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A New Approach for Weighted
Constraint Satisfaction

HOONG CHUIN LAU lauhc@comp.nus.edu.sg
School of Computing, National University of Singapore, 3 Science Drive 2, Singapore 117543

Abstract. We consider the Weighted Constraint Satisfaction Problem which is an important problem in
Artificial Intelligence. Given a set of variables, their domains and a set of constraints between variables, our
goal is to obtain an assignment of the variables to domain values such that the weighted sum of satisfied con-
straints is maximized. In this paper, we present a new approach based on randomized rounding of semidefinite
programming relaxation. Besides having provable worst-case bounds for domain sizes 2 and 3, our algorithm
is simple and efficient in practice, and produces better solutions than some other polynomial-time algorithms
such as greedy and randomized local search.

Keywords: constraint satisfaction, randomization, semidefinite programming, approximation algorithm

1. Introduction

An instance of the binary Weighted Constraint Satisfaction Problem (W-CSP) is defined
by a set of variables, their associated domains of values and a set of binary constraints
governing the assignment of variables to values. Each constraint is associated with a
positive integer weight. The output is an assignment which maximizes the weighted sum
of satisfied constraints. W-CSP is a generalization of important combinatorial optimiza-
tion problems such as the Maximum Cut Problem. Many real-world problems such as
scheduling and time-tabling can also be represented as W-CSP. In scheduling for exam-
ple, our task is to assign resources to jobs under a set of constraints, some of which
are more important than others. Most often, instances are over-constrained and no solu-
tion exists that satisfies all constraints. Thus, our goal is to find an assignment which
maximizes the weights of the satisfied constraints.

The purpose of this paper is to describe a novel approach based on semidefinite pro-
gramming. This approach combines the strengths of complete algorithms in terms of
guaranteeing optimality (albeit fractionally) and incomplete algorithms in terms of fast
run times. In line with the rapid increase in the speed of computing and the growing need
for real-time efficient scheduling, it makes sense to explore ways of obtaining provably
better schedules at some extra computational cost, short of going all the way towards the
usually futile attempt of finding a guaranteed optimal schedule.

The highlight of our approach is that the solution obtained has a provable worst-case
bound in terms of weight when compared with the optimal solution. This contrasts with
conventional incomplete algorithms which are empirically good but are not guaranteed
to perform well in the worst case. In this paper, we establish the worst-case bounds for
the class of W-CSP problems with domain sizes 2 and 3. Several interesting NP-hard
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optimization problems fall within this class, including graph 3-coloring, maximum cut
and maximum 2-satisfiability.

Besides being theoretically interesting, the knowledge of the worst-case performance
yields at least three benefits:

1. It gives us some peace of mind that the algorithm will never perform embarrassingly
poorly in the worst case. This assurance is an important consideration, especially in
mission-critical applications.

2. It provides a priori bounds on the optimal solution in polynomial time. This has
implications on problem solving. If we have a complete algorithm to solve our
problem, our approach computes an initial solution which provides a lower bound on
the optimal solution value. On the contrary, if we have an incomplete algorithm, our
approach yields a provable upper bound, thereby allowing us to measure the quality
of solutions produced by the incomplete algorithm without having to compute the
optimal solution.

3. In over-constrained systems, the upper bound helps the user to determine which
constraints should be relaxed so that the instance becomes solvable.

1.1. Related Works

Finding optimal solutions of W-CSP is computationally hard, since W-CSP general-
izes NP-hard optimization problems such as the Maximum Cut Problem. In the CSP
research community, work in W-CSP is not as abundant as work in the standard CSP.
Freuder and Wallace [3, 4] gave the first formal definition of PCSP which is a special
case of W-CSP having unit weights. For PCSP, the objective is to satisfy as many con-
straints as possible. Freuder and Wallace proposed a polynomial time algorithm based on
reverse breadth-first search to solve PCSP whose underlying constraint network is a tree.
For the general PCSP, they proposed a general framework based on branch-and-bound
and its enhancements in [18, 20]. Larrosa and Meseguer [9] proposed heuristics which
can be incorporated into a forward checking algorithm. Incomplete algorithms which
yield near-optimal solutions have also been investigated. These include heuristic repair
methods [21], the connectionist architecture GENET [14] and guided local search [16].
More recently, more efficient heuristic methods have been proposed by Wallace [19] and
Galinier and Hao [6].

