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Mining Antagonistic Communities from Social Networks

Zhang Kuan

Abstract

In this thesis, we examine the problem of mining antagonistic communities

from social networks. In social networks, people with opposite opinions normally

behave differently and form sub-communities each of which containing people

sharing some common behaviors. In one scenario, people with opposite opinions

show differences in their views on a set of items. Another scenario is people

explicitly expressing whom they agree with, like or trust as well as whom they

disagree with, dislike or distrust. We defined the indirect and direct antagonistic

groups based on the two scenarios. We have developed algorithms to mine the

two types of antagonistic groups. For indirect antagonistic group mining, our

algorithm explores the search space of all the possible antagonistic groups starting

from antagonistic groups of size two, followed by searching antagonistic groups of

larger sizes. We have also developed a divide and conquer strategy to ensure

our algorithm runs on large databases. We have conducted experiments on both

synthetic datasets and real datasets. The results show that our approach can

efficiently compute indirect antagonistic groups. Our experiments on the four real

datasets show the utility of our work in extracting interesting information from

real datasets. For direct antagonistic group mining, we have combined several

existing algorithm blocks to mine the patterns. We found significant differences in

behaviors of users showing antagonistic relationships and those showing friendship

relationships.
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Chapter 1

Introduction

1.1 Motivation and Background

People form opinions based on their experience and perception. With different

experience and perception, people are likely to hold different or even opposite

opinions on the same issues. We call two groups of people holding opposite opin-

ions on some issues an indirect antagonistic group. Indirect antagonistic groups

(indirect a-group for short) are common, especially on issues like politics, religions

and military.

Other than expressing opinions, people form positive (trust, agree with, etc.)

and negative (distrust, disagree with, etc.) relationships with one another. Such

relationships divide people into groups of two sub-communities each. Within a

sub-community, people are positive to each other, and across sub-communities,

people are negative to each other. We call the group formed by two such sub-

communities direct antagonistic group (direct a-group for short).

1



Chapter 1. Introduction

Both direct and indirect a-groups (we call these two types of antagonistic

groups in general as antagonistic communities) and their characteristics have been

studied in sociology [40, 16, 15, 28, 20, 18, 27, 32]. Research conducted on such

communities ranges from how the antagonistic groups are formed to how the

conflicts in antagonistic groups affect members’ performance.

Both the two types of antagonistic groups may cause conflicts. If not dealt

properly, these conflicts may become more severe, or even out of control. It is

therefore important to detect such groups and study them. If we can detect an-

tagonistic communities early, we can take measures to avert the tension so as to

avoid possible conflict situations. If we know why the antagonistic communities

are formed, we can try to change the causal factors such that the antagonistic

communities will not be formed. We can also study how the antagonistic commu-

nities grow over time so as to control their growth, or study when the antagonistic

communities stop being antagonistic, etc.

Other than the social aspect, studies on antagonistic communities bring bene-

fits to other domains as well. In business, information on antagonistic communities

can be used for designing better marketing/product survey strategies to have a

deeper understanding of people’s preference. At product review sites, we can

also use antagonistic community information to recommend or to find preferred

reviewers assuming that reviews from opposing group members can be ignored.

With the advent of Web 2.0, people’s opinion are readily expressed on the

web. Many forums and blogs allow people to post their opinions on issues and to

express relationships with other people. Some online systems like Amazon [1] and

2



Chapter 1. Introduction

Epinions [3] also provide system features for people to vote items, or to express

their relationships (trust or distrust) with other users. These provide a wealth of

data ready to be analyzed.

1.2 Objectives and Contributions

In our work, we aim to identify the antagonistic communities from networks of

people and study the properties of antagonistic communities. Our work covers

both direct and indirect a-groups.

The main objectives and contributions are listed below:

1. Definition of the indirect antagonistic group and its properties.

We consider a database of users voting on items. We formally define indirect

a-group based on number of commonly voted items and number of oppo-

sitely voted items (antagonism level) among two user sub-groups. We have

introduced a formal definition of such an indirect a-group and studied its

property. More specifically, we formulated and proved the Apriori property

of indirect a-groups.

2. Indirect antagonistic group mining algorithm design.

The mining of indirect a-groups is next on our research objective. In this

aspect, we have designed an Apriori-like algorithm Clagmine (Algorithm 2)

to mine indirect a-groups from a database which contains users’ votes on

items. Our algorithm explores the search space in a breadth first way and

it employs the Apriori property to prune the search space. We only report

3



Chapter 1. Introduction

the closed patterns (closed pattern refers to maximum pattern, details are in

Chapter 3). To ensure that our algorithm can cope with large databases and

low support threshold, a extended version of our algorithm is introduced.

3. Evaluation of indirect antagonistic group mining algorithm.

To evaluate the efficiency and effectiveness of our algorithm, we conducted

experiments on both synthetic datasets and real datasets. We developed

a synthetic data generator similar to the IBM data generator in [9]. Our

data generator generates data of different scales using different parameter

settings. The results show that our algorithm is able to run well on various

data settings. In our experiments on four real datasets, our algorithm can

effectively mine all the indirect a-groups. We have also made comparison

between items voted by indirect a-groups and those not voted by indirect

a-groups. The results show the two item sets differ significantly. Further

investigation on the reasons of such differences has been carried out.

4. Definition of direct antagonistic group and its properties.

In this thesis work, we also study direct a-group and their properties. We

have introduced a direct a-group definition based on the well known concepts

of strongly connected component and bi-partite graph. The membership

property of the direct a-group is proved.

5. Direct antagonistic group mining algorithm design.

For our proposed direct a-group definition, we have developed a mining al-

gorithm, Dagmine (Algorithm 10), to mine the direct a-groups in a positive-

negative networks. The algorithm adopts some existing algorithm compo-

4



Chapter 1. Introduction

nents including Tarjan’s algorithm [39] and a bi-clique mining algorithm

[31].

6. Evaluation of direct antagonistic group mining algorithm.

We have conducted experiments to evaluate the proposed direct a-group

mining algorithm on both synthetic datasets and real datasets. Detailed

experimental results and analysis are available in [5]. In this thesis, we

show the experiments on Epinions dataset. We extracted more than 500

direct a-groups from this dataset within a short running time. We have

also compared users within one sub-communities (allied pairs) and across

sub-communities (opposing pairs). We found members of the two types of

pairs behave differently towards one another.

1.3 Report Outlines

This report contains six chapters. Chapter 2 presents the related work. Readers

will find the priori work related to the project in this chapter. Chapter 3 presents

our work on mining indirect a-groups from social networks. The definition and

property are given first. It then explains our algorithm in detail. It also gives

some analysis and validation of the algorithm. Next, a variation of the algorithm

is introduced. Chapter 4 presents the experimental results and analysis. It mainly

shows our performance study and effectiveness study on the synthetic datasets and

the real datasets. Chapter 5 introduces direct a-group mining. Definition and

property are given first. The algorithm is then introduced and the experiment

results are shown. Chapter 6 concludes the report and discusses the future work.

5



Chapter 2

Related Work

In a network, communities refer to clusters where intra-cluster nodes are strongly

connected and inter-cluster nodes are weakly connected. Community finding is

a key problem in social network analysis and it has been extensively studied

[21, 45, 26, 34, 29, 41, 47, 13]. This chapter will therefore review the previous

community finding research for different types of networks in Section 2.1. Unlike

the previous work, this thesis focuses on mining antagonistic communities from

networks with positive and negative links. Community finding for networks with

both positive and negative links is a relatively less explored research topic. We

shall review works on such networks in Section 2.2. In Section 2.3, an overview

of frequent itemset mining is given as the mining technique is relevant to our

proposed antagonistic community mining algorithms. Our proposed algorithm is

based on the classical frequent itemset mining algorithm known as Apriori [9].

6



Chapter 2. Related Work

2.1 Community Finding in Social Network

Communities are common in networks. Girvan et al. pointed out that besides the

three properties of network (“small world property”[17, 25], “power law distribu-

tion of degree property”[38, 10] and “network transitivity property”[44, 33]), the

community structure property (nodes in a network tend to form communities) is

also an important property for many networks [21]. In social networks, this prop-

erty is even more salient. Network of trust and distrust can form sub-communities

where people within a sub-community trust each other but people from different

sub-communities distrust each other. Trophic network can form communities

where species in the same community dwell in similar environment and form a

small ecological sub-system but species in different communities have little trophic

relationship. Similarly, most of the time, communities in co-authorship network

reflect grouping of people of different working fields.

Below, we will examine some works in community finding in networks. We

will give some brief summaries of the works and show their contributions. They

are related or partially related to our work. For some of them, we will give some

comparison of their works to ours and discuss what is valuable of their works to

our work.

7



Chapter 2. Related Work

2.1.1 Community Finding in Unsigned Undirected Net-

work

The traditional way of detecting community structure in a network is hierarchical

[25, 36, 37]. A weight is associated with each pair of nodes in the network, which

represents how closely the two nodes are connected. One begins by adding a link

between the pair of nodes with the largest weight. We add links in decreasing order

of the weights. Nodes can then be connected in this way. A minimum threshold

on the weights can be defined to restrict the links to be added. By varying the

threshold, we can get communities at any level. Various link weighting schemes

have been proposed. In [45], the number of node-independent paths between two

nodes was proposed to be used as link weight. In [26], sum over weighted path

length of all path (not only the node-independent paths) was used. Both these

weighting schemes give good results when the networks have no isolated nodes.

The traditional methods suffer from the isolated nodes problem. When there

is a single node connected to a community with a small link weight, this single

node should be part of the community. Using the traditional method, the link

weight between this nodes and the other nodes in the community may however

be low so that the node is marked as isolated and does not belong to any com-

munity. To address this problem, Girvan et al.[21] introduced a new algorithm

to mine communities from networks. Different from the traditional methods, the

algorithm starts from the boundaries of communities. The basic principle is that

for two different communities, the links connecting them must be few and the

shortest paths between any two nodes from the two different communities must

8



Chapter 2. Related Work

pass through such links. These links carry high “betweenness”. The algorithm

therefore removes links with highest betweenness iteratively and re-calculates the

betweenness of every remaining link after each iteration. This algorithm greatly

increases the precision of community finding. However, the time complexity of the

algorithm is in the order of O(n3) on sparse networks and O(m2n) in worst-cast

time where m and n are the number of links and nodes respectively. Such high

time complexity makes it impractical to mine large graphs.

To improve the time complexity, Newman [34] proposed a modularity based

algorithm. He defined modularity as an objective function Q to evaluate the qual-

ity of a community partition. He then introduced a greedy based approximation

algorithm to find the partition that gives the maximum Q value. The algorithm

runs in O((m + n)n) or O(n2) time for sparse graphs.

2.1.2 Community Finding in Unsigned Directed Network

The community finding methods mentioned above work for unsigned undirected

networks. They however fail in directed networks. For example, if communities

are “star” structures (star here refers to a directed sub-graph where one center

nodes pointing out to a set of outer nodes), using traditional method, two outer

nodes of the structure may have very low weight and they will not be identified as

in one community (shown in Figure 2.1). Girvan’s method also fails to identify the

star community, because the betweenness of the links which are borders between

the star community and other communities would be very low due to the reason

that the outer nodes do not contribute to the betweenness of border links (shown

9



Chapter 2. Related Work

in Figure 2.2).

Outer node

Centroid

Weight between two 
outer nodes can be low

Figure 2.1: Star Community.

Betweenness of the 
border edge is low and 

not distinguishable 
from other edges

Figure 2.2: Betweenness of Border Link.

How to mine communities from directed networks? Ignoring the direction of

the graph and apply the algorithm of undirected graph is one solution, but in this

case, we may loose the information provided by the link direction. Leicht [29]

proposed a method to find community in directed graph using the link direction

information. Based on Newman’s work [34], an objective function Q is defined

as the fraction of links within communities subtracted by the expected fraction

of such links. The directions of the links are considered when computing the

expected fraction of links within a community. To optimize Q, he developed

an algorithm based on the eigenvectors of the corresponding modularity matrix

[29]. The author found his algorithm finding more reasonable communities than

previous works due to the consideration of the link direction information.

10



Chapter 2. Related Work

2.1.3 Community Finding in Signed Network

Signed networks refer to networks with both positive and negative links. Mining

communities from signed networks is applicable to friend and foe networks, trust

and distrust networks and others.

Previous works on unsigned networks only consider one issue when dividing the

networks into communities, namely density. The link density within community

should be as dense as possible and the link density between community should

be as sparse as possible. For signed networks, we need to take signs of links into

consideration as well. The basic criteria is that for positive links, the requirement

on density is the same as that for unsigned network, but for negative links, the

requirement on density is the reverse of that for positive links.

Traag [41] proposed his solution on mining communities from signed network

based on Newman’s work [34]. He proposed his “Hamiltonian”(H function) sim-

ilar as Q function above. H function is basically a function measure rewarding

internal positive links, penalizing absent internal positive links, penalizing internal

negative links and rewarding absent negative internal links. The author used some

approximation algorithm to optimize the H function. Their experiment showed

their mined results agree with analyzed results on some dataset. The problem with

this work is that they only consider the signs of the links when doing partition.

The density of the links is neglected. This may result in improper communities

with low density.

Yang et al.’s work [47] considers both density and signs when partitioning the

11



Chapter 2. Related Work

network. Their algorithm is based on the principle that if an agent starts from

any node and transits after a few steps, the probability that it remains in the

same community is greater than that of reaching a different community. The

algorithm first calculates the final transition probability of each node to a sink

node after l steps. In this step, they treat the negative links as no link. In the

second step, they consider the density of both positive links and negative links in

the adjacency matrix and perform a cut to get two communities. They recursively

apply the algorithm on the sub-matrix not containing the sink node to get other

communities. Their algorithm runs in O(l(m+n)), where l is number of iteration.

Compared with algorithms mentioned previously, this algorithm is very efficient.

They have also proved their effectiveness through experiments on real datasets.

However, when cutting the adjacency matrix, their algorithm is more biased on

sign of links, less on the density. In addition, their algorithm may not work well

on directed graphs. For example, if started from an outer node, the algorithm

would fail to identify star communities.

