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ABSTRACT 
 
 

In this paper, we expand upon previously reported results of a dynamical systems model for 

the impact of plant processes and programmatic performance on nuclear plant safety risk. We 

utilize both analytical techniques and numerical simulations typical of the analysis of nonlinear 

dynamical systems to obtain insights important for effective risk management. This includes use 

of bifurcation diagrams to show that period doubling bifurcations and regions of chaotic 

dynamics can occur. We also investigate the impact of risk mitigating functions (equipment 

reliability and loss prevention) on plant safety risk and demonstrate that these functions are 

capable of improving risk to levels that are better than those that are represented in a traditional 

risk assessment. Next, we analyze the system response to the presence of external noise and 

obtain some conclusions with respect to the allocation of resources to ensure that safety is 

maintained at optimal levels. In particular, we demonstrate that the model supports the 



importance of management and regulator attention to plants that have demonstrated poor 

performance by providing an external stimulus to obtain desired improvements. Equally 

important, the model suggests that excessive intervention, by either plant management or 

regulatory authorities, can have a deleterious impact on safety for plants that are operating with 

very effective programs and processes.  Finally, we propose a modification to the model that 

accounts for the impact of plant risk culture on process performance and plant safety risk. We 

then use numerical simulations to demonstrate the important safety benefits of a strong risk 

culture. 

 

KEYWORDS: Nonlinear Dynamical Systems, Process Model, Risk Management 

 

INTRODUCTION 

 

In a previous paper [1], we presented an alternative approach to addressing the issue of the 

impact of plant programmatic and process performance on nuclear power plant safety risk. We 

developed a dynamical systems model that describes the interaction of important plant processes 

on nuclear safety risk and discussed development of the mathematical model including the 

identification and interpretation of significant inter-process interactions. We also performed a 

preliminary analysis of the model that demonstrated that its dynamical evolution displays 

features that have been observed at commercially operating plants. From this analysis, a few 

significant insights were presented with respect to the effective control of nuclear safety risk, the 

most important example being that significant benefits in effectively managing risk can be 

obtained by integrating the plant operation and work management processes such that decisions 

are made utilizing a multidisciplinary and collaborative approach. Finally, we noted that 



although the model was developed specifically to be applicable to nuclear power plants, many of 

the insights and conclusions obtained are likely applicable to other process industries. 

 

In this previous paper, a dynamical systems model was developed that accounted for the 

impact of the operations (O), work management (W), equipment reliability (E) and loss 

prevention (L) functions on plant risk (R). These functions were defined as a mapping over the 

domain space [-1, 1] with Xi = -1 defined to correspond to completely ineffective process 

performance (i.e. a process for which there is no confidence that it will achieve its intended 

function), Xi = 1 to completely effective process performance (i.e. a process for which there is 

complete confidence that it will achieve its intended function) and Xi = 0 to be the point of 

indifferent performance. Here we obtained the model (1) 

R t O t W t( ) ( ) ( )+ = +1   
O t O t W t W t O tWO WO( ) ( ) ( ) ( ) ( )+ = + +1 λ μ   

W t W t O t E t L t O t W t E t W tOW EW LW OW EW( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )+ = + + + + +1 λ λ λ μ μ  (1)
E t a E t a E t( ) ( ) ( )+ = +1 1 2

3   
L t b L t b L t( ) ( ) ( )+ = +1 1 2

3 .  
 

In this model, the coefficient λjk represents the linear coupling of process j on process k. As an 

example, λOW represents the influence of the operations process on decisions made in the work 

management process. Similarly, λWO represents the influence of the work management process 

on decisions made in the operations process. The λjk thus provide a representation of how much 

one process influences the other process in a unilateral manner. The coefficients μjk represent the 

interactive (collaborative) coupling that occurs from process j on process k. Thus, μWO represents 

the degree to which the operations and work management functions collaborate in operational 

decision-making. In both cases, small values of the coupling coefficients (λ, μ ~ 0.01 – 0.05) 



indicate minimal interaction between the processes, whereas large values (λ, μ ~ 1) indicate 

significant levels of interaction.  

 

As discussed in [1], we wish to reiterate that the primary benefit of this model is not in its 

capacity to provide detailed quantitative estimates of changes in plant risk. The significance of 

the model is that it provides a theoretical construct that can account for some of the features of 

the impact of plant management and processes on commercial nuclear power plant safety risk. 

As such, its analysis permits the development of insights that can be used to develop and 

implement effective strategies to control safety risk at these facilities. As will be discussed in this 

paper, the insights obtained from the model analysis qualitatively corroborate the results of 

previous research and the opinion of numerous experts on the importance of management and 

process factors to plant risk. Thus, the model can provide a construct from which these strategies 

can be evaluated prior to implementation.  

 

In the analysis of this model in [1], we demonstrated that the risk mitigating functions 

(equipment reliability and loss prevention) possessed stable operating points at E = L = 0 (i.e. the 

point of indifferent operation). Thus, we obtained an important simplification which permitted 

use of analytical techniques. This simplification resulted in what we termed the “ROW” model 

R t O t W t( ) ( ) ( )+ = +1   
O t O t W t W t O tWO WO( ) ( ) ( ) ( ) ( )+ = + +1 λ μ  (2)

W t W t O t O t W tOW OW( ) ( ) ( ) ( ) ( )+ = + +1 λ μ .  
 

In addition to its utility in facilitating analysis, this simplified model also is important in that it is 

generically applicable across a wide variety of process industries that either have not 

implemented risk management functions and processes or where their impact is not significant. 



 

 

BIFURCATIONS AND CHAOTIC DYNAMICS OF ROW SYSTEM 

 

In [1], we demonstrated the system (1) possesses two fixed points. The first is located at the 

origin (i.e. ( ) and corresponds to the level of risk inherent in the 

plant design and that which is estimated in the probabilistic risk assessment (PRA). Analysis of 

this fixed point demonstrated that it is a point of unstable equilibrium with respect to 

programmatic and process performance. The model also produced a second fixed point at  
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WO
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μ

0 0 . (3)

 

Analysis of the stability of this fixed point demonstrated that, for values of the coupling 

constants that are not too large, the point represents a stable equilibrium. This fixed point lies in 

the negative portion of the {R,O,W} phase subspace. Thus, operation at this fixed point is 

indicative of a higher level of plant risk than that inherent in the design and estimated in a PRA. 

This result is not unexpected. In practice, routine operational and maintenance activities 

constantly alter the risk profile and the plant will not remain at its level of inherent design risk. 

 

One of the characteristics of nonlinear dynamical systems is that small changes in the system 

parameters can lead to large qualitative changes in the behavior of the system. Because the 

model presented here is nonlinear, it also can be expected to demonstrate these characteristics. 

