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Data Preparation for Social Network Mining and Analysis

by

Yazhe Wang

Abstract

This dissertation studies the problem of preparing good-quality social network data

for data analysis and mining. Modern online social networks such as Twitter, Face-

book, and LinkedIn have rapidly grown in popularity. The consequent availability

of a wealth of social network data provides an unprecedented opportunity for data

analysis and mining researchers to determine useful and actionable information in

a wide variety of fields such as social sciences, marketing, management, and secu-

rity. However, raw social network data are vast, noisy, distributed, and sensitive in

nature, which challenge data mining and analysis tasks in storage, efficiency, accu-

racy, etc. Many mining algorithms cannot operate or generate accurate results on the

vast and messy data. Thus social network data preparation deserves special atten-

tion as it processes raw data and transforms them into usable forms for data mining

and analysis tasks. Data preparation consists of four main steps, namely data col-

lection, data cleaning, data reduction, and data conversion, each of which deals with

different challenges of the raw data. In this dissertation, we consider three important

problems related to the data collection and data conversion steps in social network

data preparation.

The first problem is the sampling issue for social network data collection. Re-

stricted by processing power and resources, most research that analyzes user-generated

content from social networks relies on samples obtained via social network APIs.

But the lack of consideration for the quality and potential bias of the samples re-

duces the effectiveness and validity of the analysis results. To fill this gap, in the

first work of the dissertation, we perform an exploratory analysis of data samples

obtained from social network stream APIs to understand the representativeness of



the samples to the corresponding complete data and their potential for use in various

data mining tasks.

The second problem is the privacy protection issue at the data conversion step.

We discover a new type of attacks in which malicious adversaries utilize the con-

nection information of a victim (anonymous) user to some known public users in a

social network to re-identify the user and compromise identity privacy. We name

this type of attacks connection fingerprint (CFP) attacks. In the second work of the

dissertation, we investigate the potential risk of CFP attacks on social networks and

propose two efficient k-anonymity-based network conversion algorithms to protect

social networks against CFP attacks and preserve the utility of converted networks.

The third problem is the utility issue in privacy preserving data conversion. Ex-

isting k-anonymization algorithms convert networks to protect privacy via modify-

ing edges, and they preserve utility by minimizing the number of edges modified.

We find this simple utility model cannot reflect real utility changes of networks

with complex structure. Thus, existing k-anonymization algorithms designed based

on this simple utility model cannot guarantee generating social networks with high

utility. To solve this problem, in the third work of this dissertation, we propose

a new utility benchmark that directly measures the change on network community

structure caused by a network conversion algorithm. We also design a general k-

anonymization algorithm framework based on this new utility model. Our algorithm

can significantly improve the utility of generated networks compared with existing

algorithms.

Our work in this dissertation emphasizes the importance of data preparation for

social network analysis and mining tasks. Our study of the sampling issue in social

network collection provides guidelines for people to use or not to use sampled so-

cial network content data for their research. Our work on privacy preserving social

network conversion provides methods to better protect the identity privacy of social

network users and maintain the utility of social network data.
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Chapter 1

Introduction

1.1 Social Network Data Analysis: A Brief Introduc-

tion

The proliferation of online social networks has been one of the most remarkable In-

ternet events in this decade. Because of the high penetration of Internet-enabled de-

vices such as personal computers, smart phones, and tablets, online social networks

have become easily accessible platforms for users to communicate and share infor-

mation. Many popular online social networks such as Twitter, Facebook, LinkedIn,

and Google Plus have been growing rapidly. According to a market report in 2013,

nearly one in four people worldwide uses social networks. The number of social net-

work users around the world rises from 1.47 billion in 2012 to 1.73 billion in 2013,

an 18 percent increase. By 2017, the global social network audience will reach 2.55

billion [27]. Another study in April 2013 reveals that social networking has been

ranked as the most popular content category in worldwide engagement, accounting

for 27 percent of all time spent online [28].

Owing to the popularity of online social networking, the amount of social net-

work data available has been increasing rapidly. For example, every minute of a

day, 350,000 tweets are generated on Twitter 1, over 3000 pictures are uploaded to
1http://www.internetlivestats.com/twitter-statistics/
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Flickr 2, and around 3.3 million items are shared on Facebook 3. These data provide

unprecedented opportunities for data analysis research. The primary objectives of

social network analysis are to handle large-scale social network data, extract action-

able patterns, and gain insightful knowledge about dynamic and multifaceted social

networks. Therefore, social network analysis is of significant value for many appli-

cation domains such as policy making, advertising, and homeland security. Social

network data available for analysis are usually voluminous, structurally complex,

heterogeneous, and dynamic in nature, and can be broadly classified as content and

linkage data [2]. Content data contain texts, images, and other multimedia data,

which are explicitly generated by social network users. Linkage data are essentially

graphs where individual users are represented by vertices, and relationships or in-

teractions between individuals are represented by edges. On each type of social

network data, a wide range of analysis tasks can be performed to reveal valuable

information.

• Content-based analysis studies heterogeneous and unstructured content gen-

erated by social network users such as blogs, images, videos, and tags. Some

popular analysis practices include opinion mining, trend detection, sentiment

analysis, collaborative recommendation, etc. This type of analysis has numer-

ous applications in business, politics, and consumer media research [79].

• Linkage-based analysis studies linkages among social network users. It is

used to reveal the structural properties and evolution patterns of social net-

works, determine important vertices and social influence, detect communi-

ties, predict unobserved or future links, etc. This type of analysis is critical

for various application fields such as social psychology, viral marketing, and

terrorism defense [13].

It has been observed that content generation and linkage formation are closely re-

lated in social networks. Therefore, combining linkage-based analysis with content-
2http://blog.flickr.net
3http://www.connectsafely.org/tag/social-media/
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based analysis can improve the quality of analysis results or discover otherwise un-

observed information. For example, utilizing user profile information can greatly

improve the quality of clusters detected in social networks [109], and recommenda-

tion systems, if considering the underlying social network, can provide users with

more personalized content [48].

1.2 Data Preparation: Steps and Challenges

Social network data analysis is of significant importance for academia, industry,

government, etc. However, like any other analysis, it is limited by the availability,

quantity, and quality of data. Some analysis algorithms cannot run efficiently on

huge datasets. Analysis may generate misleading results if underlying datasets are

inadequate or biased. Carelessly prepared datasets may contain sensitive informa-

tion, which raises concerns for privacy and security and then causes analysis projects

to fail. Raw social network data are typically huge, mostly informal in nature (e.g.,

contain a lot of user-generated misspellings and abbreviations), and flooded with

sensitive personal information of individual users. Therefore, data preparation is

particularly crucial for the success of social network analysis.

The main objectives of data preparation are to process raw datasets, reduce time

and space costs, enhance data quality with better interpretability and accuracy, and

limit disclosure of sensitive information. The data preparation process can be de-

tailed into four main steps namely data collection, data cleaning, data reduction, and

data conversion [77]. In the following subsections, we discuss the challenges and

issues in each data preparation step, with a focus on the factors related to social

network data.

1.2.1 Data Collection

Researchers in the very early stage of social network research collected social net-

work data from individuals in particular social settings through questionnaires, in-

3



terviews, and surveys, which are very labor-intensive. The social network data col-

lected were usually limited on small communities of people, which limited the scope

of analysis. The development of online social media has brought a significant shift

in social network research, leading to the emergence of "computational social sci-

ence" [53]. It has greatly increased the availability and size of social network data,

and thus has broadened the variety of disciplines contributing to the advance of so-

cial network research. In this dissertation, our discussion is based on modern online

social network data.

Online social network data are collected from social network service providers

who possess the overall social network data of their service users. The collection

process is normally performed automatically through programs or scripts. Some

social media websites such as Facebook and Twitter provide APIs for data crawl-

ing. The main challenges of social network data collection are limited processing

power and storage space. Online social networks are usually huge as measured by

user population size, user-generated content volume, and update velocity. Take

Twitter, one of the most popular microblogging social networks, as an example.

The number of registered users on Twitter reached one billion in 2013, and collec-

tively, Twitter users now send over 500million posts every day [86]. These numbers

keep growing rapidly. Crawling such huge social networks requires robust systems

with high processing power and huge storage capacity (e.g., petabytes). Moreover,

social network websites usually set limits on the data access rate. For example,

Twitter allows up to 15 requests per 15 minutes sent to its REST API to access the

data (https://dev.twitter.com), and Foursquare sets a 500-limit on the number of re-

quests sent per hour (https://developer.foursquare.com). These rate limits further

prevent crawling algorithms from obtaining large amounts of social network data

efficiently. Because of the issues discussed above, collecting full social network

data is often infeasible. Some research utilizes various network sampling methods

to collect smaller sample networks of a large social network to perform analysis.

Some other research obtains samples of user-generated posts/updates via non-rate-

4



limited stream APIs. The success of the research highly depends on sample quality

(e.g., the representativeness of samples to the original full dataset).

1.2.2 Data Cleaning

Social network data contain a lot of informal user-generated content, which is in-

evitably accompanied by noise, spam, and inconsistency. The purpose of data clean-

ing is to remove noisy and irrelevant data from useful information. It improves data

quality and then improves the accuracy of analysis results. The typical issues that

data cleaning deals with are listed as follows:

• Noise and spam. Social networks depend heavily on user-generated content,

which spreads very fast across social networks. Therefore, social networks are

susceptible to various malicious spam and hacker actions. Noisy and harm-

ful information generated by malicious users and automated programs (e.g.,

web robots) not only leads to personal or business damage but also affects

the quality of data analysis results. Spam detection and removal in social net-

works have been addressed by existing work, e.g., [88, 92].

• Data inconsistency. User-generated social network data contain a lot of spelling

errors, abbreviations, and synonyms, which raise the issue of data inconsis-

tency. In addition, social network data collected from multiple data sources

with different data formats can also cause data inconsistency. Removing in-

consistencies in datasets helps to derive complete and integrated records. There

is some work dealing with matching entities in social networks [78, 75].

• Data incompleteness. Missing information in social network data is caused

by various reasons such as no access authorization, communication failure,

and imperfect data acquisition processes. Incomplete data can cause analysis

to fail or produce incorrect results. Various algorithms have been designed to

treat missing user profiles or links [69, 29].
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1.2.3 Data Reduction

Data collected from online social networks can be very large. It becomes very time

consuming for analysis algorithms to run on these data. The goals of data reduction

are to represent data in a reduced form (with or without information loss) which has

much smaller volume, and to make sure that analysis on the reduced data produces

the same or almost the same outputs as on the original data. The classic technologies

of social network data reduction include feature extraction and data compression.

• Feature extraction. Social network data are very rich in nature. For some

particular analysis requests, thousands of relevant features can be identified,

which are suspected to be notoriously redundant. Input data containing all

these features are very high-dimensional and large. Feature extraction tech-

nologies transform these data into a reduced set of features that contain rele-

vant information from the input data and can be used to perform the desired

tasks to replace the full-size input data. Feature extraction techniques are usu-

ally task and data specific. For example, Lee et al. [54] construct a bag-of-

words feature to represent documents for trending topic classification tasks.

Sengstock et al. [85] extract some latent geographic features from social me-

dia data for spatial information-related analysis. Generally, feature extraction

can reduce dataset size, enhance understanding of datasets, and improve per-

formance of analysis.

• Data compression. Large social network data can also be compressed by

transforming the data into a compact data structure with smaller size. Analysis

can be performed on the compressed data efficiently without decompression.

Various methods have been proposed to compress a large network allowing

efficient neighborhood queries, one of the most essential operations of graph

mining, over its compressed representation [19, 63].
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1.2.4 Data Conversion

With or without awareness, users are sharing a large amount of personal informa-

tion on social media such as their identities, daily activity patterns, and financial

and health statuses. Gathering and releasing social network data for analysis raise

genuine concerns about privacy disclosure. Therefore, social network data need to

be carefully converted to remove sensitive information (e.g., personal identifiers)

before being released for analysis. Preliminary data conversion methods based only

on removing sensitive information are not sufficient to prevent privacy breaches.

Malicious adversaries can link social network data with some external data or back-

ground knowledge to infer sensitive information. For example, Backstrom et al. [7]

demonstrate that the mere knowledge about a user's neighborhood structure can re-

veal the identity of the user. To prevent privacy disclosure, more sophisticated data

conversion approaches have been proposed [7, 10, 59, 99, 107, 110]. The main

challenge for these privacy protection approaches is maintaining a balance between

privacy and data utility.

1.3 Contributions

Social network data preparation is not a simple issue; rather it is a compositional is-

sue with various challenging problems. Each problem alone needs dedicated study.

In this dissertation, we focus on three crucial problems related to the data collection

and data conversion steps. One is the sampling issue in social network data col-

lection, and the other two are the privacy and utility issues respectively at the data

conversion step. Figure 1.1 provides a flow chart which summarizes the social net-

work data preparation steps and highlights the problems studied in this dissertation.

Our contributions are summarized as follows.

Firstly, we study the sampling quality issue in collecting user-generated content

from social networks. As mentioned in Section 1.1, social network data consist of

user-generated content data and linkage data. Various sampling methods on link-
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Data Collection 

•Sampling method 
•Sampling rate 
•Sampling quality 
• ... 

Data  Cleaning 

•Noise and spam 
•Data inconsistency 
•Data incompleteness 
• ... 

Data Reduction 

•Feature extraction 
•Data compression 
• ... 

Data Conversion 

•Privacy protection  
•Utility preserving 
• ... 

Figure 1.1: Social network data preparation.

age data have been proposed, and their advantages and bias have been thoroughly

discussed [62]. However, relatively less attention has been paid to user-generated

content data on this issue. Restricted by processing power and storage space, most

research that analyzes user-generated content from social networks relies on sam-

ples obtained via streamAPIs. However, the lack of consideration on the quality and

potential bias of the samples reduces the effectiveness and validity of the analysis re-

sults. To fill this gap, in the first part of the dissertation, we perform a comparative

analysis of data samples obtained from social network stream APIs to understand

the representativeness of the samples to the corresponding complete data and their

potential for use in various data mining tasks.

Secondly, we study sophisticated data conversion techniques to protect user pri-

vacy in social networks. We address two main desiderata of a good privacy pro-

tection scheme namely privacy and utility. In the second part of the dissertation,

we discover a new type of attacks on social networks called connection fingerprint

(CFP) attacks, in which attackers utilize the connection information of an anony-

mous user to some known public users in a social network to re-identify the user

and compromise identity privacy. We formally analyze the risk of CFP attacks on

real-world social networks and propose two efficient k-anonymity-based network

conversion algorithms to protect social networks against CFP attacks and preserve

the utility of converted networks. One algorithm is based on adding dummy vertices.

It can resist powerful attackers with the connection information of a user with the

public users within n hops (n ≥ 1) and can preserve the centrality utility of public

users. The other algorithm is based on edge modifications. It is only able to resist
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attackers with the connection information of a user with the public users within 1

hop but preserve a rich spectrum of network utility.

Finally, in the third part of the dissertation, we identify the disadvantage of ex-

isting k-anonymity-based privacy protection methods for preserving social network

data utility. Most, if not all, of the existing k-anonymization algorithms convert

a network to protect privacy via deleting and adding edges, and at meanwhile they

control utility loss by minimizing the number of edges modified. We find that some-

times this simple utility model cannot reflect real utility changes of networks with

complex structure. Therefore, existing k-anonymization algorithms designed based

on this simple but not efficient utility model cannot guarantee generating social net-

works with high utility. To solve this problem, we propose a new utility benchmark

which directly measures the changes caused by a network conversion algorithm on

network community structure. We also design a general k-anonymization algorithm

framework based on this new utility model. Our algorithm can significantly improve

the utility of generated networks compared with existing algorithms.

1.4 Organization of the Dissertation

The work in this dissertation is an aggregation of several research papers we have

published or submitted. We organize them as follows. In Chapter 2, we review ex-

isting work on social network data sampling and privacy protection. In Chapter 3,

we analyze samples of user-generated content obtained via social network stream

APIs and highlight their potential for use in various data mining tasks. In Chapter

4, we investigate connection fingerprint attacks on social network data privacy and

propose corresponding protection algorithms. In Chapter 5, we consider the utility

issue when converting a social network to protect privacy and propose a novel util-

ity measure to enhance the utility performance of network conversion algorithms.

Finally, in Chapter 6, we conclude this dissertation and discuss promising directions

for future work.
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Chapter 2

Related Work

In this chapter, we further elaborate on the background of our study in this disser-

tation with a comprehensive literature review. We first discuss prior work on social

data sampling and identify the blank spot in this area of research to which our study

can contribute. We then review the current development of social network privacy

protection techniques and discuss the weaknesses of existing approaches which our

work can improve.

2.1 Social Network Data Sampling

With the development of Internet and online media, the size of online social net-

works is increasing exponentially. Collecting and handling huge social network

data challenge the social network analysis community. Social network data mainly

consist of linkage data and content data, which can be collected separately.

2.1.1 Sampling Linkage Data

Linkage data are essentially a graph representing social network entities (e.g., users)

and their relationships (e.g., friendships). In order to reduce the time cost and re-

source consumption of collecting a very large social graph, people usually collect a

much smaller sample of the complete graph and use the sample for analysis. Var-
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ious graph sampling techniques have been studied. The focus of these techniques

includes how to generate small enough samples of a huge graph efficiently, and

whether these imperfect samples can preserve certain graph properties or be used

to perform certain analysis tasks and produce similar results as if the tasks were

performed on the full graph.

There are three main types of graph sampling strategies, including vertex selec-

tion, edge selection, and sampling by exploration. Vertex selection strategies sample

a subset of vertices in a graph either randomly or with probability proportional to

some known properties of the vertices such as degree and PageRank values [55],

and then include associated edges. Edge selection strategies first select a subset of

edges by a certain principle, e.g., randomly, and then include associated vertices.

We can also combine vertex selection strategies with edge selection strategies to

perform sampling. For example, the random vertex-edge sampling method [50]

uniformly selects a vertex and then uniformly selects an edge associated with it, and

a hybrid sampling method [50] performs random edge sampling with probability p

and then performs random vertex-edge sampling with probability 1 − p. Sampling

by exploration strategies start from including a set of seed vertices to the sample

and then choose next-hop vertices to add to the sample from the neighbors of the

current vertices in the sample. Various sampling algorithms are proposed based on

different methods of choosing next-hop vertices such as depth-first/breadth-first al-

gorithms [50], random walk-based algorithms [103], the forest fire algorithm [55],

the sample edge count algorithm [62], and the expansion sampling algorithm [61].

Some prior work compares the structural properties of samples obtained using

different methods with those of the original graph and discusses the sampling bias of

different methods. For example, Leskovec et al. [55] study sampling methods of the

three strategies and find some sampling by exploration methods (i.e., random walk

and forest fire) outperform vertex selection and edge selection methods in accurately

representing both the static and evolutionary patterns of the original graph, Gjoka

et al. [35] find the Metropolis-Hashing random walk algorithm and a re-weighted
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random walk sampling method can produce approximately uniform user samples

on Facebook, and Maiya et al. [62] investigate the bias of different sampling strate-

gies and show that certain types of bias are beneficial for many applications as they

"push" the sampling process towards inclusion of specific properties of interest (e.g.,

high-expansion or high-degree vertices).

2.1.2 Sampling User-Generated Content

The main stream of social network data sampling research focuses on sampling link-

age data. However, social networks contain not only linkage data but also a large

volume of user-generated content like blogs, status updates, and shared pictures and

videos. Similar to linkage data, user-generated content also contains lots of valu-

able information. Many social network analysis tasks are developed based on this

information such as opinion mining, event detection, and sentiment analysis. The

volume of user-generated content increases much faster than that of pure linkage

data because users in social networks continuously generate new content. An active

user can generate hundreds of new posts per day. Given the huge social network user

population, it is even more impractical to collect and maintain a complete record of

user activities. Therefore, most research and some commercial applications that an-

alyze user-generated content also rely on sampling. However, unlike linkage data,

relatively little attention has been paid to the quality of samples, even though it fun-

damentally affects the effectiveness and validity of the analysis results. To fill this

gap, in the first work of this dissertation, we perform an exploratory study of social

media content samples and emphasize how well the samples represent the under-

lying complete data. We will discuss more specific prior work on this subject in

Chapter 3.
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2.2 Social Network Privacy Protection

The importance of privacy protection has been well recognized in data mining and

data management research [3]. Prior work in this area studies privacy protection

on tabular data [57, 80], transactional data [33], and survey rating data [89]. A

comprehensive survey is provided in [31]. With the increasing popularity of social

network analysis research, the privacy problem on social network data starts to gain

a lot of attention [58].

2.2.1 Identity Privacy Protection

The identity disclosure problem is one of the mostly investigated social network pri-

vacy issues. Revealing the true identities of social network users can lead to further

disclosure of other sensitive information. Therefore, a social network is usually re-

leased for research and analysis with the personal identifiers (e.g., names, social se-

curity numbers) of all users removed. We call this released social network a naively

anonymized network. However, an adversary can use various background knowl-

edge about some victim users to re-identify vertices from the naively anonymized so-

cial network. The background knowledge that the adversary utilizes is usually some

structural features of the victims in the network. In other words, the adversary asso-

ciates an anonymized vertex in the network with a victim user if they have the same

structural features. This type of attacks is known as structural re-identification at-

tacks. Backstrom et al. [7] prove that many structural features which are maliciously

planted by attackers and naturally exist in social networks can be used to perform

re-identification attacks. The typical structural features used in re-identification at-

tacks include vertex degree, vertex neighborhood, subgraph, distances to hub ver-

tices, etc [38, 59, 107]. Other than structural features, some non-structural features

(e.g., community membership [97]) may also be used to re-identify vertices in social

networks.

To prevent structural re-identification attacks, various network conversion meth-
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ods have been proposed [10, 37, 38]. For example, the random permutation ap-

proach [37] protects privacy by randomly deleting and inserting m edges. This

method is simple, but it does not provide any quantitative guarantee on privacy.

Later, Bonchi et al. [13] propose to quantify the anonymity level of a randomly per-

turbed network based on entropy. The network generalization-based approach [38]

partitions the vertices of a social network into small blocks. Then, it converts the

social network into a super graph in which a super node represents a block of ver-

tices, and a super edge between two super nodes represents the connections between

vertices across the corresponding blocks. The super graph also contains statistical in-

formation in the super nodes and super edges (e.g., the number of vertices and edges

covered by a super node, and the number of edges represented by a super edge).

To guarantee privacy, this method requires partitions of size at least k. However,

the structural uncertainty introduced by the generalization significantly degrades the

utility of the social network.

The notion of k-anonymity [90] is widely adopted to prevent re-identification

attacks on social networks. The general idea is to convert a social network to a k-

anonymized network, in which every vertex is indistinguishable from at least k − 1

other vertices. Thus, an attacker cannot associate a victim user with a vertex in the

network with probability larger than 1/k. Various k-anonymity schemes have been

proposed as well as the corresponding k-anonymization algorithms targeting on at-

tackers with different background knowledge. For example, Liu et al. [59] propose a

k-degree anonymity scheme against attackers with degree information of some tar-

get users. It requires that for every vertex v in the converted social network, there are

at least k− 1 other vertices having the same degree as v. Zhou et al. [107] consider

attackers with neighborhood information and propose a k-neighborhood anonymity

scheme. It requires that for every vertex v, there are at least k−1 other vertices hav-

ing isomorphic neighborhoods. Zou et al. [110] propose a k-automorphism scheme

against attackers with unpredictable background knowledge. It modifies a network

such that for each vertex, there are at least k−1 other structurally equivalent vertices.
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Recently, Cheng et al. [18] propose a k-securitymodel to enhance the k-anonymity

notion with the ability to protect sensitive links. After applying this model to a so-

cial network, an attacker should not be able to associate any vertex to a user with

probability larger than 1/k, nor to determine two users linked by a path of certain

length with probability higher than 1/k. Zhou et al. [108] provide a comprehen-

sive survey of these k-anonymity schemes. The k-anonymization algorithms cor-

responding to those schemes all share the same high-level logic. They convert a

social network to satisfy their corresponding k-anonymity requirements by adding

or deleting edges/vertices and require the number of edges/vertices added or deleted

to be minimum in order to preserve the utility of the social network.

In this dissertation, we investigate the identity privacy protection problem in

the network conversion stage. We discover a new type of re-identification attacks,

namely connection fingerprint (CFP) attacks, on social networks where motivated

attackers utilize the connection information of a victim to some known public users

to re-identify the anonymous victim in a social network. This type of attacks is

novel because attackers utilize background knowledge which combines both non-

structural and structural features of the victim (i.e., the identities of some public

users and the connection patterns of the victim user to the public users) to perform

re-identification attacks. These attacks have not been studied by prior work. In

the second work of this dissertation, we formally define CFP attacks on social net-

works and propose corresponding k-anonymization algorithms to protect a social

network against CFP attacks. Because of the different assumption on attacks, the

k-anonymization algorithms that we proposed are very different from existing ones.

Besides privacy protection, in this dissertation, we also discuss the other impor-

tant component of a good privacy protection scheme: utility. Utility is important

because it directly affects the quality of released social networks, which is crucial

to the success of subsequent analysis tasks. Although the utility issue in releas-

ing tabular data has been well addressed [47, 57, 80], it has not been well studied

on social network data. The utility preserving approaches adopted by existing k-
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anonymization algorithms on social networks are fairly naive. Most, if not all, of

these algorithms try to minimize the number of edges/vertices changed to reduce

utility loss. We find this utility model is not effective because sometimes even a

small number of edges changed can cause great utility loss in a social network. In

the third work of this dissertation, we design a more effective utility measure based

on social community structure with a general k-anonymization algorithm framework

to generate anonymized social networks with high utility.

