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How Predictable Is the Chinese Stock Market?

Abstract

We analyze return predictability for the Chinese stock market, including the aggregate market portfolio and the

components of the aggregate market, such as portfolios sorted on industry, size, book-to-market and ownership con-

centration. Considering a variety of economic variables as predictors, both in-sample and out-of-sample tests highlight

significant predictability in the aggregate market portfolio of the Chinese stock market and substantial differences in

return predictability across components. Among industry portfolios, Finance and insurance, Real estate, and Service

exhibit the most predictability, while portfolios of small-cap and low ownership concentration firms also display con-

siderable predictability. Two key findings provide economic explanations for component predictability: (i) based on a

novel out-of-sample decomposition, time-varying macroeconomic risk premiums captured by the conditional CAPM

model largely account for component predictability; (ii) industry concentration and market capitalization significantly

explain differences in return predictability across industries, consistent with the information-flow frictions emphasized

by Hong, Torous, and Valkanov (2007).

JEL classifications: C22, C53, G11, G12, G17

Keywords: Return predictability; Industries; Size; Book-to-market; Rational asset pricing; Information-flow frictions;
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Chapter 1

Introduction

Stock return predictability is crucial to many fundamental issues in finance, including portfolio allocation, the cost

of capital, and market efficiency (Cochrane (2008)). It is thus not surprising that a voluminous literature exists on

the predictability of stock returns, with numerous economic variables proposed as predictors.1 Many studies report

in-sample evidence of return predictability, and despite some thorny econometric issues, the emerging consensus from

in-sample studies is that stock returns contain a significant predictable component (Campbell (2000)). Out-of-sample

evidence of return predictability, however, has proved more elusive, as exemplified by the recent study of Welch and

Goyal (2008), who find that many popular predictors are unable to deliver consistent out-of-sample gains with respect

to U.S. equity premium prediction relative to a simple forecast based on the historical average; also see Bossaerts and

Hillion (1999) and Goyal and Welch (2003). Spiegel (2008) provides an overview of several recent major studies,

including Campbell and Thompson (2008), who find greater out-of-sample predictability after imposing theoretically

motivated restrictions. Furthermore, Rapach, Strauss, and Zhou (2009) and Kong, Rapach, Strauss, Tu and Zhou

(2009) demonstrate that a forecast combination approach generates consistent and significant out-of-sample gains,

and they link out-of-sample predictability to the real economy.

In contrast to the extant literature on return predictability, which focuses almost exclusively on the US data, the

present paper examines return predictability for the Chinese stock market.2 Investigating return predictability for the
1Predictors from the literature include the dividend-price ratio (Dow (1920), Fama and French (1988, 1989)), earnings-price ratio (Campbell

and Shiller (1988, 1998)), book-to-market ratio (Kothari and Shanken (1997), Pontiff and Schall (1998)), nominal interest rates (Fama and Schwert

(1977), Campbell (1987), Breen, Glosten, and Jagannathan (1989), Ang and Bekaert (2007)), inflation rate (Nelson (1976), Fama and Schwert

(1977), Campbell and Vuolteenaho (2004)), term and default spreads (Campbell (1987), Fama and French (1989)), corporate issuing activity (Baker

and Wurgler (2000), Boudoukh, Michaely, Richardson, and Roberts (2007)), consumption-wealth ratio (Lettau and Ludvigson (2001)), and stock

market volatility (Guo (2006), Ludvigson and Ng (2007)). See Campbell (2000) and Welch and Goyal (2008) for surveys of the vast literature on

return predictability.
2Lee and Rui (2000)documented some evidence of predictability of China’s stock markets based on data ends in 1997 for only the market index
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Chinese stock market is relevant for a number of reasons. First, analyzing the predictability of the Chinese stock

market has potentially important implications for asset-pricing tests of the cross returns for the China stock market, as

shown by Ferson and Harvey (1999) for the US data, among others, as well as measuring the cost of capital, along the

lines of Fama and French (1997). (1997). Second, and in a related vein, analyzing Chinese stock return predictability

helps to establish the proper benchmarks for many mutual funds that specialize in the China stock market. Third,

an investigation of the Chinese stock market predictability improves our understanding of the return predictability

worldwide besides the US.

Relative to the studies for US data, we do the following analyses on the Chinese stock market return predictability.

First, we analyze predictability for the aggregate Chinese stock market and a large number of component portfolios

– 13 industry, 10 size, 10 book-to-market and 10 ownership concentration portfolios –and potential predictors—9

economic variables following Welch and Goyal (2008). Second, we employ both in-sample and out-of-sample tests

of component predictability, and our out-of-sample tests focus on the ability of a forecast combination method to

outperform historical average benchmark forecasts. As recently shown by Rapach, Strauss, and Zhou (2009) and Kong,

Rapach, Strauss, Tu and Zhou (2009) in the context of the US stock market predictability, the forecast combination

approach incorporates information from many potential predictors in a tractable way to generate forecasts that are

consistently superior to forecasts based on individual predictors.3 As we demonstrate below, this is also the case for

forecasting the Chinese stock returns. Third, as already mentioned, we extensively explore economic explanations

for differences in return predictability across component portfolios such as the information-flow frictions recently

emphasized by HTV.

Our analysis on the Chinese stock market return predictability uncovers a number of interesting and distinct empir-

ical facts. In-sample results reveal that economic variables, such as dividend yield and turnover, significantly predict

one-month-ahead returns for the aggregate market portfolio and most portfolios sorted by industry, size, book-to-

market or ownership concentration; other economic variables, such as the dividend price ratio significantly predict

some industries but not others. In addition, using the economic variables as predictors yields differences in pre-

dictability across components. For example, predictive regression models for Manufacturing, Finance and insurance,

Real estate, and Service have economically sizable average R2 statistics above 2%, while these same predictors have

much smaller explanatory power in predictive regression models for Mining, Information technology and Communi-

cation and cultural industry, where the average R2 statistics are less or close to 1%. There exist differences in in-sample

portfolios.
3While forecast combination has received considerable recent attention in the macroeconomic forecasting literature (see, e.g., Stock and Watson

(1999, 2003, 2004)), applications in the finance literature are relatively rare. In addition to Rapach, Strauss, and Zhou (2009), Aiolfi and Favero

(2005), Timmermann (2008), and Huang and Lee (2009) apply different types of combining methods to forecast aggregate market returns. Also see

Mamaysky, Spiegel, and Zhang (2007), who find that combining predictions from an ordinary least squares model and the Kalman filter model of

Mamaysky, Spiegel, and Zhang (2008) significantly increases the number of mutual funds with predictable out-of-sample alphas.
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predictability across size, book-to-market and ownership concentration sorted portfolios as well.

Our out-of-sample test results using forecast combination reveal extensive predictability in real time for the ag-

gregate market portfolio and a number of component portfolios. For the forecast evaluation period of January 2002

to June 2009, we find significant out-of-sample return predictability for all the 13 industry portfolios. Furthermore,

the degree of out-of-sample predictability is substantially greater for certain industries, according to the Campbell and

Thompson (2008) out-of-sample R2 statistic. The economic variables significantly predict out-of-sample returns for

all of the size, book-to-market and ownership concentration sorted portfolios. In addition, when excluding the bubble

period of 2007 - 2008, using the subperiod from January 2002 to December 2006 as the forecast evaluation period, the

degree of predictability increases substantially as size decreases, and the predictability of the smallest size portfolio is

very strong. Similarly, there are differences in the degree of predictability across the book-to-market and ownership

concentration sorted portfolios. Overall, our in-sample and out-of-sample predictive regression results demonstrate

that the degree of predictability for the Chinese stock market is strong and can vary significantly across component

portfolios.

We explore economic explanations for component predictability of Chinese stock market using two approaches.

First, we implement a method of forming combination forecasts of component returns based on a conditional asset-

pricing model. This allows us to decompose out-of-sample component predictability into exposure to time-varying

macroeconomic risk premiums and alpha predictability. Considering conditional asset-pricing models based on the

CAPM model, our results suggest that exposure to time-varying macroeconomic risk premiums accounts for most of

the out-of-sample predictability in component portfolios, with greater exposure typically associated with enhanced

predictability for size and ownership concentration sorted portfolios. Second, in the spirit of HTV, we examine the

importance of information-flow frictions in explaining differences in return predictability across industry portfolios.

We find that both industry concentration and industry capitalization are negatively and significantly related to the

degree of return predictability across industries. HTV posit that information about macroeconomic fundamentals is

less readily known in some industries and thus diffuses more slowly across the broader equity market, and our findings

support HTV’s emphasis on information-flow frictions. Overall, our results identify the components of the aggregate

market that are subject to the greatest time-varying macroeconomic risk exposure and information-flow frictions, and

they suggest that these factors are important in understanding return predictability for Chinese stock market.

The remainder of the paper is organized as follows. Section I provides statistical evidence on the predictability

of the Chinese stock portfolio returns based on in-sample tests. Section II analyzes return predictability using out-of-

sample tests. Section III considers economic reasons for return predictability. Section IV concludes.
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Chapter 2

In-Sample Predictability Tests

This section outlines the predictive regression model framework, describes the data, and reports in-sample test

results of predictability for the Chinese stock returns.

2.1 Econometric Methodology

Following much of the literature, we analyze stock return predictability in the context of a bivariate predictive regres-

sion model:

ri,t = ai +bi, jx j,t−1 + ei,t , (2.1)

where ri,t is the return on portfolio i in excess of the risk-free interest rate, x j,t is a potential predictor variable,

and ei,t is a zero-mean disturbance term. In contrast to the vast literature on return predictability for the US data,

in which ri,t is the excess return on a US stock return, we are interested in return predictability when ri,t is a return

of a Chinese stock. More specifically, we analyze return predictability for the aggregate market portfolio and its

components including 13 industry, 10 size, 10 book-to-market and 10 ownership concentration sorted portfolios for

the Chinese stock market. (The data are described in detail below.)

