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ABSTRACT: Bag-of-features (BoF) is one of the most
well-known methods used to represent digital image
features because of its simplicity and efficiency. A variety
of improved algorithms have been employed to enhance
the performance of BoF in characterization. However,
challenges in the application of BoF in the field still exist.
This study focused on BoF by decomposing local features
and presented a novel framework for BoF on the basis of
low-rank and sparse matrix decomposition to obtain a
more robust and discriminative digital image classification.
First, the local feature matrix of a digital image is
decomposed into a low-rank matrix and a sparse matrix.
Then, the BoF model was constructed in each part. Finally,
the multiple kernel learning method was applied to
combine the two models and the digital images were
classified by using the support vector machine. Compared
with existing methods in five public data sets, results
show that the method proposed in this study is superior
to the baseline algorithm and other coding algorithms by
improving local features, with an improved classification
performance of 17.68% in maximum and 0.01% in
minimum. Compared with similar methods (such as
leveraging the low-rank and sparse matrix decomposition
and group sparse coding for image classification), this
method is superior, with an improved classification
performance of 2.76% in maximum and 0.08% in minimum,
and obtains the highest average correct rate of

classification. Therefore, the proposed method in this
study is effective in improving the BoF in the feature
extraction stage and has a better image classification
performance.
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1. Introduction

Automatic classification based on the contents of digital
images has become an important aspect in the field of
digital image processing to organize and manage mas-
sive amounts of digital image information rationally and
efficiently. At the same time, digital image classification
has recently become one of the hot topics in the research
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on computer vision. The basic process of digital image
classification involves establishing descriptions of digital
image contents, learning digital image types by machine
learning, and classifying unknown digital images with the
acquired models. Among all of the methods representing
digital image contents, the bag-of-features (BoF) model
has recently become a well-known digital image
representation method by expressing vector sets indirectly
with a visual dictionary, expressing a digital image as
histograms of visual word frequencies, and narrowing down
the “semantic gap” between bottom visual features and
top semantic features.

The core idea of the BoF model is to encode the local
descriptive vectors of a digital image with well-trained off-
line visual dictionaries and use the statistical values of
the coded vectors to represent the features of the digital
image. The current BoF models usually construct the
middle semantic features of a digital image by directly
using the local features. However, the low-rank and sparse
parts of the local features represent the pertinent and
unique properties of a digital image, respectively. Better
identification of classification performance with more
robustness can be achieved by decomposing the low-
rank and sparse features. For this purpose, this study
proposes a novel expression form of the BoF model on
the basis of low-rank and sparse decomposition.

2. State of The Art

Currently, research on BoF mainly focuses on coding and
pooling. Originally, this model is a hard coding method
based on voting strategy, which is simple but highly
sensitive to reconstruction errors. A more robust voting
strategy is soft coding[1], which assigns local features to
visual words. The sparse coding method proposed by Yang
and Yu[2] can equally reduce reconstruction errors;
however, the method is time-consuming and fails to ensure
coding consistency. As a result, in Reference [3], the
Laplacian matrix was added to the objective function to
improve consistency in sparse coding. In References
[4,5,6], contiguous visual words were used to represent
local features to maintain coding sparsity and improve
coding speed. Except for the research presented in
Reference [3], the aforementioned coding methods
separately code local features, ignoring the spatial
contextual information among them. Therefore, Shabou
et al.[7] proposed a locality-constrained and spatially
regularized coding method. Other methods include the
low-rank sparse coding by Zhang and Ghanem[8] and the
group-salient coding by Wu et al.[9]. Moreover, BoF
originally represents visual words as histograms at the
pooling stage, which significantly restricts the
representation features of the model. As a result, Lazebnik
et al.[10] proposed spatial pyramid matching, which hier-
archically partitions a digital image into several subsec-
tions, clusters coding vectors in each subsection, and
concatenates the subsections into a vector to represent
the features in each hierarchy of the digital image. This
method has become a widely used representation

Figure 1. General framework for digital image classification
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framework for digital image features because of its superior
results in actual application.

