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[1] The hidden Markov model (HMM) and related algorithms provide a powerful
framework for statistical inference on partially observed stochastic processes. HMMs
have been successfully implemented in many disciplines, though not as widely applied
as they should be in earthquake modeling. In this article, a simple HMM earthquake
occurrence model is proposed. Its performance in declustering is compared with the
epidemic‐type aftershock sequence model, using a data set of the central and western
regions of Japan. The earthquake clusters and the single earthquakes separated using our
model show some interesting geophysical differences. In particular, the log‐linear
Gutenberg‐Richter frequency‐magnitude law (G‐R law) for the earthquake clusters is
significantly different from that for the single earthquakes.

Citation: Wu, Z. (2010), A hidden Markov model for earthquake declustering, J. Geophys. Res., 115, B03306,
doi:10.1029/2008JB005997.

1. Introduction

[2] Earthquakes often occur in clusters. Conventionally,
the largest earthquake in a cluster is called the main shock,
those before it are called foreshocks, and those after it are
called aftershocks (hence they can only be identified after
the earthquake cluster has died out [Hough and Jones,
1997]). In this view aftershocks do not have aftershocks
of their own. An understanding of earthquake clusters pro-
vides the opportunity to characterize stress relaxation after a
large earthquake as well as possibly to provide information
important for hazards analysis. Given an earthquake data
set, it is often the first step to classify the earthquakes as
members of different clusters or as single earthquakes.
Zhuang et al. [2002, 2004, 2005] address the importance of
earthquake declustering and demonstrated its usage.
[3] Traditional declustering methods in seismology in-

clude window‐based methods [Utsu, 1969; Gardner and
Knopoff, 1974; Keilis‐Borok and Kossobokov, 1986] and
link‐based methods [Reasenberg, 1985; Frohlich and
Davis, 1990; Davis and Frohlich, 1991]. A common fea-
ture of these methods is that the choice of parameter values
is subjective. Often no guidelines are available for how to
optimally choose the model parameters.
[4] This problem is solved by Zhuang et al. [2002].

Zhuang et al. [2002, p. 369] suggested that “the declustering
method should be based on a stochastic model to objectively
quantify the observations, so that any given event has a
probability to be either a background event or an offspring
(cluster) event generated by others.” Hence, the choice of
parameters is made by maximum likelihood estimation

(MLE), whose usage has been well justified in the statistical
literature.
[5] Zhuang et al.’s [2002] method is based on a space‐

time version of the epidemic‐type aftershock sequence
(ETAS) model proposed by Ogata [1998]. The ETAS
model is a branching process with immigrants, with each
existent earthquake (“ancestor”) producing offspring inde-
pendently. In ETAS, Ogata [1998] carefully selects the
functional form of the intensity of the process to accom-
modate the Gutenberg‐Richter frequency‐magnitude law
and the empirical Omori law for aftershock sequences.
[6] Zhuang et al. [2002] classify earthquakes into back-

ground events and offspring events. The background events
are the immigrants of the branching process, or earthquakes
without an ancestor. They are interpreted as members of the
global seismic activity in the ETAS model. Offspring are
produced by each existent earthquake independently. In the
ETAS model, the offspring are named aftershocks. This new
definition of aftershock is based only on the occurrence time
of each earthquake, neglecting its magnitude. Under such a
definition, one can identify the aftershocks in real time and
aftershocks can have their own aftershocks. Branching
models such as ETAS are currently well accepted in the
seismological community.
[7] We find that declustering based on ETAS (as in the

work by Zhuang et al. [2002, 2004, 2005]) is not satisfactory
for three reasons. First, the decision made by the method
does not adapt itself to the new observations. Suppose an
earthquake sequence X1, X2, …, Xn occurred at times t1,
t2, …, tn. In the determination of the probability that the
earthquake Xi is a background event, the computation is
solely based on the previous earthquakes X1, X2,…, Xi−1 and
t1, t2,…, ti−1, ignoring the later observations. Therefore, the
information in the data set is not fully utilized.
[8] Second, for a given earthquake catalog and a fixed set

of declustering parameters, the method gives a different
partition each time it is run. The reason for this is that
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random numbers are generated in the procedure (for example,
algorithm 2 and algorithm 3 of Zhuang et al. [2002]) and the
final partition depends on the realization of these random
numbers. This is why it is called a “stochastic declustering.”
In practice, though, a unique declustering is preferred.
[9] Third, as mentioned, the ETAS model operates on the

