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Social Correlation in Latent Spaces for Complex Networks

by

Freddy Chong Tat Chua

Abstract

This dissertation addresses the subject of measuring social correlation among

users within a complex social network. Social correlation is closely related to

the measurement of social influence in social sciences. While social influence

focuses on the existence of causal influence among users, we take a computa-

tional approach to measure correlation strength among users based on their

shared interactions. We call this social correlation.

To formally model social correlation, we propose a framework which con-

tains two major parts. The first part is that of representing users behavior in

a computationally efficient and accurate manner. For example, social media

users perform many kinds of actions online such as buying products, watching

videos and posting comments. The huge number of users’ actions logged over

long duration poses significant challenges for analysis. We propose both static

and temporal models to compress the huge amounts of users’ action data into

low dimensional representations. For the dynamic users’ action data, there is

the additional challenge of temporal sparsity where users have low amounts of

activities in some time periods. This results in the lack of information in some

time periods for modeling the temporal behavior of users. By exploiting the

transition of users behavior in different time periods, we obtained a smoothed

representation of users behavior in low dimensions.

The second part of modeling social correlation is to take the users’ behavior

in low dimensional representation and compare against the behaviors of other

users whom they had earlier interacted with. The dissertation first proposes

social correlation measurement for the static representation of users’ behavior.



It then extends the measurement to the temporal case by using only two time

periods and finally for the general case of multiple time periods using Granger

causality. With our proposed set of social correlation measurements one can

now build better recommendation systems that predict the missing or future

users’ behavior considering the influence among users in the complex networks.
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Chapter 1

Introduction

Unprecedented progress and innovation on web and mobile technologies pro-

vide consumers with a wide variety of choices. Today, online shopping provides

access to many different consumer items such as books, cameras and movies

to anyone with an internet connection. Consequently, sellers anywhere can

reach consumers anywhere, and consumers have access to increasing number

of products. The direct effect is that consumers have a harder time making

purchasing decisions, while sellers do not know what to sell and whom to sell

it to.

Some merchants, such as Amazon and Netflix, have put in place person-

alized recommender systems based on the individual user’s past transactions.

However, such approaches frequently suffer from the cold start problem: no

recommendation can be generated for users who have purchased very few items.

Therefore, while attractive retail opportunity lies in the long-tail products, it

is difficult for such products to be matched to the relevant users. Users need

an intelligent system that understands their personal preferences based on the

social communities they belong to.

In making purchase or adoption decisions, users rely on the social com-

munities to organize the complex information and content related to consumer

items on the Web. This is evident from the abundant amount of user-generated

1



CHAPTER 1. INTRODUCTION

content, such as tags, ratings, and reviews, all of which collectively aim to allow

items to be more easily discovered by other users. Social networks have become

a conduit for discovering relevant information. In platforms such as Twitter

and Epinions, users can choose to receive only content generated by other users

whom they follow or trust. A user’s choices are increasingly driven not only

by personal preferences, but also by the preferences of others in their social

networks. This gives rise to the phenomenon of social correlation, whereby

users who are socially related tend to make similar choices.

Social Correlation can be useful in many different applications including

diffusion of innovations, viral marketing, recommendation of new products,

measurement of influential users, and prediction of item adoptions, etc. [10,

11, 64, 74, 80, 92, 114]. The strength of social correlation links also allows

us to determine the cohesiveness of users, which can be used to divide users

into smaller communities [65, 77, 106]. Another related concept is that of

social influence which is commonly investigated by social scientists who are

concerned about proving the existence of causality between the actions of users.

However, in social correlation, we are concerned about the issues related to

computational efficiency and application of social correlation for predictions

or recommendations.

We use the term “users adopting items” to describe any action of a user

that captures her preferences. Examples of users adopting items include users

watching movies, users joining online communities [27, 29] and users producing

text content [28, 30]. This is also the most common type of user actions in the

users’ item adoption data that is commonly available, where items may refer

to any form of media.

In this dissertation, we propose a framework that allows us to compute

the social correlation between users based on their adoption behavior. The

framework as shown in Figure 1.1, requires two major parts which is addressed

in the following chapters.

2
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Figure 1.1: Social Correlation Framework

The first step requires us to obtain the adoption behavior of users as a vector

with manageable dimensions. For example, a user could choose to adopt M

different kinds of items but we will need to represent a user’s adoption using

only K dimensions where K is significantly smaller than M . The second step

for computing social correlation is to use the previously computed adoption

vectors as an input to various social correlation measures.

In each of these two steps, we propose new models that allow us to analyze
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both static and temporal data sets. Due to the generality of this framework,

one could combine different combinations of dimension reduction methods with

the social correlation measures. The social correlation values could then be

used for various applications in recommender systems, marketing of products

or derive social insights from the social data.

1.1 Users’ Behavior Representation

In users’ item adoption data, the number of possible items for users to adopt

is very large and can be in the order of millions. A naive way of represent-

ing users’ behavior is to use a vector with dimensions similar to the number

of possible items, with entries representing the raw frequencies of adoption.

Unfortunately, using high dimensional vectors for users’ behavior would lead

to expensive computations during the comparison between users. Compar-

ing only the raw frequencies would also be less informative since we ignore

the co-occurrence relationships between different items adopted by the users.

A widely adopted method of reducing the computational costs is to perform

dimension reduction on the users’ item adoption data to obtain vectorized rep-

resentations in lower dimensions such as order of tens or hundreds. Various

methods exist for performing dimension reductions on static and temporal data

sets.

Static Dimension Reduction:

1. Matrix Factorization (MF): Suppose the matrix Y ∈ RM×N represents

the original users’ items adoption data, where M represents the number

of items and N represents the number of users [89, 90]. By applying

dimension reduction on Y , we obtain C ∈ RM×K and X ∈ RK×N , where

K is significantly smaller than M or N . Each row in C represents the

item’s latent factor while each column in X represents the user’s latent

factor. We use the users’ latent factors as the compressed vectorized
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representations of the users’ behavior.

2. Non-negative Matrix Factorization (NMF): The NMF [62, 63] is a direct

extension of MF by enforcing non-negativity constraints on the entries of

the derived items’ and users’ factor matrices. There are qualitative ben-

efits for using NMF especially when we need to understand the semantic

meaning of items’ latent factors.

3. Latent Dirichlet Allocation (LDA): LDA [16] was derived from the inter-

section of Natural Language Processing and Bayesian Machine Learning.

In LDA, text documents are treated as a bag of words. Each document

is associated with a topic distribution and each word is associated with

a latent topic variable. The value of the latent topic variable is inferred

as a mixture of how likely the document will generate the topic and how

likely the topic will generate the word. We could also use LDA as a

dimension reduction method for users’ item adoption data. Each user

could be associated with a topic distribution indicating their interests

of behavior in adopting items. Similarly, each item could be associated

with a latent topic variable.

Temporal Dimension Reduction: Instead of only a single users items

adoption matrix Y , we now have multiple matrices Yt each at different time

step t. A direct extension of static dimension reduction methods on temporal

data is to apply any of those methods (MF, NMF, LDA) on each time step

independently of other time steps. But due to the randomization effects of the

MF, NMF and LDA algorithms and the temporal sparsity problem where some

users have low or no activity in some periods, applying dimension reduction

on each time step independently would lead to unrelated latent factors across

the different time steps. In this dissertation, we develop three different models

for representing users’ behavior.

1. Decay Topic Model (DTM): Decay Topic Model [28] extends LDA to
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obtain topic distributions of users at different time steps. The decay

factor is used to balance between the information that we have learned

about users in older time steps and the use of recent item adoptions

to obtain an updated knowledge of users’ behavior and preferences. In

order to simplify the temporal probabilistic model, we have chose to fix

the decay parameters.

2. Dynamic Matrix Factorization (DMF): DMF [30, 99] is the result of ex-

tending MF by using Linear Dynamical Systems (LDS) to linearly trans-

form the users’ behavior between time steps. The DMF approach pro-

vides the elegance of making less assumptions about how users evolve and

allow the algorithm to automatically smoothen the dynamics of users’ be-

havior between different time steps. However, a significant drawback of

the DMF model is that we are not able to learn the items’ latent factor,

users’ latent factor and dynamics matrix in an iterative unified manner.

3. Linear Dynamical Topic Model (LDTM): We propose LDTM to overcome

the fixed decay constraints in DTM. We merge the use of DMF and LDA

to obtain topic distributions of users at different time steps while allowing

for the automatic estimation of the decay parameters for each user. The

LDTM combines both benefits of DTM and DMF by estimating for all

the parameters in an iterative and unified manner.

1.2 Social Correlation

On predicting whether a user will adopt an item, a dot product of user latent

factor and item latent factor is sufficient to yield an estimate for the missing or

sparse relationship in the original data. However, our aim in this dissertation

is to draw upon the item adoptions to measure the amount of social corre-

lation between users. The derived social correlation could help us determine

the correlation of item adoptions between users, which could be used as an
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additional feature for recommender systems. Similar to the users’ behavior

representation, we also develop different social correlation measures for both

static and temporal data sets:

Static Social Correlation: The static social correlation measure is a

quantity between every pair of users that optimizes the likelihood of observing

the users item adoption data beyond non-social factors can capture. To model

an observed count of adoptions for an item m by a user n, the non-social

approach is to use only item m’s latent factor and user n’s latent factor, while

the static social correlation approach is to use item m’s latent factor, user n’s

latent factor as well as the latent factors of user n’s friends. The extent user

n would rely on each of her friends would depend on user n’s static social

correlation with each of them.

1. Sequential Static Social Correlation: The sequential model of static so-

cial correlation would first derive the items’ latent factors and the users’

latent factors using dimension reduction. After which we obtain the

social correlation measures as an independent step from the previously

obtained user latent factors. The static social correlation linearly com-

bines the user’s latent factors and her neighbors’ latent factors to obtain

a better quantitative explanation for the observation of item adoptions.

2. Unified Static Social Correlation: The unified model works on the same

basic principle as the sequential model with the exception that we itera-

tively obtain better estimates of both latent factors and social correlation

measures in a positive feedback loop. This cyclical approach allows us to

obtain parameters that give better likelihood estimates of the observed

data.

Temporal Social Correlation: A natural extension of static social corre-

lation is to use the temporal users’ behavior representation at every time step

to derive the social correlation between users with dynamic behavioral data.

7



CHAPTER 1. INTRODUCTION

We propose to first use two consecutive time steps to obtain the temporal so-

cial correlation for a pair of users and further generalize the temporal social

correlation model for a window of multiple periods.

1. Two-period Temporal Social Correlation: This approach uses the inter-

actions of users to co-adopt items. The basic principle is similar to static

social correlation where we use the users’ and neighbors’ latent factor

in previous time step and optimize the social correlation to model the

items adoptions in the next time step. Because of the adherence to pre-

viously defined static social correlation, the temporal social correlation

here could only utilize the adoption information in only two consecutive

time steps.

2. Granger-causal Temporal Social Correlation: Due to the limitations of

our earlier definition for the Two-period Temporal Social Correlation,

we propose to use Granger causality in order to generalize the temporal

social correlation for a variable number of time steps. The linear regres-

sion models used in Granger causality also allows us to predict the future

behavior of users based on the behavior of the users’ neighbors.

1.3 Contributions

We make the following contributions in this dissertation:

1. We propose a Social Correlation Framework that incorporates social cor-

relation in the generation of users’ item adoptions for both static and

temporal data sets. For static data sets, we propose novel static social

correlation measures from the use of existing methods of static dimension

reduction. For temporal data sets, we propose novel temporal dimension

reduction techniques to use with existing causality measures.

2. In static social correlation, we propose two generative models: Sequential
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Generative Model and Unified Generative Model. The Sequential Gener-

ative Model learns in two sequential steps, first employing LDA to learn

the parameters of the user and item latent factors, followed by learning

social correlation based on those parameters. The Unified Generative

Model learns social correlation simultaneously with the user and item

latent factors in a principled, and unified way. The framework and two

generative models are novel contributions over the previous state-of-the-

art that relies only on user and item latent factors (e.g., LDA).

3. In temporal social correlation, we model how a user’s latent factors

may change over time. Our proposed model, called Decay Topic Model

(DTM), measures the personal topic preferences of a user at every time

step. This model is novel in that unlike previous topic models (see Sec-

tion 2.3) where documents have fixed topic distributions and only the

topics may change, in our model users may have different affiliations to

topics over time. Furthermore, a decay factor is included in the topic

model to moderate the rate of change in topic preferences of users so

as to create smooth transition of topic preferences as well as to address

missing user interaction data.

4. Given the interaction links among users and topic preferences determined

by decay topic model, we propose Two-period Temporal Social Correla-

tion that measures how a user correlates with other users in producing

or adopting content. The temporal social correlation is topic-based and

it considers the topic preferences of a user in the current time step and

other users’ in the previous time step. This notion of changing temporal

social correlation of a user that also takes into account the changing topic

preferences of others that the user depends on, is a novel concept.

5. We propose Dynamic Matrix Factorization (DMF) based on Non-Negative

Matrix Factorization (NMF) and Linear Dynamical Systems (LDS), and
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apply it to solving several prediction tasks involving adoptions at differ-

ent time steps as well cumulated adoptions across multiple time steps.

We also derive a few variants of DMF based on the choice of item fac-

tor scaling and dynamics matrix and show how they can be used in the

different adoption prediction tasks.

6. We propose a novel approach called Linear Dynamical Topic Model

(LDTM) that merges the benefits of DMF and DTM. The proposed

LDTM model represents user adoption behavior as topic distributions at

different time steps and we track the evolution of users’ topic distribution

using Linear Dynamical System (LDS). By formulating the dynamics of

parameters among different time steps using LDS, we obtain a dynamics

matrix An,t for each user n, which allows us to automatically decay their

prior adoption behavior on every time step. To the best of our knowl-

edge, such estimation of dynamics matrix An,t has not been proposed in

any topic models.

1.4 Organization of the Dissertation

The research written in this dissertation is an aggregation of several research

papers we have written. We first discuss some research that are related to

our topic in Chapter 2. Then we begin with our research on static data sets

in Chapter 3 [27, 29] which require the use of static dimension reduction and

static social correlation. Success on static data sets gave us confidence to

progress on to dynamic data sets in Chapter 4 [28], where we explored the

use of Decay Topic Model (DTM) and Two-step Temporal Social Correlation.

Because of the deficiencies of DTM, we investigated the feasibility of Dynamic

Matrix Factorization (DMF) on the users item adoption problem in Chapter 5

[30]. Chapter 5 also highlighted the differences between the users item adoption

problem and users rating problem. Finally, we pool our accumulated knowledge
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from the prior chapters to derive the Linear Dynamical Topic Model (LDTM)

and Granger-causal Temporal Social Correlation in Chapter 6. Chapter 7

concludes this dissertation and set the stage for some promising future work.
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Chapter 2

Related Work

We review some related concepts and prior work that motivate our research

in this dissertation. We would first review the classical concept and existing

research on social influence, followed by existing algorithms for performing

dimension reduction on static and temporal data sets. We would then review

existing works that focus solely on estimating the degree of causality in general

time series data. We also include a section to mention some related works that

has used some of these dimension reduction and influence concepts but in a

manner that is significantly different from our approach. We end this chapter

by highligting the main differences between our dissertation and the research

in existing literature.

2.1 Social Influence

Social influence can take on different meanings depending on the context of

discussion. We base our discussion of social influence on users’ items adoption

data while preserving the key concepts common to other domains. We say that

user x socially influences user y only if user y adopts an item because user x

has adopted the item. This simple statement has several implied conditions:

1. Temporal: It implies that we can observe user x has adopted the item

before user y.
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2. Interaction: User x has interacted with user y for y to know that x has

adopted the item. y then follows the action of x by adopting the same

item.

3. Confounding: User y has adopted the item solely because of x’s adop-

tion. The term because suggests a notion of causality while solely implies

that no other factors caused the adoption. If other factors exist, then

these factors will confound our belief in the presence of social influence

between two users.

All of these conditions must be satisfied before we can conclude the presence

of social influence between two users.

The temporal condition is simply an issue of data availability and given

that we have arrived at the age of big data, it will be increasingly easy for us

to meet this condition.

The condition of observing an interaction between two users is also an is-

sue of data availability, that is, whether x has communicated with y through

text messaging on social media platforms. Crandall et al. [32] used the dis-

cussion activities between Wikipedia articles to model the social interactions.

However, due to privacy concerns, researchers often do not have access to the

contents of commuication between users in social media. Most of the social

influence research [5, 6, 7, 17, 61, 76] overcomes the lack of interaction data by

assuming that users who are socially connected at the point of item adoption

have interacted with one another. While not entirely true, this is generally

accepted within academic research.

The most difficult condition to meet is that of eliminating all other external

(confounding) variables that would confound our belief in the existence of

influence between two users. That is, given that we have already satisfy the

temporal and interaction conditions, we would have to prove that user y has not

adopted the item because of the item’s inherent attributes or attractiveness.

For example, the presence of homophily between users would confound the
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studies of social influence. Several studies [5, 6, 7, 32, 61, 76] have pointed out

that socially connected users tend to have common item adoptions due to the

effects of homophily; users with similar attributes or preferences tend to be

socially connected and would adopt the same items regardless of any existence

of social influence.

Fond and Neville [61] established that correlations between social connec-

tions and common item adoptions is a result of two processes that happen

alternatively over a period of time: “homophily” causing users with similar at-

tributes to form social connections, and “influence” causing users with social

connections to become more similar in attributes.

To overcome the problem of confounding variables for proving the existence

of social influence, researchers randomly group users into two groups. One

group would receive the influence (treatment) while the other group functions

as the control group that does not receive the influence (treatment). This Ran-

domization technique is often used in physics to find the cause of a phenomenon

and medicine to prove the effectiveness of a drug. The purpose of randomiza-

tion is to minimize the effects of confounding variables present in every user.

When randomized users are placed together in a group, the assumption is that

the diversity of users’ characteristics would collectively cancel-out the effects

of their confounding variables on one another. The reliability of randomization

goes beyond the scope of this dissertation but readers may refer to [46, 87] for

more information.

The randomization technique is useful in cases where it is easy to manip-

ulate which users would receive the treatment. Such users may belong to an

online website where researchers have access to manipulate the website, or users

may be recruited to participate in experiments on a voluntary basis. Aral and

Walker created a Facebook application to test whether broadcast or personal-

ized messages have any social influence effects [6] on the friends of recruited

users. Bond et al. collaborated with Facebook Inc. and conducted experiments
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on Facebook users to study whether online political messages could influence

the voting decisions of users [17]. Muchnik et al. studied how the votes of

news articles affected the articles’ discussions [76].

When researchers do not have access to manipulate online web systems or

recruit users, the randomization technique cannot be applied to obtain data for

social influence analysis. An alternative to randomization is to perform Quasi-

Experiments on a set of collected data to simulate effects of randomization [91].

A classic example of Quasi-Experiment is the Matched Sampling technique

proposed by Rosenbaum and Rubin [85]. The Matched Sampling technique

works by finding pairs of users with similar characteristics and applying the

social influence (treatment) to one of the user in each pair, while the other

user who does not receive the treatment functions as the control.

Aral et al. adapted the use Matched Sampling technique in Yahoo! Messen-

ger data for distinguishing between influence and homophily in the adoption

of a mobile service application (Yahoo! Go) [7]. Aral et al. first calculated

the propensity of adoption based on the inherent characteristics of users, then

matched pairs of users where one has adopter friends while the other has no

adopter friends. In each pair, a user with adopter friends is said to have been

socially influenced if her counterpart without adopter friends did not adopt

the item even though both has similar propensity of adoption.

Anagnostopoulos et al. [5] proposed the Shuffle Test in order to distin-

guish influence from homophily. The Shuffle Test hypothesizes that the order

of adoptions of a users’ neighbors play a role in influencing whether a user

eventually adopts the item. If shuffling the order of adoptions for a users’

neighbor does not change the propensity of adoption, then it indicates that

there is no influence that leads to the adoption of the item for the user.

To summarize, much of the Social Influence research has revolved around

the following:

1. Adoption of a single item.
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2. Satisfaction of the confounding condition; elimination of confounding

variables for proving existence of causality.

The research we pursue in this dissertation is different in several ways.

We utilize the set of items adopted by users as opposed to a single item.

We propose algorithms and models to translate the high dimensional set of

items users adopt into low dimensional representations for users’ behavior and

preferences. These algorithms and models work both on static and temporal

data sets.

While existing works prove the existence of social influence in the adoption

of item for users, the social influence is a discrete value to express the presence

or absence. Our dissertation proposes methods to derive a correlation weight

between every pair of users which determines how correlated their adoption

behavior are over time.

2.2 Static Latent Factor Models

We discuss some existing latent factor models for static dimension reduction.

There are two dominant families of latent factor models, Topic Models and Ma-

trix Factorization (MF). Topic Models obtains the probabilistic latent factors

by maximizing for the log-likelihood, while Matrix Factorization minimizes for

the least squared error to obtain latent factors in the real-space. Because we

use and extend Topic Models for our research in Chapters 3, 4 and 6, it would

be necessary for our readers to have a basic understanding of Topic Models

[9, 16, 47, 84] in the original formulation, Latent Dirichlet Allocation (LDA)

[16]. Because Matrix Factorization and its extensions [62, 63, 89, 90] are used

in our research in Chapters 5 and 6, we would also want our readers to have

an overview of MF.
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Topic Model

LDA was formerly conceived as a way of modeling unigram words in a doc-

ument corpus [16]. Each document is seen as a collection of words and the

words are generated as a result of the topics each document contains. Using

documents and words as analogy, we view users in the adoption graph as doc-

uments, the items they adopt as words and the latent factors of the items as

the distribution of topics. Figure 2.1 refers to the graphical notation of LDA.

The generative process for LDA is as follows,

ϕ

vθ zα

β

|U |

|Z|

|Vu|

Figure 2.1: Latent Dirichlet Allocation in Plate Notation

1. Each user u has a latent factor distribution θu which indicates their pref-

erences for a set of topics. θu follows a symmetric Dirichlet distribution

with hyper-parameters α.

θu ∼ Dirichlet(α)

2. For each item v that u adopts, u first chooses from a set of topics based

on their topic preferences,

zv,u ∼Multinomial(θu)

3. Then from the latent factors of item distributions Φ, u chooses the item
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v from as follows:

ev,u ∼ Φ|zv,u

where Φ follows a symmetric Dirichlet distribution with hyper-parameters

β, as follows:

Φ|zv,u ∼ Dirichlet(β)

Solving for these parameters is fundamentally a likelihood optimization prob-

lem subjected to the probabilistic constraints. Blei et al. showed that the

parameters can be estimated using variational expectation maximization [16],

while Griffiths and Steyvers subsequently showed that LDA can be estimated

easily using Gibbs Sampling [47].

But LDA only models the dyadic relationship between users and items.

Several authors [9, 84] have extended LDA to relate the user - user relationships

with users - items relationships. Balasubramanya and Cohen [9] had proposed

Block-LDA that unifies the Mixed Membership Stochastic Blockmodels [4, 78]

and LDA to jointly model the user to user relationships.

The Mixed Membership Stochastic Blockmodel (MMSB) proposed by Airoldi

et al. [4] uses probability distributions to denote that a user could belong to a

set of social communities each with varying degree of memberships. This is in

contrast to the other community detection algorithms [66, 77] which assumes

that each user only belongs to one community. But MMSB models the Bern-

uolli distribution of all N2 observed and unobserved edges. As a result, MMSB

is not able to utilize the sparse structure of social networks and could only be

used to fit networks of smaller scale. To address the sparse structure of social

networks, Parkkinen et al. [78] improvised by modeling the users at both ends

of the edges using a Multinoimial distribution rather than the Bernuolli prob-

ability of whether the edge is observed. This allows for the social network to

be modeled on the sparsedly observed data, which greatly improves the com-

putation cost as compared to MMSB [4]. However, Blockmodels [4, 78] only
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models user to user relationships and ignore the relationship between users

and items.

Building on the sparse Blockmodel of Parkkinen et al. [78], Balasubra-

manya and Cohen [9] jointly model the sparse relationships between users and

the co-occurrence of users and items in documents. For example, text docu-

ments contain words and some of these words refer to names of users. Users

who co-occur together in the same documents are assumed to be socially re-

lated and their social relations are modeled by sparse Blockmodel [78]. In our

case, users are the documents who adopt items modeled as words in LDA.

Users do not adopt other users and items do not have any link between them.

Rosen-Zvi et al. proposed the Author Topic Model [84] to discover the topic

distribution of authors for a document. However, it assumes each word in a

document comes only from one author, who independently generates topics

without any dependency on another author.

We extend LDA to include the notion of social correlation between users.

The social correlation is calculated based on the users’ and their friends’ topic

distributions, conditioned on the set of items adopted by the users.