2.1.4 Community Finding in Other Types of Network

Cai et al. [13] focused on mining communities from multi-relational social net-

works (multiple networks on the same set of nodes). They first formed the target

relationship network (partial information of the hidden relationship network which

is inferred from the multi-relational networks) from the labeled nodes (nodes in

the same community have the same label). Next, they combined the original

heterogeneous networks to approximate the target relationship networks. They

12
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defined an objective function based the L2 norm of the difference matrix between

the target relationship matrix and weighted combination of the heterogeneous

networks. The problem of approximating the target network is then equivalent to

calculating the weights which minimize the objective function. After the weights

were obtained, they took the weighted sum of the multi-relational networks to

get the hidden relationship network. They mined communities from this hidden

relationship network using the community mining algorithm threshold cut. The

innovative part of this paper is that they mine communities from the hidden re-

lationship network instead of different heterogenous networks. The mined result

would be less biased to a particular relationship network.

Different from their work, our work mainly deals with homogeneous relation-

ship networks. In our indirect a-group mining problem, we consider mainly with

voting relationships. In our direct a-group mining problem, we consider mainly

with trust/friend and distrust/foe relationships. It can be seen as different weights

(e.g. trust is 1, distrust is -1) on a same type of link, we may introduce techniques

in [13] in our future work to combine a set of similar natured but heterogenous

networks to ensure results less biased to a particular network.

2.2 Positive and Negative Relationships in So-

cial Network

Social scientists recognize that both positive and negative relationships can be

part of social networks, and call them signed networks. For many years, they have

13
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studied this kind of mixed relationship networks and developed theories around

such signed networks. We review some of them in this section.

2.2.1 Balance Theorem and Its Extensions

In [19], Easley and Kleinberg described some basic properties of signed networks.

The authors introduced balanced triangles from social psychology to capture the

stable structures, each consisting of three nodes and their links. If every arbitrary

three nodes in a signed network forms a balanced triangle, the network is said

to be balanced. A well-known balance theorem [14, 23] holds for the balanced

network. This theorem says that if a signed complete network is balanced, either

all the nodes have positive links with each other, or the nodes can be divided into

two camps, within each camp the nodes are friends to each other and across the

camps nodes are enemy to each other (refer to Figure 2.3).

Node set X Node set Y

Mutual positive relationship for nodes within set X Mutual positive relationship for nodes within set YMutual negative relationship for nodes across X and Y++++++++ ++++ ++++-------------------- ----
Figure 2.3: Network with Structure Balance.

Two extensions of balance theorem have been studied in [19]. The first exten-

sion addresses balance structure of non-complete networks. Easley and Kleinberg

14
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defined a signed non-complete network to be balanced if it is possible to divide

the nodes into to two camps where within each camp, the links are positive and

across the two camp, the links are negative. A breadth-first based algorithm was

introduced to judge whether an non-complete network is balanced. The second

extension is about approximately balanced networks with only most of its triangles

balanced [19]. It relates the percentage of balanced triangles, percentage of posi-

tive links within community and percentage of negative links across communities

as follows.

Let ε be any number such that 0 ≤ ε < 1
8
, and define δ = 3

√
ε. If at least 1− ε

of all triangles in a labeled complete graph are balanced, then either

(a) there is a set consisting of at least 1− δ of the nodes in which at least 1− δ

of all pairs are friends, or

(b) the nodes can be divided into two groups, X and Y, such that

(i) at least 1− δ of the pairs in X like each other,

(ii) at least 1− δ of the pairs in Y like each other, and

(iii) at least 1− δ of the pairs with one end in X and the other end in Y are

enemies [19].

Our work deals mainly on mining indirect and direct a-groups. Balance theo-

rem and its extensions explore the possibility of partitioning the networks into two

antagonistic sub-communities. There are both some similarities and differences

between our work and works in balance theorem. The differences between our

indirect a-group mining and works on balance theorem are:

15
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• Our indirect a-group mining mainly deals with networks with two kinds of

nodes, the user nodes and item nodes. The user nodes have only outlinks,

while the item nodes only have inlinks. In the balance theorem, they deal

with networks with the same types of nodes. Each nodes can have both

inlinks and outlinks.

• In our work, different indirect a-groups can have overlapping user nodes,

while works on balance theorem divide nodes into non-overlapping sub-

communities.

Despite the differences, our networks contain similar information as the ones

dealt by balance theorem. Considering our indirect a-group, for users voting a

set of items with similar votes (users within a sub-community), we can consider

they have mutual undirected positive links. For users voting a set of items with

opposite votes (users across sub-communities), we can consider they have mutual

undirected negative links. Hence, the indirect a-groups mined by us and the

antagonistic groups in balance theorem are similar because they both have mainly

positive links within sub-communities and negative links cross sub-communities.

In the case of direct a-group mining, we deal with directed networks. Each

sub-community is expected to form strongly connected component. Balance the-

orem however deals with undirected networks, nodes forming groups of positively

connected components.

Though our direct a-groups and the groups found by balance theorem seem

different, they can be defined uniformly. For these two types of groups, they

16



Chapter 2. Related Work

need to have the following two conditions fulfilled. Firstly, the links across sub-

communities are mutual negative. Secondly, for any two nodes within the same

sub-community, there is a path with only positive links connecting them. In our

direct a-group, the path is directed, while in balance theorem’s group, the path

is undirected. Hence, we can say our direct a-group is a stronger definition than

that of the groups found by balance theorem and its extensions.

2.2.2 Recent Works on Positive and Negative Relation-

ships in Social Networks

Leskovec et al. [30] worked on predicting the polarity of a known link. He proposed

a logistic regression classifier using two classes of features. The first class of

features is based on indegree, outdegree and their combinations (taking the sign

of the links into consideration). The second class of features is based on “triad”,

involving the target link (local features). The authors compared the classification

results with the results from two social-psychological theories: balance theory and

status theory. They found that the two results agree with each other to a large

extent. They have also investigated the global structure of signed networks. They

found that the three experimented datasets have structures matching well with the

structure suggested by status theory. Finally, they showed that the importance

of negative links in predicting positive links. Their work can predict the link sign

in a high accuracy. It can be utilized to estimate the sentiment between nodes.

Combined with link prediction methods, this work can be used to make up missing

links for signed networks.
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Bonachich and Lloyd proposed [11] to use eigenvector to measure the centrality

or status of each node. The basic principles are: If a node is connected positively to

a high status node, the node’s status increases. If a node is connected positively to

a low status node, the node’s status decreases. Conversely, if a node is connected

negatively to a high status node, the node’s status decreases. If a node is connected

negatively to a low status node, the node’s status increases.

If there are two communities in the network, all the eigenvector values of the

first community will be positive and the rest negative. The shortcomings of this

method are that it requires the network to be divisible into two communities and it

cannot handle networks with more than two communities. Although the authors

have tested on a real dataset and got experiment result that matches the real

situation, the real dataset has only of 18 nodes. The scalability of their method

is unknown.

2.3 Frequent Itemset Mining

Our algorithm of mining antagonistic communities from social networks has simi-

lar nature of frequent itemset mining algorithms. First, let us introduce a concept

closely related to frequent itemset mining: association rule mining. Since its first

introduction in 1993 [8], association rule mining has attracted much attention.

The basic problem of association rule mining is: let D be a set of transactions.

A transaction is a collection of items. Let X be an itemset and Y be another

itemset. We say a transaction T contains X if all the items in X appear in T ,
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denoted by X ⊆ T . We say rule X ⇒ Y holds if (a) at least s% of D contain

X ∪ Y , and (b) at least c% of transactions containing X also contains Y . The

association rule mining problem is to find all such rules.

For this problem, the common solution is to use the first criteria to find all

X ∪ Y appearing at least s% times in D (frequent itemset mining), and then do

a further checking on the second criteria. Much frequent itemset mining research

has been conducted [22, 9, 8, 24, 48, 43, 35, 42]. They can be broadly divided

into two categories: breadth first (BF) and depth first (DF) based. The earlier

works are all BF based [9, 8, 24]. The classical and well cited “Apriori” algorithm

belongs to this category. A representative DF based method is Han’s FP-growth

algorithm [22]. We will examine them in subsequent sections.

2.3.1 Breadth First Based Approach

The general framework of BF based method is to first scan the database and get

the frequent size-1 itemsets. This serves as a basis for subsequent processing. After

getting the size-k frequent itemsets, we extend the size-k itemsets to size-(k + 1)

itemsets and scan the database again to get the frequent size-(k + 1) itemsets.

We continue this process until no more frequent itemsets can be generated. The

search space of the frequent itemsets forms a lattice [49]. This method is like

exploring the lattice in a breadth first way. It generates frequent itemsets level by

level. Some of the earliest works in this category are AIS and SETM algorithm

[8, 24].
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The AIS and SETM Algorithm

AIS [8] and SETM [24] generate candidates as the database is scanned, which is so

called “candidates are generated on the fly”. This makes the number of candidate

generating operation scales up with the database size. In addition, due to their

low efficiency in candidate generation, they generate many candidates with small

support, which turn out to be invalid frequent itemsets. This wastes the time

to process them and wastes space to store them. Apriori algorithm improves on

these two aspects by adopting the “Apriori property”.

The Apriori Algorithm

Apriori Property Before introducing the framework of the Apriori algorithm

[9], let us first look into an important Apriori property of frequent itemset: All

subsets of a frequent itemset are frequent. There are two implications of this

property. Firstly, we can improve the candidate generation process by generating

candidate frequent set of size-k from that of size-(k − 1). Secondly, if any subset

of an itemset is not frequent, this itemset is not frequent. This can be used in

pruning the candidates. Adopting this property greatly improves the efficiency of

the algorithm.

Algorithm Framework The Apriori algorithm is shown in Algorithm 1. It

follows the framework of BF method we mentioned earlier. In the first pass, it

generates all the frequent size-1 itemsets (line 1). Now, let us consider we have

get all the size-(k − 1) frequent itemsets. In the kth pass, we first generate the
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size-k candidate frequent itemsets from size-(k − 1) frequent itemsets with the

apriori-gen method (line 3). Next, we scan the database once to update the

count of each candidate (line 4-9). Following that, we decide which candidates

are frequent (line 10). We repeat the process until no more frequent itemsets can

be generated. Finally, we output frequent itemsets of all sizes (line 12).

Input: minimum support:minsup; rating database
Output: frequent itemset of all size
L1 = {large 1-itemsets};1

for k = 2;Lk−1 6= ∅; k++ do2

Ck=apriori-gen(Lk−1);3

forall transaction t ∈ D do4

Ct=subset(Ck,t);5

forall candidates c in Ct do6

c.count++;7

end8

end9

Lk={c ∈ Ck|c.count≥ minsup};10

end11

Answer=
⋃

k Lk12

Algorithm 1: Apriori Algorithm

Apriori Candidate Generation The apriori-gen function takes Lk−1 as in-

put. It first joins the elements in Lk−1. The principle of joining two frequent

itemsets p and q of size-(k − 1) is as follows: p and q are joined if p.item1 =

q.item1, ..., p.itemk−2 = q.itemk−2, p.itemk−1 < q.itemk−1, and the joined result is

itemset { p.item1, p.item2, ..., p.itemk−1, q.itemk−1 }. After we get all the joined

result, a prune step is performed. A candidate c in Ck is deleted if any of its

(k − 1)-subset is not in Lk−1.

The improvement of Apriori algorithm arises from the following points. Firstly,

the candidates are not generated on the fly. For each database scan, it requires

only one generation of the candidates. This saves time greatly. Secondly, Apriori
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algorithm adopts the Apriori property to prune the candidates in candidate gen-

eration process. This saves storage and time. Thirdly, as the candidates are built

into hashtree structure, the subset testing time is shortened to the traversing time

of the hashtree, which is short as the tree depth is only of the candidate size (in

10s).

The AprioriTid and AprioriHybrid Algorithm

However, Apriori algorithm has its shortcomings, which is also the shortcomings

of all the BF based approach. First, the candidate generation process can be in-

tolerably long when the support is low, especially for the initial several iteration.

This can be counted as a bottleneck of BF based approach. Second, it requires

database scan in each iteration, which resulted in a lot of disk I/Os. This is an-

other factor which slows the algorithm down. To address the second shortcoming,

Agrawal proposed AprioriTid, a modified version of Apriori [9].

AprioriTid keeps another set Ck to keep track of the Id of the transaction

containing the frequent itemsets, as well as those frequent itemsets. After the

first database scan, Ck will be built and all subsequent database scan in the

original Apriori algorithm is substituted by scan of Ck. This method gets rid

of the problem of multiple database scan, but it requires more storage space.

When the Ck can fit into the memory, the AprioriTid will be faster than Apriori.

However, this method suffers from the problem of “slow start”. In the initial

passes, this method is slower than Apriori due to Ck building process and its own

containment checking scheme (checking which candidates are contained in the
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transaction). However, in the later passes, AprioriTid outperforms Apriori due to

small number of candidates and no database scan.

AprioriHybrid algorithm is then introduced as a hybrid of Apriori and Apri-

oriTid algorithms. In initial passes, AprioriHybrid uses Apriori, in later passes,

the algorithm switches to AprioriTid. The switching criteria is based on some

heuristics.

2.3.2 Depth First Based Approach

Although the database scan can be avoided by using some data structure, the

candidate generation is fundamental in BF based approach and is the bottleneck

when the database is huge and support is low. Later, some works tried to address

this issue by adopting the depth first based approach. One representative is the

FP-growth algorithm [22].

FP-growth algorithm is based on a data structure called Frequent Pattern tree

(FP-tree). The FP-tree is used to compress the database. The compression ratio

can range from 20-100 depending on the overlapping ratio of the transactions

[22]. The FP-tree can achieve high compression ratio when there are a lot of

overlaps in transactions. This is because FP-tree adopts a tree structure similar

to prefix tree. The more overlapping, the more shared nodes, hence, the larger the

compression ratio. The FP-growth algorithm mines frequent patterns recursively

on FP-tree. It is about an order of magnitude faster than the Apriori algorithm.

For long pattern, say pattern with 100 items, instead of generating 2100 ≈ 1030
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candidates and test them one by one in the case of Apriori algorithm, FP-growth

will generate all the candidates in one go and no test is required [22]. The main

shortcoming of FP-growth is that it requires building FP-tree recursively, which

results in large memory consumption.

Some similar works of depth first based approach are also proposed [6, 7]. In

Agarwal’s work [7], a tree projection based algorithm is developed. The algorithm

adopts a lexicographic tree to keep the possible frequent itemsets. The transaction

set is projected to reduced transaction set based on frequent itemsets mined. Their

algorithm can also outperform the classical algorithms by an order of magnitude.

Still, the shortcoming of this method is the high requirement of memory space to

hold the projected transaction sets.
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Indirect Antagonistic Group

Mining

In this chapter, the formal definition of indirect a-group and its properties are

introduced first. Following that, our algorithms of mining indirect a-groups are

presented.