From a nuclear safety viewpoint, since these regions are indicative of less predictable dynamics, 

they are regions to be avoided. To analyze our system for these effects, we use the simplified 



ROW model (2) assuming the additional simplification in the interprocess couplings described in 

[1]; i.e., we set λWO = λOW = λ and μWO = μOW = μ. With this simplification, the system of 

equations becomes 

R t O t W t( ) ( ) ( )+ = +1   
O t O t W t W t O t( ) ( ) ( ) ( ) ( )+ = + +1 λ μ  (4)

W t W t O t O t W t( ) ( ) ( ) ( ) ( )+ = + +1 λ μ .  
 

For this system, the origin is an unstable fixed point and the second fixed point reduces to (-2λ/μ, 

-λ/μ, -λ/μ). The primary motivation for this simplification is to facilitate analysis of the model 

and develop useful insights. We note that setting the interprocess coupling parameters equal to 

each other may not be appropriate for all applications of the model to real plants. However, there 

are situations in which it is reasonable to expect the couplings between processes to be roughly 

equal. As one example, when collaborative decision-making between processes is strong (i.e. μ 

predominates over λ), it is likely that this collaboration will be reciprocal. Thus, if the work 

management process inputs collaboratively in operational process decision-making, it is 

reasonable that the converse also will apply.  

 

For many dynamical systems, a stable fixed point can change stability as a control parameter 

is varied. At a critical threshold of the parameter, this stable fixed point can become unstable and 

be replaced by a system which oscillates between two points which are different from the 

original stable point. For a system X(t), a period two solution occurs for X(t+2) = X(t) ≠ X(t+1) 

[2]. Solving (4) for this condition indicates a period two bifurcation can occur for λ > 2. At 

values greater than this, system bifurcations are possible. Thus, the model indicates that as the 

individual processes are driven by internally generated objectives, their integrated impact on 

other plant programs and safety risk can result in unanticipated results. Additionally, as this 



linear coupling term is increased further, the system can undergo additional bifurcations leading 

to the period doubling route to chaos. To provide an example of this behavior, Figure 1 shows a 

bifurcation diagram for λ = 5 as the parameter μ is increased. In this diagram, performance of the 

operations function (O) is displayed. Behavior of plant risk and the work management process is 

similar. 

 

In this diagram, the system bifurcates to a period two attractor at the value μ = 4.0. At 

approximately μ = 4.74 the system bifurcates again into a period four attractor. This process 

continues with further period doubling bifurcations. Between approximately 4.8 and 4.94, a 

period three attractor is present. This region is particularly significant because existence of a 

period three orbit implies chaotic dynamics [3]. This follows from Sharkovskii’s Theorem [4, 5]. 

This theorem provides a scheme for ordering the integers such that the existence of a period k 

orbit implies the existence of periodic orbits for every higher ordered period. In this scheme, 

consider the following ordering of all integers [12, p.135]  

3 ► 5 ► 7 ► … ► 2·3 ► 2·5 ► 2·7 ► … ► 2n·3 ► 2n·5 ► 2n·7 ► … ► 2n ► … ►24 
► 23 ► 22 ►21 ► 1 

(5)

 

with n  ∞. In this sequence, the symbol ► should be understood to mean “follows” in the sequence. 

Sharkovskii’s theorem states that the existence of a period j orbit implies the existence of all 

periodic orbits of period k where k follows j in the ordering given in (5). For example, a period 8 

orbit implies at least one period 4 orbit, which implies at least one of periods 2 and 1 also. Since three is 

the last number in the sequence, existence of a period three orbit implies all other periodicities, 

and thus chaotic dynamics. Thus, the presence of a period three orbit in Figure 1 indicates that 

this system is capable of producing chaotic dynamics. 

 



There are two additional items of significance with respect to this diagram. First, from a risk 

management perspective, since performance changes rapidly in this region of the {R,O,W} phase 

space, it will be difficult to effectively manage plant risk. Thus, these regions should be avoided. 

Since values of λ this large are indicative of the individual process decision-makers driving the 

decisions to meet their own objectives, these results indicate that individual departments and 

work groups unilaterally pursuing their own agendas can have a detrimental impact on risk, with 

the results of the decision-making process not always being adequately foreseen. However, a 

second significant item relates to the behavior as μ is increased. At a sufficiently large value of μ, 

which is indicative of the degree of collaboration between the operations and work management 

processes, the results again become completely predictable (with significant risk reduction). This 

is indicative of the collaboration between the majority of the organization’s members 

outweighing the individual agendas of the few individuals attempting to control the decision 

process. In the illustration presented here, μ is extremely large (μ = 5) which is indicative of an 

extremely high level of interorganizational cooperation; and one which probably is not 

achievable in practice. Thus, we obtain the insight that collaboration between the organizations 

responsible for the operations and work management processes is an important component in 

effectively managing plant risk and it can be concluded that it is not just the interaction between 

the processes which is the important characteristic for managing risk, but the extent to which this 

interaction is collaborative in nature. Therefore, to effectively control plant risk, organizations 

should strive to maximize the degree of collaboration in the operations and work management 

decision-making processes. 

 

 



IMPACT OF RISK MITIGATION FUNCTIONS 

 

In a commercial nuclear power plant, both the equipment reliability and loss prevention 

functions are specifically intended to monitor performance, detect degraded conditions and 

specify appropriate corrective actions for plant structures, systems and components. Thus, these 

functions can be viewed as specifically addressing nuclear safety risk. Equipment reliability 

encompasses those engineering and maintenance functions that specifically address the reliability 

and availability of plant hardware. This function includes activities such as:  

• developing and maintaining a long-term maintenance plan (preventive and predictive 

maintenance programs),  

• conducting surveillance and performance tests, 

•  analyzing performance and reliability of structures, systems and components, 

•  performing predictive maintenance. 

Similarly, loss prevention encompasses those engineering and business functions that 

specifically address the effectiveness of processes that prevent or mitigate safety consequences 

that may occur due to unexpected events. This function includes activities such as: 

• providing security measures, 

• providing performance monitoring and improvement services, 

• maintaining licenses and permits, 

• performing emergency planning, 

• providing fire protection. 

 



The first question to be addressed is to what extent does good performance of either of these 

programs compensate for poor performance in plant operations and work management. To 

investigate this relationship, plant operations and work management performance were 

simultaneously set to poor performance at a level which is representative of the lowest level 

which likely would be tolerated by either plant management or the regulatory authorities. This 

minimum level of acceptable performance was set at X = -0.1 for any of the modeled processes, 

(i.e. X = {R,O,W,E,L}). This level was selected based on the following reasoning. Since the 

industry is strictly regulated, the permitted level of plant performance will not be allowed to 

deviate far from the level of inherent risk. Historical actions of the United States Nuclear 

Regulatory Commission issuing shutdown orders to plants for management deficiencies and 

plant operators taking similar self imposed actions when performance degradations are identified 

lend support to the conclusion that significant performance degradation will not be tolerated. 