Matrix Factorization

Although Matrix Factorization (MF) has not been widely applied for model-

ing users’ items adoptions, MF has been largely successful in modeling users’

items ratings. Similar to LDA, MF represents the preference of users and the

characteristic of the items using low rank vectors, in real space. The general

model of matrix factorization (MF) is given as follows, suppose we have an

observe user item matrix represented by Y ∈ RM×N , where M represents the

number of items and N represents the number of users. MF derives C ∈ RM×K

and X ∈ RK×N , where K is significantly smaller than M or N . Each row in

C represents the item’s latent factor while each column in X represents the

user’s latent factor. To obtain C and X, MF seeks to find the matrices by
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minimizing the following least squares error,

∑

m,n

(ym,n − c
′
m · xn)

2

Salakhutdinov and Mnih introduced the first probabilistic matrix factor-

ization (PMF) with Gaussian observation noise [89], and later extended it

to Bayesian Probablistic Matrix Factorization (BPMF) by providing a full

Bayesian treatment through the Markov Chain Monte Carlo (MCMC) algo-

rithm [90]. These methods produce good predictive accuracy and can scale up

to large/sparse static data. The additional feature in PMF is to addition of a

Gaussian noise,

ǫ ∼ N (0, σ2)

Such that the probabilitic of observing ym,n is given by,

p(ym,n|C,X, ǫ) = N
(

c′m · xn, σ
2
)

PMF obtains the parameters by maximizing the log likelihood using stochastic

gradient descent while BPMF adds additional Gaussian and Wishart priors to

use the Gibbs Sampling approach.

One well-known MF approach is Non-negative Matrix Factorization (NMF)

[62, 63] which have been proposed to model image pixels and encoding vari-

ables, as well as documents and words. Based on our literature survey, we

found that NMF has not been used for adoption recommendation where a user

can adopt items with quantities at different points in time. The algorithm

for obtaining NMF latent factors is similar to the MF with the addition of

non-negativity constraints on the parameters. Chapter 5 [30] explores the use

of log-barrier approach for non-negativity. An advantage of using NMF is the

ease of interpretation since all the parameters are non-negative. NMF could be

used as a substitute for topic models when LDA is not appropriate for certain
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kinds of data representation.

Similar to Balasubramanya and Cohen [9], Ma et al. [73, 74] has also

proposed a Matrix Factorization based model that jointly models the users’

items ratings and the users’ social network. The model from Ma et al. [73,

74] extended from the Bayesian Probabilistic Matrix Factorization (BPMF)

by adding latent social factors. They jointly model two matrix factorization

problems, 1) the user item rating values and 2) the user to user social links

while adding constraints that the two factorization problems share similar user

latent factors. Instead of defining a latent factor model for rating prediction,

we model item adoption. We also avoid the additional complexity of modeling

the second factorization problem by directly inferring the social correlation

through the item adoptions only. Our social correlation represents how closely

related the items adoptions of two users are, while Ma et al. derives a weight

to model the probability of a social link between two users.

2.3 Dynamic Latent Factor Models

To derive the temporal behavioral representation of users, we utilise temporal

dimension reduction to obtain low ranked vectors for the users’ item adoptions.

In both Chapters 4 [28] and 5 [30], we propose our variants of temporal dimen-

sion reductions by extending LDA and MF. Then in Chapter 6, we merge the

proposed models from Chapters 4 and 5. Therefore, it would be necessary for

us to go through some prior work in temporal models to highlight the differ-

ences in our proposed models and the contributions we make to the academic

community.

There are two forms of Dynamic Latent Factor Models. The first form seeks

to obtain more accurate latent factors in the temporal domain by obtaining

latent factors that globally approximates the observed data [3, 15, 56, 57, 99,

109, 115]. The other form known as online learning focuses on the efficiency of
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handling real time streaming data by maximizing the likelihood of the latent

factors to fit the observed data from the most recent time window only [2,

21, 22, 41, 48, 75, 88, 107]. We are concerned with accurate latent factor

representations and so we will not elaborate further about online learning,

instead, we will give an overview of the various existing dynamic models in the

literature.

Blei et al. proposed Dynamic Topic Model (DTM) [15] for text documents.

DTM was extended from LDA to model the evolution of words within topics,

i.e. The words which are prominently used in a particular topic at a particular

time step will be replaced by a different set of words at a later time. However,

our requirement is slightly different. We are not concern with the evolution of

topic word distributions, instead, we are concern with the evolution of authors’

topic distribution. The evolution of authors’ topic distribution has not been

considered before using LDA because LDA is mainly used for modeling text

documents. Unlike human users, text documents remain static over time, so

DTM which was extended from LDA does not consider the evolution of users’

behavior in the way we do. When we apply LDA for modeling users’ behavior,

the users replace the role of documents which adopted items in place of words.

In our case, we assume that topic item distributions remain static over time

while the human users’ evolve their preferences over time. Since the generative

process in DTM does not meet our requirements, we are therefore motivated

to propose our variants of Dynamic Latent Factor Models based on LDA and

MF.

For modeling users’ behavior, Ahmed et al. [3] used an exponential decay

function to model the decay of users’ search intent on search engines. But they

assume that the parameters of the decay function remain constant for all topics

and all users. On the contrary, we assume that there is a decay parameter for

each topic and that the decay parameters vary for each user. We aim to find a

way in order to estimate the decay parameter automatically and representative

23



CHAPTER 2. RELATED WORK

of the users’ temporal behavior.

To automatically decide the natural decay of each topic, Wang and Mc-

Callum [109] have proposed a non-Markovian approach to model the trend

of topics evolution. Wang and McCallum approach is to associate additional

Beta distribution to each topic in order to generate the time stamps of the

words sampled from the topics. But this approach assumes that each topic

is only relevant for each specific time period and does not directly model the

evolution of users’ behavior.

Since latent factors are also widely used in the collaborative filtering do-

main, several authors have proposed dynamic latent factor models for handling

temporal data [56, 57, 99, 115]. The collaborative filtering research has always

been concerned with predicting users’ items ratings so their models cannot be

directly applied for modeling users’ items adoptions. However, due to simi-

larity in the fundamental concept of dynamicity in latent factors, we give an

overview of these work here.

Koren [56, 57] developed TimeSVD++ to address temporal dynamics through

a specific parameterization with factors drifting from a central time. Koren

assumed that users’ items ratings remain static over time since users do not

rate the same items in different time periods. However, in users’ items adop-

tions scenario, users could adopt the same items at different time periods with

different frequency.

Xiong et al. [115] extends the static case of users’ items ratings from a

RM×N matrix to a RM×N×T tensor where N represents number of users, M

represents number of items and T represents number of time steps. Then three

set of latent factors are derived from tensor factorization as opposed to only

two set of latent factors in the static matrix factorization case. The additional

set of latent factor is known as the time latent factor and can be used to derive

the temporal users’ and items’ latent factors from its multiplication. But the

time latent factor in tensor factorization assumes that the items’ latent factor
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evolves in the same way as the users’ latent factors. However, we require the

items’ latent factor to remain static over time while only allowing the users’

latent factors to change.

Sun et al. [99] proposed Dynamic Matrix Factorization (DMF) which uses

Linear Dynamical System (LDS) [40, 86, 93, 95]. The centerpiece of this work

is a dynamic state-space model that builds upon probabilistic matrix factor-

ization in [89, 90] and Kalman filter/smoothing [49, 82] in order to provide

recommendations in the presence of process and measurement noises. Al-

though the LDS component of DMF is able to model the evolution of users’

behavior, the latent factors obtained by Sun et al. [99] is unbounded in the

negative domain, and so will not be able to provide intuitive interpretation on

the preferences of users’ adoption behavior.

All of these prior work fails to satisfy the following requirements that are

necessary for us to derive the temporal social correlation measures:

1. They do not explicitly model the users’ items adoption data.

2. They do not obtain non-negative latent factors for easy interpretation of

the users’ behavior.

3. They either do not assume that users’ behavior can decay over time or

does not show how the users’ behavior can evolve over time.

We are therefore motivated to propose our own temporal models during the

research process of this dissertation. We first proposed our own Decay Topic

Model in Chapter 4 to model users’ decay and obtain preliminary results to

validate our temporal social correlation. We then combine the use of Non-

negative Matrix Factorization (NMF) for parameter estimation and proposed

different variants of DMF for different adoption scenarios in Chapter 5. We

show that Linear Dynamical Systems (LDS) which was extended to Dynamic

Matrix Factorization (DMF) by Sun et al. [99], has parameters that can first

be solved by NMF to satisfy the non-negativity constraints. We use NMF
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for obtaining the item latent factor matrix and initial values of the users’

latent factors. Then we apply Kalman filtering and RTS smoothing for each

individual user to obtain better estimates of their latent factors. Finally, we

merge LDA and LDS to obtain the Linear Dynamical Topic Model (LDTM)

in Chapter 6. LDTM is able to model the users’ item adoption data, obtain

probabilistic (non-negative) latent factors for characterizing users’ behavior

over time and automatically infer the optimal decay parameters.

2.4 Information Cascades and Diffusion of In-

novation

There are alternative concepts of Influence that is different from what we

described in Section 2.1. These prior research loosely relate the concepts of

information cascades, propagation and diffusion of innovation with influence

without identifying the homophily and selection effects.

Kempe et al. [51] proposed two diffusion models which led to their use

in many other influence work [24, 25, 42, 43]. The two models are known

as the Independent Cascade Model (ICM) and the Linear Threshold Model

(LTM). In these models, a user is said to be diffused if they have adopted the

item after being influenced by their neighbors. ICM assumes that diffusion

can take place from a user to another user if there exists a path of diffused

users between them. Whether a user decides to adopt depends on LTM, which

states that every user has a threshold of adoption and have a certain amount

of pre-defined influence probability on other users. A user adopts when the

influence from their neighbor exceeds some threshold.

To demonstrate the application of ICM and LTM, Kempe et al. [51]

study the problem of Influence Maximization, which is to find an initial set of

adopters who can propagate the message throughout the network to maximize

the number of adopters after a certain duration of time.
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Chen et al. [24, 25] subsequently extended the influence maximization

problem by proposing improved algorithms to find the initial set of seed users.

But [24, 25, 51] assumed that the probability of influence between users are

a pre-defined value specify using the basis of prior knowledge. Goyal et al.

[43] then proposed the estimation of probabilities between users call this the

General Threshold Model.

Instead of inferring for the influence probabilities, Gomez-Rodriguez et

al. [42] extends the Independent Cascade Model to address the problem of

inferring the hidden edges in a directed social network based on the observation

of infected nodes in the network. Cosley et al. [31] extended ICM and LTM

to include temporal information and call the new measure as K-exposure to

estimate influence and showed that such influence also exists in Wikipedia

communities.

In a related domain which studies diffusion of innovation, Bass proposed a

diffusion model at the macro perspective for predicting the number of adopters

for an item [10]. The model assumes two kinds of users in the market, imita-

tors and innovators. Innovators adopt items independently and influence the

imitators to adopt the items. But the Bass model predicts item adoptions at

a macro and aggregated level across all users without quantifying the micro

interactions for every pair of users. Luu et al. [72] extended Bass Model to

take into account of an exponential model. Yang and Leskovec [117] also model

diffusion for an implicit network by using a nonparametric diffusion model.

2.5 Other Influence

Another simple way of measuring influence is to count the amount of text that

has been duplicated [97], number of retweets in Twitter [23, 83, 118], or the

diffusion of URL by the original user who posted it [8, 23].

Snowsill et al. [97] defined influence in a network when a user copies the
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text from another user for producing their content. Snowsill et al. uses a hier-

archical tree structure to represent text, then extended the NetCover algorithm

for measuring the amount of duplication.

Cha et al. [23] defined influence of a user in Twitter network as an ag-

gregated measure of the number of followers a user has, the number of times

the user is retweeted and the number of mentions in the tweets of other users.

Romero et al. [83] extends the HITS algorithm [54] to model influence and

passivity based on retweets. Zhang et al. [118] uses the retweeting behavior as

a measure of influence to determine whether locality plays a role in the amount

of influence.

Bakshy et al. [8] studied the effectivess of diffusion on the Twitter network

and the costs involve in employing users help in disseminating a message.

Bakshy et al. studies conclude that every user on the network is able to diffuse

the message to a certain extent and it may not be the most cost effective in

seeking only the prominent diffusers on the network. Companies will do better

in their marketing campaign in finding a large initial set of average diffusers

to spread the message.

However, these prior works consider the cascade or diffusion of items in an

explicit manner. As a result, they could either handle a single item during the

cascading process or require high computation costs for a very large number

of items during diffusion. To model a set of items for diffusion or inferring

influence, many authors [33, 36, 39, 70, 71, 100, 101, 104, 110, 111]. have

turned to the use of Topic Models for dimension reduction.

Cui et al. proposes an influence matrix to suggest what items a user should

share to maximize their individual influence in their own community [33]. Their

matrix measures influence between users and items while ours measure between

users and users.

Gerrish and Blei extended the dynamic LDA to identify the most influential

documents in a scientific corpus [39]. But dynamic LDA assume that the
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documents’ latent factors evolve only with small perturbations while words’

latent factors evolve over time. Gerrish and Blei’s work differ from ours because

we allow greater variability in users’ (documents’) latent factors and assume

that items’ (words’) latent factors remain constant.

Similar to Romero et al. [83], Weng et al. [111] extended Pagerank [19]

to include topic models in the computation of influence between users. Apart

from [39, 104], all the prior works which uses dimension reduction does not use

the time information when inferring influence. In that aspect, our dissertation

goes beyond the norms by considering temporal users’ items adoption and

proposing several temporal models.

A notable challenge to what we do is the work proposed by Ver Steeg and

Galstyan [104]. Ver Steeg and Galstyan also use Topic models to reduce the

dimensionaity of item adoptions follow by an information theoretic measure

of causality, known as Transfer Entropy, for measuring social influence. An

expression1 for measuring Transfer Entropy between two time series of i and

j is given by

TF (j → i) = I(it; jt−1|it−1) = H(it|it−1)−H(it|it−1, jt−1)

where H is entropy, a measure of uncertainty. When TF (j → i) > 0 it implies

that jt−1 reduces our uncertainty about it. The reduction in uncertainty can be

seen as an additional feature which we could use in a statistical model to make

future predictions of i. As a result, Transfer Entropy is used as a measure of

influence in [103, 104]. The algorithm to estimate Transfer Entropy is based

on the nearest neighbor approach developed in statistical physics [58, 59, 105].

But there are significant drawbacks to Ver Steeg and Galstyan [104]. This

approach makes no assumption on the joint distributions of the variables, so

it requires many time steps for achieving accurate estimation. It also ignores

1Transfer Entropy is also known as Conditional Mutual Information I(X;Y |Z) and is
defined as

∫

z∈Z
p(z)DKL[p(X,Y |z)||p(X|z)p(Y |z)]. The expression we show is derived from

the definition and provide insights for its application as a causality measure.
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the temporal correlations between users’ topic distributions and the users’ be-

havior evolution. We distinguish our work in Chapter 6 by proposing a Linear

Dynamical System (LDS) approach to linearly correlate the users’ topic distri-

butions, and using Granger causality that likewise assumes linear relationship

among variables. Due to the additional linear assumption imposed by the

Granger causal measures, it requires less number of time steps for us to derive

an accurate measure of social correlation between the users.
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Chapter 3

Social Correlation for Static

Data

Users face many choices on the Web when it comes to choosing which product

to buy, which video to watch, etc. In making adoption decisions, users rely

not only on their own preferences, but also on friends. We call the latter

social correlation which may be caused by the selection and social influence

effects. In this chapter, we focus on modeling social correlation on users item

adoptions. Given a user-user social graph and an item-user adoption graph, our

research seeks to answer the following questions: whether the items adopted

by a user correlate to items adopted by her friends, and how to model item

adoptions using social correlation. We propose a social correlation measure

that considers the degree of correlation from every user to the users friends, in

addition to a set of latent factors representing topics of interests of individual

users. We develop two generative models, namely sequential and unified, and

the corresponding parameter estimation approaches. From each model, we

devise the social correlation only and hybrid methods for predicting missing

adoption links. Experiments on LiveJournal and Epinions data sets show that

our proposed models outperform the approach based on latent factors only

(LDA).
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3.1 Objectives

In this chapter, we aim to address how social correlation plays a role in user

adoption of items. Here, item adoption could refer to various actions such as

buying a product, writing a product review, joining a group, etc. We model

the adoption relationship between users and items as an undirected bipartite

adoption graph Ga(V, U,E) where V represents a set of items, U represents a

set of users and E represents the undirected adoption links between V and U .

We also assume as input a social graph Gs(U, F ), where U represents the same

set of users as in Ga and F represents the social links between users. A directed

edge exists from u1 to u2 if u1 befriends, trusts, or follows u2. In both Ga and

Gs, we only require the binary expression of the links (present or absent), and

do not use any other form of information such as ratings or review text to keep

our model simple and general.

Given Ga and Gs, we seek to address the following problems:

• Learning the extent to which a user relies on social correlation, as opposed

to her personal preferences, in making adoption choices. For a given

social link (u1, u2) ∈ F , we would like to learn a weight that reflects the

extent to which u1’s latent factors correlate with the latent factors of u2.

• Predicting the items that a user is likely to adopt based on social corre-

lation. For a given pair of user u and item v, we would like to learn the

probability that an adoption link (u, v) would exist in E.

Latent space approaches can model a user’s personal preferences [55]. One

such model is Latent Dirichlet Allocation (LDA) [16], which learns a set of

latent factors by reducing the adjacency matrix of the adoption graph into

two sub components: one that reflects the importance of each latent factor

to users, and another that does the same for items. However, this approach

assumes that all items adopted by a user can be fully explained by the user’s

and items’ latent factors.
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Figure 3.1: Example Scenario of Adoption (solid) and Social Links (dotted)

Consider the example scenario in Figure 3.1. There are two clusters of

items: {v1, v2, v3} and {v4, v5, v6}. Suppose that each cluster groups together

items with similar latent factors. Users u1 and u2 have similar preferences,

adopting items in the first cluster. Users u3 and u4 adopt items in the sec-

ond cluster. Given that items in a cluster share similar latent factors, these

adoptions can largely be explained by the users’ having similar latent factors.

However, u2’s adoption of v4 cannot be clearly explained by latent factors

alone. Taking into account u2’s social links (dotted lines) to u3 and u4, we say

that in the case of v4, u2 depends on the preferences of her friends u3 and u4.

We call this the social correlation.

We propose to model social correlation directly using latent space ap-

proaches. Some users may primarily rely only on their own latent factors in

making adoptions. We say that these users have high self-dependency. How-

ever, most users rely on a mixture of self-dependency and social correlation.

This is modeled by a user-user social correlation matrix C. A user u1 therefore

adopts an item based on her preferences on latent factors of the item with a

probability proportional to cu1,u1
∈ C representing Self-Dependency, and based

on another user u2’s latent factors with probability equal to cu1,u2
∈ C. Here,
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∑

u cu1,u = 1. Hence, we seek to learn both a user’s latent factors and the

social correlation matrix from the given adoption and social graphs.

This chapter is organized as follows:

1. We incorporate the social correlation matrix C in the generation of user-

item adoption links. We propose two generative models: Sequential Gen-

erative Model and Unified Generative Model. The Sequential Generative

Model learns C in two sequential steps, first employing LDA to learn

the parameters of the user and item latent factors, followed by learning

C based on those parameters. The Unified Generative Model learns C

simultaneously with the user and item latent factors in a principled, and

unified way. The two generative models are novel contributions over the

previous state-of-the-art that relies only on user and item latent factors

(e.g., LDA).

2. In our proposed generative models, the weights in the social correlation

matrix are parameters to be learned. Hence, we do not rely on a so-

cial graph with pre-assigned link weights. This is essential because the

weights are not always known. Even if some form of weights may be

known (e.g., friendship strength), they may not accurately reflect the

dependency weights among users for all domains of interest.

3. Through comprehensive experimentation on two real-life datasets (Live-

Journal and Epinions), we establish that: (a) the proposed generative

models outperform the approach that relies on latent factors alone, (b)

the social correlation weights help to identify the users who will benefit

most from social dependencies, and (c) the Unified Generative Model

outperforms the Sequential Generative Model, which we attribute to the

joint learning of parameters of the former generative model.

The rest of the chapter is organized as follows. We establish the existence

of correlation between adoption and social links in Section 3.2 through hypoth-
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esis testing. In Section 3.3, we introduce the social correlation measure that

is derived from the users’ latent factors and their item adoptions. In Sections

3.4 and 3.5, we describe two generative models: Sequential and Unified re-

spectively, and show how their parameters can be learned efficiently. We then

proceed to evaluate our methods in Section 3.6. Finally we end this chapter

in Section 3.7.

3.2 Correlation of Social & Adoption Links

We justify our research motivation by first establishing that a correlation exists

between social and adoption links, i.e., whether users with social links also

tend to share common adoptions. Singla and Richardson [96] had also earlier

established that correlations exist between friends on an online social messaging

network. We investigate social correlation by performing hypothesis testing on

two real world data sets obtained from LiveJournal, an online community site

and Epinions, a product review site.

The social graph in LiveJournal consists of friendship links when a user

indicates that another user is her friend [19]. These social links are directional

and not necessarily reciprocal. An adoption link exists between a user and a

community if the user has joined the community. The LiveJournal data set was

obtained by crawling livejournal.com to collect user profile pages. The initial

crawled set corresponded to approximately 20% of active users in LiveJournal.

We only retain the users who have at least one social link and items who have

at least one adoption. The size of the data sets is given in Table 3.1. In total,

there are close to 16K users and 78K items for LiveJournal.

The social graph in Epinions consists of trust links formed when a user

indicates her trust on another user. An adoption link exists between a user

and a product if the user has written a review for the item for Epinions. We

collected the Epinions data set by crawling the Epinions site, focusing only on
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the Videos & DVDs category. For both data sets, we only retain the users who

have at least one social link and items who have at least one adoption. There

are 13K users and 7K items for Epinions (see Table 3.1).

Table 3.1: Data Size

Data set: LiveJournal Epinions
no. of users |U |: 16,376 12,895
no. of items |V |: 78,129 6,543
no. of adoption links |E|: 63,160 83,763
no. of social links |F |: 476,227 178,659

Table 3.2: LiveJournal : Contingency Table For Pair of Users with Social and
Adoption Links

No Common Has Common Total
Adoption Adoption

No Social Link 131,281,395 2,485,417 133,766,812
(131,126,176) (2,640,636)

Has Social Link 150,316 161,372 311,688
(305,535) (6,153)

Total 131,431,711 2,646,789 134,078,500

Table 3.3: Epinions : Contingency Table For Pair of Users with Social and
Adoption Links

No Common Has Common Total
Adoption Adoption

No Social Link 80,122,890 2,874,403 82,997,293
(80,103,462) (2,893,831)

Has Social Link 112,575 24,197 136,772
(132,003) (4,769)

Total 80,235,465 2,898,600 83,134,065

We perform hypothesis testing using the Fisher Exact Test [37]. Our null

hypothesis H0 states that the probability of two users having a common adop-

tion is independent of whether the two users have a trust link between them.

Rejecting the null hypothesis implies accepting the alternate hypothesis H1,

which states that the probability of common adoption is dependent on having

social link.
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We perform the Fisher Exact Test on the contingency table in Tables 3.2

and 3.3. Each value in the table represents the number of user pairs for a

combination of social link and common item adoption scenarios. The numbers

in parentheses are the expected values if the social graph is independent of

the adoption graph. As shown in the table, the observed number of pairs

with both common adoption and social link 161,372 is far greater than the

expected 6,153 for LiveJournal. And the observed number of pairs with both

common adoption and social link 24,197 is far greater than the expected 4,769

for Epinions.

Using Fisher Exact Test, we obtain a p-value < 2.2 × 10−16 for both con-

tingency tables which indicates that we can reject H0, and conclude that the

presence of social links is correlated with the presence of adoption links.

3.3 Social Correlation Measure

Our social correlation measure expresses the user-item adoptions E as a prod-

uct of three components, Φ, Θ and CT as follows:

E ≈ Φ ·Θ · CT (3.1)

where Φ represents the latent factors of items arranged in a |V | × |Z| matrix

with Z being the set of latent factors, Θ represents the latent factors of users

arranged in a |Z|× |U | matrix, and CT represents the tranpose of the |U |× |U |

social correlation matrix.

The social correlation measure requires us to determine all user-item adop-

tions and the three matrix components. If some elements of E can be ob-

served, we can use them to learn the matrix components by minimzing the

error |E − Φ · Θ · CT |. This is akin to maximizing the likelihood of observing

the values in E. Maximizing the likelihood is the dual equivalent problem of

minimizing error.
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Since the graphs are sparse, algorithms that scale with the number of ob-

served links would run faster. In the following, we formulate such an algorithm,

and show that the complexity is indeed polynomial to the number of observed

links.

3.3.1 Social Correlation Matrix

The |U | × |U | social correlation matrix C tells us how likely a user will adopt

an item based on the latent factors of other users. Each element cu,u′ reflects

the likelihood that the user u will be correlated to u′, in the sense of making

adoption decision based on the latent factors of u′. cu,u is the self-dependency

of user u, or the likelihood that u relies on her own latent factors. Each user has

a set of social correlation values where each social correlation value defines the

correlation between the user and one of her neighbor. This social correlation

tells us how likely the user will follow the actions of her neighbor. The self-

dependency value, is the social correlation value between the user and the user

herself (because the user can be a neighbor of herself). A high self-dependency

value indicates that the user is very independent in making adoption decisions

and will not follow other users easily. A low self-dependency value indicates

that the user depends on her friends for making adoption decisions.

To properly reflect the notion of correlation, C cannot just be any |U |×|U |

matrix. We require that C must have the following properties:

• It is probabilistic. Each element cu,u′ is in the range of [0, 1]. For each

user u, we also have
∑

u′ cu,u′ = 1.