In [10], Lau performed a worst-case analysis of local search for PCSP. In [11], Lau
and Watanabe obtained theoretical results for finding approximate solutions for W-CSP.
They proved that even computing a solution to within a constant factor of the optimal
is hard. In this paper, our main purpose is to introduce a new approach for solving
W-CSP based on the work in [11]. We will give a careful account of the mathematical
modeling, the algorithm design, as well as experimental performance of our approach.
The experimental results turn out, to our pleasant surprise, to be much stronger than the
theoretical worst-case bound.
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1.2. Randomized Rounding

Our approach is heavily based on the notion of randomized rounding. Randomized algo-
rithms have proved to be powerful in the design of approximate algorithms for combina-
torial optimization problems. An interesting and efficient algorithmic paradigm is that of
randomized rounding, due to Raghavan and Thompson [13]. The key idea is to formu-
late a given optimization problem as an integer program and then find an approximate
solution by solving a polynomial-time solvable convex mathematical program such as a
linear program. The linear program must constitute a “relaxation” of the problem under
consideration, i.e., all integer solutions are feasible for the linear program and have the
same value as they do in the integer program. One easy way to do this is to drop the
integrality conditions on the variables. Given the optimal fractional solution of the linear
program, the question is how to find a good integer solution. Traditionally, one rounds
the variables to the nearest integers. Randomized rounding is a technique which treats
the values of the fractional solution as a probability distribution and obtains an integer
solution using this distribution. Raghavan and Thompson showed, using basic probability
theory, that the values chosen under the distribution do in fact yield a solution near the
expectation, thus giving good approximate solutions to the integer program.

1.3. Semidefinite Programming

Essentially, we will solve W-CSP using what is known as randomized rounding of a
semidefinite program relaxation. A semidefinite program is the optimization problem of
a linear function of a symmetric matrix of variables subject to linear equality constraints
and the constraint that the matrix be positive semidefinite. An n× n matrix F is said
to be positive semidefinite if and only if xTFx ≥ 0 for all real n-dimensional vectors x.
Semidefinite programming is a generalization of linear programming and a special case
of convex programming. Using interior point methods, one can show that semidefinite
programming is solvable in polynomial time under some realistic assumptions (see [1]).
Semidefinite programming, like linear programming, has been an active research topic in
the Operations Research community; for details, see a good survey written by Alizadeh
[1]. In practice, there are solvers which yield solutions quickly for reasonably large
instances, as our experiments would show.

Our idea is to represent W-CSP as a quadratic integer program and solve a correspond-
ing instance of semidefinite programming. The solution returned by the semidefinite
program is then rounded to a valid assignment by randomized rounding. This approach
yields a randomized algorithm. To convert it into a deterministic algorithm, we apply
the method of conditional probabilities which is a well-known probabilistic method in
combinatorics. The interested reader is referred to Alon and Spencer [2] for details.

Recently, Goemans and Williamson apply a similar approach to find approximate
solutions for the Maximum Cut Problem [7]. Besides having a strong provable worst-
case bound, their computational experiments show that, on a number of different types
of random graphs, their algorithm yields solutions which are usually within 4% from the
optimal solution.
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Our approach offers a polynomial-time algorithm which can be efficiently imple-
mented. Our experiments illustrate that this approach can solve, in real-time, problems
whose sizes are beyond what enumerative search algorithms can handle. It is thus a can-
didate for tackling large-scale optimization problems dynamically. More precisely, we
illustrate experimentally that, for random satisfiable problems with number of variables
and domain sizes �64�2� and �20�5�, this approach yields solutions within 4% from
the optimal, using less than 1 minute CPU time on a SUN Sparc 10 station. This is
significantly better than the other polynomial-time algorithms under comparison.