3.1 Preliminaries

Indirect a-group is applicable to a network of users interacting with one another

through voting on objects. The votes from the users can be binary, numeric (e.g.,

ratings), or textual (e.g., opinion text). To keep the indirect a-group concept

general, we map the different votes to only three types of votes, positive, negative

and neutral. Hence there is a bipartite graph between users and objects where the

arrows are labeled with vote type. For example in Epinions and Amazon where

there is a 5-point scale for ratings assigned to items by users. As 1 − 2 are con-
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sidered poor rating scores and they reflect the rater has negative opinions on the

item, we map rating scores of 1−2 to negative votes. 4−5 reflect positive opinions

on the items. We map them to positive votes. 3 reflects a neutral opinion. We

map it to neutral. In Slashdot, each person can vote another person as friend (a

positive relationship, mapping to a positive vote), or enemy (a negative relation-

ship, mapping to a negative vote), or neutral (neutral relationship, mapping to

neutral vote). Hence, votes (numeric, textual, etc.) under different schemes can

be mapped into our three types of votes.

We formalize our input as a database of votes as defined in Definition 3.1.1.

Definition 3.1.1. Consider a set of users U and a set of items I. A database of

votes consists of a set of mappings of item identifiers to a set of (user,vote) pairs.

There are three types of vote polarity considered: positive, negative, and neutral.

The database of vote could be formally represented as:

DBR = {itid 7→ {(usid, v) . . .}|itid ∈ I ∧ usid ∈ U ∧ v ∈

{positive, negative, neutral} ∧ usid gives itid a vote of v}

We refer to the size of a vote database DBR as |DBR| which is equal to the

number of mapping entries in the database. Two votes are said to be common

between two users if the votes are assigned by the two users on the same item.

A set of votes is said to be common among a set of users if these votes are on a

common set of items voted by the set of users.

Definition 3.1.2. (Opposing Group): Let Ui and Uj be two disjoint sets of

users. (Ui, Uj) is called an opposing group (or, o-group for short).
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The number of common votes between two sets of users Ui and Uj is known as

their count and is denoted by count(Ui, Uj). The support of the two user sets

support(Ui, Uj) is defined as
count(Ui,Uj)

|I| where I represents the set of all items.

The number of common votes between Ui and Uj that satisfy the following

three conditions:

• Users from Ui share the same vote polarity pi;

• Users from Uj share the same vote polarity pj; and

• pi and pj are opposite polarities.

is called the antagonistic count, denoted by antcount(Ui, Uj). Obviously, antcount

(Ui, Uj) ≤ count(Ui, Uj). The antagonistic support of the two user sets asupport

(Ui, Uj) is defined as
antcount(Ui,Uj)

|I| .

We also define the antagonistic confidence of an opposing group (Ui, Uj) to

be aconf(Ui, Uj) =
antcount(Ui,Uj)

count(Ui,Uj)
.

Definition 3.1.3. (Frequent Opposing Group): An opposing group (Ui, Uj) is

called a frequent opposing group (or, frequent o-group for short) if support(Ui, Uj) ≥

λ and asupport(Ui, Uj) ≥ λ×σ where λ is the support threshold (∈ (0, 1)), and

σ is the antagonistic confidence threshold (∈ (0, 1)).

We consider (Ui, Uj) to subsume (U ′
i , U

′
j) if: (a) U ′

i ⊂ Ui and U ′
j ⊆ Uj; or (b)

U ′
i ⊆ Ui and U ′

j ⊂ Uj. We denote this by (U ′
i , U

′
j) ⊂ (Ui, Uj). Frequent o-groups

satisfy the important property as stated below:

27



Chapter 3. Indirect Antagonistic Group Mining

Property 3.1.1. (Apriori Property of Freq. O-group): Every size (k − 1)

opposing group (U ′
i , U

′
j) subsumed by a size-k frequent o-group (Ui, Uj) is a frequent

o-group.

Proof. Assume an opposing group gk−1 is not a frequent o-group. This would

mean count(gk−1)

|I| < λ or antcount(gk−1)

|I| < λ × σ. If an user uk is added to either

user set of this opposing group, we call the resulting opposing group gk−1 ∪ uk.

gk−1 ∪ uk’s count can not be more than count(gk−1) and its antagonistic count

can not be more than antcount(gk−1). This is because the count is calculated

by intersecting the gk−1’s user set’s vote and the uk’s vote: count(gk−1 ∪ uk)

≤ min{count(gk−1),count(uk)}, and similarly, the antagonistic count is calcu-

lated by intersecting gk−1’s user set’s vote and uk’s vote such that intersected

vote have opposite polarity: antcount(gk−1 ∪ uk) ≤ antcount(gk−1). Therefore,

count(gk−1∪uk)

|I| < λ or antcount(gk−1)∪uk

|I| < λ × σ; that is gk−1 ∪ uk is not a frequent

o-group neither. By contrapositive, we can get the property.

Definition 3.1.4. (Indirect Antagonistic Group): An opposing group (Ui, Uj)

is an indirect antagonistic group (indirect a-group) if it is a frequent o-group and

aconf(Ui, Uj) ≥ σ.

Definition 3.1.5. (Closed Indirect Antagonistic Group): An indirect a-

group (Ui, Uj) is closed if ¬∃(U ′
i , U

′
j), (Ui, Uj) ⊂ (U ′

i , U
′
j), count(U ′

i , U
′
j) = count(Ui,

Uj) and antcount(U ′
i , U

′
j) = antcount(Ui, Uj).

Example 3.1.1. Consider the example vote database in Table 3.1. Suppose

λ = 0.5 and σ = 0.5. Both ({a}, {d}) and ({a}, {b, d}) are indirect a-groups. How-

ever, since count({a}, {d}) = count({a}, {b, d}) = 3 and antcount({a}, {d}) =
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antcount({a}, {b, d}) = 2, ({a}, {d}) is not a closed indirect a-group and is sub-

sumed by ({a}, {b, d}). Hence, ({a}, {d}) is considered as redundant. On the

other hand, both ({a}, {b}) and ({a}, {b, c}) are closed indirect a-groups even

though both aconf({a}, {b}) and aconf({a}, {b, c}) has the same value which is

2
3
. This is so as count({a}, {b}) 6= count({a}, {b, c}) and antcount({a}, {b}) 6=

antcount({a}, {b, c}).

Item User votes
i1 a-positive, b-negative, d-negative
i2 a-positive, b-negative, d-negative
i3 a-positive, b-positive, d-positive
i4 a-positive, b-negative, c-negative
i5 a-positive, b-negative, c-negative
i6 a-positive, b-positive, c-negative

Table 3.1: Example Vote Database 1 - DBEX1

Note that count(Ui, Uj) = count(U ′
i , U

′
j) does not imply that antcount(Ui, Uj) =

antcount(U ′
i , U

′
j) for any (Ui, Uj) ⊂ (U ′

i , U
′
j), and vice versa. We can show this us-

ing the vote database example in Table 3.2. In this example, we have count({a}, {b})

= count({a}, {b, c}) = 3 but (antcount({a}, {b}) = 3) > (antcount({a}, {b, c}) =

2). We also have antcount({d}, {e}) = antcount({d}, {e, f}) = 1 but (count({d}, {e})

= 2) > (count({d}, {e, f}) = 1).

Item User votes
i1 a-positive, b-negative, c-negative
i2 a-positive, b-negative, c-negative
i3 a-positive, b-negative, c-positive
i4 d-positive, e-negative, f -negative
i5 d-positive, e-positive

Table 3.2: Example Vote Database 2

Definition 3.1.6. (Indirect Antagonistic Group Mining Problem): Given

a set of items I voted by a set of users U (the vote database), the indirect a-
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group mining problem is to find all closed indirect a-groups with the given support

threshold λ and antagonistic confidence threshold σ.

3.2 Algorithm for Mining Indirect Antagonistic

Group

We develop a new algorithm to mine indirect a-groups from a database of votes.

For simplicity, we will drop the term “indirect” in the rest of this chapter. Our

algorithm systematically traverses the search space of possible antagonistic groups

and find for groups that are antagonistic while using a search space pruning strat-

egy to remove unfruitful search spaces.

3.2.1 Basic Framework

The a-group mining algorithm known as Clagmine (Closed A-group Mining) runs

for multiple passes. In the initialization pass, we calculate the count and antcount

of all the size-2 a-group candidates opposing groups and determine which of them

are frequent o-groups. In the next pass, with the set of frequent o-groups found

in the previous pass, we generate new potential frequent o-groups, which are

called candidate set. We then count the actual count and antcount values for

these candidates. At the end of this pass, we determine the frequent o-groups

from these candidates, and they are used to generate frequent o-groups for the

next pass. After that, we filter the previous frequent o-group set with the newly

generated frequent o-group set by removing non-closed frequent o-groups. Next,
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we move on to the next pass. This process continues until no larger frequent o-

groups are found. After successful mining of all frequent o-groups, we derive the

a-groups from them.

Input: λ; σ; vote database
Output: valid and closed a-group of all size
L1 = frequent user set;1

C2 = {({ui}, {uj})|i < j, ui ∈ L1, uj ∈ L1};2

for k = 2;k ≤ |U | and |Lk−1| 6= 0; k++ do3

if k > 2 then4

Ck=antGrpMining-gen(Lk−1);5

end6

root← buildHashTree(k,Ck);7

foreach item t ∈ D do8

Ct=subset(t,root);9

foreach candidate c in Ct do10

update count and antcount of c;11

end12

end13

Lk={gk ∈ Ck| count(gk)
|I| ≥ λ and antcount(gk)

|I| ≥ λ× σ};14

Lk−1=prune(Lk−1, Lk);15

end16

G={g ∈ ⋃
k Lk|antcount(g)

count(g)
≥ σ};17

Output G;18

Algorithm 2: Closed Antagonistic Group Mining Algorithm –
Clagmine(λ,σ,DBR)

Algorithm 2 shows the Clagmine algorithm. Two basics data structures are

maintained namely Lk the intermediary set of frequent o-groups of size k and Ck

a candidate set for a-groups checking. The first two lines of the algorithm simply

calculate size-2 candidates to get the frequent size-2 o-groups. They form the

base for subsequent processing. A subsequent pass, say pass k, consists of three

phases. First, at line 5, the frequent o-groups in Lk−1 found in k−1 pass are used

to generate the candidate frequent o-group set Ck, using the antGrpMining-gen

method described in Algorithm 3. It is to ensure we have a minimum sized and

complete set of candidates for the next pass. Next, the database is scanned and
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the count and antcount of candidates in Ck are updated (line 7 to 13). We make

use of the hash-tree data structure described in [9] to hold Ck and we then use a

subset function to find the candidates overlap with voters of an item. After we

marked all the overlapping candidates, we update the count and antcount of them.

Frequent o-groups can be determined by checking count and antcount against the

support threshold and asupport threshold respectively. Following that, Lk−1 is

filtered with the newly generated frequent o-groups to remove non-closed frequent

o-groups (line 15). After all the passes, the a-groups are determined from the

frequent o-group set(line 17). The following subheadings elaborate the various

components of the mining algorithm in more detail.

3.2.2 Candidate Generation and Pruning

Input: size-(k − 1) frequent o-group set Lk−1

Output: size-k candidate frequent o-group set
foreach p, q ∈ Lk−1 do1

gk ← merge(p, q);2

add gk to Ck;3

forall (k − 1)-subsets s of gk do4

if s¬ ∈ Lk−1 then5

delete gk from Ck;6

end7

end8

end9

return Ck;10

Algorithm 3: antGrpMining-gen(Lk−1)

Candidate Generation and Pruning. The antGrpMining-gen function de-

scribed in Algorithm 3 takes as argument Lk−1, the set of all frequent (k − 1)

o-groups. It returns a superset of all frequent size-k o-groups. The function works

as follows. First, we merge all the elements in Lk−1 that can be merged (diff in
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Input: frequent o-group (Ui,Uj); frequent o-group (U ′
i ,U

′
j)

Output: merged result of the two input frequent o-groups
if Ui=U ′

i and diff(Uj,U
′
j)=1 then1

return (Ui,Uj

⋃
U ′

j);2

end3

if Uj=U ′
j and diff(Ui,U

′
i)=1 then4

return (Ui

⋃
U ′

i ,U
′
j);5

end6

if Ui=U ′
j and diff(Uj,U

′
i)=1 then7

return (Ui,U
′
i

⋃
Uj);8

end9

if U ′
i=Uj and diff(Ui,U

′
j)=1 then10

return (Ui

⋃
U ′

j,Uj);11

end12

return null;13

Algorithm 4: merge((Ui,Uj),(U
′
i ,U

′
j))

the merge returns the number of different users in two user sets). We add them

to Ck. Next, in the pruning stage, we delete all element gk ∈ Ck if some (k − 1)

subset of gk is not in Lk−1.

The pruning stage’s correctness is guaranteed by the property 3.1.1 of frequent

o-groups. From the property, if gk is a frequent o-group, all its (k−1) subsets must

be frequent o=groups. In other words, if any one (k − 1) subset of an opposing

group gk is not a frequent o-group, gk is not eligible to be frequent. We thus delete

or prune such gks.

The correctness of the antGrpMining-gen function can be easily seen from

Lemma 1 described below.

Lemma 1. For k ≥ 3, given as input a set of all size-(k − 1) frequent o-groups,

i.e., Lk−1, every size-k frequent o-group, i.e., Lk, is in the candidate set, i.e., Ck,

output by Algorithm 3.

Proof. From property 3.1.1, any subset of a frequent o-group must also be fre-
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quent. Hence, if we extend each frequent o-group in Lk−1(k ≥ 3) with all possible

users and then delete all those whose (k − 1)-subsets are not in Lk−1, we will be

left with a superset of the frequent o-groups in Lk. In the Algorithm 3, first we

perform a merge process which is equivalent to extending Lk−1 with all possible

users in the database (line 2) and then at lines 4-8, we delete candidates whose

(k − 1)-subsets are not in Lk−1. Thus after we merge the and deletion steps, all

size-k frequent o-groups must be a subset of the returned candidate set.

An example to illustrate the process of candidate generation via merging and

deletion is given below.

Example 3.2.1. Let L3 be {({u1}, {u2, u3}), ({u5}, {u2, u3}), ({u1, u4}, {u2}),

({u1, u5}, {u2}), ({u4, u5}, {u2})}. After the merge step, C4 will be {({u1, u5}, {u2,

u3}), ({u1, u4, u5}, {u2})}. The deletion step serving as apriori-based pruning,

will delete the candidate a-group ({u1, u5}, {u2, u3}) because ({u1, u5}, {u3}) is

not in L3. We will then left with only {({u1, u4, u5}, {u2})} in C4.