• It preserves the social network structure. Since social correlation is based

on the underlying social network structure, cu,u′ should have non-zero

value only if there is a social link from u to u′, i.e., cu,u′ > 0⇒ (u, u′) ∈ F .

In addition, we also learn the self-dependency values cu,u for each user u.
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3.3.2 Probabilistic Formulations

We would like to illustrate the formulation of our models using probabilistic

explanations. Given a user u, we would like to know the probability that she

will adopt the item v, given the users latent factors Θ and the latent factors

of items Φ.

Suppose now that we have the edges of the social graph F and the latent

factors of all users in U including herself, we hypothesize that the user u

adopts items based on the latent factor preferences of her friends Fu and the

user herself. We may restate the equation as follows,

P (ev,u|Θ,Φ, F ) =
∑

x∈Fu

P (ev,x, fu,x|Θ,Φ, F )

=
∑

x∈Fu

P (ev,x|Θ,Φ)P (fu,x|F ) (3.2)

where fu,x represents that u has a directed social link to x. Also note that

finding ev,u has become finding ev,x on the right hand side of the equations.

P (fu,x|F ) is either 0 or 1 since we do not model the probability of social links.

Equation 3.2 however is not a valid probability equation because it does

not sum to 1. In fact, the values will exceed 1 due to the outer summation

over x. The reason is besides knowing the probability that u indicates x as a

friend in the social graph P (fu,x|F ) and the probability that x adopts item v

in the adoption graph P (ev,x|Θ,Φ), we need a weighted component that tells

us the probability that u depends on x in the adoption graph P (xv,u = x|C,F )

(to be defined shortly). This component is the social correlation that we want

to determine.

Hence, our proposed latent space model is to introduce the latent variable

xv,u which tells us which x that u depends on to adopt v, and the social

correlation C where its elements cu,x gives us the probability that u follows the

latent factors of x. The special case is x = u which tells us the self-dependency

of u. The higher cu,u is, the less the user u depends on social correlation.
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Putting the above intuition formally, the probability that u adopts an item

v based on the social correlation C is given by:

P (ev,u|Θ,Φ, F, C) =
∑

x∈Fu

P (ev,x, xv,u = x|Θ,Φ, F, C)

=
∑

x∈Fu

P (ev,x|Θ,Φ)P (xv,u = x|C,F )

where F the social network is always available. The information to be learnt

are Θ, Φ and C.

3.3.3 Prediction Models

Once the social correlation matrix C has been learned, we can instantiate two

adoption prediction models as follows.

• Social Correlation represents the approach of relying only on social cor-

relation for item adoption. We compute Φ · Θ · CT (see Equation 3.1)

based on the learned C, taking into account only the non-diagonal values

of C, i.e., setting cu,u = 0, ∀u ∈ U .

• Hybrid represents the approach of combining Social Correlation and

LDA, by computing Φ ·Θ ·CT with the original learned C (with diagonal

values retained).

Special Case. Our proposed formulation subsumes the underlying latent

factors model. In the case where C is the identity matrix, with 1’s as diagonal

values and 0’s otherwise, then Φ · Θ · CT degenerates to Φ · Θ, which is the

outcome by LDA.

3.4 Sequential Generative Model

The Sequential Generative Model assumes that the values ev,u is adequately

estimated by the LDA. This assumption is reflected by the shaded θ and φ
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variables in the graphical model as shown in Figure 3.2. We also assume the

existence of a social network as reflected by the shaded f variables.

ϕ

v

θ

x

c

f

|Z|

|Vu|

|U |

|U |

Figure 3.2: Sequential Generative Model for Static Social Correlation

C can be obtained in several ways. The naive way is to calculate C by

multiplying E with the inverse of Φ ·Θ, i.e. C = (Φ ·Θ)−1 ·E. This naive way

will not work for several reasons.

1. C may over-fit leading to poor results in link prediction. The obtained

Φ ·Θ ·CT will be as sparse as E, and thus the factorization does not help

in link prediction.

2. C may have values outside the range of [0, 1]. In fact, they may range

from negative infinity to positive infinity. Such values do not have clear

semantics and it is hard to interpret the meaning of these values.

3. C may have non-zero values even if the users are not connected by social

links.

Instead of this naive way, we devise a generative model called the Sequential

Generative Model, with the following generative process,
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1. For a given user u, u chooses a friend x from her set of friends Fu and

her social correlation with that friend cu,x for adopting the item v.

P (xv,u = x|Cu, Fu) = cu,x

2. Given the known probability of user x adopting item v, u adopts v based

on how likely x adopts item v,

P (ev,x|Θ,Φ) =
∑

z

θx,z · φz,v

where above equation has parameters Θ and Φ computed by LDA.

The probability of user u adopting item v is therefore:

P (ev,u|Θ,Φ, F, C) =
∑

x∈Fu

P (ev,x|Θ,Φ)P (xv,u = x|Cu, Fu)

=
∑

x∈Fu

e′v,xcu,x

and e′v,x is the (v, x) element of Φ ·Θ.

To learn the social correlation values, we maximize the log likelihood of

ev,u, ∀u ∈ U, ∀v ∈ Vu, using the Expectation Maximization (EM) algorithm

[35],

logP (E|Θ,Φ, F, C) =
∑

u,v

logP (ev,u|Θ,Φ, F, C)

=
∑

u,v

log
∑

x

e′v,xcu,x

where
∑

u,v is short for
∑

u∈U

∑

v∈Vu
. U represents the set of users in our data

and Vu represents the set of items Vu adopted by user u.
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3.4.1 Expectation Maximization Algorithm

We first show the E Step. The E Step of the EM algorithm infers the latent

variables using initial values of C,

P (xv,u = x|ev,u,Θ,Φ, F, C) =
P (ev,x|Θ,Φ)P (x|Cu, Fu)

∑

x′∈Fu
P (ev,x′ |Θ,Φ)P (x′|Cu, Fu)

=
e′v,xcu,x

∑

x′∈Fu
e′v,x′cu,x′

(3.3)

= h(u, x, v)

Since we have introduced cu,x as a probabilistic weight, hence, it must sum

to one.
∑

x∈Fu

cu,x = 1, ∀x ∈ U

Now for the M step, we aim to maximize the log likelihood with respect to

the unknown social correlation C, subject to the above constraints. In order

to include the constraints as part of the objective function, we introduce the

Lagrange multipliers λu [18] and proceed to solve the following using differen-

tiation,

d

d cu,x

[

∑

v∈Vu

∑

u∈U

log
(

∑

x∈Fu

e′v,xcu,x

)

− λu
(

∑

x∈Fu

cu,x − 1
)

]

= 0

∑

v∈Vu

e′v,x
∑

x′∈Fu
e′v,x′cu,x′

− λu = 0

λu =
∑

v∈Vu

e′v,x
∑

x′∈Fu
e′v,x′cu,x′

λucu,x =
∑

v∈Vu

e′v,xcu,x
∑

x′∈Fu
e′v,x′cu,x′

cu,x =
1

λu

∑

v∈Vu

e′v,xcu,x
∑

x′∈Fu
e′v,x′cu,x′

(3.4)

Recall in our E step that we have calculated something similar to the RHS

of Equation 3.4. By inserting the results of Equation 3.3 from the E Step, we
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get

cu,x =
1

λu

∑

v∈Vu

h(u, x, v)

where λu can be seen as a normalizing constant. Calculating the E Step and

M Step in an iterative manner until convergence, we derive the EM algorithm.

3.4.2 Complexity Analysis

In Section 3.2, we show that the social and adoption graphs are sparse. That

is, the number of edges in the graph is significantly smaller than the total

number of possible edges, |F | << |U |2 and |E| << |V | · |U |. Since the graphs

are sparse, our algorithm complexity should scale with respect to the number

of edges instead of the number of vertices. We should also use sparse matrices

to reduce the amount of memory required.

The efficiency of our learning algorithm can be easily seen from Equation

3.3 of the E Step and Equation 3.4 of the M Step. In the E Step, each user

has to compute the latent variable xv,u for the number of items u has. The

number of possible values xv,u can take depends on the number of social links

u has. Based on this analysis, the complexity of the Sequential Estimation is

therefore given by, O(|U | ·avg(|Vu|) ·avg(|Fu|)). Expressing in terms of number

of edges,

O(|U | · avg(|Vu|) · avg(|Fu|)) = O

(

|U | · avg(|Vu|) · |U | · avg(|Fu|)

|U |

)

= O

(

|E| · |F |

|U |

)

Complexity for each iteration of our EM algorithm is given by O
(

|E|·|F |
|U |

)

. We

will empirically verify the running time and number of iterations for conver-

gence in Section 3.6.5.
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3.5 Unified Generative Model

The Sequential Model performs the derivation of latent factors and social cor-

relation variables separately for simplicity. Following the model semantics, the

social correlation parameters requires knowledge of the latent variables xv,u

which can only be estimated accurately given the latent variables zv,u. How-

ever, the latent variables zv,u also depend on the value of xv,u. This circular

dependency complicates the learning of the latent variables and their respec-

tive parameters: Θ, Φ and C. The sequential approach we took in Section 3.4,

gives us a simple approach to estimating xv,u and additional assurance that

once the latent variables zv,u have been adequately estimated, estimation of

xv,u will lead to a better overall performance of the model. In this section, we

proposed a unified estimation for the parameters of Φ, Θ and C.

ϕ

vzx

c

f

|Z|

|Vu|

|U |

|U |

Figure 3.3: Unified Generative Model for Static Social Correlation

Figure 3.3 shows the plate notation of our graphical model. In this pa-

per, we provide a unified way of learning the latent variables x and z using

the Expectation Maximization (EM) approach for learning two sets of latent

variables. We describe the generative process as follows,

1. For a given user u, u chooses a friend x from her set of friends Fu and
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her social correlation with that friend cu,x for adopting the item v.

P (xv,u = x|Cu, Fu) = cu,x

2. From the chosen friend x, who may be u herself, u chooses a latent factor

zv,u based on the latent preferences of the chosen friend θx.

P (zv,u = z|xv,u = x,Θ) = θx,z

3. Finally, given the latent factor zv,u and the latent factor items φz, u

chooses an item v to adopt.

P (ev,u|zv,u = z,Φ) = φz,v

3.5.1 Parameter Estimation

Given a user-item matrix E, a social network F , a set of users U , a set of

items V , let u ∈ U denote a user, v ∈ V denote an item, the element ev,u = 1

of matrix E denote that u adopts item v. Suppose we have a user to user

correlation matrix C, where cu,x > 0 if u, x ∈ U and u is friends with x.

Details of the derivation is given in Appendix A.1.

The E Steps are

f(u, v, z) =
φz,vθu,zcu,u

∑

z′∈Z

∑

x′∈Fu
φz′,vθx′,z′cu,x′

(3.5)

g(u, v, z) =

∑

x∈Fu
φz,vθx,zcu,x

∑

z′∈Z

∑

x′∈Fu
φz′,vθx′,z′cu,x′

(3.6)

h(u, v, x) =

∑

z∈Z φz,vθx,zcu,x
∑

z′∈Z

∑

x′∈Fu
φz′,vθx′,z′cu,x′

(3.7)

46



CHAPTER 3. SOCIAL CORRELATION FOR STATIC DATA

The M Steps are,

θu,z =
1

γu

∑

v∈Vu

f(u, v, z)

φz,v =
1

δz

∑

u∈U

g(u, v, z)

cu,x =
1

λu

∑

v∈Vu

h(u, v, x)

3.5.2 Complexity Analysis

As mentioned in Section 3.4.2, it suffices to analyze the complexity of the E

Step, so we shall focus on the E Step for the Unified Estimation method. The

E Steps of Unified Estimation depends on Equations 3.5, 3.6 and 3.7. For each

user u, Equations 3.5, 3.6 and 3.7 requires O(|Z| · |Vu| · |Fu|). So the complexity

for all users is given by O(|U |·|Z|·avg(|Vu|)·avg(|Fu|)). Following the previous

analysis on the complexity, The complexity is given by,

O

(

|Z| · |E| · |F |

|U |

)

3.6 Experimental Evaluation

3.6.1 Experimental Setup

Data Set: For experiments, we extracted data sets from the LiveJournal data

set and Epinions data set described in Section 3.2. The items in LiveJournal

are communities that the users join, while the items in Epinions are products

reviewed by users. Also recall that Epinions has user-user trust links while

LiveJournal has user-user friendship links.

Since our interest is in learning the correlation between social and adoption

graphs, we prune the data set such that each user or item has a sufficient

number of links in both graphs. Thus, we iteratively remove users with less

than three incoming/outgoing links and items, and items with less than three
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users, until no such user/item can be found in the graphs. We need such a

minimum threshold so that when we divide the data sets into training and

testing sets, each user and item will at least have some links to hold out for

testing. Table 3.4 shows the statistics of our LiveJournal and Epinions data

sets. The size of our dataset here is smaller than the size as shown in Table 3.1

due to the pruning steps as mentioned above. It is necessary for the pruning

because it will be difficult to learn the latent factors of users with fewer than

three items.

Table 3.4: Statistics of our Data Subset

Name #users #items #social links #adoption links
LiveJournal 3,773 21,463 209,832 216,586
Epinions 2,934 2,146 66,036 135,940

The statistics in Table 3.4 shows that the LiveJournal data set and Epinions

data set have different properties. The LiveJournal data set has a denser user-

user social graph, while the Epinions data set has a denser user-item adoption

graph. The two data sets will give a fair overview of how our models perform

in predicting missing links under different scenarios.

Methods: In the experiments, we compare the following methods in terms

of effectiveness.

• Random represents the approach where we randomly predict the items

that a user will adopt. This is our baseline method for obtaining a

performance ratio.

• LDA represents the approach where a user relies only on her own latent

factors and also latent factor of items.

• Sequential Social represents the approach using only social correlation

(i.e., friends’ latent factors), and parameters estimated using the Se-

quential Model Method.

• Sequential Hybrid represents the approach of using both a user’s own
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latent factors as well as her friends’, and parameters estimated using the

Sequential Model Method.

• Unified Social represents the approach using only social correlation (i.e.,

friends’ latent factors), and parameters estimated using the Unified Model

Method.

• Unified Hybrid represents the approach of using both a user’s own latent

factors as well as her friends’, and parameters estimated using the Unified

Model Method.

At times, we may need to refer to two methods as a group. In those cases,

we use a short form of Sequential to refer to both the Sequential Social and

Sequential Hybrid. Similarly for Unified. On the other hand, Social is a short

form to refer to both Sequential Social and Unified Social. Similarly for Hybrid.

The formulations of these methods were given in Section 2.2 (LDA), Section

3.4 (Sequential), and Section 3.5 (Unified) respectively.

Metrics: We first hide 30% of the user item adoption links randomly in

each data set to create a training set with the remaining links and a testing set

with the missing adoption links. Then for each method, we generate a ranking

of adoption links for each user based on the probability values returned by

the method. We then construct a Precision-Recall (PR) curve for each user,

and measure the area under the PR curve (AUC). The AUC ratio refers to

the ratio of a method’s AUC to Random’s AUC. The higher the AUC ratio,

the better a method performs relative to Random. The performance of each

method is therefore defined to be the average of AUC or AUC ratio over all

users.

3.6.2 Number of Latent Factors

To decide the number of latent factors for factorizing, we measure the predic-

tion performance of LDA, Sequential Social, Sequential Hybrid, Unified Social
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and Unified Hybrid using their aggregated AUC results of all users, while vary-

ing the number of latent factors.

Figures 3.4, 3.5 and 3.6 show the AUC with respect to the number of latent

factors. Unified Hybrid outperforms Sequential Hybrid and LDA for all factors.

Unified Social outperforms Sequential Social for all factors.

10 20 30 40
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Number of Factors
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AUC vs # of Factors
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Sequential Social

Sequential Hybrid
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Figure 3.4: LiveJournal: AUC vs Number of Factors

In Figures 3.5 and 3.6, we show that our performance is consistent across

all latent factors. So for the rest of the experiments in this section, we pick 40

latent factors for LiveJournal and 10 latent factors for Epinions because they

are manageable numbers for computation and are reasonable numbers for the

size of the data sets.

Appendix A.2 shows the list of top ranked items for a subset of the topics.

The items in these topics give us a qualitative view of whether the chosen

number of topics is appropriate.

3.6.3 Self-Dependency Analysis

Here, we showcase the merits of our proposed models by examining the AUC

ratios for groups of users with varying self-dependency. Given that we have the
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Figure 3.5: LiveJournal: AUC vs Number of Factors

Sequential Model and Unified Model of deriving the self-dependencies, we only

compare for LDA vs Sequential Social vs Sequential Hybrid and LDA vs Unified

Social vs Unified Hybrid. The diagonal values in C tell us how much each user

depends on her own latent factors for items adoption. If a diagonal value cu,u

is high, the corresponding user u is said to have a high self-dependency. Such

a user is likely to adopt items based on her own latent factors. In contrast,

a user with low self-dependency is likely to adopt items based on her friends’

latent factors. We hypothesize that Social likely performs better than LDA

for users with low self-dependency and Hybrid should do well on average for

the different groups of users.

We bin the users into three equal-width groups of self-dependency with low

as cu,u ∈ [0, 1
3
), mid as cu,u ∈ [1

3
, 2
3
] and high as cu,u ∈ (2

3
, 1]. We calculate for

each user the AUC ratios AUC Social
AUC Random

and AUC Hybrid

AUC Random
. Subsequently, we place

each user in one of the low, mid, high self-dependency groups then prune away

the top 95 percentile and bottom 5 percentile to calculate the trimmed mean

of the ratios.

Figures 3.7 and 3.8 show the results of LiveJournal and Epinions for the

mean ratios using the Sequential Model. In each figure, a higher bar indicates a
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Figure 3.6: Epinions: AUC vs Number of Factors

better performance over the baseline method Random. AUC ratio ≈ 1 means

comparable performance with Random, while higher ratios mean better perfor-

mance over Random. The number in parenthesis next to each self-dependency

label indicates the number of users in that category.

In both figures, the results indicate that Social and Hybrid methods work

very well for users with low self-dependency values, showing significant im-

provement over LDA. For users with mid self-dependency values, the improve-

ments over LDA are more modest. For users with high self-dependency, as

expected, the results of Hybrid are very similar to LDA, with slight over-

performance by Hybrid and slight under-performance by Social. These find-

ings support our hypothesis that Social and Hybrid vastly improve upon LDA’s

performance, especially for users with low self-dependency values. The perfor-

mance of Hybrid over Social increases as the self-dependency increases. This

suggests that friend’s preferences matters less to users of high self-dependency.

Figures 3.9 and 3.10 show the results of LiveJournal and Epinions for the

mean ratios using the Unified Model. In both figures, the results indicate

that our models work well for users with low self-dependency values. As self
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Figure 3.7: LiveJournal: Sequential Model AUC Ratio vs Self-Dependency

dependency increases, the edge unified has over LDA decreases as expected.

These findings are also similar to that of the Sequential Model. Consistent with

the Sequential Model results, the Hybrid performance increases over Social as

self-dependency increases.

We are not able to compare side-by-side the performance of Sequential

Model and Unified Models with respect to the self-dependency values because

the self-dependency values are specific only to each method. In the following

section, we will compare the performance of Sequential and Unified with re-

spect to the number of items each user has. Please also refer to Appendix A.3

for further analysis on the self-dependency values.

3.6.4 Number of Items

Besides comparing with the self-dependency of each user, we also look at the

AUC performance with respect to the number of items each user has. Figures

3.11 and 3.12 show the AUC ratio with respect to the log of the number of

items (communities or movies) of the users. Users are organized into different

groups based on the number of items that they have adopted. The vertical-line

53



CHAPTER 3. SOCIAL CORRELATION FOR STATIC DATA

Low (1055) Mid (435) High (268) All (1758)
0

2

4

6

8

10

12

Sequential Self Dependency

R
a

ti
o

 

 

LDA / Random

Sequential Social / Random

Sequential Hybrid / Random

Figure 3.8: Epinions: Sequential Model AUC Ratio vs Self-Dependency

parallel to the y-axis gives the median value for the number of items each user

has. As shown in Figure 3.11 for LiveJournal, Social outperforms LDA for

approximately half of the users. For Figure 3.12 for Epinions, Social outper-

forms LDA in the first three bins (beyond the median), effectively improving

prediction for more than half of the users. The figures show that Social im-

proves prediction for a majority of the users in Epinions and approximately

half of the users in LiveJournal. Hybrid improves the prediction accuracy for

even more users in LiveJournal and Epinions. From these figures, we can also

conclude that our methods (especially Hybrid) are very helpful for improving

item adoption prediction for users with shorter adoption history (fewer items),

while maintaining performance for users with longer adoption history.

Figures 3.11 and 3.12 show that the performance of our models with respect

to Random decrease when number of items adopted by the user increases. This

decrease in relative performance is because Random has better performance

when there are more items to predict. A theoretical estimate of Random’s

AUC with respect to the number of items can be found in A.4.
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Figure 3.9: LiveJournal: Unified Model AUC Ratio vs Self-Dependency

3.6.5 Convergence Rate

We explained the complexity of the algorithm in Section 3.4.2 and Section

3.5.2. We now proceed to empirically verify that the EM algorithm for learn-

ing the social correlation matrix is able to converge by achieving a higher

likelihood than LDA and is able to reach convergence relatively fast. We test

our algorithm on a machine with Intel(R) Xeon(R) CPU X5460 @3.16GHz

with 24 GB of memory.

Figures 3.13 and 3.14 show the likelihood with respect to number of itera-

tions for LiveJournal and Epinions respectively. Since we have pre-computed

LDA for the Sequential Model, the likelihood given by LDA is therefore a con-

stant as shown by the red line in Figures 3.13 and 3.14. In the figures, each

dot represents each iteration. As shown in the figures, it only takes a small

number of iterations for the likelihood of Sequential Model and Unified Model

to exceed that of LDA. The time required for these iterations is also quite fast

taking a couple of seconds to reach convergence.

For LiveJournal, LDA took 547 seconds, each iteration of Sequential Model

0.315 seconds and each iteration of Unified Model took 365 seconds. For Epin-
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Figure 3.10: Epinions: Unified Model AUC Ratio vs Self-Dependency

ions, it took about 6.1 seconds to run LDA, each iteration of Sequential Model

took 0.0313 seconds, each iteration of Unified Model took 3.49 seconds. Hence,

the Sequential Model takes less time to be learnt compared with the Unified

Model (assuming that each model requires at least 5 iterations). The LDA

model requires the least amount of time.

3.6.6 Case Studies

To illustrate how our proposed models work differently than other methods,

we describe case studies involving two types of users: one with a low self-

dependency (relying on friends for item adoption) and another with a high

self-dependency (relying on own latent factors). To avoid repetition of analysis

and space constraints, we only show the case studies for the Unified Social and

Unified Hybrid for the LiveJournal data set.

Low Self-Dependency. Figure 3.15 shows the profile of starkoff, a user

with low self-dependency (cu,u = 0.19) as shown by the number in parentheses.

starkoff has adopted twenty four items, in which eight of these items are also

adopted by starkoff ’s friends, uletelisamolety and ruslash. For each prediction
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Figure 3.11: LiveJournal: AUC Ratio vs Log (# Communities)

method, we show the items’ ranks based on adoption probabilities generated

by the method. In other words, the higher the probability of adopting the item,

the smaller the number (rank). Since these items are the true adoptions by the

user, a smaller rank implies a stronger result. As shown by the ranks, seven out

of eight items gives a better or equal rank when we apply the probabilities given

by Unified Social and Unified Hybrid. This suggests that starkoff ’s adoptions

are highly motivated by friends’ latent factors and the social correlation for a

user friends is important to suggest items of adoption for low self-dependency

users.

High Self-Dependency. Figure 3.16 shows the profile of prmarker, a

user with high self-dependency (cu,u = 0.953). prmarker adopts fifty nine

items where four of these items are also adopted by her friends. The ranks of

these four items show that we should use either LDA or Unified Hybrid to pre-

dict for their adoption. Hybrid is better than Social for these four items while

LDA is better than Social and Hybrid for three out of four items. In addition

to these four shared items, we also show five other items that prmarker does

not share with her friends. In these five items, the ranks indicate that Hybrid
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Figure 3.12: Epinions: AUC Ratio vs Log (# Movies)

is better than LDA which in turn is better than Social. This suggests that the

social correlation is less important for high self-dependency users.