1.4. Organization of Paper

This paper is organized as follows. Section 2 gives the definitions and notations which
will be used throughout the paper. In Section 3, we introduce the method of conditional
probabilities and derive a linear-time greedy algorithm which can be used to derandomize
our randomized rounding algorithms. We prove that a naive application of the greedy
algorithm always returns a solution whose weight is guaranteed to be a fraction of s times
the total weight, where 0≤ s≤ 1 is the strength1 of the constraints. In Section 4, we show
how to formulate W-CSP by quadratic integer programs. We discuss how randomized
rounding can be used to yield solutions which have a constant worst-case bound for
domain size k ≤ 3. In Section 5, we compare the performance of our algorithm with
other approaches experimentally on random W-CSP instances.

2. Preliminaries

Let V = �1� � � � � n be a set of variables. Each variable has a domain which contains
the set of values that can be assigned. For simplicity, we assume that all domains have
fixed size k and are equal to the set K = �1� � � � � k. A constraint between two variables
i and l is a binary relation R over K×K which defines the pairs of values that i and
l can take simultaneously. Let #R denote the number of such pairs of values. Given
an assignment � � V −→ K, the constraint is said to be satisfied iff the pair (�i��l) is
an element of the relation. The Weighted Constraint Satisfaction Problem (W-CSP) is
defined by a set V of variables, a collection M of constraints, integer k, and a weight
function w �M −→ Z+. The output is an assignment � � V −→K such that the weighted
sum of satisfied constraints (or simply weight) is maximized.

Denote by W-CSP�k� the class of instances with domain size k. For each constraint
j ∈M , let wj�Rj and sj = #Rj/k

2 denote its weight, relation and strength respectively;
let �j and �j denote the indices of the two variables incident on constraint j; and let
cj�u� v�= 1 if �u� v� ∈ Rj and 0 otherwise. That is, cj�u� v� indicates whether the value
pair �u� v� is consistent in constraint j. Let s =∑

j∈M wjsj/
∑

j∈M wj denote the strength
of a W-CSP instance (i.e., the weighted average strengths of all its constraints). Note
that s ≥ 1/k2 because a constraint relation contains at least 1 out of the k2 possible
pairs. A W-CSP instance is satisfiable iff there exists an assignment which satisfies all
constraints simultaneously.
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In this paper, we will formulate a W-CSP instance as a quadratic integer program
(QIP). A QIP has the form:

maximize
∑
i� l

ailxixl +
∑
i

bixi

subject to
∑
i

eijxi = dj for all constraints j

xi integer� for all variables xi�

where xi’s are the decision variables and ail� bi� eij� and dj are coefficients.
We say that a maximization problem P can be approximated within 0 < c ≤ 1 iff there

exists a polynomial-time algorithm A such that for all input instances y of P, the ratio
A�y�/OPT�y� is at least c, where A�y� and OPT�y� denote the objective value of the
solution returned by A and the optimal objective value of y respectively. The quantity
c is commonly known as the performance guarantee or approximation ratio for P. The
ratio is absolute if the denominator is the maximum possible objective value instead of
OPT�y�. In the case of W-CSP for example, the maximum possible objective value is
the sum of edge weights, although the optimal value can be much smaller. This means
that if we can prove an absolute ratio of c, the performance guarantee is at least c.
Observe that the ratio is as close to 1 as the solution is close to an optimum solution.

3. Method of Conditional Probabilities

In this section, we introduce the method of conditional probabilities. We derive an effi-
cient linear-time greedy algorithm which can be used to derandomize the randomized
rounding algorithm presented later. We will also analyze the worst-case performance of
a naive application of the greedy algorithm.

Consider an instance of W-CSP. Suppose we are given an n by k matrix ' = �piu�
such that all pi�u ∈ )0��1* and

∑k
u=1 pi�u = 1 for all 1≤ i≤ n. If we assign each variable i

independently to value u with probability pi�u, we obtain an assignment whose expected
weight is given by:

	W = ∑
j∈M

wj ×Pr)constraint j is satisfied*= ∑
j∈M

wj

( ∑
u� v∈K

p�j�u
·p�j� v

· cj�u� v�
)
�

The method of conditional probabilities specifies that there must exist an assignment
whose weight is at least 	W and that such an assignment can be found deterministi-
cally in polynomial time provided that certain conditional probabilities can be computed
efficiently.