3.2.3 Subset Function

Subset Function. The candidate frequent o-groups are stored in a hashtree.

The node of the hashtree contains either a hashtable (interior node), or a list

of candidates (leaf). Each node also contains a user label representing the user

associated with this node. The hashtable of the node refers to the next level nodes,

with the hashkey being the user label of the next level nodes. The building process

of the hashtree is shown in Algorithm 5. Every candidate is sorted according to
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Input: k:level of the tree; Ck:size-k candidate set
Output: root of the tree
create new node root;1

foreach candidate ci in Ck do2

sort users in ci by userID;3

tempNode← root;4

foreach user u in ci do5

if tempNode has descendant d labeled u then6

tempNode← d;7

else8

create node d with label u;9

set d as descendant of tempNode;10

tempNode← d;11

end12

if u is the last user in ci then13

set tempNode to leaf;14

add ci to the leaf;15

end16

end17

end18

return root;19

Algorithm 5: buildHashTree(k,Ck)

userID first, and then inserted into the hashtree level by level.

The subset function finds all the candidate frequent o-groups which are subsets

of users of item t. The users of item t is first sorted according to userID. The users

are then traversed one by one. A pointer list is kept to maintain a list of nodes

which are visited, which initially has only the root. For a user u, we traverse

through all the nodes in the pointer list, if a child node of the current node is

found with label u, the child node is further checked to see whether it is interior

or leaf. If it is an interior node, we add it to the pointer list and if it is a leaf, all

the candidates stored in the leaf are marked as subset of users of t. The current

node is removed from the pointer list if all its child nodes are visited. The process

repeats through all the users of item t. At the end, all the candidates which are
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Input: t:item in database; root:root of hashtree
Output: set of candidate contained in t
Ct ← ∅;1

pointerRef ← empty vector of node;2

pointerRefSuffix ← empty vector of node;3

add root to pointerRef;4

foreach voter u of t do5

foreach node nodei in pointerRef do6

if nodei has descendant di with label u then7

nodei’s descendant count−−;8

if nodei’s descendant count==0 then9

remove nodei from pointerRef;10

end11

if di is leaf then12

add candidates stored in di to Ct;13

else14

add di to pointerRefSuffix;15

end16

end17

end18

append pointerRefSuffix to pointerRef;19

pointerRefSuffix← empty vector of node;20

end21

Algorithm 6: subset(t,root)
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subsets of users of t will be marked.

3.2.4 Filtering of Non-Closed Antagonistic Groups

Filtering Non-Closed A-Groups. As our a-groups are derived from frequent

o-groups, we ensure our a-groups are closed by filtering out non-closed frequent o-

groups (closed frequent o-groups are the ones not subsumed by any other frequent

o-groups with the same count and antcount). Note that as a closed frequent o-

group could potentially subsume a combinatorial number of sub-groups. Removal

of non closed frequent o-groups potentially reduces the number significantly.

The filtering of non-closed frequent o-groups is guaranteed by line 15 in Algo-

rithm 2. Its pseudo code is shown in Algorithm 7. The function works as follows.

For each frequent o-group gk in Lk, we traverse through every frequent o-group

gk−1 in Lk−1. If gk subsumes gk−1, and the count and antcount of the two frequent

o-groups are equal, gk−1 can be filtered. This step ensures all the frequent o-

groups in Lk−1 are closed. By iterating through k, we can have all the non-closed

frequent o-groups of any size filtered. Only closed frequent o-groups will remain.

Input: frequent o-group set Lk−1; frequent o-group set Lk

Output: closed frequent o-group set of size k
foreach gk ∈ Lk do1

foreach gk−1 ∈ Lk−1 do2

if gk−1 ⊆ gk and count(gk−1)=count(gk) and antcount(gk−1)=3

antcount(gk) then
remove gk−1 from Lk−1;4

end5

end6

end7

return Lk−1;8

Algorithm 7: prune(Lk−1, Lk)
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3.2.5 Validation of the Algorithm

Correctness of the algorithm. The correctness of the algorithm is guaran-

teed by the following Theorems 3.2.1 and 3.2.2. The theorems guarantee that a

complete set of closed a-groups will be reported by the Clagmine algorithm.

Theorem 3.2.1. Mined a-group set G contains all the closed a-groups.

Proof. Suppose we have an arbitrary closed a-group g. Hence, count(g)
|I| ≥ λ and

antcount(g)
count(g)

≥ σ. By multiplying the two, g also fulfills antcount(g)
|I| ≥ λ × σ. By

Definition 3.1.3, g is a frequent o-group. According to lemma 1, g will be in C|g|.

g can be captured by line 5 of Algorithm 2. As g fulfills both count(g)
|I| ≥ λ and

antcount(g)
|I| ≥ λ× σ, g will be captured by line 14 of Algorithm 2. Since g is closed,

g will remain in L|g| after line 15 of Algorithm 2. Finally, due to antcount(g)
count(g)

≥ σ, g

will be added to G by line 17 of Algorithm 2. Hence, every closed a-group will be

contained in G.

Theorem 3.2.2. Mined a-group set G contains only closed a-groups.

Proof. Suppose an opposing group g ∈ G is not an a-group. We then have

count(g)
|I| < λ or antcount(g)

count(g)
< σ. From line 17 of Algorithm 2, we know that

g ∈ ⋃
k Lk, and antcount(g)

count(g)
≥ σ. In addition, every frequent o-group gk in

⋃
k Lk

has count(gk)
|I| ≥ λ. Thus count(g)

|I| ≥ λ. It contradicts our condition that count(g)
|I| < λ

or antcount(g)
count(g)

< σ. Thus, g must be an a-group. Hence, G contains only a-groups.

The closure property of G can be guaranteed by line 15 of Algorithm 2. Every

a-group in G will be checked to filter away the non-closed ones. The filtering

method will not leave any non-closed a-groups in G, by Algorithm 7.

38



Chapter 3. Indirect Antagonistic Group Mining

3.3 A Divide and Conquer Strategy

The memory required to store all candidates could be prohibitive when the data

size is large or the support threshold is small. This is due to too many L2 patterns

generated in step 14 of Algorithm 2. To address this issue, we perform a divide

and conquer strategy by partitioning the database, mining for each partition, and

merging the results. This detailed steps of this strategy can be found in [50]. For

completeness of this thesis, we include a brief description of the proposed strategy.

We first state some new definitions and describe a property.

Definition 3.3.1 (User Containment). Consider a entry m = itid 7→ PairSet

in DBR. We say that a user ui is contained in the entry, denoted by ui ∈ m, iff ∃

(ui, v) where v ∈ {positive, negative, neutral} and (ui, v) is in PairSet. We also

say that a user ui is in an a-group a = (S1, S2) iff (ui ∈ S1 ∨ ui ∈ S2)

Example 3.3.1. To illustrate, consider the first entry itm-usr in the example vote

database shown in Table 3.1. The first entry itm-usr contains users a, b and d: a

∈ itm-usr, b ∈ itm-usr, and d ∈ itm-usr.

Definition 3.3.2 (Database Partition). Consider a user ui and a database of

vote DBR. The partition of DBR with respect to user ui, denoted as DBR[ui] is

defined as:

DBR[ui] = {itm-usr|ui ∈ itm-usr ∧ itm-usr ∈ DBR}

Example 3.3.2. To illustrate, consider the example vote database shown in Ta-

ble 3.1. Projection of the database with respect to user d is shown in Table 3.3.
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Item User votes
i1 a-positive, b-negative, d-negative
i2 a-positive, b-negative, d-negative
i3 a-positive, b-positive, d-positive

Table 3.3: Projected Vote Database 1 on User d

Having given the above two definitions, we now define a lemma to support the

divide and conquer mining process.

Lemma 2 (Divide and Merge). Consider a database of vote DBR, support

threshold λ, and confidence threshold σ. Let Uset be the set of users in DBR and

Cm be the shorthand of the Clagmine operation in Algorithm 2. The following is

guaranteed:

Cm(λ, σ,DBR) =
⋃

ui∈USet
{g|ui ∈ g ∧ g ∈ Cm( λ×|DBR|

|DBR[ui]| , σ,DBR[ui])}

The proof of Lemma 2 can be found in [50].

Based on Lemma 2, the algorithm to perform divide and conquer is shown

as Clagmine-partitional(λ,σ,DBR) in Algorithm 8. The algorithm partitions the

database one item at a time and subsequently calls the original closed a-group

mining algorithm defined in Algorithm 2. The theorem to guarantee that the

mined result is correct and a complete set of a-groups are mined by Algorithm 8

can be found in [50].

Note that the Clagmine-partitional reduces memory cost but potentially in-

creases the runtime since the database would now need to be scanned more num-

ber of times. In our experiment mentioned in chapter 4, we would always employ

Clagmine Algorithm and employ Clagmine-partitional only when the former is

prohibitively expensive to run.
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Input: λ; σ; vote database
Output: closed a-groups of all size
USet = Set of all users in DBR;1

G = {};2

foreach ui ∈ USet do3

G = G ∪ {ag|ui ∈ ag ∧ ag ∈ Clagmine( λ×|DBR|
|DBR[ui]| ,σ,DBR[ui])};4

end5

Output G;6

Algorithm 8: Clagmine-partitional(λ,σ,DBR)
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Experiment Results and Analysis

In this chapter, we describe our experiments on mining indirect a-groups. We

conduct experiments on synthetic datasets generated by our synthetic data gen-

erator. We then describe our experiments on four real datasets, namely, Amazon

book rating, Epinions product rating, Slashdot friend/enemy vote and Wikipedia

vote datasets. In this chapter, a-group refers to indirect a-group.

4.1 Experiments on Synthetic Datasets

We first evaluate the scalability of our proposed algorithms. To do so, we rely on

synthetic datasets generated based on various parameter settings. We develop a

synthetic data generator for this purpose. Next, the experiment results on some

synthetic datasets are compared and analyzed.
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4.1.1 Synthetic Data Generator

To investigate the scalability of our mining solution on various data characteristics,

similar to the evaluation measure applied to mining association rules [9, 46, 42],

we develop a synthetic data generator engine. The engine takes a set of user-

given input parameters as shown in Table 4.4. The procedure of synthetic data

generation is shown below and the detailed algorithm is shown in Algorithm 9.

|U | Number of users
|I| Number of items
NG Average size of potential closed a-groups
NL Number of potential closed a-groups
s Selection probability of each user

Table 4.4: Synthetic Data Generator Input

• Generate the set of potential closed a-groups L:(lines 1-10)

The a-groups in L have an average size of NG. For each a-group g in L, we

pick the size of g by a Poisson distribution with mean = NG. If the size of

g is larger than |U |, we resample another size. Let the k-th selected size be

Nk. For the first a-group, we randomly select a group of users (denoted by

Ug1) from U and construct an a-group with equal splits of users in Ug1 into

the opposing user sets (U1, U2). The a-group is then added to L. For each

subsequent a-group gi, we randomly select Nk · q users from the previous

generated a-group denoted by gi−1 and Nk · (1 − q) users from (U − gi−1).

The q value is picked from an exponential distribution with mean = 0.5.

Again, if q is larger than 1, we resample. The generated gi with equal splits

of users into the opposing user sets is then added to L.

• Determine the probabilities of a-groups:(lines 11-17)
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Input: |U |; |I|; NG; NL; s
Output: votes of users in U to items in I
L ← ∅;1

N1 ← poisson(NG);2

g1 ← randomly pick N1 users from U ;3

add g1 to L;4

for i from 2 to NL do5

Ni ← poisson(NG);6

q ← expo(0.5);7

gi ← {randomly pick Ni × q users from gi−1}
⋃{randomly pick8

Ni × (1− q) users from (U -gi−1)};
add gi to L;9

end10

for i from 1 to NL do11

pgi
← expo(1);12

end13

sum ← ∑NL

i=1 pgi
;14

for i from 1 to NL do15

pgi
← pgi

/sum;16

end17

foreach item t do18

GSett ← ∅;19

Mt ← poisson(|U | × s);20

while number of users in GSett < Mt do21

randomly pick gt from L and add gt to GSett;22

if number of users in GSett > Mt then23

retain partial users from last picked gt such that number of24

users in GSett = Mt;
end25

end26

end27

foreach item t do28

foreach gt in GSett, suppose gt =(U1, U2) do29

forall user u from U1 do30

vote(u, t)← positive;31

end32

forall user u from U2 do33

vote(u, t)← negative;34

end35

end36

forall user u in U − {users in GSett} do37

vote(u, t)← neutral;38

end39

end40

Algorithm 9: Synthetic Data Generation Procedure
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We associate a probability pi of picking each a-group gi in L. The probabili-

ties pi’s are decided using an exponential distribution with mean = 1. They

are then normalized such that
∑

pi = 1. Hence, we have NL different pi’s.

• Assign a-groups to each item:(lines 18-27)

For each item t, pick a number of users Mt to be included for the item. Mt

is selected using a Poisson distribution with mean equals |U | · s where s is

a number between 0 and 1. We pick a set of a-groups GSett, a subset of

L, using a biased dice with NL sides and each side having a probability of

pi. Note that Mt ≤number of users in GSett. If Mt < number of users in

GSett, we can assign only subset of users from an a-group in GSett to item

t. The assigned a-groups should not overlap by user, which means the same

user cannot exist in two a-groups in GSett concurrently.

• Assign votes to each item:(lines 28-40)

The assignment of vote(u, t) (user u votes on item t) can be done as follows.

We only consider three types of votes, positive, negative and neutral. For

an a-group (U1, U2) associated with item t. We assign all vote(up, t)’s as

positive for all up’s belonging to U1, and all vote(un, t)’s as negative for

all un’s belonging to U2. We continue the process until all the a-groups

associated with item t processed, we assign neutral to vote(uo, t)’s for all

uo’s which are not in the a-groups associated with item t.
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4.1.2 Performance Study on Synthetic Datasets

We now design experiments to evaluate the scalability of our proposed algorithms

using several synthetic datasets. Our synthetic data generator accepts as input

|U | (in ’000), |I| (in ’000), P (i.e., |U | × s, the expected number of users voting

an item), NG, and NL (in ’000). We generate four datasets using the following

parameter settings.

DS1 |U |=10, |I|=100, P=20, NG=6, NL=2

DS2 |U |=50, |I|=100, P=20, NG=6, NL=2

DS3 |U |=10, |I|=100, P=30, NG=6, NL=2

DS4 |U |=50, |I|=10, P=20, NG=6, NL=2

All the experiments have adopted confidence threshold σ=0.7. We measure

the runtime for different support thresholds.