Thus, choosing a negative 10% deviation within the domain space of one or more of the modeled 

processes provides a reasonable estimate of the maximal degraded condition that would be 

considered acceptable before significant corrective actions (i.e. plant shutdown by the plant 

operator or regulatory body) would be taken. 

 

The benefit of the risk mitigating functions can be shown explicitly by observing their effects 

on plant risk. Figure 2 provides an example of where effective risk mitigating functions can 

operate to overcome poor initial performance of the operations and work management functions. 

In this simulation, the representative values for process couplings were chosen so that the 

dominant interactions were linear; thus the beneficial impact of interactive decision-making was 

present but not dominant. Also, the couplings of the risk mitigation functions were taken to be 



only half that of the quadratic couplings between the operations and work management 

processes. This led to the following selection of coupling parameters for the demonstration: λWO 

= λOW = λ = 0.5, μWO = μOW = μ = 0.2, and λLO = λEW = λLW = μEW = 0.1. To permit illustration of 

the effect of these functions, both were assumed to possess highly qualified staff with significant 

plant experience (a1 = b1 = 0.8). For this case, increasing the initial performance of the equipment 

reliability and loss prevention functions to E(0) = L(0) = 0.4474 results in these processes 

eventually reversing the trend in increasing plant risk and reducing it below the inherent level. 

Note that this initial value of E(0) / L(0) represents a critical value (to four significant figures). 

For initial performance below this point, the loss prevention functions are not capable of 

restoring risk performance to an acceptable level; whereas better initial performance of these 

functions will restore performance faster. We note that we interpret R  1 for t > 30 as the risk 

mitigating functions operating at a sufficiently high level of performance that they are capable of 

reducing plant risk well below the inherent level. An example of this would be the case where 

the plant’s predictive and preventive maintenance programs are functioning effectively so that 

observed equipment failure rates are significantly below the levels that have been assumed in the 

PRA. 

 

The results displayed in Figure 2 provide an additional insight which is significant to the 

management of nuclear plant safety risk. In this example, the equipment reliability and loss 

prevention functions were capable of altering the performance of the operations and work 

management processes sufficiently to reverse the deleterious trend in plant risk. However, these 

dynamics required a significant period of time to occur. During this time, plant risk performance 

remained in a degraded state. This behavior reinforces the conclusion that management must 



continually focus on maintaining strong performance for those plant processes that provide a 

direct impact on risk, i.e. operations and work management. It also indicates that the specific risk 

mitigation processes will be maximally effective at controlling risk only if the operations and 

work management functions are already operating at an effective level.      

 

EFFECTS OF ADDITIVE NOISE 

 

In any practical application of the dynamical risk model to analyze actual plant data, there is 

anticipated to be a significant degree of uncertainty in the values of the estimated coupling 

constants and in the actual level of process performance. This problem is exacerbated by the fact 

that there do not exist any direct measures of these parameters. Currently, an assessment 

approach has been developed [6] and preliminary results reported [7] that utilizes a structured 

assessment to evaluate the effectiveness of risk management at operating plants. Further research 

is being conducted to quantify these results so that they can be trended over time and used to 

develop estimates of the model parameters. Because the model is nonlinear, system dynamics 

possess strong sensitivity to initial conditions. Thus, these uncertainties will result in uncertainty 

in the model predictions. Due to this, it is important to analyze these effects. An effective method 

of simulating this effect is to introduce noise into the model equations. This noise can be viewed 

as being from two distinct sources. First, the uncertainty of the values of the coupling constants 

and actual performance provide a source that is internal to the system. This type of noise is 

usually called “multiplicative noise” or “dynamical noise” and is expected to be random in 

nature. Thus, it is well modeled as white noise. Second, the external environment also provides a 

source of noise. This type of noise typically is referred to as additive noise. Sources of this type 



of noise can include implementation of new regulatory requirements, application of new business 

practices, etc. However, many of these external contributions (for example, implementation of U. 

S. Nuclear Regulatory Commission (NRC) Regulatory Oversight Program (ROP) requirements 

safety system performance monitoring) specifically are intended to improve plant safety or 

performance. In the long term, they would be manifest as improvements in the couplings 

between the plant processes or as reductions in observed equipment failure rates or frequency of 

human error. However, in the short term, their effects could be manifest as colored noise, i.e. 

noise which does not have the same power distribution per unit bandwidth anywhere in the 

spectrum [8]. However, since this noise is expected to provide a positive bias, modeling it as 

white noise will provide conservative results from a plant safety perspective. Thus, in this study 

only white noise was considered. 

 

To study this effect, the nuclear plant risk model equations were modified to provide additive 

noise to each term. Thus, for the model in which risk culture is not included (see next section), 

the model equations become 

)()()()1( ttWtOtR Rε++=+   
)()()()()()1( ttOtWtWtOtO OWOWO εμλ +++=+   

)()()()()()()()()()1( ttWtEtWtOtLtEtOtWtW WEWOWLWEWOW εμμλλλ ++++++=+ (6)

)()()()1( 3
21 ttEatEatE Eε++=+   

)()()()1( 3
21 ttLbtLbtL Lε++=+   

 

with εi(t) additive random noise for the i-th process. For this study, both uniformly and normally 

distributed noise centered about zero were analyzed. Results obtained were similar, thus we will 

report on the results obtained from the uniformly distributed case. For each calculation, the 

system evolution for 60 iterates (representative of 5 years at a specified monthly monitoring 



interval) was determined. At the end of this period, the systems were evaluated to ascertain if the 

risk had increased or decreased at the end of the period. An ensemble of 1000 systems were 

permitted to evolve for each set of noise over the range [-e, e] with e varied from 0 to 0.30 in 

increments of 0.005. In all simulations, the plant initially was set at the inherent level of risk due 

to its design (i.e. R(0) = 0) and all programs were set to the indifferent level of performance 

(O(0) = W(0) = E(0) = L(0) = 0). The statistic measured was the fraction of systems which 

achieved improved risk performance at the end of the simulated period, i.e. 

S ≡ Number of systems with R(t=60)>0 / Total number of systems. (7)
 

We note that simulating system evolution over a 5 year timeframe without any modification to 

the coupling parameters may be considered to be unrealistic. Changes in business and regulatory 

conditions certainly require some response to plant operating practices over this time period. 

However, as described in [1] (and additional references cited therein), nuclear power plant 

operation has been characterized as a “machine bureaucracy”. Thus, any changes that are 

implemented require significant periods of time to propagate through the system and the impact 

of them to be made manifest. Experience with regulatory enforced shutdowns in the United 

States indicates a long time is required to improve poor performance (typically two years 

duration for the plant shutdown with several more years of closely monitored operation required 

to attain strong levels of performance). Thus, by examining the evolution of the system over the 

identified 5 year period, one can obtain some insight into the magnitude and relative timeframe 

of a perturbation required to impact performance.    