We can construct a complete assignment of expected weight at least 	W by assigning
the variables incrementally via a greedy algorithm described as follows. Suppose we have
a partial assignment with some unassigned variables. If these variables are to be assigned
according to the distribution ', then the expected weight of the resulting assignment can
be computed. Let W̃ be the state variable which stores this expected weight during the
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greedy algorithm. The greedy algorithm is simply to iteratively set an unassigned variable
to the value such that W̃ is maximized over all possible values assignable to that variable.
The greedy (derandomization) algorithm is coded as follows:

procedure Greedy:
set W̃ = 	W ;
for all i = 1� � � � � n do
for all u ∈ K compute W̃u, �∗�
assign i to v s.t. W̃v is maximized;
set W̃ = W̃v;

endfor

In the above algorithm, W̃ is initialized to 	W , since no variables have been assigned
yet. At the beginning of iteration i, W̃ is the expected weight of the partial assignment
where variables 1� � � � � i−1 are fixed and variables i� � � � � n are assigned according to the
distribution '. W̃u denotes the expected weight of the same partial assignment, except
that variable i is fixed to the value u. From the law of conditional probabilities:

W̃ =
k∑

u=1

W̃u ·pi�u�

Since we always pick v such that W̃v is maximized, W̃ is nondecreasing in all iterations.
Hence, at the end of the greedy procedure, we will have obtained a complete assignment
whose weight is at least the expected weight 	W .

Algorithmically, Step �∗� of Greedy can be implemented as follows. By conditional
probability, W̃u is just the current W̃ offset by the change in probabilities of satisfiability
of those constraints incident to variable i, conditioned by assigning i to value u. More
precisely,

W̃u = W̃ + ∑
j incident to i

wj�r
′
j − rj�

where rj (resp., r ′j) stores the probability that constraint j is satisfied given that variables
1� � � � � i−1 are fixed, and the remaining variables assigned randomly (resp., i is assigned
to u and the rest assigned randomly). Letting l be the other variable connected by j� r ′j
is computed as follows:

if l < i (i.e. l has been assigned)
then set r ′j to 1 if ��l� u� ∈ Rj and 0 otherwise
else set r ′j to the fraction  �v ∈ K � �u� v� ∈ Rj  /k�

Clearly, the computation of each W̃u takes O�mik� time, where mi is the degree of
variable i. Hence, the total time needed is O�

∑
mik

2�= O�mk2�, which is linear in the
size of the input.

Hence, to obtain assignments of large weights, the key design issue is to derive the
probability distribution matrix ' such that the expected weight is as large as possible.
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Consider the most basic probability distribution—the random assignment, i.e., for all i
and u, we have pi�u = 1/k. By linearity of expectation (i.e., expected sum of random
variables is equal to the sum of expected values of random variables), the expected
weight of the random assignment is given by,

	W = ∑
j∈M

wj · sj = s
∑
j∈M

wj�

implying that W-CSP can be approximated within absolute ratio s. In the next section,
we will present a more clever choice of ' which will give us an improved ratio.

4. Randomized Rounding of Semidefinite Program

In this section, we present our main algorithm. Essentially, the idea is to represent W-CSP
as a QIP and apply randomized rounding to its semidefinite programming relaxation. The
resulting randomized algorithm is then derandomized into a deterministic algorithm by
the method of conditional probabilities.

Given an instance of W-CSP�k�, we formulate the corresponding 0/1 QIP instance (Q)
as follows. For every variable i ∈ V , define k 0/1 variables xi�1� � � � � xi� k in (Q) such that
i is assigned to u in the W-CSP instance iff xi�u is assigned to 1 in (Q).