The predictive ability of x j,t with respect to ri,t is typically analyzed by inspecting the t-statistic corresponding

to b̂i, j, the ordinary least squares (OLS) estimate of bi, j in (2.1). Under the null hypothesis of no predictability,

bi, j = 0; the constant expected excess return model prevails (ri,t = ai + εi,t ). Under the alternative hypothesis, bi, j

is different from zero, and x j,t contains information useful for predicting ri,t ; a time-varying expected excess return

model applies. There is a well-known small-sample bias associated with estimating (2.1) arising from the fact that x j,t

is not an exogenous regressor (Stambaugh (1986, 1999)). This potentially complicates inference using conventional

asymptotics. We thus base our inference on a bootstrap procedure similar to the procedures used by, for example,
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Nelson and Kim (1993), Mark (1995), Kothari and Shanken (1997), Kilian (1999), and Rapach and Wohar (2006).1

Studies of predictability sometimes consider long-horizon regressions, but this raises additional econometric issues due

to overlapping return observations; see, for example, Richardson and Stock (1989), Valkanov (2003), and Boudoukh,

Richardson, and Whitelaw (2008). To avoid these issues, and for brevity, we focus on single-period (monthly) returns

in our applications. We also use one-sided tests of statistical significance, since this provides more powerful tests, and

theory typically suggests the expected sign of bi, j (Inoue and Kilian (2004)).

2.2 Data

We analyze return predictability for the aggregate market portfolio and its components including 13 industry, 10 size,

10 book-to-market and 10 ownership concentration sorted portfolios for the Chinese stock market. All the return data

come from RESSET including all normal (without Special Treatment symbol issued by CSRC) China A-share stocks

listed in Shanghai and Shenzhen stock exchanges. First, for the aggregate market return, we use the value-weighted

return from 1996:07 to 2009:06 from RESSET including all normal (without Special Treatment symbol issued by

CSRC) China A-share stocks listed in Shanghai and Shenzhen stock exchanges. The risk-free return is also obtained

from RESSET to construct the excess stock return. Second, for the industry return, following the industry classification

by China Securities Regulatory Commission (CSRC), we use monthly returns on 13 industry portfolios available from

1996:07 to 2009:06 from RESSET: AGRIC (Agriculture, Forestry, and Fishing), MINES (Mining), MANUF (Man-

ufacturing Industries), UTILS (Electric, Gas, Water production and Supply), CNSTR (Construction),TRANS (Trans-

portation and storage),INFTK (Information technology), WHTSL (wholesale and Retail store), MONEY(Finance and

insurance), PROPT (Real estate), SRVC (Service industry), MEDIA (Communication and cultural industry), MULTP

(conglomerate and other industry). The industry portfolios are constructed at the end of each June using the June indus-

try classification. The portfolios for July of year t to June of t+1 include all normal A-share stocks listed in Shanghai

and Shenzhen stock exchanges for which we have industry classification data for June of t. Third, the monthly returns

of the 10 portfolios sorted on market capitalization, in ascending order denoted by S1, ..., S10, are constructed at

the end of each June using the June market equity with equal number of firms in each portfolio. The portfolios for

July of year t to June of year t+1 include all normal A-share stocks listed in Shanghai and Shenzhen stock exchanges

1The bootstrap is designed to avoid finite-sample size distortions. There are estimation procedures based on alternative asymptotic frameworks

that provide potentially more powerful tests of return predictability while controlling for size distortions; see, for example, Campbell and Yogo

(2006). Nevertheless, basing inference on OLS estimation of (2.1) and the bootstrap procedure provides extensive evidence of predictability for

a number of component portfolio returns, so low power does not seem to be a serious problem for our applications. Bayesian methods have also

been developed for predictive regression models like (2.1) (see, e.g., Stambaugh (1999)) and for predictive systems (Pástor and Stambaugh (2008)).

While beyond the scope of the present paper, it would be interesting in future research to examine predictability for the component portfolios we

consider using Bayesian methods.
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for which we have market equity data for June of year t. Fourth, the monthly returns for the 10 portfolios sorted on

book-to-market value, in ascending order denoted by BM1, ..., BM10, are formed on BE/ME at the end of each June

with equal number of firms in each portfolio. The BE used in June of year t is the book equity for the last fiscal year

end in t-1. ME is price times shares outstanding for the June of year t. The portfolios for July of year t to June of t+1

include all normal A-share stocks listed in Shanghai and Shenzhen stock exchanges for which we have ME for June

of t, and BE for t-1. Finally, the monthly returns for the 10 portfolios sorted on ownership concentration percentage,

in ascending order denoted by OC1, ..., OC10, are formed on ownership concentration percentage at the end of each

June with equal number of firms in each portfolio. The ownership concentration percentage used in June of year t is

the largest shareholder share holding percentage for the last fiscal year end in t-1. The portfolios for July of year t to

June of t+1 include all normal A-share stocks listed in Shanghai and Shenzhen stock exchanges for which we have

ME for June of t, and largest shareholder share holding percentage for t-1.

As potential predictors of component returns, we consider a group of 9 economic variables for China market:2

• Dividend-payout ratio (log), D/E: difference between the log of dividends and log of earnings for A-share stocks

listed in Shanghai and Shenzhen stock exchanges, where dividends and earnings are measured using a one-year

moving sum .And they are from RESSET.

• Stock variance, SVAR: sum of squared daily returns on the Value-weighted A-share market return.

• Inflation, INF: calculated from the CPI from the Bureau of Statistics; following Welch and Goyal (2008), since

inflation rate data are released in the following month, we use xi,t−2 in (2.1) for inflation.

• Dividend-price ratio (log), D/P: difference between the log of dividends and log of prices for all A-share stocks

listed in Shanghai and Shenzhen stock exchanges, where dividends are measured using a one-year moving sum.

• Dividend yield (log), D/Y: difference between the log of dividends and log of lagged prices, where dividends

are measured using a one-year moving sum.

• Earnings-price ratio (log), E/P: difference between the log of earnings and log of prices on all A-share stocks

listed in Shanghai and Shenzhen stock exchanges, where earnings are measured using a one-year moving sum.

• Book-to-market ratio, B/M: ratio of book value to market value for A-share stocks listed in Shanghai and Shen-

zhen stock exchanges. Book values from the annul reports and interim reports are from RESSET. For the months

of January to March, this is computed by dividing book value of June of previous year by the price at the end

of the current month. For the months of April to September, this is computed by dividing book value at the end

2The 9 economic variables used here is a subset of the 14 economic variables of Welch and Goyal (2008) by excluding 5 economic variables

that we do not have the data for the China market.
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of previous year by the price at the end of the current month. For the months of October to December, this is

computed by dividing book value of June of current year by the price at the end of the current month.

• Net equity expansion, NTIS: ratio of twelve-month moving sums of new equity issues to market capitalization

at the end of the current month by A-share stocks listed in Shanghai and Shenzhen stock exchanges. New equity

issues are from China Securities Regulatory Commission (CSRC).

• Turnover, TO: ratio of trading value to market capitalization for A-share stocks listed in Shanghai and Shenzhen

stock exchanges. Both trading value and market capitalization are obtained from CEIC.

Table I reports summary statistics for excess returns for the aggregate market portfolio and its component port-

folios: industry, size, book-to-market and ownership concentration portfolios, as well as the 9 economic variables,

for 1996:07 – 2009:06. Panel B shows that average monthly industry returns range from 0.65% (CNSTR) to 2.33%

(MINES), while the standard deviations range from 9.25% (UTILS) to 12.11% (MEDIA). As is well known, Panels C

and D show that returns are generally higher and more volatile for small-cap or higher book-to-market firms.

[Insert Table I about here]

2.3 The Aggregate Market Portfolio Excess Returns

The MKT row of Table II reports estimation results for (2.1) when ri,t is the excess return for the aggregate market

portfolio and x j,t is one of the 9 economic variables. After accounting for the lagged predictor in (2.1), our estimation

sample is 1996:07–2009:06. The entries in the table report the t-statistic corresponding to bi, j in (2.1) (top number) and

R2 statistic (bottom number) for each industry/predictor combination. Average R2 statistics across predictors are shown

in the last column of Table II. While predictive regression models can have relatively small R2 statistics, Campbell

and Thompson (2008) show that an R2 greater than approximately 0.5% for monthly returns can signal economically

meaningful predictability gains; also see Kandel and Stambaugh (1996) and Xu (2004). Three predictors— D/Y,

INF, and TO —enter significantly in (2.1) for the excess return on the aggregate market portfolio. As shown in the

penultimate row of Table II, these are also the predictors that most frequently predict excess returns across industries.

2.4 Industry Portfolio Excess Returns

The penultimate row of Table II reports estimation results for (2.1) when ri,t is the excess return for an industry

portfolio and x j,t is one of the 9 economic variables. Average R2 statistics across predictors (industries) are shown in
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the last column (rows) of Table II. The number of industries for which a given predictor is significant in (2.1) at the

5% level is also shown.

[Insert Table II about here]

Among the 13 industry returns considered, D/Y, INF, and TO are significant predictors of excess returns for 7, 5,

and 11 industry portfolios, respectively. From this perspective, there is—not surprisingly—a link between aggregate

market predictability and predictability across industries. Nevertheless, there are important differences in predictability

across industry portfolios. Looking at the last column of Table II, industry returns appear most predictable on average

for MANUF, MONEY, PROPT, and SRVC, where the average R2 across predictors is greater than or equal to 2.0%.

Predictability is weaker on average in industries such as MINES, INFTK and MEDIA, where the average R2 statistics

are less or close to 1%.

2.5 Size Portfolio Returns

We next examine return predictability for 10 portfolios sorted on market capitalization, and the results are reported in

Table III. Relative to the industry portfolios analyzed in the previous subsection, there appears to be more uniformity

in the degree of return predictability across size portfolios. The two economic variables—D/Y and TO—that are sig-

nificant predictors of aggregate market returns are also significant predictors of returns for 6–10 of the size portfolios,

and the average R2 statistics are relatively stable across the size portfolios.

[Insert Table III about here]

2.6 Book-to-Market Portfolio Returns

Table IV reports results for predictive regression models of book-to-market portfolios with the 9 economic variables

serving as predictors. The results are broadly similar to those in Table III for the size portfolios in that pronounced

differences in predictability across component portfolios are not clearly evident. For example, the average R2 statistics

in the last column of Table IV are similar across the book-to-market portfolios.