 

For the initial application of noise to the model, each program was assumed to operate 

independently of every other program; i.e., all coupling constants were set equal to zero. As 



expected, the system obtained a value of approximately 0.5 for the S statistic regardless of the 

level of noise input. Next, the Operations and Work Management functions were assumed to be 

present and interactive. However, the risk mitigating Equipment Reliability and Loss Prevention 

functions were assumed to not contribute. As discussed earlier, this model is representative of a 

much broader class of industrial facilities for which the risk mitigating functions are either not 

present or only recently implemented. Direct couplings between O and W were assumed to be 

moderate (λWO = λOW = 0.25) and the interactive coupling to be occasional (μWO = μOW = 0.1) 

where the interpretation of the coupling values is as described in [1]. These values were selected 

because they are believed to represent typical values for domestic commercial nuclear plants 

currently in operation. They also are values which are well below that required for bifurcations to 

occur. Since the additive noise is symmetrically distributed about zero, we expect the S statistic 

also should be near S = 0.5 for all values of additive noise. This result was obtained via the 

simulation and is shown in Figure 3. Similar results were obtained when the equipment 

reliability and loss prevention functions were included under the same conditions. 

 

Next, we investigated the impact of additive uniformly distributed noise for the case of an 

initial positive performance of the risk mitigating Equipment Reliability and Loss Prevention 

functions. Because these programs explicitly are intended to limit plant safety risk and improve 

operational performance, they would be expected to increase the plant’s risk performance (R). 

Thus, as E(0) and L(0) are increased, the statistic S also should increase with S  1 as the initial 

performance of these functions becomes sufficiently effective. Since the noise is symmetrically 

distributed about zero, higher amounts of noise would be expected to impact performance by 

reducing S as the noise level increases. Figures 4(a) and (b) provide results for two of the cases 



analyzed. Figure 4(a) displays results for the equipment reliability and loss prevention functions 

initially slightly effective (E(0) = L(0) = 0.01) while Figure 4(b) provides results for the case of 

moderately effective initial performance (E(0) = L(0) = 0.1). From these curves, one can see that 

as the initial performance level of E or L increases, S also increases. However, for a given initial 

condition, increasing the amount of noise limits the extent to which S increases; i.e. if εl 

represents the low noise state and εh the high noise state with |εl| < |εh|, then S(εl) > S(εh)). Similar 

calculations were performed for an initial negative performance of the risk mitigation functions 

with results that basically mirrored those for the case of E and L having initially good 

performance. 

 

In the previous analyses, the additive noise was considered to be induced external to the 

system and provide a stochastic component to performance. This noise can be interpreted as the 

effects due to the external environment and includes factors such as perturbations due to the 

general business climate and responses to regulatory mandates. The results obtained can be 

interpreted in the following manner. For initial operation of the plant at indifferent levels of 

performance and coupling parameters that are believed to be representative of current 

commercial plants, deviation from the inherent risk level is sensitive to the external noise 

imposed on the system. This result can be explained by the external environment having a 

roughly equal potential to provide a positive or a negative effect. As an example of a negative 

impact, a general economic slowdown can result in decreased operating revenue for the plant 

owner. These business conditions will impose additional economic constraints on the plant that 

can be manifest by items such as staff reductions or deferred maintenance. An example of a 

positive effect would be the implementation of new information management software that 



increases personnel efficiency and, thus, results in improved performance. However, there is 

concern that some recent changes in the industry, particularly the effects due to the deregulation 

of electrical generation, could result in economic pressures to reduce costs with potential for 

concomitant reduction in effective risk management. This external influence could be modeled 

by the addition of colored noise that provides a negative performance bias to each of the 

processes. In contrast, programmatic and process changes that are intended to address identified 

deficiencies can be modeled (at least in the short term) by the addition of colored noise that 

provides a positive performance bias to each of the processes. These conditions were not 

evaluated here and constitute a task for future research.   

 

These results suggest several conclusions that could be drawn with respect to the effect of 

external influences and the interactions with the specific risk management functions of 

equipment reliability and loss prevention. For cases where performance of these functions is 

poor, external perturbations typically produce a beneficial effect. This effect also increases as the 

magnitude of the influence is increased. This result can be interpreted in the following manner. 

Since performance of these functions is initially poor, externally induced events have a greater 

likelihood of providing beneficial changes in performance. As an example, for plants with 

identified degraded performance levels, either the plant owner or the regulatory authority will 

attempt to identify the degradation and implement actions to address their basic causal factors. 

Although not all of these changes will provide the intended effect, the majority will, and thus 

overall performance can be anticipated to improve. Additionally, the poorer the initial 

performance, the greater are the changes that are necessary to correct the situation. Thus, the 

dynamical systems model provides support for the commonly accepted premise that, for complex 



technologies which have the potential to impact public health and safety, regulation by an 

unbiased external agency is an important element in ensuring that performance degradations that 

can impact the public do not occur. Additionally, the result of these simulations also suggests 

that these regulatory resources are best expended on facilities which demonstrate deficient 

performance levels. 

 

A second conclusion can be drawn from the case of effective performance of the risk 

management functions. In this case, the addition of external noise typically produces a 

detrimental effect which increases as the noise level increases. This result indicates that for well 

functioning programs, most external stimuli are more likely to degrade performance than to 

enhance it. This result also is not surprising. Systems that are operating at high efficiency 

typically require significant effort to maintain this high level of effectiveness. For plants which 

have developed effective risk management, the resources required to achieve these benefits need 

to be used in a manner which is effective and efficient. Because these resources are limited, 

responding to external perturbations will detract from performing the required beneficial risk 

management functions. Since most of these external influences will not provide as much benefit 

to performance as the functions typically performed by these resources, they will tend to detract 

from the good overall performance. From a regulatory perspective, this suggests that the amount 

of external intervention should be minimized at plants which exhibit effective risk management 

and operational performance. For example, in the extreme case of a plant that possesses 

comprehensive and effective risk management and demonstrates exemplary performance, the 

regulatory function could theoretically be limited to monitoring and trending performance. We 

note that this constitutes the basic premise of a regulatory structure that is risk-informed and 



performance-based. Thus, this characteristic of the dynamical risk model provides additional 

support to the safety and economic benefits that can be achieved by transforming to this 

regulatory structure. 

 

ADDITION OF RISK CULTURE TO THE MODEL 

 

An important component to controlling plant risk is the development of a plant risk culture. 