Q � maximize
∑
j∈M

wjfj�x�

subject to
∑
u∈K

xi�u = 1 for i ∈ V

xi�u ∈ �0�1 for i ∈ V and u ∈ K

(1)

In the above formulation, fj�x�=
∑

u� v cj�u� v�x�j �u
x�j � v

encodes the satisfiability of con-
straint j and hence the objective function gives the weight of the assignment. Inequality
(1) ensures that every W-CSP variable gets assigned to exactly one value.

Next, convert this 0/1 QIP into an equivalent QIP (Q′) whose variables takes values
�−1�+1:

Q′ � maximize
∑
j∈M

wjf
′
j �x�

subject to
∑
u∈K

x0xi�u =−�k−2� for i ∈ V

xi�u ∈ �−1�+1 for i ∈ V and u ∈ K

x0 =+1

Here, we have f ′
j �x� = 1

4

∑
u� v cj�u� v��1+ x0x�j�u

��1+ x0x�j�v
�. The reason for intro-

ducing a normalizing variable x0 is so that all terms occurring in the formulation are
quadratic, which is necessary for the subsequent semidefinite programming relaxation.
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Having formulated the W-CSP instance as a QIP, the next step is to find an appropriate
relaxation which is polynomial-time solvable. One such candidate is the linear program-
ming relaxation. In [11], it has been shown that linear programming relaxations do not
yield a strong bound compared with semidefinite programming relaxations for small
domain sizes. In this paper, we will only discuss semidefinite programming relaxations.

The essential idea is to coalesce a quadratic term xsxt into a matrix variable ys� t . Let
Y denote the �kn+1�× �kn+1� matrix comprising these matrix variables. The resulting
relaxation problem (P) is the following:

P � maximize
∑
j∈M

wjFj�Y �

subject to
∑
u∈K

y0� iu
=−�k−2� for i ∈ V

yiu� iu = 1 for i ∈ V and u ∈ K

y0�0 = 1

Y symmetric positive semidefinite�

(2)

Here, Fj�Y �= 1
4

∑
u� v cj�u� v��1+y�ju

��jv
+y0��ju

+y0��jv
�.

(P) is a semidefinite program, which can be solved in polynomial time within an
additive factor (see [1]). By a well-known theorem in Linear Algebra, a t× t matrix Y
is symmetric positive semidefinite iff there exists a full row-rank matrix r× t �r ≤ t� B
such that Y = BTB (see for example, [8]). One such matrix B can be obtained in O�t3�
time by an incomplete Cholesky’s factorization. Since Y has all 1’s on its diagonal (by
inequality (2)), the decomposed matrix B corresponds precisely to a list of t unit-vectors
X1� � � � �Xt where any arbitrary column c of B gives the vector Xc. Furthermore, these
vectors have the nice property that Xc ·Xc′ = yc�c′ . The notation Xi ·Xj denote the inner
product of the vectors Xi and Xj .

Hence, by solving the semidefinite program and performing Cholesky’s matrix factor-
ization, we obtain a list of unit vectors, where each vector Xiu

corresponds to a relaxation
of the variable xiu

in the original problem (Q′). This relaxation becomes evident when
we view the allowable values of xi�u (i.e., −1 and +1) as unit vectors in one dimension,
and the relaxation consists of allowing xi�u to be unit vectors in higher dimension space.
The question is therefore how to round these vectors to �−1+1. In our approach, this
is done in a randomized fashion shown below.

Randomized Algorithm We now propose our randomized algorithm for solving a
given W-CSP instance:

1. Solve the corresponding semidefinite program (P) to optimality and obtain an optimal
set of vectors X∗.

2. Construct an assignment for the given instance as follows. For each i, assign vari-
able i to value u with probability 1+X∗

0 ·X∗
i� u/2.
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Note that this rounding scheme works for all domain sizes k since the sum of proba-
bilities for each variable i is equal to

1
2

k∑
u=1

�1+X∗
0 ·X∗

i� u�= 1�

An open question is to analyze the worst case performance of this rounding scheme.
While we cannot fully settle this question, if we choose a different rounding strategy for
the cases of k = 2 and k = 3, we can derive worst-case bounds analytically, as shown
below.