The results for dataset DS1 for support thresholds from 0.002 to 0.006 are

shown in Figure 4.1. Figure 4.1(a) shows the runtime needed to execute the

algorithm at various support thresholds. “Non-Split” and “Split” correspond to

Clagmine algorithm and Clagmine-partitional algorithm respectively. We only

include 3 data points for “Non-Split”, as mining at lower thresholds took too

long to complete. Figure 4.1(b) shows the number of a-groups found at various

support thresholds. Finally in Figure 4.1(c), we plot a graph showing the number

of a-groups at different sizes while keeping support threshold at 0.002.
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Figure 4.1: Runtime and Patterns: DS1 at various support values.

The result shows that the runtime decreases with increasing support threshold.

This decrease in runtime is accompanied by the decrease in the number of a-groups

mined. Figure 4.1(c) also shows that a-groups mined have small sizes.

For DS2, we consider a larger number of users. The results for various support

thresholds with σ=0.7 are shown in Figure 4.2.

For the third dataset, we use smaller number of users and larger expected

number of users voting an item. The results for various support thresholds are

shown in Figure 4.3.

For the fourth dataset, we consider fewer number of items and larger number

of users. The results for various support thresholds are shown in Figure 4.4.

The performance study showed that the algorithm is able to run well on various

settings. The lower the support threshold the larger the runtime and number of
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Figure 4.2: Runtime and Patterns: DS2 at various support values.

a-groups. DS1 and DS2 have the same parameter settings except that the user

number of DS2 is larger than that of DS1. By comparing the runtime of the two,

we conclude that the larger the number of users, the more time consuming it is

to mine. Similarly, by comparing DS2 and DS4, we conclude that the larger the

number of items, the more time consuming it is to mine. Comparing DS3 and

DS1, we conclude that the larger the expected number of users voting an item,

the more time consuming to it is to mine.

4.2 Experiments on Amazon Dataset

4.2.1 Performance Study on Amazon Dataset

We received the Amazon dataset from University of Illinois at Chicago. In this

dataset, there are a total of 99,255 users rating 108,142 books in 935,051 reviews.
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Figure 4.3: Runtime and Patterns: DS3 at various support values.

Each review is associated with a rating issued to the item by the user. A rating

to an item is represented as an inlink to the item. A rating issued by a user

is represented as an outlink from the user. The rating ranges from 1 to 5. We

map ratings of 4-5 to positive votes, ratings of 1-2 to negative votes, and the

rest are mapped to neutral votes. Among the 935,051 ratings, 699,925 (74.9%)

are positive, 108,013 (11.6%) are negative, and 104,373 (11.2%) are neutral. The

indegree distribution of items and outdegree distribution of users are shown in

Figure 4.5. They follow power law distribution. This agrees with the “power law

degree distribution” of large networks [38, 10]. However, there are some outlying

points. In Figure 4.5(a), when indegree equals 1 or 2, the number of nodes is

much fewer than the power law values. Similar cases exist in Figure 4.5(b). This

suggests that Amazon book rating dataset has a small number of nodes with

extremely low indegree or outdegree.

The experiment for the Amazon dataset is conducted with σ=0.5 and different
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Figure 4.4: Runtime and Patterns: DS4 at various support values.

(a) (b)

Figure 4.5: Amazon Book Ratings Dataset Indegree and Outdegree Distribution.

λ values. The results are shown in Figure 4.6. Figure 4.6(c) is obtained with

absolute λ=10 (we call λ× |I| absolute λ).

Figure 4.6(b) shows that the number of a-groups mined is small even with low

support thresholds. Most of the a-groups are of size 2. The reason could be that

Amazon dataset does not contain large groups of people with opposite opinions.
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Figure 4.6: Amazon Dataset: Runtime and Distribution of A-groups.

4.2.2 Antagonistic Group Study

Several interesting a-groups are discovered from the Amazon dataset. They are

obtained by running the mining algorithm on Amazon dataset with absolute λ=10

and σ=0.5. The program runs for 11469 seconds with 167 a-groups generated. 147

of the a-groups are of size 2, 18 of them are of size 3 and 2 of them are of size 4.

We post-process the a-groups with the following criteria:

• Antagonistic confidence: Only retain a-groups with antagonistic confidence

> 0.7. This criteria is to ensure the a-groups are of sufficient antagonism

level.

• number of commonly rated item
number of totally rated item

: Retain a-groups if at least one user in the a-group

has number of commonly rated item
number of totally rated item

> 0.6. This criteria is to ensure that at least

one user behaves highly antagonistically against others.
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ID Antagonistic group Commonly
rated (Op-
positely
rated)

Totally rated
by 1st user(%
of commonly
rated)

Totally rated
by 2nd user(%
of commonly
rated)

Totally rated
by 3rd user(%
of commonly
rated)

1 ({Jason},{Luke}) 12 (12) 56(21%) 13(92%) -
2 ({Jason, K.Jump},{Luke}) 10 (10) 56(17.8%) 61(16.4%) 13(76.9%)
3 ({Jason, C.Hill},{Luke}) 10 (7) 56(17.8%) 106(9.4%) 13(76.9%)
4 ({Jeffrey},{Luke}) 10 (10) 137(7.3%) 13(76.9%) -
5 ({Konrad},{T.M.Sklarski}) 14 (10) 452(3.1%) 22(63.6%) -

Table 4.5: Interesting Examples from Amazon Book Rating Dataset

After postprocessing, we found five most interesting a-groups. They are pre-

sented in Table 4.5. As most of them involve Luke, we examine the first a-group

in detail as follows:

• High antagonistic level : We observe that the two users, Luke and Jason

rated items with high level of antagonism. Among Jason’s 56 rated books,

12 have opposite ratings with Luke. Similarly for Luke, 12 of all his 13 rated

books (about 92%) have opposite ratings with Jason. This demonstrates a

significantly high level of antagonism exists in this a-group.

• Antagonistically rated books : Based on our mining result, we examined the

Amazon website. We found the 12 books rated oppositely by Jason and

Luke. The books and their ratings are shown in Table 4.6. Interestingly,

Jason rated all the 12 books high while Luke gave very low ratings. There

is a high tendency that the books disliked by Luke are liked by Jason.

• Antagonistically behaved user : It is interesting to note that Luke appears in

four out of five interesting a-groups. He tends to rate books against what

others rate. His ratings are opposite to other four users for at least 10

books. This very different judgement compared with others will motivate

us to examine his behaviors further.
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ID Book title Jason’s rating Luke’s rating
1 Armageddon 4 1
2 The Remnant: On the Brink of Armageddon 4 1
3 Desecration: Antichrist Takes the Throne 4 1
4 The Mark: The Beast Rules the World 4 1
5 The Indwelling: The Beast Takes Possession 4 1
6 Assassins 4 1
7 Apollyon: The Destroyer Is Unleashed 4 1
8 Soul Harvest: The World Takes Sides 4 1
9 Nicolae: The Rise of Antichrist 4 1
10 Tribulation Force: The Continuing Drama of Those Left Behind 4 1
11 Left Behind: A Novel of the Earth’s Last Days 4 1
12 Glorious Appearing: The End of Days 4 1

Table 4.6: Jason and Luke’s Ratings on Their Commonly Rated Books

4.2.3 Comparison between Antagonistic Group Voted Items

and Other Items

In this section, we compare the set of items voted by at least one a-group (called

a-group voted item set) and the remaining items (called general item set). The

a-groups are obtained with absolute λ=10 and σ=0.5. We adopt the item metrics

for comparing a-group voted item set and general item set as follows:

1. Positive inlink ratio= positive indegree
positive indegree+negative indegree

. This metric reflects

the controversial level of an item. The closer the metric to 0.5, the more

controversial the item.

2. Biased inlink=positive indgree + negative indegree. This metric reflects

how many biased votes (positive and negative votes) an item attracts.

3. Biased inlink ratio=positive indegree+negative indegree
total indegree

. This metric reflects how

biased users’ opinions are on an item. The larger the metric, the more biased

the users’ opinions .

For a given item set (which can be a-group voted item set or general item set),

we obtain the mean and standard deviation for each of the above metrics. We then
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perform a z-test on each metric to tell if the population of a-group voted item set is

different from the general item set. Considering each set has population size>30,

and the standard deviations of the distributions of the two sets are unknown, we

use the following equation to calculate z:

z =
(x1 − x2)− (µ1 − µ2)√

s1
2

n1
+ s2

2

n2

(1)

where,

sk =

√
1

n− 1

∑
i

(xki − xk)2, (k is set number 1 or 2). (2)

Our z-test results are shown in Table 4.7. For the two populations to be similar

at 99% confidence, we need their z-value to be within [-2.57,2.57]. Table 4.7 shows

that the z-values of the three metrics are all out of the interval. Hence, we can say

with 99% confidence, the two populations are different with respect to the three

metrics. Furthermore, we observe that:

1. In terms of positive inlink ratio, both a-group voted item set and general

item set receive more positive votes than negative ones. The positive and

negative votes of the a-group voted item set are more balanced than that

of general item set. Hence, the a-group voted item set attracts significantly

more opposing votes than general item set.

2. In terms of biased inlink, a-group voted item set attracts significantly more

biased votes than general item set.
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3. In terms of biased inlink ratio, both a-group voted item set and general item

set have biased inlink ratios larger than 86%. Hence, items attract highly

biased opinions.

Metric Positive in-
link ratio

Biased
inlink

Biased
inlink ratio

A-group voted item set
Size 1379 1379 1379
Mean 0.767 39.381 0.862
Std Dev. 0.189 75.148 0.112

General item set
Size 106582 106763 106763
Mean 0.875 7.059 0.891
Std Dev. 0.206 12.105 0.157

z value -21.137 15.969 -9.284

Table 4.7: Z-test of Inlink Metrics for Amazon Dataset

As the positive inlink ratio is the key measure of how controversial the item

is, we examine this metric of the a-group voted item set and general item set in

detail. We divides the positive inlink ratios of items into buckets of width 0.05.

The distributions of positive inlink ratios of the two item sets are shown in Figure

4.7.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

[ 0 . 0
0 , 0 .

0 5 )

[ 0 . 0
5 , 0 .

1 0 )

[ 0 . 1
0 , 0 .

1 5 )

[ 0 . 1
5 , 0 .

2 0 )

[ 0 . 2
0 , 0 .

2 5 )

[ 0 . 2
5 , 0 .

3 0 )

[ 0 . 3
0 , 0 .

3 5 )

[ 0 . 3
5 , 0 .

4 0 )

[ 0 . 4
0 , 0 .

4 5 )

[ 0 . 4
5 , 0 .

5 0 )

[ 0 . 5
0 , 0 .

5 5 )

[ 0 . 5
5 , 0 .

6 0 )

[ 0 . 6
0 , 0 .

6 5 )

[ 0 . 6
5 , 0 .

7 0 )

[ 0 . 7
0 , 0 .

7 5 )

[ 0 . 7
5 , 0 .

8 0 )

[ 0 . 8
0 , 0 .

8 5 )

[ 0 . 8
5 , 0 .

9 0 )

[ 0 . 9
0 , 0 .

9 5 )
[ 0 . 9

5 , 1 ]

Positive inlink ratio bucket

Pe
rce

nta
ge
 of

 nu
mb

er 
of 

ite
ms A-group voted item set

General item set

Figure 4.7: Distribution of Positive Inlink Ratio.

There are several observations made from the figure:
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1. For the a-group voted item set, most of the items (i.e. 92.2%) have positive

inlink ratios distributed over [0.50,1], with 4.0% in [0.60,0.65) being the

lowest and 15.5% in [0.95,1] being the highest. The rest of the items have

their positive inlink ratios distributed over [0,0.50). The number of items in

buckets on [0,0.50) is small, with 2.2% in [0.30,0.35) being the highest.

2. For the general item set, 61.5% of the items have positive inlink ratios in

[0.95,1]. Most of the rest items have their positive inlink ratios distributed

over [0.50,0.95). Few items have their positive inlink ratios distributed over

[0,0.50), with 1.6% in [0.30,0.35) being the highest.

These observations agree with the observation made from Table 4.7 that a-

group voted item set receive more balanced positive and negative votes than gen-

eral item set.

4.2.4 Comparison between Antagonistic Group Users and

Other Users

In this section, we compare the set of users appearing in a-groups (called a-group

user set) and the remaining users (called general user set). The a-groups are

obtained with absolute λ=10 and σ=0.5. We adopt the user metrics for comparing

the two user sets as follows:

1. Positive outlink ratio= positive outdegree
positive outdegree+negative outdegree

. This metric re-

flects whether an user’s opinions are biased towards positive or negative.
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2. Biased outlink=positive outdegree+negative outdegree. This metric re-

flects the activeness level of an user.

To compare the two user sets, we retain only users with biased outlink ≥

(absolute λ) × σ. This is due to that users in a-group user set need to vote at

least (absolute λ) × σ items as positive or negative. Thus, their biased outlink is

at least (absolute λ) × σ. To be consistent with a-group user set, we also impose

the restriction on the general user set. We apply the z-test similar to the one in

Section 4.2.3. The z-test results are shown in Table 4.8. The z-values of the two

metrics are all out of [-2.57,2.57]. Hence, we can say with 99% confidence that

the two populations are different with respect to the two metrics. From the table,

we observe that:

1. In terms of positive outlink ratio, both a-group user set and general user

set give more positive votes than negative ones. A-group users give more

balanced positive and negative votes than general users.

2. In terms of biased outlink, a-group users give significantly more biased votes

than general users.

Metric Positive out-
link ratio

Biased out-
link

A-group user set
Size 166 166
Mean 0.693 208.572
Std Dev. 0.264 634.060

General user set
Size 39517 39517
Mean 0.846 15.108
Std Dev. 0.196 29.820

z value -7.468 3.931

Table 4.8: Z-test of Outlink Metrics for Amazon Dataset
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4.3 Experiments on Epinions Dataset

4.3.1 Performance Study on Epinions Dataset

Epinions dataset is obtained from [2]. It was crawled from epinions.com by Paolo

Massa. The dataset is a result of a 5-week crawl in November/December 2003. It

contains 49,290 users who rated 139,738 different items in 664,823 reviews. The

ratings scale from 1 to 5. Again, we map ratings of 4-5 to positive votes and

ratings of 1-2 to negative votes. The rest are mapped to neutral votes. Among

the 664,823 ratings, 495,392 (74.5%) are positive, 93,906 (14.1%) are negative, and

75,525 (11.4%) are neutral. The indegree distribution of items and the outdegree

distribution of the users are shown in Figure 4.8. Both the indegree and outdegree

distributions follow power law.