With the rank of the matrix as a measurement of sparsity,
low-rank matrix recovery has become a new high-
dimensional data analysis tool and has been applied in
video monitoring, face recognition, digital image shadow,
and illumination normalization[11]. Zhang and Liu[12]
decomposed the global features of an image into low-
rank and sparse parts, combined the base vectors of the
dictionary constructed from the two parts, and encoded
and classified the original global features of the image.
Zhang and Ma[13] extended the model by extracting the
matrices of local features from an image and enhanced
its performance in the first procedure of the BoF model.
Combining the visual dictionaries constructed from the
channels of low-rank and sparse features, this method
establishes BoF models of the original local features on
the basis of the dictionaries. Compared with the BoF
models directly constructed from local features, this
method has a more robust and differentiating classification
performance because the two parts represent the pertinent
and unique properties of the image. In contrast to the
method presented in Reference [13], this study not only
constructs visual dictionaries from the low-rank and sparse
channels but also encodes the low-rank and sparse
features by using the corresponding dictionaries,
establishes low-rank bag-of-features (LR-BoF) and sparse
bag-of-features (S-BoF) from the two channels, fuses the
two BoF models and classifies the image on the basis of
the support vector machine (SVM), which is a multiple
kernel learning method.

The remainder of this paper is organized as follows: In
Section 3, we establish the overall framework for the digital
image classification method and describe the proposed
LR-BoF model in detail. In Section 4, we conduct
experimental simulation by applying the proposed model
in the five public data sets and compare our results with
those of other methods. Section 5 concludes this paper.
We summarize our main results and provide some
prospects for future work.

3. Methodology

The digital image classification method is shown in
Figure.1. The specifics are as follows: In the digital image
data set D = {d1, d2, …, dN}, each image is described as a
matrix composed of many local features after local feature
extraction. For convenience sake, the local feature matrix
of each picture is marked as X∈ RD × T, where D denotes
the dimensions of local features and T denotes the number
of local features in the image. For the essential low-rank
data recovered from the observed data from greater sparse
noise pollution, the optimized model can be described by
the following formula:

                                                             (1)

In Formula (1), Z ∈ RD × T corresponds to the low-rank
matrix part, whereas E ∈ RD × T corresponds to the part
with sparse features. For the high non-convex optimiza-
tion in the previously presented problematic model, by
convex relaxation[14], that is, substituting  Norm l1 for Norm
l0, of the nuclear norm for rank function, a convex optimi-
zation model can be obtained as follows:

In Formula (2),                  stands for Norm l1, which expresses
the sum of the absolute values for all of the elements in
the matrix, and   .   * stands for the nuclear norm, which
expresses the sum of singular values of the matrix.
Optimization can be achieved by using the augmented
Lagrange multiplier algorithm[15].

The sets of low-rank and sparse features of all of the training
images are expressed as Ztrain = {Z1, Z2, …, ZM} ∈ RD × M

and Etrain = {E1, E2, …, EM} ∈ RD × M, respectively. One
subset is randomly selected from Ztrain and Etrain. The low-
rank visual dictionary VZ = [vZ1, vZ2, …, vZK]T ∈ RD × K and
the sparse visual dictionary VE = [VE1, VE2, …, VEK]T∈ RD

×K are obtained after K-means clustering of the subset,
where D stands for the dimensions of low-rank and sparse
features, which are the same as the dimensions of the
local features, whereas K stands for the number of visual
words. Closely linking feature extraction[16,17] and feature
pooling[18], coding is the core procedure in the BoF model.
Among the current classical coding algorithms, locality-
constrained linear coding (LLC)[4] has been widely used
because of its speed and effectiveness. For convenience
sake, assuming that the set of the low-rank features of
one image in the data set is expressed as Z = [Z1, Z2, …,
ZT]∈ RD × T and the set of sparse features thereof is ex-
pressed as E = [E1, E2, …, ET] ∈ RD × T, where Zt and Et
stand for the t th low-rank and sparse features,
respectively, the coding of Zt by LLC is expressed as
follows:

respectively, the coding of Zt by LLC is expressed as
follows:
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Θ  stands for the distance vector, dZt,dEt stand for the
products of the corresponding elements of uZt,uEt; and
dZt,dEt stand for the distance vectors between Zt,Et and
the vectors of visual words, expressed as follows:

In Formula (5), σ stands for the weight of the fall speed of
the locality-constrained factors. Generally, the fast
approximation algorithm is used to optimize Formula (5)
and accelerates encoding to represent each local feature
by selecting k vectors of contiguous visual words.