3.7 Summary

In this chapter, we address the problem of modeling item adoptions based on

social correlation. We propose a social correlation measure that incorporates

a probabilistic social correlation matrix into a latent space approach. Our

social correlation is based on several key ideas. In making item adoption

choices, users are not motivated just by their own latent factors, but also by

their friends’. The degree to which a user correlates to their friends’ latent

factors is not uniform, rather it differs from one user to another. We design

two generative models: Sequential Generative Model that learns the social

correlation matrix and latent factors in two steps, and Unified Generative

Model that learns both in a unified way. To solve these models, we propose

efficient parameter estimation solutions based on Expectation-Maximization

that scale with the number of observed links. Our experiments with Epinions

and LiveJournal data sets show that Unified outperforms Sequential, and both
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Figure 3.13: LiveJournal: Log Likelihood vs Number of Iterations

outperform the approach based on latent factors only (LDA).
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Chapter 4

Decay Topic Model and

Two-period Temporal Social

Correlation

User-to-user interactions have become ubiquitous in Web 2.0. Users exchange

emails, post on newsgroups, tag web pages, co-author papers, etc. Through

these interactions, users co-produce or co-adopt content items (e.g., words in

emails, tags in social bookmarking sites). We model such dynamic interactions

as a user interaction network, which relates users, interactions, and content

items over time. After some interactions, a user may adopt content that is

more similar to those adopted by other users previously. We term this effect

temporal social correlation, and we seek to mine from such networks the degree

to which a user may be socially correlated with another user over time. We

propose a Decay Topic Model to model the evolution of a user’s preferences

for content items at the topic level, as well as a Temporal Social Correlation

Measure that quantifies the extent of temporal social correlation based on

interactions and content changes.
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4.1 Motivation

User interactions in a dynamic social network provide insights for the evolution

of relationships among a set of users. The user interactions in this dynamic

social network lead to the production or adoption of content items covering a

set of evolving latent factors. Using these evolving latent factors, we aim to

derive the temporal relationships among the users. We define Two-period

Temporal Social Correlation as a temporal correlation between (a) the

latent factors in the current time step of the target user, and (b) the latent

factors in the previous time step of other users she interacts with. The degree

of correlation capture the extent to which the target user depends on the other

users, which explains the change in her latent factors. For brevity, we will use

Temporal Social Correlation in this chapter instead of Two-period Temporal

Social Correlation.

User Interaction Network: A user interaction network consists of in-

teractions that adopt new content items over time. We consider a general

approach of defining an interaction d (e.g., an email exchange, a published pa-

per) as a tuple 〈Ad,Wd, τd〉 where Ad,Wd and τd denote the set of users, content

items (e.g., words in an email or paper), and time point of the interaction re-

spectively. We represent a set of interactions over a time period as a graph

called user interaction network, as shown in Figure 4.1. Users, interactions,

and content items are the vertices in the user interaction network example. An

edge connects a user a to an interaction d taking place at time τ , which a par-

ticipates in. Similarly, we draw an edge from d to each content item w adopted

through d. This network has three interactions: d1 = 〈{a1, a2}, {w1, w2}, τ1〉,

d2 = 〈{a1, a3}, {w3, w4}, τ2〉, and d3 = 〈{a2, a3, a4}, {w1, w2}, τ3〉.

The user interaction network or interaction network can be found in many

situations involving user communication of one form or another. In an email-

based user interaction network, users produce (adopt) email content as they

interact with other email users by replying to email threads. In a newsgroup-
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Figure 4.1: User Interaction Network

based user interaction network, users submit news posts as they respond (“in-

teract”) to other users’ news posts. As Web 2.0 and social media sites become

very popular, we can find even more interaction networks.

Temporal Social Correlation: From the interaction linkages among

users and their evolving latent factors, one can observe the dependencies among

users. An email user may change her email content after exchanging emails

with another email user. Similarly, a newsgroup user may change news con-

tent in her posts after reading news posts from another user. In both cases, we

say the first user is socially dependent on the second user if the former adopts

content that is more similar to the latter after some interaction between them.

We use the scenario in Figure 4.1 to illustrate the notion of temporal social

correlation. Suppose that the three interactions occur at different time points

τ1 < τ2 < τ3. At τ3, the interaction between a2, a3, and a4 result in the co-

adoption of content items w1 and w2. We are interested in whether a4 is socially

more dependent on a2 or on a3 for adopting the items w1 and w2. The dotted

lines represent the temporal social correlation links, the direction implies who

is dependent on whom, and the weight signifies the extent of dependency. To

answer this question, it is instructive to look at the previous time points τ1

and τ2. It is evident that since a2, but not a3, has been previously associated
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with w1 and w2 before τ3, so it is likely that a4 is socially dependent on a2 for

the adoption of w1 and w2, rather than on a3.

Temporal social correlation is therefore defined based on two key crite-

ria: (a) interactions between two users; and (b) content changes of the user

who depends on the other user. As interactions can be ordered by time, we

study precedence between interactions by considering a snapshot representa-

tion of interactions by sampling the network at different time points. From

the snapshots, we derive the set of interactions occurring at time step t by

Dt = {d|τd ∈ t}. For a sequence of multiple time steps T , we have interactions

DT =
⋃

t∈T Dt.

The second criteria, content change, can be modeled in different ways. A

straightforward approach is to model content as a bag of words and content

change is then measured by difference in word usage. This approach however

does not work well as word usage can be noisy. Instead, we adopt the topic

modeling approach which determines the latent factors as topics behind the

observed words. Content change can therefore be measured by a change in

topics.

Problem Statement: The research problem of modeling temporal social

correlation is thus defined by: Given a set of users with interactions DT over a

sequence of time steps T , determine the temporal social correlation between ai

on another user aj at time step t, Iai,t(aj), for every ai, aj ∈ A and every t ∈ T .

A is the set of all users in DT . Iai,t(aj) ∈ [0, 1] such that 0 and 1 represent no

dependence and complete dependence respectively. Temporal social correlation

is time step specific so as to capture its evolution. The correlations may exist

among users at a time step only when these users have interactions within the

same time step. Otherwise, they are deem to be socially independent of one

another.

Modeling temporal social correlation comes with the following research

challenges.
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• Dynamic changes in topics of interaction content: The existing topical

models are designed primarily for static content. To cope with emerging

new interactions and users, we need to develop new and efficient topic

models that can model dynamically changing interaction content.

• Missing user interaction data: User interactions do not occur with the

same intensity in all time steps. They may be dense in some time steps,

but sparse or even missing in others. Even in the case of missing data for

a given user in a time step, we still need to model how the user’s topic

preferences are related to those of other users.

• Smooth transition of user topic preferences: Users normally do not change

their topical preferences abruptly. Hence, the challenge is how to model

the smooth transition in user’s topical preferences.

• Temporal Social Correlation measurement: It is expected that a user

may be correlated with more than one other user, each potentially with

a different quantity. Thus, we need to develop the principles in which

these quantities can be derived from the interactions.

To handle these challenges, we propose the Decay Topic Model and mea-

surement of Two-period Temporal Social Correlation. We apply temporal

social correlation to the prediction of future user topic preferences on two real

datasets extracted from DBLP [67] and ACM Digital Library [1]. Compared

with a baseline method, our proposed prediction method using temporal social

correlation derives more accurate prediction of future topic preferences.

The rest of this chapter is organized as follows. In Section 4.2, we describe

the decay topic model and our measure of dependency. We then proceed to

evaluate our method in Section 4.3. Finally we end the chapter with in Section

4.4.
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4.2 Temporal Social Correlation

In this chapter, we are interested in modeling the evolution of user interaction

networks so as to derive temporal social correlation. In particular, we ob-

serve that there are two main components in the evolution of user interaction

networks, namely:

1. The change in user preferences for different content items over time.

2. The change in social correlation between users over time.

Each of these two components can be represented formally as networks induced

from the original user interaction network as follows.

Content Network: This network relates users to content items that they

produce or adopt through interactions. For a given set of interactions Dt

occurring at time t, an edge (a, w) exists if ∃d ∈ Dt, a ∈ Ad ∧ w ∈ Wd.

Figure 4.2 illustrates three content networks over three time steps t1 = {τ1},

t2 = {τ2}, t3 = {τ3}, induced from the interactions in Figure 4.1.

Temporal Social Correlation Network: This network relates users to

other users whom they may socially correlate with. A directed edge from

ai to aj exists if ai has social correlation with aj. The edge weight Iai,t(aj)

reflects the degree to which ai is socially correlated with aj at time step t. A

loop indicates a user ai’s self-dependency with weight Iai,t(ai). In this work,

we assume social correlation can be inferred from interactions. Therefore, we

only draw an edge from ai to aj at time t, if both participate in at least one

interaction at time t, i.e., ∃d ∈ Dt, ai, aj ∈ Ad. Figure 4.3 illustrates how

the temporal social correlation network evolves over three time steps, induced

from the interactions in Figure 4.1.

Given a user interaction network spanning the time period T , the prob-

lem we address here is determining the temporal social correlation measure

Iai,t(aj) for every ai, aj ∈ A, and t ∈ T . In the following sections, we will

describe how we can model users’ content changes at the topic level from the
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Figure 4.2: Evolving Content Network

Figure 4.3: Evolving Temporal Social Correlation Network

evolving content network. We will then show how the temporal correlation of

content changes between users reveals the edge weights in the temporal social

correlation network over time.

4.2.1 Topic Models for Evolving Content Network

While a content network reveals the various content items adopted by a user,

it may not show the user’s underlying topic preferences that give rise to the

adoption of those content items. The reason is that content items may be

noisy. For instance, in different interactions, a user may adopt different words

(e.g., “Porsche”, “Ferrari”) that actually refer to the same topic (e.g., luxury

cars). This motivates us to model a user a’s content as a topic distribution θa,t
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derived from the content network at time t. As the content network evolves,

so does a’s topic distribution, i.e., θa,t varies with t. In the following, we will

first model a user’s topic distribution in a static manner, before moving on to

our proposed temporal-based Decay Temporal Model.

Static Topic Model

We observe that the bipartite structure of the content network resembles the

relationship between documents and words. Just as a document contains a

bag of words, a user is associated with a bag of content items from various

interactions. As a naive baseline, we consider topic modeling techniques for

text documents in order to model the static topic distribution of users. One

such technique is Latent Dirichlet Allocation or LDA [16].

LDA can be adapted to our context as follows. To facilitate the presentation

of our model, we introduce a set theoretic notation to explain the variables.

Let Z denote the set of topics. For each z ∈ Z, φz denotes the topic z’s item

distribution. Each φz is modeled as a Dirichlet Distribution of V dimensions

where V is the total number of unique content items (non-stop words) in the

interaction network (corpus).

Let A denote the set of users. For each a ∈ A, θa denotes a’s topic distri-

bution. Each θa is modeled as a Dirichlet Distribution of K dimensions, where

K is the number of topics in the set Z. To put it more formally, we have:

φz ∼ Dirichlet(β), β is a constant

θa ∼ Dirichlet(α), α is a constant

Each user a ∈ A participates in a set of interactions denoted by Da ⊆ D, where

D is the set of all interactions. Each interaction d ∈ Da contains a set of items

Wd. Then each w is generated by a topic z ∈ Z, and z is in turn generated by
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the topic distribution θa of user a.

z ∼Multinomial(θa)

w|z ∼Multinomial(φz)

In this static formulation, the problem is to find the posterior distribution

P (φz|D, β), ∀z ∈ Z and P (θa, |D,α), ∀a ∈ A given the set of interactions D.

Decay Topic Model

The above static model assumes that a user’s topic distribution remains the

same over time. However, in an evolving content network, a user may adopt

content items of different topics over time. We extend the above notations to

model the notion of temporality. Let T denote an ordered set of discrete time

steps with order relation < such that ∀t1, t2 ∈ T , t1 < t2 implies that t1 is

earlier than t2. ∀a ∈ A, each user a has a topic distribution θa,t, ∀t ∈ T , where

θa,t is modeled as a Dirichlet Distribution.

θa,t ∼ Dirichlet({αa,t,z}z∈Z)

Unlike the static topic model, each time step t has a Dirichlet distribution

for the topic of user a parameterized by a set of parameters specific to the

respective user and time. Since our focus here is on the evolution of users’ topic

distribution over time, to isolate its effects, we keep topic item distribution φz

the same over time.

Each user a ∈ A participates in a set of interactions in time step t as

denoted by Da,t ⊆ Dt, where Dt represents the set of interactions in time t.

The interaction d ∈ Da,t contains a set of items Wd. Then each w ∈ Wd, w is

generated by a topic z ∈ Z and z is in turn generated by the topic distribution

of user a at time t.

z ∼Multinomial(θa,t)

71



CHAPTER 4. DECAY TOPIC MODEL AND TWO-PERIOD TEMPORAL SOCIAL CORRELATION

Hence, what is of interest to us now is the posterior distribution in each time

step t, P (θa,t|Dt, α), ∀a ∈ A, ∀t ∈ T .

Generative Process: To arrive at this posterior distribution, we pro-

pose the Decay Topic Model, which we illustrate using the following generative

process.

1. At time t, each user a samples their prior topic distribution θa,t from

Dirichlet distribution with parameters {αa,t,z}z∈Z .

2. User a samples the topic distribution φz, ∀z ∈ Z from Dirichlet distribu-

tion with symmetric parameters β.

3. For each interaction d ∈ Da,t, there are a set of content items Wd. In

turn, for each of the |Wd| items:

(a) User a generates a topic zw from θa,t for the item w.

(b) User a generates an item w from the topic item distribution φz.

4. Update the parameters of φz, ∀z ∈ Z.

5. Update the parameters of θa,t to obtain the posterior topic distribution of

a at time t. The posterior distribution also follows a Dirichlet distribution

with parameters {αa,t,z+na,t,z}, ∀z ∈ Z, where na,t,z denotes the number

of items that user a adopted in time t that belongs to topic z.

6. For every a ∈ A, let the prior topic distribution of t+ 1 be the posterior

distribution of t with the parameters multiplied by a decay factor, δ, such

that 0 ≤ δ ≤ 1. i.e., αa,t+1,z = δ × (αa,t,z + na,t,z), ∀z ∈ Z, then the prior

distribution θa,t+1 = Dirichlet({αa,t+1,z}z∈Z).

7. Repeat steps 1 to 6 for all the time steps.

Refer to Algorithm 1 for the outline of the inference procedure.

Decay Factor: The decay factor δ in step 6 helps to moderate the rate of

change in topic preferences of users by balancing the contributions of the past

72



CHAPTER 4. DECAY TOPIC MODEL AND TWO-PERIOD TEMPORAL SOCIAL CORRELATION

Algorithm 1 DTM Inference
1: {The first part is LDA inference taking into account of the interactions}
2: Input: Adoption data for each user a at each time step t

3: Output: Estimated parameters
4: {Initialization}
5: for a ∈ A do

6: {Da,t represents the set of interactions a has at time t}
7: for d ∈ Da,t do

8: {Wd represents the set of items adopted due to interaction d}
9: for w ∈Wd do

10: k ← uniformRandom(1, |Z|)
11: {na,k denote the number of times user a generated topic k.}
12: {mk,w denote the number of times topic k generated item w.}
13: na,k ← na,k + 1, mk,w ← mk,w + 1, zw ← k

14: end for

15: end for

16: end for

17: {LDA Gibbs Sampling}
18: while iterate do

19: for a ∈ A do

20: for d ∈ Da,t do

21: for w ∈Wd do

22: k ← zw, na,k ← na,k − 1, mk,w ← mk,w − 1
23: k ← sample(na,k + α,mk,w + β)
24: na,k ← na,k + 1, mk,w ← mk,w + 1, zw ← k

25: end for

26: end for

27: end for

28: end while

29: {The second part obtains the topic distributions at different time step by de-
caying and conditioning on the learned latent variables in previous time step.}

30: for a ∈ A do

31: {Ta represents the set of a’s active time steps}
32: for t ∈ Ta do

33: if t is first time step then

34: na,t,k = α, for k = 1 to |Z|
35: else

36: na,t,k = δ · na,t−1,k, for k = 1 to |Z|
37: end if

38: for d ∈ Da,t do

39: for w ∈Wd do

40: k ← zw, na,t,k = na,t,k + 1
41: end for

42: end for

43: end for

44: end for

time steps versus the current time step. δ = 1 implies no decay. δ = 0 implies

that we expect the authors to change their topic distribution at every time
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step. In other words, by setting 0 ≤ δ ≤ 1, we want to adjust the importance

of content adopted earlier compared with the recent content for determining

the topic distribution of a. For instance, δ = 0.5 means the preferences of

a accumulated over time drops by half at every time step, i.e., the half life

is one time step. The right setting of δ may differ in different scenarios. In

the experiments, we conduct parameter sensitivity test to help determine the

best δ setting. In the case where a user has no interaction at time t, her topic

distribution will still remain the same as at previous time step t− 1.

In this work, δ applies to the whole network. While it may be argued that

δ may vary from user to user, and from time step to time step, in practice

that would generate too many variables, which we may not be able to learn

effectively.

4.2.2 Temporal Social Correlation Measure

Having modeled a user’s changing topic distribution over time, we now inves-

tigate how to model a user’s evolving social correlation with other users. This

evolving temporal social correlation has been shown in the example as shown

in Figure 4.3. In our formulation, the key idea is that, for user a to correlate

heavily with another user c at time t, the following criteria have to be met:

• Interactions. User a participates in one or more interactions with c

at time t. We assume that when an interaction between two users is

observed at time t, the actual interaction would have taken place before

t. This is reasonable given that our model works on time steps that

combine interactions from several time points.

• Content change. User a’s topic distribution grows to resemble c’s topic

distribution in the previous time step, i.e., between time steps t− 1 and

t, a’s topic is becoming more similar to c’s.
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Based on the above principles, we propose the Temporal Social Correlation

Measure in the form of a vector Ia,t, which is computed as follows.

Given :

1. The set of interactions Da,t that user a participates at time t.

2. Topics associated with the content items, i.e.,

{zw | w ∈
⋃

d∈Da,t
Wd}.

3. Topic distribution θc,t−1 of every user c ∈
⋃

d∈Da,t
Ad, who has par-

ticipated in at least one interaction with a in the previous time step

t− 1.

Find : Correlation vector Ia,t, where each element Ia,t(c) is the directed cor-

relation of a to user c ∈
⋃

d∈Da,t
Ad.

Algorithm :

1. Initialize the array Ia,t with zero elements.

2. For each interaction d ∈ Da,t, content item w ∈ Wd, and user c ∈ Ad,

(a) We determine the generation of topic zw by a user c as follows:

P (zw|c, θc,t−1) ∝ θc,t−1,zw

(b) Then update array Ia,t as follows,

Ia,t(c) = Ia,t(c) + P (zw|c, θc,t−1)

= Ia,t(c) +
θc,t−1,zw

∑

c∈Ad
θc,t−1,zw

3. Normalize the array Ia,t to sum to one for easy interpretation.

Step 2(b) calculates the contribution of each item w and its corresponding

topic zw to user a’s correlation to user c. The higher the probability of c

generating this topic, the higher is the value of Ia,t(c). We assume that the
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generation of topic zw comes from a linear combination of a’s friends and a

herself. The correlation of a to c should be proportional to how much c is likely

to generate the topic zw. The correlation also accounts for the frequency of

interaction, i.e. the more interactions a has with c, the higher is the value of

Ia,t(c).

We run this computation chronologically for every time step t = 1 to T

to obtain the temporal social correlation values Ia,t(c) for each a and c across

different time steps t ∈ T .

We explore how the temporal social correlation measure is affected by the

topic modeling of content network. At each time step t, we want to compare the

changes of a’s topic distribution θa,t and the changes of c’s topic distribution

θc,t−1 for every c in
⋃

d∈Da,t
Ad. Note that this set of users that a interacts

with also contains a herself. Without any decay factor in the topic modeling,

the accumulative effect over time will favor larger self-dependency values for a.

The decay factor acts to reduce the importance of topics in previous time steps,

allowing new interactions to change the topic distribution of a in t significantly

enough, so as to better detect a’s temporal social correlation with others.

4.3 Experiments

While user interaction networks model many kinds of interactions, there are

only a limited number of datasets available for research, which track those

interactions over a significant period of time. We work with two such datasets

derived from DBLP and ACM Digital Library (ACM DL). We model co-

authorship as a user interaction network, where a publication d is an inter-

action between one or more authors ai(s) in the year t. The content items

w associated with d are words in the titles/abstracts. In this setting, we say

author a has temporal social correlation with author c, if a and c co-author

a paper (interact) on topics that a is unlikely, but c is likely, to publish. We
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assign temporal social correlation to co-authors of a based on the likelihood of

the co-authors generating the topics in the papers that a publishes.

After describing the datasets, we will first evaluate the Decay Topic Model

by comparing two settings (decay vs. non-decay) on the task of predicting an

author’s observed topic distribution in the next time step. We then evaluate:

Temporal Social Correlation Measure, by conducting two prediction tasks. The

first task is similar to the above but with a different approach. Instead of

using an author’s own topic distribution, we use her co-authors’, weighted by

the author’s temporal social correlation with each co-author. The second task

predicts an author’s ranking of her co-authors by topic similarity at the next

time step using tempoal social correlation at the current time step.

4.3.1 Datasets

For experiments, we use a subset of publications from DBLP and ACM DL. To

ensure a wide coverage of fields in Computer Science, we use papers published

in the reputable Journal of ACM (JACM) as a seed set. We grow this seed set

by including other non-JACM publications by authors who has at least one

JACM publication. We extend this further to also include the co-authors of

JACM authors, and their publications as well.

Table 4.1: Dataset Sizes

#authors #papers #unique period
non-stop words

DBLP 268,299 546,500 83,440 1936–2011
ACM 157,693 188,086 217,667 1952–2011

The sizes of our datasets are given in Table 4.1. DBLP has almost three

times as many publications as ACM DL. One reason is the longer history of

publications maintained by DBLP (since 1936). Another is the larger scope,

since ACM DL focuses mainly on ACM-related publications. However, ACM

DL has many more unique words than DBLP, because ACM DL has both titles

and abstracts, whereas DBLP only has titles. In both cases, the datasets are
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significantly large, with hundreds of thousands of nodes, with more than 10

million author-word links for DBLP and 46 million author-word links for ACM

DL.

Table 4.2: Top Words for Sample Topics

Web Systems Computational Database Systems
and Algorithms Biology and Theory

DBLP
web protein data

information gene database
semantic analysis query
based data xml

retrieval database processing

ACM
web data data

information gene query
search protein database
content biological xml
user expression processing

To show that topic modeling on these datasets would discover the latent

topics effectively, we produce three sample topics, and the top words for each

topic of DBLP and ACM in Table 4.2. Notably, the top words (e.g., web,

information, retrieval) capture well the essence of the topics (e.g., Web systems

and algorithms). Moreover, both DBLP and ACM DL discover similar topics

with similar top words, even when DBLP has only titles and ACM DL has both

titles and abstracts. During experiments, we observe that both datasets result

in similar observations. From here onwards, we will use the larger dataset

DBLP as the main dataset to discuss our results.

4.3.2 Evaluating Decay Topic Model

The topic modeling step seeks to arrive at θa,t, the topic distribution of each

author a at time t. We hypothesize that the decay factor allows it to better

adapt to the author’s changing preferences over time. Without decay, the

accumulative effect tends to overweigh the older topics more heavily. To test
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this hypothesis, we compare the topic distributions δ < 1 (θdecaya,t ) and δ = 1

(θnon−decay
a,t ) to the observed topic distribution at the next time step (θobsa,t+1).

For θdecaya,t , we vary δ from 0.2 to 0.8 to determine the optimal setting of δ.

Both θdecaya,t and θnon−decay
a,t incorporate information from the first time step

to the current time step t. We compare them to θobsa,t+1, which is derived in-

dependently using only the set of documents published by a at time t + 1. If

θdecaya,t is more similar to θobsa,t+1 than θ
non−decay
a,t , it shows that the decay approach

is better adapted to the preferences in t+ 1.

To measure similarity between two probability distributions p and q, we

use the following function:

Sim(p, q) = 1−DJS(p, q),

where DJS is the Jensen-Shannon Divergence [68]. Sim ranges from 0 (differ-

ent) to 1 (identical).

We use this Sim function to measure the similarity between θdecaya,t and

θnon−decay
a,t respectively to θobsa,t+1. To compare the decay vs. non-decay setting

directly, we then take the ratio of the two similarity values as follows:

Sim Ratio Φ(a, t) =
Sim(θdeltaa,t , θobsa,t+1)

Sim(θnon−decay
a,t , θobsa,t+1)

Φ(a, t) ratio > 1 indicates that having the decay is better than no decay.

Figure 4.4 shows the mean of values given by the Sim Ratio Φ(a, t) with respect

to the different δ values. Given that the values lie above 1, it indicates that

that having some decay is better than no decay at all. From the various choices

of δ, we can see that the optimal value of δ lies between 0.4 to 0.5. For the

rest of our experiments we therefore use δ = 0.5.
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Figure 4.4: DBLP: Mean of Sim Ratio Φ(a, t)

4.3.3 Prediction of Author’s Topic Distribution

We now show that our correlation values at t can also be used for the predic-

tion of author a’s topic distribution in t + 1. In this case, the predicted topic

distribution for a at time t+1 will be a linear combination of the topic distri-

butions at time t of her co-authors c ∈
⋃

d∈Da,t
Ad, weighted by the temporal

social correlation values Ia,t(c).

Hence, if one set of correlation values arrive at a better estimation of the

author’s topic distribution than another set of correlation values, it implies that

the former more accurately estimate the temporal social correlation weight of

each co-author.

Due to the way in which we extract the subset of data from DBLP and

ACM DL, we can only evaluate for the authors who have at least one JACM

paper. For these authors, we have the complete co-authors information, while

for the rest of the other authors, we have only partial information.

Decay vs. Non-decay: To evaluate our topic prediction, we use the

Sim Ratio Φ(a, t) as defined earlier to compare against the observed topic

distribution at t+1 (based on only the documents published at time t+ 1) as

ground truth. The first comparison is again for decay vs. non-decay, but this
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time the prediction is based not on the author’s own topic distribution, but

rather on her co-authors’. We derive two predicted topic distributions at t+1,

θdep−d
a,t+1 and θdep−nd

a,t+1 . θdep−d
a,t+1 is computed using the correlation value Idecaya,t (c),

for each c ∈
⋃

d∈Da,t
Ad by the decay topic distribution. θdep−nd

a,t+1 is computed

using the correlation values Inon−decay
a,t (c), c ∈

⋃

d∈Da,t
Ad by the non-decay topic

distribution.

