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Figure 6.15: Total surplus of served passengers: with increasing demand of Ang Mo Kio data
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Figure 6.16: Total cost saving of served passengers: with increasing demand of Ang Mo Kio
data

The number of served passengers is increased if passengers are willing to pay more. When

the willing payment of passengers is 0.9, almost all passengers are served.
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Figure 6.17: Runtime of algorithms: with increasing demand of Ang Mo Kio data
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Figure 6.18: Number of served passengers: with increasing participation ratio and varying
willing payment

6.2.3 Large number of participating passengers

The purpose of this final experiment is to verify the quality of solution of Bottom-up mech-

anism with local search algorithm in large scale instance of Ang Mo Kio demands.

The results are plotted in Figure 6.20 for the number of served passengers measure and
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Figure 6.19: Total direct distance of served passengers: with increasing participation ratio and
varying willing payment

Figure 6.21 for the total direct distance of served passengers measure. It is inferred from this

result that when the ratio of participation increases, the average number of missed passengers

decreases. When only 10 percent Last Mile demands call for the service, average number of

missed passengers is greater than 2. From 20 percent ratio value, number of missed passengers

is smaller than 0.5. The reason for this is when more passengers join the service, it is more

possible for more passengers to have close proximity in geographic locations.
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Figure 6.20: Number of served passengers: with increasing participation ratio

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Number of calling Demands 30.91 62.52 93.50 124.67 157.19 189.15 220.20 251.53 282.67 313.39

Number of Served Passengers 27.95 62.17 93.13 124.14 156.52 188.42 219.35 250.52 281.46 313.27
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Figure 6.21: Total direct distance of served passengers: with increasing participation ratio
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Chapter 7

Conclusion and Future Work

7.1 Mechanism study in Last Mile Risharing problem

In this thesis, we study mechanisms that enable Last Mile non-dedicated taxi ridesharing.

Our main contribution is to provide a framework for route planning and fair cost sharing. In

the operational aspect, we develop a MIP and local search model to solve the specific case

of the problem. In the game-theoretic and microeconomics aspect, we propose a cost sharing

formula and different incentive compatible mechanisms, namely Top-down, Bottom-up and

Raising cost. The efficiency and effectiveness of our proposed mechanisms and algorithms are

carefully investigated by a series of experiments on synthetic and real (Ang Mo Kio) data set

in different metrics. Based on experimental results that compare different methods, with the

focus on fast response solution to maximize number of served demands, we decide to choose

Bottom-up mechanism with local search algorithm to analyze the set of real (Ang Mo Kio)

data. It can be concluded from these experiments that a ridesharing service can be effectively

and efficiently solve Last Mile demands.

Although our work is on mechanisms for a Last Mile non-dedicated taxi sharing system, it

can be extended to other systems. The simplest extension can be implemented by using other

mode of transport different from non-dedicated taxis with fixed capacity to solve Last Mile
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demands, e.g. minibuses or vans. However, the extension to heterogeneous capacity of vehicle

can trade-off the efficiency in runtime of our MIP model for routing problem. Further extension

can be drawn out of ridesharing application, in other game-theoretic problems such as facility

location game or set cover game, our framework can be applied to recover the complete budget

balance.

7.2 Future work on user interface and usability

In this thesis, we do not consider problems of user interface and feedback in implement-

ing a ridesharing service. However, they are important factors for success for any real-time

passenger-centric service such as ours. The first user interface question is how we may im-

plement a software application interface to facilitate interaction between passengers and the

bidding system. It is not easy for first time user to specify their willing payment on an unfa-

miliar notion of the meter rate. In second problem, we need to adapt the model based on real

psychological utility evaluation on the service of passengers. Wrong estimation of utility func-

tion can undermine effectiveness of the service. Hence what is needed is an indepth behaviorial

study to understand the behavior of passengers.

The linear cost sharing formula proposed in this thesis is a simple baseline for implemen-

tation which allows problem to be solved by MIP methods. The framework can be adapted to

other more complex cost sharing formulas.

To implement a Last Mile taxi sharing service, we can utilize existing mobile and web

communication interface and database platforms such as [2], [1],[3]. An additional information

element for willing payment can be simply embedded in request tube in current mobile or

web based software applications. However, auction based protocols can be difficult for first

time passengers in trying to determine their bid values. Tips of supportive information and

suggestion for passengers are necessary. It is infeasible to explain detailed theoretical principles

underlying operating mechanism. so the information presented should be brief but useful.
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I suggest that the following information should be displayed:

• Passengers will be served with priority based on their willing payment on meter rate. This

is the simple and intuitive rule for passengers participating in an auction based protocol.

• As in many route planning app, an approximate comparison among different modes of

transport with Last Mile taxi sharing should be provided. It provides a bounded esti-

mation for opportunity cost to use the taxi sharing service. For example, if the public

transportation cost cp, travel time of public transportation Bp, normal taxi cost 1, direct

travel time of normal taxi s, the bounded taxi meter rate would follow

cp ≤ m(2s−Bp) (7.1)

or

m ≥ cp
2s−Bp

, (7.2)

in which the RHS is lower bound for meter rate willing payment to use taxi sharing

service.

Furthermore, the willing payment rate can be represented as a discrete value instead of

continuous value. Thereby, passengers can choose an option in a set of possible suggested

rate.

• History of past meter rate charge. It can give passengers an intuition of how system is

operated and help them to decide which willing payment should be bid to get served.

• An explicit information of routing and cost allocation solution from the system. For

credibility, passengers should be informed of their trips before they confirm/accept.

• Although information in theoretical principles can be redundant for regular passengers,

we should provide an access to detailed version of explanation. It would make the service

more credible if passengers are content with the information presented.
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• Feedback is prevalent in current ridesharing software applications. We could solicit com-

ments about the fairness of cost sharing from the user of the system.
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[15] Stefan Engevall, Maud Göthe-Lundgren, and Peter Värbrand. The heterogeneous vehicle-
routing game. Transportation Science, 38(1):71–85, February 2004.

[16] Ulrich Faigle, SndorP. Fekete, Winfried Hochstttler, and Walter Kern. On approximately
fair cost allocation in euclidean tsp games. Operations-Research-Spektrum, 20:29–37,
1998.

[17] Jean francois Cordeau. A branch-and-cut algorithm for the dial-a-ride problem. Opera-
tions Research, 54:573–586, 2003.
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recherche en analyse des décisions (Montréal. On the Nucleolus of the Basic Vehicle
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