assumption that each individual earthquake produces off-
spring independently. As a consequence, it could lead to a
supercritical branching process [Helmstetter and Sornette,
2002], which happens when the expected number of off-
spring for each earthquake is strictly greater than one. In the
supercritical regimes, the number of earthquakes grows
exponentially. This characteristic is certainly not observed
for real earthquake sequences, which always end.
[10] As the mechanism of earthquake sequence triggering

is not yet fully understood, it is more preferable to model
earthquake sequences with the simple intuition behind the
window‐based methods (that is, the earthquake cluster is
formed by earthquakes which are near one another in time
and space) than to impose questionable assumptions as are
employed by the ETAS model (a discussion of some of
these assumptions can be found in section 5).
[11] This motivates the filtering model (an introduction to

filtering model theory is given by Xiong [2008]). Algo-
rithms associated with this model are rigorously developed
in terms of continuous time‐marked point processes of Wu
[2009] from a probabilist’s perspective. In this article, we
present the filtering model as a discrete time hidden Markov
chain model so that it is more approachable to geophysical
scientists. Some generality is lost, but we believe that it
illustrates the model.
[12] The paper is organized as follows: Section 2 describes

the hidden Markov model (HMM) model; section 3 illus-
trates its application and compares numerical results from the
model with the results of Zhuang et al. [2002]; section 4
discusses some of the geophysical findings produced by
the HMM; section 5 summarizes the conclusions and out-
lines future work; Appendix A contains the detailed dy-
namics of the hidden Markov chain constructed in section 2.

2. Description of the Model

[13] The HMM and related algorithms [Baum et al., 1970;
Viterbi, 1967] provide a powerful framework for statistical
inference on partially observed stochastic processes. They
have been widely applied in many disciplines including
signal processing, biology, genetics, etc. However, only
recently have there been a few applications in seismology
[Granat and Donnellan, 2002; Ebel et al., 2007].
[14] A HMM consists of a sequence of observations O1,

O2, …, On and a sequence of hidden states h1, h2, …, hn.
The distribution of observations Oi only depends on the
hidden state hi, while the hidden state sequence h1, h2, …
forms a Markov chain. Two clever algorithms make statis-
tical inference on HMM possible. The forward‐backward
algorithm [Baum et al., 1970] computes the conditional
distribution P(hi∣O1,…On) and the likelihood function P(O1,
…On) of the model (hence searching for the MLE is just an
optimization problem); the Viterbi algorithm [Viterbi, 1967]
computes the most likely hidden state sequence. A brief
introduction of these algorithms is given by Granat and
Donnellan [2002].

[15] We propose to model our observations as a super-
position of two independent processes: single earthquakes and
earthquake clusters. The single earthquake occurrences follow
a time‐homogeneous (not necessarily space‐homogeneous)
Poisson process, while clusters are randomly initiated and
eventually die out. The first earthquake in a cluster is the
“mother earthquake.” When the cluster is active, “offspring”
occur in the neighborhood of the mother earthquake where
the neighboring area is defined by a bivariate Gaussian
distribution. Each occurrence of an offspring earthquake has
a probability p of deactivating the cluster (in other words,
each birth has a probability p of sterilizing the mother).
Further, there can be no more than one active cluster at a
time, and hence a new cluster starts only after the old mother
earthquake is sterilized. Initially, our model does not include
the magnitudes of the events.
[16] Rather than make assumptions about how earth-

quakes reproduce, the model employs only the intuition that
the earthquakes within a cluster are close in space and time
to each other, and thus offspring within the cluster occur
near the mother earthquake. Note that although it is called
the mother earthquake, the first earthquake in a cluster is not
necessarily the sole trigger of the offspring. The cause of the
offspring occurrences is abstracted as “the cluster is active”
in the HMM, or the offspring are triggered by the combined
loading and action of all previous earthquakes in the cluster.
So the mother earthquake in our model is but a formal
mother, or formally the only earthquake that reproduces.
Offspring, on the other hand, can be formally considered
infertile. Thus, if offspring are seen as “aftershocks” here,
then they do not have their own aftershocks. This coincides
with the implication of the conventional definition of
aftershocks. However, as with the ETAS model, magnitudes
do not come into play in the “family structure” of the
earthquake cluster in the HMM. The mother earthquake
does not have to be the main shock unless, of course, it turns
out to be the largest one in the cluster. In other words, it
could be a foreshock in the conventional sense if it has an
offspring with a greater magnitude.
[17] Suppose the data set contains n earthquakes. Earth-