This culture can be characterized by understanding and awareness, by all plant personnel, of the 

potential impact of operational and maintenance tasks on plant safety. Additionally, in an 

effective risk culture, plant decision-making processes incorporate an explicit consideration of 

the potential safety impact of plant activities and decisions and provide appropriate levels of 

oversight and controls to mitigate risk. Although not formally demonstrated via specific results 

obtained from traditional plant risk assessment models, it is logically consistent to assume that 

the stronger the risk culture is made at a plant, the safer the plant will operate. In terms of the 

dynamical systems model, this contribution should be manifest both directly in the coupling of 

the risk mitigation processes to plant risk performance and also in the performance of the 

individual processes themselves. In this section, we specifically address a modification to the 

model (1) to address the impact of risk culture on performance. 

 

In this discussion, we explicitly use the term “risk culture” as the defining characteristic that 

impacts nuclear plant safety risk. The use of this terminology is deliberate. Recently, significant 

research has been conducted throughout process industries, including nuclear power generation, 

on the impact of what has been called a plant “safety culture”. However, although this 



terminology has become accepted, it does not have a standard definition, meaning different 

things to different researchers and across different industries [9, 10]. For applications to 

commercial nuclear power plants, the term has been defined by the International Nuclear Safety 

Advisory Group (INSAG). INSAG-4 [11] defines safety culture as “…that assembly of 

characteristics and attitudes in organizations and individuals which establishes that, as an 

overriding priority, nuclear plant safety issues receive the attention warranted by their 

significance”. However, as discussed in [10], there are several problems with this approach; the 

most significant being lack of development of a linkage between safety culture and how it 

impacts human performance and reliability and the inability to establish the link between 

achieving a “good” safety culture and safe plant performance. Additionally, from our 

perspective, by including attitudes and values within the operational definition, safety culture 

possesses a very broad context, for example including those attributes associated with normal 

industrial safety practices. Because of this broad definition of the term safety culture, for the 

dynamical systems model, we define a much more limited concept which we call risk culture. By 

this term, we refer to the extent to which the plant considers nuclear safety risk as a fundamental 

input into the various decision-making processes. Additionally, we consider the extent to which 

this occurs to be measurable and demonstrable [7]. Thus, as defined here, risk culture can be 

considered as a subset of safety culture with the specific objective of effectively controlling plant 

safety risk.  

 

Modeling of Risk Culture 

 

We propose to incorporate the effect of risk culture in the dynamical systems model by 

making the following assumptions. First, the extent to which an effective risk culture has been 



achieved predominantly is a plant level effect. This is due to the organization’s culture being 

strongly dependent upon the facility’s management philosophy and business practices. Thus, in 

the model, the effect of the risk culture will apply to each plant process in the same way. Second, 

the impact of risk culture is expected to have the following effects on the individual plant 

processes. First, a point of operational indifference should be a fixed point of the system. This 

assumption is due to a combination of economic and regulatory factors. From an economic 

standpoint, implementing an effective risk culture is expensive in terms of resource application. 

Providing appropriate personnel training, obtaining necessary technology and assigning qualified 

personnel to analyze the risk associated with various activities all require a significant 

commitment of human and monetary resources. Because these resources are limited by economic 

considerations, there will be strong incentives to minimize their application, and thus limit their 

effectiveness. This characteristic has been, in a qualitative sense, observed both at nuclear plants 

and throughout industrial facilities in general, particularly in businesses in which competitive 

pricing pressures are manifest. Conversely, poor operational performance can result in 

significant regulatory pressure (including, if necessary, regulatory mandated plant shutdowns) to 

force enhanced management effectiveness and improve operational performance. These 

competing forces thus will tend to drive the risk culture to its point of indifferent performance, 

i.e. one that utilizes a minimal level of resources to achieve a level of performance that is 

acceptable from the viewpoint of both plant management and the regulatory authority. Second, 

for a plant with an effective risk culture, this culture is expected to support maintaining effective 

process performance, i.e. it should impede process performance from returning to the point of 

indifference. Conversely, if process performance is poor, an effective risk culture should cause a 

rapid improvement in the performance, at least back to a level of indifferent performance. 



Finally, the model should revert to the previous model for a plant in which no discernable risk 

culture has developed. 

 

A mathematical function that provides the characteristics described above is a quadratic. 

Thus, for each process, the effect of the plant risk culture can be incorporated into the process 

model by including a term of the form 

2)()1( tXtX cIc β=+  (8)
 

where XC represents the culture component of the I-th program performance (I = {O, W, E, L}) 

at the t-th iterate and βI represents the risk culture of the I-th process. Further, because a major 

determinant of the risk culture possessed by different plant organizations is determined by global 

management factors, the risk culture of each of the individual processes can be modeled as 

)1( XX δβββ +=  (9)
 

where β is the global component of the risk culture and δβX is the deviation from this value for 

the particular process. For this analysis of the impact of risk culture, we assume the culture is set 

at the global level, thus we set δβX = 0 for all processes. With these modifications to incorporate 

the effect of the plant risk culture, the dynamical systems risk model becomes 

)()()1( tWtOtR +=+   
2)()()()()()1( tOtOtWtWtOtO WOWO βμλ +++=+   
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3

2
2

1 )()()()1( tEatEtEatE ++=+ β   
3

2
2

1 )()()()1( tLbtLtLbtL ++=+ β .  
 

The effect of risk culture on a process function is shown in Figure 5 which shows a cobweb plot 

[12] of the equipment reliability function with the cultural term included. Notice at these values 



of the coupling parameters, there is a stable fixed point at the origin (the point of indifferent 

performance). There also is an unstable fixed point near E ~ 0.6. From the cobweb plot, for 

initial performance 0 < E(0) < ~ 0.6, process performance will slowly decay to the point of 

indifferent performance. Conversely, if initial performance is poor, E(0) < 0, performance will 

rapidly improve towards the point of indifferent performance. For E(0) to the right of the 

unstable fixed point, performance remains good for all t > 0. Thus, this model suggests that once 

a very strong risk culture is established, it will tend to remain in place until changed by some 

external perturbation, for example budget constraints which cause a reduction in available 

resources. Also note that these conclusions become more pronounced as the risk culture is 

improved, i.e. as β increases. 

 

Analysis of Risk Culture Impact on Plant Risk 

 

As a first task, we wish to analyze the impact of a positive risk culture in isolation from those 

activities which have been identified previously as providing important contributions to effective 

risk management. Thus, we examine the effects of risk culture for the case of a plant that does 

not possess the explicit risk mitigation functions of equipment reliability and loss prevention. 