[Insert Table IV about here]
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2.7 Ownership-concentration Portfolio Returns

Table V reports results for predictive regression models of ownership concentration portfolios with the 9 economic

variables serving as predictors. The results are broadly similar to those in Table IV for the size portfolios in that

pronounced differences in predictability across component portfolios are not clearly evident. For example, the average

R2 statistics in the last column of Table V are similar across the book-to-market portfolios. Although the differences

in the in-sample predictability across component portfolios are not clearly evident for the size, book-to-market and

ownership concentration portfolios, the differences in the out-of-sample predictability across component portfolios are

significant for all of the three sets of portfolios as shown below.

[Insert Table V about here]
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Chapter 3

Out-of-Sample Predictability Tests

As indicated in the introduction, out-of-sample return predictability has been more difficult to establish, especially

on a consistent basis over time. We next consider out-of-sample tests of return predictability for Chinese stock returns.

This section describes the construction of the out-of-sample forecasts, forecast evaluation methods, and out-of-same

test results.

3.1 Econometric Methodology

Following Campbell and Thompson (2008) and Welch and Goyal (2008), we generate out-of-sample forecasts of

excess returns using an expanding estimation window. More specifically, we first divide the total sample of T obser-

vations for ri,t and x j,t into an in-sample portion composed of the first n1 observations and an out-of-sample portion

composed of the last n2 observations. The initial out-of-sample forecast of the excess return on a component portfolio

based on the predictor x j,t is given by

r̂i,n1+1 = âi,n1 + b̂i, j,n1x j,n1 , (3.1)

where âi,n1 and b̂i, j,n1 are the OLS estimates of ai and bi, j, respectively, in (2.1) generated by regressing {ri,t}n1
t=2 on a

constant and {x j,t}n1−1
t=1 . The next out-of-sample forecast is given by

r̂i,n1+2 = âi,n1+1 + b̂i, j,n1+1x j,n1+1, (3.2)

where âi,n1+1 and b̂i, j,n1+1 are generated by regressing {ri,t}n1+1
t=2 on a constant and {x j,t}n1

t=1. Proceeding in this manner

through the end of the out-of-sample period, we generate a series of n2 out-of-sample excess return forecasts based

on x j,t ({r̂i,t+1}T−1
t=n1

). We emphasize that this out-of-sample forecasting exercise mimics the situation of a forecaster

in real time. As in our in-sample tests in Section I above, a constant expected excess return model is the relevant
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benchmark model under the null hypothesis of no predictability. Following Campbell and Thompson (2008) and

Welch and Goyal (2008), we simulate real-time forecasts based on the constant expected excess return model using

the historical average, r̄i,t+1 = ∑
t
j=1 ri, j.

We use the Campbell and Thompson (2008) out-of-sample R2 statistic, R2
OS, to compare the r̂i,t+1 and r̄i,t+1 fore-

casts. The R2
OS statistic is akin to the familiar in-sample R2 and is given by

R2
OS = 1− ∑

n2
k=1(ri,n1+k − r̂i,n1+k)2

∑
n2
k=1(ri,n1+k − r̄i,n1+k)2 . (3.3)

The R2
OS statistic measures the reduction in mean square prediction error (MSPE) for the predictive regression model

forecast compared to the historical average forecast. Thus, when R2
OS > 0, the r̂i,t forecast outperforms the r̄i,t forecast

according to the MSPE metric. We also test whether the predictive regression model forecast has a significantly

lower MSPE than the historical average benchmark forecast, which is tantamount to testing the null hypothesis that

R2
OS ≤ 0 against the alternative hypothesis that R2

OS > 0. The most popular test procedure is the Diebold and Mariano

(1995) and West (1996) statistic, which has an asymptotic standard normal distribution when comparing forecasts

from non-nested models. Clark and McCracken (2001) and McCracken (2007), however, show that this statistic has

a non-standard distribution when comparing forecasts from nested models, as is clearly the case when comparing the

predictive regression model forecast to the historical average forecast.

Clark and West (2007) develop an adjusted version of the Diebold and Mariano (1995) and West (1996) statistic

that can be used in conjunction with the standard normal distribution to generate asymptotically valid inferences when

comparing forecasts from nested linear models. The Clark and West (2007) MSPE-adjusted statistic is conveniently

calculated by first defining

fi,t+1 = (ri,t+1 − r̄i,t+1)2 − [(ri,t+1 − r̂i,t+1)2 − (r̄i,t+1 − r̂i,t+1)2], (3.4)

then regressing { fi,s+1}T−1
s=n1

on a constant, and finally calculating the t-statistic corresponding to the constant. A

p-value for a one-sided (upper-tail) test is then computed using the standard normal distribution. In Monte Carlo

simulations, Clark and West (2007) demonstrate that the MSPE-adjusted statistic performs reasonably well in terms

of size and power when comparing forecasts from nested linear models for a variety of sample sizes.

When estimating forecasting models, we use the first subperiod (1996.07 – 2001:12) of data as an in-sample period

and compute excess return forecasts via an expanding estimation window, as described above. This leaves us with an

out-of-sample forecast evaluation period of 2002:01–2009:6. This period covers the bubble period of the 2007-2008.

In addition to individual predictive regression model forecasts, we compute combination forecasts of component

portfolio returns. We do this for two reasons. First, combination forecasts provide a convenient means for summarizing

the collective predictive ability of a large number of individual predictors. Second, Rapach, Strauss, and Zhou (2009)

recently find that combination forecasts substantially improve forecasts of aggregate market excess returns. More
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specifically, they show that combinations of forecasts generated by individual predictive regression models based on

the economic variables from Welch and Goyal (2008) provide statistically and economically significant out-of-sample

gains relative to the historical average forecast, despite the inconsistent and often poor out-of-sample performance of

individual model forecasts. These gains likely stem from the ability of forecast combination to improve forecasting

performance in the presence of substantial model uncertainty and instability.1 An alternative approach to incorpo-

rating information from a large number of potential predictors is to include all of the potential predictors in a single

multiple regression model, what Welch and Goyal (2008) call the “kitchen sink” model. Welch and Goyal (2008) and

Rapach, Strauss, and Zhou (2009), however, show that the kitchen sink model performs very poorly in out-of-sample

forecasting.2

We employ a simple forecast combining method: the mean of the individual predictive regression model forecasts.

Rapach, Strauss, and Zhou (2009) find that the mean combination forecast performs well with respect to forecasting

aggregate market excess returns. The mean combination forecast has also proved useful in macroeconomic contexts;

see, for example, Stock and Watson (2003) with respect to forecasting output growth and inflation.

3.2 The Aggregate Market Portfolio Excess Returns

The MKT row of Table VI reports out-of-sample results for excess returns on aggregate market portfolios using the 9

economic variables as predictors. The entries in Table VI give the R2
OS statistic (in percent). Among the 9 economic

variables, only TO produces a significant R2
OS (7.79%) for the excess return on the aggregate market portfolio. The

combination forecast in the last column of Table VI yields a statistically significant and economically sizable R2
OS of

3.13% for the aggregate market return.

3.3 Industry Portfolio Excess Returns

Turning to the industry portfolios, as shown by Table VI, we see some marked differences in predictability across

industries. Focusing on the combination forecast results in the last column, TRANS, INFTK, MONEY, PROPT,

and SRVC have R2
OS statistics greater than 3.13%, and all are statistically significant. There are some individual

1See, for example, Hendry and Clements (2004) and Timmermann (2006).
2Rapach, Strauss, and Zhou (2009) analyze the restrictions implied by forecast combination relative to the unrestricted kitchen sink model.

They argue that these restrictions improve forecasting performance in environments with a highly complex and constantly evolving data-generating

process; also see the comparison of combination and kitchen sink model forecasts in Huang and Lee (2009). Another approach for incorporat-

ing information from a very large number of economic variables is factor analysis. Ludvigson and Ng (2007) apply this approach using 350

macroeconomic and financial variables in analyzing aggregate market return predictability.
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predictors, especially TO, that produce relatively high R2
OS statistics for most of the industries; for example, TO has an

R2
OS of 9.44% for PROPT and 8.95% for TRANS. Nevertheless, the combination forecasts can improve out-of-sample

forecasting performance relative to most of the individual predictive regression models for some predictable industries,

such as CNSTR and MEDIA.

[Insert Table VI about here]

While most of the industries evince significant return predictability, a few others, such as AGRIC, MINES,

MANUF, UTILS, CNSTR, WHTSL, MEDIA, and MULTP, generally display substantially less return predictabil-

ity. For these industries, the combination forecast R2
OS statistics range from only 1.39%–3.03%, below 3.13%, the

combination forecast R2
OS statistics of the aggregate market portfolio. Overall, the out-of-sample results for industry

portfolio returns reported in this section match up reasonably well with the in-sample results in Section I above.

[Insert Table VII about here]

3.4 Size Portfolio Returns

Table VII reports out-of-sample results for size portfolio excess returns using the 9 economic variables as predictors.

Among the individual economic variables, relatively few have positive R2
OS statistics. Again TO perform the best

overall, with all positive and significant R2
OS statistics. The R2

OS statistics in the last column of Table VII show that

the combination forecasts offer out-of-sample gains relative to the historical average forecasts for all of the size port-

folios. These statistics are all positive and significant. Pronounced differences in predictability across size portfolios

are evident: The R2
OS statistics for the combination forecasts in Table VII vary between the range of 2.86%–5.75%.

Although there is no clear pattern for the differences in predictability across size portfolios, as shown in Panel C of

Table X, there is a downward trend in general from small to large size portfolios when using the subperiod of 2002:01

to 2006:12 as the the forecast evaluation period by excluding the bubble period of 2007 to 2009. Focusing on the

results for the combination forecasts in the last column of the table, we see that the extent of predictability is strongest

for S1, where the R2
OS is an economically substantial 8.91%, while the R2

OS falls to 3.08% for S10. In fact, the R2
OS

statistics decrease almost monotonically as size increases. The out-of-sample results presented in this section for size

portfolios reinforce the in-sample results in Section I above.