User a’s predicted preference for topic z at time t+1 is computed as follows.

θdep−d
a,t+1,z =

∑

c∈
⋃

d∈Da,t
Ad

Idecaya,t (c) ∗ θdecayc,t,z

θdep−nd
a,t+1,z =

∑

c∈
⋃

d∈Da,t
Ad

Inon−decay
a,t (c) ∗ θnon−decay

c,t,z

We then compute the Sim Ratio Φ1(a, t) as follows.

Sim Ratio Φ1(a, t) =
Sim(θdep−d

a,t+1 , θ
obs
a,t+1)

Sim(θdep−nd
a,t+1 , θobsa,t+1)

Φ1(a, t) ratio > 1 would indicate that the correlation values computed by

decay topic distribution give a better prediction than the correlation values

computed by the non-decay topic distribution. Figure 4.5(a) shows a histogram

of Φ1(a, t) values. The x-axis of the histogram are bins with boundaries given

by the value of Φ1(a, t). The y-axis of the histogram indicate the frequency

of author a and time point t pairs falling into the respective bins. For Figure

4.5(a), 68% of the (a, t) pairs have Φ1(a, t) > 1, 1% have Φ1(a, t) = 1 and 31%

have Φ1(a, t) < 1. This suggests that incorporating the decay factor results in

an improvement for the large majority of (a, t) pairs.

Correlation vs. Co-authorship Count: As another baseline, we use

a naive way of computing temporal social correlation weight Ibasea,t (c), c ∈
⋃

d∈Da,t
Ad, which considers a’s correlation with c at t as the count of papers
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co-authored by a and c, normalized by the total count of a’s papers, at time

t. Using such temporal social correlation weights, we compute the predicted

topic distribution θbasea,t+1, and compare this to the correlation-based prediction

θdep−d
a,t+1 .

θbasea,t+1,z =
∑

c∈
⋃

d∈Da,t
Ad

Ibasea,t (c) ∗ θdecayc,t,z

For this comparison, we compute the Sim Ratio Φ2 as follows.

Sim Ratio Φ2(a, t) =
Sim(θdep−d

a,t+1 , θ
obs
a,t+1)

Sim(θbasea,t+1, θ
obs
a,t+1)

Φ2(a, t) > 1 indicates that the correlation method outperforms the baseline.

Figure 4.5(b) shows a histogram of Φ2(a, t) values. In the figure, 62% have

Φ2(a, t) > 1, 1% have Φ2(a, t) = 1 and 37% have Φ2(a, t) < 1. This implies

that in most cases, the correlation method tends to arrive at a better prediction

than the co-authorship baseline.

Result Analysis: We now seek to understand better the profiles of users

for which our method works especially well. As mentioned previously, Sim

Ratio Φ(a, t) > 1 indicates that our method performs better than the baseline

at predicting an author’s topic distribution. Most authors are active for more

than one year, and each year gives a different Sim Ratio. Hence, the proportion

of years in which Φ(a, t) > 1 for a given author indicates the degree to which

the user has benefited consistently from our proposed method.

To measure this, we introduce the following metric:

Ψ(a) =
number of years where Φ > 1 for a

number of years a publishes

Figure 4.6(a) shows the histogram of Ψ(a) values for various users, for a

comparison against the non-decay baseline (i.e., Φ1(a, t) > 1). Figure 4.6(b)

shows the corresponding histogram of Ψ(a), for a comparison against the co-

authorship baseline (i.e., Φ2(a, t) > 1). The red line in both figures indicate
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Figure 4.5: DBLP: Histogram for Sim Ratio Φ1(a, t) & Φ2(a, t)

the median value of Ψ(a) among the authors. In both cases, the median lies

close to 0.7, which implies that a majority of users benefit from our proposed

method at least two thirds of the time. In order for us to understand why we

are able to predict the topic distribution of some authors and not the others,

we examine the Ψ(a) of each author with respect to some factors. Figures 4.7,

4.8 and 4.9 show the boxplots of Ψ(a) with respect to their number of active

years, the total number of papers published and the number of co-authors

they worked with over the entire duration of their careers. The bins in the

boxplots are determined by having equal number of data points and the labels

on the x-axis represent the mean value of the data points in each bin. The

figures collectively tell the story of better performance for authors with higher

number of active years, papers, and co-authors. This suggests that we tend to

do better when there is more information for a given author. The consistency
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Figure 4.6: DBLP: Histogram for Ψ(a)

and the degree to which an author interacts with others allow better inference

of not just their topic distributions, but also their temporal social correlation

values.
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Figure 4.7: DBLP: Ψ(a) vs Number of Active Years

4.3.4 Prediction of Co-Author’s Topic Similarity Rank-

ing

In this section, we perform co-author’s topic similarity ranking prediction at

time t+1 using temporal social correlation at time t. At time t, an author a has

temporal social correlation value of Ia,t(c) with a co-author c. Assuming that

a usually does not change the temporal social correlation with her co-authors

drastically over two time steps, we expect the ranking of her co-authors by

temporal social correlation at time t would be a good predictor for the ranking

at time t+ 1. Since a does not necessarily have identical sets of co-authors in

t and t + 1, the ranking prediction will only involve the co-authors appearing

in both t and t + 1. Similar to the previous experiment, we only evaluate for

authors who have at least one JACM paper.

In this task, we denote the ground truth ranking of co-authors by topic

similarity as Rsim. We derive Rsim for an author a at time t + 1 as follows.

For each co-author c of a, we obtain the “observed” topic distribution θobsc,t+1

using only publications by c at time step t+1. We then compute the similarity

between c’s topic distribution θobsc,t+1 with author a’s observed topic distribution
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Figure 4.8: DBLP: Ψ(a) vs Number of Published Papers

θobsa,t+1 using the Sim function as defined earlier in Section 4.3.2. Finally, we

obtain the ranked list by sorting a’s co-authors in descending order of the

similarity values.

We compare the Rsim of a at time t+ 1 (ground truth) with the following

two ranked lists:

1. Temporal Social Correlation: Rdep ranks co-authors in terms of Ia,t(c).

2. Co-authorship Baseline: Rbase ranks co-authors in terms of the number

of co-authored papers at time t.

We derive the pair-wise rank correlations between Rdep (or Rbase) and Rsim

using Kendall Tau Rank Correlation Coefficient (tau coefficient) [53], which

is a measure of correlation between two ranked lists where 1 represents full

positive correlation, -1 represents full negative correlation and 0 represents no

correlation. Hence, if tau(Rdep, Rsim) is higher than tau(Rbase, Rsim), it implies

that the proposed temporal social correlation measure has higher predictive

value than the baseline co-authorship method. To perform this comparison,

we first compute the Rsim, Rdep, and Rbase for all authors. We then bin the

authors into five equisized bins according to their tau(Rdep, Rbase). The bin
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Figure 4.9: DBLP: Ψ(a) vs Number of Co-Authors

with the smallest values group authors for which Rdep and Rbase are most

different. The bin with the highest values group authors for which Rdep and

Rbase are most similar.

We then look at the distribution of tau(Rdep, Rsim) values in each bin.

Figure 4.10(a) shows a boxplot representation of tau(Rdep, Rsim) distributions

(y-axis) for each of the five tau(Rdep, Rbase) bins (x-axis). The number shown

in the x-axis is the mean within each bin. The red line in each box represents

the median value, edges of the blue box represents the 25th and 75th percentiles,

the whiskers extend to the most extreme data points not considered outliers,

and outliers are plotted individually. Figure 4.10(b) shows the corresponding

boxplot representation for the baseline tau(Rbase, Rsim).

Comparing Figure 4.10(a) (proposed) and Figure 4.10(b) (baseline), we

observe that for each bin, the boxplots in Figure 4.10(a) consistently show

higher medians (higher similarity to the ground truth) than the boxplots in

Figure 4.10(b). As the previous figures capture only the DBLP dataset, we

repeat a similar experiments for the ACM dataset as well. The results for

ACM are given in Figures 4.11(a) and 4.11(b), where similar observations can
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Figure 4.10: DBLP: Evaluating Ranking Results

be made to support the higher prediction performance of Rdep, as compared

to the baseline Rbase.

4.3.5 Case Study

Using DBLP, we provide a case study to help illustrate the workings of our

proposed temporal social correlation model. For this case study, we use the
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Figure 4.11: ACM: Evaluating Ranking Results

profile of Associate Professor Duminda Wijesekera. Figure 4.12 shows the

temporal social correlations of Duminda Wijesekera for the year 2001. The

directed edges show Duminda Wijesekera’s correlations with his co-authors

who publish with him in the year 2001. Next to these co-authors are their

respective topic distributions for year 2000. From the year 2000 to 2001, we

observed that Duminda Wijesekera’s topic in Security has increased from third
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position to first position [112]. Based on the correlations, we observe that he

correlated with Sushil Jajodia most as compared to other co-authors (excluding

himself). Based on the co-authors topic distribution, Sushil Jajodia’s topic in

Security is the highest which explains why Duminda Wijesekera’s correlation

with Sushil Jajodia is the highest [20]. In 2002, Duminda Wijesekera continues

to increase his topic in Security [108, 113]. This illustrates how temporal

social correlation works based on the two components of interactions as well

as content change.

4.4 Summary

In this chapter, we address the problem of modeling the evolution of user

interaction networks, in order to determine the temporal social correlation

weights among users at various time steps. We identify two primary factors

to temporal social correlation, namely: interactions between users, and tem-

poral correlation between the users’ topic distributions. We propose a Decay

Topic Model to model a user’s evolution of content at the topic level, as well

as a Temporal Social Correlation Metric to determine the degree to which a

user is correlated with another user. Comprehensive experiments on real-life

co-authorship datasets DBLP and ACM show that our proposed models per-

form well against the baseline (co-authorship count) in two predictive tasks:

predicting an author’s ranking of co-authors by temporal social correlation, as

well as predicting the author’s topic distribution in the next time step. This

validates our hypothesis that we also need to take into account the changing

topic preferences of users beyond just interactions (which the co-authorship

baseline only models indirectly).
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Chapter 5

Dynamic Matrix Factorization

for Modeling Temporal

Adoptions

In this chapter, we adopted a Dynamic Matrix Factorization (DMF) technique

to derive different temporal factorization models that can predict missing adop-

tions at different time steps in the users’ adoption history. This DMF tech-

nique is an extension of the Non-negative Matrix Factorization (NMF) based

on the well-known class of models called Linear Dynamical Systems (LDS).

By evaluating our proposed models against NMF and TimeSVD++ on two

real datasets extracted from ACM Digital Library and DBLP, we show em-

pirically that DMF can predict adoptions more accurately than the NMF for

several prediction tasks as well as outperforming TimeSVD++ in some of the

prediction tasks. We further illustrate the ability of DMF to discover evolving

research interests for a few author examples.

5.1 Adoption Modeling

Recommender systems have been widely used to suggest products, content

and services to consumers. Recommender techniques have been largely related
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to rating prediction and evaluated on Netflix and Movielens datasets. The

common assumptions underlying rating prediction are that: (a) each item

can be rated or adopted only once by a user; (b) ratings assigned to items are

restricted to a pre-defined rating options, say 1 to 5; and (c) the user-rate-item

data is static. Although these assumptions are reasonable in many application

settings, there are also many other settings that violate these assumptions.

For example, there are many application scenarios where a user can adopt

the same item more than once, i.e. a user may buy the same product in

different purchases. These include food, stationery, drug, and other items. A

user may visit the same restaurant, bookstore, or cinema multiple times. In

the context of social media, a user may adopt the same URL, tag or keyword

multiple times as the user shares messages with her friends. When the same

item is adopted at different time steps, the user may adopt it with different

quantities as the user’s preference or demand on the item changes over time.

Assumption (a) hence does not hold in these scenarios and we need to consider

recommending the same item even if it has been previously adopted.

The above scenarios also violate assumption (b) as they do not necessarily

involve users giving ratings to items. The user’s propensity to adopt an item

can be measured by adoption quantity, which can be any non-negative integer

value instead of a fixed range of rating values. A user may choose not to adopt

an item at all if he dislikes the item, or adopt an item with a large quantity

if he likes it. Adoption count also does not imply likeness. By adopting one

instance of item does not mean the user does not like the item. Conversely, by

adopting multiple instances of an item does not mean the user likes the item.

The last assumption (c) is clearly not applicable to many recommender sys-

tems involving dynamic user adoption patterns. These recommender systems

have to determine trends that affect user adoptions. Unfortunately, most ex-

isting recommendation algorithms only deal with static adoption data. When

applied to dynamic adoption data, the data is usually first divided into time
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Figure 5.1: Temporal Rating vs Temporal Adoption

steps and the recommendation algorithm is applied to the adoption data in

each time step independently of other time step. The result is that items rec-

ommended to a user in one time step may look entirely different from those

recommended in the next time step, which is not ideal in many application

settings.

Figure 5.1 shows an example between the differences of rating and adoption

in two time steps t = 1, 2. In the case of temporal rating, the user can only

rate an item once, any changes in the rating between the user and the item at

a later time step is seen as an updated rating. When we collapse the data into

its static equivalent (denoted by *), the value between user and item reflects

the latest rating. However for temporal adoption, the edges in the collapsed

static data (*) has weights that are aggregated through time.

In this chapter, we focus on addressing the problem of modeling users

adopting items across different time steps to generate recommendations con-

sidering evolving user preferences. Unlike rating-based recommendation, we

assume the same users can adopt items more than once with different quantity

numbers.

The main idea of our approach is to model dynamic adoption data using

a combination of Non-negative Matrix Factorization (NMF) and Linear Dy-
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namical Systems (LDS). We represent the adoption data of each time step as

a state defined by the preferences of users and the characteristics of items in

low rank factors as well as transitions of low rank factors so as to smoothen

the evolution of user preferences.

Suppose we model users adopting items as a bipartite graph where users

and items represent the two types of vertices, the weights on the user-adopt-

item edges represent the number of times the users adopt the items. For the

time steps of adoption data, we can define a bipartite graph Yt for each time

step t. When a user n adopts w instances of an item m in time t, an edge is

created between n and m and an edge weight w is assigned. In the adjacency

matrix representation, this translates to ym,n,t = w.

We now define the dynamic adoption prediction problem as follows. Given

the item adoption data for a set of N users and M items in different time

steps for t = 1 · · ·T , we want to find the low rank factors of user preference for

every time step and to use the low rank factors to predict for the possibility

of missing adoptions in each time step t.

A direct and simple way of solving dynamic adoption prediction problem is

to perform NMF independently for each time step. Suppose we have M items

and N users, using MF for K latent factors,

Yt = Ct ·Xt

where Yt ∈ RM×N , Ct ∈ RM×K and Xt ∈ RK×N .

But there are drawbacks to such an approach. Given that solving for NMF

is a non-convex optimization problem, this approach suffers from the identifia-

bility problem where multiple solutions exist. This makes the interpretation of

resultant predictions difficult, as the lower rank factors are not related across

different time steps. That is, the user preference factors derived for one time

step may be completely unrelated with those for another time step.

Linear Dynamical Systems (LDS) offer an elegant way of expressing the
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relationship between latent factors at different time steps. For each user n,

LDS derives for each time step t a dynamics matrix An,t that represents the

mapping of latent factors from time step t− 1 to t. When LDS is applied to a

set of users, we obtain Dynamic Matrix Factorization (DMF). Different matrix

factorization techniques can be utilized in DMF and this chapter introduces

DMF based on NMF, a MF technique very often used for rating prediction. To

the best of our knowledge, using LDS and NMF for DMF to model dynamic

adoption data is novel and has not been attempted before. In a previous

work by Sun et al., a Dynamic Matrix Factorization approach based on LDS

has been developed for rating prediction [99], but they do not include the

use of NMF. The use of NMF is extremely important for obtaining insights

into the “topics” that users follow. Without the non-negativity constraints,

the latent factors obtained for users become uninterpretable. Previous works

on rating prediction [74, 55, 56, 57, 115] which employ Probabilistic Matrix

Factorization (PMF) [89, 90] are not able to show interpretable topics because

of the unconstrained sign of their latent factors. Our approach of enforcing

a non-negativity constraint in DMF has never been applied and evaluated in

item adoption prediction.

We briefly argue that non-negativity is necessary for ranking items in each

latent factor to obtain interpretable topics. For a given element ym,n of the

item-user matrix Y , the MF approach is to approximate ym,n using the item

latent factors cm and user latent factors xn.

ym,n =
K
∑

k=1

cm,k · xk,n

In topic models based on NMF [116, 69], the important items for each latent

factor is obtained by ranking the items’ value in the respective latent factor.

So if ci,k > cj,k, it implies that item i is more representative than item j for

the latent factor k in NMF. But this is not true if the latent factors contain
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negative values. A negative cm,k can also be important for contributing to the

value ym,n if the corresponding xk,n is also negative. Since the negative latent

factors prevent one from interpreting their semantics, we propose to use NMF

with LDS to obtain DMF with non-negative values.

These are the major highlights of this chapter:

• This chapter makes a clear distinction between item adoption recommen-

dation and rating recommendation. We point out that as user interests

evolve, we need to model these changes and adapt the prediction of adop-

tion data temporally.

• We propose three evaluation tasks for comparing the performance of our

proposed models against other baselines in the temporal item adoption

problem.

• We conduct a series of experiments to show that our proposed models

outperform NMF in the different prediction tasks and TimeSVD++ for

some prediction tasks involving dynamic adoptions. A few author case

examples illustrating changes of research interests learnt in DMF have

also been given to highlight the knowledge discovered by using DMF.

We describe in detail our models in Section 5.2. Then Section 5.3 evaluates

our models through empirical experiments. We finally end the chapter in 5.4.

5.2 Dynamic Matrix Factorization

Given the relationship between static Matrix Factorization (MF) and Dynamic

Matrix Factorization (DMF), we show how to use the parameters obtained

from the learning of MF for learning DMF.
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5.2.1 Problem Definition

Dynamic adoption prediction can be formally defined as a MF problem for

an adoption matrix Y ∈ RM×N×T , where M denotes the number of items, N

denotes the number of users and T denotes the number of time steps. Each

element ym,n,t of Y denotes the adoption count (≥ 0) for item m by user n in

time step t.

Not all temporal adoptions in Y are observed. We denote ym,n,t as the

temporal adoption observed for user n, item m and time step t. When ym,n,t =

0, it means that the temporal adoption is missing or we do not observe the

item n adopted by user m in the corresponding time step. Y is sparse as each

user adopts usually only very few items.

The adoption matrix Y can be collapsed into aM×N total adoption matrix

Y ∗ by aggregating the temporal adoptions of each user-item pair across all time

steps. That is, each element of Y ∗ is obtained by y∗m,n =
∑

t ym,n,t.

Depending on what we want to predict for the adoption matrix Y , we can

formulate three prediction tasks:

• Task 1, Prediction of missing temporal adoptions : The task of predicting

missing adoptions at some time step t for some user n and item m and

we represent the predicted adoptions by ŷm,n,t.

• Task 2, Prediction of all total adoptions given missing temporal adop-

tions : The task of predicting all total adoptions y∗m,n given some missing

temporal adoptions, i.e., ym,n,t = 0, at some time step t for some n

and m for a set of (m,n, t) triplets. We represent the predicted total

adoptions of user n and item m as ŷ∗m,n

• Task 3, Prediction of missing total adoptions : The task of predicting

missing total adoptions ŷ∗m,n for user n and item m with ym,n,t = 0 for

all t ∈ T .
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We can solve the above prediction tasks in a naive approach using non-

negative matrix factorization (NMF) in the next section before extending it to

DMF.

5.2.2 Non-Negative Matrix Factorization

Given a static adoption matrix Y ∗ ∈ RM×N , matrix factorization returns two

lower ranked matrices item-factor matrix C ∈ RM×K and user-factor matrix

X∗ ∈ RK×N , where K represents the number of factors. The item-factor

matrix C represents the mappings from items to a set of factors, while the

factor-user matrix X∗ represents the mappings from factors to users. In adop-

tion prediction tasks, we would like to regard the factor values as their weights

and hence require them to be non-negative.

Non-negative matrix factorization (NMF) meets the requirement for non-

negativity of both the item-factor matrix C and factor-user matrix X∗. NMF

finds the lower rank matrices C andX∗ such that their product recovers missing

values in Y ∗. As NMF is a well-defined and well-understood technique, we only

briefly show how to solve for C andX∗ using stochastic gradient descent (SGD)

with the log-barrier approach for non-negativity constraints.

The parameters of NMF can be obtained using the following derivatives

executed using multiple iterations,

∂ log p(y∗m,n)

∂cm,k

= γ

(

y∗m,n −
K
∑

k=1

cm,kx
∗
k,n

)

x∗k,n +
ξ

cm,k

∂ log p(y∗m,n)

∂x∗k,n
= γ

(

y∗m,n −
K
∑

k=1

cm,kx
∗
k,n

)

cm,k +
ξ

x∗k,n

new cm,k = old cm,k + η ·
∂ log p(y∗m,n)

∂cm,k

new x∗k,n = old x∗k,n + η ·
∂ log p(y∗m,n)

∂x∗k,n
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where γ represents the precision of error, ξ represents the strictness of the

log barrier constraint and η represents the rate of learning for SGD. In our

experiments, we use the parameter settings γ = 1, ξ = 0.01, and η = 0.0001.

5.2.3 Dynamic Matrix Factorization

DMF can be seen as an extension of NMF by adding the time dimension based

on Linear Dynamical Systems (LDS). LDS is originally designed to relate an

output signal yt ∈ RM at time step t with some latent vector xt ∈ RK at time

step t, and the latent vectors x at earlier time steps. Formally, we define LDS

as follows,

yt = C · xt + v xt = At · xt−1 + w

v ∼ N (0, R) w ∼ N (0, Q)

where C ∈ RM×K is the item-factor matrix, and At ∈ RK×K is the factor to

factor mapping between adjacent time steps. The covariance matrices Q ∈

RK×K and R ∈ RM×M are set to be 0.1 · I in our experiments.

The above LDS formulation models only a single user’s data across time

steps. It can be extended to model dynamic data of a set of users in a dynamic

matrix factorization model. Sun et al. defined a version of DMF as follows [99]:

yn,t = Cn · xn,t + v xn,t = An,t · xn,t−1 + w

v ∼ N (0, R) w ∼ N (0, Q)

This version of DMF learns a fixed item-factor matrix C for all users.

Instead of learning C, we propose to use an item-factor matrix derived from

NMF. We also propose four other versions of DMF based on the options used

for Item Factor Matrix and Dynamics Matrix as shown in Table 5.1.

Basic DMF (DMF-B). In this Basic DMF model, we determine a static
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Table 5.1: Proposed DMF Models

Non-Scaled Scaled Item
Item Factors Factors

Variable Dynamics Matrix DMF-B DMF-I
Fixed Dynamics Matrix DMF-A DMF-IA

item-factor matrix C using NMF while allowing the factor-user matrix Xt to

vary with time. That is, we define Basic DMF to be:

yn,t = C · xn,t + v Y ∗ = C ·X∗ using NMF

keeping the equations of xn,t, w and v the same.

To use DMF for obtaining an estimate of ŷm,n,t, we calculate yn,m,t|T , the

frequency of adoptions by user n on item m at time t conditioned on all infor-

mation up to the last time step T .

yn,t|T = C · xn,t|T

DMFs with Scaled Item Factors (DMF-I and DMF-IA). The DMF-I

and DMF-IA models consider that the item-factor matrix C learnt from NMF is

determined for the observations for all time steps, i.e., Y ∗. With large observed

adoption counts in Y ∗, we expect larger entries in C. The consequence of this

is an over-estimation of item factors for each time step. Consider using the

NMF model to recover adoptions, we have

y∗m,n =
K
∑

k=1

cm,k · x
∗
k,n

However, in DMF, we have

ym,n,t =
K
∑

k=1

cm,k · xn,t,k

In NMF, both C and X∗ contribute to the observation of the magnitude in
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Y ∗ for the respective indices. However, in DMF-B, the adoption magnitude Y

is spread out over multiple time periods. If C remains constant when inferring

for the values of xn,t, the value of xn,t will have to be adjusted downwards in

order to compensate for the reduction of the observed value ym,n,t. While it

is convenient to allow xn,t to bear the burden of adjusting for ym,n,t, we could

also adjust C such that it is suitable for the number of observed time steps

for each user n. For example, if a user is only active in one time step, then

Cn should be no different with the C from NMF. However, if user is active in

multiple time steps, then Cn for user n should be scaled such that Cn < C. In

the DMF-I model, we therefore scale C by the number of time steps.

Cn =
C

# of observed time steps for user n

Alternatively, C can be estimated via a log likelihood maximization ap-

proach in the same way as how A is optimized. But the elegance of how LDS

is being defined allows for the parallel estimation of the xn’s and An’s pa-

rameters independently from each user n. Therefore if we learn the C that is

coupled with all other users, it becomes computationally expensive with little

room for parallelization and scalability.