Domain Size k= 2 For this case, we consider the following rounding strategy:

assign variable i to value u with probability 1− arccos�X∗
0 ·X∗

i� u�

4
�

This rounding strategy has the following intuitive meaning. The normalizing vector
X∗

0 is associated with the integer value 1. Hence, the smaller the angle between X∗
i� u and

X∗
0 (i.e., the nearer X∗

i� u is near to X∗
0 ), the higher the probability that xi�u would be 1,

or equivalently, that i would be assigned to u.
Under this scheme, the expected weight of the probabilistic assignment can be shown

to be at least 0.408 times the weight of the optimal solution [11]. The randomized round-
ing step can be converted into a deterministic algorithm using the technique discussed in
Section 3. Hence, we can approximate W-CSP(2) within a worst-case bound of 0.408.

Domain Size k= 3 For the above bound to be applied to the case of k= 3, the technical
difficulty is in ensuring that the sum of probabilities of assigning a variable to the three
values is exactly 1. Fortunately, by introducing additional valid inequalities, it is possible
to enforce this condition, which we will now explain.

Call two vectors X1 and X2 opposite if X1 = −X2. The following lemma is proved
in [11]:

Lemma 4.1 ([11]) Given 4 unit vectors a�b� c�d if

a ·b+a · c+a ·d =−1

b ·a+b · c+b ·d =−1

c ·a+ c ·b+ c ·d =−1

d ·a+d ·b+d · c =−1

then a�b� c� and d must form two pairs of opposite vectors. (QED)

Consider adding the following set of 4n valid equations into (Q′). For all i:

x0�xi�1 +xi�2 +xi�3�=−1

xi�1�x0 +xi�2 +xi�3�=−1

xi�2�x0 +xi�2 +xi�3�=−1

xi�3�x0 +xi�2 +xi�3�=−1
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By Lemma 4.1, the relaxation problem (P) will return a set of vectors with the property
that for each i, there exists at least one vector X̃ ∈ �Xi�1�Xi�2�Xi�3 opposite to X0 while
the remaining two are opposite to each other. Noting that 1− arccos�X0 · X̃�/4 = 0, the
sum of probabilities of assigning i to the other two values is exactly 1. Thus, we have
reduced the case of k = 3 to the case of k = 2, implying that the approximation ratio of
0.408 also holds for k = 3.

5. Computational Experience

In this section, we report our computational experience. Our experiments are conducted
on the SUN Sparc 10 UNIX workstation. Random numbers are generated using the
standard UNIX long random() function, initialized with a random seed which depends
on the time of the day.

We naturally wanted to test our algorithms on hard W-CSP instances. However, we
learnt that for PCSP, there is no localized region of hard problems—hard problems
are located throughout the instance space, with difficulty increasing with increasing edge
density of the constraint graph, increasing tightness of constraints, and naturally, increas-
ing domain size [17]. Our main concern is the performance of our algorithm against other
incomplete algorithms which run in polynomial time. The measure of performance is the
approximation ratio. Since it is time-consuming to compute optimal solutions for reason-
ably large instances, we first experiment on satisfiable instances whose optimal value is
always the sum of all edge weights. This allows us to compute the approximation ratio
without obtaining optimal solutions.

Generation of Random Instances With the above considerations, we generate
W-CSP instances of n variables from a distribution parameterized by the edge prob-
ability 0 ≤ q ≤ 1 and the consistency probability 0 ≤ 6 ≤ 1 according to the following
rules:

1. Generate a random graph G of n nodes such that an edge (i.e., constraint) exists
between any two variables with probability q.

2. To generate a satisfiable instance, we first generate a random assignment �̂ . For
each edge �i1� i2� in G, construct the constraint relation as follows. Insert the value
pair ��̂i1

� �̂i2
� with probability 1 and all other k2 − 1 pairs with probability 6. To

generate a nonsatisfiable instance, we simply insert the value pair ��̂i1
� �̂i2

� with
probability 6.