[Insert Table VIII about here]
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3.5 Book-to-Market Portfolio Returns

Out-of-sample results for book-to-market portfolio excess returns using 9 economic variables as predictors are reported

in Table VIII. Similar to the results in Table VII for the size portfolios, TO perform the best overall, with all positive and

significant R2
OS statistics. The R2

OS statistics in the last column of Table VIII show that the combination forecasts offer

out-of-sample gains relative to the historical average forecasts for all of the book-to-market portfolios. These statistics

are all positive and significant. Pronounced differences in predictability across book-to-market portfolios are evident:

The R2
OS statistics for the combination forecasts in Table VIII vary between the range of 2.38%–4.14%. Although

similar to the size portfolios, there is again no clear pattern for the differences in predictability across book-to-market

portfolios, as shown in Panel D of Table X, there is a downward trend in general from low to high book-to-market

portfolios when using the subperiod of 2002:01 to 2006:12 as the the forecast evaluation period by excluding the

bubble period of 2007 to 2009.

[Insert Table IX about here]

3.6 Ownership Concentration Portfolio Returns

Out-of-sample results for the ownership concentration portfolio excess returns using 9 economic variables as predictors

are reported in Table IX. Similar to the results in Tables VII and VIII for the size and book-to-market portfolios, TO

perform the best overall, with all positive and significant R2
OS statistics. The R2

OS statistics in the last column of Table

VIII show that the combination forecasts offer out-of-sample gains relative to the historical average forecasts for all

of the ownership concentration portfolios. These statistics are all positive and significant. Pronounced differences in

predictability across book-to-market portfolios are evident: The R2
OS statistics for the combination forecasts in Table

IX vary between the range of 2.23%–6.24%. Although similar to the size and book-to-market portfolios, there is

again no clear pattern for the differences in predictability across book-to-market portfolios, the R2
OS statistics of the

combination forecasts for the five portfolios with lower ownership concentration, OC1 to OC5, are generally larger

than those R2
OS statistics for the five portfolios with higher ownership concentration, OC6 to OC10. This is true, as

shown in Panel E of Table X, when using the subperiod of 2002:01 to 2006:12 as the the forecast evaluation period by

excluding the bubble period of 2007 to 2009.

[Insert Table X about here]
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Chapter 4

Economic Explanations for Component

Predictability

We next explore economic explanations for component predictability of the Chinese stock market, focusing on

out-of-sample combination forecasts. This section presents results for two approaches based on rational/alpha pre-

dictability decompositions, and industry characteristics.

4.1 Decomposing Out-of-Sample Predictability

Studies such as Stambaugh (1983), Campbell (1987), Connor and Korajczyk (1989), Ferson and Harvey (1991, 1999),

Ferson and Korajczyk (1995), Kirby (1998), and Avramov (2004) analyze the implications of rational asset pricing

for return predictability. This provides a framework for determining the extent to which component predictability

results from exposure to time-varying systematic/macroeconomic risk premiums as opposed to alpha predictability,

where the latter can be interpreted as corresponding to asset mispricing. We investigate this issue following Kong,

Rapach, Strauss, TU ans zhou’s (2009) out-of-sample approach based on combination forecasts of aggregate market

and component portfolio returns.

Following Avramov (2004), among others, consider the following model for component i’s excess return:

ri,t = αi(xt−1)+β
′
i ft + εi,t , (4.1)

where xt−1 is an M-vector of lagged state variables or predictors, ft is a K-vector of portfolio-based factors capturing

systematic risk, and βi is a K-vector comprised of component i’s beta. Assume that

ft = λ (xt−1)+ut , (4.2)
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where ut is a zero-mean vector of disturbance terms. Equation (4.2) allows the factors to vary with the lagged state

variables, leading to time-varying risk premiums. A conditional version of a rational asset-pricing model implies1

E(ri,t |xt−1) = β
′
i E( ft |xt−1) = β

′
i λ (xt−1). (4.3)

When K = 1, we can consider (4.3) as the conditional CAPM, so that ft is a scalar representing the excess return

on the aggregate market portfolio, and λ (xt−1) is the expected market equity premium. Under rational asset pricing

in the form of the conditional CAPM, any predictability in ri,t emanates solely from the predictability of aggregate

market returns in conjunction with the sensitivity of ri,t to the market portfolio, as given by βiλ (xt−1), implying

αi(xt−1) = 0 ∀ t. Predictability in ri,t beyond what is produced by βiλ (xt−1) represents alpha predictability, as it implies

αi(xt−1) 6= 0 ∀ t. Insofar as (4.2) adequately captures systematic risk, αi(xt−1) 6= 0 ∀ t corresponds to mispricing in

component i.

We calculate rational pricing-restricted combination forecasts of ri,t based on (4.3) to decompose the R2
OS statistics

(in Section II) into their rational and alpha predictability portions. To begin, consider forming a combination forecast

of ri,t based on (4.3) under the conditional CAPM. From Section II, we already have a time-t combination forecast of

the aggregate market return that incorporates time-(t −1) information from 9 economic variables; denote this forecast

as f̂ C
t , which can be viewed as a real-time estimate of λ (t −1). It is straightforward to compute an estimate of βi for

time t by regressing the component i excess return on the aggregate market excess return using data from the beginning

of the sample through t − 1; denote this estimate by β̂i,t .2 The rational pricing-restricted combination forecast of ri,t

based on (4.3) is then given by

r̂R
i,t = β̂i,t f̂ C

t . (4.4)

In other words, one obtains this combination forecast with the use of an asset-pricing model, in this case, the condi-

tional CAPM.

Denote the combination forecast of ri,t from Section II by r̂C
i,t . In contrast to r̂R

i,t , r̂C
i,t does not impose the asset-

pricing restriction given by (4.3). It thus constitutes an unrestricted combination forecast based on 9 economic vari-

ables that permits both rational and alpha predictability.

Then we are ready to decompose the R2
OS statistic by computing two subsidiary R2

OS statistics. The first is a

modified version of (3.3) that measures the reduction in MSPE for the rational pricing-restricted combination forecast

1This specification assumes that βi is time-invariant, following Stambaugh (1983), Campbell (1987), Connor and Korajczyk (1989), Kirby

(1998), and Avramov (2004). Ferson and Harvey (1991), Evans (1994), and Ferson and Korajczyk (1995) present empirical evidence that time

variation in risk premiums (λ ) is substantially greater than that in βi; also see Ghysels (1998). Note that our recursive out-of-sample estimation

procedure for βi, described below, allows for some time variation in βi.
2Note that there is no “look-ahead” bias in doing this, as we only use data available at the time of forecast formation in estimating βi.
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relative to the historical average forecast,

R2
OS,R = 1−

∑
n2
k=1(ri,n1+k − r̂R

i,n1+k)
2

∑
n2
k=1(ri,n1+k − r̄i,n1+k)2 . (4.5)

The R2
OS,R statistic gauges the extent of rational out-of-sample predictability in component i as implied by the condi-

tional CAPM. The next statistic measures the decrease in MSFE for the unrestricted combination forecast compared

to the rational pricing-restricted combination forecast,

R2
OS,α = 1−

∑
n2
k=1(ri,n1+k − r̂C

i,n1+k)
2

∑
n2
k=1(ri,n1+k − r̂R

i,n1+k)
2 . (4.6)

This statistic quantifies the degree of out-of-sample predictability beyond rational predictability, thereby providing a

measure of out-of-sample alpha predictability. Observe from (3.3), (4.5), and (4.6) that

R2
OS,α = 1−

[
∑

n2
k=1(ri,n1+k − r̂C

i,n1+k)
2

∑
n2
k=1(ri,n1+k − r̄i,n1+k)2

][
∑

n2
k=1(ri,n1+k − r̄i,n1+k)2

∑
n2
k=1(ri,n1+k − r̂R

i,n1+k)
2

]
= 1−

(
1−R2

OS

1−R2
OS,R

)
. (4.7)

Solving for R2
OS in (4.7), we have

R2
OS = R2

OS,R +R2
OS,α −R2

OS,RR2
OS,α . (4.8)

For “small” R2
OS,R and R2

OS,α , the cross-product term is approximately zero, so that

R2
OS ≈ R2

OS,R +R2
OS,α . (4.9)

Our approach thus (approximately) dichotomizes R2
OS, a measure of total out-of-sample predictability, into R2

OS,R and

R2
OS,α , the sum of predictability due to exposure to time-varying risk premiums and alpha variation, respectively.

Table XI reports R2
OS,R and R2

OS,α statistics for combination forecasts that use 9 economic variables as predictors.

Panel A of Table XI indicates that 12 of the 13 industries have positive and significant R2
OS,R statistics, meaning that

rational pricing as captured by the conditional CAPM explains a significant portion of the out-of-sample predictability

for almost all industries. Furthermore, R2
OS,α is only significant for four industries (INFTK, MONEY, PROPRT, and

SRVC), and the magnitude of the R2
OS,α statistics can be substantially less than that of the corresponding R2

OS,R statis-

tics. Taken together, these results suggest that the out-of-sample predictability in industry returns based on economic

variables is largely attributable to rational out-of-sample predictability based on the conditional CAPM as opposed to

alpha predictability. The results for the size and book-to-market portfolios in Panels B and C, respectively, of Table XI

are similar to those in Panel A. Again, little of the out-of-sample predictability in size and book-to-market portfolios

appears attributable to alpha predictability except for a few cases. As for the ownership concentration portfolios, Panel

D shows that the out-of-sample predictability in the five portfolios with lower ownership concentration, OC1 to OC5,

appears attributable to both rational factor predictability and alpha predictability.

[Insert Table XI about here]
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Rational asset pricing built on the conditional CAPM suggests that the out-of-sample gains in predictability for

the rational pricing-restricted forecast relative to the historical average forecast should be more pronounced for com-

ponents with greater exposure to the market portfolio. We investigate the relationship between the extent of rational

predictability and a component’s beta in Figure 1. Each panel in Figure 1 presents a scatterplot relating a compo-

nent’s R2
OS,R statistic to the average β̂i,t over the out-of-sample period. Each panel includes a fitted regression line and

estimation results for a cross-section regression model with R2
OS,R (average β̂i,t ) as the regressand (regressor).3

[Insert Figure 1 about here]

Panels B and D of Figure 1 show a clear positive correlation between the R2
OS,R statistics and average βi estimates

for the size and ownership concentration portfolios . Furthermore, the estimated slope coefficients reveal a significant

relationship in each panel, and the R2 statistics for the cross-section regressions are a reasonably sizable 14% and

27% in Panels B and D, respectively. In contrast to the results in Figure 1, Panels B and D, there is no evidence

of a significantly positive relationship between R2
OS,R and the average βi estimates for the industry portfolios and the

book-to-market portfolios in Panels A and C.