quake i (1 ≤ i ≤ n) has the observation Oi = (xi, yi, ti), which
are the longitude and latitude of the epicenter and the origin
time, respectively. The hidden state is hi = (xi, yi, ti, Ji, Ci,
Ai), where Ji is the index of the most recent mother quake up
to i, i.e., Ji = max{k ≤ i: earthquake k is a motherquake}. Ci

and Ai are two indicator functions: Ci = 1 if earthquake i is a
cluster earthquake and Ci = 0 otherwise; Ai = 1 if the mother
earthquake Ji is fertile at time ti (the cluster is still active);
Ai = 0 otherwise. Oi is a subset of hi. The detailed spec-
ification of the transition probabilities p(hi+1∣hi) can be
found in Appendix A for the data set used in section 3.

3. Application to an Earthquake Data Set

[18] The same data set used by Zhuang et al. [2002] is used
in this study: the earthquakes occurred in the period 1926–
1995, in the rectangular area 33°–39°N and 131°–140°E,
withmagnitudes greater than 4.0 and depths less than 100 km.
[19] Applying the forward‐backward algorithm and the

Nelder‐Mead simplex method (an optimization procedure
[see Lagarias et al., 1998]), MLEs are found: �̂ = 0.1070,
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�̂ = 1.3274, �̂ = 0.0126, d̂ = 0.0070, p̂ = 0.2035. We refer
to Appendix A for the definitions of the parameters.
[20] The MLEs are used in the forward‐backward algo-

rithm once more, yielding P(Ci = 1∣O1, …, On) for all
earthquakes i, 1 ≤ i ≤ n. This output provides the conditional
probability of an earthquake i being a cluster earthquake.
These conditional probabilities are plotted in histogram form
and compared with the results of Zhuang et al. [2002].
Figure 1a is the histogram of the aftershock(offspring)
probabilities of Zhuang et al. [2002] and Figure 1b shows
our result).

[21] As mentioned, Zhuang et al. [2002] classified the
earthquakes into background events and offspring, while the
HMM separates the earthquakes into single earthquakes and
earthquake clusters. A correspondence can be established
between these two classifications, as the single earthquakes
from the HMMcan be considered the same as the background
events without offspring in ETAS, and the mother earth-
quakes in the HMM are the same as the background events
with offspring in ETAS. However, there is no way to rigor-
ously compare the performance of the two declustering
schemes on the same footing because a unique declustering is
not available in ETAS model. Nevertheless, both histograms

Figure 1. Histograms of (a) aftershock probabilities under ETAS model; (b) conditional probabilities to
be in a cluster under the HMM model.
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in Figure 1 have counts concentrated near probability 0 or 1.
This bimodal pattern indicates that both schemes can clas-
sify most of the events with high statistical confidence. In
Figure 1a, 18.3% of the events have probability of being an
aftershock ranging from 0.1 to 0.9, and 4.9% of earthquakes
have probability of being in clusters ranging from 0.1 to 0.9
in Figure 1b. Very few earthquakes are uncertain as to their
single or cluster status. The main reason why the HMM

model gives a more decisive answer than ETAS is discussed
in section 1. The HMM model makes full use of the data set:
the decision about earthquake k is based on all the earth-
quakes, while the ETAS is not adaptive: the decision about
earthquake k only depends on earthquake 1, 2, …, k−1.
[22] The conditional probabilities P(Ai = 1∣O1, …, On)

(1 ≤ i ≤ n) are computed to illustrate the status of clus-
tering at different times. Figure 2a gives us the conditional

Figure 2. (a) The conditional probability that whether a cluster was alive versus time (in days). (b) His-
togram of the conditional probability.
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probability that an earthquake cluster was active in this
region over time. Here we again can see from Figure 2 that
a mere 4.4% of the conditional probabilities range from 0.1
to 0.9.

4. The Most Likely Hidden State Sequence
and Data Analysis

[23] The most likely cluster sequence for the HMM can be
selected by the Viterbi algorithm. It is the logical choice if a

unique partition is preferred. The resulting partition is shown
in Figure 3: 237 clusters that contain 1444 cluster earth-
quakes are in Figure 3a; and the 2327 single earthquakes are
in Figure 3b. Data analysis in this section is based on this
declustering. The results discussed in sections 4.1–4.3 imply
that our model is geophysically sensible.