DMFs with Fixed Dynamics (DMF-A and DMF-IA). In both DMF-

B and DMF-I, the dynamics matrix A is different (or variable) for each user

and each time step. In predicting missing total adoptions, we have user-item

pairs that do not involve any adoption across all time steps. Using different

dynamics matrices across time steps may cause over-fitting problem in DMF-B

and DMF-I and prevent accurate prediction of missing total adoptions. We

therefore propose to learn a fixed dynamics matrix A for each user across all

time steps. DMF-A and DMF-IA thus have the following equation for xn,t.

xn,t = A · xn,t−1 + w
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Parameter Learning for DMF. The estimation of parameters in all the

DMF models can be derived as laid out in Rauch, Tung and Striebel [82]

and that of Ghahramani and Hinton [40]. In the following, we only show the

learning of parameters for DMF-B and DMF-I.

Let xn,t|T be the smoothed latent state variable of user n at time t con-

ditioned on T . Without showing the explicit derivations, we only state the

equations here. Readers interested in the derivations can refer to Rauch, Tung

and Striebel [82]. The steps listed here is known as RTS smoothing.

xn,t|T = xn,t|t + Jn,t
(

xn,t+1|T − xn,t+1|t

)

Jn,t = Pn,t|tA
′
n,tP

−1
n,t+1|t

Pn,t|T = Pn,t|t + Jn,t
(

Pn,t+1|T − Pn,t+1|t

)

J ′
n,t

Kalman The smoothed latent states depends on the prior latent states

xn,t|t−1 and posterior latent states xn,t|t. The posterior and prior latent states

are obtained through a process known as Kalman filtering [49].

xn,t|t−1 = An,txn,t−1|t−1

Pn,t|t−1 = An,tPn,t−1|t−1A
′
n,t +Q

Kn,t = Pn,t|t−1C
′
(

CPn,t|t−1C
′ +R

)−1

xn,t|t = xn,t|t−1 +Kn,t

(

yn,t − Cxn,t|t−1

)

Pn,t|t = (I −Kn,tC)Pn,t|t−1

The dynamics matrix An,t is given by

An,t =
(

xn,t|T · x
′
n,t−1|T + Pn,t,t−1|T

) (

xt−1|T · x
′
t−1|T + Pn,t−1|T

)−1

Although the matrix C remains the same as before, the latent space vectors

xn,t, now divided by different time steps no longer have their non-negativity
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constraints enforced by the Kalman filtering and smoothing steps. This is

because when solving for the posterior and smooth distributions of x, it also

involves a maximization step without additional constraints on the polarity of

the vectors. Although Lagrange constraints can be added to enforce x to lie

on the positive orthant, the algebraic manipulations becomes far too complex

to solve analytically. Stochastic gradient descent can be used for solving the

posterior and smoothed vectors numerically but given the multiple time steps

involved for multiple users, the complexity of such an approach is not feasible

for data on a larger scale.

5.3 Experiments

We evaluate our models against the baseline NMF and TimeSVD++1 on the

three tasks: 1) DMF-B and DMF-I for Prediction of missing temporal adop-

tions, 2) DMF-B and DMF-I for Prediction of all total adoptions given missing

temporal adoptions and 3) DMF-A and DMF-IA for Prediction of missing total

adoptions. Evaluations on tasks 1 and 2 use the same training and testing sets

while task 3 uses a different training and testing sets. In this section, we will

discuss how the training and testing sets are constructed before reporting the

results for the three tasks.

5.3.1 Data Set

We use a subset of publications from DBLP and ACMDigital Library (ACMDL).

Using papers published in the Journal of ACM (JACM) as a seed set, we grow

this seed set by including their authors and their non-JACM publications. We

also include the co-authors of JACM authors, and the publications of these

co-authors. We collect the titles and abstracts (for ACMDL only) of all the

above publications.

1The TimeSVD++ we used is the implementation from GraphLab
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The statistics of our data sets are given in Table 5.2. In this experiment, we

use authors and title/abstract words as users and items respectively. Each year

is considered a time step. DBLP has twice as many authors as ACMDL due to

the longer history of publications maintained by DBLP. DBLP covers a larger

scope than ACMDL as the latter focuses only on ACM-related publications.

However, ACMDL has many more unique words than DBLP, because ACMDL

has both titles and abstracts, whereas DBLP only has titles.

Table 5.2: Dataset Sizes

Data set # authors # unique non- # non-zero time steps
stop words entries in Y

DBLP 52,754 20,080 4,085,265 1936–2012
ACMDL 24,569 33,044 8,721,385 1952–2011

Training and Testing sets for Task 1: To evaluate Task 1 (Prediction

of missing temporal adoptions), we divide the temporal adoption matrix Y

into five (training set, testing set) pairs, (Y (i)train, Y (i)test) for i=1 to 5. The

process for creating these data sets is outlined as follows,

1. Y (0)train = Y , Y (0)test = ∅

2. For i=1 to 5

(a) Y (i)train = Y (i− 1)train

Y (i)test = Y (i− 1)test

(b) For each y(i)trainm,n,t > 0, with probability 0.1, do

i. y(i)testm,n,t = y(i)trainm,n,t

ii. y(i)trainm,n,t = 0

We deliberately hide 10% of adopted items in each time step. We then

iteratively grow the testing set by shifting 10% of the adoptions in the training

set to the testing set. This way, we can ensure that subsequent testing set is

always a superset of the previous set. That makes the difficulty of predicting

for the missing adoptions in the test set consistently more difficult than the
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previous set. We obtain five sets of testing data { 10%, 19%, 27%, 34%, 41%

} with their respective training data.

Training and Testing sets for Task 2: For Task 2 Prediction of all

total adoptions given missing temporal adoptions, we simply collapse the above

Y (i)train and Y (i)test across time steps. That is, for each i, the training and

test sets are defined by,

y∗(i)trainm,n =
∑

t

y(i)trainm,n,t y∗(i)testm,n =
∑

t

y(i)testm,n,t

Training and Testing sets for Task 3: For task 3, we divide the tem-

poral adoption matrix Y into training sets Y (j)train and testing sets Y (j)test,

for j=1 to 5. The process for creating these data sets is listed as follows,

1. Y (0)train = Y , Y (0)test = ∅

2. Y ∗(0)train = Y ∗, Y ∗(0)test = ∅

3. For j=1 to 5

(a) Y (j)train = Y (j − 1)train

Y (j)test = Y (j − 1)test

(b) Y ∗(j)train = Y ∗(j − 1)train

Y ∗(j)test = Y ∗(j − 1)test

(c) For each y∗(j)trainm,n > 0, with probability 0.1, do

i. y∗(j)testm,n = y∗(j)trainm,n

y∗(j)trainm,n = 0

ii. For t=1 to T

A. y(j)testm,n,t = y(j)trainm,n,t

B. y(j)trainm,n,t = 0

We create the testing set by randomly including 10% of the item m-user n

pairs with non-zero y∗m,n from Y ∗. The selected pairs are also excluded from
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the training set by setting ym,n,t = 0 for all t. The size of the training and

testing sets is then varied by randomly selecting another 10% from the training

set and shifting it to the testing set.

5.3.2 Results for Prediction of Missing Temporal Adop-

tions

We used Y (i)train for training DMF-B/DMF-I and per time step data from

Y (i)train for training NMF. The models then predict the missing adoptions for

each time step y(i)testm,n,t for all y(i)testm,n,t > 0. The purpose of this experiment

is to show that even when NMF is applied independently to each time step,

DMF-B and DMF-I are still able to outperform NMF. This indicates that

the relationship between the user latent factors of adjacent time steps xn,t and

xn,t−1 captured by the dynamics matrix is necessary to more accurately predict

missing temporal adoptions.

The predicted values given by NMF, DMF-B and DMF-I are denoted by

ŷ(i)nmf
m,n,t, ŷ(i)

dmf−b
m,n,t and ŷ(i)dmf−i

m,n,t respectively. We compare the Pearson Cor-

relation Coefficient (PCC) of the predicted values for each time step against

y(i)testm,n,t of each time step. PCC is preferred over Root Sum Squared Error

(RSSE)2 because the total adoptions when divided into multiple time steps

have many small count values dominating RSSE over the large count values

that are deemed more important.

Figure 5.2 shows the result of DMF-B against the baseline NMF using

ACMDL dataset for different proportions of test data. In the plot, The x-axis

represents the PCC of NMF predicted values against the test (or ground truth)

values while y-axis represents the PCC of DMF- predicted values against the

test values. Each dot represents the respective results of a year. If the dot lies

on the upper-left side of graph, it indicates that for that year DMF-B performs

better than NMF. Figure 5.2 indeed shows that for the four plots, most of the

2Root Sum Squared Error is defined by the root of squared errors, i.e.,
√

∑

k
error2

k
.
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dots lie on the upper left side of the figure.

−1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

corr(NMF, test)

c
o

rr
(D

M
F

−
B

, 
te

s
t)

(a) For i=2, test size=19%
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(b) For i=3, test size=27%

−1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

corr(NMF, test)

c
o

rr
(D

M
F

−
B

, 
te

s
t)

(c) For i=4, test size=34%
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(d) For i=5, test size=41%

Figure 5.2: PCC of DMF-B against NMF for Task 1 (ACMDL)

Figure 5.3 shows the results of DMF-I against DMF-B. The results show

that most of the dots lie on the upper left side of the figures. This indicates

that using a scaled item-factor matrix C achieve a better estimation of the

latent factors. The two figures show that for most years, DMF-I outperforms

DMF-B while DMF-B outperforms NMF. Due to space constraints and the

small adoption values in each time step, we do not include DBLP for this task.

5.3.3 Results for Prediction of Total Adoptions with

Missing Temporal Adoptions

In this evaluation task, the training of DMF-B and DMF-I uses temporal

adoptions in Y (i)train while training of NMF uses total adoptions in Y ∗(i)train.

We evaluate how accurate these models predict the total adoptions in y∗m,n for
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(a) For i=2, test size=19%
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(b) For i=3, test size=27%
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Figure 5.3: PCC of DMF-I against DMF-B for Task 1 (ACMDL)

all y∗(i)testm,n > 0 where

y∗m,n =
T
∑

t=1

ym,n,t

ym,n,t = y(i)trainm,n,t + y(i)testm,n,t, for all i = 1 to 5

Using DMF-B or DMF-I, we can compute the value of ŷm,n,t for each differ-

ent time step t. Then an estimate of ŷ∗m,n is obtained by summing the predicted

value across all time steps.

ŷ∗m,n = max(
T
∑

t=1

ŷm,n,t, 0)

If ŷ∗m,n is negative, it is unlikely user m adopts item n and we set the predicted

adoption value to zero.
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We evaluate the predicted adoption values against the test (ground truth)

values using Pearson correlation coefficient (PCC) and Root Sum Squared

Error (RSSE) for k largest test adoption values where k is varied from 1 to the

number of test cases with adoption values not smaller than 20, ignoring the

less important small adoption values.
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Figure 5.4: PCC of Task 2 (ACMDL)

Figures 5.4 and 5.5 show the correlation and RSSE results for Task 2. The

results show that DMF-I outperforms DMF-B by a very small margin and the

DMF-B and DMF-I outperforms NMF and TimeSVD++ by a large margin.

This indicates that the two DMF models can recover the total adoptions more

accurately when some temporal adoptions are missing. The PCC and RSSE

performance reduces as we increase k adding more errors to the measures.

We also perform similar experiments on the DBLP data set. As shown in

Figures 5.6 and 5.7, we also observe that DMF-B and DMF-I outperforms

NMF and TimeSVD++ significantly by PCC and RSSE.
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Figure 5.5: RSSE of Task 2 (ACMDL)

While it is expected that NMF will perform poorly on task 2 due to the lack

of temporal considerations, we are surprised that TimeSVD++ also performs

as poor as NMF on task 2. Manual inspection of the predicted values given

by TimeSVD++ shows that TimeSVD++ predicts almost the same adoption

values ŷ∗m,n,t for all time steps t where user n is active in. Given that for task

2, user adoption values for an item m is missing in some but not all of the

time steps, an adoption model should cope with such variations in item user

adoption values throughout the entire temporal duration. Since TimeSVD++

was originally developed for user-item rating prediction, it assumes that once

item has been rated by user, the rating remains the same throughout the entire

temporal duration. Such an assumption violates the conditions necessary for

good prediction in task 2.
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Figure 5.6: PCC of Task 2 (DBLP)

5.3.4 Results for Missing Total Adoptions

For this task, we train DMF-A and DMF-IA using Y (j)train and train NMF

using Y ∗(j)train. We want to investigate if the temporal adoption data of

known user-item pairs can help to predict the missing total adoption for a

given user-item pair. The test total adoptions to be predicted are y∗,testm,n for all

Y ∗(j)test > 0 where

y∗,testm,n =
T
∑

t=1

ytestm,n,t

DMF-A and DMF-IA are required to predict the values of ŷm,n,t for each

different time steps t. They then give an estimate of ŷ∗m,n by summing the
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(c) For i=4, Test size=34%
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Figure 5.7: RSSE of Task 2 (DBLP)

predicted value across all time steps.

ŷ∗m,n = max(
T
∑

t=1

ŷm,n,t, 0)

If ŷ∗m,n is negative, we set it to zero. The predicted total adoptions are then

compared with test (ground truth) adoptions y∗m,n by Root Sum Squared Error

(RSSE).

We again evaluate the predicted adoption values against the test (ground

truth) values using PCC and Root Sum Squared Error RSSE for k largest

test adoption values where k is varied from 1 to the number of test cases with

adoption values not smaller than 20, ignoring the less important small adop-

tion values. Figures 5.8 and 5.9 shows the RSSE results for the ACMDL and

DBLP data set. DMF-IA is observed to have smaller RSSE than DMF-I show-

ing that fixed dynamics matrix and scaled item factors are required to yield
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more accurate predictions than DMF-I and NMF for this task. DMF-I again

outperforms NMF for PCC and RSSE predictions. However, TimeSVD++

have better performance for task 3 in the comparison of RSSE values. Since

for task 3, the adoption values of itemm and user n are consistently missing for

all time steps, the adoption model does not have to make different prediction

values for different time steps. When comparing against the aggregated item

adoption values Y ∗(i), this hides the weakness of rating prediction models such

as TimeSVD++.
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Figure 5.8: RSSE of Task 3 (ACMDL)

5.3.5 Case Study

A main feature of DMF formulation is the use of dynamics matrix An,t to

capture the evolution of user n’s latent factors xn,t from one time step to the
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Figure 5.9: RSSE of Task 3 (DBLP)

next time step. The latent state at t is given by

xn,t = An,t · xn,t−1

The kth factor in xn,t is derive by the dot product of the kth row of An,t and

xn,t−1. The largest value in the kth row of An,t, say the (k, l) value, tells us

that the lth latent factor in xn,t−1 plays a significant role in explaining for the

value of the kth latent factor in xn,t.

Using the same author Duminda Wijesekera as given in Chua et al. [28],

we explain the evolution of Duminda Wijesekera’s latent factors for the years

(2000 to 2001) and (2001 to 2002). From the item factor matrix C, we can

derive the underlying topics of some latent factors as shown in Table 5.3.

Duminda Wijesekera has research interests in security, multimedia, networks,

etc.. His 6th latent factor, corresponding to security topic, evolves from 2.25
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in 2000 to 3.23 in 2001, and later to 9.10 in 2002. We also notice that the

(6, 20)th entry in the 6th row of ADuminda,2001 has the highest value of 0.347

while the other entries in the same row have a mean value of 0.0387. In

addition, in the 6th row of An,2002, the (6, 6)th entry has the highest value of

0.3625 while the other values have mean value of 0.1418. This suggests that

Duminda Wijesekera shifted his research from databases to security from 2000

to 2001. Then from 2001 onwards, the security topic continues to be his main

research topic.

Consider another well known author Christos Faloutsos who has published

widely in databases, data mining and graph mining. The 23th factor of Christos

Faloutsos, corresponding to graph mining, increased from 2.90 in year 2006 to

14.83 in year 2007. By inspecting his dynamics matrix AChristos,2007, we noticed

that the (23, 20)th entry of the 23th row has the highest value of 0.5055 while

the mean value of other entries in the same row is 0.1056. This indicates that

Christos Faloutsos ’s increased research in the graph mining comes from his

previous research interest in databases.

Table 5.3: Latent Factors

Factor 6 Factor 20 Factor 23 Factor 18
access data mining network
control large graph networks
paper database cache wireless
systems approach graphs nodes
based techniques frequent sensor
model algorithms patterns traffic

information efficient memory infiniband
security stream vertices routing
system query pattern mobile
policies problem vertex node

Finally, we observe that another database researcher Beng Chin Ooi has

shifted his research interests from database to mobile systems between the

years 2003 to 2004. The 18th factor (corresponding to mobile systems) of his

latent state increased from 1.6907 to 9.1483 between 2003 and 2004. In the

18th row of Beng Chin Ooi ’s dynamics matrix ABeng Chin,2004, the (18, 20)th
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entry shows a large magnitude of 0.2441 while the rest of the other factors give

a mean value of 0.0933. This indicates that the increase in mobile systems

came from previous involvement with databases.

We stress again that without the use of NMF for DMF, we will not be able

to observe such case studies for individual authors.

5.4 Summary

We have highlighted the differences between rating prediction and adoption

prediction. When the data given contains temporal information, we proposed

the use of Dynamic Matrix Factorization (DMF) for modeling the dynamics of

latent states for every user. The empirical results show that using DMF gives

overall better performance over NMF and state of the art method such as

TimeSVD++. Our case study shows three examples of well-known researchers

who changed the focus of their research career from a particular field to other

fields in Computer Science. By analyzing the different latent states at different

time steps, we can notice the years which indicate a tipping point in their focus.

Then by further analyzing the dynamics matrix for the tipping point years,

we can observe which fields they contributed to the interest in their respective

new fields. Without the non-negative constraints in the item factor matrix for

DMF, we will not be able to obtain latent factors that can be interpreted as

topics of interests for the users. Therefore, the models proposed here can be

used as a form of dynamic topic models for tracking the evolution of users’

behavior over time. Temporal data sets have also been gaining attention [38]

and the models we highlighted here could be applied to other social media data

sets as well.
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Chapter 6

Using Linear Dynamical Topic

Model for Granger Causal

Temporal Social Correlation

The abundance of online user data has led to a surge of interests in under-

standing the dynamics of social relationship using computational techniques.

To this end, we propose to model user’s item adoption data for measuring the

inter-dependency of adoption behaviors between users over time, termed as

Temporal Social Correlation (TSC). To address the difficulty of representing

users adoption behavior in latent space for sparse adoption data, and esti-

mating the rate of decay in users’ preferences over time, we develop a novel

dynamic topic model known as Linear Dynamical Topic Model (LDTM). Us-

ing the time series constructed from the topic distributions found by LDTM,

we then conduct Granger causality tests to measure TSC. Extensive experi-

ments on bibliographic data show that the ordering of authors’ name plays a

statistically significant role on the flow of information between authors. We

also present several interesting case studies to highlight the intuition of our

analysis.
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6.1 Motivation

The proliferation of social media as a widely accepted platform for dissem-

inating ideas and recommending products among connected users motivates

research in understanding the relationships among users. Users’ relationships

is well studied in social science and falls under the area of measuring social

influence. Measuring social influence has many important applications, such

as targeting influential individuals for product marketing, or identifying piv-

otal people in an organization to optimize corporate management and/or drive

innovations.

In the context of social media, we define social influence from a user i to

another user j as “the actions of i causes j to perform a set of actions in the

future”. Social influence has been previously studied by various researchers

[33, 34, 70, 100, 26]. However, all of these existing approaches do not take

into account the temporal aspects of social influence. We take a step further

to consider the temporal dimension in measuring social relationships among

users.

Knowing how i’s past actions can predict j’s future actions better than j’s

past actions is only a necessary condition and not sufficient for finding social

influence. Since the definition of social influence reflects the widely discussed

notion of causality [45, 79], the sufficient condition for finding social influence

requires us to exclude other external factors that could affect the actions of j.

That is, we need to eliminate the confounding variables that give doubt to the

predictive power of i’s and j’s past on j’s future [44].

However, it is difficult to satisfy this sufficient condition, due to the absence

of complete user data capturing all external factors influencing the user’s ac-

tions. There is also a need to conduct randomized controlled experiments,

which is challenging in social networks. Under such constrained scenarios,

we relax our assumptions by ignoring the confounding variables and term the

simplified notion of social influence as Granger Causal Temporal Social Corre-
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lation (TSC). We assume that users who are socially correlated tend to make

similar choices over time. It is also important to note that the TSC from i to

j and that from j to i need not be symmetric.
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Figure 6.1: Example of temporal social correlation from i to j

We use the term “users adopting items” to describe any action of a user

on the media that captures her preferences. Examples of users adopting items

include users watching movies, users joining online communities [27, 29] and

users producing words [28]. This is also the most common type of user actions

in social media, where items may refer to any form of media.

In this chapter, we model the user adoption behavior changes due to tem-

poral social correlation as a form of information transfer between users. We say

that “j follows i” leads to information transfer from i to j when there is TSC

from i to j at the time point of their interaction τ , denoted as TSC(i→ j, τ).

We also use the term “follow”, “information transfer” or “TSC” in place of “so-

cial influence”, as causality cannot be proven adequately without randomized

experiments.

Figure 6.1 shows an example of users i and j adopting different sets of

items over three time steps. When temporal information is missing, we could

only observe the adoption states at t = 3, but it does not tell if i follows j

or j follows i. Only by looking at the adoption states of t = 1 and t = 2, we
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can observe that j progressively follows i in adopting items b at t = 2 and c

at t = 3. The converse is unlikely because i’s adoption states remain the same

over time, that is, i’s adoption states at t = 1 is sufficient to predict her states

for t > 1.

Generalizing the example in Figure 6.1, we formulate the following problem:

Given a set of users U and a set of items V that U adopt over time steps 1

to T , determine the TSC(i → j, τ) and TSC(j → i, τ) for all pair of users

i, j ∈ U when i and j interacts at a specific time point τ .

A simple yet naive way to quantify TSC(i→ j, τ) is:

1. To represent the raw frequency of adopted items for i and j at every time

step t as a vector vi,t, vj,t ∈ RM , where M is the total number of possible

items. Vectors for each user i over a set of time steps T form the time

series {vi,1, . . . , vi,T}.

2. To use the time series {vi,1, . . . , vi,T} and {vj,1, . . . , vj,T} as inputs to

existing causality measures such as Granger causality [44] or the more

recent transfer entropy [102, 103, 104].

However, such approach presents several challenges:

1. The adoption vectors vi,t, vj,t are usually high dimensional in practice

(i.e., M is large). In such case, comparing between vectors vi,t and vj,t

of two users i and j will be computationally expensive (even using a

linear-time algorithm).

2. The vectors vi,t and vj,t are often sparse, since users only adopt a small

subset of all possible items. Comparing sparse vectors will hardly yield

any indication of significant relationship between them.

3. Since item adoption counts accumulate over time, the change of the

adoption vector vj,t relative to its previous time step vj,t−1 will become

marginal over time, i.e., limt→∞
||vj,t−vj,t−1||

||vj,t−1||
= 0, where ||.|| denotes the
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Euclidean norm. In this case, the past information of a user j’s adoption

is sufficient to predict her own future, and the information of other users

such as i is no longer useful.

4. If the time series {vi,1, . . . , vi,T} and {vj,1, . . . , vj,T} of users i and j are

long, their comparison may give misleading conclusion that no influence

exists, because TSC between the two users usually takes place within a

window of time periods.

To address 1) and 2), a temporal latent factor model is needed to obtain

a dense, compressed representation of adoption behaviors over time. With

regard to 3), one may learn the user latent factors at each time step indepen-

dently. However, (static) adoption data are already sparse, and slicing the data

into time steps would further aggravate the problem. To address the sparsity

issue, we propose a method to automatically estimate a decay parameter for

balancing between the importance of past and recent information. Finally, to

handle 4), we specify a time window to constrain the time series comparison

period in which social correlation is measured.

To satisfy all these requirements, we propose a novel approach called the

Linear Dynamical Topic Model (LDTM). The proposed model represents user

adoption behavior as topic distributions at different time steps and, for each

user, the evolution of the topic distribution parameters is tracked using Linear

Dynamical System (LDS).

In our experiments, we show that by using the temporal topic distributions

for each user, we are able to compare pairs of users by formulating Granger

Causality tests. Through experiments on bibliographic data such as DBLP and

ACMDL, we find evidence for Granger Causality among the paper co-authors,

and our statistical significance tests reveal that the ordering of the co-authors’

names plays a role in determining the information transfer among them.
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6.2 Issues in Modeling Temporal Adoption Data

Measuring TSC between two users i and j requires two crucial steps. First,

an accurate measure of the users’ adoption behavior represented as time series

vector in latent space is required for every time step. That is, we require latent

factor vectors θi,t, θj,t ∈ RK for each user pair (i, j) at time step t. θi,t and

θj,t has K dimensions and K << M . Second, a temporal correlation measure

is needed to compare between the trends of two time series. Knowing how

two time series temporally correlate should help us make better predictions or

reduce our uncertainty for their future adoption behavior. However, we need

to address some issues in modeling temporal adoption data, as elaborated in

Sections 6.2.1 and 6.2.2.