While beyond the scope of the present paper, we could consider additional conditional asset-pricing models, in-

cluding, for example, models with additional potential macroeconomic risk factors from Chen, Roll, and Ross (1986).4

Nevertheless, it is interesting that conditional asset-pricing models based on the well-known CAPM model can account

for most of the out-of-sample predictability in a variety of component portfolio returns.

4.2 Out-of-Sample Predictability and Industry Characteristics

To gain additional insight into economic explanations for differences in component predictability, we examine the

relationships between the R2
OS statistics for the combination forecasts in the last column of Table VI and two in-

dustry characteristics, industry concentration share and industry market capitalization share. This is motivated by the

information-flow frictions recently emphasized by HTV. If information-flow frictions are pertinent, we expect stronger

predictability in industries with greater concentration, since the equity market is better able to acquire information for

the relatively small number of large firms in these industries. In contrast, information should be more costly to obtain—

and information-flow frictions more relevant—for industries characterized by a comparatively large number of small

firms; we thus expect a greater degree of predictability for these industries. In a similar vein, we posit a lesser (greater)

3An intercept term is included in the cross-section regression model. The t-statistics reported in Figure 1 are based on White (1980)

heteroskedasticity-consistent standard errors.
4Ferson and Harvey (1991) and Ferson and Korajczyk (1995) consider these factors in conditional asset-pricing models. We leave the analysis

of additional conditional asset-pricing models to future research.
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degree of predictability for industries that make up a larger (smaller) share of the overall equity market.

Panel A (B) of Figure 2 presents a scatterplot relating the R2
OS statistics for the combination forecasts based on

lagged industry returns in Table VI to industry concentration (industry market capitalization). Industry concentration

is measured as the sum of the earnings share (in percent) accruing to the eight largest firms in the industry, while

industry market capitalization is measured as the industry market capitalization share of the entire equity market on

average over our sample period.

[Insert Figure 2 about here]

Panel A of Figure 2 shows a negative correlation between industry concentration and out-of-sample predictability

across industries. In addition, although a cross-section OLS regression of the R2
OS statistics on industry concentration

yields a negative but not significant slope coefficient (t-statistic equals −0.29) and a relatively small R2 statistic of

0.77%, the t-statistic and the R2 statistic become much larger after dropping the two industries (TRANS and INFTK).

These results are in line with our conjecture that less concentrated industries are typically more predictable due to

information-flow frictions. Panel B of Figure 2 shows a negative correlation between industry market capitalization

and out-of-sample predictability, and the cross-section regression confirms a significant relationship (large t-statistic)

with relatively high explanatory power (high R2) after dropping the two industries (TRANS and INFTK). Taken

together, the results in Figure 2 signals the relevance of market structure and size for the predictability of industry

returns.

19



Chapter 5

Conclusion

We conduct an extensive analysis of return predictability in the Chinese stock market for the aggregate market

portfolio and a variety of its component portfolios using a large number of potential predictors from the literature on

stock return predictability. Focusing on the aggregate market portfolio and four sets of component portfolios sorted on

industry, size, book-to-market and ownership concentration, in-sample and out-of-sample tests both point to significant

predictability and important differences in predictability across component portfolios. More specifically, we find that

returns are more predictable for particular industries, small-cap and low ownership concentration stocks. Employing

a forecast combination approach, the predictability we find is robust to the use of individual predictors and particular

sample periods.

We also explore economic explanations for the differences in return predictability across component portfolios of

the Chinese aggregate market portfolio. We implement an innovative decomposition based on combination forecasts

that apportions out-of-sample component predictability into exposure to time-varying macroeconomic risk premiums

and alpha predictability. Our results suggest that exposure to time-varying risk premiums largely accounts for the

out-of-sample predictability in component portfolios. Furthermore, differences in return predictability across industry

portfolios are significantly related to industry concentration and capitalization, and the direction of the relationships

are consistent with information-flow frictions in the equity market (Hong, Torous, and Valkanov (2007)). Overall,

our results point to the importance of time-varying macroeconomics risk exposure and information-flow frictions in

understanding return predictability more generally.

Our results could be extended in some directions. For instance, we focus on a large number of predictors from the

literature on US stock return predictability. It would be interesting to also consider China-specific predictors such as

bank loan expansion rate given that Chinese stock market is likely to subject to the liquidity in a larger degree than a

developed market like US. We leave these extensions to future research.
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Table I
Summary statistics

The table reports sample means and standard deviations (in percentage points) for excess returns on various portfolios and economic variables
for 1996:07–2009:06. Sharpe ratios are also reported for the excess returns. All excess returns are computed relative to the risk-free rate. Panel
A reports summary statistics for the China A-share aggregate value-weighted market portfolio (MKT). Panel B reports summary statistics for 13
valued-weighted industry portfolios. Panel C (D; E) reports summary statistics for 10 portfolios sorted on market capitalization (book-to-market
value; Ownership-Concentration); S1,...,S10 (BM1,...,BM10; OC1,...,OC10) delineate deciles in ascending order for portfolios formed on market
capitalization (book-to-market value; percentage of share held by the largest shareholder). Panel F reports summary statistics for 9 economic
variables.

Variable Mean Std. dev. Sharpe ratio Variable Mean Std. dev. Sharpe ratio Variable Mean Std. dev. Sharpe ratio

Panel A: Aggregate market portfolio excess returns

MKT 1.26 9.01 0.14

Panel B: Industry portfolio excess returns

AGRIC 1.29 10.90 0.12 TRANS 1.35 9.50 0.14 SRVC 1.32 10.02 0.13
MINES 2.33 10.87 0.21 INFTK 1.49 11.52 0.13 MEDIA 1.25 12.11 0.10
MANUF 1.22 9.57 0.13 WHTSL 1.38 9.97 0.14 MULTP 1.31 10.89 0.12
UTILS 1.12 9.25 0.12 MONEY 1.58 10.59 0.15
CNSTR 0.65 10.07 0.06 PROPT 1.39 10.31 0.13

Panel C: Size portfolio excess returns

S1 2.62 11.83 0.22 S6 1.47 10.43 0.14
S2 2.02 11.25 0.18 S7 1.34 10.17 0.13
S3 2.00 11.10 0.18 S8 1.29 9.95 0.13
S4 1.84 10.68 0.17 S9 1.36 9.67 0.14
S5 1.57 10.62 0.15 S10 0.99 8.78 0.11

Panel D: Book-to-market portfolio excess returns

BM1 0.60 9.83 0.06 BM6 1.24 9.28 0.13
BM2 1.21 9.27 0.13 BM7 1.43 10.06 0.14
BM3 1.04 9.22 0.11 BM8 1.61 10.32 0.16
BM4 0.99 8.87 0.11 BM9 1.64 9.68 0.17
BM5 1.40 9.79 0.14 BM10 1.70 10.31 0.16

Panel E: Ownership-concentration portfolio excess returns

OC1 1.33 9.41 0.14 OC6 1.09 9.10 0.12
OC2 1.25 10.67 0.12 OC7 1.34 9.60 0.14
OC3 1.47 10.57 0.14 OC8 1.12 9.33 0.12
OC4 1.41 9.98 0.14 OC9 1.11 9.42 0.12
OC5 1.33 9.58 0.14 OC10 1.46 8.74 0.17

Panel F: Economic variables

D/P −4.64 0.54 B/M 0.34 0.13
D/Y −4.63 0.54 INF 0.001 0.01
D/E −1.04 0.29 NTIS 0.04 0.01
SVAR 0.01 0.01 TO 0.12 0.08
E/P −3.60 0.44



Table II
In-sample predictive regression results for industry portfolio excess returns

with 9 economic variables as predictors

The entries in this table report the t-statistic corresponding to bi, j (top number) and R2 statistic in percent (bottom number) for the predictive
regression model, ri,t = ai + bi, jx j,t−1 + ei,t , where ri,t is the excess return for the value-weighted industry portfolio given in the row heading and
x j,t−1 is the economic variable given in the column heading. The MKT row reports results for the excess return on the China A-Share aggregate
value-weighted market portfolio. The t-statistic and R2 statistic are based on OLS estimation for 1996:07-2009:06;“∗” indicates significance at the
5% level.“Sig.(5%)” indicates the number of industries for which the t-statistic is significant at the 5% level for the predictor given in the column
heading.“Avg.R2”is the row or column average of the R2

OS statistics; the row average exclude MKT.