2.2.2 Link Privacy Protection

Although our work in this dissertation mainly focuses on the identity privacy prob-

lem, link privacy is also an important privacy issue concerned while a social network

is released for analysis. Protecting link privacy requires limiting the ability of attack-

ers to infer the presence or certain properties (e.g., weights) of some sensitive edges

in a social network. Random edge perturbation [37] is a commonly used technique

to prevent disclosure of edge existence. It appliesm random edge deletions followed

bym random edge insertions to a social network. Ying et al. [102] study the impact

of the edge perturbation technique on network eigenvalues and propose a new edge

randomization approach to preserve spectral characteristics of networks. Xiao et

al. [101] design a randomization scheme to obfuscate edge existence based on a hi-

erarchical graph model to preserve critical statistical properties of networks. Milani

Fard et al. [66] propose a neighborhood randomization approach which probabilis-

tically randomizes the endpoints of an edge within a local neighborhood to reduce

the distortion to network structure. Liu et al. [60] present edge weight perturbing

techniques to protect private link weight information in social networks. The tech-

niques designed for link privacy protection are not directly applicable to protecting

identity privacy.

16



2.2.3 Differential Privacy

Unlike the work introduced above which releases a whole, possibly converted, net-

work for data mining and analysis, some other work considers releasing some statis-

tics of a network. To ensure privacy, random noise is added to the output statistics,

and the notion of differential privacy [26] is utilized to control the level of noise

injected to the output. An algorithm implementing differential privacy calculates

desired statistics of an input network and injects sufficient noise to the output so

that it is indistinguishable from the output on any "neighboring" network. A neigh-

boring network is the network that is different at a single edge or vertex (with its

adjacent edges) from the original network. In this way, attackers with arbitrarily

high levels of background knowledge cannot infer the presence of any edge or ver-

tex in the original network from the output, and correspondingly the algorithm is

considered to guarantee edge-differential privacy or vertex-differential privacy. The

success of implementing differential privacy relies on the precondition that the max-

imum possible change to the statistics resulted from the change of one edge or vertex

should be small and bounded. Such maximum possible change is called the sensi-

tivity of the statistics, which determines the minimum magnitude of noise that has

to be added to the output. The higher the sensitivity, the more the noise added to the

output.

A lot of differential privacy algorithms on social networks implement edge-

differential privacy. This is because under this definition, many network statistics

have low and bounded sensitivity, and thus the algorithms can generate relatively

accurate outputs with low levels of noise added. For example, Mir et al. [67] pro-

pose a method to generate differentially private Kronecker graph models of an in-

put network, based on which synthetic networks that mimic important properties of

the input network can be generated. Some work proposes edge differential privacy

algorithms to accurately estimate the degree distribution [36, 45], degree correla-

tion [83, 104], subgraph counting [44], and spectral properties [94, 5] of a social

network. Recently, Xiao et al. [100] propose a method to generate differentially pri-
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vate statistical hierarchical random graph models, which have theoretically proved

lower sensitivity and can preserve essential network properties such as degree dis-

tribution, shortest path length distribution, and influential vertices.

Vertex-differential privacy is a strictly stronger privacy guarantee. However, for

many network statistics, e.g., the number of edges and the frequency of a particular

subgraph, it may be infeasible to design algorithms that achieve vertex-differential

privacy while getting accurate results in the worst case. The problem is that vertex-

differential privacy algorithms must be robust to the insertion of a new vertex in a

network, but the statistics of the network can be altered dramatically by the inser-

tion of a vertex with many adjacent edges. In other words, the sensitivity of those

statistics under vertex-differential privacy is very high so that we need to add much

noise to the results, which makes the results useless. Some recent work considers

applying vertex-differential privacy to network data subject to certain constraints

which can bound the sensitivity of some network statistics under vertex-differential

privacy thus guarantee the accuracy of the results. For example, Kasiviswanathan et

al. [46] provide vertex-differential privacy algorithms on bounded-degree networks

for accurately releasing the edge number, subgraph counting, and degree distribu-

tion information of the networks. Chen et al. [17] design vertex-differential privacy

algorithms for subgraph-counting statistics with a relaxed definition of sensitivity

which measures only the maximum possible change of the statistics when a partic-

ipant is removed from the dataset. This sensitivity is always bounded and is often

small.

Even though differential privacy is often believed to provide a stronger privacy

guarantee and thus is preferred over some other syntactic privacy notions, e.g., k-

anonymity, it cannot completely replace syntactic privacy. As discussed in [23],

differential privacy has many genuine problems such as calculating sensitivity, util-

ity loss due to the inherent uncertainty, and the independence assumption of the data,

and it is more suitable for privacy preserving data mining scenarios, where the statis-

tics of the dataset to be analyzed are known prior to applying the privacy preserving
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process. While syntactic privacy is more suitable for privacy preserving data pub-

lishing scenarios, where no assumptions are made about the types of analysis that

can be executed on the dataset. In this dissertation, we focus on privacy preserving

release of social network data. Therefore, we apply the k-anonymity privacy notion

but not differential privacy.

2.2.4 Social Network Privacy in Other Scenarios

In this dissertation, our focus is on the social network privacy protection problem in

a scenario that data owners release a static social network to public for research and

analysis. However, we are aware there is much excellent work that discusses social

network privacy issues in different scenarios. For example, some work discusses

privacy protection in sequential release of dynamic networks [11, 25, 91], somework

discusses privacy issues in online social network settings [106, 42], and some work

considers protecting the privacy of outsourced networks in untrusted servers [32].

Although these problems are very interesting, they are orthogonal to the work in this

dissertation thus are not discussed in detail.
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Chapter 3

Sample Representativeness Analysis

for Social Network Data Collection

In this chapter, we study the sample representativeness problem of user-generated

content. Our study focuses on Twitter, a typical and fast-growing microblogging

service. We study Twitter because it is one of the mostly used data sources for social

media analysis research and applications. Twitter is a popular data source because of

its variegated uses including daily chatter, conversation, information sharing, news

reporting [43] and diverse topic coverage such as arts, family and life, business,

travel, sci-tech, health, education, style, world, and sports [105]. Many researchers

have analyzed Twitter content and made interesting observations with real business

value. For example, Sakaki et al. [82] utilize Twitter to detect earthquakes, Bakshy

et al. [8] study various methods of identifying influential Twitter users, which may

be useful for online marketing and targeted advertising, and Johan et al. [12] analyze

Twitter user sentiment to predict the stock market.

Despite the usefulness of Twitter data, the large number of Twitter users and

the even larger volume of tweets often make it impractical to collect and maintain

a complete record of activity. Therefore, most research and some commercial soft-

ware applications rely on samples, often relatively small samples, of Twitter data.

In most cases, the sample size is based on availability and practical considerations.
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Relatively little attention has been paid to how well the samples represent the un-

derlying stream of Twitter data. In this chapter, compare the samples obtained from

two of Twitter’s streaming APIs with a complete Twitter dataset to gain an in-depth

understanding of the nature of Twitter data samples and their potential for use in

various data mining tasks.

3.1 Motivation and Problem Description

Microblogging is an increasingly popular form of lightweight communication on the

Web. Twitter as a typical and quickly emerging microblogging service has attracted

much attention. Millions of Twitter users around the world form a massive online

information network by initiating one-way "following" relationships to others. Twit-

ter users post brief text updates, which are commonly known as tweets, with at most

140-characters. The tweets posted by a user are immediately available to his di-

rect followers and can be quickly disseminated through the network via retweeting.

Different from traditional blog platforms, where users write long articles with low

update frequency, Twitter generates a large volume of short and real-time messages

daily.

One obstacle to using Twitter data is their huge size, as measured by the size

of the user base, the volume of tweets, and the velocity of updates. The number of

registered user profiles on Twitter reached near a billion in 2013, and, collectively,

Twitter users now send over 500 million tweets every day [86]. These numbers

keep growing rapidly. It is challenging for third-party researchers and developers to

collect and manage such a huge amount of data.

Twitter provides API functions to facilitate third-party users to access the data

(https://dev.twitter.com/docs/). There are twomain types of Twitter APIs: the REST

API and the stream API. The REST API supports queries to Twitter user accounts

and tweets, and it usually has very strict limits on the query rate (e.g., 15 requests per

15 minutes). Although the REST API provides flexible access to Twitter data from
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almost every angle, the rate limits make it not suitable for collecting large amounts

of Twitter data and monitoring updates. On the other hand, the stream API provides

almost real-time access to Twitter's global stream of public tweets. Once the connec-

tion is built, tweet data are pushed to the client without any of the overheads incurred

by pulling data through the RESTAPI. The streamAPI produces near real-time sam-

ples of Twitter's public tweets. The convenience and immediacy of the stream API

make it a common source of Twitter data for a variety of applications and mining

tasks, for example, topic modeling [40, 76], disease outbreak surveillance [87], and

popular trend detection [64]. However, prior research has not addressed the issue

of how well the sample data provided by the stream API represent the original data

and, if do not, towards which properties the sample data might be biased.

In this work, we focus on characterizing the sample data from the Twitter stream

API, studying possible sampling bias, if any, and understanding the implications of

the findings to related applications. The Twitter stream API has different access

priorities. According to Twitter, the default Spritzer access provides a 1% sample of

the complete public tweets, whileGardenhose access provides a larger 10% sample.

However, Twitter does not reveal how the samples are generated and even does not

guarantee that the sampling ratios are stable. These make it difficult to perform

theoretical analysis of the sample data. Therefore, in this work, we conduct a study

to experimentally analyze the properties of Twitter data samples and compare them

with a baseline complete dataset.

Limited by storage capacity and the API access rate restrictions, we could not

afford to collect the complete set of tweets generated by all Twitter users (over 500

million tweets per day). Instead, we use the Twitter REST API to identify a rela-

tively small subset of Twitter users (i.e., the Singapore Twitter users) via a snowball

crawling process starting with a set of manually selected seed Singapore users. And

then, we obtain all the tweets generated by these Singapore Twitter users during

May of 2012 via crawling the Twitter REST API and use these tweets as the com-

plete dataset. Meanwhile, we gather the tweets of these users returned by the Twit-
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ter stream API in the same period with two different access priorities as the sample

datasets. We perform a comparative analysis of the sample datasets with the com-

plete dataset in terms of basic tweet statistics, content representativeness, user cov-

erage, and user interactions. We find that the actual sampling ratios of the Spritzer

sample and the Gardenhose sample are around 0.96% and 9.6% respectively. The

sampled Twitter data represent the general user activity patterns and tweet contents

of the complete dataset well even with a sampling ratio as small as 0.96%. How-

ever, the samples are biased towards active users and miss lots of user interaction

information. Extending the sampling period and increasing the sampling rate both

help to improve the coverage of the user base and the accuracy of the interaction

based user popularity estimation.

3.2 Related Work

The huge volume of user-generated content inmodern online social networks presents

challenges to researchers for collecting and analyzing these data. A common prac-

tice to deal with this problem is to generate and analyze a representative sample of

the complete data. There are several main issues in generating the sample: what is

a good sampling strategy, what is a good sampling ratio, and does the sample have

good quality? In the case of the Twitter stream API, the sample data are generated

by some unknown strategies designed by Twitter with approximately fixed sampling

ratios. Therefore, the focus of this work is on the unresolved question of whether

the sample data generated by the Twitter stream API are good enough for various

mining and analysis tasks.

A very recent work by Morstatter et al. [70] studies the same problem, however

there are important differences between their work and ours. The main difference

is that they use a sample dataset collected from the Twitter stream API that focuses

on a particular event: the Syria conflict from December 2011 to January 2012. We

analyze a dataset that is not event-specific to provide more general observations.
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In addition, their work does not address the issue of the sampling ratio, whereas

we study two different sampling ratios and discuss their effects on the quality of

the data obtained. In terms of methodology, they measure the daily sampling ratio,

whereas we also study the retweet ratio, and the user tweet frequency distribution

to provide a more comprehensive analysis. In studying tweet contents, they analyze

the correlation of the ranks of the top hashtags and compare the topic distribution of

the sample data with that of the complete data. We do not compare topic distribu-

tions because we consider topic alignment across unlabeled datasets to be difficult,

subjective, and unreliable. Instead, we study a rich set of terms in tweets includ-

ing text words, hashtags, urls, and url domains, and discuss the similarity of the

sample data using these terms to the complete data based on vocabulary coverage

and frequency correlations. In order to study user relationships, their work focuses

on the user retweet network, whereas we study not only retweet relationships but

also mention relationships. Finally, their work analyzes the geolocation distribution

of the tweets. However, since our dataset is based on Singapore Twitter users, the

tweets are mainly located in Singapore, the geolocation distribution adds no new

information. To sum up, our study on Twitter data samples is more general and

comprehensive than the study in [70].

The rising popularity of Twitter has inspired research into its characteristics.

Krishnamurthy et al. [49] perform a descriptive analysis of the Twitter user base

and compare the results of two datasets crawled by different techniques. The first

dataset is collected by snowball crawling of the Twitter network using the Twit-

ter REST API. It starts with a small set of seed users and expands the user set by

adding partial lists of the users being followed by the current users. The second

dataset is obtained by the Twitter public timeline API, which provides continuously

20 most recent tweet updates. The users associated with these tweets are extracted.

They find that the analysis results on the two datasets are similar in terms of the user

class, daily activity pattern, source interface usage, and geographic distribution. Our

work also analyzes Twitter datasets collected in different ways. However, it differs
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from the above work in three aspects. Firstly, the datasets analyzed have different

properties. Our work analyzes three datasets based on the same set of Twitter users:

i) a complete Singapore user tweet dataset collected by crawling the Twitter REST

API, and ii) two sample datasets obtained via the Twitter stream API with different

access priorities; the sample datasets are proper subsets of the complete dataset. In

contrast, Krishnamurthy et al. study two datasets that may cover different sets of

Twitter users. Secondly, the two studies have different purposes. In this work, our

focus is not on characterizing the Twitter user base, but on characterizing the Twit-

ter stream API and understanding how well the data collected from the stream API

represents the complete Twitter data space. Finally, because of the different study

objectives, we analyze different aspects of the datasets, not only including users, but

also tweets and user interactions.

Kwak et al. [52] conduct an exploratory analysis of the entire Twittersphere to

study the topological characteristics of the Twitter network and information diffu-

sion on it. Their results show a remarkable deviation from known characteristics

of human social networks. They find that the Twitter network has a non-power-law

degree distribution, short effective diameter, and low reciprocity, which establish

Twitter's role of a new medium of information sharing. This study collects the en-

tire Twitter network snapshot in its early stage (i.e., 2009). With the rapid growth

of the Twitter population, it becomes more and more difficult to handle the whole

Twitter network, not to mention tracking its frequent information update. There-

fore, much research has been performed on incomplete Twitter data. Java et al. [43]

analyze a Twitter subset with 76,000 users and 1 million tweets and categorize the

users based on their intentions on Twitter. Their dataset is collected by periodically

retrieving the most recent public tweets using an old version of the Twitter stream

API that is no longer supported by Twitter. Naaman et al. [72] study Twitter user

activity based on a small set of sampled non-organizational users and classify them

as "Meformers" and "Informers" according to whether they like to post tweets that

are self-related or general informational. Zhao et al. [105] characterize Twitter with
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topic modeling based on tweets collected from the Twitter stream API. They clas-

sify tweets into different topic categories and study the size distribution of these

categories. Huberman et al. [41] study the user activity and interactions in Twitter

and reveal that the use of Twitter is driven by a hidden network of connections under-

lying the "declared" friend and follower relationships. The dataset they use consists

of over 300,000 Twitter users and their tweets, however the method of collection

is not described. These studies use Twitter datasets collected in several different

ways, but none of them discusses the strengths and limitations of the data collection

methods used and the representativeness of their datasets.

Besides Twitter, several other popular social networks have been studied. [16]

and [34] study user-generated content on YouTube [16, 34]. Kumar et al. [51] ana-

lyze the structural properties of the Flickr and Yahoo!360 networks including path

lengths, changes over time, and component structure. Mislove et al. [68] verify

the power-law, small-world, and scale-free properties of many popular online so-

cial networks including Flickr, YouTube, LiveJournal, and Orkut. Benevenuto et

al. [9] characterize the behavior of a set of 37,000 collected users in online social

networks such as Orkut, MySpace, Hi5, and LinkedIn. None of these studies in-

vestigates the relationships between their analysis results and the data collection

methods. Ahn et al. [6] compare the topological characteristics and growth patterns

of three large-scale online social networks: Cyworld, MySpace, and Orkut. They

evaluate the validity of the snowball sampling method, which they use to crawl the

networks. Their results reveal that with a sampling ratio above a certain threshold,

snowball sampling captures the scaling property of the vertex degree distribution

correctly, but it cannot estimate other metrics such as the clustering coefficient dis-

tribution and degree correlation. Our work is different from this work because the

sample datasets that we study are not obtained by snowball sampling of the Twitter

network, but by an unknown sampling method developed by Twitter on the public

tweet stream.

26



3.3 Data Collection

In order to study sampling bias, we need the complete Twitter dataset to serve as a

baseline, with which the sample datasets can be compared. However, collecting the

complete Twitter stream is not practical for our study because of its expensive cost.

Instead of considering the full set of more than 1 billion Twitter users, we focus on

the complete set of Singapore Twitter users, which is a smaller group. We used all

the tweets posted by the Singapore Twitter users within a one-month period as the

complete dataset. We also gathered all the tweets generated by these Singapore users

that appeared in the Spritzer and Gardenhose streams during the same timespan to

create two sample datasets.

The complete dataset was collected with the help of the social network mining

research group of Singapore Management University 1. In order to locate the Sin-

gapore Twitter users, a set of 58 popular Singapore Twitter users were manually

selected as seeds. Initially, the user set only contained these seed users. The user set

was then expanded by exploring the follower and friend lists of the users in the set.

A follower or friend of a current user was added to the user set if either he specified

his location to be "Singapore'' or he followed at least three of the known Singapore

users. In this way, a set of 151,041 Singapore Twitter users in 2012 was identified,

which covered the majority of the Singapore Twitter users. After the set of users

was constructed, the Twitter REST API was invoked to crawl the tweets generated

by these users for a one-month period beginning onMay 1, 2012 and ending onMay

31, 2012. The collected tweets formed the complete dataset referred to asComplete.

We collected two sample datasets at the same period via the Twitter stream API

using the Spritzer and Gardenhose access priorities respectively. The Spritzer and

Gardenhose streams output samples of the entire public tweet stream with differ-

ent sampling ratios. According to Twitter, Spritzer provides an approximately 1%

sample of the complete public tweets, while Gardenhose generates a larger sample

with a sampling ratio of around 10%. Twitter does not provide any description of
1https://sites.google.com/site/socnetmine/
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Table 3.1: Description of datasets.

Datasets Complete SampleSpritzer SampleGardenhose

API used for collection REST Stream (Spritzer) Stream (Gardenhose)
Timespan May 2012

Num. of users 151,041
Num. of Tweets 13,468,661 128,647 1,297,304

the algorithms that generate the samples nor does it guarantee the sampling ratios

to be stable. From the sampled tweets, we extracted the subsets that were posted

by the identified Singapore users. In this way, two samples of the complete dataset

were obtained, referred to as SampleSpritzer and SampleGardenhose respectively. Ta-

ble 3.1 provides some basic information of the datasets.

3.4 Analysis of Results

In this section, we perform a detailed comparative analysis of the collected sample

and complete datasets. Specifically, we compare them in terms of tweet statistics,

content representativeness, user coverage, and user interactions. Through the com-

parison, we try to understand the nature of the sample datasets, for which properties

the sample datasets are representative of the complete dataset, and for which prop-

erties the sample datasets are not representative. We also discuss the implications

of our findings for certain mining tasks.

3.4.1 Tweet Statistics

We first study the sampling ratio and basic tweet statistics in this section. We perform

analysis on the datasets collected over the one-month period and also present results

on a daily basis.

We begin the analysis by examining the actual sampling ratios of the two sample

datasets from the Twitter stream API and present the average daily sampling ratios

and standard deviations in Table 3.2. As shown in Table 3.2a, the Singapore users

generate around a half million tweets a day on average. The Spritzer and Garden-
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Table 3.2: Average daily sampling ratios.

(a) Daily sampling ratios for tweets.

Daily Complete SampleGardenhose SampleSpritzer
statistic tweet# tweet# sampling ratio tweet# sampling ratio
Daily avg. 481,024 46,332 9.62% 4,634 0.96%
Std. dev. 67,446 6,637 0.15% 664 0.014%

(b) Daily sampling ratios for users.

Daily Complete SampleGardenhose SampleSpritzer
statistic user# user# sampling ratio user# sampling ratio
Daily avg. 35,316 15,769 44.55% 3,625 10.22%
Std. dev. 2,407 1,601 1.88% 484 0.85%

Table 3.3: Daily tweets and retweets ratios.

Daily Complete SampleGardenhose SampleSpritzer
statistic tweet% retweet% tweet% retweet% tweet% retweet%
Daily avg. 84.41% 15.59% 84.24% 15.76% 84.21% 15.79%
Std. dev. 0.56% 0.56% 0.54% 0.54% 0.76% 0.76%

hose samples return around 0.96% and 9.6% of them respectively. The actual tweet

sampling ratios both are slightly lower than what Twitter announced (i.e., 1% and

10%). Table 3.2b shows the sampling ratios for users each day. We find on aver-

age there are around 35,000 Singapore users who generate tweets in each day, and

the Spritzer and Gardenhose samples capture around 10% and 45% of them respec-

tively. The sampling ratio for users is much higher than it is for tweets, which is not

surprising; each tweet appears just once in the complete dataset, whereas a user may

appear many times, thus increasing the likelihood that he will appear in a sample.

Next, we study whether the sample datasets preserve the general tweeting pat-

terns of the Twitter users. Table 3.3 lists the average proportions of original tweets

and retweets generated by the Twitter users each day. As observed from the table,

among all the tweets published daily, about 85% are original tweets, and 15% are

retweets. The same ratio between original tweets and retweets is captured by both

sample datasets. Figure 3.1 further illustrates the average hourly tweet counts of

the three datasets for all the 31 studied days. We observe that the Singapore users

tend to be more active at the nighttime. The tweeting frequency increases rapidly
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Figure 3.1: Average hourly tweet counts of Singapore Twitter users.
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Figure 3.2: Average daily tweeting frequency distributions of Singapore Twitter
users. γ is estimated power-law exponent. SEγ is the standard error of γ. R2 is the
square error of the power-law fitting.

after 17:00 and peaks at 22:00. Then it drops quickly through midnight and hits the

bottom at 4:00. Thereafter, as a new day starts, the users gradually regain activity,

and the tweeting frequency rises slowly through the day. The sample datasets both

reflect the same hourly tweeting frequency pattern of the users. The results above

indicate that both the small Spritzer sample and the larger Gardenhose sample ob-

tained via the Twitter stream API reflect the general user tweeting patterns of the

complete dataset accurately.

In addition, we analyze tweet patterns based on individual users. We plot the dis-

tribution of user average daily tweeting frequency in Figure 3.2. The average daily

tweeting frequency distribution of the Singapore users approximates a power-law

distribution with an exponent of -1.3365. However, the user average daily tweet-

ing frequency distributions captured by the Spritzer and Gardenhose samples fit the

power-law distributions with different exponents of -2.4544 and -1.8963 respec-

tively. Therefore, the sample data preserve the scaling pattern of the user tweeting
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Table 3.4: Symbols for a vocabulary.

Symbol Description
V The vocabulary for all the text words/hashtags/urls/url domains appearing

in the set of tweets of the studied timespan (e.g., one day or one month).
|V | The size of the vocabulary V ; it is the number of terms that exist in the

vocabulary.
t A term in a vocabulary representing a text word/hashtag/url/url domain.

t.fV , fV t.fV is the frequency of t in vocabulary V ; it is the number of times that t
appears in the tweet set on which the vocabulary is built. fV is the average
frequency of all the terms in V .

t.rV , rV t.rV is the rank of t in vocabulary V ; it is the rank of t in the vocabulary
based on its frequency. rV is the average value of all the term ranks in V .

frequency distribution (i.e., power-law), but tend to overestimate the proportion of

users with low tweeting frequency, and the overestimation is more serious in the

sample with a smaller sampling ratio, i.e., Spritzer.

3.4.2 Content Representativeness

Twitter data are also widely used for performing mining tasks such as event detec-

tion, sentiment analysis, content summarization, and topic modeling. As many of

these tasks are built upon analyzing tweet contents, it is important to understand if

the tweet contents in the sample datasets from the Twitter stream API accurately

represent those in the complete dataset.

For each dataset, we extracted the vocabularies of four common types of text rep-

resentation: text terms, hashtags, urls, and url domains. We performed lightweight

preprocessing of the text terms by eliminating stopwords 2, punctuation, and non-

English terms. For each dataset and each method of representation (e.g., Spritzer

urls), we record the frequency of each vocabulary item and its rank each day and

for the entire one-month timespan, as described in Table 3.4. We analyze the corre-

spondence of the vocabularies of the complete dataset and the sample datasets using

four metrics as described in Table 3.5 and display the results in Table 3.6.

Wemeasure howwell a vocabulary of a sample dataset covers the corresponding
2We use a stopword dictionary with 429 distinct terms

(http://www.lextek.com/manuals/onix/stopwords1.html).

31



Table 3.5: Comparison metrics for vocabularies.

Metric Description
Ssize The size ratio of a vocabulary of the sample tweet set (VS) and the corre-

sponding vocabulary of the complete tweet set (VC). Ssize =
|VS |
|VC |

Sctf The collection term frequency (ctf) ratio of a vocabulary of the sample tweet
set (VS) and the corresponding vocabulary of the complete tweet set (VC).