6.2.1 Modeling Adoption Data Across Time Steps

We propose a new way of representing user’s adoption behavior in temporal

latent space as opposed to the traditional method of using only the frequency of

adoption in high dimensional space. There are some advantages of representing

adoption behavior in temporal latent space as well as some difficulties, which

we will elaborate further.
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Figure 6.2: Topic Modeling in Temporal User Item Adoptions

If we model the topic distributions at each time step independently of other

time steps, we would obtain the scenarios in Figures 6.2(a) for time step 1 and

6.2(b) for time step 2. One may see that the edges between users and items
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are sparse, which does not allow us to draw any meaningful intuitions about

the relationship of items.
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Figure 6.3: Topic Modeling in Static User Item Adoptions

However, when we combine the temporal adoptions into a single time step,

we obtain the scenarios as illustrated in Figure 6.3(a). Figure 6.3(a) shows the

result of performing topic modeling on data without temporal considerations.

The items adopted by users u1, u2 and u3 are clustered according to topics 1

and 2 based on the density of edges between users and items. We therefore

require a method of modeling the temporal adoptions such that it allows us

to preserve the edge densities across time steps and provides us with the topic

distributions at different time steps. Such model could combine the temporal

adoptions and construct dependencies between different time steps by having

the scenario as shown in Figure 6.3(b).

6.2.2 The Need for Temporal Probabilistic Topic Model

There are many ways of modeling users’ adoption behavior in latent spaces,

and we wish to justify our choice of using probabilistic topic model. Besides

probabilistic method, one may use Non-negative Matrix Factorizations (NMF)

to obtain low-rank matrices that can substitute for the users’ and items’ latent

factors [116, 69].

Our previous work in temporal item adoptions has also explored the use of

LDS with Non-negative Matrix Factorizations (NMF) [30] for modeling evolv-
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ing users’ preferences. LDS with NMF can be stated as follows,

xn,t = An,t−1 · xn,t−1 + ǫ, ǫ ∼ N (0, Q)

wm,n,t = Cm · xn,t

where xn,t ∈ RK is the vector representing users’ adoption behavior, An,t−1 ∈

RK×K the dynamics matrix which evolves user’s behavior from t − 1 to t,

wm,n,t ∈ R represents the number of times user n adopts item m at time t,

Cm ∈ RK represents item m’s latent factor.

We estimate the items latent factor matrix C ∈ RM×K by minimizing

the sum-of-squared errors for NMF using Stochastic Gradient Descent (SGD)

with non-negative constraints. The model is then solved as an instance of

Expectation Maximization (EM) Algorithm [14, 35] by using Kalman Filtering

and RTS Smoothing for the E-step and M-step optimizes for the dynamics

matrix An,t.

In order to obtain interpretable topics, it is compulsory that the items latent

factor matrix contains only non-negative values [30]. This is because we often

rank the importance of items according to the items’ value in the respective

latent factor. But this is not true if the latent factors contain negative values.

A negative cm,k can also be important for contributing to the value wm,n,t if

the corresponding xn,t,k is also negative.

Due to the different amounts of item adoptions for each user at different

time steps, a single static matrix C that is defined in real space RM×K does

not fit well for the adoption patterns of every user. C was also only estimated

once before running EM algorithm to estimate the rest of the parameters.

There is thus a strong requirement to have a non-negative items’ latent

factor matrix that is normalized across different time steps which is estimated

by an algorithm that updates the items’ latent factor iteratively while learning

the other parameters. Probabilistic approaches give us normalized parameters
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that sum to one and are non-negative (since probabilities cannot be less than

zero). By alternating Gibbs Sampling with Kalman Filter, RTS smoothing

and additional maximization steps, we derive an algorithm summarized in

Algorithm 2 to estimate all the necessary parameters.

6.3 Linear Dynamical Topic Model

Figure 6.4 shows a graphical representation of LDTM. In essence, LDTM is

a combination of Latent Dirichlet Allocation (LDA) and Linear Dynamical

System (LDS). We obtain the users’ topic distribution at each time step by

inferring the latent topic variable conditioned on the words written in each

time step and the topic item distribution. We assume that the topic item

distribution remains static over time, while the users’ topic distribution evolves

over time through a linear dynamical process conditioned on the previous time

steps and the inferred latent variables in current time step.

6.3.1 Model Assumptions

We describe the assumptions of LDTM as follows:

1. Given that there are K topics and temporal adoption data, the topic

distribution θn,t of user n at time step t is defined by the Dirichlet dis-

tribution with parameters xn,t ∈ RK .

θn,t ∼ Dir(xn,t)

2. To relate the current parameters xn,t with the previous parameters xn,t−1,
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Figure 6.4: Graphical Plate Diagram of LDTM

we assume a linear Gaussian distribution as defined by,

xn,1 ∼ N (α · 1, Q)

xn,t = An,t−1 · xn,t−1 + ǫ, ǫ ∼ N (0, Q)

xn,t ∼ N (An,t−1 · xn,t−1, Q)

where An,t ∈ RK×K represents the dynamics matrix of user n at t, and

Q ∈ RK×K represents the covariance matrix of the Gaussian noise vari-

able. This step distinguishes our model from all other topic models, i.e.,

we model the evolution of users’ topic distribution using a dynamics ma-

trix. We also derive a whole new set of inference equations for estimating

the model parameters in Section B.1.
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3. The topic zm,n,t of an item m adopted by user n at time t is given by,

zm,n,t ∼Mult(θn,t)

Each topic item distribution is given by a simple symmetric Dirichlet

distribution,

φk ∼ Dir(β)

Then each item m adopted by user n at time t conditioned on topic

variable zm,n,t is given by,

wm,n,t|zm,n,t = k ∼Mult(φk)

6.3.2 Inference and Parameter Estimation

To calculate TSC, we require the topic distributions for each user n at each

time step t conditioned on the information up to t as denoted by θn,t|t. Since

we have defined θn,t as a Dirichlet distribution with Gaussian parameters xn,t,

knowing xn,t|t is sufficient for deriving θn,t|t. θn,t|t, which is known as the

posterior topic distribution of user n at time t conditioned on information up

to time step t is given by,

θn,t|t ∼ Dir(xn,t|t)

xn,t|t, the Gaussian distributed parameters of the Dirichlet distribution for user

n at time t conditioned on information up to time step t is given by a slight

modification of the Kalman Filter [49] algorithm,

xn,t|t ∼ N (xn,t|t−1 + ψn,t, Q)
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where ψn,t ∈ RK and ψn,t,k denote the number of times user n at time t gen-

erated topic k. xn,t|t−1 is the prior distribution of user n at time t conditioned

on information up to time step t− 1,

xn,t|t−1 = An,t−1 · xn,t−1|t−1

where An,t−1 ∈ RK×K is the dynamics matrix that evolves the parameters from

t− 1 to t. If An,t for all time steps t is assumed to be an identity matrix, the

model reduces to the traditional LDA.

6.3.3 Stable Estimation of Decay for Dynamics Matrix

We obtain An,t by maximizing the log likelihood of the model. The log likeli-

hood portion of the model involving the dynamics matrices is given by,

L = . . .−
1

2

T−1
∑

t=1

(xn,t+1 − An,txn,t)
′Q−1 (xn,t+1 − An,txn,t) . . .

∂L

∂An,t

= Q−1
(

xn,t+1x
′
n,t − An,txn,tx

′
n,t

)

By taking the derivative as zero, we obtain,

An,t =
(

xn,t+1x
′
n,t

) (

xn,tx
′
n,t

)−1

The right-hand side components are given by,

xn,t+1x
′
n,t = Vn,t+1,t|T + xn,t+1|Tx

′
n,t|T

xn,tx
′
n,t = Vn,t|T + xn,t|Tx

′
n,t|T

These components xn,t|T , Vn,t|T , Vn,t+1,t|T require the smoothed parameters con-

ditioned on all information from time step 1 to T . In LDS, this is known

as RTS smoothing [82], which is the continuous analog of the forward-

backwards algorithm used in Hidden Markov Models [81]. The combined use of
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Kalman Filtering and RTS Smoothing is an instance of Dynamic Programming

for Dynamic Optimization [12].

Because we combine the use of RTS smoothing with Gibbs sampling, some

set of equations has to be re-derived for use in LDTM. Further details of the

derivations are given in Section B.1.

According to Siddiqi et al. [94], an LDS is Lyapunov (aka numerically)

stable if the eigenvalues of the dynamics matrix An,t is less than or equal to

one. The eigenvalues of any general matrix are guaranteed to be less than or

equals to one if the sum of each row in the matrix is less than or equals to one.

Since our dynamics matrix evolves the parameters of the Dirichlet distri-

bution, the Dirichlet distribution will be invalid if the parameters are negative.

In LDTM, there is thus an additional requirement that the entries of the dy-

namics matrix has to be non-negative. This additional constraint has not been

addressed by [94] or any other prior works. We show a simple solution based on

the assumption that the dynamics matrix is always diagonal with normalized

entries ∈ [0, 1]. This fulfills the stability and non-negativity constraints for the

dynamics matrix.

To obtain An,t =
(

xn,t+1x
′
n,t

) (

xn,tx
′
n,t

)−1
, we assume,

G = xn,t+1x
′
n,t, H = xn,tx

′
n,t

A = GH−1, A ·H = G

and we again try to minimize,

∑

i,k

(

∑

j

Ai,j ·Hj,k −Gi,k

)2

If we assume that the dynamics matrix A is an identity matrix scaled by a
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scalar parameter µ, we should try to minimize the following,

f(µ) =
∑

i,k

(µ ·Hi,k −Gi,k)
2

=
∑

i,k

µ2 ·H2
i,k − 2µHi,kGi,k +G2

i,k

Taking the derivative with respect to µ

df(µ)

dµ
=
∑

i,k

2µH2
i,k − 2Hi,kGi,k

and then equating it to zero, we get,

µ =

∑

i,kHi,kGi,k
∑

i,kH
2
i,k

Assuming that each diagonal element of A takes a different value µi, we get,

µi =

∑

kHi,kGi,k
∑

kH
2
i,k

(6.1)

After we derive An,t using (6.1), we scale down (normalize) the values such

that max{An,t} ≤ 1.

6.3.4 Outline of Parameter Estimation

Algorithm 2 outlines the procedure to estimate the parameters of the model

in Figure 6.4. It begins by randomly initializing the latent variables zm,n,t, fol-

lowed by Gibbs Sampling iterations where the distributions are first estimated

using Kalman Filter. Then the latent variable zm,n,t is sampled by conditioning

on the prior distribution xn,t|t−1, previously sampled variables ψn,t and topic

item distribution parameters β. Using the sampled latent variables, we de-

rive the posterior distribution xn,t|t via Kalman Filter, and update the prior

and posterior covariances Vn,t|t−1 and Vn,t|t for the later steps of RTS Smooth-

ing. We then perform RTS Smoothing to get the smoothed distributions xn,t|T ,
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gain Jn,t, smoothed covariance Vn,t|T and lag-one covariance smoother Vn,t+1,t|T .

Finally, we estimate the dynamics matrix An,t and repeat the iterations till

convergence.

Algorithm 2 LDTM Inference
1: Input: Adoption data for each user n at each time step t

2: Output: Estimated parameters
3: {Initialization}
4: for n← 1 to N do

5: for t← 1 to Tn do

6: for m← 1 to Mn,t do

7: k ← uniformRandom(1, K)
8: {ψn,t,k denote the number of times user n at time t generated topic

k.}
9: {βk,m denote the number of times topic k generated item m.}

10: ψn,t,k ← ψn,t,k + 1, βk,m ← βk,m + 1, zm,n,t ← k
11: end for

12: end for

13: end for

14: {Gibbs Sampling}
15: while iterate do

16: for n← 1 to N do

17: {Kalman Filter}
18: for t← 1 to Tn do

19: xn,t|t−1 ← An,t−1 · xn,t−1|t−1

20: for m← 1 to Mn,t do

21: k ← zm,n,t, ψn,t,k ← ψn,t,k − 1, βk,m ← βk,m − 1
22: k ← sample(xn,t|t−1 + ψn,t, βk)
23: ψn,t,k ← ψn,t,k + 1, βk,m ← βk,m + 1, zm,n,t ← k
24: end for

25: xn,t|t ← xn,t|t−1 + ψn,t

26: Update Vn,t|t−1 and Vn,t|t
27: end for

28: {RTS Smoothing}
29: for t← Tn to 1 do

30: Update xn,t|T , Jn,t, Vn,t|T , Vn,t+1,t|T

31: end for

32: Estimate the dynamics matrix An,t

33: end for

34: end while
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6.4 Finding Temporal Granger Causality

After obtaining the posterior topic distributions θn,t|t, ∀n ∈ U , we calculate

TSC using Granger causality [45]. For a pair of users (i, j), TSC can be

measured in two directions, TSC(i → j, τ) and TSC(j → i, τ), pivoted at a

specific time step τ . τ is appropriately chosen to indicate the beginning of

information transfer between x and y. Given τ , we could then select a time

window [τ −W, τ + L] to constrain time series used for comparison, where L

is the number of time steps to “lookahead” for measuring TSC and W is the

“width” of past time steps for predicting the future.

For notational simplicity, we denote the topic distributions for users i and j

at t as it and jt respectively. Specifically, given two users i and j who interact

at time τ , TSC(i→ j, τ) is computed as follows:

1. Formulate the two linear regression tasks below:

j̃t = η0 +

(

W
∑

w=1

ηwjt−w

)

+ ǫ1

ǫ1 ∼ N (0, σ2
1)

R1 =
τ+L
∑

t=τ

(

jt − j̃t
)2

(6.2)

j̄t = η0 +

(

W
∑

w=1

ηwjt−w + λwit−w

)

+ ǫ2

ǫ2 ∼ N (0, σ2
2)

R2 =
τ+L
∑

t=τ

(jt − j̄t)
2

(6.3)

where τ is the time point when i and j begins transferring information

between one another.

2. Estimate for the parameters {η0, . . . , ηW} by minimizing the least squares

error in (6.2) using Coordinate Descent [13], and then estimate only

for the parameters {λ1, . . . , λW} by minimizing (6.3). The first linear
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regression given by (6.2) uses j’s past information to predict j’s future,

while the second linear regression (6.3) uses additional information from

i’s past to predict y’s future.

3. To obtain the TSC(i → j, τ), we measure how much i’s past improves

the prediction of j’s future by computing the F-statistic (F-stat),

TSC(i→ j, τ) = F-stat =
R1 −R2

R2

·
2L− 1

W

Because the formula (6.3) uses more parameters than (6.2), the sum-of-

squares error given by R2 is always smaller than R1, i.e. R2 < R1, which

implies that F-stat is always positive.

4. Repeat the steps for computing TSC(j → i, τ) and compare whether

TSC(i→ j, τ) > TSC(j → i, τ) or otherwise.

6.5 Experiments

To evaluate the effectiveness of LDTM and the TSC calculated for pairs of

users, we require data sets that provide users’ temporal adoptions and the

interactions between users that lead to information transfer between them.

The publicly available DBLP [67] and ACM Digital Library (ACMDL) [1]

academic data sets provide the information we require. We first describe how

we obtain subsets of the data from DBLP and ACMDL for our evaluation

needs. Then we evaluate the effectiveness of LDTM for several scenarios of the

dynamics matrix An,t:

1. LDA: To reduce LDTM to the baseline LDA, we simply set An,t as iden-

tity matrix for every user n and every time step t, i.e. An,t = I.

2. Half-Decay: We set An,t as diagonal matrix with constant values of 0.5,

i.e. An,t = 0.5 · I.
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3. Full-Decay: We set An,t as zero matrix, i.e. An,t = 0.

4. LDTM: We automatically determine the values of the dynamics matrix

An,t.

We show that automatically estimating An,t gives us better representations

of authors’ temporal adoption behavior than setting constant values for An,t.

Using the ideal authors’ temporal adoption behavior based on LDTM with

automatically estimated An,t, we apply the Granger causality tests and obtain

the TSC for every pair of interactions between authors. We show that the first

author is more likely to follow the proceeding authors in adoption behavior.

Finally, we show case studies of several well-known examples to highlight the

authenticity of our approach to calculate TSC.

6.5.1 Data Set

We used the DBLP and ACMDL data to obtain our required users and items.

The authors who wrote papers are treated as users and the words in their

papers are seen as adopted items. We used the words written in the abstract for

ACMDL and those written in title for DBLP. The co-authorship information

provides a time point where interaction occurred between the two authors.

Given the large number of publications in DBLP and ACMDL, we only

use a subset of papers from DBLP and ACMDL. We sample a subset of data

that covers a wide variety of fields in Computer Science by using the papers

published in the Journal of ACM (JACM) as a seed set. We then expand

the coverage by including other non-JACM publications by authors with at

least one JACM publication. The sample obtained here is termed ego-1. By

including the co-authors of the authors in ego-1 and their publications, we get

a larger sample called ego-2. We repeat the process once more to obtain ego-3.

Table 6.1 gives the sizes of the ego-2 and ego-3 data sets we sampled.

DBLP has more authors than ACMDL, because DBLP covers a longer his-

136



CHAPTER 6. USING LINEAR DYNAMICAL TOPIC MODEL FOR GRANGER CAUSAL

TEMPORAL SOCIAL CORRELATION

Table 6.1: Data Set Sizes

#authors #words period
ACMDL (ego-2) 24,569 33,044 1952-2011
ACMDL (ego-3) 157,715 44,308 1952-2011
DBLP (ego-2) 52,754 20,080 1936-2013
DBLP (ego-3) 388,092 40,463 1936-2013

tory of publications and has more sources of publications. On the other hand,

ACMDL focuses mainly on ACM-related publications. After pruning away

the stop-words and non-frequent (less than ten occurrences) words, ACMDL

sampled data sets have slightly more words than DBLP, as ACMDL provides

words in the abstract of publications while DBLP only has words in the pub-

lications title. We use the smaller ego-2 samples for experiments that require

repetitions, and use the significantly larger ego-3 samples for experiments that

only require a single run.

6.5.2 Convergence of Log Likelihood

We first evaluate the convergence of the log likelihood for the case where we

automatically estimate the dynamics matrix An,t and for cases where An,t is

set to constant values. We use the ego-2 samples for evaluating log likelihood

convergence because ego-2 will be used later for the predictive evaluations.
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Figure 6.5: ACMDL: Convergence of Log Likelihood

Figure 6.5(a) shows how log likelihood varies with the number of iterations
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(from 20 to 50) for ACMDL (ego-2). We can see that LDTM gives the highest

log likelihood, while LDA gives the lowest log likelihood. This suggests that

automatically estimating the dynamics matrix gives a better fit to the sampled

data as opposed to setting constant values for the dynamics matrix.

Figure 6.5 also reveals another interesting observation: given enough num-

ber of iterations, the model with full decay gives better log likelihood than the

model with half decay. We attempt to explain this observation as follows. The

fit of the estimated parameters depend on the user latent factors and the item

latent factors. The introduction of dependencies between temporal adoptions

aid the model in estimating better user latent factors only. But given enough

number of iterations, the item latent factors converged to a point where the

user latent factors become less important. This explains why the log likelihood

of full decay outperforms half decay when we increase the number of iterations.

Figure 6.5(b) shows that LDTM takes slightly longer time to complete the

same number of iterations as other baselines. We will explain how to improve

the efficiency in Section 7.2.

6.5.3 Results for LDTM

We evaluate the automatic estimation of dynamics matrix An,t for LDTM by

comparing against fixed values of An,t for two tasks which we described with

the aid of Figure 6.6. Figure 6.6(a) shows an example of the original adoption

data for an arbitrary user n of four items over six time steps. Each element in

the matrix represents the frequency of adoption for the respective item (row)

in that time step (column). The aggregation over all time steps gives us the

total adoption of the user n as represented by wn in Figure 6.6(a).

The objective of the two tasks depends on how we derive the training sets

which we describe as follows:

1. Task 1: For each user in the original data, we pick at random an (item,

time) pair and hide it in the training data set. Figure 6.6(b) shows the
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Figure 6.6: Creating Training Data Sets for Task 1 and Task 2

training data for Task 1 where some elements are missing as compared

to the matrix in Figure 6.6(a). Using the training data, the objective of

Task 1 is to predict all total adoptions for every user.

2. Task 2: For each user, we randomly select an item and hide the infor-

mation in all time steps. Figure 6.6(c) shows the training data for Task 2

where the second and last item has been fully hidden. Using the training

data, the goal of Task 2 is to predict the missing total adoptions for every

user.

We repeated the prediction experiments for a total of five times and took

the average results. In each run of the experiment, we generated five sets of
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training and testing data by hiding in incremental proportions of 10%. from the

sampled ego-2 data sets. Each training set with a larger proportion of hidden

data is derived from the previous training data. As a result, we obtained

training sets with missing proportions of 10%, 19%, 27% and 34%.

0 1 2 3 4 5

x 10
4

0.2

0.25

0.3

0.35

Top κ

P
e

a
rs

o
n

 C
o

rr
e

la
ti
o

n

 

 

LDA

Half Decay

Full Decay

LDTM

(a) Test size=10%

0 2 4 6 8

x 10
4

0.18

0.2

0.22

0.24

0.26

0.28

0.3

0.32

0.34

Top κ

P
e

a
rs

o
n

 C
o

rr
e

la
ti
o

n
 

 

LDA

Half Decay

Full Decay

LDTM

(b) Test size=19%

0 2 4 6 8

x 10
4

0.18

0.2

0.22

0.24

0.26

0.28

0.3

0.32

Top κ

P
e

a
rs

o
n

 C
o

rr
e

la
ti
o

n

 

 

LDA

Half Decay

Full Decay

LDTM

(c) Test size=27%

0 2 4 6 8

x 10
4

0.18

0.2

0.22

0.24

0.26

0.28

0.3

0.32

0.34

Top κ

P
e

a
rs

o
n

 C
o

rr
e

la
ti
o

n

 

 

LDA

Half Decay

Full Decay

LDTM

(d) Test size=34%

Figure 6.7: Pearson Correlation of Task 1 (ACMDL)

Figures 6.7 and 6.9 show the ACMDL results for Task 1 and Task 2 re-

spectively. In both figures, the y-axis represents the Pearson Correlation Co-

efficient (PCC) between the actual frequency of user adopting item and the

probability of user adopting item. We chose to compare PCC instead of Root

Mean Squared Error (RMSE) because our model predicts the probability of

adoption, not frequency. We compare the PCC for the top-κ test values and

plot the results while varying κ using x-axis. The results show that LDTM

outperforms all other baseline models with LDA performing the worst. This

indicates that LDTM provides a good balance between information learned in
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Figure 6.8: Pearson Correlation of Task 1 (DBLP)

past time steps and the present adoption information for obtaining a reliable

estimation of adoption behavior for the user at each time steps.

We also observed that as κ becomes larger, the PCC increases more marginally.

This suggests that we could only distinguish LDTM and the baseline models

for large test values. In the case of DBLP, since we only have access to words

in the title, adoption values for each time step of a user are significantly lower

than ACMDL. As a result, the results of DBLP as shown in Figure 6.8 and

6.10 could not distinguish the performance of LDTM against other baseline

models easily.

6.5.4 Results for TSC Evaluation

We evaluate our use of topic distributions as time series for computing the

TSC between two authors i and j at a time point τ . The parameters “width”

and “lookahead” are both set as 4. We apply our sampled ego-3 data sets to
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Figure 6.9: Pearson Correlation of Task 2 (ACMDL)

finding TSC by using the co-authorship information to choose pairs of authors

and the year of publication as time point τ . For example, Figure 6.11 shows

two authors interacted and wrote a paper together. We seek to find whether

TSC is stronger from first author to the second author or vice versa.

We formulate the following hypotheses and perform Student’s Paired T-test

[98] for each hypothesis:

1. AB: If j is the first author and i is the second author of a publication

written at τ , then i transfers information to j, i.e. TSC(i → j, τ) >

TSC(j → i, τ).

2. AZ: If j is the first author and i is the last author of a publication written

at τ , then i transfers information to j, i.e. TSC(i → j, τ) > TSC(j →

i, τ).
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Figure 6.10: Pearson Correlation of Task 2 (DBLP)

A propositional policy algebra for access control. 
ACM Transactions Information System Security (2003)
Security-sensitive environments protect their information resources against unauthorized use by enforcing access control mechanisms driven by access control 
policies. Due to the need to compare, contrast, and compose such protected information resources, access control policies regulating their manipulation need to be 
compared, contrasted, and composed. An algebra for manipulating such access control policies at a higher (propositional) level, where the operations of the algebra 
are abstracted from their specification details, is the subject of this paper. This algebra is applicable to policies that have controlled nondeterminism and all or 
nothing assignments of access privileges in their specification. These requirements reflect current practices in discretionary and role-based access control models. 
Therefore, the proposed algebra can be used to reason about role-based access control policies combined with other forms of discretionary policies. We show how 
to use algebraic identities to reason about consistency, completeness, and determinacy of composed policies using similar properties of their constituents.

?

Figure 6.11: Example of Interaction Between Two Authors

3. Bf Af : If j and i are authors of a publication written at τ with more

than two authors and j comes before i, then i transfers information to

j, i.e. TSC(i→ j, τ) > TSC(j → i, τ).

We compare for pairs of authors whose relationship in each hypothesis scenario

exceeds more than four to ensure that author pairs have sustained interactions.

For every i, j author pair who co-authored in multiple time steps, we compute

the TSC(i→ j, τ), TSC(j → i, τ) for each time step τ where they co-authored

a publication and take the averages of their TSC to obtain TSC(i → j) and
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TSC(j → i). For every pair of authors, we arrange the computed TSC into

two columns for each direction. We remove the bottom 2.5% and top 2.5%

outliers from both columns. We then perform T-test [98] on both columns.