Return D/P D/Y D/E SVAR E/P B/M INF NTIS TO Avg.R2

MKT 2.02 2.28∗ 1.25 0.80 1.64 1.38 1.70∗ 1.28 2.98∗
2.58 3.28 1.01 0.41 1.72 1.23 1.85 1.06 5.46 2.06

AGRIC 1.17 1.27 0.20 2.02∗ 1.31 0.59 1.09 1.40 3.08∗
0.88 1.04 0.03 2.59 1.10 0.23 0.76 1.26 5.80 1.52

MINES 0.85 1.09 0.45 0.22 0.74 0.90 1.68∗ 1.54 1.95∗
0.46 0.76 0.13 0.03 0.36 0.52 1.80 1.52 2.40 0.89

MANUF 2.18 2.38∗ 1.16 0.95 1.90 1.61 1.31 1.32 2.73∗
2.98 3.55 0.86 0.58 2.28 1.65 1.10 1.12 4.61 2.08

UTILS 1.33 1.44 1.07 1.31 0.92 0.73 1.77∗ 1.18 2.55∗
1.13 1.33 0.74 1.10 0.54 0.34 1.99 0.90 4.04 1.35

CNSTR 1.85 1.84∗ 1.17 1.36 1.49 1.39 1.73∗ 2.28∗ 1.41
2.18 2.16 0.89 1.19 1.43 1.23 1.90 3.26 1.27 1.72

TRANS 1.21 1.53 0.99 0.99 0.83 0.55 2.46∗ 0.71 3.29∗
0.94 1.50 0.63 0.64 0.44 0.19 3.79 0.32 6.56 1.67

INFTK 1.18 1.40 0.07 1.42 1.41 1.00 0.95 0.86 2.32∗
0.90 1.26 0.00 1.29 1.28 0.64 0.59 0.47 3.39 1.09

WHTSL 1.93 2.14∗ 0.66 1.04 1.94 1.54 0.85 1.60 2.65∗
2.37 2.88 0.28 0.70 2.38 1.52 0.47 1.64 4.37 1.85

MONEY 2.62∗ 2.76∗ 1.99∗ 0.59 1.88 1.89 1.81∗ 1.08 2.52∗
4.27 4.70 2.50 0.22 2.24 2.28 2.08 0.76 3.96 2.56

PROPT 2.70∗ 3.03∗ 1.31 1.08 2.42∗ 1.96 1.51 1.20 3.69∗
4.50 5.62 1.11 0.75 3.67 2.42 1.45 0.93 8.14 3.18

SRVC 2.08 2.37∗ 0.62 1.11 2.14 1.76 1.19 1.40 2.75∗
2.73 3.51 0.25 0.79 2.90 1.97 0.91 1.25 4.68 2.11

MEDIA 1.67 1.69 0.42 0.95 1.78 1.56 −0.32 1.50 1.51
1.77 1.81 0.11 0.59 2.01 1.56 0.07 1.44 1.46 1.20

MULTP 2.00 2.15∗ 0.53 1.29 2.11 1.61 1.26 1.09 2.58∗
2.53 2.90 0.18 1.07 2.82 1.65 1.01 0.77 4.15 1.90

Sig.(5%) 2 7 1 1 1 0 5 1 11

Avg. R2 2.13 2.54 0.59 0.89 1.80 1.25 1.38 1.20 4.22



Table III
In-sample predictive regression results for size portfolio excess returns

with 9 economic variables as predictors

The entries in this table report the t-statistic corresponding to bi, j (top number) and R2 statistic in percent (bottom number) for the predictive
regression model, ri,t = ai + bi, jx j,t−1 + ei,t , where ri,t is the excess return for the market capitalization-sorted portfolio given in the row heading
and x j,t−1 is the economic variable given in the column heading. S1,...,S10 delineate deciles in ascending order for portfolios formed on market
capitalization. The MKT row reports results for the excess return on the China A-Share aggregate value-weighted market portfolio. The t-statistic
and R2 statistic are based on OLS estimation for 1996:07-2009:06;“∗” indicates significance at the 5% level.“Sig.(5%)” indicates the number of
industries for which the t-statistic is significant at the 5% level for the predictor given in the column heading.“Avg.R2”is the row or column average
of the R2

OS statistics; the row average exclude MKT.

Return D/P D/Y D/E SVAR E/P B/M INF NTIS TO Avg.R2

MKT 2.02 2.28∗ 1.25 0.80 1.64 1.38 1.70∗ 1.28 2.98∗
2.58 3.28 1.01 0.41 1.72 1.23 1.85 1.06 5.46 2.06

S1 0.51 0.76 −0.67 1.98∗ 1.08 0.10 0.87 1.41 3.31∗
0.17 0.37 0.29 2.48 0.75 0.01 0.49 1.28 6.65 1.39

S2 1.21 1.41 −0.29 1.83∗ 1.69 0.88 0.67 1.33 2.81∗
0.94 1.27 0.05 2.14 1.83 0.50 0.29 1.14 4.87 1.45

S3 1.28 1.49 0.04 2.02∗ 1.56 0.79 1.33 1.41 3.30∗
1.06 1.41 0.00 2.57 1.55 0.40 1.13 1.27 6.59 1.78

S4 1.47 1.71 0.18 1.75∗ 1.70 0.98 1.00 1.33 3.22∗
1.39 1.86 0.02 1.94 1.85 0.62 0.65 1.13 6.32 1.75

S5 1.70 1.91∗ 0.18 1.54 1.98 1.28 1.04 1.17 3.00∗
1.83 2.32 0.02 1.52 2.47 1.06 0.70 0.88 5.51 1.81

S6 1.78 1.97∗ 0.38 1.84∗ 1.94 1.31 1.17 1.36 3.09∗
2.01 2.47 0.09 2.15 2.38 1.11 0.87 1.19 5.85 2.01

S7 2.05 2.28∗ 0.77 1.45 2.01 1.56 1.34 1.23 3.03∗
2.65 3.26 0.38 1.35 2.55 1.56 1.16 0.98 5.63 2.17

S8 2.13 2.35∗ 0.98 1.26 1.96 1.61 1.29 1.30 2.83∗
2.86 3.46 0.63 1.01 2.43 1.66 1.07 1.09 4.94 2.13

S9 2.33∗ 2.58∗ 1.22 1.07 2.04 1.66 1.50 1.22 3.16∗
3.39 4.16 0.96 0.74 2.62 1.75 1.44 0.96 6.08 2.45

S10 2.48∗ 2.69∗ 2.05∗ 0.21 1.67 1.74 1.91∗ 0.92 2.37∗
3.85 4.49 2.67 0.03 1.77 1.93 2.32 0.55 3.53 2.35

Sig.(5%) 2 6 1 5 0 0 1 0 10

Avg. R2 2.02 2.51 0.51 1.59 2.02 1.06 1.01 1.05 5.60



Table IV
In-sample predictive regression results for book-to-market portfolio excess returns

with 9 economic variables as predictors

The entries in this table report the t-statistic corresponding to bi, j (top number) and R2 statistic in percent (bottom number) for the predictive
regression model, ri,t = ai + bi, jx j,t−1 + ei,t , where ri,t is the excess return for the book-to-market value-sorted portfolio given in the row heading
and x j,t−1 is the economic variable given in the column heading. BM1,...,BM10 delineate deciles in ascending order for portfolios formed on book-
to-market value. The MKT row reports results for the excess return on the China A-Share aggregate value-weighted market portfolio. The t-statistic
and R2 statistic are based on OLS estimation for 1996:07-2009:06;“∗”indicates significance at the 5% level.“Sig.(5%)” indicates the number of
industries for which the t-statistic is significant at the 5% level for the predictor given in the column heading.“Avg.R2”is the row or column average
of the R2

OS statistics; the row average exclude MKT.

Return D/P D/Y D/E SVAR E/P B/M INF NTIS TO Avg.R2

MKT 2.02 2.28∗ 1.25 0.80 1.64 1.38 1.70∗ 1.28 2.98∗
2.58 3.28 1.01 0.41 1.72 1.23 1.85 1.06 5.46 2.06

BM1 2.01 2.26∗ 0.90 0.95 1.87 1.51 1.19 1.27 2.79∗
2.55 3.21 0.53 0.58 2.21 1.46 0.91 1.03 4.82 1.92

BM2 2.05 2.24∗ 0.74 1.06 2.03 1.79 0.96 1.20 2.93∗
2.66 3.16 0.36 0.72 2.60 2.04 0.59 0.93 5.28 2.04

BM3 1.95 2.30∗ 1.09 0.70 1.66 1.38 1.27 1.20 3.37∗
2.40 3.33 0.77 0.32 1.76 1.23 1.04 0.92 6.88 2.07

BM4 1.93 2.17∗ 1.16 0.68 1.60 1.44 1.59 1.87 2.40∗
2.36 2.96 0.87 0.30 1.63 1.34 1.62 2.21 3.61 1.88

BM5 1.50 1.81 0.77 1.09 1.33 0.93 1.67∗ 1.20 3.05∗
1.44 2.09 0.39 0.76 1.13 0.56 1.79 0.93 5.70 1.64

BM6 1.74 1.91∗ 0.88 0.76 1.55 1.26 1.27 1.42 2.21∗
1.93 2.32 0.50 0.37 1.54 1.02 1.03 1.28 3.06 1.45

BM7 1.76 2.04∗ 1.24 0.74 1.33 0.99 1.90∗ 1.24 2.97∗
1.97 2.64 0.99 0.36 1.13 0.63 2.29 0.98 5.43 1.83

BM8 1.96 2.24∗ 1.14 0.91 1.65 1.33 1.42 0.83 2.84∗
2.44 3.16 0.84 0.53 1.73 1.13 1.30 0.44 4.97 1.84

BM9 1.83 2.14∗ 1.36 0.63 1.35 1.07 1.99∗ 1.06 2.73∗
2.14 2.88 1.18 0.25 1.16 0.73 2.51 0.73 4.61 1.80

BM10 2.09 2.31∗ 1.41 0.67 1.62 1.37 1.54 0.85 2.59∗
2.77 3.35 1.28 0.29 1.68 1.20 1.52 0.47 4.17 1.86

Sig.(5%) 0 9 0 0 0 0 3 0 10

Avg. R2 2.27 2.91 0.77 0.45 1.66 1.13 1.46 0.99 4.85



Table V
In-sample predictive regression results for ownership-concentration portfolio excess returns

with 9 economic variables as predictors

The entries in this table report the t-statistic corresponding to bi, j (top number) and R2 statistic in percent (bottom number) for the predictive
regression model, ri,t = ai +bi, jx j,t−1 +ei,t , where ri,t is the excess return for the largest shareholder share holding percentage-sorted portfolio given
in the row heading and x j,t−1 is the economic variable given in the column heading. OC1,...,OC10 delineate deciles in ascending order for portfolios
formed on largest shareholder share holding percentage. The MKT row reports results for the excess return on the China A-Share aggregate value-
weighted market portfolio. The t-statistic and R2 statistic are based on OLS estimation for 1996:07-2009:06;“∗” indicates significance at the 5%
level.“Sig.(5%)” indicates the number of industries for which the t-statistic is significant at the 5% level for the predictor given in the column
heading.“Avg.R2”is the row or column average of the R2

OS statistics; the row average exclude MKT.

