
	4.1.1 Threat Model
	4.1.2 Desired Properties
	4.1.3 AppShield Overview

	4.2 Dynamic Address Space Isolation
	4.2.1 Address Space Isolation
	4.2.2 Dynamic Isolation

	4.3 Secure Context Switch
	4.3.1 Transit Module
	4.3.2 Event Capture
	4.3.3 Context and Address Space Switch
	4.3.4 Special Considerations

	4.4 System Call Adaption
	4.4.1 System Call Emulation
	4.4.2 Ptrace

	4.5 Implementation and Evaluation
	4.5.1 Micro Benchmark
	4.5.2 Macro Benchmark

	4.6 Discussions
	4.7 Summary

	5 Generic Protection On I/O Flows
	5.1 Problem Definition
	5.1.1 Our Goals
	5.1.2 Threat Model and Assumptions
	5.1.3 Attacks
	5.1.4 Security Requirements
	5.1.5 Challenges

	5.2 Design Rationale
	5.3 Design Overview
	5.3.1 Protection Mechanism
	5.3.2 Access Control Over Critical Regions
	5.3.3 Cryptographic Components
	5.3.4 PCB Execution Escorting

	5.4 Privileged Code Block
	5.4.1 Identifying PCB
	5.4.2 PCB Format

	5.5 Design Details
	5.5.1 Driver Context Initialization
	5.5.2 Checkpoint Deployment
	5.5.3 PCB Execution Escorting
	5.5.4 Data Region Access Control
	5.5.5 Device Control Protection
	5.5.6 Device Configuration Space Restriction
	5.5.7 User-Space Device Driver Support

	5.6 Discussions
	5.6.1 Automatically Identifying PCB
	5.6.2 Full I/O Path Protection

	5.7 Evaluation
	5.7.1 Security Analysis
	5.7.2 Security Evaluation
	5.7.3 Usage of PCB
	5.7.4 Performance Evaluation

	5.8 Summary

	6 Dedicated Protection on User Passwords
	6.1 Overview
	6.1.1 Design Criteria
	6.1.2 Design Rationale
	6.1.3 Architecture

	6.2 Design Details
	6.2.1 User-Hypervisor Interaction
	6.2.2 Keystroke Interception
	6.2.3 Handling SSL Session
	6.2.4 Security Analysis

	6.3 Implementation
	6.3.1 KGuard in Hypervisor
	6.3.2 Browser Extension and Plugin
	6.3.3 Hypercall Support In HVM

	6.4 Performance Evaluation
	6.4.1 Overhead for Password Input
	6.4.2 Overhead for Password Submission

	6.5 Discussions
	6.5.1 Hypervisor Security
	6.5.2 Trusted Certificate Updates
	6.5.3 Sensitive Keyboard Input Protection

	6.6 Summary

	7 Framework For Security Services
	7.1 Architecture
	7.1.1 Security Primitive
	7.1.2 Event Log

	7.2 Security Utilities
	7.2.1 Device Monitoring
	7.2.2 Hyper-firewall
	7.2.3 Software Runtime Attestation
	7.2.4 User Presence Attestation For Password Authentication

	8 Conclusion and Future Work
	8.1 Look into the Future