Sctf =

∑
t∈VS

t.fVC∑
t∈VC

t.fVC

Spcc The Pearson product-moment correlation coefficient of the term fre-
quency values of a vocabulary of the sample tweet set (VS) and the
corresponding vocabulary of the complete tweet set (VC). Spcc =∑

t∈VS∩VC
(t.fVS−fVS )(t.fVC−fVC )√∑

t∈VS∩VC
(t.fVS−fVS )2

√∑
t∈VS∩VC

(t.fVC−fVC )2

Sscc The Spearman's rank correlation coefficient of the term rank val-
ues of a vocabulary of the sample tweet set (VS) and the cor-
responding vocabulary of the complete tweet set (VC). Sscc =∑

t∈VS∩VC
(t.rVS−rVS )(t.rVC−rVC )√∑

t∈VS∩VC
(t.rVS−rVS )2

√∑
t∈VS∩VC

(t.rVC−rVC )2

vocabulary of the complete dataset using two metrics: the size ratio and the collec-

tion term frequency (ctf) ratio. Each metric provides a different perspective on how

well the sample vocabulary covers the complete vocabulary.

The size ratio metric calculates the proportion of the unique terms in a vocabu-

lary of the complete dataset that are captured by a sample dataset. As observed from

Table 3.6a, the Spritzer sample only covers around 6% of the text vocabulary, 2.5%

of the hashtag vocabulary, 1% of the url vocabulary, and 3.7% of the url domain

vocabulary in each day. The size ratios of the vocabularies of the Gardenhose sam-

ple are much higher due to the higher sampling ratio (i.e., the Gardenhose sample

covers around 26% of the text vocabulary, 16% of the hashtag vocabulary, 9% of the

url vocabulary, and 18% of the url domain vocabulary in each day). In addition, we

find that the size ratio of the url vocabulary almost equals the tweet sampling ratio,

while the size ratios of text terms, hashtags, and url domains are much higher than

the tweet sampling ratio. This result is easily explained. Many of the url terms occur

only once in the complete dataset, thus the odds of seeing them in a sample depend

strongly on the sample size. In contrast, many individual text terms, hashtags, and

url domains have higher occurrence frequency, thus samples tend to cover more of
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Table 3.6: Content representativeness based on four types of vocabularies daily and
for all the studied days (i.e., one month).

(a) Size ratio (Ssize)

Daily SampleGardenhose SampleSpritzer
statistic text hashtag url url domain text hashtag url url domain
Daily avg. 0.257 0.160 0.090 0.182 0.064 0.025 0.010 0.037
Std. dev. 0.021 0.019 0.013 0.023 0.002 0.002 0.001 0.003
All days 0.237 0.185 0.092 0.184 0.062 0.032 0.010 0.034

(b) ctf ratio (Sctf )

Daily SampleGardenhose SampleSpritzer
statistic text hashtag url url domain text hashtag url url domain
Daily avg. 0.915 0.622 0.121 0.915 0.750 0.371 0.034 0.837
Std. dev. 0.013 0.044 0.018 0.013 0.022 0.038 0.006 0.020
All days 0.977 0.791 0.144 0.960 0.939 0.603 0.054 0.926

(c) Pearson product-moment correlation coefficient (Spcc)

Daily SampleGardenhose SampleSpritzer
statistic text hashtag url url domain text hashtag url url domain
Daily avg. 0.997 0.9715 0.911 0.987 0.975 0.856 0.655 0.974
Std. dev. 0.002 0.021 0.045 0.005 0.005 0.040 0.195 0.013
All days 0.100 0.993 0.990 0.988 0.999 0.979 0.973 0.985

(d) Spearman's rank correlation coefficient (Sscc)

Daily SampleGardenhose SampleSpritzer
statistic text hashtag url url domain text hashtag url url domain
Daily avg. 0.812 0.641 0.433 0.736 0.705 0.552 0.268 0.754
Std. dev. 0.009 0.016 0.022 0.018 0.013 0.044 0.050 0.036
All days 0.817 0.691 0.442 0.706 0.811 0.623 0.266 0.692

these vocabularies.

The results on the size ratio metric indicate that the sample datasets cover only

small proportions of the vocabularies for different types of representation of the

complete dataset. However, the size ratio metric treats every term equally; it is

skewed by the many terms that appear just a few times in the dataset. Based on our

observation, the infrequent terms are more likely to be typographical errors and/or

user-created words, which may be less important for studying Twitter contents.

In order to distinguish the frequent terms from the infrequent ones, we adopt an-

other vocabulary coverage metric namely collection term frequency (ctf) ratio [14].

This metric also calculates the proportion of the terms in the complete vocabu-
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lary that are covered by a sample vocabulary. But, it weights each term with its

frequency of occurrence to give more credits to the frequent terms. The frequent

and moderately-frequent terms convey the most information about the contents of a

dataset [15]. Therefore, the ctf ratio is a more appropriate metric for measuring the

quality of a sampled vocabulary. The closer the ctf ratio is to 1, the more a sample

contains the terms that are frequent in the complete dataset 3. The results of the

ctf ratio are displayed in Table 3.6b. Generally, we find that the ctf ratio for every

vocabulary is much higher than the corresponding size ratio, and the Gardenhose

sample has higher ctf ratios than the Spritzer sample because of the higher sampling

ratio.

Closer inspection reveals that different types of text representation behave dif-

ferently.

• For the daily text term vocabularies, the ctf ratios are significantly high (e.g.,

they are around 0.75 for the Spritzer sample, and they exceed 0.9 for the Gar-

denhose sample). Therefore, even the small sample datasets contain the text

terms that account for most of the word occurrences in the complete dataset.

• The ctf ratios for the Spritzer sample are about 0.37 for the daily hashtag vo-

cabularies, whereas the Gardenhose ctf ratios are about 0.62. Sampling over

a one-month timespan improves the Spritzer coverage to 0.60 and the Gar-

denhose coverage to 0.80. These results suggest that one might want to be

cautious about drawing conclusions from daily variations in hashtag occur-

rences in the Spritzer stream, and even conclusions based on the Gardenhose

stream (10× larger) will miss significant amounts of hashtag activity. Obser-

vations based on a one-month timespan are more reliable, but will necessarily

miss some hashtag activity.

• The ctf ratios for urls are very low for both sample datasets, due primarily to

the fact that many of the urls only occur once in the dataset. One may interpret
3Note that stopwords are not included in this comparison. If stopwords were included, they would

dominate the weighting, and all methods would have ctf ratios close to 1.
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this result as indicating that many tweeted urls are unimportant and thus safely

ignored; or, it may mean that tweeting frequency is a less reliable method of

determining the importance of a tweeted url. In any of the cases, the Spritzer

and Gardenhose streams provide only very limited information about the urls

in the underlying complete stream.

• Instead of using individual urls, some researchers may be interested in only the

domains that produce urls, for example, to identify information sources that

are popular with Twitter users. We find that the Spritzer sample has very high

ctf ratios (i.e., around 0.83) for url domains, and the ctf ratios are even higher

for the Gardenhose sample (i.e., about 0.92). Therefore, even though the sam-

ple datasets do not provide enough information for studying the popularity of

individual urls, they preserve the important url domains very well.

In addition to analyzing the daily vocabularies, we also analyze the cumulative

vocabularies of the one-month period. We find that extending the sampling period

does not improve raw vocabulary coverage as the size ratios are not significantly im-

proved with the cumulative vocabularies. This observation is consistent with Heaps'

Law, which predicts the continued growth of a vocabulary as more texts are ob-

served [39]. However, the long sampling period helps to improve the coverage of

the frequent terms, as indicated by the increase in the ctf ratios for the cumulative

vocabularies.

The size ratio and ctf ratio metrics only evaluate the proportions of (frequent)

terms that are captured by the sample datasets. They do not evaluate whether the fre-

quency information of the captured terms is well preserved by the sample datasets.

In other words, they do not evaluate whether the term frequency information ob-

tained from the sample datasets is correlated with the actual term frequency in the

complete dataset. For mining tasks such as event detection, tweet content summa-

rization, and sentiment analysis, term frequency information is crucial. Therefore,

in the following analysis, we use another two metrics to study the quality of the

term frequency information in the sample datasets: the Pearson product-moment
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correlation coefficient (PCC) and Spearman's rank correlation coefficient (SCC).

The Pearson product-moment correlation coefficient (PCC) measures the linear

dependency of the term frequency values in a sample vocabulary and those in the

complete vocabulary. Its value is in the range of [−1, 1]. The value is close to 1 if the

term frequency values in the sample dataset and the complete dataset are strongly

correlated, the value is 0 when the term frequency values are uncorrelated, and the

value is −1 when the term frequency values are inversely correlated. Spearman's

rank correlation coefficient (SCC) measures the linear dependency of the frequency-

based term rankings of a sample vocabulary and the complete vocabulary. To cal-

culate the SCC score, the terms in a vocabulary are ranked in descending order of

their frequency in the dataset. Rank ties are handled by assigning a rank that is equal

to the average of their positions in the ranked list. For example, if the top two terms

both have the highest frequency in the ranked list, i.e., there is a tie between position

1 and position 2, the ranks assigned to these two terms are both 1.5 = 1+2
2
. The SCC

score is calculated based on the term rankings with a function similar to that of the

PCC metric (see Table 3.5), and it has the same value range.

The results of these two metrics are shown in Table 3.6c and Table 3.6d. We

find that in most of the cases, the PCC values are above 0.8 and 0.9 for the Spritzer

and Gardenhose vocabularies respectively. Thus, the term frequency values of the

sample datasets are linearly correlated with those of the complete dataset. In other

words, the sample datasets accurately estimate the relative frequency of the terms in

every vocabulary. The results of the SCC metric are not as good as those of the PCC

metric, but still are reasonably high, except for the url vocabularies. Therefore, the

sample datasets predict the term rankings of text terms, hashtags, and url domains

to a certain extent. The degradation of the SCC performance is mainly caused by

the ties in the term ranking. The url vocabularies have the most rank ties since many

of the urls only appear once in the datasets, thus have the worst SCC performance.

The improvement of the PCC and SCC scores by extending the sampling period is

not very obvious.
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Table 3.7: Features derived for sentiment classification.

Feature category Features

Overall scores (6)
Sum of positive and negative scores for Adjec-
tives.
Sum of positive and negative scores for Adverbs.
Sum of positive and negative scores for Verbs.

Score ratios to number of terms (6) Ratios of positive and negative scores to total
number of terms
for each part of speech.

Positive to negative score ratios (3) Positive to negative scores ratio for each part of
speech.

Negation (1) Percentage of negated terms in a tweet

Sentiment Analysis

To demonstrate the usefulness of the sample data for analyzing Twitter content, we

perform a sentiment classification task on the sample datasets and the complete

dataset and then compare the results. Sentiment classification is an opinion min-

ing activity concerned with determining what is the overall sentiment orientation of

the opinions contained within a given document (e.g., tweet). The sentiment orien-

tation can be classified as positive or negative. We implement the binary classifier

described by Ohana and Tierney to analyze the sentiment orientation of tweets [74].

We extract sentiment features of tweets using SentiWordNet and then train an SVM

classifier to assign sentiment labels to the tweets in each dataset. SentiWordNet is a

lexical database for opinion mining. Given a term and its part-of-speech tag, Senti-

WordNet returns three sentiment scores ranging from 0 to 1: positivity, negativity,

and objectivity, each indicating the term's sentiment bias. The sum of the three

scores equals 1. In the experiment, we use the GATE Twitter part-of-speech tag-

ger (https://gate.ac.uk/wiki/twitter-postagger.html) to perform part-of-speech anal-

ysis on tweets then calculate SentiWordNet scores for terms found. We derive a total

of 16 sentiment features based on the scores as described in Table 3.7.

We traine a linear SVM classifier with a set of 1224 manually classified tweets

from a separate dataset. The training data consist of 570 positive tweets and 654

negative tweets. We apply the trained classifier to predict the sentiment orientation

of the tweets in our datasets.
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Figure 3.3: Percentage difference of positive (or negative) tweets daily. X-axis is
binned difference. Y-axis is the count of days in each bin. µ is average difference
of 30 days, σ is standard deviation.

Firstly, we analyze Twitter's daily overall sentiment polarity by counting the per-

centages of tweets with positive sentiment and negative sentiment respectively in

each day. In order to compare the sample datasets with the complete dataset, we cal-

culate the absolute difference of the positive tweet percentages of a sample dataset

and the complete dataset in each day 4. Figure 3.3 presents the percentage differ-

ence distributions of the Spritzer and Gardenhose samples over the studied 31 days.

We observe that for all the 31 days, the percentage differences of both datasets are

fairly small (i.e., less than 1.8%), which indicates that both sample datasets can re-

flect Twitter's daily sentiment orientation very accurately. It is not surprising that

the larger Gardenhose sample shows higher accuracy of predicting Twitter's daily

sentiment polarity. Its daily percentage differences are all smaller than 0.6%.

Besides the overall sentiment orientation, we also study Twitter's sentiment ori-

entation towards hashtags. We group the hashtags that are captured by both sample

datasets based on their popularity in the complete dataset. We categorize the hash-

tags which were used by more than 1000 tweets as very popular, the hashtags which

were used by less than 1000 but more than 500 tweets as moderately popular, and

the hashtags which were used by less than 500 tweets as less popular. We ignore

the hashtags that were used by less than 100 tweets because of their lack of popu-

larity. We infer Twitter's sentiment orientation to a hashtag also by the percentages
4The absolute difference of the negative tweet percentages is the same as that of the positive tweet

percentages.
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Figure 3.4: Percentage difference of positive (or negative) tweets in different hashtag
groups with different popularity levels. X-axis is binned difference. Y-axis is the
percentage of hashtags in each popularity group. µ is the average difference of all
the hashtags in each popularity group, σ is standard deviation

of the positive and negative tweets containing this hashtag. We use the percentage

difference to evaluate the error of a sample dataset for predicting Twitter's sentiment

polarity to each hashtag. Figure 3.4 shows the percentage difference distributions

of the three hashtag groups. We find that the Gardenhose sample relatively accu-

rately reflects Twitter's sentiment orientation to the hashtags in the very popular and

moderately popular groups. In these two groups, the Gardenhose sample captures

sentiment orientation for most of the hashtags (i.e., more than 90% and 80% of the

hashtags respectively) with the percentage difference less than 8%. The performance

of the Gardenhose sample degrades greatly for the less popular hashtags. It can only

guarantee small percentage differences (e.g., less than 8%) for around 50% of the

hashtags. Not surprisingly, the performance of the smaller Spritzer sample is not as

good as that of the Gardenhose sample. It can only achieve less than 10%percentage

differences for around 70% of the very popular hashtags. For most of those not so

popular hashtags, the percentage difference is not small.

To sum up, in this subsection, we find that both the Spritzer and Gardenhose

samples can be used to estimate Twitter's overall sentiment orientation. However,

for individual hashtags, the Gardenhose sample can be used to estimate Twitter's

sentiment orientation for very popular and moderately popular hashtags, while the

Spritzer sample may be only suitable for estimating Twitter's sentiment for very

popular hashtags.
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Table 3.8: Average number of tweets daily of captured and missed users.

Daily SampleGardenhose SampleSpritzer
statistics captured users missed users captured users missed users
Daily avg. 23.99 4.20 48.45 10.13
Std. dev. 2.56 0.08 2.49 0.55

3.4.3 User Coverage

According to the analysis in Section 3.4.1, the daily user sampling ratios of the

Spritzer dataset and the Gardenhose dataset are about 10% and 45% respectively.

Thus, more than half of the users in the complete dataset who tweet each day are not

captured by the sample datasets. In the following analysis, we compare the prop-

erties of the users captured by the sample datasets with those of the users that are

missed. Here, the missed users refer to the users who generate tweets and are in-

cluded in the complete dataset, but their tweeting behavior is not captured by the

sample datasets.

Firstly, we calculate the average numbers of the tweets generated daily by the

captured andmissed users respectively and report the results in Table 3.8. The results

show that the captured users tend to publish more tweets than the missed users. To

be more specific, the users captured by the Spritzer sample publish more than 48

tweets daily on average, while themissed users generate only around 10 tweets daily.

The average daily tweeting frequency of the captured users and the missed users in

the Gardenhose sample is around 24 and 4 respectively. These results imply that

samples generated by the Twitter stream API are biased towards active users who

tweet frequently every day, and they may lose the voice of less active users. The

bias is more significant with sample datasets having smaller sampling ratios (e.g.,

SampleSpritzer).

Although the user samples are biased towards active users, we expect that this

bias can be remedied by extending the sampling period. In other words, with the

extension of the sampling period, the chance of discovering inactive users will in-

crease. To verify how fast the user samples grow as the sampling period increases,

we first identified the 37,124 Singapore users who published tweets on the first day
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Figure 3.6: Average daily tweeting frequency distribution of missed users.

of the complete dataset as the baseline user set. Then, we monitored the Twitter

stream API to see when these users were observed. Once a user's tweets were spot-

ted, we added that user to the sample user set. We performed this monitoring using

both the Spritzer stream and the Gardenhose stream for 60 days and maintained two

sample user sets respectively. Figure 3.5 plots the size changes of these sample user

sets over the 60 days.

The sample user set from the Gardenhose stream grew quickly for the initial 10

days, eventually reaching about 87%of the baseline user set. After that, it converged

slowly to the baseline user set. After 60 days of monitoring, 35,174 Singapore users

were discovered, which covered about 95% of the baseline user set. However, the

set of users found in the Spritzer stream converged much more slowly because of the

low sampling ratio. After 60 days, it only had captured 23,036 users, which covered

62% of the baseline user set. We conclude that extending the sampling period helps

to improve user coverage, and a period of 10 days is enough for discovering most

of the baseline users (i.e., more than 85% of them) using the Gardenhose stream.
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After 60 days of monitoring, there were still some users that had not been seen

in the Spritzer and Gardenhose samples. We examined the daily tweeting frequency

distributions of these missed users. The results are displayed in Figure 3.6. More

than 90% of the missed users in both datasets tweeted infrequently, i.e., generated

no more than 10 tweets a day. Therefore, it is not surprising that these users did not

appear in any sample.

The daily tweeting frequency distribution of the users not found in the Garden-

hose sample is significantly skewed towards the extremely low frequency users (i.e.,

users who tweet less than once a day on average) compared with the Spritzer sample.

This result confirms that the higher sampling rate increases the chance of discover-

ing low-activity users, and only extremely inactive users are missed.

However, there is a group of users who are very active (i.e., post more than 100

tweets daily), but do not appear in any sample. Although this group is small -- less

than 1% of the missed users -- it is perhaps surprising that these users do not appear

in either of our samples. We manually checked the profiles and the tweets of these

users. Most of these users are organizational users or marketers who periodically

tweet urls linking to external websites or product promotions. We suspect that these

users' tweets are intentionally excluded from the sample streams, perhaps because

Twitter has identified them as robots, spammers, or other undesirable information

producers. This group of missing users may not be a problem for most research,

because it is a tiny group, and because the information that they provide may not

represent "real'' user content. However, they might be important for research that

studies robot and spammer behavior.

3.4.4 User Interactions

Another type of valuable information embedded in Twitter data is the interactions

between users. There are two main types of interactions between Twitter users:

mention interactions and retweet interactions. A Twitter user mentions another user

by inserting "@username" into the body of his tweet. Mentions are usually used to
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Table 3.9: Proportions of the reciprocal and directed user mention interactions ex-
tracted from the complete and sample datasets daily and for all the studied days (i.e.,
one month).

Daily Complete SampleGardenhose SampleSpritzer
statistics reciprocal directed reciprocal directed reciprocal directed
Daily avg. 11.44% 88.56% 7.18% 92.82% 4.10% 95.90%
Std. dev. 0.34% 0.34% 0.51% 0.51% 0.47% 0.47%
All days 10.67% 89.33% 9.25% 90.75% 5.73% 94.27%

signify quotes from other users' posts or to send direct messages to the users that are

mentioned. A Twitter user retweets another user's tweet by clicking the "Retweet"

button under that tweet. A retweet is a re-posting of someone else's tweet.

Mention and retweet interactions can be directed or reciprocal. Usually, a di-

rected interaction indicates an "informational relationship'' between users because

the information only flows one-way from a user to another, while a reciprocal inter-

action indicates a "friendship relationship'' because there is communication between

users. In the rest of this Chapter, we use the terms "interaction'' and "relationship''

interchangeably.

Mention and retweet relationships can be obtained from tweet meta-data. They

are commonly used for many tasks such as understanding user roles in Twitter, iden-

tifying influencers, and modeling information diffusion. In this section, we extract

the mention and retweet relationships among the Singapore Twitter users from the

complete and sample datasets respectively and study the representativeness of the

sample datasets on these relationships. We first analyze the mention relationships.

The same analysis is performed on the retweet relationships as well.

We first examine whether the sample datasets represent the proportions of the

reciprocal and directed mention relationships in the complete dataset. Table 3.9 pro-

vides the results. Among all the Singapore Twitter users, about 11.4% of the men-

tion relationships captured daily in the complete dataset are reciprocal, and 88.5%

of them are directed. However, in the Spritzer sample, 4% of the mention relation-

ships captured are reciprocal, and 96%of them are directed; while in the Gardenhose

sample, the proportions of the reciprocal and directed relationships are around 7%
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Table 3.10: Recall of user mention interactions daily and for all the studied days
(i.e., one month).

(a) Recall on all users

Daily SampleGardenhose SampleSpritzer
statistic RecallDir. RecallRec. RecallAll RecallDir. RecallRec. RecallAll

Daily avg. 0.181 0.109 0.173 0.021 0.007 0.020
Std. dev. 0.013 0.021 0.014 0.001 0.001 0.001
All days 0.244 0.208 0.240 0.040 0.020 0.038

(b) Recall on captured users

Daily SampleGardenhose SampleSpritzer
statistic RecallDir. RecallRec. RecallAll RecallDir. RecallRec. RecallAll

Daily avg. 0.213 0.143 0.206 0.064 0.053 0.063
Std. dev. 0.014 0.026 0.016 0.004 0.008 0.004
All days 0.283 0.263 0.281 0.095 0.086 0.095

and 93% respectively. These observations tell us that the sample datasets tend to un-

derestimate the amount of reciprocal relationships, and the underestimation of the

Spritzer sample is more serious than that of the Gardenhose sample. Again, we find

that extending the sampling period improves the estimation of the proportions of re-

ciprocal and directed relationships. The Gardenhose sample for a one-month period

has similar proportions of these relationships to those of the complete dataset.

Next, we study how many of the relationships in the complete dataset are cap-

tured by the sample datasets. We calculate the recall of reciprocal, directed, and

all relationships and list the results in Table 3.10a. As observed from the table, the

Spritzer dataset and the Gardenhose dataset recover around 2% and 17% of all the

daily interactions among all the Singapore Twitter users respectively. Given the

tweet sampling ratios of the two datasets (i.e., less than 1% and 10%), these recall

values are reasonable. However, many applications that utilize user interaction in-

formation need a complete view of user relationships, for example, analyzing user

network properties and studying network-based information diffusion. For these

applications, the sample datasets do not provide sufficient information.

Even though the recall of mention relationships is increased by extending the

sampling period to one month, it is still far from complete, i.e., in the best case,
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Table 3.11: Estimation of user popularity based on frequency of being mentioned
using the data daily and for all the studied days (i.e., one month).

Daily SampleGardenhose SampleSpritzer
statistic Sctf SPCC SSCC Sctf SPCC SSCC

Daily avg. 0.544 0.938 0.547 0.168 0.808 0.321
Std. dev. 0.048 0.025 0.021 0.014 0.040 0.018
All days 0.906 0.994 0.825 0.576 0.973 0.553

the Gardenhose sample captures only 24% of all the interactions of the Singapore

Twitter users based on the one-month period of sampling. To get a nearly complete

view of user relationships, much longer sampling timemay be needed. However, the

relationships among Twitter users are relatively dynamic. Relationship information

extracted from historical data may lose effectiveness. We also notice that the recall

of reciprocal relationships is generally smaller than that of directed relationships,

which indicates that reciprocal relationships are harder to capture from sample data.

The analysis described in Section 3.4.3 found that a sample dataset only covers

a proportion of the active users every day. To make our analysis fairer, we also

calculate the recall of the interactions between these captured users; the results are

displayed in Table 3.10b. As observed, if we only focus on the captured users, the

recall values of all the daily interactions of the Spritzer dataset and the Gardenhose

dataset increase to around 6% and 20% respectively. By extending the sampling pe-

riod to one month, the two datasets capture around 9.5% and 28% of all the mention

interactions between the captured users respectively. Since much of the interaction

information between users is missing from the sample data, researchers cannot con-

struct a user mention network from the sample data that has similar properties to the

user network constructed from the complete dataset.

In the final set of analysis, we study the intensity of users being mentioned. This

piece of information is important for studying user roles and locating influencers in

Twitter. Usually, popular users that are mentioned many times by many users are

more important than less frequently mentioned users in the Twitter space. To per-

form the analysis, we extracted the frequency of users being mentioned in the com-

plete and the sample datasets respectively and produced rankings of users based on
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Figure 3.7: Distribution of the frequency of users being mentioned based on the
tweets of the one month period. γ is estimated power-law exponent. SEγ is the
standard error of γ. R2 is the square error of the power-law fitting.

the frequency. Then the ctf ratio, PCC score, and SCC score were calculated based

on the extracted information to evaluate the effectiveness of the sample datasets for

preserving user popularity information. The results are presented in Table 3.11.