(a) (b)

Figure 4.8: Epinions Dataset Indegree and Outdegree Distribution.

We apply our indirect a-group mining algorithm on this dataset with σ=0.5

and different λ values. The results are shown in Figure 4.9. Figure 4.9(c) is

obtained with absolute λ=10.

The results of Epinions dataset are similar to that of Amazon dataset. The
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Figure 4.9: Epinions Dataset: Runtime and Distribution of A-groups.

number of a-groups is small even with very low support threshold. Most of the

a-groups are of size 2. The antagonistic behavior is not so much apparent in this

dataset.

4.3.2 Comparison between Antagonistic Group Voted Items

and Other Items

In this section, we compare the a-group voted item set and the general item set.

The a-groups are obtained with absolute λ=10 and σ=0.5. We compare the two

sets using the same item metrics as shown in Section 4.2.3. We perform a similar

z-test as the one in Section 4.2.3. Our z-test results are shown in Table 4.9. The

z-values of the three metrics are all out of [-2.57,2.57]. Hence, we can say with

99% confidence that the two populations are different with respect to the three

metrics. We also observe that:
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1. In terms of positive inlink ratio, similar to the Amazon dataset, both of the

two sets receive more positive votes than negative ones. The positive and

negative votes received by a-group voted item set are more balanced than

that of general item set.

2. In terms of biased inlink, a-group voted item set receives significantly more

biased votes than general item set.

3. In terms of biased inlink ratio, both sets have biased inlink ratios larger than

85%. It suggests that items in both sets attract highly biased opinions.

Metric Positive in-
link ratio

Biased
inlink

Biased
inlink ratio

A-group voted item set
Size 1503 1503 1503
Mean 0.732 93.582 0.858
Std Dev. 0.236 124.059 0.100

General item set
Size 128015 138235 138235
Mean 0.874 3.246 0.882
Std Dev. 0.293 7.872 0.277

z value -23.145 28.229 -8.744

Table 4.9: Z-test of Inlink Metrics for Epinions Dataset

Similar to the Amazon dataset, we examine the positive inlink ratio. We adopt

a similar approach by dividing the positive inlink ratios of items into buckets of

width 0.05. The distributions of positive inlink ratios of the two item sets are

shown in Figure 4.10.

We can make the following observations from the figure:

1. For the a-group voted item set, most of the items (i.e. 83.2%) have positive

inlink ratios distributed over [0.50,1], with 4.1% in [0.70,0.75) being the

lowest and 15.9% in [0.95,1] being the highest. The remaining items have
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Figure 4.10: Distribution of Positive Inlink Ratio.

their positive inlink ratios distributed over [0,0.50) with 0.7% in [0.05,0.1)

being the lowest and 3.6% in [0.4,0.45) being the highest.

2. For the general item set, 86.8% of the items have positive inlink ratios dis-

tributed at the two ends. 78.6% of the items have positive inlink ratios in

[0.95,1] and 8.2% have positive inlink ratios in [0,0.05). The rest of the items

have their positive inlink ratios distributed over [0.05,0.95), with 0.02% in

[0.05,0.1) being the lowest and 2.9% in [0.5,0.55) being the highest.

These observations are consistent with the observation made from Table 4.9

that the positive and negative votes of a-group voted item set are more balanced

than that of general item set.
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4.3.3 Comparison between Antagonistic Group Users and

Other Users

In this section, we compare the a-group user set and the general user set using

the same user metrics as shown in Section 4.2.4. The a-groups are obtained with

absolute λ=10 and σ=0.5. We perform a same z-test as the one in Section 4.2.3.

Our z-test results are shown in Table 4.10. We can say with 99% confidence that

the two populations are different with respect to the two metrics. From the table,

we can also observe that:

1. In terms of positive outlink ratio, similar to the Amazon dataset, both a-

group user set and general user set give more positive votes than negative

ones. A-group users give more balanced positive and negative votes than

general users.

2. In terms of biased outlink, a-group users tend to give significantly more

biased votes than general users.

Metric Positive out-
link ratio

Biased out-
link

A-group user set
Size 434 434
Mean 0.772 146.150
Std Dev. 0.136 128.980

General user set
Size 21873 21873
Mean 0.845 22.461
Std Dev. 0.132 32.039

z value -11.108 19.966

Table 4.10: Z-test of Outlink Metrics for Epinions Dataset
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4.4 Experiments on Slashdot Dataset

4.4.1 Performance Study on Slashdot Dataset

We downloaded the Slashdot dataset from [4]. Different from our previous two

datasets, Slashdot dataset is not people voting items. It is people voting other

people. In this dataset, a person vote another as “friend” (positive vote) or

“enemy”(negative vote). There are no neutral votes in this dataset. Items here

refer to the people receiving at least one vote and users refer to the people giving

at least one vote.

A vote from a user to an item is represented by a link from the user to the item

(outlink from the user and inlink to the item). The number of people nodes in

our Slashdot dataset is 82,144. 44,044 (53.6%) of them have at least one outlink

and 70,284 (85.6%) have at least one inlink. Many users (about 46%) do not have

outlinks. The difference between number of nodes with at least one inlink and

one outlink is 26,240. It indicates that there are some nodes with large number

of outgoing links. We will find these nodes in the outdegree distribution to be

shown later. There are 549,202 links with 425,072 (77.4%) positive and 124,130

(22.6%) negative. This suggests that users in Slashdot dataset give much more

positive votes than negative votes.

The indegree and outdegree distribution of nodes are shown in Figure 4.11.

As shown in Figure 4.11(a), the indegree is strictly power law distributed. Figure

4.11(b) shows that the outdegree follows power law too except four nodes in
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the dashed circle. They show the nodes having outlinks to many other nodes.

We further studied the nodes with many outlinks and found that there are few

common nodes in their voted node set. They do not form any cliques (voting each

other as friends or enemies) and they do not vote commonly on some groups of

nodes. It seems these nodes vote a lot of other nodes without any special purposes.

(a) (b)

Figure 4.11: Slashdot Dataset Indegree and Outdegree Distribution.

We conduct our a-group mining on Slashdot dataset with σ=0.7 and absolute

λ ∈ {20,30,40,50}. The result is shown in Figure 4.12. Figure 4.12(c) is obtained

with absolute λ=20.

Figure 4.12(a) shows that the runtime decreases with larger λ. This is due to

smaller number of a-groups as shown in Figure 4.12(b). Unlike the Epinions and

Amazon datasets, most of the a-groups are of size 3 and some large size a-groups

are mined. For example, we have around 200 a-groups of size 8. As the size of

a-group increases, the number of a-groups decreases. This result implies that the

Slashdot dataset tends to divide nodes into groups with opposing opinions.

Based on the setting of absolute λ=20 and σ=0.7, we select two a-groups, one

small and another large for further case study analysis. The a-groups are:
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Figure 4.12: Slashdot Dataset: Runtime and Distribution of A-groups.

• g1=({u1930,u2619},{u1499})

• g2=({u2108,u13245,u58334},{u3445,u4693,u6818,u11020,u11044})

A-group g1 has count(g1)=20, antcount(g1)=17 (aconf(g1)=0.85). The number

of commonly voted items of g1 and their votes are shown in Table 4.11.

The a-group g2 has count(g2)=20, antcount(g2)=18 (aconf(g2)=0.9). The num-

ber of commonly voted items of g2 and their votes are shown in Table 4.12.

Number of items
User’s votes

1st sub-community of g1 2nd sub-community of g1

u1930 u2619 u1499
3 − + +
17 + + −

Table 4.11: Votes of Users of g1
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Number of items
User’s votes

1st sub-community of g2 2nd sub-community of g2

u2108 u13245 u58334 u3445 u4693 u6818 u11020 u11044
2 − − − − + + + +
18 − − − + + + + +

Table 4.12: Votes of Users of g2

4.4.2 Comparison between Antagonistic Group Voted Items

and Other Items

Same as the previous two datasets, we compare the a-group voted item set and

the general item set. The a-groups are obtained with absolute λ=20 and σ=0.7.

There is no neutral votes in this dataset. Hence, we compare the two sets using

only item metric 1 and 2 as shown in Section 4.2.3. We perform a same z-test as

the previous datasets. Our z-test results are shown in Table 4.13. The z-values

indicate that, with 99% confidence, we can say the two populations are different

with respect to the two metrics. We also observe that:

1. In terms of positive inlink ratio, similar to our previous two datasets, both

sets receive more positive votes than negative ones. A-group voted item set

receive more balanced positive and negative votes than general item set.

2. In terms of biased inlink, a-group voted item set receive significantly more

biased votes than general item set.

Similar to our previous two datasets, we divides the positive inlink ratios of

items into buckets of width 0.05. The distributions of positive inlink ratios of the

two item sets are shown in Figure 4.13.
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Metric Positive in-
link ratio

Biased
inlink

A-group voted item set
Size 2556 2556
Mean 0.647 81.172
Std Dev. 0.220 147.063

General item set
Size 67728 67728
Mean 0.779 5.046
Std Dev. 0.347 12.632

z value -28.986 26.167

Table 4.13: Z-test of Inlink Metrics for Slashdot Dataset
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Figure 4.13: Distribution of Positive Inlink Ratio.

Some observations can be made from the figure:

1. For the a-group voted item set, 83.5% of the items have positive inlink ratios

evenly distributed over [0.50,1], with 4.7% in [0.95,1] being the lowest and

10.3% in [0.80,0.85) being the highest. The gap between the lowest and the

highest is smaller compared to our previous two datasets. The rest of the

items have their positive inlink ratios distributed over [0,0.50) with 0.3% in

[0.05,0.1) being the lowest and 5.6% in [0.4,0.45) being the highest.

2. For the general item set, similar to the Epinions dataset, a large amount

(i.e. 73.5%) of the items have positive inlink ratios distributed at the two
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ends. 61.1% of the items have positive inlink ratios in [0.95,1] and 12.4%

have positive inlink ratios in [0,0.05).The rest of the items have their positive

inlink ratios distributed over [0.05,0.95), with 0.05% in [0.05,0.1) being the

lowest and 5.7% in [0.5,0.55) being the highest.

Similar to our previous two datasets, these observations show that a-group

voted item set indeed receives more balanced positive and negative votes than

general item set.

4.4.3 Comparison between Antagonistic Group Users and

Other Users

In this section, we compare the a-group user set and the general user set based on

the two user metrics as shown in Section 4.2.4. The a-groups are obtained with

absolute λ=20 and σ=0.7. We perform the same z-test as our previous datasets.

Our z-test results are shown in Table 4.14. The z-values indicate that with 99%

confidence we can say the two populations are different with respect to the two

metrics. We also observe that:

1. In terms of positive outlink ratio, similar to our previous two datasets, both

a-group user set and general user set give more positive votes than negative

ones. A-group users give more balanced positive and negative votes than

general users.

2. In terms of biased outlink, a-group users give significantly more biased votes

than general users.
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Metric Positive out-
link ratio

Biased out-
link

A-group user set
Size 399 399
Mean 0.682 182.727
Std Dev. 0.344 91.403

General user set
Size 7704 7704
Mean 0.790 46.106
Std Dev. 0.245 44.925

z value -6.199 29.672

Table 4.14: Z-test of Outlink Metrics for Slashdot Dataset

4.5 Experiments on Wikipedia Vote Dataset

4.5.1 Performance Study on Wikipedia Vote Dataset

We downloaded the Wikipedia vote dataset from [4]. In this dataset, people are

voted by others for promoting to administrators. The voting process is divided

into sessions. The vote can be 0 (neutral), 1 (support) or -1 (against). We map 1

to positive vote, -1 to negative vote and 0 to neutral vote. The person is promoted

if at least 75% of his/her votes are positive [12]. A person can be nominated more

than once and voted in multiple sessions. Each session has a unique time stamp

and the votes for the same person in different sessions are different. We treat

sessions as items, and voters as users.

Similar to the Slashdot dataset, a vote from a user to an item is represented

by a link from the user to the item (outlink from the user and inlink to the item).

The number of item is 2794. Number of items with at least one inlink (been

voted) is 2794 (100%). Number of users is 8274. Number of users with at least

one outlink (vote others) is 6210 (75.1%). The total number of links is 114,040.

Among the links, 83,962 (73.6%) are positive, 23,118 (20.3%) are negative and
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6960 (6.1%) are neutral.

The indegree distribution of items and the outdegree distribution of users are

shown in Figure 4.14. Figure 4.14(a) shows that the indegree is not strictly power

law distributed. This is due to the small number of items. Figure 4.14(b) shows

the outdegree obeys the power law distribution.

(a) (b)

Figure 4.14: Wikipedia Voting Dataset Indegree and Outdegree Distribution.

Our experiments on mining a-groups are conducted with σ=0.7 and absolute λ

∈ {20,30,40,50}. The results are shown in Figure 4.15. Figure 4.15(c) is obtained

with absolute λ=20.

Figure 4.15(a) shows both Split version and Non-Split version can cop with

this dataset. This is due to that the dataset is relatively small compared to our

previous datasets. Figure 4.15(a) also shows that the runtime decreases as λ

becomes larger. This is due to the smaller number of a-groups minable as shown

in Figure 4.15(b). Most of the a-groups mined are of size 3 and 4. We also find

some large size a-groups. For example, we find 40 a-groups of size 6. The number

of a-groups decreases as size of a-group increases. The results show that Wikipedia

vote dataset is likely to divide its nodes into groups of opposing opinions.
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Figure 4.15: Wikipedia Voting Dataset: Runtime and Distribution of A-groups.

Based on the setting of absolute λ=20 and σ=0.7, we select an a-group of size

six for analysis. The a-group is:

• g=({u1133,u2237,u2565,u2713,u3352},{u2229})

A-group g has count(g)=20, antcount(g)=15 (aconf(g)=0.75). The number of

commonly voted items of g and their votes are shown in Table 4.15.

Number of items
User’s votes

1st sub-community of g 2nd sub-community of g
u1133 u2237 u2565 u2713 u3352 u2229

1 + + + − − −
4 + + + + − −
15 + + + + + −

Table 4.15: Votes of Users of g
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4.5.2 Comparison between Antagonistic Group Voted Items

and Other Items

We now compare the a-group voted item set and the general item set using the

three item metrics in Section 4.2.3. The a-groups are obtained with absolute

λ=20 and σ=0.7. We perform the same z-test as our previous datasets. Our

z-test results are shown in Table 4.16. We observe that:

1. In terms of positive inlink ratio, opposite to our previous three datasets, the

mean positive inlink ratio of a-group voted item set is larger than that of

general item set. The standard deviation of positive inlink ratios of general

item set is nearly twice of that of a-group voted item set.