4.1. Waiting Time Between Earthquakes

[24] Poisson processes have been widely used in modeling
earthquakes. The simplest case would be assuming a Pois-

Figure 3. Plots of (a) 237 earthquake clusters and (b) 2327 single earthquakes.
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son process with a constant intensity. The waiting time
between two events in a Poisson process is exponentially
distributed. We now compare our data to such a distribution.
[25] A simple and intuitive tool, a QQ plot [Wilk and

Gnanadesikan, 1968], is applied to check this distribution-
al assumption. The quantiles of the observed waiting times

are plotted against the expected quantiles of the exponential
distribution (Figure 4). A strong linear pattern implies a
good fit.
[26] Before the declustering, a straight line does not fit the

QQ plot well, especially at the lower end. This discrepancy
is caused by the existence of earthquake clusters. After the

Figure 4. (a) QQ plot (exponential distribution) of waiting time before declustering. (b)QQ plot (expo-
nential distribution) of waiting time for declustered data set.
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earthquake clusters are removed, it can be seen that the
constant intensity Poisson process models the single earth-
quakes better.

4.2. Magnitude

[27] Note that the HMM does not incorporate any infor-
mation of the earthquake magnitude, only the locations of the
epicenters. If the model does not make any sense geophysi-
cally, then the partitioned events would resemble two random
samples (one composed of single earthquakes and the other
composed of earthquake clusters) from the given earthquake
catalog, in which case no statistically significant difference
would be found for the two categories’ magnitudes.
[28] Recall the log‐linear Gutenberg‐Richter(G‐R) fre-

quency‐magnitude law of earthquake occurrence:

log10 NM ¼ a� bM

where NM is the number of earthquakes which are greater
than M. Figure 5 plots log10 NM against M for single
earthquakes and cluster earthquakes. A simple linear re-
gression analysis is done on both plots: the 99.5% confi-
dence intervals for a are [7.1629, 7.2115] (single
earthquakes) and [5.9214, 5.9564] (cluster earthquakes),
respectively, and the 99.5% confidence intervals for b are
[0.9478, 0.9586] (single earthquakes) and [0.6879, 0.6954]
(cluster earthquakes), respectively. Therefore, the G‐R law
for the single earthquakes is statistically different from that
for the cluster earthquakes.
[29] Furthermore, three Wilcoxon rank sum tests

(Wilcoxon [1945]) are conducted to compare the median
magnitudes of different earthquake categories. In the first
test, the magnitudes of the cluster earthquakes are signifi-
cantly greater than those of the single earthquakes (p value =
7.1875 times 10−17). The median of the magnitudes is 4.5 for
cluster earthquakes, and it is 4.2 for the single earthquakes.
[30] It is also interesting to see how the mother earth-

quakes differ in magnitudes from their offspring in clusters.
As one would expect, the second Wilcoxon test concludes
that the mother earthquakes are significantly bigger than the
offspring (p value = 1.0845 times 10−16; the median mag-
nitude of mother earthquakes is 4.8; the median magnitude
of offspring is 4.4).
[31] The third test shows that even though the offspring

are smaller than the mother earthquakes within a cluster,
they are still significantly larger than single earthquakes
(p value = 1.6256 × 10−7 in the Wilcoxon rank test).

4.3. Earthquake Intensity

[32] In Appendix A, for simplicity a space‐homogeneous
intensity g (g is a constant) is used in modeling the single
earthquakes. However, the dynamics of the HMM can be
extended to the case where the intensity of the single
earthquakes is space‐inhomogeneous (Wu [2007]), that is, it
takes the form of g(x, y), where x, y is the longitude and
latitude.
[33] The following iterative scheme is used to estimate the

real space‐inhomogeneous single earthquake intensity.
More details are given by Wu [2007].
[34] 1. Set k(x, y) = 1.
[35] 2. Find the MLEs of c, l, �, d, p, where c satisfies

g(x, y) = ck(x, y).