One day of the 1% Spritzer sample contains tweets that mention the users who

are responsible for about 16% of the mentions in a day of the complete dataset (Ta-

ble 3.11). One day of the 10% Gardenhose sample contains tweets that mention the

users who are responsible for about 55% of the mentions in the complete dataset.

The PCC scores based on the daily samples are very high, i.e., 0.8 and 0.93 for

the Spritzer and Gardenhose samples respectively, which indicates that the mention

frequency of users in the sample datasets is strongly correlated with the mention

frequency in the complete dataset. If a user is mentioned in the sample data, the

frequency information is relatively reliable. However, many of the users mentioned

frequently in the complete dataset are not observed in a one-day sample.

Extending the sampling period to onemonth greatly improves the results. The ctf

ratios are greatly improved, especially for theGardenhose sample (i.e., over 0.9). We

also find that the PCC score and the SCC score based on the extended sampling pe-

riod increase to 0.99 and 0.82 respectively for the Gardenhose sample. Therefore, by

extending the sampling period, the Gardenhose sample successfully captures most

of the popular users and accurately predicts the users' relative popularity in terms of

the frequency of being mentioned. Even though the ctf ratio of the Spritzer sample is

also improved to 0.57 by extending the sampling period, it is still at risk of missing
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many important users. Therefore, it is preferable to use the Gardenhose sample with

an extended sampling period for studying user popularity.

We also analyze the user popularity distribution based on the frequency of being

mentioned using the data of the one-month period. The results are displayed in Fig-

ure 3.7. We find that the user popularity distribution in the complete dataset approx-

imates a power-law distribution with an exponent of -1.5977. The user popularity

distributions of the sample datasets preserve the power-law property but with smaller

exponents, thus they overestimate the proportion of less popular users. Again, we

find that the user popularity distribution of the Gardenhose sample is more similar

to the original distribution compared with the Spritzer sample.

We performed exactly the same analysis on retweet interactions. Despite varia-

tions in numbers and details, the results are similar to the results based on mention

interactions. All the observations made with mention interactions in this section are

applicable to retweet interactions.

3.5 Summary

In this chapter, we provide a descriptive study of Twitter data samples obtained from

the Twitter stream API with two different access priorities (i.e., Spritzer and Gar-

denhose). These two data streams are data sources for a variety of research and

commercial applications. By comparing the sample data with the corresponding

complete data in different aspects, we explore the nature of the sample data, their

bias, and how well they represent the complete data stream. Our results provide

insights about the sample data obtained from the Twitter stream API and provide

incentives for people to use or not to use them for their research.

We find that the Twitter streams with the Spritzer and Gardenhose access priori-

ties provide samples of the entire public tweets with actual sampling ratios of around

0.96% and 9.6% respectively. The sample datasets truthfully reflect the daily and

hourly activity patterns of the Twitter users in the complete dataset. Moreover, the
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sample datasets capture the approximate power-law property of the user tweeting

frequency distribution in the complete dataset, but with smaller exponents. In other

words, the sample datasets preserve the same scaling property of the user tweeting

frequency distribution as the complete dataset, but tend to overestimate the propor-

tion of low-frequency users. The overestimation is more serious when the sampling

ratio is small. These observations indicate that the sample datasets, even with a very

small sampling ratio such as the Spritzer samples (i.e., 0.96%), are good for study-

ing Twitter user activity patterns in general. However, researchers should be careful

about the overestimation of low-frequency users when trying to analyze users based

on their activity levels and, if possible, use the larger sample (i.e., Gardenhose) to

reduce the estimation error.

Even with a very small sampling ratio (i.e., 0.96%), the sample datasets are able

to capture certain important tweet contents, e.g., text terms and url domains, and

preserve the relative importance (i.e., the frequency of appearance) of the content

terms. Our work demonstrates that the sample datasets are useful for many tasks

that analyze tweet contents, such as event detection, sentiment analysis, and tweet

summarization. For some other types of contents, e.g., hashtags, the small Spritzer

sample is not adequate to preserve accurate information, and the larger Gardenhose

sample is needed. However, for some content entities like urls, of which the ap-

pearances in tweets are temporal (e.g., each url only appears once or a few times),

the importance of the terms is not reinforced by recurrence. In this case, the sample

datasets may only capture small portions of the data, and may miss lots of crucial

information.

The sample datasets are biased towards active users, as one might expect. We

find that extending the sampling period or increasing the sampling rate both help to

improve user coverage. By carefully examining the users that are difficult to sample,

we find that the majority of them are extremely inactive with very low average daily

tweeting frequency (e.g., post less than 1 tweet a day). A small proportion of the

users that are not sampled are highly active, but probably spammers that Twitter
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Table 3.12: Summary of conclusions.

Tasks Usefulness
of sample
data

(Yes/No)

Comments

General tweet statistics Yes Spritzer samples are enough.

Event detection Yes If hashtags are used, Gardenhose samples
are preferable.Sentiment analysis Yes

Tweet summarization Yes
User network analysis No
Information diffusion No

User popularity Yes Gardenhose samples with a long sampling
period are preferable.

deliberately excludes. For the tasks of studying the general Twitter user base, these

two types of users are the least interesting because the extremely low-activity users

hardly contribute anything to Twitter, and the spammers most likely only generate

noise information. Therefore, the Twitter stream API can be used for collecting

representative Twitter users.

Finally, we find that owing to the low sampling ratios on tweets, the sample

datasets cover only small proportions of the user interactions, i.e., mentions and

retweets, embedded in tweets. For example, in the best case, the Gardenhose sam-

ple captures around 28% of the mention relationships between the captured users

in the one-month sample of data. Therefore, the sample datasets cannot provide a

complete view of the user interaction network, thus are unsuitable for the tasks that

study user network properties and information diffusion. However, for the tasks that

study users' popularity based on their frequency of being mentioned or retweeted,

Gardenhose samples for a one-month period provide relatively accurate information.

In general, the Twitter data samples obtained via the Twitter stream API pre-

serve enough information for the research or applications conducted based on gen-

eral tweet or content statistics, such as user activity pattern characterization, event

detection, sentiment analysis, and tweet summarization. They may also be useful

for analyzing the Twitter user base and user popularity. However, they cannot pro-
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vide a complete view of the user interaction network for tasks such as user network

analysis and information diffusion modeling. Table 3.12 summarizes our findings.

Although our results provide new information about the quality of Twitter data

streams, they are limited by the scope of the datasets, which were collected based

on a set of Singapore Twitter users. Even though our work focuses on general pat-

terns and metrics that are not population specific, analysis of a different user pop-

ulation might lead to different conclusions. We believe that our observations about

the Spritzer and Gardenhose samples will apply to other populations, however this

remains an open question.

We notice that the "Spritzer" and "Gardenhose" samples have many characteris-

tics which are similar to what people could expect from random samples e.g., user

activity pattern, retweet ratio, and tweeting frequency distribution. However, we

could not conclude that these samples are truly random samples because we have

observed that the public tweets from certain active users are excluded from the sam-

ples presumably due to their suspected spam behavior. We think it is an interesting

problem for the future works to compare the Twitter "Spritzer" and "Gardenhose"

samples with some truly random samples.
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Chapter 4

K-Anonymity based Social Network

Conversion against Connection

Fingerprint Attacks

In this chapter, we study the privacy protection issue on preparing social network

data for analysis. We discuss a new type of attacks on social network data, which

has not been discovered by prior work, namely connection fingerprint (CFP) at-

tacks. In CFP attacks, malicious adversaries utilize the connection information of

a victim (anonymous) user to some known public users to re-identify the user. We

first formally define CFP attacks and then analyze the privacy risk of these attacks

on real-world social networks. In addition, we adopt the k-anonymity scheme to

convert a social network against CFP attacks. We propose two k-anonymization

algorithms with their own respective advantages and demonstrate their ability to

generate k-anonymized networks with good utility.

4.1 Motivation

Propelled by the emergence and rapid rise of social media within the past decade,

people are now driving interactions online, thus contributing to the vast amount of

user-generated content on online social media platforms. On the one hand, both in-
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dustry and academia are very happy with the blooms of social network data as they

provide lots of new opportunities for business and research. For example, many

firms are investing time and resources in mining social network data so it helps pub-

lic relations, marketing, and sales engage more relevantly with consumers. On the

other hand, the increasing sophistication of information technology with its capacity

to collect, analyze, and disseminate social network data is posing significant threats

to social network users' privacy. A common practice is to release a social network

after removing the real identities of vertices for tasks such as mining and analysis.

However, prior research has demonstrated even though all the personal identifiers

(e.g., names, social security numbers) were removed, an attacker could re-identify a

vertex based on the unique topological structure around it in a social network. The

topological structure includes vertex degree [59], neighborhood [107], subgraph,

distances to hub vertices, and so on [38]. This type of attacks is called structural

re-identification attacks.

v2 v1 v3

v4

v5 v6 v7

ObamaBBCYoutube

Vertex ID Connection fingerprint

v4 {BBC}1 {YouTube, Obama}2
v5 {YouTube}1 {BBC, Obama}2
v6 {Obama}1 {YouTube, BBC}2
v7 {Obama}1 {BBC}2

Figure 4.1: Example of a released social network with public users and the connec-
tion fingerprint information of private users within 2 hops.

Prior work on structural re-identification attacks assumes that the identities of all

social network users are sensitive and should be removed from the released dataset.

However, in reality, not all the identities of social network users are sensitive. Sina

Weibo, a popular Chinese microblogging social network, hosts around 176,700 gov-

ernment accounts (e.g., Hong Kong, Mainland China, Taiwan, and Macau), 110,000

media accounts (e.g., PR Newswire, NBA, People's Daily, and Xinhuanet), and mil-

lions of celebrity accounts (e.g., Boris Johnson, Kevin Rudd, David Cameron, and

Kai-Fu Lee). All these users' identities are public, and they in total account for over
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1% of the overall half billion registered user accounts [93, 96]. Facebook has over

50 million public pages for brands, communities, companies, etc. with 10 or more

likes from the one billion registered profiles by 2013 [24]. These users seek pub-

licity, and they want to influence the social networks. In other words, they do not

consider their identities as privacy, and they prefer their information to be publicly

recognizable.

In this work, we define the group of social network users whose identities are

not sensitive as public users to be distinguished from private users. Releasing the

identities of public users with social network data can benefit both research and the

users themselves. For example, these data can be used for studying the social in-

fluence of government organizations, simulating information propagation through

media, helping corporates make smart targeted advertising plans, and so on. How-

ever, it potentially leads to privacy disclosure of other private users. Take a simple

social network, modeled as an unweighted and undirected graph, in Figure 4.1 as an

example. It has seven vertices representing three public users (i.e., v1, v2, v3) and

four private users (i.e., v4, v5, v6, v7). Assume that the identities of the private users

are removed when this social network is released for certain data analysis tasks, and

an attacker knows that in this social network a user Tom connects with a public

user BBC within 1 hop1. As there is only one anonymous vertex v4 who directly

connects to this public user BBC, the attacker identifies v4 as Tom without any

doubt. In this attack, the attacker infers the identity of an anonymous private user

via the public users that he connects to. In other words, the group of public users

that a private user connects to may leak the identity of the private user. For ease of

presentation, we name the identities of the public users that a user ui connects to as

ui's connection fingerprint (CFP). For instance, {BBC} is the 1st-hop CFP of ver-

tex v4, denoted as CFP1(v4) ={BBC}, and {Youtube, Obama} is the 2nd-hop CFP

of vertex v4, denoted as CFP2(v4) ={Youtube, Obama}. The formal definition of

nth-hop CFP will be presented later in Section 4.2. The table in Figure 4.1 lists the
1The number of hops between two vertices in an unweighted graph is the number of edges on the

shortest path between them.
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v2 v1 v3

v4

v5 v6 v7

ObamaBBCYoutube

v8

v9

(a) Anonymized social network by adding
dummy vertices.

v2 v1 v3

v4

v5 v6 v7

ObamaBBCYoutube

(b) Anonymized social net-
work by modifying edges.

Figure 4.2: Examples of 2-anonymity based on connection fingerprint information.

1st-hop and 2nd-hop CFPs of the private users in the example social network.

In this work, we study re-identification attacks based onCFP information namely

connection fingerprint (CFP) attacks, which have not been well studied by prior

work. First, we formally define the CFP re-identification problem. Next, we ana-

lyze the risk of CFP attacks with real-world network data. Our study demonstrates

that even a small proportion of public users (e.g., 1%) can harm the privacy of a con-

siderable amount of private users. Then, we propose to adopt the widely accepted

k-anonymity strategy to resist CFP attacks. Informally, k-anonymity requires that

for every private user ui in a social network, there are at least k−1 other private users

who share the same CFP as ui, which guarantees that an attacker cannot re-identify

any private users based only on CFP information with probability larger than 1
k
.

We propose two different methods to anonymize social networks against CFP

attacks, and we recognize their respective advantages and limitations. The first

method is based on adding dummy vertices. For example, in Figure 4.2, two dummy

(private) vertices v8 and v9 are added to the network as well as some dummy edges

to connect them to the network. The dummy vertices and edges are signified by

dashed circles and lines. The social network satisfies 2-anonymity (k = 2) in terms

of CFPs (within 2 hops). This is because in the modified social network, for every

private vertex, there is at least one other private vertex having the same 1st-hop and

2nd-hop CFPs. As will be explained later in Section 4.4, this approach can be easily

extended to prevent any CFP attacks within n hops, where 1 ≤ n ≤ m, and m is
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the maximum number of hops between two vertices in the network. Although it is

general, this algorithm may limit the utility of released social networks because of

the large number of dummy vertices added. The second method is based on modify-

ing (i.e., adding and/or deleting) edges. Take Figure 4.2b as an example. We insert

an edge between v2 and v4 and another edge between v1 and v5. The social network

then satisfies 2-anonymity based on 1st-hop CFPs since CFP1(v4) = CFP1(v5) =

{BBC, Y outube}, and CFP1(v6) = CFP1(v7) = {Obama}. This approach works

well on preventing CFP attacks of 1 hop and preserves network utility better than

the first method. However, it is hard to extend this approach for n-hop CFP attacks

(n > 1). This will be further explained in Section 4.5.

Finally, we conduct comprehensive experiments to evaluate the performance of

our algorithms. We find that with realistic assumptions of the number of public

users and the privacy parameter k, our algorithms are able to generate anonymized

networks with good utility efficiently.

4.2 Preliminaries and Problem Formulation

We model a social network as an undirected and unweighted graph G(V,E), where

V is a set of vertices representing user entities in the social network, andE is a set of

edges representing social connections between users (e.g., friendships, contacts, and

collaborations). The notation e(vi, vj) ∈ E represents an edge between two vertices

vi and vj . We use the notation |S| to represent the cardinality of a set S. For ease of

presentation, we use "graph'' and "social network'' interchangeably in the following

discussion.

Social network data are released for research and analysis with possible modifi-

cations for protecting privacy, e.g., removing user identities. We assume there are

some public users whose identities are not sensitive in a social networkG and hence

are retained in the released social network G∗ as specified in Definition 1. The real

identity of a public vertex vi is denoted by ID(vi). Except the public users, the
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rest of the users in G are private users, whose identities are sensitive and hence are

excluded from the released social network G∗.

Definition 1 (Released Social Network) The released versionG∗(V ∗, E∗) of a so-

cial networkG(V,E) is obtained by removing all the identity information of private

vertices of G, with possible modifications (i.e., adding dummy vertices and edges,

modifying edges). G∗(V ∗, E∗) is used in place of G for research and analysis, with

V ∗
pub ⊂ V ∗ (and ⊂ V ) referring to the public vertices.

We study the privacy breach in G∗ caused by releasing public user identities.

First, we specify the hop distance h(vi, vj) between two vertices vi and vj as the

number of edges on the shortest path between them 2. Given a hop distance value n,

we give the formal definitions of the nth-hop connection fingerprint CFPn(vj) and

n-range connection fingerprint CFP (vj, n) for a private vertex vj in Definition 2

and Definition 3, respectively. Accordingly, we introduce connection fingerprint

(CFP) re-identification attacks, as stated in Definition 4. This kind of attacks is

initiated by attackers who are aware of the connection fingerprint of a target user.

Definition 2 (nth-Hop Connection Fingerprint) The nth-hop connection finger-

print CFPn(vj) of a private vertex vj in a social network G(V,E) consists of the

group of public vertices whose hop distances to vj are exactly n, i.e., CFPn(vj) =

{ID(vi)|vi ∈ V ∗
pub ∧ h(vi, vj) = n}.

Definition 3 (n-Range Connection Fingerprint) The n-range connection finger-

print of a private vertex vj , denoted by CFP (vj, n), is formed by vj 's xth-hop con-

nection fingerprints, where 1 ≤ x ≤ n, i.e., CFP (vj, n) = ∪x∈[1,n]{CFPx(vj)}.

We consider then-rangeCFPs of two vertices vi and vj to be the same (i.e.,CFP (vi, n) =

CFP (vj, n)) iff ∀x ∈ [1, n], CFPx(vi) = CFPx(vj).

Take the social network in Figure 4.1 as an example. The 1st-hop CFP and 2nd-

hop CFP of vertex v4 are {BBC} and {Youtube, Obama} respectively, and v4's 2-

range connection fingerprint CFP (v4, 2)= {{BBC}, {Youtube, Obama}}.
2In an unweighted graph, h(vi, vj) equals the shortest path distance between vi and vj .
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Definition 4 (n-Range Connec. Fingerprint Re-identification) Given a social net-

work G(V,E), its released version G∗(V ∗, E∗), and a target entity vj ∈ V − V ∗
pub

with n-range connection fingerprint CFP (vj, n), let the group of the private ver-

tices in G∗ sharing the same n-range connection fingerprint as vj be vj 's candi-

dates, denoted by VCFP (vj ,n), i.e., VCFP (vj ,n) = {v ∈ V ∗ − V ∗
pub |CFP (v, n) =

CFP (vj, n)}. If |VCFP (vj ,n)| ≪ |V ∗ − V ∗
pub|, vj has high probability to be re-

identified.

We adopt the k-anonymity notion as formally stated in Definition 5, to prevent n-

range CFP attacks. Given a k-anonymized network, assume that an attacker knows

there is a target private user u in the social network having the connection fingerprint

CFP (u, n). She performs the re-identification attack and finds a group of x can-

didate vertices having the same n-range CFP as u. According to the k-anonymity

notion, x ≥ k. Without further information, the attacker cannot differentiate these

x vertices, and the probability for her to identify u among these x vertices is 1
x
≤ 1

k
.

Therefore, the k-anonymity notion prevents re-identification attacks by providing an

upper bound (i.e., 1
k
) for re-identification probability. The larger the k, the smaller

the upper bound, and hence the lower the risk of identity disclosure.

Definition 5 (K-Anonymity) A released social network G∗(V ∗, E∗) satisfies k-

anonymity with respect to n-range connection fingerprint information, iff for each

private vertex vj ∈ V ∗ − V ∗
pub, there are at least k − 1 other private vertices

v′ ∈ V ∗ − V ∗
pub − {vj} with CFP (v′, n) = CFP (v, n).

Our objective is to design an algorithm to efficiently convert a social network

so that it achieves k-anonymity against n-range CFP re-identification attacks. The

algorithm should make as few changes to the social network as possible to preserve

the utility of the network so that the anonymized network can be used for research.

57



Table 4.1: Properties of networks

Datasets polblogs facebook grqc route-view
|V | 1222 4039 4158 6474
|E| 16714 88234 13422 12572

Density 0.0224 0.0108 0.0015 0.0006
Diameter 8 8 17 9

Avg. clustering coef. 0.226 0.519 0.629 0.009

4.3 Privacy Risk Analysis

In this section, we use experiments to evaluate the vulnerability of social networks

under n-range CFP re-identification attacks. We perform the evaluation on four

real-world networks described as follows.

The polblogs network was crawled from the US political blogosphere in 2005.

The vertices are blogs of a set of US politicians, and an edge between two blogs rep-

resents there is a hyperlink from one blog to the other [1]. The facebook network

was collected from the survey participants using a Facebook app. The vertices are

Facebook users, and an edge between two users represents the established friend-

ship between them [65]. The grqc network is a collaboration network collected from

e-print arXiv. It covers scientific collaborations between the authors of the papers

submitted to the General Relativity and Quantum Cosmology category. The vertices

are authors, and the edges represent coauthorship [56]. Route-view is a network of

autonomous systems of the Internet connected with each other. The vertices are

autonomous systems, and the edges denote communication [56]. All the networks

are represented by undirected and unweighted graphs with no isolated vertices. Ta-

ble 4.1 presents some basic statistics of the networks.

The four real-world networks do not contain public user identities. In other

words, all the vertices in the networks are anonymous. In order to evaluate the

risk of CFP attacks, we select a set of vertices in each network and assume that their

identities are public. Then, based on these public vertices, we generate the CFPs of

the remaining private vertices and evaluate how many private vertices can poten-

tially be re-identified via the CFP information. We adopt three different strategies
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to select public vertices.

The degree based strategy, referred to asDegree, chooses the vertices with the

highest numbers of adjacent edges (i.e., degree) as public vertices. This is based on

the assumption that public users in a social network such as celebrities and news me-

dia users normally have much larger degree compared with ordinary users because

of their popularity.

The degree probability strategy, referred to asDegreep, also picks public ver-

tices based on degree information. The probability that it picks a vertex is propor-

tional to the vertex's degree. In this way, it does not only pick vertices with the

highest degree values, but also some vertices with lower degree.

The random strategy, referred to as Random, simply chooses public vertices

uniformly randomly from a network.

Based on the public vertex set of a network, we calculate the n-range CFPs

of the private vertices and then evaluate the risk of the private vertices under re-

identification attacks. We group the private vertices based on their n-range CFPs.

The private vertices with the same n-range CFP are grouped together as an equiva-

lent group, denoted asEG. An attacker cannot differentiate the vertices in an equiv-

alent group based only on CFPs. Therefore, given a vertex in an equivalent group

EGi, the probability that an attacker can re-identify it is at most 1/|EGi|, referred

to as its maximum re-identification probability. Given a privacy parameter k, k-

anonymity requires that the maximum re-identification probability of every private

vertex should be no larger than 1/k. The vertices with maximum re-identification

probability larger than 1/k are considered to be potentially at risk of re-identification

attacks. We calculate the percentage of private vertices in each network which are

potentially at risk of CFP attacks based on varying proportions of public vertices

selected, denoted as p, hop numbers n, and privacy thresholds k.

Figure 4.3 shows the percentage of vulnerable private vertices in each network

with varying proportions of public vertices p. We observe from the figure that gener-

ally the percentage of vulnerable vertices increases significantly with the proportion
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Figure 4.3: Percentage of vulnerable vertices in each social network varying with
proportion of public vertices (k = 5, h = 2).

of public vertices. It means that the more the public users in a network, the more

vulnerable the network is to CFP attacks. Moreover, we observe from the figure

that theDegree strategy causes the most number of vulnerable private vertices, fol-

lowed by the Degreep strategy. Randomly chosen public vertices have a relatively

low impact on re-identifying private vertices. Therefore, the public vertices with the

highest degree values threaten the identity privacy of private users the most. Across

the four networks evaluated, we find there are considerable portions of private ver-

tices that are vulnerable to CFP attacks. For example, with a moderate proportion

of public vertices (e.g., 0.01) chosen based on theDegree strategy, there are around

70% of the private vertices that may be at risk of CFP attacks in the polblogs net-

work, and this percentage is between 10% and 40% in the other three networks. If

the proportion of public vertices increases to 0.05, the percentage of vulnerable ver-

tices rises to more than 90% in the polblogs network and to around 50% in the other

three networks 3.
3The differences of the vulnerable vertex percentages in the polblogs network and the other three

networks are caused by different network density. The other three networks are sparser than the
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vertices increases with hop number in
the polblogs network (p = 0.01, k =
5).
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Figure 4.5: Percentage of vulnera-
ble vertices increases with privacy
threshold in the polblogs network
(p = 0.01, n = 2).

In Figure 4.4 and Figure 4.5, we fix the proportion of public vertices at 0.01, and

show how the percentage of potentially risky vertices changes with the hop number

n and privacy threshold k increasing, respectively. We only present the results on the

polblogs network, and the results on the other three networks have similar trends.

It is not surprising that the larger the hop number n or the threshold k, the more

vertices are vulnerable to re-identification attacks. When the hop number n is larger

than 1, the percentage of vulnerable vertices increases greatly.

To sumup, in this section, we verify the practicability of CFP-based re-identification

attacks. The results on real-world networks demonstrate that the re-identification

risk is real and could be very serious sometimes.

4.4 DummyVertexAddition basedAnonymization for

n-Range CFP Attacks

In this section, we design a k-anonymization algorithm to protect a social network

against n-range CFP attacks based on adding dummy vertices. The main idea, al-

though simple, is effective. It first groups the private vertices in a social network

G into equivalent groups such that vertices in the same group have the same n-

range CFP. Then, for every equivalent groupEGi with less than k vertices, it inserts

polblogs network. They may contain a large set of private vertices that do not connect to any public
vertices thus are not vulnerable to CFP attacks.
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Algorithm 1: K-anonymity algorithm for n-range CFP attacks.
Input: A social network G(V,E), privacy parameter k, hop parameter n
Output: A k-anonymized social network G∗(V ∗, E∗)
G∗(V ∗, E∗) = G(V,E);1

∀v ∈ V ∗ − V ∗
pub, calculate CFP (v, n);2

Group vertices in V ∗ − V ∗
pub into equivalent groups EGs;3

foreach EGi do4

if |EGi| < k then5

Insert k − |EGi|+ δ (δ > 0) dummy vertices into EGi;6

foreach dummy vertex vd inserted do7

Pick a non-dummy vertex vi randomly in EGi;8

For every e(vi, vj) ∈ E∗, insert e(vd, vj) to E∗;9

foreach e(vd, vj) inserted, vj is a private vertex do10

Find the equivalent group EGj containing vj ;11

Randomly pick a vertex vt ∈ EGj ;12

Remove e(vd, vj), and insert e(vd, vt);13

return G∗;14

k − |EGi|+ δ dummy vertices and connects each dummy vertex carefully with the

vertices in G so that it has the same n-range CFP as other vertices in EGi. Here, δ

is a very small positive integer 4. In this way, all the equivalent groups contain at

least k vertices and hence the social network satisfies k-anonymity.