T-test is used to determine whether both columns are significantly different

from each other. In order to accept the three hypotheses proposed earlier, the

T-test needs to show that both columns are significantly different and fulfill

the condition we laid out earlier, in which TSC should be larger. In a T-test,

smaller p-value indicates a more statistically significant result.

Table 6.2: T-tests of Hypotheses on Co-authors Relationship Using
LDTM Topic Distribution

Hypo- Accept/ P-value TSC(i → j) > # of
thesis Reject TSC(j → i) Pairs

ACMDL (ego-3)
AB Accept 9.91× 10−10 True 2,162
AZ Accept 4.81× 10−20 True 2,326

Bf Af Accept 2.90× 10−65 True 13,580
DBLP (ego-3)

AB Accept 6.16× 10−70 True 20,568
AZ Accept 6.15× 10−121 True 22,720

Bf Af Accept 5.04× 10−253 True 101,362

Table 6.2 shows the results of the hypothesis testing performed on all three

hypotheses for ACMDL (ego-3) and DBLP (ego-3) data sets when using users’

topic distributions from LDTM. For both data sets, we accept all three hy-

potheses which we defined earlier because the T-tests give a lower than 5×10−2

p-values and the respective columns in each of the hypothesis scenario is larger

than the other column, i.e. TSC(i → j, τ) > TSC(j → i, τ). Given that AB

and AZ hypothesis scenarios have almost the same number of pairs but the p-

value is significantly smaller in the AZ case. This suggests that the last author

transfers more information to the first author as compared to the information

the second author transfers to the first author. With the acceptance of Bf Af,

these hypotheses suggests that in academic publications, the ith authors follows

the jth authors when j > i.

144



CHAPTER 6. USING LINEAR DYNAMICAL TOPIC MODEL FOR GRANGER CAUSAL

TEMPORAL SOCIAL CORRELATION

Table 6.3 shows the results of the hypothesis testing performed on all hy-

potheses for ACMDL (ego-3) and DBLP (ego-3) data sets when using users’

topic distributions from LDA. However, we are not able to obtain a consistent

acceptance or rejection of hypotheses when using users’ topic distribution de-

rived from LDA. There are two acceptance and four other rejections. Although

T-test results provide low p-values, we reject four hypotheses because the TSC

values did not meet our requirements. The p-values are also not as low as

when we use the topic distributions derived from LDTM (cf. Table 6.2).

Table 6.3: T-tests of Hypotheses on Co-authors Relationship Using LDA Topic
Distribution

Hypo- Accept/ P-value TSC(i → j) > # of
thesis Reject TSC(j → i) Pairs

ACMDL (ego-3)
AB Reject 9.91× 10−4 False 2,150
AZ Reject 3.59× 10−14 False 2,309

Bf Af Reject 1.87× 10−13 False 13,498
DBLP (ego-3)

AB Accept 3.55× 10−2 True 20,463
AZ Reject 5.40× 10−14 False 22,625

Bf Af Accept 1.16× 10−3 True 100,913

While we do not have ground truth of evaluating the numerical accuracy

of TSC values, T-tests on two different sets of topic distributions show that

using LDTM topic distributions provide consistent outcomes for T-tests on

both data sets and the different hypotheses scenarios. We counted the number

of words written by authors at the time of their interaction τ . For a pair of

authors (i, j) in the AZ scenario, the last author i had written 1.62 times

more words than first author j. In the AB scenario, the second author i had

written 1.42 times more words than j. This suggests that the last and second

authors who had more adoptions prior to the point of interactions are the ones

who transfer information to the first authors.
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Figure 6.12: Case Studies

6.5.5 Case Studies

We highlight four examples of co-authors in Figure 6.12, who are prominent

researchers in the areas of machine learning, privacy and security, data mining,

and database.

• Bernhard Schölkopf & Vladimir Vapnik are renowned researchers

in the field of Machine Learning. Vapnik is the inventor of the popular

Support Vector Machine (SVM) algorithm while Schölkopf was Vapnik’s

PhD student. They co-authored 5 papers between the period of 1992 to

1997 with Schölkopf as first author and Vapnik as last author.

• Duminda Wijesekera & Sushil Jajodia are computer scientists and

faculty members at George Mason University, Virginia, USA. Between

2001 to 2010, they have co-authored a total of 38 papers on computer
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security and privacy.

• Ee-Peng Lim & Jaideep Srivastava are professors of computer sci-

ence in database management, data mining and social networks. Lim

was a former PhD student of Srivastava at the University of Minnesota,

Minneapolis, USA, from 1989 to 1994. They have co-authored 11 papers

from 1993 to 1998.

• Jennifer Widom & Jeffrey Ullman are Stanford computer science

professors and leading researchers in database and data management.

Widom worked closely with Ullman when she became a faculty member

of Stanford University in 1993. They had published 19 papers together.

For each author pair, we chose the dominant topic from the first author

and visualize the changes in topic distribution for both authors over a selected

period of time. The dominant topic for an author is obtained by summing the

topic distributions over the active time steps and choosing the topic with the

highest value.

Table 6.4: Selected Topics with reference to Figure 6.12

Topic 12 Topic 22 Topic 23
learning service data

classification management database
recognition security mining
detection scheme processing
feature internet query

For purpose of visualization, the fluctuations in topic distributions are

smoothen using eight year moving average. We choose eight due to the sum-

mation of four years width and four years lookahead. For the dominant topics

in Figure 6.12, we also show the corresponding words of the topics in Table

6.4. In Figures 6.12(a) to 6.12(d), we may observe that by shifting the red “x”

curves to the left, it merges with the blue “o” curves. This suggests that the

trend of red “x” curves follows that of the blue “o” curves. The values at the
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top of each Figure 6.12(a) to 6.12(d) also quantitatively show that the average

TSC(blue“o′′ → red“x′′) > TSC(red“x′′ → blue“o′′).

6.6 Summary

This work has contributed to the measurement of temporal social correlation

based on actions (item adoptions) that users perform over time. We propose a

linear dynamical topic model that synergizes the merits of probabilistic topic

models and linear dynamical system in order to capture user adoption behavior

over time. The EM algorithm for solving the model draws upon Gibbs Sam-

pling, Kalman Filter, and RTS Smoothing for inference in the E-Step, followed

by the M-Step which optimizes for the dynamics matrix. By taking into ac-

count both the stability and non-negativity constraints, we derive a dynamics

matrix that represents how users decay their past preferences over time.

Furthermore, using the user topic distributions at different time steps, we

construct each user’s time series and compare it with their co-authors’. Em-

ploying Granger Causality on the time series, we then calculate the TSC be-

tween authors and discover that the ordering of authors’ name on publication

plays a role in how information transfers among the authors.
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Chapter 7

Conclusion

7.1 Dissertation Summary

In the following paragraphs, we will take our readers through the journey of

our accomplishments in this dissertation. When we started working on this

topic, the existing Computer Science literature at that time had worked on

finding social influence between social media users based on adoption of a single

item [51, 52]. Instead of a single item, we wanted to infer social relationships

between users based on the set of items the users adopt. We start off by

analyzing static data since ignoring the time dimension greatly simplifies the

analysis. The immediate questions we had were:

1. Is there any dependency between the social relationships users share and

the common items they adopt?

2. How do we represent the behavior of each user based on the set of items

each user adopts?

3. How do we model the social correlation using the behavior of the users

and their social relationships?

4. How do we know whether the social correlation we found is accurate?
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Chapter 3 is the outcome of our systemic inquiry on these questions. In Chap-

ter 3, we answer the first question by showing the dependency using Con-

tingency Tables and Fisher Exact Tests. We proposed the Sequential Social

Correlation Model to answer the second and third question independently, then

we proposed the Unified Social Correlation Model to answer both questions

in an unified manner. To answer the fourth question, we use the user item

adoption prediction. Due to the adoption prediction evaluation task, our work

is often seen as part of the Collaborative Filtering literature.

The success of Chapter 3 led us to take a quantum leap by extending our

static analysis to temporal data sets in Chapter 4. While we do not have to

worry about the first question anymore, the remaining three questions continue

to stumble our efforts in the temporal domain. We then proposed the Decay

Topic Model (DTM) and the Two-period Temporal Social Correlation as an

attempt to solve the social correlation problem on temporal data sets.

Two issues in Chapter 4 continue to pique our interests on the social cor-

relation analysis for temporal data sets.

1. We made the assumption of having a constant decay parameter for De-

cay Topic Model (DTM) to simplify the temporal model. The model

inference would be more elegant if we could let the dynamics of the data

decide the decay parameter automatically.

2. The Two-period Temporal Social Correlation is a simplistic one because

it only uses two time steps to infer the social correlation. This would

result in social correlation values that would wildly fluctuate at different

time steps for a pair of interacting users.

In Chapter 5, we looked into using Dynamic Matrix Factorization (DMF)

to solve the constant decay parameter problem. Our intention was to use the

Expectation Maximization (EM) algorithm [35] to optimize for the dynamic

transition between the time steps of users’ behavior. In the EM algorithm,
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Kalman Filtering [49] and RTS smoothing [82] constitute the expectation (E-

step) while the maximization (M-step) could optimize for the dynamics of

transitions. But our first foray into the use of Matrix Factorization (MF) for

representing users’ behavior reveal an important insight that has not been

discussed widely in the Computer Science literature. We discovered that non-

negativity is necessary for a meaningful interpretation of the items’ latent

factors. The Gaussian distributions used in DMF and the EM algorithm does

not allow us to obtain the users’ latent factors and the non-negative item

latent factors iteratively. While non-negative constraints such as log-barrier

methods or Karush-Kuhn-Tucker (KKT) [50, 60] conditions could be added,

the resulting equations would be far too complex to solve elegantly.

So in Chapter 6 we go back to using topic models for representing items’

latent factors and users’ latent factors which is similar to Chapter 4. But the

experience of DMF in Chapter 5 now gives us the knowledge of how to auto-

matically determine the decay parameter based on the dynamics of users’ item

adoption temporal data sets. We proposed Linear Dynamical Topic Model

(LDTM) which is an aggregation of the accumulated knowledge from Chap-

ters 3 through 5. We also wanted to go beyond the Two-period limitation on

measurement of Temporal Social Correlation. We therefore utilized classical

causality measures such as Granger causality which generalize the time win-

dow size. Granger causality takes our temporal users’ behavior as inputs and

calculate the F-statistic to obtain the Granger Causal Temporal Social Corre-

lation. We then used the authors ordering in published academic papers as a

proxy for the seniority of users to evaluate the perceived “influence”.

The main contribution we see in this dissertation is that, while static di-

mension reductions and causality measures existed long before we started, the

knowledge to bridge the two concepts together were absent in the literature,

so this dissertation seeks to fill up the gap between the two.
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7.2 Future Work

We conclude this dissertation by outlining several promising research directions

for further improvements of the current work.

When we were conluding the work in Chapter 6, we realized that Lin-

ear Dynamical Topic Model could be simplified by omitting the use of RTS

smoothing. The sole purpose of RTS smoothing is to allow data at later time

steps to improve the inferences made in earlier time steps. RTS smoothing

is relevant in the Control Theory/Engineering literature because they do not

make changes to the observation matrix (the items’ latent factor matrix in

our case). But in our case, we are always updating the items’ latent factor

matrix (Topic item distribution) based on the new information in subsequent

time steps. As a result of that, we only need the forward inference component

(Kalman Filtering) while the backward inference is already taken care of by

updating the items’ latent factor.

We optimized for the decay parameters by making simplifying assumptions

to reduce the disparity between the Euclidean distance of the parameters in

the Dirichlet distributions between two time steps. The idea of minimizing the

Euclidean distance between Dirichlet distribution parameters comes from the

assumption that users do not drastically change their behaviors at different

time steps. This assumption is to cope with temporal sparsity where users

do not have adoptions at certain time steps. Instead of optimizing at the pa-

rameters of the Dirichlet distribution, we could minimize the Kullback-Leibler

divergence between the Dirichlet distributions.

Ultimately, all the measurements we made is to further the science of pre-

dicting the future. However, it remains to be seen whether temporal social

correlation could be used for making recommendations to users on what items

to adopt. We could explore the use of social correlation for making predictions.
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Appendix A

Additional Material for Static

Social Correlation

A.1 Derivation of the E-Steps and M-Steps for

Unified Generative Model

Suppose we have Θ the users latent factor distributions and Φ the latent factors

item distribution. Then the likelihood of E is given by,

P (E|Θ,Φ, C, F ) =
∏

u∈U

∏

v∈Vu

P (ev,u|Θ,Φ, C, F )

=
∏

u∈U

∏

v∈Vu

∑

z∈Z

∑

x∈Fu

[

P (ev,u|zv,u = z,Φ)

P (zv,u = z|xv,u = x,Θ)P (xv,u = x|Cu, Fu)
]

Then expressing in logarithm form,

logP (E|Θ,Φ, C) =
∑

u∈U

∑

v∈Vu

log
[

∑

z∈Z

∑

x∈Fu

P (ev,u|zv,u = z,Φ)

P (zv,u = z|xv,u = x,Θ)P (xv,u = x|Cu, Fu)
]
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Find the E Step for zv,u assuming that we do not have xv,u,

P (zv,u = z|ev,u,Θ,Φ, C, F ) =

∑

x∈Fu
P (ev,u, z, xv,u = x|Θ,Φ, C, F )

∑

z′∈Z

∑

x′∈Fu
P (ev,u, z′, xv,u = x′|Θ,Φ, C, F )

∝
∑

x∈Fu

P (ev,u|z,Φ)P (z|x,Θ)P (x|Cu, Fu)

= g(u, z, v)

Then find the E Step for xv,u assuming that we do not have zv,u,

P (xv,u = x|ev,u,Θ,Φ, C, F ) =

∑

z∈Z P (ev,u, zv,u = z, x|Θ,Φ, C, F )
∑

z′∈Z

∑

x′∈Fu
P (ev,u, zv,u = z′, x′|Θ,Φ, C, F )

∝
∑

z∈Z

P (ev,u|z,Φ)P (z|x,Θ)P (x|Cu, Fu)

= h(u, x, v)

In the M Step of EM algorithm, take partial derivative of the log likelihood

with respect to Θ,Φ and C,

logP (E|Θ,Φ, C) =
∑

u∈U

∑

v∈Vu

log

(

∑

z∈Z

∑

u′∈U

φz,vθu′,zcu,u′

)

Given that
∑

u′∈U cu,u′ = 1,
∑

z∈Z θu,z = 1 and
∑

v∈Vu
φz,v = 1 are constraints,

we may optimize for the above using the following Lagrange constraint,

L(Θ,Φ, C, F, λ) = logP (E|Θ,Φ, C, F )

−
∑

u∈U

[

λu

(

∑

x∈Fu

cu,x − 1

)

+ γu

(

∑

z∈Z

θu,z − 1

)]

−
∑

z∈Z

δz

(

∑

v∈Vu

φz,v − 1

)
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Suppose we differentiate L(Θ,Φ, C, F, λ) with respect to cu,x, θx,z and φz,v:

d

d cu,x
L(Θ,Φ, C, λ) =

∑

v∈Vu

∑

z∈Z φz,vθx,z
∑

z′∈Z

∑

x′∈Fu
φz′,vθx′,z′cu,x′

− λu

d

d θu,z
L(Θ,Φ, C, λ) =

∑

v∈Vu

φz,vcu,x
∑

z′∈Z

∑

x′∈Fu
φz′,vθx′,z′cu,x′

− γu

d

d φz,v

L(Θ,Φ, C, λ) =
∑

u∈U

∑

x∈Fu
θx,zcu,x

∑

z′∈Z

∑

x′∈Fu
φz′,vθx′,z′cu,x′

− δz

Then find the cu,x, θu,z and φz,v which gives zero gradient for L(C, λ). To

summarize, the E Steps are

f(u, v, z) =
φz,vθu,zcu,u

∑

z′∈Z

∑

x′∈Fu
φz′,vθx′,z′cu,x′

g(u, v, z) =

∑

x∈Fu
φz,vθx,zcu,x

∑

z′∈Z

∑

x′∈Fu
φz′,vθx′,z′cu,x′

h(u, v, x) =

∑

z∈Z φz,vθx,zcu,x
∑

z′∈Z

∑

x′∈Fu
φz′,vθx′,z′cu,x′

The M Steps are,

θu,z =
1

γu

∑

v∈Vu

f(u, v, z)

φz,v =
1

δz

∑

u∈U

g(u, v, z)

cu,x =
1

λu

∑

v∈Vu

h(u, v, x)

A.2 Topic Analysis

Here, we evaluate the effectiveness of LDA in deriving the latent factors or

topics. If LDA has learned the latent factors or topics well, each topic would

correspond to a cluster of related items. For ease of illustration, we only show

three topics each for LiveJournal and Epinions. For each topic, we identify the

top items with the highest latent factor values for that topic.

Table A.1 shows a sample of the top communities in each topic for the
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LiveJournal data set. The names of communities in LiveJournal draw from

a wide variety of languages with Russian being a dominant language as seen

by the prefix ru in the communities name. Topic L1 shows preference for

East Asian culture. “jpop” is a synonym for Japanese Pop Music, “kpop” for

Korean Pop Music, “jdramas” for Japanese Drama, “anime” and “manga” are

terms for Japanese cartoons. Topic L2 is of Information Technology subjects

and Topic L3 shows art and design. Table A.2 shows a sample of the top

Table A.1: Example Top Communities for Each Topic in LiveJournal

Topic L1 Topic L2 Topic L3
free manga ru webdev ru designer
anime downloads ru linux ru photoshop
jdramas ru sysadmins design books
jpop uploads ru software ru illustrators
kpop uploads ru programming ru vector

movie titles in each topic for the Epinions data set. The movies in each topic

tend to be similar in terms of their genres. For instance, movies in Topic E1

such as the Spider-Man and Lord of the Rings series are action movies. Movies

in Topic E2 are dramas such as Erin Brockovich and Fight Club. Movies in

Topic E3 seem to be comedies. Intuitively, these three topics also correspond

to the three most popular genres in the data set: action, drama, and comedy.

Table A.2: Example Top Movie Titles for Each Topic in Epinions

Topic E1 Topic E2 Topic E3
Spider-Man Erin Brockovich Shrek
Spider-Man 2 Fight Club Charlie’s Angels
Batman Begins American Psycho What Women Want
Lord of the Rings:
The Two Towers

Magnolia Meet the Parents

Lord of the Rings:
The Return of the
King

American Beauty Miss Congeniality
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Figure A.1: LiveJournal: Histogram of Self Dependency

A.3 Distribution of Social Correlation

Figures A.1 and A.2 show the histogram of self-dependency values. The x-axis

indicates the self-dependency values in logarithm scale and y-axis indicates

the number of users who fall into the respective bins. The dotted black line

parallel to the y-axis represents the logarithm value of 0.5. We define users

having self dependency value less than 0.5 as followers (left of the dotted line),

because they depend more on others in aggregate than in themselves. With

this definition, 35% of users in LiveJournal and 29% of users in Epinions are

followers. These significant percentages indicate that a sizable portion of the

population do depend on others in their item adoptions, which validate our

proposed approach of not relying on self preferences alone.

On the other hand, since the majority of users are non-followers, many

social links between the users have very low social correlation values. In other

words, a user may choose to follow another user but many of such follow

relationships do not share common interests or result in item adoptions for

the following user. This may imply that while the observed social network is

sparse, the actual underlying dependency network between users is sparser.
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Figure A.2: Epinions: Histogram of Self Dependency

A.4 Theoretical Performance of Random

Given that there are M items for the Random prediction model to select from

and v out of M items are Actual Positive. That is, a random user has these v

items in the testing set and we want to test how well Random method recovers

these v items. Then given that we select the top k items returned by the

Random method such that k ≤ M . What is the probability that there are t

correctly chosen items, given that t ≤ v?

Since AUC of Precision & Recall (AUC-PR) Curve for Random depends

on the precision (PREC) and recall (REC) for each k, we should find the

expected precision E(PREC|k) and expected recall E(REC|k) for each k.

Expected values of precision and recall depends on the number of true positives

(tp) at k,
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E(PREC|k) =
E(tp|k)

k

E(REC|k) =
E(tp|k)

v

E(tp|k) =

min(k,v)
∑

t=1

t · P (tp = t|k)

P (tp = t|k) =

(

v

t

)

·

(

M − v

k − t

)

/

(

M

k

)

P (tp = t|k) is derived as follows, given that there are v actual positives, the

number of possible ways to get t predicted positives, is the combinatorial
(

v

t

)

.

Then there are M − v actual negatives, to select k− t predicted negatives out

of these actual negatives, we have
(

M−v

k−t

)

different combinations of selections.

Finally, there are
(

M

k

)

ways of choosing top k randomly from the entire possible

set of items.

P (tp = t|k) is in fact a HyperGeometric Distribution. Finally, expected

AUC of PR Curve is given by the area under curve of the list of PR values for

each k, from 1 to M .
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Figure A.3: Log(AUC of Random) vs Log(Number of Items)

Figure A.3 shows the theoretical and actual empirical results given by Ran-
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dom. The performance of Random increases as number of items increases. This

explains why our AUC ratio which represents the improvement over Random

decreases when number of items increases, as shown in Figures 11 and 12. The

values of AUC on the y-axis in Figure A.3 shows that the AUC values are

in the order of e−10 to e−3. In comparison, the AUC values obtained by our

models as reflected in Figures 3.4 and 3.6 are relatively higher than Random.
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Appendix B

Additional Material for Linear

Dynamical Topic Model

B.1 Derivation of the Smoothed Parameters

To obtain the necessary quantities using RTS smoothing,

xn,t|T = xn,t|t + Jn,t
(

xn,t+1|T − xn,t+1|t

)

Jn,t = Vn,t|tA
′
n,tV

−1
n,t+1|t

Vn,t|T = Vn,t|t + Jn,t
(

Vn,t+1|T − Vn,t+1|t

)

J ′
n,t

Vn,t+1,t|T = Vn,t+1|t+1J
′
n,t + J ′

n,t+1

(

Vn,t+2,t+1|T − An,t+1Vn,t+1|t+1

)

J ′
n,t

The expression for Vn,t+1,t|T is a recursive equation that depends on Vn,T,T−1|T .

Details of obtaining Vn,T,T−1|T is given in Appendix B.2. The other quantities

needed for RTS smoothing is given by Kalman Filtering,

xn,t|t−1 = An,t−1xn,t−1|t−1

Vn,t|t−1 = An,t−1Vn,t−1|t−1A
′
n,t−1 +Q

xn,t|t = xn,t|t−1 + ψn,t
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Here the missing quantity is Vn,t|t and its derivation is,

Vn,t|t = E
[

(

xn,t − xn,t|t
) (

xn,t − xn,t|t
)′
]

= E
[

(

xn,t − xn,t|t−1 − ψn,t

) (

xn,t − xn,t|t−1 − ψn,t

)′
]

= E
[

(

xn,t − xn,t|t−1

) (

xn,t − xn,t|t−1

)′
− 2

(

xn,t − xn,t|t−1

)

ψ′
n,t + ψn,tψ

′
n,t

]

= Vn,t|t−1 + ψn,tψ
′
n,t

B.2 Initial Value of the Lag-One Covariance

Smoother

Using the following relationship,

xn,t|T = xn,t|t + Jn,t
(

xn,t+1|T − xn,t+1|t

)

xn,t|T − xn,t = xn,t|t − xn,t + Jn,t
(

xn,t+1|T − xn,t+1|t

)

To obtain Vn,t+1,t|T , we define the following,

Vn,t+1,t|T = E
[

(

xn,t+1 − xn,t+1|T

) (

xn,t − xn,t|T
)′
]
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The initial value, Vn,T,T−1|T is given by,

Vn,T,T−1|T = E
[

(

xn,T − xn,T |T

) (

xn,T−1 − xn,T−1|T

)′
]

xn,T |T = xn,T |T−1 + ψn,t

xn,T−1|T = xn,T−1|T−1 + Jn,T−1

(

xn,T |T − xn,T |T−1

)

Vn,T,T−1|T = E
{

[

(xn,T − xn,T |T−1)− ψn,t

]

[

(xn,T−1 − xn,T−1|T−1)− Jn,T−1

(

xn,T |T − xn,T |T−1

)]′
}

= E
{

[

(xn,T − xn,T |T−1)− ψn,t

] [

(xn,T−1 − xn,T−1|T−1)− Jn,T−1ψn,t

]′
}

= E
[

(xn,T − xn,T |T−1)(xn,T−1 − xn,T−1|T−1)
′ + ψn,tψ

′
n,tJ

′
n,T−1

]

= Vn,T,T−1|T−1 + ψn,tψ
′
n,tJ

′
n,T−1

We prove the following,

Vt+1,t|t = AVt|t

The right-hand side can be evaluated as,

AE
[

(

xt − xt|t
) (

xt − xt|t
)′
]

= E
[

(

Axt − Axt|t
) (

xt − xt|t
)′
]

= E
[

(

xt+1 − xt+1|t

) (

xt − xt|t
)′
]

= Vt+1,t|t

By showing the right-hand side equals to the left-hand side, we finally obtain

the initial value,

VT,T−1|T = AVT−1|T−1 + ψtψ
′
tJ

′
T−1
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