Return D/P D/Y D/E SVAR E/P B/M INF NTIS TO Avg.R2

MKT 2.02 2.28∗ 1.25 0.80 1.64 1.38 1.70∗ 1.28 2.98∗
2.58 3.28 1.01 0.41 1.72 1.23 1.85 1.06 5.46 2.06

OC1 2.31∗ 2.61∗ 1.35 0.89 1.93 1.65 1.48 1.14 3.17∗
3.35 4.24 1.17 0.51 2.35 1.74 1.39 0.83 6.11 2.41

OC2 1.71 2.00∗ 0.77 0.90 1.59 1.21 1.22 0.98 3.10∗
1.86 2.52 0.38 0.53 1.61 0.94 0.96 0.62 5.89 1.70

OC3 1.68 1.97∗ 0.56 1.42 1.69 1.01 1.49 0.90 3.45∗
1.79 2.45 0.21 1.29 1.82 0.66 1.42 0.52 7.17 1.93

OC4 2.23 2.47∗ 0.93 1.34 2.12 1.64 1.18 1.48 3.24∗
3.13 3.80 0.56 1.16 2.84 1.71 0.89 1.41 6.40 2.43

OC5 1.94 2.20∗ 0.99 1.42 1.72 1.33 1.35 1.20 3.27∗
2.38 3.06 0.64 1.29 1.88 1.14 1.17 0.93 6.50 2.11

OC6 1.40 1.69 0.72 0.39 1.25 0.90 1.74∗ 1.21 2.50∗
1.26 1.82 0.34 0.10 1.00 0.53 1.92 0.94 3.90 1.31

OC7 2.45∗ 2.63∗ 1.43 0.75 2.05 1.84 1.87∗ 1.31 2.47∗
3.76 4.30 1.31 0.36 2.66 2.15 2.23 1.10 3.82 2.41

OC8 2.02 2.26∗ 1.02 1.45 1.80 1.42 1.48 0.83 3.08∗
2.58 3.22 0.67 1.34 2.06 1.30 1.40 0.45 5.80 2.09

OC9 1.95 2.20∗ 1.15 0.72 1.62 1.38 1.48 0.98 2.67∗
2.41 3.06 0.86 0.33 1.68 1.22 1.40 0.62 4.44 1.78

OC10 1.91 2.15∗ 1.51 0.16 1.34 1.44 1.65∗ 1.54 2.25∗
2.32 2.90 1.45 0.02 1.16 1.32 1.75 1.52 3.19 1.74

Sig.(5%) 2 9 0 0 0 0 3 0 10

Avg. R2 2.48 3.14 0.76 0.69 1.91 1.27 1.45 0.89 5.32



Table VI
Out-of-sample predictive regression results for industry portfolio excess returns

with 9 economic variables as predictors

The table reports out-of-sample results for predictive regression model forecasts of excess returns pitted against benchmark historical average
forecasts of excess returns for the 2002:01–2009:06 forecast evaluation period. The predictive regression model forecasts are based on the model,
ri,t = ai +bi, jx j,t−1 +ei,t , where ri,t is the excess return for the value-weighted industry portfolio given in the row heading and x j,t−1 is the economic
variable given in the column heading. The MKT row reports out-of-sample results for the excess return on the China A-Share aggregate value-
weighted market portfolio. The out-of-sample forecasts are formed recursively. The COMBINE column reports results for a combination forecast
based on the 9 individual prediction regression model forecasts taken as a group. The entries in the table report the Campbell and Thompson (2008)
out-of-sample R2 statistic (R2

OS) in percent ; “∗” indicates that R2
OS is significant at the 5% level according to the p-value corresponding to the Clark

and West (2007) MSPE-adjusted statistic.

Return D/P D/Y D/E SVAR E/P B/M INF NTIS TO COMBINE

MKT 0.30 0.98 1.84 −2.01 −4.78 −7.13 0.76 1.23 7.79∗ 3.13∗

AGRIC −2.04 −1.88 0.45 −1.22 −6.48 −7.54 0.43 −0.23 4.90 2.72∗

MINES −1.07 −0.97 −2.99 −1.88 −4.34 −7.60 0.77 2.08 3.48∗ 3.03∗

MANUF 1.34 2.08 1.69 −1.05 −2.78 −4.48 0.04 1.41 6.11∗ 2.84∗

UTILS −1.19 −1.37 0.77 −1.07 −3.84 −4.89 1.01 0.29 4.91∗ 2.53∗

CNSTR 2.88∗ 3.04∗ 1.53∗ 0.74 0.60 −0.04 −0.55 5.49∗ −0.49 2.74∗

TRANS −3.44 −3.71 0.45 −3.46 −8.68 −10.99 1.40 −1.07 8.95∗ 5.04∗

INFTK −5.30 −6.14 0.77 −2.02 −13.39 −19.35 −2.22 −1.20 6.99∗ 4.76∗

WHTSL 1.35 2.07 0.17 −0.81 −2.06 −3.96 −0.33 2.64 5.63∗ 2.97∗

MONEY 1.39 2.87∗ 2.37 −4.52 −2.50 −4.38 1.99 −2.65 5.69∗ 4.21∗

PROPT 3.00∗ 3.74∗ 1.34 −1.19 0.06 −1.77 −1.27 0.56 9.44∗ 4.12∗

SRVC 3.17∗ 3.55∗ −0.09 −1.69 −0.04 −2.24 −1.09 2.38 6.11∗ 4.29∗

MEDIA −0.01 0.37 0.08 −0.22 −4.33 −8.75 −0.15 2.41∗ 0.98 1.39∗

MULTP 0.14 0.26 0.38 −0.72 −4.62 −8.46 −0.65 0.42 5.74∗ 2.30∗



Table VII
Out-of-sample predictive regression results for size portfolio excess returns

with 9 economic variables as predictors

The table reports out-of-sample results for predictive regression model forecasts of excess returns pitted against benchmark historical average
forecasts of excess returns for the 2002:01–2009:06 forecast evaluation period. The predictive regression model forecasts are based on the model,
ri,t = ai + bi, jx j,t−1 + ei,t , where ri,t is the excess return for the market capitalization-sorted portfolio given in the row heading and x j,t−1 is the
economic variable given in the column heading. The MKT row reports out-of-sample results for the excess return on the China A-Share aggregate
value-weighted market portfolio. The out-of-sample forecasts are formed recursively. The COMBINE column reports results for a combination
forecast based on the 9 individual prediction regression model forecasts taken as a group. The entries in the table report the Campbell and Thompson
(2008) out-of-sample R2 statistic (R2

OS) in percent ; “∗” indicates that R2
OS is significant at the 5% level according to the p-value corresponding to

the Clark and West (2007) MSPE-adjusted statistic.

Return D/P D/Y D/E SVAR E/P B/M INF NTIS TO COMBINE

MKT 0.30 0.98 1.84 −2.01 −4.78 −7.13 0.76 1.23 7.79∗ 3.13∗

S1 −3.03 −2.05 1.17 1.66 −6.79 −10.21 −2.03 1.66 9.71∗ 5.75∗

S2 0.27 0.31 −0.26 0.99 −4.13 −7.21 −1.16 1.71 6.50∗ 2.93∗

S3 −0.98 −0.84 0.23 0.53 −4.62 −6.67 −1.78 1.99 8.65∗ 4.33∗

S4 −0.38 −0.19 0.04 0.15 −3.60 −5.76 −1.06 1.53 8.01∗ 3.59∗

S5 −0.50 −0.64 0.19 −0.01 −4.00 −6.24 −0.78 0.63 6.94∗ 3.45∗

S6 −0.30 −0.15 0.26 −0.06 −4.12 −6.83 −0.78 2.06 7.79∗ 4.16∗

S7 0.27 0.68 0.80 −1.11 −3.91 −6.14 −0.37 0.60 7.17∗ 2.86∗

S8 1.35 1.83 1.12 −0.94 −2.49 −4.29 −0.19 1.21 6.19∗ 3.11∗

S9 0.55 1.20 1.39 −1.17 −3.94 −6.81 0.29 0.30 7.96∗ 3.00∗

S10 2.05 3.33∗ 3.94∗ −1.69 −3.45 −5.22 2.02∗ −0.91 5.05∗ 4.31∗



Table VIII
Out-of-sample predictive regression results for book-to-market portfolio excess returns

with 9 economic variables as predictors

The table reports out-of-sample results for predictive regression model forecasts of excess returns pitted against benchmark historical average
forecasts of excess returns for the 2002:01–2009:06 forecast evaluation period. The predictive regression model forecasts are based on the model,
ri,t = ai + bi, jx j,t−1 + ei,t , where ri,t is the excess return for the book-to-market value-sorted portfolio given in the row heading and x j,t−1 is the
economic variable given in the column heading. The MKT row reports out-of-sample results for the excess return on the China A-Share aggregate
value-weighted market portfolio. The out-of-sample forecasts are formed recursively. The COMBINE column reports results for a combination
forecast based on the 9 individual prediction regression model forecasts taken as a group. The entries in the table report the Campbell and Thompson
(2008) out-of-sample R2 statistic (R2

OS) in percent ; “∗” indicates that R2
OS is significant at the 5% level according to the p-value corresponding to

the Clark and West (2007) MSPE-adjusted statistic.

Return D/P D/Y D/E SVAR E/P B/M INF NTIS TO COMBINE

MKT 0.30 0.98 1.84 −2.01 −4.78 −7.13 0.76 1.23 7.79∗ 3.13∗

BM1 1.38 2.38 1.59∗ −1.17 −3.16 −5.67 0.39 1.68 7.26∗ 3.00∗

BM2 1.29 2.05 0.42 −1.80 −3.39 −6.27 −0.36 0.30 7.91∗ 3.22∗

BM3 0.40 1.48 1.37 −2.37 −5.21 −6.97 −0.15 1.80 9.31∗ 3.68∗

BM4 1.93 2.73 1.49 −1.50 −3.33 −5.79 0.40 4.89∗ 5.13∗ 3.42∗

BM5 −1.04 −0.85 0.78 −1.64 −5.14 −7.10 −0.31 1.30 8.00∗ 4.14∗

BM6 0.71 1.28 0.97 −1.01 −3.83 −6.06 −0.70 2.01 4.08∗ 2.38∗

BM7 −2.06 −1.77 0.80 −1.15 −6.71 −8.72 0.74 0.99 7.41∗ 3.38∗

BM8 0.20 1.04 1.23 −1.68 −4.13 −6.24 0.07 −0.13 6.88∗ 2.89∗

BM9 −0.73 −0.03 1.52 −1.91 −5.51 −7.79 1.95 0.51 5.75∗ 3.24∗

BM10 −1.19 −1.18 1.67 −2.02 −5.75 −7.14 0.21 −2.36 5.64∗ 3.39∗



Table IX
Out-of-sample predictive regression results for ownership-concentration portfolio excess returns

with 9 economic variables as predictors

The table reports out-of-sample results for predictive regression model forecasts of excess returns pitted against benchmark historical average
forecasts of excess returns for the 2002:01–2009:06 forecast evaluation period. The predictive regression model forecasts are based on the model,
ri,t = ai +bi, jx j,t−1 +ei,t , where ri,t is the excess return for the largest shareholder share holding percentage-sorted portfolio given in the row heading
and x j,t−1 is the economic variable given in the column heading. The MKT row reports out-of-sample results for the excess return on the China
A-Share aggregate value-weighted market portfolio. The out-of-sample forecasts are formed recursively. The COMBINE column reports results for
a combination forecast based on the 9 individual prediction regression model forecasts taken as a group. The entries in the table report the Campbell
and Thompson (2008) out-of-sample R2 statistic (R2

OS) in percent ; “∗” indicates that R2
OS is significant at the 5% level according to the p-value

corresponding to the Clark and West (2007) MSPE-adjusted statistic.