At the pooling stage, the spatial pyramid model is used
to partition an image into three levels, namely, L0, L1, and
L2, with the number of subsections at each level of the
image being 1 × 1, 4 × 4, and 16 × 16, and to pool the
coding vectors in subsections at each level maximally.
Assuming that Ti coding features exist in the i subsection
at level l (l = L0, L1, L2), the pooled low-rank and pooled
sparse features at the section can be expressed as
follows:

In Formula (6), BZli and BSli stand for the K-dimension
feature vectors. The low-rank feature BZl and sparse feature
BEl at level l of the image can be obtained by linking all of
the features at this level. LR-BoF and S-BoF are obtained
by linking the features at the three levels.

Assuming that the kernel function of feature BZ of LR-BoF
and that of feature BE of S-BoF are KZ and KE, respectively,
and the corresponding weights are CZ and CE, respectively,
the similarities between any two images can be expressed
as follows:

           (7)

If the SVM[19,20] is selected for classification differentiation
of the image, then, in the second classification, the
optimized objective function can be written as follows:

min 1   (  1

  .

the images, C is the penalty coefficient, ξi is the relaxation
variable, w is the parameter of the classifier, and N is the
number of image samples. By solving the objective function
in Formula (8) with the block coordination descent
algorithm, we can arrive at the result that the corresponding
coefficient of s support vector α* = (α1

*, α2
*, …, αs

*) is not
0. We can also derive the weight coefficients of CZ and
CE. The classification decision function of the testing image
is expressed as follows:

In Formula (9), the classification threshold of b* can be
obtained by using any support vector.

4. Result Analysis And Discussion

Experimental simulations were conducted by using five
public data sets, namely, MSRcv2[21], Caltech101[22],
Scene15[10], Indoor67[23], and UIUC-Sport[24], to verify the
validity of the method used in this study. From all of the
image data sets, image blocks of different dimensions
are extracted by crossing, with step length fixed at 8 pixels
and dimensions being 16 × 16, 32 × 32, and 64 × 64, and
are described by scale-invariant feature transform (SIFT)
operators. At low-rank sparse decomposition, the
parameter is                           , where T and D stand for
the number and dimensions of the SIFT feature in the
local feature matrix, respectively. K-means clustering is
conducted on a randomly selected subset in the set of
the low-rank and sparse features of all of the training
images, with the number of K being set at 1,500 and the
number of contiguous words in LLC set at 5. In the process
of multiple kernel learning, the radical basis function is
the linear kernel function, the penalty coefficient is 10,
the “one versus one” decomposition policy is used in multi-
class classification, and the maximum iterations of the
outer and inner loops are set at 200.

4.1 Results of MSRcv2
The data set of MSRcv2 contains 15 kinds of objects,
each having 30 images. Nine objects are selected for the
experiment, namely, cars, planes, bicycles, human faces,
books, cattle, and sheep, as shown in Figure.2. Using
the Universal Testing Protocol[21], 15 images of each object
are randomly selected as the training set; the remaining
images are utilized as the testing set. The selections are
repeated 10 times, and the average value of 10 times is
selected as the experimental result.

The comparison of the results of the method proposed in
this study and those of other new image classification
methods in MSRcv2 are shown in Table.1. The proposed
method outperforms all of the other contrast methods,
with the highest average classification accuracy. The
method used in Reference [26] has the best classifica-
tion performance in MSRcv2. The results shown in Table.1
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                     Figure 2. Sample images of the MSRCv2 data set

Figure 3. Sample images of the Caltech101 data set

                                  Classification algorithm                       Accuracy ± standard deviation (%)

                                    Zhang and Chen [21]                               80.4 ± 2.5

                                    Sawaree [25]                               80.00

                                    Su [26]                               90.7 ± 1.8

                                    This paper                               90.71 ± 2.31

Table 1. Performance comparison by classification in the MSRcv2 data set

The proposed method outperforms all of the other contrast
methods, with the highest average classification accuracy.
The method used in Reference [26] has the best
classification performance in MSRcv2. The results shown
in Table.1 reveal that the method proposed in this study

achieves comparable classification performance, which
shows the effectiveness of the method.