3. Edge weights are randomly generated in the range [0..999].

This generation method has been used by others and an online (unweighted) imple-
mentation is in [15]

Algorithms Four algorithms are compared.

1. Greedy LS. This represents a naive algorithm for benchmarking purposes. In this
algorithm, we first generate an initial assignment greedily, i.e., arrange the variables
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in a linear order and assign each in sequence the value that maximizes the weighted
sum of satisfied constraints. Then, perform a basic min-conflict local search, i.e.,
move from one assignment to another based on the Min-Conflict Heuristic until
a local optimal is reached (i.e., the Heuristic fails). The Min-Conflict Heuristic is
defined as follows. Select a variable-value pair that minimizes the total weight of
conflicts, i.e., maximizes the weight of satisfied constraint (break ties randomly).
Fail when no such variable-value pair can be found that decreases the weight of
conflicts.

2. Random LS. This is a randomized and iterative version of the min-conflict local
search scheme. First, generate an initial assignment randomly. Then, perform a pre-
scribed number of iterations of the following procedure. Randomly select a variable
in conflict and re-assign a value which minimizes the total weight of conflicts (break
ties randomly). Note that the chosen variable is re-assigned its current value if and
only if no other values can decrease the total weight of conflicts. We set the number
of iterations to be 4000, so as to match the CPU time required by our randomized
rounding scheme.

3. RR LS. This is our rounding algorithm described in Section 4, followed by a basic
min-conflict local search (see above). To solve the semidefinite program, we use the
SDPA solver written by Fujisawa and Kojima [5].

Experiment 1 In the first set of experiments, we fix n = 64 and k = 2 and generate
random satisfiable instances by the abovementioned method. We consider three edge
densities (sparse, medium, and dense; m = (

n

2

)
refers to the total number of edges)

and for each density, we vary the consistency probability from 0.1 to 0.9. For each
case, 10 random satisfiable instances are generated and solved respectively by the three
algorithms. The respective mean approximation ratios are obtained. Table 1 gives the
outcome of the experiment. Figures are rounded to three decimal places and 1.000(−) is
used to denote a value which is rounded to 1.000.

Experiment 2 In the second set of experiments, we fix n = 20 and k = 5. The same
scenario as Experiment 1 is repeated. Table 2 gives the outcome of the experiment.

Observations (Satisfiable Instances)

1. Greedy LS performs well on dense instances, but not so well on sparse ones.

2. Random LS performs consistently well on all instances, achieving at least 98%
optimality for k = 2 and 91% optimality for k = 5.

3. RR LS outperforms other approaches in all cases, achieving 99% optimality for
k = 2 and 96% optimality for k = 5. Furthermore, we observe that, in all cases, the
standard deviation corresponding to each mean approximation ratio is smaller than
those of Greedy LS and Random LS. This means that RR LS gives consistently
good approximation solutions for the instances tested.
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Table 1. Experiment 1

Mean approximation ratios
Consistency

Edge prob �q� prob �6� Greedy LS Random LS RR LS

Sparse �2n/m� 0�10 0�935 0�999 1�000
0�30 0�916 0�994 0�995
0�50 0�930 0�987 0�994
0�70 0�974 0�989 0�992
0�90 0�996 0�998 0�999

Medium �n logn/m� 0�10 1�000 1�000 1�000
0�30 1�000 1�000 1�000
0�50 0�999 1�000 1�000
0�70 0�988 0�997 1�000�−�
0�90 0�991 0�996 0�999

Dense �n2/3m� 0�10 1�000 1�000 1�000
0�30 1�000 1�000 1�000
0�50 1�000 1�000 1�000
0�70 1�000 1�000 1�000
0�90 0�997 0�999 1�000�−�

4. The average CPU time required by our implementation of RR LS is 22.2 seconds for
each instance in Experiment 1 and 10.5 seconds for each instance in Experiment 2.
The CPU time required by our implementation of Random LS is dependent on
the number of iterations. For 4000 iterations, Random LS consumes equal amount
of CPU time as RR LS. The CPU time for Greedy LS is negligible (less than
1 second).