2. In terms of biased inlink, similar to our previous datasets, a-group voted

item set receives significantly more biased votes than general item set.

3. In terms of biased inlink ratio, both sets have biased inlink ratios larger than

91%. This suggests items in both sets attract highly biased opinions.

Metric Positive in-
link ratio

Biased
inlink

Biased
inlink ratio

A-group voted item set
Size 841 841 841
Mean 0.742 59.377 0.926
Std Dev. 0.238 40.082 0.079

General item set
Size 1945 1953 1953
Mean 0.533 29.260 0.919
Std Dev. 0.419 26.749 0.126

z value 16.683 19.960 1.648

Table 4.16: Z-test of Inlink Metrics for Wikipedia Voting Dataset

In Wikipedia, the nominee in each session (i.e. item in our context) is promoted

to an administrator if at least 75% of his/her votes are positive [12]. We now study
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whether there are any difference in successful promotion rate of the a-group voted

item set and the general item set. The election results of the two sets are shown

in Table 4.17.

A-group voted
item set

General item
set

Number of sessions 841 1953
Number/Percentage of successful promotion 456/54.2% 792/40.6%
Number/Precentage of failed promotion 385/45.8% 1161/59.4%

Table 4.17: Election Results of the Two Sets

The table shows that the a-group voted item set has higher successful promo-

tion rate than the general item set. The difference is around 15%. We further

plot the distributions of positive inlink ratios for both sets in Figure 4.16.
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Figure 4.16: Distribution of Positive Inlink Ratio.

As shown in Figure 4.16, the a-group voted item set has 55.2% of the items

having positive inlink ratios in [0.75,1] and general item set has 43.8% of the items

having positive inlink ratios in [0.75,1]. The two numbers are slightly different

from the successful promotion rates in Table 4.17, as the promotion is not solely

based on votes and other factors such as voter’s reasons are also considered [12].
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The gap between these two numbers is nearly 15%. This agrees with the results

in Table 4.17.

The figure also shows that the items of the a-group voted item set are evenly

distributed over [0.50,0.95). The exception is the interval [0.95,1], which has 26.9%

of the items. These items pull up the successful promotion rate of the a-group

voted item set and they also cause the mean positive inlink ratio of a-group voted

item set to be higher than that of general item set.

To find out the reasons why a-group voted item set has so many items in

[0.95,1], we investigated into the 827 a-groups mined. We found three users form-

ing many a-groups. User u3569 forms 61 a-groups. User u1029 forms 151 a-groups.

User u2229 forms 497 a-groups. We found that u3569 gave negative votes to 41

items and positive votes to only 2 items. u1029 gave negative votes to 117 items

and positive votes to 20 items. u2229 gave negative votes to 129 items and pos-

itive votes to 17 items. We infer that as these three uses give negative votes

to items, their opposing users give positive votes. In addition, a-groups formed

by these three users are all in the form of “u3569/u1029/u2229,uAuBuC...”(“/”

means either one, A, B and C are user Id). This means there are many users

giving positive votes to the a-group voted items voted by the three users. Thus,

the positive inlink ratios of a-group voted items voted by the three users are high.

These three users voted a total of 319 items (7 of them are concurrently voted by

two or three). 314 of the items appear in a-group voted item set. Among the 314

items, 117 items have positive inlink ratios in [0.95,1]. Hence, 51.7% (i.e. more

than half) of the items in [0.95,1] are contributed by items voted by these three
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users. They are the key factors pulling up the number of items in [0.95,1].

4.5.3 Comparison between Antagonistic Group Users and

Other Users

In this section, we compare the a-group user set and the general user set using the

same metric in Section 4.2.4. The a-groups are obtained with absolute λ=20 and

σ=0.7. We perform a z-test same as our previous datasets. The z-test results are

shown in Table 4.18. The z-values indicate that there is no significant difference

in positive outlink ratios between the two sets, and they both give more positive

votes than negative votes. However, a-group users give significantly more biased

votes than general users.

Metric Positive out-
link ratio

Biased out-
link

A-group user set
Size 162 162
Mean 0.794 182.598
Std Dev. 0.225 156.759

General user set
Size 1254 1254
Mean 0.780 50.766
Std Dev. 0.179 48.874

z value 0.777 10.637

Table 4.18: Z-test of Outlink Metrics for Wikipedia Voting Dataset
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Direct Antagonistic Group

Mining

In this chapter, we examine the mining of direct antagonistic groups. The def-

inition and properties are given first, followed by the mining algorithm. The

experiment results are introduced finally.

5.1 Preliminaries

Definition 5.1.1 (Strongly Connected Subgraphs). A strongly connected

subgraph (SCS) is a sub-graph G’ in a larger graph G where: For each node n’ in

G’, there exists a series of edges in G’ connecting n’ to every other node in G’.

Definition 5.1.2 (Strongly Connected Component). A strongly connected

component (SCC) is a strongly connected sub-graph that is maximal in size.

An example of a strongly connected component (SCC) is shown in Figure 5.1.
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v3, v4 and v5 form a strongly connected subgraph (SCS) but is not an SCC as

there is a larger SCS, i.e. {v1,v2,v3,v4,v5}.V1V3 V2V4 V5
Figure 5.1: A Strongly Connected Component

Definition 5.1.3 (Bi-Cliques). A bi-clique is a graph whose nodes could be

decomposed of two sets of nodes where:

1. There is no edge among the nodes in each set

2. Each node is connected to every nodes in the other set.

We denote a bi-clique as (L,R), where L and R are the two sets of nodes having

the characteristics described above.

An example of a bi-clique is shown in Figure 5.2.

V2

V1

V3

L R

V4

V5

V6

V7

Figure 5.2: A Bi-Clique.

Definition 5.1.4 (Sub-Bi-Clique). Consider a bi-clique C = (L,R). We define

a sub-bi-clique of C, as a bi-clique C’ = (L’,R’) where either L’ ⊆ L and R’ ⊂ R,

or L’ ⊂ L and R’ ⊆ R. A sub-bi-clique of a bi-clique is a bi-clique. The set of all

possible sub-bi-cliques of C is denoted as sbc(C).
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To illustrate the sub-bi-clique operation, two sample sub-bi-cliques of the one

shown in Figure 5.2 are shown in Figure 5.3.

V1

V2

L R

V4

V5

V6

V7

V1

V2

L R

V4

V6

V7

Figure 5.3: Example Sub-Bi-Cliques

Definition 5.1.5 (Transaction DB and Mapping Function). A transaction

is a set of items from a domain D. A transaction database DB consists of a bag of

transactions. Let map(S) be a mapping between a set of items S to the identifiers

of the transactions in the DB containing S.

Definition 5.1.6 (Itemset Patterns). An itemset pattern is a set of items.

Consider a transaction database DB, the support of a pattern P, is the number of

transactions in the database that are super-sets of P. The support of P is denoted

as sup(P).

Definition 5.1.7 (Frequent Itemsets). An itemset P is a frequent itemset with

respect to a transaction database DB and a minimum support threshold min sup,

if the support of P is larger than min sup.

Definition 5.1.8 (Closed Patterns). An itemset P is a closed pattern, if P is

frequent and there is no P’ where P’ ⊇ P and sup(P’) = sup(P).

An example of a transaction database is shown in Table 5.1. The itemset

{A,B,C} is supported by three transactions namely T1, T2 and T3. The support
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TID Itemset
T1 {A,B,C,D,E}
T2 {A,B,C,D,K}
T3 {A,B,C,D}
T3 {A,C,D}
T4 {E,K,F}

Table 5.19: A Sample Transaction DB

of the itemset is therefore 3. Considering a minimum support of 3, the itemset is

a frequent one. However, since there exists a longer itemset {A,B,C,D} with the

same support, the itemset {A,B,C} is not closed. Itemset {A,B,C,D} however is

closed.

Definition 5.1.9 (Graph to Transaction DB). We define a new operation

GTD to convert a graph G to a transaction database DB. For each node g ∈ G,

we create a new set of transactions t = {g’|(g,g’) ∈ G.Edges} and affix identifier

g to t. The resultant set of transactions is the result of the operation GTD(G).

The conversion from a graph to a transaction database is illustrated in Fig-

ure 5.4. V1 V2 V3 V4 V5V1 0 1 1 1 0V2 1 0 1 1 1V3 1 1 0 1 0V4 1 1 1 0 1V5 0 1 0 1 0
Adjacency Matrix idV1V2V3V4V5

itemsetsV2,V3,V4V1,V3,V4,V5V1,V2,V4V1,V2,V3V2,V4
V1 V2V3 V4 V5

Figure 5.4: Graph to Transaction DB Operation

Property 5.1.1 (Bi-cliques and Patterns: Duality). Consider a graph G

and a transaction database GTD(G). Let us mine all closed patterns CLS from the

resultant database. The set of all bi-cliques correspond to the set {(c,map(c))|c∈

CLS}
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Proof. The above property has been proven in [31].

We take as input a network of users expressing positive and negative relation-

ships among themselves. We refer to this network as a Positive-Negative network

defined in Definition 5.1.10.

Definition 5.1.10 (Positive-Negative Network). A positive-negative (P-N)

network is a graph whose nodes represent individuals and edges represent positive

or negative relationships among them. The edges are directed and are labeled with

either: positive (P) or negative (N). The nodes are labeled with the identifiers

of respective individuals. A positive-negative network could then be denoted as

G=(N ,E,NL,EL) where N , E, NL, and EL correspond to the nodes, edges, a

mapping from nodes to labels, and a mapping from edges to labels.

We are to mine groups of two sub-communities with positive relationship

among nodes in the same sub-communities and negative relationship among nodes

in opposing sub-communities. We refer to such a group of sub-communities as di-

rect antagonistic group.

Definition 5.1.11 (Direct Antagonistic Group). A Direct Antagonistic Group

(direct a-group) is composed of two sub-communities L and R. L and R are both

SCCs with respect to the directed positive edges. L and R together form a

bi-clique considering bidirectional distrust edges.

An example of such a direct a-group is shown in Figure 5.5.

We are interested in direct a-groups obeying a minimum size requirement, i.e.,
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trustdistrust 
V1

V2

V3

V4

V5

sub-community
Figure 5.5: A Direct Antagonistic Group.

|L| ≥ min size and |R| ≥ min size. We refer to such direct a-groups as significant

direct a-groups. The example direct a-group shown in Figure 5.5 is significant if

the minimum size threshold is set at 3; it would not be significant if the minimum

size threshold is set at 4.

Property 5.1.2 (Membership). Consider a node n in graph G, if n is not part

of any SCCs of size min size, n could not be part of any significant direct a-groups.

Proof. From Definition 5.1.11, each sub-community in the direct a-group must be

an SCC of size not smaller than min size. Hence, if a node is not part of any

SCCs, it could not be part of any direct a-group.

Definition 5.1.12 (Redundant Direct Antagonistic Group). Consider a

set of direct a-groups ASET. A direct a-group a in ASET is deemed as redundant

iff there exists another direct a-group a’, where a is a sub-bi-clique of a’.

With the above concepts and definitions, our direct antagonistic group mining

problem definition is given as follows:

Definition 5.1.13 (Direct Antagonistic Group Mining Problem). Given

a positive-negative network and a minimum size threshold min size, find all sig-

nificant non-redundant direct a-groups obeying the min size threshold.
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The algorithm to mine direct antagonistic group has been proposed in [5].

Readers can refer to Appendix B for details.

5.2 Experiment Results

To evaluate the scalability and efficacy of the mining algorithm, experiments on

both synthetic datasets and real datasets are conducted. Detailed experimental

results and analysis are available in [5]. Here, we show the experiment results with

an Epinions dataset consisting of a positive-negative network [3]. The Epinions

dataset has 405,176 user nodes and about 840K links. We remove those nodes

without positive or negative links. We obtain 131,828 nodes, with 717,667 (about

85%) positive links and 123,705 (about 15%) negative links.

5.2.1 Efficacy Study on Epinions Dataset

To test the efficacy of our idea, we first pair the users in a direct a-group. For a

direct a-group (Ul, Ur), we call user pairs {(ui, uj)|ui ∈ Ul, uj ∈ Ur} opposing user

pairs and {(ui, uj)|ui, uj ∈ Ul} ∪ {(ui, uj)|ui, uj ∈ Ur} allied user pairs. We make

comparison between the behaviors of allied user pairs and opposing user pairs.

We expect the behaviors of allied user pairs to be friendly towards each other,

while those of opposing user pairs to be unfriendly towards each other.

The first study is on whether allied user pairs tend to give higher ratings to

each other’s reviews than opposing pairs. The dataset contains a total of 1.2M

reviews and about 4.5M ratings. For users ui and uj of a pair, ui may rate k
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reviews written by uj with k ratings {rij1, · · · , rijk}.

In Figure 5.6, we show the user pair distribution on rating scores. The general

user pairs refer to user pairs not involved in direct a-groups. A larger proportion

of allied user pairs have high rating scores than opposing user pairs and general

user pairs. 95% of allied user pairs have ratings of 5, while 80% of opposing user

pairs have such ratings. Smaller proportion of both allied user pairs and general

user pairs have ratings of 2, while 10% of opposing user pairs have such ratings.

This shows allied user pairs tend to give each other high ratings, while opposing

user pairs tend to give each other low ratings due to their unfriendly relationship.

We have also performed hypothesis testing at 0.01 level of significance and we find

that the rating scores among allied user pairs differ significantly from opposing

user pairs.
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Figure 5.6: Rating-scores: Opposing vs Allied User Pairs

Figure 5.7 shows the distribution of the number of ratings of allied user pairs

and opposing user pairs in the mined direct a-groups. It can be noted that the

members of allied user pairs tend to give each other more ratings than opposing

user pairs. This suggests that people maintaining good relationship tend to rate

each other more than people in hostile relationship. This matches our intuition.

We have also performed hypothesis testing at 0.01 level of significance and we find
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that the distribution of number of ratings of allied user pairs differs significantly

from opposing user pairs.
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Figure 5.7: Number-of-ratings: Opposing vs Allied User Pairs
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Conclusion and Future Work

6.1 Summary of Research

In this thesis, we conduct research on antagonistic communities in social networks.