4.2 Results of Caltech101
The data set of Caltech101 contains 101 kinds of objects
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and 1 background, with the number of images for each
object ranging from 40 to 800, as shown in Figure.3. Using
the Universal Testing Protocol[22], 30 images of each object
are randomly selected as the training set; the remaining
images are utilized as the testing set. The selections are
repeated 10 times, and the average value of 10 times is
selected as the experimental result.

The comparison of the results of the method proposed in
this study and those of other new image classification
methods in Caltech101 are shown in Table.2. The results
shown in Table.2 reveal that the proposed method
outperforms all of the other contrast methods, with the
highest average classification accuracy of 8.31%, which
is higher than the baseline algorithm used in Reference
[22]. In References [1,2,4–9], classification performance

is enhanced by improving the coding algorithms of the
local features, among which References [6] and [8] have
been published in top international academic journals in
recent years. Table.2 shows that the method proposed in
this study outperforms the methods presented in the eight
reference papers by 11.77%, 2.71%, 2.47%, 1.70%,
1.44%, 2.68%, 0.89%, and 2.51%, respectively. This
finding indicates the effectiveness of the proposed method
in improving the BoF model at the feature extraction stage.
If the method proposed in this study is combined with
other methods, the classification performance will further
improve. The methods presented in References [12] and
[13] are the most similar to the method proposed in this
study; however, the proposed method outperforms them
by 0.23% and 0.08%, respectively, which further shows
the effectiveness of the method.

             Classification algorithm       Accuracy ± standard          Classification algorithm Accuracy ± standard
                                                          deviation (%)                                           deviation (%)

                  Van Gemert [1]                  64.14 ± 1.18   Yang and Yu [2]         73.20 ± 0.54

                  Wang and Yang [4]            73.44                             Liu [5]         74.21 ± 0.81

                  Wang and Feng [6             74.47 ± 0.46   Shabou [7]         73.23 ± 0.81

                  Zhang and Ghanem [8]       75.02 ± 0.74   Wu [9]         73.4 ± 1.2

                  Zhang and Liu [12]             75.68 ± 0.89   Zhang and Ma [13]         75.83 ± 0.71

                 Griffin [22] 67.6                Jia [27]   75.3 ± 0.7

                 This paper                        75.91 ± 1.22

Table 2. Performance comparison by classification in the Caltech101 data set

4.3 Results of Scene 15

Figure 4. Sample images of the Scene15 data set
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The data set of Scene15 contains 15 kinds of natural and
man-made scenes, with the number of images for each
scene ranging from 200 to 400, as shown in Figure.4.
Using the Universal Testing Protocol[10], 100 images of
each kind are randomly selected as the training set; the
remaining images are utilized as the testing set. The
selections are repeated 10 times, and the average value
of 10 times is selected as the experimental result.

The comparison of the results of the method proposed in
this study and those of other new image classification

methods in Scene15 are shown in Table.3. Table.3 shows
that the proposed method outperforms all of the other
contrast methods, with the highest average classification
accuracy of 1.96%, which is higher than the baseline
algorithm used in Reference [10]. In References [1,4,5,7],
classification performance is enhanced by improving the
coding algorithms of the local features. Table.3 shows
that the method proposed in this study outperforms the
methods in the four reference papers by 6.69%, 1.86%,
0.66%, and 0.69%, respectively. This finding indicates
the effectiveness of the method proposed in this study.