This permits analyzing the impact of the risk culture term in its simplest form. This is achieved 

by incorporating the risk culture term into the simplified ROW model where the Operation – 

Work Management linear and quadratic interaction coupling terms are set equal to each other; 

i.e. λWO = λOW ≡ λ and μWO = μOW ≡ μ. To further isolate the impact of the risk culture term, we 

look at the case of a plant with minimal collaborative decision-making between the operations 



and work management processes, i.e. we set the quadratic operations to work management 

coupling to zero (μ = 0). This results in the following simplified model 

)()()1( tWtOtR +=+   
2)()()()()()1( tOtOtWtWtOtO βμλ +++=+  (11)
2)()()()()()1( tWtWtOtOtWtW βμλ +++=+   

 

To analyze the effect of the culture terms on plant risk, we assume the plant initially possesses 

poor operational and work management performance and the impact on plant risk is investigated 

as the effectiveness of the plant risk culture is increased. For this analysis, we arbitrarily set λ = 

0.25 and the initial conditions to be at the previously identified level of maximal allowed poor 

performance (i.e. O(0) = W(0) = -0.1). For the case of no positive risk culture, plant risk 

performance will decrease to R = -1, implying an unacceptable increase in plant risk. This is 

shown in Figure 6(a) where the decrease to R = -1 is very rapid. As a positive risk culture is 

instituted at the plant, the rate at which plant risk performance continues to decrease will slow. 

This can be seen in Figure 6(b) where risk performance vs. time is displayed for the same 

conditions but where a positive risk culture exists, with β = 2λ. At risk culture couplings greater 

than this value, a stable operating point at a risk performance of R = -2λ/β occurs. This is 

demonstrated in Figure 6(c) where the risk culture is set at β = 1.0. As the plant risk culture is 

further improved, plant risk performance also will continue to improve with R  0 in the limit of 

β >> 2λ. 

 

Next, we examine the synergistic effects that can be obtained for a plant which possesses a 

strong risk culture and utilizes a collaborative decision-making process. This can be 

demonstrated by comparing the results shown in Figures 7(a) and (b). Figure 7(a) shows the risk 

evolution for a plant with a strong risk culture with β = 2, λ = 0.25 and initial poor operations 



and work management performance (O(0) = W(0) = -0.1). As can be seen, this system will reach 

a stable operating point at the very poor risk performance level of R = -0.25. For this plant, 

improvement in risk performance above this level can be obtained by increasing the level of 

collaboration in the operations and work management decision-making processes. Figure 7(b) 

shows this improvement for a plant that possesses both a very strong risk culture and strongly 

collaborative decision-making processes. For this case, (λ = 0.25, μ = β = 2), plant risk 

performance is seen to be much improved above the level shown in Figure 7(a). Thus, the impact 

of an effective risk culture can be viewed as similar to that due to effective collaboration between 

the operations and work management decision processes.  Note however, that because the 

specific risk management processes (equipment reliability and loss prevention) are not present, 

risk performance will still be below the inherent level due to the plant design. Thus, a significant 

conclusion from this analysis is that a strong plant risk culture combined with effective 

interactive decision-making in the operations and work management processes can result in a 

significant improvement in plant safety risk with the two attributes combining to provide benefits 

beyond those which can be obtained from either attribute by itself. 

 

Effects of Positive Risk Culture 

 

A question of fundamental importance with respect to risk culture is to what extent can it 

impact (i.e. improve) safety performance. A second related question is what time frame is 

required for this impact to be observed. A fruitful approach to evaluate these questions is to 

apply the methods used in the analysis of dynamical systems to identify conditions necessary for 

the system to remain in the region where R > 0. This analysis requires identification of the basin 



of attraction for initial conditions and model coefficients to obtain performance such that R 

remains positive and is similar to those which are employed to numerically generate the 

Mandelbrot set. In this paper we provide a very brief discussion of the concept of basin of 

attraction in the one-dimensional case. We then employ this concept to demonstrate how an 

increasingly effective risk culture contributes to achieving effective risk management by driving 

the system to operate in the region where R > 0. 

 

An important question in the analysis of all physical systems is the determination of the 

ultimate fate of an arbitrary initial point in the system. This question essentially asks what is the 

behavior for an arbitrary point as t  ∞. A system for which all initial conditions approach a 

single point is termed globally stable. This can be demonstrated in a simple manner via the 

elementary ordinary differential equation 

axx −=&  (12)
   

for a > 0 subject to the initial condition x(0) = x0. In this discussion, we illustrate the concepts 

using differential equations because they are more familiar. However, they apply equally to maps 

such as the dynamical risk model. One can solve (12) via elementary means to obtain the simple 

exponential decay 

atextx −= 0)(  (13) 
 

One can see from this solution that x  0 as t  ∞ for any finite initial condition x0. Thus, the 

basin of attraction for the origin is the entire interval (-∞, ∞). 

 



However, most systems do not possess dynamics that are so simple. A slightly more 

complicated example is the nonlinear system 

12 −= xx&  (14)
 

For this system, where x is defined to exist on the real line, the points x = ±1 are fixed points 

with –1 being stable and +1 unstable. Analysis of this system shows that any initial point x0 < 1 

will be attracted to the stable fixed point at x = -1. All initial points x0 > 1 escape to infinity. 

Thus the basin of attraction of the stable fixed point is (-∞, +1) and the basin of attraction of 

infinity is (1, ∞). This can be seen graphically by plotting the phase space (on the real line) for 

(14) in Figure 8. 

 

The system (14) provides an example where the boundary between the basins of attraction is 

simple. However, as the complexity and dimensionality of the system increase, the long-term 

behaviors exhibited also can become more complex.  More complex systems can exhibit 

behaviors that lead to multiple asymptotic outcomes. In some instances, the long-term behavior 

of different points can be characterized in a compact manner; in other cases, this behavior is 

extremely complicated with points that are initially close asymptotically approaching vastly 

different end states. For systems that can exhibit chaotic dynamics, the property of sensitive 

dependence on initial conditions permits exceedingly complex behaviors. For these systems, two 

points initially arbitrarily close together may diverge in their long-term behavior. One 

manifestation of this characteristic is that the boundaries between the basins of attraction may 

possess a fractal structure. In this instance, the boundaries between the different regions are not 

simple curves or surfaces. They possess an interleaved structure that is manifest at many 



different scales [12]. There are numerous examples of this behavior, the most famous of which is 

that due to Mandelbrot (which results in the Mandelbrot set) [13]. 

 

The Mandelbrot set is obtained by consideration of the map [14]   

ckzkz +=+ 2)()1(  (15)
 

where z is a complex variable and c a complex constant. This system has fixed points at values 

z* = [1 ± (1 – 4c)1/2 ] / 2. Fixed points z* for which –¾ < c < ¼ are stable. Iterates of the map for 

values of c < -2 or c > ¼ escape to infinity. The dynamics of (15) can be analyzed by iterating 

the initial value z(0) = 0 for many values of the constant c and observing whether the point 

escapes to infinity. The result of this process produces the Mandelbrot set. This set exhibits a 

complicated structure with increasing detail as we look at smaller regions of the parameter c. For 

each point c in the set, there are orbits that remain bounded and orbits that do not. The boundary 

of the basin of infinity is called a Julia set. We can analyze the points that are not in the 

Mandelbrot set by characterizing their rate of divergence. For these points, we find their structure 

to be fractal. We now make use of this technique to analyze the effect of plant risk culture on the 

dynamics of the nuclear plant risk model. 