[36] 3. Run the Viterbi algorithm and pick out the most
likely single earthquakes.
[37] 4. Smooth out these single earthquakes to get an

knew(x, y) (hence, knew(x, y) is an updated estimate of the
single earthquake intensity up to a constant).
[38] 5. Go to step 2 until convergent.
[39] The algorithm converges after 3 iterations in the

sense that the third iteration picks out the same set of single
earthquakes as the second iteration. At the end of the
iterations, the partition is very similar to the result when a
space‐homogeneous intensity g is assumed. Repeat the data
analysis on it, almost the same conclusions are drawn. Some
of the geophysical findings are even more distinct. For
example, the median of the mother earthquakes’ magnitudes
is 4.9. The intensity of single earthquakes (up to a constant)
is plotted in Figure 6. Figure 7 shows the distribution of the
mother earthquake epicenters. They describe how likely the
single earthquakes and the cluster earthquakes would occur
in different locations. They are certainly crucial for after-
shock prediction and hazard assessment.
[40] The ETAS model assumes that the background

events, regardless of their single or cluster status, are gen-
erated by a common intensity. Figures 6 and 7 cast doubt on
such an assumption. The intensity of the background events
with or without offspring could differ. In the data set, there
are 2327 single earthquakes and 237 mother earthquakes.
The ETAS model mixes the mother earthquakes with the
large number of single earthquakes, hence it will never catch
the distinct distribution of mother earthquakes, which offers
important clues to the global activity of earthquake clusters.

5. Discussion

[41] The goal of declustering earthquake catalogs is to
identify the earthquake clusters, thereby various hypotheses
of the underlying physical mechanism concerning cluster
and earthquake generation can be tested. For declustering,
the HMM in this paper starts with the basics. The main
assumption is nothing more than an intuition, namely, that
the earthquakes in an earthquake cluster are close to each
other in space and time (hence they are close to the first
earthquake in the cluster). Data analysis based on the HMM
brings into question the undifferentiated treatment of back-
ground events with and without offspring. As shown in
section 4, not only is the G‐R law for single earthquakes
distinct from that for the mother earthquakes (Figure 5), the
distributions of their locations are also different (Figures 6
and 7).
[42] In essence, two of the ETAS’s assumptions are

relaxed in the HMM. First, where there is only one process
(namely, the branching process) assumed for the whole
earthquake occurrence sequence in the ETAS model, there
are two independent processes (for single earthquakes and
for earthquake clusters) in the HMM. This allows more
detailed information about the stochastic process to be drawn
as the intensity functions of these two processes are esti-
mated separately. For example, Figures 6 and 7 show that
some areas are prone to earthquake clusters while others are
prone to single earthquakes. Such disparity in location is not
likely to be uncovered by the ETAS model.
[43] Second, by loosely defining the cause of offspring

occurrences as “the cluster is active,” the HMM avoids
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specifying the ancestor(s) of an earthquake, whereas the
ETAS model has a single, unique ancestor for each event
and not several ancestors, which was noted as “an important
defect” of the model of Helmstetter and Sornette [2002].
The HMM does not suffer from this defect as it focuses on
the precedence rather than the causality of the events.
[44] In this article, a simple HMM is presented. It outdoes

the ETAS model in three ways: it is adaptive to new ob-

servations so that it does a better job of declustering; it has a
best guess of the hidden sequence and hence gives a unique
partition; and the number of earthquakes in the model will
not grow exponentially for any choice of model parameters.
[45] This model is only a first attempt to model earth-

quake occurrence using HMMs. It can be refined in many
ways. For one thing, the assumption of no more than one
active cluster at a time can be relaxed by letting the hidden

Figure 5. Plots of (a) log10 NM versus M for single earthquakes and (b)log10 NM versus M for cluster
earthquakes.
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Figure 7. Unnormalized mother earthquake distribution.

Figure 6. Unnormalized single earthquake intensity.
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state record more indicators. For another, magnitudes can be
built into the model, accommodating the G‐R law and the
empirical Omori law. The HMM can be generalized to the
extent that the ETAS is a special case of it.
[46] More importantly, other information (such as the lo-

cation of fault lines), geophysical hypotheses and theories
(about the underlying tectonics, say) can be incorporated
and tested in the HMM framework. For instance, model
selection based on empirical data is often a big concern for
seismologists. Various model selection criteria have been
developed in statistical literature [Burnham and Anderson,
2003]. Most of them involve the likelihood of the models,
whose computation is routine for HMMs. Thus, HMMs can
combine the power of scientific modeling and deep statis-
tical theory. We believe that the HMM would serve as a
suitable alternative to the ETAS model for earthquake
modeling.