Algorithm 1 provides the pseudo-code of the k-anonymization algorithm for n-

range CFP attacks. In the algorithm, an important step is to insert a dummy vertex

vd into the social network (line 7-13). To achieve k-anonymity, we must make sure

that vd has the same n-range CFP as other vertices in the same equivalent group

EGi, and the n-range CFPs of other private vertices in the social network are not

affected. In order to achieve this, for a dummy vertex vd to be inserted into an

equivalent group EGi, we first pick a real vertex vi from EGi and then copy all

the edges of vi to vd (line 8-9). In other words, vd becomes an exact duplicate of

vi since it connects to exactly the same set of neighbor vertices as vi. Obviously,

CFP (vd, n) = CFP (vi, n), and the n-range CFPs of all the other vertices remain

unchanged. This clearly satisfies our requirements for inserting dummy vertices

into a social network. However, the existence of the dummy vertex may be easily

recognized because it connects to exactly the same set of neighbors as another vertex.
4We choose δ randomly in the range [0, k).
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To make the dummy vertex less recognizable, for each inserted edge e(vd, vj)where

vj is a private vertex, we randomly perform an edge switching operation. To be

more specific, we replace e(vd, vj) with an edge e(vd, vt) with vj and vt in the same

equivalent group. As stated in Lemma 1, this edge switching operation does not

change the n-range CFPs of any private vertices including vd.

vx

vi vj

vd vt

hh′

(a) Before switch.

vx

vi vj

vd vt

hh′

(b) After switch.

Figure 4.6: vi and vd are in the same equivalent group having the same n-range CFP.
Switching edge e(vd, vj) to edge e(vd, vt)where vj and vt are in the same equivalent
group does not change the n-range CFPs of any vertices.

Lemma 1 Assume a dummy vertex vd is a duplicate of a real vertex vi of an equiv-

alent group EQa, with both connecting to a vertex vj in an equivalent group EQb.

If we replace an edge e(vd, vj) with an edge e(vd, vt), where vt ∈ EQb, none of the

private vertices' n-range CFPs will be changed.

Proof 1 As shown in Figure 4.6, we assume vertex vi is in an equivalent groupEQa,

and vertices vj and vt are in an equivalent group EQb
5. The equivalent groups

are signified by dotted circles. After we insert a dummy vertex vd into EQa as a

duplicate of vi, both vi and vd are connected to vj but not vt (see Figure 4.6a). At

this moment, vi and vd have the same n-range CFP, and vj and vt have the same

n-range CFP. Then we perform an edge switch by replacing the edge e(vd, vj) with

the edge e(vd, vt) (see Figure 4.6b). We first prove that the n-range CFPs of vj

and vt are not changed by this edge switching operation. We perform the proof by

contradiction.
5EQa and EQb can be the same equivalent group. It does not affect the proof and conclusion.
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Without loss of generality, we assume the xth-hop CFPs (x ∈ [1, n]) of vj and/or

vt are changed. To be more specific, we assume there is a public vertex vx which is in

the xth-hop CFPs of vj and vt before the edge switch, i.e., h(vx, vj) = h(vx, vt) = x.

We assume the hop distances from vi and vd to vx are h and h′ respectively, as shown

in the figure. According to the definition of hop distance (i.e., shortest path distance),

x ≤ 1 + h and x ≤ 1 + h′. After the edge switch, we assume the hop distances

from vj and/or vt to vx are changed. The edge switch has two steps i.e., deleting

e(vd, vj) and adding e(vd, vt). In the following, we prove both steps will not change

the hop distances from vj and vt to vx. Deleting e(vd, vj) removes a path from vj

to vx via vd with a length of 1 + h′. It changes the hop distance from vj to vx only

if x = 1 + h′ < 1 + h when the original shortest path from vj to vx crosses vd.

Therefore, we have h′ < h which is not valid. This is because vi and vd are in the

same equivalent group EQa and h′ = x − 1 < n, therefore, vx ∈ CFPh′(vd) and

hence vx ∈ CFPh′(vi). In other words, h′ = h. Therefore, we know that the hop

distance from vj to vx is not changed. Then, adding e(vd, vt) creates a new path

from vt to vx via vd with a length of 1+h′. It changes the hop distance from vt to vx

only if x > 1 + h′ when the original shortest path from vt to vx is replaced by this

path. Then this contradicts the previous statement that x ≤ 1 + h′. Therefore, the

hop distance from vt to vx is not changed as well. Since the hop distances from vj

and vt to the public vertices within n range do not change, the n-range CFPs of vj

and vt do not change.

As the n-range CFPs of vj and vt remain the same after the edge switch, the

n-range CFP of vd dose not change. This is because any public vertex that vd can

reach within n-hop via vj before the switch can be reached by vd via vt by exactly

the same number of hops after the switch. Therefore, the n-range CFP of vd remains

the same. Since the n-range CFPs (i.e., the hop distances to public vertices) of the

vertices which are directly affected by the edge switching operation (i.e., vd, vj , and

vt) are not changed, the n-range CFPs of the other vertices in the network will not

change as well. Our proof completes.
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4.5 EdgeModification basedAnonymization for 1-Range

CFP Attacks

In Section 4.4, we proposed a k-anonymization algorithm based on adding dummy

vertices to effectively protect a social network against n-range CFP attacks (n ≥

1). However, adding many dummy vertices to a social network may greatly af-

fect the utility of the network. Therefore, in this section, we propose another k-

anonymization algorithm purely based on modifying edges, which makes less dam-

age to network utility. However, this algorithm is only applicable to resisting 1-

range CFP attacks, and it is hard to be extended to prevent n-range CFP attacks

when n > 1.

In order to convert a social network to achieve k-anonymity by edge modifica-

tions only, we need to group the private vertices into groups of size at least k. For

private vertices in the same group, we modify their edges so that they connect to

the same set of public vertices (i.e., their 1st-hop CFPs are identical). To facilitate

the comparison of their 1st-hop CFPs, we use a standard binary vector to represent

CFP1(v) for every private vertex v. Each bit in the binary vector corresponds to a

public vertex vpub in G. If vpub presents in CFP1(v), the bit is on (i.e., set to one);

otherwise the bit is off (i.e., set to zero). Take the social network depicted in Fig-

ure 4.1 as an example. Since there are 3 public vertices, a 3-bit vector is employed

with the bits corresponding to v1, v2, and v3 respectively. Then, vector 100 repre-

sents CFP1(v4) as v4 only connects to BBC (i.e., v1), and vector 010 represents

CFP1(v5) as v5 only connects to Y outube (i.e., v2).

In order to preserve the utility of the network, we prefer to modify only a small

number of edges. Therefore, the groups should be formed carefully. Then, given a

group of private vertices, their 1st-hop CFPs in the form of binary vectors should

be changed to the median center defined by Hamming distance 6. For each vertex

v in the group, the Hamming distance between the binary vertex corresponding to
6The median center of a set of binary vectors is itself a binary vector which has the same inter-

pretation as the individuals.
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Algorithm 2: Greedy clustering algorithm for 1-range CFP attacks.
Input: A social network G(V,E), privacy parameter k
Output: A clustering of the private vertices CG
CG = ∅;1

Vnc = {vi|vi ∈ V − Vpub};2

∀v ∈ V − Vpub, calculate CFP1(v);3

foreach vi ∈ Vnc do4

Cvi = vi ∪NeareastNeighbor(vi, Vnc, k − 1);5

while Ctemp = {Cvi |Cvi ⊆ Vnc} ̸= ∅ do6

Find Cvi = argmin
Cvi∈Ctemp

cost(Cvi);
7

CG = add(Cvi , CG);8

Vnc = Vnc − Cvi ;9

while |Vnc| ≥ k do10

Pick a vertex vj ∈ Vnc randomly;11

Cvj = vj ∪NeareastNeighbor(vj , Vnc, k − 1);12

Cnew
G = assign(Cvj , CG);13

if cost(Cvj ) < (cost(Cnew
G )− cost(CG)) then14

CG = add(Cvj , CG);15

else16

CG = Cnew
G ;17

Vnc = Vnc − Cvj ;18

if Vnc is not empty then19

CG = assign(Vnc, CG);20

return CG;21

CFP1(v) and the median center reflects the number of edges of v that need to be

modified. We then introduce the anonymization cost of a group as the total number

of edges that need to be changed, considering all the vertices in the group. Based on

this new measure, the 1-range CFP k-anonymizaiton problem can be reformed as a

cost minimization clustering problem, formally presented in Definition 6.

Definition 6 (1-range CFP k-anonymizaiton problem) Given a social networkG

and 1-range CFPs of all the private vertices, the 1-range CFP k-anonymizaiton

problem is to cluster the private vertices to non-overlapping groups of size at least

k and minimize the sum of the anonymization cost of every group.

Wepropose a greedy clustering algorithm to solve the 1-rangeCFP k-anonymization

problem. The main strategy is to cluster each private vertex with at least k− 1 other

private vertices having similar 1-range CFPs to reduce group anonymization cost.
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Algorithm 3: Algorithm for assigning vertices to existing clusters assign(C, CG).
Input: A group of vertices C that need to be assigned, the existing cluster set CG
Output: A new cluster set CG
foreach vertex v ∈ C do1

Find the cluster Ci ∈ CG nearest to v;2

Ci = add(v, Ci);3

if |Ci| ≥ 2k then4

// split the cluster to two clusters
Find two vertices vl, vt ∈ Ci which have the largest distance among all pairs5

of vertices in Ci;
C0
i = {vl}, C1

i = {vt};6

Ci = Ci − {vl, vt};7

while Ci is not empty do8

Find a vertex vx which is the nearest to vl;9

C0
i = add(vx, C

0
i );10

Ci = Ci − {vx};11

if Ci is not empty then12

Find a vertex vy which is the nearest to vt;13

C1
i = add(vy, C

1
i );14

Ci = Ci − {vy};15

Remove Ci from CG;16

CG = add({C0
i , C

1
i }, CG)17

return CG;18

Note, with the binary vector representation, we employ Hamming distance to quan-

tify the similarity of two 1-range CFPs. Then, we can adopt existing k nearest neigh-

bor search algorithms for the clustering process. The clustering process is sketched

in Algorithm 2.

The algorithm takes a social networkG and a privacy parameter k as inputs, and

it partitions all the private vertices of G into disjoint clusters such that the size of

every cluster is no less than k, and vertices in the same cluster have identical 1-range

CFPs. In the algorithm, we first define a set CG to store resulting clusters, which is

initialized to an empty set (line 1). Then, we form a vertex set Vnc containing all

the private vertices that have not yet been assigned to a cluster (line 2). For each

unassigned vertex vi ∈ Vnc, we search for its k − 1 nearest neighbors based on

Hamming distance corresponding to 1st-hop CFP vectors. vi and its k − 1 nearest

neighbors form a group of size k (i.e., Cvi) (line 4-5). Among all the |Vnc| nearest

neighbor groups, we choose the group with the lowest anonymization cost and at
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the same time, not overlapping with any existing clusters in CG to form a cluster,

and remove the vertices in the chosen nearest neighbor group from Vnc. The process

repeats until none of the remaining nearest neighbor groups satisfies the conditions

(lines 6-9).

Because we purposely only convert a nearest neighbor group to a cluster if it does

not overlap with any existing clusters, it is very likely there are still some vertices

in Vnc not yet assigned to any clusters. Two options are available to further process

these unassigned vertices. We can either construct new clusters for those unassigned

vertices or assign them to existing clusters. We decide which option to execute based

on the anonymization cost that they cause. In other words, we always execute the one

with lower anonymization cost (lines 10-18). To be more specific, for an unassigned

vertex, we reform the nearest neighbor group by searching for its k − 1 nearest

neighbors in Vnc (line 12). We can form a new cluster with this nearest neighbor

group. Alternatively, we can assign the vertices in this group to the existing clusters

in CG via the function assign(C, CG), whose details will be given later (line 13).

To decide which option to execute, we compare the anonymization cost incurred by

adding a new cluster with the total anonymization cost incurred by assigning these

vertices to existing clusters (line 14), and we execute the one with lower cost (lines

15-17). We repeat the above process until the number of the remaining vertices

in Vnc is smaller than k. As cluster size must be no smaller than k, the remaining

vertices cannot form a new cluster, thus we assign them to existing clusters (line 20).

As mentioned before, the function assign(C, CG) is to assign a group of ver-

tices C to the existing clusters in CG, and Algorithm 3 provides the details. For each

vertex v in C, we assign it to its nearest cluster (lines 2-3). Here, the distance be-

tween a vertex v and a cluster Ci is measured by the Hamming distance between

the binary vector corresponding to CFP1(v) and the binary vector representing the

median center of Ci. As assign(C, CG) keeps adding vertices to existing clusters,

the size of clusters increases. In order to prevent a cluster from being over-sized, we

propose a cluster splitting operation. To be more specific, when the size of a cluster
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Ci ∈ CG reaches 2k or larger, Ci is split into two new clusters to cut down overall

anonymization cost. As stated in Lemma 2, the total anonymization cost of the two

new clusters will always be lower than that of the original cluster no matter how we

split the cluster. However, to gain a large reduction in anonymization cost, we adopt

a greedy splitting process to make sure that vertices in the same new cluster have

similar 1st-hop CFPs, and the distance between the two new clusters is large (lines

5-17).

In the following, we detail the cluster splitting process. Firstly, we locate a pair

of vertices vl and vt among all pairs of vertices in Ci with the maximum Hamming

distance and then form two new clusters C0
i and C1

i around vl and vt respectively

(lines 5-6). In order to meet the cluster size requirement, we split the rest of the

vertices in Ci evenly between C0
i and C1

i so that each of the new clusters will have

size no smaller than k. We locate the nearest vertex to vl or vt in an alternate fashion

until all the remaining vertices in Ci are assigned (lines 8-17).

Lemma 2 Given a group of binary vectors C, let C0 and C1 be two subgroups such

thatC0∪C1 = C andC0∩C1 = ∅. Suppose vectors c, c0, and c1 signify the median

centers of C, C0, and C1 respectively,
∑

v∈C0 dist(v, c0) +
∑

v∈C1 dist(v, c1) ≤∑
v∈C dist(v, c), where dist() calculates Hamming distance.

Proof 2 The proof of this lemma is very simple. According to its definition, the me-

dian center of a group of vectors is the vector to which the sum of the distance

from every member in the group is minimized. Therefore,
∑

v∈C0 dist(v, c0) ≤∑
v∈C0 dist(v, c) and

∑
v∈C1 dist(v, c1) ≤

∑
v∈C1 dist(v, c). Because C0 ∪ C1 =

C, we have
∑

v∈C0 dist(v, c0) +
∑

v∈C1 dist(v, c1) ≤
∑

v∈C dist(v, c).

4.6 Experimental Evaluation

In this section, we conduct comprehensive experiments to evaluate the performance

of the proposed k-anonymizaiton algorithms and report the results. We use four
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real-world networks in the experiments including polblogs, facebook, grqc, and

route-view, which were introduced in Section 4.3.

We evaluate the performance of the algorithms based on utility and time effi-

ciency. We use centrality, a class of important network metrics, to evaluate the

utility of the k-anonymized networks generated by the algorithms. The centrality of

a vertex measures its relative importance in a network. Many network applications

are developed based on centrality metrics, such as user influence analysis, informa-

tion diffusion, and network robustness analysis. In this work, we evaluate four basic

centrality metrics [95] listed as follows.

• The degree centrality (DGE) of a vertex v is defined as the number of edges

adjacent to v.

• The closeness centrality (CLS) of a vertex v is defined as the inverse of the

sum of its shortest path distances to all the other vertices, i.e., |V |−1∑
∀vi ̸=v∈V h(v,vi)

.

• Betweenness centrality (BTW) quantifies the number of times a vertex acts

as a bridge along the shortest path between two other vertices.

• PageRank centrality (PRK)measures the influence of a vertex in a network.

It assigns relative scores to all the vertices in the network. The score of a

vertex is defined recursively and depends on the number and scores of all the

vertices it connects to. A vertex that connects to many high-score vertices

receives a high score itself.

Given a network G and an anonymized network G∗ generated based on G, we

evaluate the utility of G∗ based on the similarity of the centrality scores of vertices

in G∗ and G. Given a centrality function referred to as cscore() and a set of ver-

tices Ve that we would like to evaluate, we calculate the centrality scores of every

vertex v ∈ Ve in G and G∗, signified by cscore(v,G) and cscore(v,G∗) respec-

tively. Then, we employ two metrics to evaluate the similarity of the centrality

scores, i.e., the utility of G∗. The first is the average change ratio of centrality

(i.e., Avgv∈Ve

|cscore(v,G∗)−cscore(v,G)|
cscore(v,G)

). A small average change ratio indicates that
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the centralities of the vertices are similar in G and G∗. The second is Spearman's

rank correlation coefficient (SRCC) [71]. To calculate this value, we rank the ver-

tices in descending order of their centrality scores in G and G∗ respectively. SRCC

is then calculated by
∑

v∈Ve
(rGv −rG)(rG

∗
v −rG

∗
)√∑

v∈Ve
(rGv −rG)2

√∑
v∈G (rG∗

v −rG∗ )2
, where rGv and rG

∗
v are the

ranks of a vertex v in G and G∗ respectively, and rG and rG∗ are the mean values

of the ranks of all the evaluated vertices in G and G∗ respectively. It evaluates the

linear dependency of the centrality rankings of the same set of vertices inG andG∗.

Its value is in the range of [−1, 1]. The value is close to 1 if the rankings of the

vertices in G and G∗ are strongly correlated, the value is close to 0 when the rank-

ings are uncorrelated, and the value is close to −1 when the rankings are inversely

correlated.

The experiments are performed on the datasets where public users are selected

based on vertex degree (i.e., the degree based strategy in Section 4.3). According

to the risk analysis, public users with the highest degree values cause the highest

privacy risk. Accordingly, to achieve anonymity, we expect more modifications to

networks, which result in larger utility loss. We evaluate the utility performance of

our algorithms in this worst-case scenario.

In the following, we first evaluate the n-range CFP anonymization algorithm

presented in Section 4.4 and then the 1-range CFP anonymization algorithm pre-

sented in Section 4.5. Note these two algorithms are designed based on different

principles, so we evaluate them separately. In addition, the 1-range CFP anonymi-

zation algorithm is less flexible than the n-range CFP anonymization algorithm as

it is designed to only support 1-range CFP anonymization and not extendable for

n-range CFP anonymization. However, it is more effective for preserving network

utility compared with the general n-range CFP anonymization algorithm. It actually

is able to preserve other important types of network utility in addition to centrality.

We further demonstrate its capability of preserving other types of network utility

with a new set of experiments, to be presented in Section 4.6.3.
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Figure 4.7: Average change ratio of every centrality property changes with propor-
tion of public vertices (k = 5, n = 2).

4.6.1 Evaluating n-Range CFP Anonymization Algorithm

In this section, we evaluate the general n-range CFP anonymization algorithm. Be-

cause this algorithm anonymizes a network by adding dummy vertices which cannot

be differentiated from the real private vertices in the anonymized network, we cannot

effectively align the private vertices of the original network with those of the anony-

mized network and evaluate their centrality changes. In addition, it is expected that

the algorithm will change many general network properties (e.g., diameter and den-

sity). However, we use experiments to show that the algorithm can preserve the

centrality of public users 7.

Figure 4.7 and Figure 4.8 present the average change ratio and SRCC changes of

the four centrality metrics with the proportion of public users p increasing, respec-

tively. In the experiments, we set the privacy threshold k at 5 and the hop number

n at 2. Generally, from these two figures, we observe that the utility of the anony-

mized networks degrades (i.e., the average change ratio increases, and the SRCC
7To make centrality scores comparable between two networks with different numbers of vertices,

we use normalized centrality scores.
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Figure 4.8: Spearsman's rank correlation coefficient of every centrality property
changes with proportion of public vertices (k = 5, n = 2).

decreases) as p increases. It is consistent with our intuition that the more users'

identities are released as public, the more privacy risk they cause, thus, the more

utility is sacrificed to protect privacy. We further observe that for the polblogs net-

work, the average change ratios are small under all the settings (i.e., less than 25%).

Therefore, the algorithm is able to preserve the centrality of the public vertices well

in this network. On the other hand, we find that for some networks (e.g., facebook

and grqc), the average change ratios of some centrality metrics (e.g., DEG, BTW,

and PRK) are small only when p is small (e.g., p ≤ 0.01). The reason that the algo-

rithm performs differently on preserving centrality on different networks is because

these networks have different structures. However, the more specific relationships

are yet to be discovered. Although our algorithm may cause large changes on the

raw centrality scores sometimes, the SRCC values always remain close to 1 (see Fig-

ure 4.8). It demonstrates that our algorithm can preserve the ranks of public vertices

based on centrality very well, which is useful for many applications, e.g., finding the

most influential public users in social networks to initiate information propagation.

73



 0

 0.2

 0.4

 0.6

 0.8

 1

2 3 4 5 10 15 20

C
ha

ng
e 

ra
tio

Privacy threshold (k)

DGE
CLS
BTW
PRK

(a) Average change ratio

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

2 3 4 5 10 15 20

S
R

C
C

Privacy threshold (k)

DGE
CLS
BTW
PRK

(b) SRCC

Figure 4.9: Utility degrades as privacy threshold k increases on the polblogs network
(p = 0.01, n = 2).

 0

 0.2

 0.4

 0.6

 0.8

 1

 1  2  3  4  5

C
ha

ng
e 

ra
tio

Hop (n)

DGE
CLS
BTW
PRK

(a) Average change ratio

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1  2  3  4  5

S
R

C
C

Hop (n)

DGE
CLS
BTW
PRK

(b) SRCC

Figure 4.10: Utility degrades as hop number n increases on the polblogs network
(p = 0.01, k = 5).

Figure 4.9 and Figure 4.10 show the utility of anonymized networks changes

with the privacy threshold k and hop number n increasing, respectively. We only

show the results on the polblogs network since the results on the other networks have

similar trends. Unsurprisingly, we find that utility degrades as k andn increase. With

a relatively large k or n value (e.g., k = 10 or n = 3), our algorithmmay cause large

changes on some centrality scores (e.g., BTW and PRK). However, it preserves the

centrality ranks of public vertices well as we find that the SRCC values are close to

1.

In addition to utility, we also evaluate the time performance of the n-range CFP

anonymization algorithm 8. Figure 5.21 reports the running time of this algorithm

with increasing p, k, and n. We find that the running time increases slightly with

p and k, and the algorithm is very efficient as the running time does not exceed 5
8We run the experiments on a server with 3.07GHz CPU and 128G RAM running a 64-bit win-

dows OS.
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Figure 4.11: Time performance of the n-range CFP anonymization algorithm.

seconds on all the four tested networks even with large p and k (n = 2). We also

find that the running time is much more sensitive to the change of the hop number

n. When n is larger than 3, the running time increases rapidly. This is caused by

the expensive cost of calculating the n-range CFP of every private vertex, which is

based on breath-first network traversal. However, we think it is very hard for an

attacker to learn the CFPs of target users beyond 3 hops in real-life situations. In

addition, we find that the running time on the facebook and route-view networks

is significantly longer than that on the other two networks. It is because facebook

and route-view have the largest number of vertices and the highest edge density

respectively.

To sum up, we use extensive experiments to evaluate the performance of the n-

range CFP anonymizaion algorithm. We find that this algorithm runs very efficiently

on different networks. It causes small changes to the raw centrality scores of public

vertices when p, k, and n values are small, and it can preserve the ranks of public

vertices based on centrality very well.

4.6.2 Evaluating 1-Range CFP Anonymization Algorithm

In the second set of experiments, we evaluate the special 1-range CFP anonymiation

algorithm. Because this algorithm is implemented based on edge modifications and

does not add dummy vertices to networks, we can easily align the private vertices in

an original network with those in the corresponding anonymized network and eval-

uate the utility (e.g., centrality) of the anonymized network based on all vertices but
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Figure 4.12: Average change ratio of every centrality property changes with propor-
tion of public vertices (k = 5).

not only public vertices. We evaluate the utility of an anonymized network based

on the four centrality metrics mentioned earlier. For each centrality metric, we cal-

culate the average change ratio and SRCC based on all vertices in a network but not

only public vertices.

Figure 4.12 and Figure 4.13 present the average change ratio and SRCC changes

of the four centrality metrics with the proportion of public users p increasing, respec-

tively. In the experiments, we set the privacy threshold k at 5, and the hop number n

is always 1. From Figure 4.12, we observe that our algorithm is able to preserve the

DEG and PRK centrality scores well. The average change ratios of these two cen-

tralitymetrics are always smaller than 22%on all the four tested networks. However,

for the CLS and BTW centrality, we find the average change ratios become very

large when p exceeds 0.005. This is mainly caused by a small number of outlier ver-

tices which are previously at the boundary of a network with very small centrality.