 

To analyze the impact of risk culture on the dynamical systems risk model, we perform a 

numerical simulation to estimate the basin of attraction for R  1 assuming initial poor 

operational and work management performance O(0) = W(0) = -0.1. Since these conditions are 

expected to be near the limit of what would be permitted by either plant management or the 

regulatory authority, they provide a very stringent test of the impact of a beneficial plant risk 



culture. To simplify the calculations, we set model coefficients that are anticipated to be similar 

equal to each other. This results in the following system of equations 
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In the simulations, like coefficients were set equal to each other with a1 = b1 = 0.7 and ω = 

0.05. For each calculation, 50000 points were obtained and classified into the six categories 

listed in Table 1. In the figure that displays the results (Figure 9), only orbits that reached the 

“perfect” risk condition R = 1 within 60 iterations are shown. Thus, these points clearly are 

within the basin of attraction of R = 1. Regions shown in white indicate that the system has not 

evolved to R = 1 within this timeframe. Thus, it is indeterminate whether these points are within 

this basin of attraction. Note that from a strictly risk management viewpoint, the objective would 

be to avoid operation in these regions in preference to regions where R  1 much more rapidly. 

The calculations shown here were conducted assuming good equipment reliability and loss 

prevention performance E(0) = L(0) = +0.1. Results are provided in Figures 9(a) through (d) for 

risk culture values of β = 0.1, 1.0, 2.0 and 3.0 respectively. 

 

As expected, a small positive risk culture will provide a small impact on plant risk. This can 

be seen in Figure 9(a) where a very large value of the operations – work management coupling 

(μ) is required to drive risk performance to its maximal value within a reasonable time. Recall 

that the iteration interval of the model was defined in [1] to be 1 month; thus at the small 



beneficial risk culture assumed in this simulation (β = 0.1), μ must be very large (of the order 4 

or more) to significantly improve plant risk within the space of a few years. However, this figure 

provides an important insight into the importance of a strong risk culture. Notice that once we 

enter the basin of attraction for R  1, small improvements in the operations – work 

management collaborative interaction term result in a very rapid decrease in the time required to 

reach R = 1. This is demonstrated in Figure 9(a) by the fact that the region where the time 

required to reach R = 1 is long (50 < t < 60 iterations represented by the dark blue region) is very 

thin. This effect is seen to persist as risk culture is improved as shown in Figures 9(b) through (d) 

(β = 1, 2 and 3 respectively). This result suggests that there is a synergistic effect between a 

strong risk culture, the plant decision-making processes and improved safety risk. 

 

As plant risk culture improves further, it becomes readily apparent that a strong risk culture 

can have a tremendous impact on improving plant risk performance. As expected, at modest 

levels of plant risk culture, the operations and work management functions must be strongly 

interactive to overcome the initial degree of poor performance assumed in these simulations. 

However, as the plant risk culture becomes stronger, the degree to which this interaction must 

occur diminishes. As plant risk culture further improves to a high level, e.g. β ~ 3, the culture is 

strong enough to be effective at reducing plant risk in a very rapid manner. Notice that this effect 

occurs regardless of the interactive coupling between the operations and work management 

processes. From a practical standpoint, development of a strong risk culture also could be 

expected to provide an impact on improving the dynamics of this interaction. Since this is not 

included in the model (the interaction coefficients are treated as constants), the actual 



effectiveness of the plant culture is most likely understated by the model for plants that have 

developed a strong risk culture. 

 

Finally, model simulations using this approach reveal a rich and complex structure inherent 

in the system dynamics. Figure 10 provides results for a simulation for a plant where the risk 

mitigating functions are assumed to operate at the indifferent level of performance. In this 

simulation, the initial conditions were set to O(0) = 0.05 and W(0) = -0.025 and β was set to β = 

0 (no risk culture). For this system, the operations process performance is sufficiently strong to 

overcome the initial poor work management performance and permit the plant to evolve to a 

state where risk performance can be sustained at R > 0. Figure 10 provides results for 25,000 

trajectories over the subinterval 0 ≤ λ ≤ 0.2 and 0 ≤ μ ≤ 5. In this figure, we can see that different 

combinations of λ and μ in this region can result in a wide range of the number of iterations 

required to reach R = 1. This behavior of arbitrarily close points (in λ – μ space) resulting in 

significantly different times required to reach R = 1 suggests the boundary of the basin of 

attraction is fractal. This fact is important from a nuclear safety perspective. Because small 

changes in the parameters can result in large changes in risk, operation in regions near the basin 

boundary are unstable. Since this would be indicative of a potential loss of ability to effectively 

control risk, these operational regimes should be avoided. 

    

CONCLUSIONS 

 

In this paper, we expanded upon previously reported results for a dynamical systems model 

that accounts for the impact of plant processes and programmatic performance on nuclear plant 



safety risk. We employed both analytical techniques and numerical simulations to obtain insights 

from the model that identify important attributes of effective risk management. These insights 

can be summarized as follows. 

1) Use of collaborative decision-making between the operations and work management 

processes provides important benefits to ensure plant risk impact is considered from 

multiple viewpoints. This type of decision-making helps to ensure that operational and 

maintenance decisions are well planned and robust with appropriate contingency plans 

and management attention provided when anomalies are encountered. 

2) The equipment reliability and loss prevention functions are capable of controlling plant 

risk. For the case of some degradation in operations and / or work management 

performance, these functions are capable of reversing these trends and restoring the plant 

to an acceptable risk profile. However, because these functions require a significant 

period of time for their impact to be observed, plant management and regulatory 

authorities must be vigilant in ensuring the operations and work management functions 

are effective. Contrariwise, for the case where the operations and work management 

functions are already operating at an effective level, the equipment reliability and loss 

prevention functions can provide additional risk mitigation and result in the plant 

achieving risk levels that are less than the levels inherent in the plant design. In this 

instance, the plant is capable of operating at a level of risk which is less than may be 

inferred from the PRA. 