Return D/P D/Y D/E SVAR E/P B/M INF NTIS TO COMBINE

MKT 0.30 0.98 1.84 −2.01 −4.78 −7.13 0.76 1.23 7.79∗ 3.13∗

OC1 1.55 3.03 1.88 −2.93 −3.18 −5.50 0.23 0.17 9.12∗ 3.65∗

OC2 −0.92 −0.39 1.26 −1.57 −5.80 −8.22 −1.07 0.72 8.41∗ 4.20∗

OC3 −2.98 −3.01 0.47 −1.09 −8.31 −11.45 −0.15 −1.00 10.37∗ 6.24∗

OC4 −0.88 −0.36 0.77 −1.40 −5.92 −8.78 −0.34 1.70 8.47∗ 4.53∗

OC5 −1.14 −0.83 1.52 −1.67 −6.85 −8.62 −0.20 0.67 9.46∗ 4.83∗

OC6 0.98 1.39 0.35 −1.40 −3.43 −5.27 1.35 1.54 4.85∗ 2.23∗

OC7 2.53 3.41∗ 1.95 −1.12 −1.95 −3.77 1.04 1.86 4.87∗ 3.51∗

OC8 0.30 0.86 0.76 −1.08 −2.45 −4.82 0.44 −2.39 7.19∗ 2.81∗

OC9 0.90 1.70 1.68 −1.42 −2.99 −4.67 0.29 0.55 6.13∗ 2.53∗

OC10 0.94 1.43 1.77 −1.82 −3.89 −5.53 0.13 2.53 4.28∗ 2.72∗



Table X
R2

OS statistics computed over 02:01-06:12,07:01-09:06 and 02:01-09:09 forecast evaluation period for industry,
size,

book-to-market and ownership-concentration portfolio excess returns with 9 economic variables as predictors

The table reports R2
OS statistics (in percent) for out-of-sample forecasts of industry (Panel B), size (Panel C), book-to-market (Panel D),and

ownership-concentration (Panel E) portfolio excess returns for 1996:07–2009:06 (S1,...,S10 delineate deciles in ascending order for portfolios
formed on market capitalization; BM1,...,BM10 delineate deciles in ascending order for portfolios formed on book-to-market value;OC1,...,OC10
delineate deciles in ascending order for portfolios formed on largest shareholder share holding percentage). Results are reported for combination
forecasts using 9 economic variables as predictors (see Tables VI, VII, VIII and IX). Panel A reports out-of-sample results for the excess return on
the China A-share value-weighted portfolio. R2

OS is the Campbell and Thompson (2008) out-of-sample R2 statistic. The “02:01-06:12” columns
report R2

OS statistics computed over 2002:01-2006:12 forecast evaluation period; the “07:01-09:06” columns report R2
OS statistics computed over

2007:01-2009:06 forecast evaluation period;the “02:01-09:06” columns report R2
OS statistics computed over 2002:01-2009:06 forecast evaluation

period. The “Average” rows give the averages across the portfolios in the individual panels.

Return 02:01-06:12 07:01-09:06 02:01-09:06 Return 02:01-06:12 07:01-09:06 02:01-09:06 Return 02:01-06:12 07:01-09:06 02:01-09:06

Panel A: Aggregate market portfolio excess returns

MKT 2.57 4.52 3.13

Panel B: Industry portfolio excess returns

AGRIC 5.11 2.37 2.72 TRANS 3.91 3.95 5.04 SRVC 2.79 4.02 4.29
MINES 7.84 3.22 3.03 INFTK 6.65 3.27 4.76 MEDIA 2.01 2.11 1.39
MANUF 2.62 3.16 2.84 WHTSL 3.02 3.10 2.97 MULTP 3.49 3.83 2.30
UTILS 2.86 2.36 2.53 MONEY 2.97 6.07 4.21
CNSTR 2.25 2.45 2.74 PROPT 2.07 5.22 4.12

Average 3.66 3.47 3.30

Panel C: Size portfolio excess returns

S1 8.91 3.23 5.75 S6 5.02 3.37 4.16
S2 5.84 2.81 2.93 S7 3.13 3.27 2.86
S3 7.13 2.92 4.33 S8 2.28 3.18 3.11
S4 5.58 2.85 3.59 S9 2.33 3.65 3.00
S5 4.93 3.07 3.45 S10 3.08 4.34 4.31

Average 4.82 3.27 3.75

Panel D: Book-to-market portfolio excess returns

BM1 2.09 3.48 3.00 BM6 2.34 3.26 2.38
BM2 2.47 3.45 3.22 BM7 2.85 3.96 3.38
BM3 2.94 3.75 3.68 BM8 1.78 3.57 2.89
BM4 2.31 4.25 3.42 BM9 1.17 4.18 3.24
BM5 3.59 3.37 4.14 BM10 2.13 3.51 3.39

Average 2.37 3.68 3.27

Panel E: Ownership-concentration portfolio excess returns

OC1 2.27 5.12 3.65 OC6 1.75 3.51 2.23
OC2 3.55 2.87 4.20 OC7 2.38 3.72 3.51
OC3 4.53 3.97 6.24 OC8 2.29 3.24 2.81
OC4 3.35 3.68 4.53 OC9 1.33 3.18 2.53
OC5 3.22 3.84 4.83 OC10 2.91 3.46 2.72

Average 2.76 3.66 3.72



Table XI
Conditional CAPM R2

OS,R and R2
OS,α statistics for industry, size, book-to-market and ownership-concentration

portfolio excess returns with 9 economic variables as predictors

The table reports R2
OS,R and R2

OS,α statistics (in percent) for out-of-sample forecasts of industry (Panel A), size (Panel B), book-to-market (Panel C)
and ownership-concentration (Panel D) portfolio excess returns for 2002:01-2009:06 (S1,...,S10 delineate deciles in ascending order for portfolios
formed on market capitalization; BM1,...,BM10 delineate deciles in ascending order for portfolios formed on book-to-market value;OC1,...,OC10
delineate deciles in ascending order for portfolios formed on largest shareholder share holding percentage). Results are reported for combination
forecasts using 9 economic variables as predictors (see Tables VI, VII, VIII and IX). R2

OS,R ( R2
OS,α ) measures the reduction in mean square prediction

error for the rational pricing-restricted combination forecast based on the conditional CAPM relative to the historical average combination forecast
(unrestricted combination forecast relative to the rational pricing-restricted combination forecast). “∗” indicates that R2

OS,R or R2
OS,α is significant at

the 5% level according to the p-value corresponding to the Clark and West (2007) MSPE-adjusted statistic.

Return R2
OS,R (%) R2

OS,α (%) Return R2
OS,R (%) R2

OS,α (%) Return R2
OS,R (%) R2

OS,α (%)

Panel A: Industry portfolio excess returns

AGRIC 2.05∗ 0.68 TRANS 3.36∗ 1.74 SRVC 2.46∗ 1.88∗
MINES 1.26 1.79 INFTK 2.39∗ 2.43∗ MEDIA 1.60∗ −0.22
MANUF 2.77∗ 0.07 WHTSL 2.44∗ 0.55 MULTP 2.71∗ −0.42
UTILS 2.98∗ −0.46 MONEY 2.06∗ 2.20∗
CNSTR 3.16∗ −0.44 PROPT 2.79∗ 1.37∗

Panel B: Size portfolio excess returns

S1 4.78∗ 1.03 S6 2.76∗ 1.44
S2 3.01∗ −0.09 S7 2.56∗ 0.31
S3 3.35∗ 1.02 S8 2.54∗ 0.59
S4 2.87∗ 0.74 S9 2.76∗ 0.25
S5 2.74∗ 0.73 S10 3.54∗ 0.80

Panel C: Book-to-market portfolio excess returns

BM1 2.87∗ 0.13 BM6 2.59∗ −0.22
BM2 2.49∗ 0.75∗ BM7 2.88∗ 0.51
BM3 2.96∗ 0.75∗ BM8 2.55∗ 0.35
BM4 2.98∗ 0.46 BM9 2.75∗ 0.50
BM5 3.14∗ 1.03 BM10 2.54∗ 0.88

Panel D: Ownership-concentration portfolio excess returns

OC1 2.95∗ 0.72∗ OC6 3.04∗ −0.83
OC2 2.82∗ 1.42∗ OC7 2.90∗ 0.63∗
OC3 3.34∗ 3.00∗ OC8 2.86∗ −0.05
OC4 2.84∗ 1.74∗ OC9 2.97∗ −0.46
OC5 3.14∗ 1.75∗ OC10 2.11∗ 0.63
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Figure 1. Relationship between R2
OS,R statistics and average estimated betas. Each panel contains a scatterplot relating the R2

OS,R statistics in Tables XI to
the average estimated βi used to generate rational pricing-restricted combination forecasts over 2002:01–2009:06. Each panel includes a fitted regression line and
regression results for a cross-section regression model with R2

OS,R as the regress and and average estimated βi as the regressor (an intercept term is included in the
cross-section regression model).
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Figure 2. Relationship between industry concentration or market capitalization and R2
OS statistics for industry portfolio excess returns. Each panel contains

a scatterplot relating the R2
OS statistics in Table IX to industry concentration (average market share of the eight largest firms) and market capitalization in Panels A

and B, respectively. Each panel includes a fitted regression line and regression results for a cross-section regression model with R2
OS as the regressand and industry

concentration or market capitalization as the regressor (an intercept term is included in the cross-section regression model).
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