After the anonymization, they are moved to more "central" positions in the network

with large centrality. These changes incur a few extremely large centrality change
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(c) BTW
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Figure 4.13: Spearsman's rank correlation coefficient of every centrality property
changes with proportion of public vertices (k = 5).

ratios, which are responsible for the very large average change ratios. Despite the

large average change ratios, we find the SRCC values are always close to 1 for all

the four evaluated centrality metrics as shown in Figure 4.13. It demonstrates that

our algorithm can well preserve the centrality ranks of vertices.

Figure 4.14 reports the utility performance of the 1-range CFP anonymization

algorithm changes with the privacy threshold k. We only show the results on the

polblogs network but ignore the results on the other networks as they are very sim-

ilar. We find in the figure that the average change ratios increase as k increases.

They grow noticeably large when k exceeds a large value (e.g., 10), but the SRCC

values remain almost 1 for all the tested centrality metrics.

We also evaluate the time cost of the 1-range CFP anonymiation algorithm and

show the results in Figure 4.15. As observed from Figure 4.15a, the time cost of

the algorithm slightly increases as p increases. It is because the algorithm greatly

relies on the NN search of vertices based on 1st-hop CFPs. The number of public

vertices affects the length of the 1st-hop CFP vector, and a long 1st-hop CFP vec-
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Figure 4.14: Utility degrades as privacy threshold k increases on the polblogs net-
work (p = 0.01).
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(a) Running time V.S. p (k = 5)
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(b) Running time V.S. k (p = 0.01)

Figure 4.15: Time performance of the 1-range CFP anonymization algorithm.

tor results in long time for calculating the distance between two vectors in the NN

search. However, there are no obvious relationships between time cost and the pri-

vacy threshold k based on the results shown in Figure 4.15b. Moreover, we find that

running time is also affected by the number of vertices in a network, which directly

affects the running time of the NN search. In the experiments, the route-view net-

work takes the longest running time, which is still less than 12 seconds under all the

tested parameter settings.

4.6.3 Utility performance on other network properties

The previous experiments evaluate the utility performance of the proposed algo-

rithms based on centrality. In this section, we demonstrate that the 1-range CFP

anonymization algorithm is not only able to preserve centrality utility but also some

other important types of network utility such as community structure and shortest

paths.
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(b) NMI

Figure 4.16: Community structure utility performance (k = 5).

We evaluate community structure utility by running a community detection al-

gorithm on an anonymized network and the corresponding original network respec-

tively and compare the generated communities. We use Clauset and Newman's clas-

sic greedy community detection algorithm for large social networks [22] to generate

communities and use two standard metrics, namely Rand index (Rand) and normal-

ized mutual information (NMI) [30], to compare the communities generated on an

anonymized network with those of the corresponding original network. The Rand

index is the ratio of the number of vertex pairs correctly clustered in both community

partitions (i.e., either in the same or in different communities) to the total number

of pairs. It has a value between 0 and 1, with 0 indicating that the two community

partitions do not agree on any pair of vertices and 1 indicating that the partitions are

exactly the same. Normalized mutual information is an information theory-based

metric. It evaluates how much extra information one needs to infer one partition

given the other. It equals 1 if the partitions are identical, whereas it has an expected

value of 0 if the partitions are independent.

Figure 4.16 reports the results on the four tested networks with increasing p.

As we can see in Figure 4.16a, the Rand index values are always very high (i.e.,

close to 1). However, the high Rand index values can be caused by the agreement

of community partitions on the pairs of vertices which are not partitioned in the

same community when there are many communities detected. Therefore, we further

calculate the NMI metric and report the results in Figure 4.16b. We observe that, on

the polblogs and facebook networks, the NMI values are high for every p setting,
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(b) Pairwise shortest path distance

Figure 4.17: Shortest path utility performance (k = 5).

while on the other two networks, the NMI values are low when p is larger than

0.01. Therefore, the 1-range CFP algorithm is able to preserve network community

structure when p is small (e.g., 1%).

We also evaluate shortest path utility. We calculate the all pair shortest paths of

an anonymized network and the corresponding original network, and compare the

shortest path lengths of the two networks. We evaluate the change ratio of network

diameter, which is the length of the longest shortest path in a network, and the aver-

age change ratio of the shortest path lengths between all pairs of vertices. Figure 4.17

shows the results. We find that on the four tested networks, both the change ratio

of diameter and the average change ratio of all-pair shortest path lengths are low.

It means that the 1-range CFP anonymization algorithm is able to preserve network

shortest path length information.

To sum up, in this section, we evaluate the anonymization algorithm proposed

specially for 1-range CFP attacks. We find that with small p and k settings, this edge

modification-based algorithm is able to preserve many different types of network

utility, such as centrality, community, and shortest path lengths, of all vertices in a

network but not only the centrality of public vertices.

4.7 Summary

In this Chapter, we study a new type of re-identification attacks, namely connection

fingerprint (CFP) attacks, on social networks, in which an attacker re-identifies a pri-
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vate user in a social network based on his connection information with some known

public users in the network. With a formal risk analysis on real-world networks,

we find that CFP attacks can cause serious damage to identity privacy. Therefore,

we propose two efficient network conversion algorithms against CFP attacks based

on the notion of k-anonymity. The first algorithm is based on adding dummy ver-

tices. It can resist powerful attackers with the connection information of a user with

the public users within n hops (n ≥ 1). Our experimental results show that it can

preserve the centrality utility of public users. The other algorithm is based on edge

modifications. It is only able to resist attackers with the connection information of a

user with the public users within 1 hop but preserves a rich spectrum of network util-

ity such as centrality, community, and shortest path lengths, of all users in a network

but not only public users.
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Chapter 5

High-UtilityK-Anonymization for

Social Network Conversion

In this chapter, we discuss another aspect of a good privacy preserving network con-

version scheme: utility. Utility is important because it directly affects the quality

of converted social networks, which is crucial to the success of subsequent analy-

sis tasks. Prior work converts a social network to achieve k-anonymity to protect

privacy and preserves the utility of the converted network by minimizing a utility

loss function evaluated by the number of edges modified on the network during the

conversion. In this work, we find this simple utility benchmark is inadequate to

preserve the utility of networks with complex structure. To improve utility perfor-

mance, we propose a new utility benchmark which is defined by the changes that

a network conversion algorithm makes to network community structure. In addi-

tion, we design a general network conversion algorithm framework which can be

used with various k-anonymity schemes (e.g., k-degree anonymity, k-neighborhood

anonymity) to protect privacy, and it minimizes utility loss based on the new utility

benchmark. We conduct extensive experiments on real-world networks. The results

demonstrate that our network conversion algorithm with the new utility benchmark

can significantly improve the utility of converted networks compared with the ex-

isting algorithms using the simple utility benchmark.
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5.1 Motivation

As discussed in Chapter 2.2, structural re-identification is one of the primary privacy

concerns on social network data. To resist structural re-identification attacks, vari-

ous k-anonymity-based network conversion algorithms have been proposed. These

algorithms convert a social network by inserting some fake edges and/or deleting

some existing edges to make sure for each vertex in the social network, there are at

least k− 1 other vertices that are structurally indistinguishable from it based on cer-

tain attacker's background knowledge. Thereafter, the probability that an attacker

successfully re-identifies a vertex based only on her background knowledge about

the structure properties of the vertex will not exceed 1/k.

Logically, a larger k provides stronger privacy protection, but it does come with

a price. In an extreme case, a social network G is converted to a fully connected

network G∗, in which every vertex is connected to all the other vertices, and all

the vertices become structurally isomorphic. G∗ achieves the highest possible level

of anonymity against any structural background knowledge. However, G∗ actually

loses all the structural properties of G and hence is useless for data mining and

analysis. The cost of network conversion is quantified by utility loss. Ideally, we

prefer a converted social network which attains a desirable level of anonymity with

the smallest utility loss so that the data mining and analysis results derived from

the converted social network are very similar to those obtained from the original

network.

Prior work converts a social network by modifying (i.e., inserting and/or delet-

ing) edges to achieve k-anonymity and reduces utility loss byminimizing the number

of edges modified. This utility benchmark is based on a very simple intuition that

the smaller the number of edges we modify on a network, the smaller the changes

we make to the network structural properties. In this work, we argue that sometimes

this simple intuition is not correct. A network is a complex structure, and modifying

a small number of edges can make large changes to its structural properties. For ex-

ample, removing a small number of bridge edges can change a connected network to
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Figure 5.1: Examples of 2-degree anonymity achieved by modifying edges.

Table 5.1: Properties of original and anonymized networks

Networks Num. of edges modified APL CC BTW CLN
G 0 2.07 3.75 0.50 0.50
G∗

1 1 2.00 3.50 0.54 0.52
G∗

2 1 1.86 3.00 0.41 0.55
G∗

3 1 2.21 4.25 0.43 0.47

disconnected. Therefore, the utility benchmark based only on this simple intuition

may fail to safeguard important network properties.

We further demonstrate this point using another simple example. Given a so-

cial networkG in Figure 5.1a, three converted networksG∗
1, G∗

2, and G∗
3 are formed

which all satisfy 2-degree anonymity as illustrated in Figure 5.1b, Figure 5.1c, and

Figure 5.1d respectively. G∗
1 and G∗

2 are formed by inserting an edge between ver-

tices f , h and vertices c, h respectively; G∗
3 is formed by deleting the edge between

vertices d and e. Based on the prior simple utility benchmark, G∗
1, G∗

2, and G∗
3

have equally good utility because the numbers of edges modified on them are all 1.

However, if considering some other important network structural properties, such

as average path length (APL), average betweenness (BTW), clustering coefficient

(CC), and average closeness (CLN), we find that these anonymized networks ac-

tually are very different as illustrated in Table 5.1. Among the three anonymized

networks, G∗
1 is the most similar to the original network G in terms of APL, BTW,

CC, and CLN, whileG∗
2 andG∗

3 are much more different fromG. Consequently, the
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simple utility measure cannot capture the utility differences amongG∗
1, G∗

2, and G∗
3,

and naturally the k-anonymization algorithms developed based on it are very likely

to generate networks (e.g., G∗
2, G∗

3) which do not have high utility.

Motivated by the fact that most of the existing k-anonymization algorithms use

the simple utility model and may cause significant utility loss, we want to design

a new utility measure. Instead of inferring utility merely based on the number of

edges modified, it can directly evaluate the changes on network structure caused

by modifying edges. Then, by minimizing the utility loss evaluated by this utility

benchmark, k-anonymization algorithms can generate networks with high utility.

However, this task is challenging due to the following issues.

The first issue is that the usage of converted networks is unknown. A social

network is a complex data structure and has many topological properties, such as

vertex degree, eigenvector, shortest paths, and community structure. Applications

may have distinct requirements for the network properties that should be preserved

in the converted networks. Moreover, there are many data mining tasks focusing

on discovering unknown network properties. Therefore, we want to find an effec-

tive utility measure which can help to preserve many important network structural

properties.

The second issue is that the utility measure needs to be quantitative and easy

to calculate. In order to search for an optimal converted social network G∗ that is

the"closest" to the original network G in utility, we need to quantitatively evaluate

the difference betweenG andG∗ in terms of utility efficiently. There are some well-

known metrics that can represent important structural features of a network and can

be used to compare G and G∗, but they are difficult to calculate. For example, the

average path length reflects the small-world property of social networks, but its cal-

culation is based on expensive all-pair shortest path operations. Another example is

the eigenvector, which has been proved to be strongly correlated with many network

topological features. However, it requires expensive matrix decomposition.

The third issue is that the existing anonymization algorithms designed to min-
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imize the number of edge modifications are not directly applicable to optimizing

utility loss based on other utility measures, thus new algorithms need to be devel-

oped accordingly.

Optimizing utility during the social network anonymization process is a chal-

lenging problem, and it cannot be perfectly solved in one study. In this work, we

take the initiative to explore this problem. We propose to build a utility measure

based on network community structure. In other words, we evaluate the utility loss

caused by modifying an edge based on the change it makes to network community

structure. The community structure of a network reflects locally inhomogeneous

edge distribution among the vertices, with high density of edges between vertices

within one community and low density of edges between vertices from different

communities. It is a central organizing principle of complex social networks, and

has a strong correlation with many other important social network topological fea-

tures such as betweenness, eigenvector, and clustering coefficient [84]. Thus by

maintaining the community structure, we can preserve many important topological

features of a network. In addition, the influence of edge insertion or deletion oper-

ations during the anonymization process can be easily reflected by the changes in

the edge distribution within or between communities, and thus can be quantitatively

evaluated. We try to minimize the impact of edge operations on network community

structure during the anonymization process, so that we can generate an anonymized

G∗ which is structurally similar to G with respect to many important network prop-

erties.

To sum up, the main contributions of this work are listed as follows:

1. We identify the deficiency of the simple utility measure adopted by many ex-

isting k-anonymization algorithms for preserving network utility.

2. We propose a new utility measure based on network community structure

to better capture the impact of an anonymization process on network topol-

ogy. We consider both a flat community model and a hierarchical community

model.
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3. We design a general algorithm framework to anonymize a social network and

minimize the utility loss evaluated by our new utility measure. This frame-

work is general and can be used with many different k-anonymity schemes

(e.g., k-degree anonymity and k-neighborhood anonymity).

4. We conduct extensive experiments to evaluate the proposed approach. The

results show that our method achieves significant improvement in utility com-

pared with existing k-anonymization algorithms.

5.2 Preliminaries

Following the notions defined in Section 4.2, we also model a social network as

an undirected and unweighted graph G(V,E) with a vertex vi ∈ V representing

an entity in the social network, and an edge e(vi, vj) ∈ E representing the social

relationship between two entities vi and vj . We assume all the vertices are private

in the social network so that their identities are removed in the converted social

network G∗ as specified in Definition 7.

Definition 7 (Converted Social Network) The converted versionG∗(V ∗, E∗) of a

social network G(V,E) is obtained by removing the identity information of all the

vertices in G and with possible edge modifications (i.e., edge insertion and/or dele-

tion) . G∗(V ∗, E∗) is used in place of G for data mining and analysis.

We focus on structural re-identification attacks on social networks, in which an

attacker aims to identify some target entities as vertices inG∗ using her background

knowledge about the structural properties of the targets. We use F to denote a back-

ground knowledge function that an attacker uses to determine the structural property

of an entity and F (v) to represent the structural property of an entity v with respect

to F . For instance, F can be the number of adjacent edges of a vertex (i.e., degree),

neighborhood, subgraph, etc. We formalize this attack in Definition 8.
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Definition 8 (Structural Re-identification Attack) Given a social networkG(V,E),

its converted versionG∗(V ∗, E∗), the background knowledge function F , and a tar-

get entity vt ∈ V , the attacker searches for all the vertices inG∗ that can provide the

same result for F as vt, referred to as VF (vt), i.e., VF (vt) = {v ∈ V ∗|F (v) = F (vt)}.

If |VF (vt)| ≪ |V ∗|, vt has high probability to be re-identified.

K-anonymity, as formally defined in Definition 9, is a widely adopted notion to

prevent structural re-identification attacks on social networks [59, 99, 107, 108, 110].

By converting a social network to satisfy k-anonymity, an attacker will not be able to

re-identify a vertex with probability larger than 1/k based on her background knowl-

edge F . Note that we need to specify the type of background knowledge F that an

attacker has in order to formally define k-anonymity (e.g., k-degree anonymity [59],

k-neighborhood anonymity [107]). However, when the meaning of F is clear in

context, we use k-anonymity for brevity of presentation.

Definition 9 (K-Anonymity) Given a converted social network G∗(V ∗, E∗) and

the background knowledge function F , G∗ satisfies k-anonymity with respect to F ,

iff for each v ∈ V ∗, there are at least k−1 other vertices v′ ∈ V ∗ withF (v′) = F (v).

Most existing algorithms use edge modification-based approaches to anonymize

a social network. That is to anonymize a network via inserting and/or deleting edges.

In this work, we also focus on the edge modification-based approaches. It is ex-

pected that an anonymized social network is structurally different from the original

network and hence loses some utility compared with the original network. Ideally, a

social network conversion algorithm should take both privacy and utility into consid-

eration. In other words, it should generate social networks that satisfy k-anonymity

at minimum utility loss.

5.3 Utility Measure

Our goal is to design a high-utility social network anonymization scheme. There-

fore, the key issue to address first is how to properly measure the utility loss of a
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converted social network. As discussed in Section 5.1, the prior utility benchmark

simply measures the number of edges modified, and may fail to capture many im-

portant network topology changes. Hence, we want to design a more proper utility

measure that can better capture complex social network structural properties.

We propose to build the utility measure based on network community structure.

The community structure of a network reflects locally inhomogeneous edge distri-

bution among the vertices. Given fixed community organization, the influence of

an edge insertion or deletion operation can be reflected by the changes in the edge

distribution within or between communities. In addition, community structure has

a strong correlation with many other important topological features of social net-

works such as betweenness, eigenvector, and clustering coefficient [84]. Therefore,

the impact of an anonymization process on community structure can also reflects its

influence on other social network topological features. Our experimental study to

be presented in Section 5.6 will validate this point.

There are various ways to model social network communities [84]. We consider

both a flat community model and a hierarchical community model. Our utility mea-

sure is built around the idea of measuring the edge distribution change within and

among communities. Therefore, the anonymization algorithm designed to minimize

utility loss based on this utility measure preserves network community structure via

preserving the edge distribution among a fixed community partition. In the follow-

ing subsections, we will introduce our utility model in detail.

5.3.1 Flat Community-based Utility Model

First, we introduce how to build our utility measure based on a flat community

model. The flat communitymodel is defined as a non-overlapping partitioning of the

vertices in a network, so that the vertices within one community are connected with

edges of high density and the vertices across different communities are connected

with edges of low density. Given a networkG(V,E), we assume it is divided intom

disjoint communities denoted by CG = {C1, C2, . . . , Cm}, such that ∀v ∈ V , there
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Figure 5.2: Example of flat community model.

Table 5.2: Edge distribution sequences and utility loss based on flat community
model

(Anonymized) Networks ES⟨n11

|E| ,
n12

|E| ,
n22

|E| ⟩ UL(G,G∗)

G ⟨ 3
10
, 1
10
, 6
10
⟩ N.A.

G∗
1 ⟨ 3

11
, 1
11
, 7
11
⟩ 0.0727

G∗
2 ⟨ 3

11
, 2
11
, 6
11
⟩ 0.1636

G∗
3 ⟨3

9
, 1
9
, 5
9
⟩ 0.0888

is one community Ci containing v. For example, in Figure 5.2, the social network

G is divided into 2 communities as signified by the dashed circles. Community C1

contains vertices {a, b, c}, and C2 contains {d, e, f, g, h}.

Here, we explain how to quantitatively measure the utility loss of a given mod-

ified network G∗(V ∗, E∗) based on the flat community model compared with the

original network G(V,E). The algorithm used to generate communities will be in-

troduced later. Suppose the community structure of G(V,E) is available. We can

quantitatively capture the edge distribution within and among the communities via

an edge distribution sequence, denoted by ES. To be more specific, we first count,

i) for each community Ci, the number of edges that connect vertices within Ci, de-

noted by nii, and ii) for each pair of communities Ci and Cj (i ̸= j), the number of

edges that connect vertices from Ci to vertices from Cj , denoted by nij . Thereafter,

the percentage of edges distributed within community Ci is nii

|E| , and the percentage

of edges distributed across Ci and Cj is
nij

|E| . The edge distribution sequence ES is

then defined as ⟨n11

|E| ,
n12

|E| , . . . ,
nij

|E| , . . . ,
nmm

|E| ⟩, (1 ≤ i ≤ j ≤ m). For instance, based

on the community model ofG depicted in Figure 5.2, there are 3 and 6 edges within

community C1 and community C2 respectively, and one edge across them. Since

the total number of edges in G is 10, ESG = ⟨ 3
10
, 1
10
, 6
10
⟩. Table 5.2 lists the ESs of
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the original network G and its three anonymized counterparts.

Given a networkG and its converted versionG∗, we assume their corresponding

edge distribution sequences areESG andESG∗ respectively. Compared withG, the

utility loss caused by G∗, denoted by UL(G,G∗), is measured by the L1 distance

between ESG and ESG∗ , as defined in Equation (5.1). Using this measure, we cal-

culate the utility loss of all the three anonymized networks in Table 5.2. We observe

that anonymized networkG∗
1 causes the smallest utility loss. This is consistent with

our observation in Section 5.1.

UL(G,G∗) = ||ESG − ESG∗ ||1 =
∑

1≤i≤m

|ESG[i]− ESG∗ [i]| (5.1)

There are various community detection algorithms proposed in the literature. In

this work, we adopt a modularity-based method, one of the most popular community

detection methods, to generate the flat community model. Modularity is a quality

function defined based on a null model to express the "strength" of communities.

By assumption, high values of modularity indicate good community partitions. In

the interests of running time, we implement the greedy modularity maximization

algorithm proposed in [73]. It is an agglomerative grouping method, where groups

of vertices (partitions) are successively joined to form larger communities. It starts

with every vertex as one partition. Then in each step, an edge is added to join two

partitions such that the maximum increase or minimum decrease of modularity w.r.t.

the previous configuration can be achieved. The algorithm terminates when one uni-

fied partition is formed. Among all the partition configurations generated in every

step of this process, the one with the largest modularity value is returned as the re-

sult. The complexity of the algorithm is O((|V |+ |E|)× |V |), and it performs well

on large social networks [73]. However, we want to emphasize that our utility model

is independent of the algorithm used for generating communities and any algorithm

that generates good community partitions is applicable.
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Figure 5.3: Example of hierarchical community model.

5.3.2 Hierarchical Community-based Utility Model

Some recent work suggests that communities of social networks often exhibit hier-

archical organization (i.e., large communities in a social network may contain small

communities). A hierarchical community model capture the structure information

of a social network from coarse to fine scales, and presumably capture more detailed

structure information of the network than the flat community model. As a result, the

utility measure built upon the hierarchical community model is more sensitive to

small network structure changes caused by an anonymization process, thus provid-

ing better control of utility loss. In the following, we discuss how to measure utility

loss based on the hierarchical community model.

In this work, we use the hierarchical random graph (HRG) model proposed

in [20, 21] to capture the hierarchical organization of social network communities.

An HRG of a networkG(V,E) is a binary tree denoted byHG. Its leaf nodes corre-

spond to the vertices in V , and each non-leaf node r roots a sub-tree denoted by Tr.

The vertices in a sub-tree Tr are regarded as a community Cr. Thus, HG organizes

the communities hierarchically.

Each non-leaf node r ofHG is associated with a connection probability pr. Here,

pr is the probability that a vertex in the left subtree TL
r is linked by an edge with a

vertex in the right subtree TR
r . The larger the pr, the stronger the connection be-

tween r's two subtrees. Mathematically, the connection probability pr is defined in
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Table 5.3: Edge distribution sequences and utility loss based on HRG model

(Anonymized) Networks ES⟨r1, r2, r3, r4, r5, r6, r7⟩ UL(G,G∗)

G ⟨ 1
10
, 1
10
, 1
10
, 2
10
, 2
10
, 2
10
, 1
10
⟩ N.A.

G∗
1 ⟨ 1

11
, 1
11
, 1
11
, 2
11
, 3
11
, 2
11
, 1
11
⟩ 0.1454

G∗
2 ⟨ 1

11
, 1
11
, 1
11
, 2
11
, 2
11
, 2
11
, 2
11
⟩ 0.1636

G∗
3 ⟨1

9
, 1
9
, 1
9
, 2
9
, 1
9
, 2
9
, 1
9
⟩ 0.1777

Equation (5.2).

pr =
|Er|

|TL
r | · |TR

r |
(5.2)

where |Er| is the number of edges e(vi, vj) ∈ E with vi ∈ TL
r and vj ∈ TR

r ,

and |TL
r | and |TR

r | represent the numbers of vertices in r's left and right subtrees

respectively. An HRG of the network shown in Figure 5.1a is depicted in Figure 5.3.

The connection probability pr4 of node r4 is 1 as all the nodes in the left subtree

(i.e., node a and node b) connect to all the nodes in the right subtree (i.e., node

c). On the other hand, the connection probability pr6 of node r6 is 1
3
as |Er6 | =

|{e(g, d), e(g, f)}| = 2, |TL
r6
| = |{e, d, f}| = 3, and |TR

r6
| = |{g, h}| = 2.

Given the HRGmodel of a network, we observe that the edges of the network are

distributed among all the non-leaf nodes ri, i.e., ∪riEri = E. We then generate the

edge distribution sequence ES based on the edge distribution among these non-leaf

nodes. Thus,ES = ⟨ |Er1 |
|E| ,

|Er2 |
|E| , . . . ,

|Erm |
|E| ⟩, wherem is the total number of non-leaf

nodes on HG. Again, we define utility loss based on the L1 distance between the

ESs of the original and anonymized networks. Table 5.3 lists the ESs of the origi-

nal networkG and its three anonymized versions based on the HRG model together

with their corresponding utility loss. Consistent with our expectation, we find that

G∗
1 causes the smallest utility loss. This simple example serves only to demonstrate

that the utility measures based on the flat community model and the HRG model

both can help to identify good anonymization options. We will conduct comprehen-

sive experiments on real-world social networks to evaluate the performance of the

community models in Section 5.6.

Given a social network G, the optimal HRG that fits it can be determined us-

ing the Markov Chain Monte Carlo method (MCMC) proposed in [20]. It first de-
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fines a likelihood function L to evaluate the fitness of a given HRG HG to G, with

L(HG) =
∏

r∈HG
[pprr (1− pr)

1−pr ]
|TL

r |·|TR
r |. The higher the likelihood score, the bet-

ter HG captures the topological structure of G. Then, the MCMC method samples

the space of all possible HRGs with probability proportional to L and returns the

one having the maximum L value. The MCMC method creates a Markov chain by

defining several transitions from an HRG HG to a new H′
G. It calculates the log-

arithm of L of each HRG during sampling, and accepts a transition HG → H′
G if

∆ logL = logL(H′
G)− logL(HG) ≥ 0. Otherwise, the transition is accepted with

probability exp(logL(H′
G) − logL(HG)). In the worst case, the time complexity

of the MCMC method is exponential. However, it is stated in [20] that in practice

MCMC converges to a plateau roughly after O(|V |2) steps.