3) Analysis of the model with additive noise indicates that regulation by an unbiased 

external agency is an important element in ensuring that performance degradations that 

can impact the public do not occur, or if they do, they are identified at an early stage 



where the potential impact is minimal. This result also suggests that these resources 

would best be expended on facilities which demonstrate deficient performance levels. For 

plants which have achieved effective risk management, excessive intervention may result 

in reduced efficiency and effectiveness and thus provide results that are the opposite of 

what is desired. Thus, this model suggests that the amount of external intervention should 

be limited at plants which exhibit effective risk management and operational 

performance. Thus, the model supports the basic premise of a regulatory structure that is 

risk-informed and performance-based. Additionally, it suggests that when high levels of 

performance are achieved, both plant management and regulatory authorities should 

carefully consider the potential impact on resource effectiveness and plant performance 

before implementing any significant changes to plant processes or the resources required 

to implement them. 

4) Analysis of a modification to the model demonstrated the important impact and safety 

benefits of a strong plant risk culture. Also, for plants with a very strong risk culture, the 

model shows that the beneficial effects can perpetuate over long periods of time. 

5) When a positive risk culture is combined with effective risk mitigation processes (i.e. 

equipment reliability and loss prevention), the combined impact of these positive 

influences provides significant safety benefits. Once good performance in all processes 

that impact risk is in place, this level of performance can become self propagating and 

persist for long periods of time. 

Thus, the results obtained from the model provide useful insights and an underlying theoretical 

construct which can be used to provide more effective risk management and help ensure 



activities that are important to manage nuclear plant risk are performed in a manner that 

maximizes their effectiveness. 

 

We wish to close this paper with a few comments on how the insights obtained from the 

model could be used to further the safe and efficient operation of commercial nuclear generating 

stations. We also provide some ideas for future research to permit validation and application of 

the model. At this time, the transition to a risk-informed, performance-based regulatory structure 

is in the early stages of development and implementation. Additionally, the concept of risk 

culture (or the more broadly defined safety culture) is only beginning to be understood and 

incorporated into a plant management paradigm. However, as shown in Figure 11, over the past 

decade both operational performance and plant safety have improved significantly at commercial 

U. S. nuclear power plants [15]. These improvements can be attributed to many factors including 

application of advanced technologies such as condition based maintenance approaches (e.g. 

vibration, infrared thermographic analysis and ferrographic oil condition monitoring 

technologies), use of analytical techniques such as reliability centered maintenance to specify 

appropriate preventive and predictive maintenance activities, and implementation of 

comprehensive work management information management systems. These systems (and others) 

have contributed to reduced failure rates as observed in the various PRA updates. Additionally, 

specific risk management processes (such as ORAM/SENTENEL, EEOS, etc.) coupled with 

implementation of comprehensive system health and performance monitoring programs have 

resulted in additional observed reductions in plant risk. Thus, there is significant evidence that 

risk management is effective at controlling plant safety risk. The results obtained from analysis 

of the dynamical systems model indicate that these improvements are both effective and 



sustainable. Thus, important elements of ensuring this performance (both economic and safety) is 

sustained and improved even further will be to (1) continue further use of advanced technologies 

to transition from diagnostic to prognostic capabilities, (2) develop a deeply rooted risk culture 

and (3) provide the capability to monitor and trend the performance of those plant processes that 

have been identified as significant contributors to safety risk.  

 

Based on the above discussion, future research with respect to the approach described in this 

paper should be performed to address two specific issues. First, and most significantly, the 

insights obtained from the model should be validated using actual plant data. As discussed 

previously, a comprehensive risk management effectiveness assessment process has been 

developed [6]. The process has been demonstrated in several pilot plant applications. However, 

because of the limited number of these applications to date, insufficient data have been obtained 

to provide statistically significant results. Integration of the assessment results with the model 

represents an area for future research with the following objectives: 

• Develop methods to estimate both current program performance and process interaction 

coefficients from the assessment data. 

• Evaluate the model predictions of future performance against existing qualitative metrics 

(e.g. NRC Reactor Oversight Program) to determine the capability of the model to predict 

incipient degraded performance.     

The second area is to further analyze the model for robustness and fidelity. As an example, in the 

model, the equipment reliability and loss prevention functions were modeled such that there is no 

correlation between them; although in practice there should be some degree of correlation 

between these functions. As discussed in [1], we did not include any coupling between these two 



functions for several reasons. First, the SNPM provides a clear distinction between the two 

processes (i.e. E represents engineering activities with direct and short term impact such as 

preventive and predictive maintenance; whereas L represents those with longer term and more 

indirect impact such as security and emergency planning). Thus, the degree of interaction 

between them is assumed to be small compared with their interactions with O and W. Second, 

both of these functions only impact risk indirectly through the O and W processes. These 

assumptions should be investigated by analysis of the results obtained from plant risk 

management assessments. They also can be validated by introducing coupling between these 

functions in the model and determining at what level interactions impact the results.   
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Simplified Risk Model Bifurcation Diagram
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Figure 1: Example bifurcation diagram for simplified ROW risk model. 
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Figure 2: Demonstration of capability of equipment reliability and loss prevention 
functions to overcome poor operations and work management performance. 
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Figure 3: Results for addition of additive uniformly distributed noise for Operations / 
Work Management program interactions. 
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Figure 4: Results for addition of additive uniformly distributed noise for plant with 
effective equipment reliability and loss prevention functions. (a) E(0) = L(0) = 0.01. (b) E(0) 

= L(0) = 0.1. 
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Figure 5: Cobweb plot of E(t+1) vs. E(t) for coupling parameters a1= 0.7, a2 = 0.3 and βE = 
0.2. 
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(b) 
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(c) 
 

Figure 6: Impact of risk culture for case of initial poor operational and work management 
performance. (a) No effective risk culture. (b) Risk culture sufficiently positive to slow the 

rate of decay. (c) Risk culture sufficiently positive to limit the increase in plant risk. 
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(b) 
 

Figure 7: (a) Evolution for plant with strong risk culture but with no collaboration between 
plant operations and work management processes. (b) Case of strong plant risk culture 
coupled with strong collaboration between operations and work management decision-

making processes.  
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Figure 8: Phase portrait for nonlinear differential equation (14). 
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(d) 

Figure 9: Basins of attraction for positive risk culture. Initial conditions set to O(0) = W(0) 
= -0.1, E(0) = L(0) = +0.1. (a) β = 0.1, (b) β = 1.0, (c) β = 2.0 and (d) β = 3.0. 

 
 



 
 

Figure 10: Basin of attraction for risk model without risk culture for 0 ≤ λ ≤ 0.2 and 0 ≤ μ ≤ 
5. 
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Figure 11: U. S. commercial nuclear power plant performance and relative calculated core 

damage frequency 1992 – 2000. 
    
 

 



TABLES 
 

 

Time to Reach R = 1 Data Point Color 
t < 10 Yellow 

10 < t < 20 Red  
20 < t < 30 Magenta 
30 < t < 40 Green 
40 < t < 50 Cyan 
50 < t < 60 Blue 

 

Table 1: Classification scheme for basin of attraction R  1. 
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