Table 2. Experiment 2

Mean approximation ratios
Consistency

Edge prob �q� prob �6� Greedy LS Random LS RR LS

Sparse �2n/m� 0�10 0�752 0�968 1�000
0�30 0�753 0�914 0�960
0�50 0�911 0�957 0�975
0�70 0�981 0�996 0�999
0�90 1�000 1�000 1�000

Medium �n logn/m� 0�10 0�823 1�000 1�000
0�30 0�751 1�000 1�000
0�50 0�889 0�927 0�968
0�70 0�961 0�980 0�982
0�90 0�999 0�999 1�000

Dense �n2/3m� 0�10 0�893 1�000 1�000
0�30 0�919 1�000 1�000
0�50 0�949 0�929 0�984
0�70 0�927 0�963 0�966
0�90 0�998 0�999 1�000�−�
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From these observations, we make the following statements of comparison:

1. With the same local search (i.e., basic min-conflict) as the post-processing phase,
RR LS far outperforms Greedy LS in all cases. This seems to suggest that a good
initial solution obtained by randomized rounding is able to lead to a better solu-
tion than the greedy initial solution. However, on closer observation, we saw that
RR LS’s initial solution already outperforms the final solution of Greedy LS.

2. With the same amount of CPU time spent on both Random LS and RR LS, the
latter gives better solutions. This suggests that by investing in some extra algorithmic
rigour, we can derive solutions which a simplistic local search cannot achieve, even
when given a large number of iterations.

Experiments 3 and 4 In the third and fourth sets of experiments, we generate non-
satisfiable instances and measure the absolute ratios (i.e., the denominator is the total
number of constraints instead of the optimal number of satisfiable constraints). Absolute
ratios are measured because it is intractible to obtain optimal solutions via exhaustive
search with large n. Again, we fix n = 64, k = 2 and n = 20, k = 5 respectively. The
same scenario as Experiment 1 is repeated. Tables 3 and 4 give the outcome of the
experiments.

Observations (Non-Satisfiable Instances) The superior performance of RR LS por-
trayed in Experiments 1 and 2 do not seem to carry over to Experiments 3 and 4. In
general, however, RR LS still performs better than the other two approaches. Particularly,
Random LS performs slightly better than RR LS in only 6 out of the 30 ratios.

Table 3. Experiment 3

Mean absolute ratios
Consistency

Edge prob �q� prob �6� Greedy LS Random LS RR LS

Sparse �2n/m� 0�10 0�244 0�277 0�264
0�30 0�555 0�571 0�579
0�50 0�769 0�774 0�792
0�70 0�904 0�936 0�933
0�90 0�984 0�992 0�997

Medium �n logn/m� 0�10 0�214 0�215 0�218
0�30 0�472 0�479 0�479
0�50 0�662 0�669 0�661
0�70 0�846 0�852 0�856
0�90 0�977 0�980 0�981

Dense �n2/3m� 0�10 0�162 0�161 0�163
0�30 0�387 0�389 0�390
0�50 0�592 0�593 0�594
0�70 0�784 0�785 0�786
0�90 0�950 0�957 0�952
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Table 4. Experiment 4

Mean absolute ratios
Consistency

Edge density �q� prob �6� Greedy LS Random LS RR LS

Sparse �2n/m� 0.10 0.455 0.490 0.503
0.30 0.752 0.799 0.825
0.50 0.909 0.921 0.963
0.70 0.977 0.997 0.996
0.90 0.984 1.000 1.000

Medium �n logn/m� 0.10 0.367 0.390 0.395
0.30 0.659 0.652 0.662
0.50 0.822 0.848 0.870
0.70 0.956 0.964 0.977
0.90 0.997 0.994 1.000

Dense �n2/3m� 0.10 0.298 0.326 0.313
0.30 0.597 0.605 0.612
0.50 0.787 0.794 0.809
0.70 0.933 0.941 0.943
0.90 0.996 0.999 1.000
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Note

1. For standard unweighted CSP, this measure is often known as looseness.
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