We defined the problem of mining indirect and direct a-groups.

For indirect a-group mining, we propose an Apriori like algorithm to mine

all the closed a-groups from vote databases. Our algorithm traverses the search

space of all possible a-groups and adopts several pruning strategies to prune search

spaces with no valid a-groups. In addition, we have developed a divide and conquer

strategy to allow the algorithm running on large databases.

To test the efficiency and effectiveness of our algorithm, we develop a synthetic

data generator and experimented on several synthetic datasets. The results show

that our algorithm can run well on various data settings. We have also conducted

extensive experiments on real datasets. The results show that our algorithm is able

to mine interesting a-groups in various real datasets. We have also compared the
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items voted by at least one a-group and the ones voted by non-a-group users. The

results show that the two item sets differ significantly. It indicates that a-group

users and their voted items are special, and they are worth further exploration.

For direct a-group mining, we propose the concept of direct a-group and study

its properties. We conducted experiments to study the characteristics of direct

a-group. We compare the behaviors of nodes in allied pairs and opposing pairs.

The results show that nodes of allied pairs are more friendly to each other than

nodes of opposing pairs.

Although our proposed solutions can solve the a-group mining problem well

and show interesting results in the experiments, there are some limitations. For

indirect a-group mining, our algorithm is still very time consuming in candidates

generation. This causes efficiency bottleneck in mining large real datasets. Sec-

ondly, our mined a-groups (both direct and indirect) are all of small size. The

largest one is of around ten users. We may need to adopt a more flexible a-group

definition to accommodate large a-groups.

6.2 Future Work

In this section, some of the important future works are discussed.

1. Improvement on the candidate generation in indirect antagonistic group

mining algorithm.

As shown in chapter 3, our candidate generation employs a merge and a
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prune stage. In the merge stage, currently, we only consider merging the

frequent o-groups of the same size. This results in an incremental generation

of the candidates. Alternatively, we could consider merging frequent o-

groups of different sizes and with one common sub-community. It may

speed up our candidates generation process. However, the increase in the

merging time is a drawback. To overcome this drawback, some novel and

efficient algorithms for finding frequent o-groups eligible to be merged should

be developed.

2. Enhancement of split version of indirect antagonistic group mining algo-

rithm.

Currently, our split version algorithm (Algorithm 8) splits the database by

user. Hence, the number of sub-databases is the same as number of users,

which is typically a large number. We may consider splitting the database

based on a group of users. This decreases the number of sub-databases and

hence, decreases the running time. In addition, if there are many long trans-

actions in the database, our original splitting approach will duplicate the

transactions as many as the number of items in such transactions. Splitting

by groups of users will reduce the number of duplicates of such transactions

and hence, decreases the storage cost. Careful selection of the group of

users to split on is a must to minimize the storage and time cost. However,

this new splitting way will increase the database splitting time as checking

of which groups are contained in each transaction is needed. Nevertheless,

this database splitting time should not differ significantly from the original

splitting way, since the database needs to be scanned only once.
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3. Investigation on relationship between indirect antagonistic group and direct

antagonistic group.

For some datasets like Wikipedia vote dataset and Epinions dataset (the

one used in direct a-group mining), people nodes give votes to other people

nodes. We can view the networks from two perspectives. The first per-

spective is viewing the people nodes as both voters and votees. Hence, we

can mine indirect a-groups from them. The second perspective is viewing

the people nodes having positive and negative relationships with each other.

Hence, we can mine direct a-groups from them. Therefore, for the same

network, we get both indirect and direct a-groups. We may conduct further

studies on the relationships between these two kinds of a-groups, such as

whether they overlap, is there violations (two nodes are friends in one kind

of a-group, which they are enemies in the other kind of a-group), etc..

4. Developing Depth First based indirect antagonistic group mining algorithm.

Currently, our mining algorithm (Algorithm 2) for indirect a-group is Breadth

First (BF) based. It has the shortcomings of the other BF based frequent

itemset mining algorithms, such as time consuming candidates generation

and multiple database scans. Since our problem has similar nature as fre-

quent itemset mining, we may consider employing Depth First based mining

algorithm, such as pattern growth [22]. In this way, we can improve the effi-

ciency of the mining process and we may mine a-groups from larger datasets

and get larger size a-groups.

88



Bibliography

[1] Amazon website. http://www.amazon.com/.

[2] Downloaded Epinions Dataset - Trustlet. http://www.trustlet.org/wiki/

Downloaded Epinions dataset/ratings data.txt.bz2.

[3] Review from Epinions. http://www.epinions.com/.

[4] Stanford large network dataset collection. http://snap.stanford.edu/data/.

[5] Technical report. http://www.mysmu.edu/faculty/davidlo/papers/www2011.pdf.

[6] R. C. Agarwal, C. C. Aggarwal, and V. V. V. Prasad. Depth-first generation

of large itemsets for association rules. IBM Tech. Report, RC(21538), 1999.

[7] R. C. Agarwal, C. C. Aggarwal, and V. V. V. Prasad. A tree projection

algorithm for generation of frequent item sets. J. Parallel Distrib. Comput.,

61(3):350–371, 2001.
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Appendix A

Antagonistic Group Mining

Software

A.1 Indirect Antagonistic Group Mining Soft-

ware

A.1.1 Mining Program Configuration

To perform indirect a-group mining, two programs are needed. One is the ANTGroup-

Mining.java which is the main mining program and the other is Node.java which

is used by the first program. To run the programs on a vote dataset, we need

first to map the different types of votes in the dataset to voting scores (numerical

value). We then generate an input.txt file to be stored in the same directory of

the two programs as the input file. The input.txt file is of the following format:

|U| |I|

Negative threshold Positive threshold λ σ
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uA,vA0 uB,vB0 uC,vC0 ...

uD,vD1 uE,vE1 uF,vF1 ...

.

.

uH,vHi uI,vIi uJ,vJi ...

.

.

uO,vO(|I|−1) uP,vP (|I|−1) uQ,vQ(|I|−1) ...

The top two lines of the input file specify the parameters of the dataset and

various thresholds. Their meanings are shown in Table A.20. Negative threshold

is the threshold for mapping voting scores to negative votes. Any voting scores

less than or equal to negative threshold will be mapped to negative votes (e.g. for

voting scheme of score 1-5, we may specify voting scores less than or equal to 2 to

be negative). Similarly, any voting scores more than or equal to positive threshold

will be mapped to positive votes. For the rest, each line represents the (user,vote)

pair list of an item. The item index starts from 0 and increment one as the

line number increases. For each (user,vote) pair list, the pairs are separated by

space. The (user,vote) pair is in the format of uK,vKi where u is fixed character

representing “user”, K is the user Id (numerical value), vKi is the voting score given

to item i by user K . Each (user,vote) pair list needs to be sorted in ascending

order by user Ids.

After the input file and programs are stored in the same directory, we can

run the program using the command line “java -Xmx1g ANTGroupMining” to
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Parameter Meaning
|U| Number of users
|I| Number of items
Negative threshold Threshold for mapping voting scores to negative vote
Positive threshold Threshold for mapping voting scores to positive vote
λ Support threshold
σ Antagonistic confidence threshold

Table A.20: Parameters of Mining Program Input File

execute the program. The command option “-Xmx1g” is used to increase the

memory usable by this program to 1GB.

The output of the program is as follows:

uA,uB aconf1 count1

uCuD,uE aconf2 count2

.

.

.

n

Each line is an a-group, followed by its aconf and count. An example of an

a-group is uCuD,uE. The two opposing sub-communities are separated by “,”.

For each sub-community, it is a series of users. Letter u represent “user” and is

fixed, C, D and E represent user Ids (numerical value). The sub-community can

be of any number of users. In the last line, n is the total number of a-groups

mined.

97



A.1.2 Synthetic Data Generator Configuration

Our synthetic data generator generates vote dataset according to our require-

ments. The generating program is DataGenerator.java. The input to the program

is file “Dinput.txt”. An example of Dinput.txt is:

G=6

L=2000

I=100000

U=50000

s=0.0004

The meanings of the parameters are shown in Table A.21. s is the probability

of each user voting an item. Hence, U×s is the expected number of users voting

an item.

Parameter Meaning
G Average size of potential closed a-groups
L Number of potential closed a-groups
I Number of items
U Number of users
s Probability of each user voting an item

Table A.21: Parameters of Synthetic Data Generator Input File

There are two outputs from the data generator. One is Dantigroup.txt. The

first line of this file is the number of generated a-groups. The remaining lines are

the generated a-groups used to generate the vote dataset. The second output is

an input.txt which can be fed to the mining program. We may need to change

the various parameters according to our needs.
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A.2 Direct Antagonistic Group Mining Software

To perform direct a-group mining, we needs the software package “TRAJAN” and

lcm.exe. Before running the software, we needs to have “cygwin” installed in the

computer so as to run lcm.exe. We need first add the path of lcm.exe to system

path. We can then open the “Trajan.sln” in Visual Studio. After we run the

Form1.cs, a UI will pop up. In the “Min Size” input box, we can input the size

threshold of a-groups. We can then click the “Combined Execution” button to get

the a-groups. After execution, a pop up will show the running time and number of

a-groups mined. The results are stored in outpair.txt under the directory specified

by the Form1.cs. In outpair.txt, each line is a direct a-group. An example of the

direct a-group is {A,B}-{C,D}, where the two sub-communities are separated by

“-”, A, B, C, D represent user Ids (numerical values).
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Appendix B

Direct Antagonistic Group

Mining Algorithm

A direct a-group has two basic requirements based on the positive and negative re-

lationships. On one hand, each community must form positive network in the form

of strongly connected component. On the other hand, members of one community

must form negative relationships with all members of the other community. To

mine for direct a-groups, we perform the following steps:

1. Project input positive-negative network g, to a graph gt keeping only positive

edges in graph g.

2. Extract SCCs from gt of size more than the minimum support threshold

min size. These are candidate communities of direct a-groups. Nodes that

are not part of SCCs of size at least min size could not be part of any direct

a-groups (see Property 5.1.2). We keep the set of nodes N+ = {n|n is a node

in the identified SCCs}.
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3. Project the input positive-negative network g, to a graph gd keeping only

nodes in N+ and negative edges.

4. Identify the set of maximal bi-cliques BCQ from gd using Property 5.1.1.

5. For each bi-clique in BCQ with set of nodes nb, project the input positive-

negative network g, to a graph gnb
keeping only nodes in nb and their positive

edges. Each bi-clique in sbc(gnb
) satisfying min size is a direct a-group.

6. Eliminate redundant direct a-groups. There could still be redundant direct

a-groups at the end of step 5. This is the case as although we mine for

maximal bi-cliques at step 4, the direct a-groups are sub-bi-cliques of the

maximal one. We iterate through the set of direct a-groups generated at

step 5 and remove redundant ones based on Definition 5.1.12.

The following paragraphs describe the above steps in more details.

Pruning by Positive Relationship: Steps 1 and 2. First, we prune candi-

date nodes based on positive relationships. Negative edges are removed from the

projected graph. Based on this positive relationship graph, our goal is to throw

away nodes which is not part of any large enough positive relationship network.

Due to the nature of the positive relationship network, the number of links the

nodes in the network follow power law, i.e., most nodes are not connected to any

other nodes. Hence, a large number of nodes could be removed from consideration.

To realize this goal, we employ Tarjan’s algorithm [39], that could compute

maximal SCCs by a single depth-first search pass on the positive relationship
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network. Hence, it is very scalable as the runtime cost is linear to the size of the

graph. We extract nodes that are part of a maximal SCCs with size ≥ min size.

Pruning by Negative Relationship: Steps 3 and 4. At these steps, we

focus on the strong (i.e., bi-directional) negative relationships. We project the

input positive-negative network, by removing positive edges and non bi-directional

negative edges. Two sub-communities in a direct a-group must form a bi-clique

with respect to the bi-directional negative edges.

To realize the goal, we adapt a recent algorithm in [31] that extracts maximal

bi-cliques from a graph following Property 5.1.1. The algorithm would return all

maximal bi-cliques from the input bi-directional negative network.

Formation of Direct A-groups : Step 5. Each maximal bi-cliques mined at

step 4 is not necessarily a direct a-group as each of the two sets in the bi-clique is

not necessarily a positively connected community. A bi-clique could map to 0, 1,

2, or more direct a-groups.

Following Definition 5.1.4, every sub-biclique of the bi-clique is a bi-clique and

hence satisfies the negative relationship requirement. Hence, we could extract

sub-bi-cliques SBQ from each bi-clique in which each of the two sets of nodes

form an SCS of size larger than min size.

To realize this, we process each bi-clique BCQ identified in step 4. For each

of the two sets of nodes in BCQ, i.e., BCQ.L and BCQ.R, we find SCSs on

the projected positive relationship network containing nodes in BCQ.L/BCQ.R.
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These operations would result in two sets of SCSs. Pairing one SCS from one set

with another from another set, would form a direct a-group which could then be

outputted.

Removal of Redundant Direct A-groups : Step 6. Usually, there are no

or few redundant direct a-groups left at the end of step 5. However, there exist

corner cases where redundant direct a-groups are present. This is the case as

mined direct a-groups are sub-bi-cliques of the maximal bi-cliques mined at steps

3 and 4. We remove redundant direct a-groups by analyzing the list of direct

a-groups mined at step 5 and detect for redundancies based on Definition 5.1.12.

The algorithm’s pseudocode is shown in Algorithm 10.

Input: min size: Minimum size threshold; G: positive-negative network
Output: direct a-groups with each group’s size ≥ min size
Let Gt = Project positive relationship network from G;1

Let SCCList = Get maximal SCCs from the graph Gt by running [39];2

Let N+ = {n | n∈s1 ∧ s1∈SCCList ∧ |s1| ≥ min size};3

Let Gd = Project bi-directional negative relationship network in G for4

nodes in N+;
Let Td = GTD(Gd);5

Let CP = Mine for closed itemsets from Td with minimum support =6

min size
foreach p ∈ CP do7

if |p| ≥ min size then8

Let BC = Form bi-clique (p,map(p));9

Let LT = Construct positive relationship SCCs from nodes in BC.L;10

Let RT = Construct positive relationship SCCs from nodes in BC.R;11

Remove SCCs from LT and RT with size < min size;12

foreach pair l ∈ LT and r ∈ RT do13

Create a new direct a-group dag from l and r;14

Add dag to Result;15

end16

end17

end18

Remove redundant direct a-groups from Result;19

Output Result;20

Algorithm 10: Direct A-group Mining Algorithm – Dagmine(min size,G)
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