5.4 High-Utility Anonymization

After introducing the community structure based utility measures, we are ready

to present our high-utility k-anonymization algorithm that converts a given social

network via edge operations and minimizes utility loss. In the following, we first

present the basic idea of the algorithm and then detail its three main components,

i.e., estimating local structure information, generating candidate edge operations,

and refining target local structure.

5.4.1 Basic Idea and Algorithm Framework

Following prior work, we only consider achieving k-anonymity via performing a

sequence of edge operations on a social network. As a result, the utility loss of the

network is affected by both the number of edge operations performed and the impact

of each edge operation. Consequently, our algorithm is designed based on a greedy

strategy which tries to approach an k-anonymized network with minimum utility

loss by finding a short edge operation sequence with each edge operation causing

small utility loss.
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Algorithm 4: High-utility k-anonymization algorithm
Input: G(V,E), F , and k
Output: K-anonymized network G∗

MG = constructCommunityModel(G);1

G∗(V ∗, E∗) = G(V,E);2

LS△ = estimate(G,F, k);3

while G∗ is not k-anonymized do4

Sop = findCandidateOp(G∗, LS△,MG);5

while Sop ̸= ∅ do6

operation op = Sop.min op();7

execute(op,G∗);8

Sop = findCandidateOp(G∗, LS△,MG);9

if G∗ is not k-anonymized then10

LS△=refine(G,LS△,G∗);11

return G∗;12

The basic idea of our algorithm is as follows. Given a network G, an attack

model F , and a privacy requirement k, we carefully perform one edge operation

at a time on G to approach k-anonymity against attacks under F . On one hand,

to keep the number of edge operations as small as possible, we choose the edge

operation that directs the current G towards its "nearest'' k-anonymized network,

which refers to the network that satisfies k-anonymity with the minimum number

of edge operations denoted by G△ to facilitate our explanation. On the other hand,

among all the possible edge operations that can direct G towards G△, at each step

we perform the one which causes the smallest utility loss based on our utility loss

measure introduced in Section 5.3.

In this process, the knowledge of G△ is essential, which, however, is unknown

and hard to locate. Given the fact that forming G△ directly is not always possible,

we try to estimateG△ by deriving the local structure information of its vertices (e.g.,

the vertex degree, and/or the neighbors' degrees of each vertex) which, based on the

givenG, F , and k, is possible. Then, according to the local structure information of

G△, a set of candidate edge operations leading G towards G△ can be derived, and

we always perform the one that causes the smallest utility loss.

Algorithm 4 sketches a high-level outline of our high-utility k-anonymization

algorithm. It takes a networkG, an attack model F , and a privacy parameter k as in-
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puts, and outputs a converted networkG∗ that is k-anonymized and has small utility

loss. Initially, the algorithm constructs and maintains a flat/hierarchical commu-

nity model of G as MG (line 1). Then, it initializes G∗ to G, and derives the local

structure information LS△ of G△ based on G, F , and k (lines 2-3). Thereafter, it

generates a set of candidate edge operations (i.e., edge insertion operations and/or

edge deletion operations) based on the current G∗ and the estimated target LS△.

The candidate operations are maintained by a set Sop together with the utility loss

score of every edge operation that is calculated based on the community modelMG

(line 5). At each step, our algorithm performs the edge operation which causes the

smallest utility loss on G∗, and re-generates the candidate operation set based on

the updated G∗ (lines 7-9). This process continues until Sop becomes empty (lines

6-9). After performing all the identified candidate edge operations, there are two

possible outcomes depending on whether the current G∗ is k-anonymized. If G∗ is

k-anonymized, the algorithm terminates and returns G∗ as the result (line 12). Oth-

erwise,G∗ does not satisfy the privacy requirement, i.e., the k-anonymized network

with the local structure information LS△ has not been achieved. In this case, we

need to refine the target LS△ via small adjustments, and continue the previous pro-

cess (line 11). We would like to point out that in refining the target LS△, we only

consider additive adjustments, which nudge LS△ towards the local structure of a

complete network. Thus, in the worst case,G∗ will be the complete network, which

always satisfies the privacy requirement (if |V | ≥ k ) 1. Therefore, our algorithm is

convergent.

In the following, we detail the three key components of Algorithm 4, i.e., estimat-

ing local structure information, generating candidate edge operations, and refining

local structure information.
1We want to highlight that the additive adjustments only apply to the refining local structure

information step of Algorithm 1 (i.e., lines 10-11). In the other parts of the algorithm (e.g., lines 5-9
where edge operations are performed to change the current network towards the target network), we
consider both edge addition and deletion operations.
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5.4.2 Estimating Local Structure Information

Deriving the local structure information ofG△ (i.e., the k-anonymized network with

the minimum number of edge operations) is essential as it sets the target for the

anonymization algorithm. In this section, we explain how this task is performed.

As stated earlier, we only focus on k-degree anonymity for simplicity. Since the

privacy requirement sets constraints on the vertex degree of the target anonymized

network, we estimate the degree sequence DS△ as the local structure information

of G△. The degree sequence DS of a network G(V,E) is a vector of size |V | with

each element DS[i] ∈ DS representing the degree of a vertex in G. We further as-

sume that the degree sequence is sorted in non-ascending order of its elements (i.e.,

DS[1] ≥ DS[2] ≥ . . . ≥ DS[|V |]). There are some observations that can guide the

estimation. First,DS△ has the same size asDS, because we only consider network

modification via edge operations but not vertex operations. Second, DS△ must be

k-anonymized since DS△ is the degree sequence of a k-degree anonymized net-

work G△. In other words, for each element DS△[i] ∈ DS△, there are at least k − 1

other elements with the same value as DS△[i]. Third, because DS△ is the degree

sequence of the "nearest'' k-anonymized networkG△, the L1 distance betweenDS△

andDS should be minimized. Based on the above observations, we employ the dy-

namic programming method proposed in [59] to find the optimalDS△ withO(|V |2)

time complexity. A greedy algorithm is also available in [59] with time complexity

O(k|V |). We ignore the detail because it is not the focus of our work.

5.4.3 Generating Candidate Edge Operation Set

Once the target local structure information DS△ is ready, we need to find candi-

date edge operations that convert the current G∗ to a k-anonymized network with

its degree sequence matching DS△. Before introducing the detailed algorithm, we

define three basic types of edge operations, i.e., edge insertion, edge deletion, and

edge shift denoted by ins(vi, vj), del(vi, vj), and shift((vi, vj), (vi, vk)). As sug-

gested by their names, ins(vi, vj) inserts a new edge that links vertex vi to vertex
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vj , and del(vi, vj) removes the edge between vi and vj . shift((vi, vj), (vi, vk)) re-

places edge e(vi, vj) with edge e(vi, vk). Note that e(vi, vj) and e(vi, vk) in the edge

shift operation are carefully selected so that it does not change the edge distribution

of the constructed community model, thus the operation causes zero changes to the

utility loss score. For example, as shown in Figure 5.2, G is partitioned into two

communities. Edge e(c, d) is the crossing edge between these two communities. An

edge shift operation shift((c, d), (c, h)) shifts the end point d of this edge to vertex

h. Since d and h are in the same community, there is still one edge spanning these

two communities, thus it does not change the edge distribution on the flat commu-

nity model. Edge shift operations based on the flat community model is formally

expressed in Definition 10. Similarly, edge shift operations can be defined on the

hierarchical community model as described in Definition 11. Due to the unique fea-

ture of edge shift operations, they should receive high priority when modifying the

network to achieve k-anonymity.

Definition 10 (Edge Shift on Flat Community Model) Given a networkG(V,E),

the corresponding flat community model CG, an edge e(vi, vj) ∈ E, and a vertex

vk ∈ V such that e(vi, vk) ̸∈ E, if vj and vk are in the same community, an edge

shift operation shift((vi, vj), (vi, vk)) replaces e(vi, vj) with e(vi, vk).

Definition 11 (Edge Shift on HRG) Given a network G(V,E), the corresponding

HRGHG, an edge e(vi, vj) ∈ E, and a vertex vk ∈ V such that e(vi, vk) ̸∈ E, let r

be the lowest common ancestor of vj and vk on HG. If vi is not in the subtree of r,

an edge shift operation shift((vi, vj), (vi, vk)) replaces e(vi, vj) with e(vi, vk).

The goal of the edge operations is to modify the network such that its new de-

gree sequenceDS∗ matches the target degree sequenceDS△. Therefore, the degree

difference sequence δ = (DS△ − DS∗) can give some guidance. Each element

δ[i] ∈ δ with δ[i] > 0 (i.e., DS∗[i] < DS△[i]) indicates that a vertex in G∗(V ∗, E∗)

with degreeDS∗[i] needs to increase its degree, i.e., it should connect to more edges.

We maintain DS∗[i]s with δ[i] > 0 via a set DS+ and all the vertices v ∈ V ∗ that
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DS : {4 3 3 3 2 2 2 1}
DS∗ : {4 4 3 3 2 2 2 2}
δ : {0 1 0 0 0 0 0 1}

Candidate operations: ins(f, h), ins(c, h)

V S+ = {{c, f, g}EX , h}
V S− = ∅

Figure 5.4: Generation of candidate operations.

have degree DS∗[i] via a set V S+. V S+ contains all the vertices that may require

edge insertion operations. Similarly, each element δ[j] ∈ δ with δ[j] < 0 (i.e.,

DS∗[j] < DS△[j]) indicates that a vertex in G∗ with degree DS∗[j] needs to de-

crease its degree, i.e., it should connect to fewer edges. We maintain D∗[j]s with

δ[j] < 0 via a setDS− and all the vertices v ∈ V ∗ that have degreeDS∗[j] via a set

V S−. V S− contains all the vertices that may require edge deletion operations. Note

that a degree value of DS∗[i] or DS∗[j] may correspond to multiple vertices in G∗,

and we treat them equally. In addition, if the degree valueDS∗[i] (DS∗[j]) only ap-

pears once in DS+ (DS−), we cannot perform edge insertion (deletion) to connect

(disconnect) two vertices vl, vk both with the degree ofDS∗[i] (DS∗[j]). Hence we

mark these vertices as being mutually exclusive, denoted by EX(vl, vk) = True.

The mutual exclusive set is formally described in Definition 12.

Definition 12 (Mutual Exclusive Set) Given a difference sequence δ = (DS△ −

DS∗) of the target degree sequenceDS△ and the degree sequenceDS∗ of a current

network G∗(V ∗, E∗), we define the degree set DS+ = {DS∗[i] ∈ DS∗|δ[i] > 0}

and the vertex set V S+ = {vj ∈ V ∗|∃DS∗[i] ∈ DS+, d(vj) = DS∗[i]} with d(vj)

referring to the degree of vertex vj . Let Gd = {vj|vj ∈ V S+ ∧ d(vj) = d} and

Dd = {DS∗[i]|DS∗[i] ∈ DS+ ∧DS∗[i] = d}. If |Dd| = 1, Gd = {v1, v2, . . . , vt}

is a mutual exclusive set denoted by {v1, v2, . . . , vt}EX and each pair of vertices

vl, vk ∈ Gd are mutually exclusive, denoted by EX(vl, vk) = True. The mutual

exclusive set on DS− can be defined analogously.

Back to the network G depicted in Figure 5.1a. Its degree sequence DS and

the target 2-degree anonymized degree sequenceDS△ are shown in Figure 5.4. We

derive δ = (DS△ − DS) = (0, 1, 0, 0, 0, 0, 0, 1), and find δ[2] = δ[8] = 1 > 0.
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Hence, DS[2] (= 3) and DS[8] (= 1) are inserted into DS+. Then, all the vertices

in G with degree 3 or 1 are inserted into V S+, i.e.,V S+ = {c, f , g, h}. Note that

{c, f , g} is a mutual exclusive set. As there are no elements of δ with values smaller

than 0, DS− = V S− = ∅.

The reason that we form the V S+ and V S− sets is to facilitate generating can-

didate edge operations. As V S+ contains the vertices that need larger degrees,

ins(vi, vj) is a candidate operation if vi, vj(i ̸= j) ∈ V S+ ∧ e(vi, vj) ̸∈ E∗ ∧

EX(vi, vj) ̸= True. We enumerate all candidate edge insertion operations based on

V S+ and put them in a set Opins. Similarly, del(vi, vj) is a candidate edge deletion

operation if e(vi, vj) ∈ E∗ ∧ vi, vj(i ̸= j) ∈ V S− ∧ EX(vi, vj) ̸= True. Again,

we explore all candidate edge deletion operations and save them in a set Opdel. We

also consider candidate edge shift operations. For a pair of vertices (vj , vk) (j ̸= k)

with vj ∈ V S− and vk ∈ V S+, if there is a vertex vi(i ̸= j, k) such that vi, vj , and

vk satisfy the condition in Definition 10 (or Definition 11 if the HRG model but not

the flat community model is used), shift((vi, vj), (vi, vk)) is a candidate. All possi-

ble edge shift operations form another set Opshift. We continue the above example

shown in Figure 5.4. As V S− = ∅, we only need to consider possible edge insertion

operations, i.e., Opdel = Opshift = ∅. Based on V S+ = {c, f, g, h} and the mutual

exclusive set, we have Opins = {ins(c, h), ins(f, h)}.

Given all the candidate edge operations maintained in the operation sets Opins,

Opdel, and Opshift respectively, we insert them into a candidate operation set Sop

which is used by the high-utility k-anonymization algorithm (i.e., Algorithm 4).

Before inserting the edge operations into Sop, we need to calculate the utility loss

caused by each of them, so that edge operations causing smaller utility loss will

be performed earlier. Continue our example depicted in Figure 5.4 with the utility

loss scores calculated based on the flat community model in Figure 5.3. The corre-

sponding candidate edge operation set Sop is set to {⟨ins(f, h), 0.0727⟩, ⟨ins(c, h),

0.1636⟩}. Algorithm 5 presents the pseudo code for finding candidate operations.

100



Algorithm 5: findCandidateOp algorithm
Input: G∗(V ∗, E∗), DS△, a community-based network modelMG

Output: Candidate operation set Sop

DS∗ = degree sequence of G∗;1

δ = (DS△ −DS∗);2

DS+ = {DS∗[i] | δ[i] > 0, 1 ≤ i ≤ |DS∗|};3

DS− = {DS∗[j] | δ[j] < 0, 1 ≤ j ≤ |DS∗|};4

V S+ = V S− = ∅;5

foreach d ∈ DS+ do6

V S+ = V S+ ∪ {vi|vi ∈ V ∗, d(vi) = d};7

foreach d ∈ DS− do8

V S− = V S− ∪ {vj |vj ∈ V ∗, d(vj) = d};9

Opins = getOp(V S+, V S+);10

Opdel = getOp(V S−, V S−);11

Opshift = getOp(V S+, V S−,MG);12

calculate the cost of each operation in Opins, Opdel, and Opshift;13

Sop.insert(Opins, Opdel, Opshift);14

return Sop;15

5.4.4 Refining Target Local Structure Information

As mentioned above, our high-utility k-anonymization algorithm generates DS△

that estimates the local structure information of the "nearest'' k-anonymized network

as the target, and performs edge operations to change the current network towards

DS△. However, it is possible that the k-anonymized network with the degree se-

quence DS△ is not achievable by the current executed operation sequence. If this

happens, we fine-tuneDS△ and start another attempt. We prefer that the new target

degree sequence is close to the old one, and we only consider additive adjustments

onDS△ to ensure the convergence of our algorithm. Hopefully, the new targetDS△

will be achievable through our anonymization process.

In order to decide how to adjustDS△, we first consider V S+ which contains the

vertices that have not been k-anonymized and need to increase their degrees. For

any vertex vi in V S+, we cannot find a vertex vj to form a valid ins(vi, vj) operation

to increase its degree according to the current DS△. Therefore, we want to find an

element onDS△ to increase its value so that later we could find a candidate operation

that increases vi's degree. For each vi ∈ V S+, we find some vertices vj ∈ V (i ̸= j)

such that e(vi, vj) ̸∈ E∗ and EX(vi, vj) ̸= True. These vjs form the candidates
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of which we could increase the target degree on DS△. We could randomly choose

one among the candidate vjs to increase its target degree by a small value (e.g., 1)

on DS△, but it may break the k-anonymity of DS△. Therefore, instead of directly

increasing the target degree of vj onDS△, we increase the degree of vj onDS, and

then we re-generate DS△ based on the updated DS. As the change made to DS is

very small, the new DS△ should be very similar to the old one.

We only consider V S+ above because we want to make additive changes to

DS△. However, when V S+ is empty, we have to utilize V S− that contains the ver-

tices which have not been k-anonymized and need to decrease their degrees. Similar

to the above, for each vertex vi ∈ V S−, we could find a vertex vj to reduce its target

degree to make a valid candidate operation del(vi, vj). However, this is against our

goal of only making additive changes. Alternatively, for each vertex vi ∈ V S−, we

increase the degree of another vertex vj onDS whose degree value is closest to that

of vi in G, then re-generate DS△ based on the updated DS. The rationale is that

because vj and its corresponding vi ∈ V S− have similar degree, they are very likely

to be anonymized to the same degree in the anonymized network. After the degree

of vj has been increased, vi may not need to decrease its degree anymore.

5.4.5 Computational Complexity

In this subsection, we briefly discuss the time complexity of our algorithm by ana-

lyzing the time complexity of each step in the k-anonymization process.

Based on Section 5.4.2, estimating local structure information can be processed

in O(k|V |) time. Then, the following step is to generate candidate operations.

In this step, firstly, a one-time scan on the difference sequence δ is performed to

generate the vertex sets V S+ and V S−, which takes time O(|V |). Given t =

max{|V S+|, |V S−|}, it takes O(t2) time to generate all candidate operations, and

the total number of candidate operations generated is at most O(t2). For each can-

didate operation, we need to calculate the utility loss that it may cause based on

the given community model, which is the L1 distance between the edge distribu-
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tion sequences as described in Section 5.3. Usually, the time complexity of cal-

culating L1 distance is linear to the length of the edge distribution sequence repre-

sented by l. However, we observe that each edge operation only affects the number

of edges corresponding to at most one element of the edge distribution sequence,

as well as the total number of edges. For example, if we add one edge e(c, h)

in the example network in Figure 5.1a, it will only affect n12 (i.e., the number of

edges distributed between communities C1 and C2) of the flat community model

in Figure 5.2, and increase the total number of edges by 1. Suppose ES and ES∗

are the edge distribution sequence of the original network and that of the modi-

fied network via adding e(c, h), the L1 distance between them is calculated as fol-

lows: ||ES − ES∗||1 =
∑

ij(
nij

|E| −
nij

|E|+1
)−(n12

|E| −
n12

|E|+1
)+(|n12

|E| −
n∗
12

|E|+1
|)= ( 1

|E| −
1

|E|+1
)
∑

ij nij−(n12

|E| −
n12

|E|+1
)+(|n12

|E| −
n∗
12

|E|+1
|). With

∑
ij nij being calculated only

once within O(l) time, the utility loss of every candidate operation can be easily

calculated in constant time. This observation also applies to the HRG model. Con-

sequently, calculating the utility loss scores of all candidate operations can be pro-

ceed in O(l + t2) time, including spotting the operation with the lowest utility loss.

To sum up, the overall computation time of the second step is O(|V |) + O(l + t2).

In the worst case, when all vertices need to increase or decrease their degrees, t =

max{|V S+|, |V S−|} = |V |. For the flat community model, l = m2 with m being

the number of communities in the model. For the HRG model, l = |V | − 1. There-

fore, the upper bound of the value of l is |V |2. Consequently, the worst-case time

complexity of generating candidate operations is O(|V |2). However, in real cases,

the degree sequence of a social network usually follows a power-law distribution,

resulting in low frequencies of vertices sharing large degree values and high frequen-

cies of vertices having small degree values. In other words, in a social network, it

is very likely that a large amount of low-degree vertices already satisfy k-degree

anonymity and hence do not need to change their degree, i.e., t << |V |. Then, the

number of communitiesm is also far smaller than |V |. Therefore, the running time

of the candidate operation generation process most likely will be much smaller than
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that in the worst case.

The running time of the refinement process depends on the size of the remaining

V S+ or V S− sets. Suppose the size is t, the time complexity of this process is

O(t|V |). Generally, t << |V |, thus t|V | << |V |2.

Based on the above analysis, the worst-case computational complexity of one it-

eration of the k-anonymization process is O(|V |2), but the real running time of this

process in most cases is much shorter. As it is hard to anticipate the number of iter-

ations that the algorithm will run before convergence, we will conduct experiments

to further test the time performance of our algorithm in Section 5.6.

5.5 Discussion

In this section, we further enrich this work by discussing the security of the k-

anonymity scheme against minimality attacks and discuss the extendability of our k-

anonymization algorithm to other k-anonymity schemes e.g., k-neighborhood anonymity.

5.5.1 Privacy Analysis

Minimality attacks first discussed in [98] primarily focus on k-anonymity schemes

on tabular data. As stated in [98], in order to preserve the utility of published data,

k-anonymity mechanisms all have the same underlying principle of minimizing the

distortion to the original data. In other words, k-anonymity algorithms only distort

the input data when necessary. Sometimes, this information can be used by adver-

saries to launch minimality attacks on published data to infer sensitive information

of individuals and jeopardize privacy. In the following, we discuss the minimality

notions defined in our k-degree anonymity algorithm, and show that these notions

will not lead to minimality attacks.

The first minimality notion used in our algorithm is minimizing the distortion on

the degree sequence of the input network (i.e. minimizing the number of edges mod-

ified). We use this notion to generate an objective degree sequence (i.e. the degree
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User Identity Degree 

Alice 4 

Bob 3 
Tom 3 

Michael 3 
Grace 2 

Andrew 2 
Jamie 2 

Anne 1 

 

ͳ × ͳ ʹൗ = ͳ ʹൗͳ ͵ൗ × ͳ ʹൗ = ͳ 6ൗʹ ͵ൗ × ͳ ʹൗ = ͳ ͵ൗͳ × ͳ Ͷൗ = ͳ Ͷൗͳ × ͳ Ͷൗ = ͳ Ͷൗ

(a) Attacker's worst-case back-
ground knowledge

 

Vertex ID Degree 

c 4 

d 4 

g 3 

f 3 

a 2 

b 2 

e 2 

h 2 

 ͳ × ͳ ʹൗ = ͳ ʹൗͳ ͵ൗ × ͳ ʹൗ = ͳ 6ൗʹ ͵ൗ × ͳ ʹൗ = ͳ ͵ൗͳ × ͳ Ͷൗ = ͳ Ͷൗͳ × ͳ Ͷൗ = ͳ Ͷൗ

(b) Vertex degree of the 2-degree
anonymized network

 
User Identity Mapped Vertex ID Probability 

Alice c, d     ͳ × ͳ ʹൗ = ͳ ʹൗ  

Bob 
Tom 

Michael 

c, d     ͳ ͵ൗ × ͳ ʹൗ = ͳ 6ൗ  

g, f     ʹ ͵ൗ × ͳ ʹൗ = ͳ ͵ൗ  

Grace 
Andrew 
Jamie 

a, b, e, h     ͳ × ͳ Ͷൗ = ͳ Ͷൗ  

Anne a, b, e, h        ͳ × ͳ Ͷൗ = ͳ Ͷൗ  

 (c) Attacker's inference probability

Figure 5.5: Minimality attack: attacker's worst-case background knowledge, vertex
degree of published network, and inference probability.

sequence of the published network). We assume that in the worst case, an adversary

has background knowledge of both the identity and degree of every individual ver-

tex of a social network. Figure 5.5a shows the adversary's worst-case background

knowledge of the social network depicted in Figure 5.1a, and Figure 5.5b lists the

degree of every vertex in the published 2-degree anonymized network in Figure 5.1c.

The adversary's goal is to map the real identities of the individuals to the vertices

in the published network. With the minimality notion, the adversary reasons there

must be only one vertex of degree 3 and one vertex of degree 1 having their de-

grees increased, and the degrees of other vertices remain. Therefore, the adversary

infers that Alice with degree 4 must be mapped to a vertex also with degree 4 in the

published network. Since there are two vertices c and d with degree 4, without any

extra information, the probabilities of Alice being mapped to c and d are equal (i.e.
1
2
). However, Bob with degree 3 can be mapped to a vertex either with degree 4 or
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degree 3. Because there are totally three individuals with degree 3 in the original

social network, the probability of Bob being the one that has degree increased is 1
3
,

and the probability that his degree is unchanged is 2
3
. Therefore, the probability of

Bob being mapped to vertex c or d is 1
3
× 1

2
= 1

6
, and the probability of him being

mapped to vertex g or f is 2
3
× 1

2
= 1

3
. Similarly, the mapping probability of every

individual is calculated as shown in Figure 5.5c. Lemma 3 proves that the mapping

probability that an adversary can calculate based on this minimality notion will not

exceed 1
k
.

Lemma 3 Given a published k-degree anonymized social network which is con-

structed by the minimality notion of minimizing the distortion on the degree se-

quence, we assume that in the worst case, an attacker knows the real identity and

degree of every individual in the social network, and she is also aware of the mini-

mality notion. The attacker cannot map an individual to any vertex with probability

larger than 1
k
.