            Classification algorithm        Accuracy ± standard      Classification algorithm      Accuracy ± standard
                                                          deviation (%)                                          deviation (%)

                Van Gemert [1] 76.67 ± 0.39 Wang and Yang [4]            81.50 ± 0.87

                Liu [5]                               82.7 ± 0.39 Shabou [7]            82.67 ± 0.51

                Lazebik [10] 81.40 ± 0.50 Yang and Newsam [28]     82.51 ± 0.43

                This paper 83.36 ± 0.49

Table 3. Performance comparison by classification in the Scene15 data set

4.4 Results of Indoo 67

Figure 5. Sample images of the Indoor67 data set

             Classification algorithm         Accuracy ± standard      Classification algorithm    Accuracy ± standard
                                                           deviation (%)                                          deviation (%)

                      Quattoni [23]                       26.5  Li and Su [29]               37.6

                      Bo [30]                                41.8  This paper               44.18

Table 4. Performance comparison by classification in the Indoor67 data set

The data set of Indoor67 contains 67 kinds of indoor scenes, with the number of images for each scene
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exceeding 100, as shown in Figure.5. Using the Universal
Testing Protocol[23], 80 images of each kind are randomly
selected as the training set; the remaining 20 images are
utilized as the testing set.

The comparison of the results of the method proposed in
this study and those of other new image classification
methods in Indoor67 are shown in Table.4. Table.4 shows

that the proposed method outperforms all of the other
contrast methods, with the highest average classification
accuracy of 17.68%, which is higher than the baseline
algorithm used in Reference [23]. References [29] and
[30] were published in top international academic journals
in 2010 and 2011, respectively; the method proposed in
this study outperforms them by 6.58% and 2.38%,
respectively.

4.5 Results of UIUC-Sport

Figure 6. Sample images of the UIUC-Sport data set

        Classification algorithm Accuracy ± standard     Classification algorithm    Accuracy ± standard
                                                       deviation (%)                                                       deviation (%)

                 Gao [3] 85.31 ± 0.51                   Shabou [7]                      87.23 ± 1.14

                 Bo [30] 85.7 ± 1.3                   Li and Li [24]          73.4

                  Zhang and Liu [12] 86.69 ± 1.66                    Zhang and Ma [13]           86.18 ± 1.21

                 This paper 88.94 ± 0.96

Table 5. Performance comparison by classification in the UIUC-Sport data set

The data set of UIUC-Sport contains 8 kinds of sports,
with the number of images for each kind of sport ranging
from 137 to 2,500, as shown in Figure.6. Using the
Universal Testing Protocol[24], 70 images of each kind are
randomly selected as the training set and 60 images are
utilized as the testing set. The selections are repeated
10 times, and the average value of 10 times is selected
as the experimental result.

The comparison of the results of the method proposed in
this study and those of other new image classification
methods in UIUC-Sport are shown in Table.5. Table.5
shows that the proposed method outperforms all of the
other contrast methods, with the highest average

classification accuracy. In References [3,7], classifi-
cation performance is enhanced by improving the cod-
ing algorithms of the local features, and Reference [3]
has been recently published in a top international aca-
demic journal. Table.5 shows that the method proposed
in this study outperforms the methods in the two refer-
ence papers by 3.63% and 1.71%, respectively. This
finding indicates the effectiveness of the proposed
method in improving the BoF model at the feature ex-
traction stage. The methods in References [12,13] are
most similar to that used in this study; however, the
proposed method outperforms them by 2.25% and
2.76%, respectively, which further shows the effective-
ness of the method.
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5. Conclusion

BoF has been the most widely used method in image
classification in recent years. In this study, a framework
for image classification is established based on the BOF
model. The framework clarifies the operation steps, op-
eration object, and operation method in each step to
achieve image classification. This study decomposes the
local features of images to improve the representational
features of the BoF model further. The following conclu-
sions are obtained:

(1) In the proposed method, the local features of the images
are decomposed as the low-rank and sparse parts, thus
constructing and fusing the LR-BoF and S-BoF models
through the SVM based on multiple kernel learning to
achieve image classification.

(2) Parallel tests of five different public data sets, namely,
MSRcv2, Caltech101, Scene15, Indoor67, and UIUC-Sport
show that the proposed method achieves the highest
average classification accuracy and is more effective for
the improvement of the BoF model in local feature
extraction, exhibiting a more robust and discriminative
performance in image classification.

This study aims to improve image classification
performance by constructing a new BoF model on the
basis of feature decomposition. However, this method may
lead to linear increase in feature dimensions, thus limiting
its use in the classification of images of various types.
Therefore, obtaining a more accurate and rapid image
feature representation should be the direction of our future
efforts.
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