Proof 3 We denote the inferred mapping probability of an individual x to a vertex v

with degree d in the published network as pxv . pxv = p1×p2 where p1 is the probability

that x is mapped to a vertex with degree d, and p2 is the probability that among all

the vertices with degree d, x is mapped to v. In the worst case, with the minimality

notion, the attacker can infer p1 with the maximum probability of 1. According to the

k-anonymity condition, there are at least k vertices in the published network having

degree d. Without any extra information, the attacker can only infer the mapping

from x to these vertices with equal probability. Therefore, the maximum value of p2

is 1
k
. Therefore, pxv ≤ 1× 1

k
= 1

k
.

The second minimality notion used in our algorithm is modifying a network to

achieve k-anonymity by adding and deleting edges which make the smallest utility

changes evaluated by the community-based utility model. For an attacker to use this

notion to infer the details of the edge modification (i.e., anonymization) process then

possibly to further infer user identities, she has to know the utility loss caused by
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every possible edge operation. However, in order to calculate utility loss, she has

to know the community model based on which the utility measure is defined. With-

out the exact community model, the attacker cannot utilize this minimality notion to

make inferences. Therefore, in order to prevent attackers from utilizing the second

minimality notion, when publishing an anonymized network, the community model

constructed should be kept secret. Moreover, revealing the community model will

also provide attackers extra information about the original network besides vertex

degree, which is against the worst-case assumption of our privacy scheme that at-

tackers only know the degree information of vertices. This further explains that the

community model should not be disclosed. However, we do not mind if attackers

know the algorithm used to construct the community model. This is because at-

tackers, based on the construction algorithm and vertex degree information, cannot

reconstruct the community model.

We need to point out that the analysis above is based on the assumption that

attackers only have background knowledge of vertex degree. If attackers have some

extra information about the edges among certain individuals, they may be able to

infer the identities of some vertices with higher probability. For instance, in the

example above, besides the vertex degree information, the attacker knows thatAlice

is connected with Grace and Andrew in the social network, she can further infer

that vertex c is Alice. Because c connects with more than two vertices which can

potentially beGrace and Andrew (i.e., a, b, and h) but the other candidate of Alice

(i.e., vertex d) does not. Therefore, privacy is compromised. We reserve this topic

as an interesting problem to be studied in the future.

5.5.2 Extendability to OtherK-Anonymity Schemes

As mentioned before, the proposed high-utility k-anonymization framework is gen-

eral, and it is applicable to other k-anonymity schemes. In the following, we briefly

explain how to extend the framework (as defined in Algorithm 4) to support k-

neighborhood anonymity. Due to the focus of this work, we only present how to
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estimate local structure information and how to generate candidate edge operations

in the context of k-neighborhood anonymity.

A k-neighborhood anonymized networkG∗(V ∗, E∗) requires that for every ver-

tex v ∈ V ∗, there are at least k− 1 other vertices having isomorphic neighborhoods

as v. The neighborhoodNB(v) of v is a subgraph containing all the vertices within

certain distance d to v and the edges among these vertices. d decides the size of the

neighborhood. To simplify the discussion, we only consider neighborhoods within

a distance of 1 (i.e., d=1), which is a common practice in other work [107]. Unless

otherwise noted, the term "neighborhood" only refers to a neighborhood with d = 1.

The local structure information used by k-neighborhood anonymization is the

neighborhood subgraph of every vertex. Like using the degree sequence to capture

the local degree information of a network in k-degree anonymization, we use the

neighborhood set NS to record the local neighborhood NB(vi) of every vertex vi

of a network, and we try to generate the neighborhood set NS△ of the "nearest''

anonymized network. Again, for a given network G, its "nearest'' anonymized net-

workG△ refers to an anonymized network that satisfies k-neighborhood anonymity

and is generated via the smallest number of edge operations. As generating G△ is

not always possible, we use the neighborhood set NS△ of G△ as the estimation of

the local structure information of G△.

Given G and the privacy parameter k, NS△ has the following properties. First,

NS△ has the same cardinality asNS. Second,NS△ is k-anonymized, meaning that

for eachNB△(vi) ∈ NS△, it has at least k− 1 other isomorphic subgraphs inNS△.

Third, the sum of the graph edit distance from every NB△(vi) to its corresponding

NB(vi) is minimized (i.e., the number of edge operations needed to change G to

G△ is minimized). Again, take the network shown in Figure 5.1a as an example.

Assume k = 2, the neighborhoodNS(vi) and its corresponding target neighborhood

NS△(vi) of every vertex vi are depicted in Fig. 5.6. We group the vertices having

isomorphic neighborhoods in the target anonymized network into one equivalent

group EG, i.e., ∀vi, vj ∈ EG,NS△(vi) = NS△(vj). As shown in the figure, {a, b}
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Figure 5.6: Example of the vertices' neighborhoods and estimated target neighbor-
hoods.

is an equivalent group, so as {c, g}, {e, h}, and {d, f}.

After obtaining NS△, we need to find candidate operations that can direct the

current network to a k-neighborhood anonymized network having the target vertex

neighborhoods NS△. In order to do this, we first identify the vertices whose neigh-

borhoods are not the same as their target neighborhoods and store them in a set V S.

And then, for each of these vertices vi ∈ V S, all the viable edge operations that can

nudgeNB(vi) towardsNB△(vi) are added into a candidate operation set. Continue

the previous example. We find that, to change their current neighborhoods to the

target neighborhoods, both vertex e and vertex d need to delete one edge (vertex)

from their neighborhoods respectively. Consequently, the edge deletion operation

del(e, d) qualifies as a candidate operation. Given the set of all candidate operations,

we calculate the utility loss caused by each of them and perform the operation with

the smallest utility loss. Then, we update V S and regenerate the candidate operation

set.

Obviously, a candidate edge operation serves at least one vertex vi to convert

the neighborhood of vi to its target neighborhood NS△(vi). For example, operation

del(e, d) serves vertex e and vertex d. However, we want to highlight that an edge

operation may affect the neighborhoods of some vertices which it does not meant to

affect, hence the target neighborhoods of these vertices may no long be applicable

after the edge operation is performed. For instance, del(e, d) will also affect the

neighborhood of f . Note that this issue does not exist in k-degree anonymity as a

given edge operation only changes the degrees of the two associated vertices. In

order to make the target neighborhoods consistent in an iteration of the algorithm,

we identify all the vertices whose neighborhoods are not supposed to be affected
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Figure 5.7: Example of 2-neighborhood anonymization

but are changed, as well as the vertices in the same equivalent groups as them, and

exclude them from the updated set V S when we regenerate candidate operations.

The process repeats until no candidate operations are generated. If the obtained

graphG∗ is k-anonymized, the algorithm stops. If not, we regenerate the targetNS△

based on the currentG∗. In this step, the previously excluded vertices are considered,

and their new target neighborhoods are regenerated. To ensure the convergence of

the algorithm, we are slightly biased towards choosing edge insertion operations

among all candidate operations.

Continue the above example. Since there is only one candidate operation del(e, d),

we have no other choices but execute it. All the neighborhoods affected by this op-

eration are illustrated in Figure 5.7a including the neighborhoods of vertices e, d,

and f . As this edge deletion operation is to serve vertices e and d, the vertex that it

does not meant to affect but is actually affected is f . Consequently, all the vertices

that are within the same equivalent group as f (i.e., vertex d) are excluded when

we regenerate candidate edge operations after performing del(e, d). However, we

find that after performing this operation, no candidate operations can be found. As

the network is already 2-anonymized, the algorithm completes. The generated 2-

neighborhood anonymized network is shown in Figurei 5.7b.
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5.6 Experimental Evaluation

In this section, we conduct comprehensive experiments to demonstrate the advan-

tages of the proposed high-utility k-anonymization algorithm. We focus on k-degree

anonymity and implement two anonymization algorithms based on the flat commu-

nity model and the hierarchical community model, respectively referred to as Flat

and HRG. We also implement two existing k-degree anonymization algorithms pro-

posed in [59] as competitors. Note that [59] is the only work in the literature focusing

on k-degree anonymity, and the algorithms are designed to preserve network util-

ity by minimizing the number of modified edges. The first probing method only

considers edge addition operations. It first constructs a target k-anonymized degree

sequence for the input network based on adding the smallest number of edges then

inserts edges to the network to form a k-anonymized network with the desired target

degree sequence. While the second greedy swap method considers both edge addi-

tion and deletion operations. It first derives a target k-anonymized degree sequence

of the input network based on both adding and deleting edges then constructs a new

network with the target degree sequence. In order to make the new network have a

similar edge set to the input network (i.e., minimize the number of edges modified),

it performs edge swap operations on the new network which keep the degree se-

quence intact and maximize the intersection of the edge sets of the new network and

the input network. We refer these two algorithms to as Prob. and Swap respectively.

We use utility and running time as the main performance metrics. Our utility

model is designed based on social network community structure, and it is expected

to preserve social network community structure. Therefore, we evaluate the utility

of a k-anonymized network mainly based on how well it preserves the community

structure of the original network. Community is an important social network prop-

erty, and it is useful to many applications. For example, identifying communities

of customers with similar interests can help online retailers to set up recommen-

dation systems to enhance business opportunities [81], and communities of a large

network can be used to create data structures to efficiently store the network and
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Figure 5.8: Community utility loss caused by anonymization (k = 10).

handle navigational queries [4].

We use the four real-world networks introduced in Section 4.3 in the experiments

including polblogs, facebook, grqc, and route-view. Our experiments run on a

Linux server with 2.67GHz CPU and 128G RAM.

5.6.1 Community Utility

In this section, we evaluate the performance of the algorithms on preserving commu-

nity utility. Similar to Section 4.6.3, we run Clauset and Newman's classic greedy

community detection algorithm [22] on networks and use the Rand index and nor-

malized mutual information (NMI) [30] metrics to compare the communities gener-

ated on an anonymized network with those generated on the corresponding original

network. The details of the two metrics were introduced in Section 4.6.3. That the

values of these two metrics are close to 1 indicates that the community partitions are

very similar.

Figure 5.8 presents the results on the four tested networks. In the experiments,

we set the privacy parameter k at 10. We find that the Rand index values and NMI

values of our Flat and HRG algorithms are all higher than those of the existing Prob.

and Swap algorithms. The Rand index values of our algorithms are all higher than

0.9, and the NMI values of our algorithms are all larger than 0.6 on the four tested

networks. These indicate that our algorithms can generate networks with similar

community structure to the original networks. However, in many cases the exist-

112



 0

 0.5

 1

 1.5

2 5 10 15 20

R
an

d 
in

de
x

K

Prob.
Swap

Flat
HRG

(a) Rand index

 0

 0.5

 1

 1.5

2 5 10 15 20

N
M

I

K

Prob.
Swap

Flat
HRG

(b) NMI

Figure 5.9: Community utility changes with k on polblogs network.

ing algorithms cannot preserve network community structure well, for example, the

Prob. and Swap algorithms on the route-view network. Even though the Rand in-

dex values of these algorithms are high, they are more likely caused by the pairs

of vertices which are not partitioned in the same communities as the corresponding

NMI values are very low. Therefore, our algorithms have great advantages over the

existing algorithms for preserving community utility.

We also find the HRG algorithm that runs based on the hierarchical community

model (i.e., HRG) generally generates networks with better community utility than

the Flat algorithm which is based on the flat community model. The reason is that

the complex HRGmodel captures more detailed information of network community

structure, and it is more sensitive to small numbers of edgemodifications. Therefore,

the anonymization algorithmwhich evaluates utility loss based on this model is more

accurate, thus generating networks that better represent the features of the original

networks.

We also test the utility performance of the four algorithms with increasing k and

present the results in Figure 5.9. We only present the results on the polblogs network,

and the results on the other networks are omitted as they have similar trends. We

find that the utility performance of the four algorithms degrades as k increases. It

is not surprising because in order to achieve higher levels of privacy with larger k,

we need to make more distortions to networks. In the figure, we find our algorithms

outperform the two existing algorithms under all the k settings.
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Figure 5.10: Utility benchmarks (k = 10).

5.6.2 Utility Benchmark

From the above experiments we find the four algorithms generate networks with dif-

ferent community utility. The HRG algorithm generates networks of the best utility

followed by the Flat algorithm and then the Prob. algorithm. The Swap algorithm

generates networks of the worst utility. In this section, we investigate whether the

different utility benchmarks can reflect the real utility of the networks generated by

the four algorithms. There are three utility benchmarks used. The existing algo-

rithms measure utility using the number of modified edges. We propose two novel

utility benchmarks which evaluate the edge distribution changes within and between

a fixed community partition of a network caused by anonymization. One of them

is designed based on a flat community model, and the other is designed based on a

hierarchical community model.

We calculate the utility of the networks generated by the four algorithms based

on the three utility benchmarks respectively and report the results in Figure 5.10.

Figure 5.10a shows the numbers of modified edges of different algorithms on the

four tested networks. According to this utility benchmark, the networks generated

by the Prob. algorithm have the best utility as they have the smallest numbers of

modified edges, the networks generated by the Flat algorithm have higher utility

than those generated by the HRG algorithm, and the networks generated by the Swap

algorithm have the worst utility. This is not consistent with our experimental results

on real community utility. Therefore, the simple utility benchmark used by the ex-

isting algorithms cannot reflect the real community utility of anonymized networks.
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Figure 5.10b and Figure 5.10c show the edge distribution changes caused by differ-

ent algorithms based on the flat and hierarchical community models respectively.

According to these two utility benchmarks, the four algorithms sorted in descend-

ing order of their utility are HRG, Flat, Prob., and Swap. This is consistent with

our experimental results on real community utility. Therefore, both of the two util-

ity benchmarks we proposed can reflect the real community utility of the networks

generated by different algorithms.

5.6.3 Other Utility

The experimental results above have demonstrated that our high-utility k-anonymization

algorithms can preserve network community utility very well. As community struc-

ture is closely related to many important network structural properties, we expect

our algorithms can preserve other types of network utility as well. Therefore, in this

section, we test the utility performance of the algorithms based on two other types

of network utility including centrality utility and shortest path utility.

Centrality Utility

We first evaluate the performance of the algorithms on centrality utility. Similar to

Section 4.6 in Chapter 4, we perform the evaluation based on four basic centrality

metrics including degree centrality, betweenness centrality, closeness centrality, and

PageRank centrality, and we also use the average change ratio of centrality scores

to evaluate how well the anonymization algorithms preserve raw centrality scores

of vertices and use Spearman's rank correlation coefficient (SRCC) to evaluate how

well the anonymization algorithms preserve the ranks of vertices based on centrality.

Figure 5.11-5.14 provide the experimental results. In the experiments, we set the

privacy parameter k at 10. We find from the figures that for three centrality metrics

(i.e., closeness, betweenness, PageRank) our algorithms (i.e., Flat and HRG ) out-

perform the existing algorithms (i.e., Prob. and Swap ) as our algorithms result in

much smaller average change ratios on the raw centrality scores and higher SRCC
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Figure 5.11: Degree centrality utility loss caused by anonymization (k = 10).
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Figure 5.12: Closeness centrality utility loss caused by anonymization (k = 10).

values. However, for degree centrality, the Swap algorithm causes the lowest aver-

age change ratio and the highest SRCC values. It is because the Swap algorithm is

developed based on edge swap operations which intend to keep vertex degree intact.

Therefore, this algorithm makes the smallest distortion on vertex degree. From Fig-

ure 5.11, we observe that even our algorithms do not perform edge swap operations,

they cause very small changes to vertex degree. The average change ratios on the

four tested networks are all smaller than 0.13, and the SRCC values are all larger

than 0.87.

We also observe from the figures that in most of the cases our algorithms cause

very small distortions to the raw centrality scores and the centrality ranks. The av-

erage change ratios of our algorithms are smaller than 0.3 and the SRCC values are

larger than 0.7. However, for the betweenness centrality, we find that our algorithms

cause relatively large average change ratios, which are still much smaller than those

caused by the existing algorithms. This is mainly because of some outlier vertices
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Figure 5.13: Betweenness centrality utility loss caused by anonymization (k = 10).
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Figure 5.14: PageRank centrality utility loss caused by anonymization (k = 10).

which originally have very small betweenness scores. Small increases in the be-

tweenness scores of these vertices during the anonymization process can result in

very large change ratios. Despite the large average change ratios, the SRCC values

of our algorithms are always very high, which means our algorithms can preserve

the ranks of vertices based on betweenness centrality well. Finally, we find the HRG

algorithm generates networks with better centrality utility than the Flat algorithm.

Shortest Path Utility

In this section, we evaluate the shortest path utility performance of the algorithms.

We use the change ratio of diameter which is the longest shortest path length in a

network and the average change ratio of the shortest path lengths between all pairs

of vertices as the metrics. Figure 5.15 shows the results. We find that our algo-

rithms cause smaller changes to the diameters and the shortest path lengths of the

four tested networks compared with the existing algorithms. Especially, the HRG
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Figure 5.15: Shortest path utility loss caused by anonymization (k = 10).
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Figure 5.16: Degree centrality utility changes with k on polblogs network.

algorithm causes no changes to the diameters of the four networks, and the average

change ratios of shortest path lengths of our algorithms are always smaller than 0.2.

These findings demonstrate that our algorithms can preserve shortest path length

information very well. We also observe that the HRG algorithm performs slightly

better than the Flat algorithm.

Other Utility Performance V.S.K

We also test the centrality utility and shortest path utility performance of the four

algorithms with increasing k and present the results in Figure 5.16-5.20. We only

present the results on the polblogs network, and the results of similar trends on the

other networks are omitted. Similar to the findings in Section 5.6.1, we find that

generally the utility performance of the four algorithms degrades as k increases.

In the figures, we find our algorithms outperform the two existing algorithms in

all the tested utility metrics except degree centrality, under all the k settings. The
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Figure 5.17: Closeness centrality utility changes with k on polblogs network.
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Figure 5.18: Betweenness centrality utility changes with k on polblogs network.

Swap algorithm performs the best on degree centrality, but the performance of our

algorithms is comparable.

5.6.4 Running Time

In this section, we evaluate the time performance of the algorithms and report the

results in Figure 5.21. Figure 5.21a shows the running time of the four algorithms on

the four tested networks as k is set at 10. From the figure, we find the Prob. algorithm

achieves the best time performance. The running time of the Flat algorithm is slightly

longer but comparable to that of the Prob. algorithm. Sometimes the running time of

the Swap algorithm and the HRG algorithm can be much longer than that of the other

two algorithms (e.g., on the polblogs and facebook networks). The long running

time of the Swap algorithm is because of the large number of possible edge swap

operations, and the long running time of the HRG algorithm is mainly because of the

the large number of candidate operations.
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Figure 5.19: PageRank centrality utility changes with k on polblogs network.
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Figure 5.20: Shortest path utility changes with k on polblogs network.

Figure 5.21b reports the running time changes of the four algorithms on the pol-

blogs network with increasing k. The results of similar trends on the other networks

are omitted to avoid redundancy. From the figure, we find that the running time of

the Prob., Flat, and HRG algorithms grows fast as k increases. This is because in

order to achieve anonymity with larger k, usually more edges need to be modified.

While the running time of Swap is not sensitive to changing k, but it always remains

high. This is because the Swap method always needs to consider a large number of

possible edge swap operations even with small k. Generally, the time performance

of the Flat algorithm is good and comparable to that of the Prob. algorithm.

To sum up, the comprehensive experimental results clearly demonstrate that the

high-utility k-anonymization algorithms (i.e. Flat and HRG) which are designed

based on the community structure-based utility models can very well preserve net-

work community utility as well as many other types of network utility (i.e., cen-

trality utility and shortest path utility). The advantages of our algorithms in utility
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Figure 5.21: Time performance.

are significant compared with the existing k-anonymization algorithms which con-

trol utility simply based on the number of edge modifications. The HRG algorithm

has better utility performance than the Flat algorithm, however, incurs much more

expensive time cost. Therefore, we recommend that in the cases where time perfor-

mance is critical, people employ the Flat algorithm to achieve good utility with short

running time, while the HRG algorithm is recommended when time performance is

not the main concern to achieve the best utility.

5.7 Summary

In this chapter, we have discovered that existing k-anonymization approaches on

social networks provide good protection for user identity privacy. However, with a

naive utility model which evaluates utility loss based only on the number of edges

modified during an anonymization process, they fail to generate anonymized net-

works with high utility. To solve this problem, we have proposed a high-utility

social network anonymization framework to achieve good privacy protection with

low utility loss. In our approach, we use a novel utility measure which directly

evaluates the changes that an anonymization algorithm makes to network commu-

nity structure. Our utility measure can work with both flat community structure and

hierarchical community structure. We have performed experiments on real-world

datasets and shown that our approach outperforms existing approaches in utility.
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Chapter 6

Conclusion

In this chapter, we summarize the dissertation by reviewing the social network data

preparation problem and the work we have accomplished. Then, we discuss some

promising directions for future work.

6.1 Dissertation Summary

Raw social network data have many undesirable features such as vast, noisy, dis-

tributed, and sensitive, which challenge data analysis and mining research. In order

to enhance data quality and usability and enable successful data analysis and min-

ing tasks, data preparation is indispensable. Social network data preparation is a

complex process which consists of data collection, data cleaning, data reduction,

and data conversion steps. Each of these steps deals with various distinctive chal-

lenging problems. In this dissertation, we study three important problems in social

network data preparation. The first one is the sampling problem of social network

content data in the data collection step, and the second and third ones are the privacy

protection issue and the utility issue respectively in the data conversion step.

In Chapter 3, we perform an exploratory study of user-generated Twitter data

samples obtained from the Twitter stream API, which is the data source for a va-

riety of research and commercial applications. We compare the sample data with

the corresponding complete dataset in many different aspects including basic tweet
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statistics, content representativeness, user coverage, and user interactions in order

to understand the nature of the sample data, their bias, and how well they represent

the complete data stream. We make some interesting observations. For example,

we find that the Twitter data samples with a low sampling rate of 0.96% are good

enough for studying general Twitter user activity patterns, analyzing certain tweet

contents e.g., text terms and url domains; however, for some other tweet contents

such as hashtags, larger samples are preferred in order to obtain accurate results.

We also find that the sample data are biased towards active users and miss lots of

user interaction information, but extending the sampling period and increasing the

sampling rate both help to improve the coverage of the user base and the accuracy

of the interaction-based user popularity estimation. Our findings provide insights

about the sample data obtained from the Twitter stream API and provide incentives

for people to use or not to use them for their research.

In Chapter 4, we discover a new type of privacy attacks on social networks called

connection fingerprint (CFP) attacks, in which attackers utilize the connection in-

formation of an anonymized user to some known public users in a social network to

re-identify the user and compromise identity privacy. We formally analyze the risk

of CFP attacks on real-world social networks and demonstrate these attacks can se-

riously damage user identity privacy. We propose two efficient k-anonymity-based

network conversion algorithms to protect social networks against CFP attacks and

preserve the utility of converted networks. One algorithm is based on adding dummy

vertices. It can resist powerful attackers with the connection information of a user

with the public users within n hops (n ≥ 1) and can preserve the centrality utility

of public users. The other algorithm is based on edge modifications. It is only able

to resist attackers with the connection information of a user with the public users

within 1 hop but preserve a rich spectrum of network utility.

In Chapter 5, we find that existing k-anonymity based algorithms convert net-

works to protect privacy by modifying edges, and they preserve utility by minimiz-

ing the number of edges modified. We find this simple utility model cannot reflect
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real utility changes of networks with complex structure. Thus, relying on it, exist-

ing k-anonymization algorithms cannot guarantee generating social networks with

high utility. To improve utility performance, we propose a novel utility benchmark

which directly evaluates the changes that a network conversion algorithm makes

to network community structure. In addition, we design a general network con-

version algorithm framework with the new utility benchmark which can be used

with various k-anonymity schemes, e.g., k-degree anonymity and k-neighborhood

anonymity. Experimental results on real-world networks demonstrate that the com-

munity structure-based utility benchmark can better reflect real community utility

of converted social networks compared with the existing naive utility model. Our

network conversion algorithms using the new utility benchmark significantly out-

perform existing algorithms in utility.

To summarize, in this dissertation we consider three important problems in social

network data preparation including sample representativeness, privacy protection,

and utility preserving. Our study motivates people to use sampled social network

data more carefully and provides people methods to better preserve the privacy and

utility of social network data. It benefits data mining and analysis tasks by providing

more reliable social network data.

6.2 Future Work

We conclude this dissertation by outlining several interesting and promising research

problems for further work.

In the study of sampled Twitter data, we realize that many Twitter data analysis

applications use the Twitter stream API to obtain the same sampled Twitter data

for various analysis tasks. However, the sample data are good for certain analysis

tasks such as user activity pattern characterization and sentiment analysis, but may

not be suitable for some other tasks such as user network analysis. We think it is

meaningful to study task-specific sampling techniques to generate tweet streams
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that are suitable for different analysis applications. Note that the sample datasets

obtained from the Twitter Stream API are sampled sets of tweets. Although we can

extract user ids and interaction information from tweet data, tweets do not contain

the "follower" and "friend" relationship information declared by Twitter users, which

is important metadata. It is an interesting open question whether these relationships

can be inferred from tweets and the user interaction information that is available in

sample data streams.

In the study of network conversion algorithms against CFP attacks, we find that

in some cases, our algorithms have different utility performance on different net-

works. We think it is interesting to explore the relationship between network struc-

ture and utility performance in future work. Another direction of improvement is

the utility performance of the algorithms on networks with a large number of public

users or when the privacy parameter k is large.

In the study of utility benchmarks in social network privacy protection, we pro-

pose an utility benchmark based on network community structure and demonstrate

its advantage for reflecting real network community utility. It is interesting to study

other practical utility benchmarks which can reflect other different types of network

utility.
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