Appendix A: Dynamics of the Hidden Markov
Chain

[47] Recall that the hidden state hi = (xi, yi, ti, Ji, Ci, Ai),
recording the longitude and the latitude of the epicenter, the
occurrence time, the index of the most recent mother
earthquake up to i, the indicator of whether or not the
earthquake i is a cluster earthquake, and the indicator of
whether or not a cluster is active.
[48] Five parameters are introduced in our model: g is the

intensity of the point process for single earthquakes, l is the
extra intensity when a cluster is active, � is the intensity of
the initiation of a new cluster, d is the variance parameter of
the bivariate Gaussian distribution, p is the probability that
the mother earthquake becomes sterile after giving birth to
one more offspring. Note that the mother earthquake is born
reproductive, which guarantees that each cluster contains at
least two earthquakes. In the data set, the earthquakes oc-
curred in the rectangular area 33°–39°N and 131°–140°E.
The area of the rectangle is 54 square degrees.
[49] To construct a Markov chain for h1, h2, …, it suffices

to specify the conditional distribution of p(hi+1∣hi), which
satisfies

p hiþ1jhið Þ ¼ p Jiþ1;Ciþ1;Aiþ1jhið Þp xiþ1; yiþ1; tiþ1jJiþ1;Ciþ1;Aiþ1; hið Þ:

The precise conditional distributions are listed in two cases
and each case has different scenarios:
[50] 1. The first case: Ai = 0, i.e., no cluster is active at

time ti. This case has two scenarios. (1) Earthquake i + 1 is
a mother quake; it starts a new active cluster; Ji+1 is equal
to i + 1.

p Jiþ1 ¼ iþ 1;Ciþ1 ¼ 1;Aiþ1 ¼ 1jhið Þ ¼ �

�þ �

p xiþ1; yiþ1; tiþ1 jJiþ1 ¼ iþ 1;Ciþ1 ¼ 1;Aiþ1 ¼ 1; hið Þ

¼ 1 131;140½ � xiþ1ð Þ1 33;39½ � yiþ1ð Þ �þ �ð Þ expf� tiþ1 � tið Þ �þ �ð Þg
54

(2) Earthquake i + 1 is a single quake; still no active cluster at
time ti+1; Ji+1 keeps the same value as Ji.

p Jiþ1 ¼ Ji;Ciþ1 ¼ 0;Aiþ1 ¼ 0jhið Þ ¼ �

�þ �

p xiþ1; yiþ1; tiþ1 jJiþ1 ¼ Ji;Ciþ1 ¼ 0;Aiþ1 ¼ 0; hið Þ

¼ 1 131;140½ � xiþ1ð Þ1 33;39½ � yiþ1ð Þ �þ �ð Þ expf� tiþ1 � tið Þ �þ �ð Þg
54

[51] 2. The second case: Ai = 1, i.e., there is one cluster
active at time ti. This case has three scenarios. (1) Earth-
quake i + 1 is a single quake; the cluster is still active at time
ti+1; Ji+1 keeps the same value as Ji.

p Jiþ1 ¼ Ji;Ciþ1 ¼ 0;Aiþ1 ¼ 1jhið Þ ¼ �

�þ �þ �

p xiþ1; yiþ1; tiþ1 jJiþ1 ¼ Ji;Ciþ1 ¼ 0;Aiþ1 ¼ 1; hið Þ

¼ 1 131;140½ � xiþ1ð Þ1 33;39½ � yiþ1ð Þ �þ �þ �ð Þ expf� tiþ1 � tið Þ �þ �þ �ð Þg
54

(2) Earthquake i + 1 is a cluster quake (offspring); it does
not sterilize its mother; Ji+1 keeps the same value as Ji.

p Jiþ1 ¼ Ji;Ciþ1 ¼ 1;Aiþ1 ¼ 1jhið Þ ¼ 1� pð Þ �þ �ð Þ
�þ �þ �

p xiþ1; yiþ1; tiþ1 jJiþ1 ¼ Ji;Ciþ1 ¼ 1;Aiþ1 ¼ 1; hið Þ

¼
expf� xiþ1 � xJið Þ2þ yiþ1 � yJið Þ2

2d
g �þ �þ �ð Þ expf� tiþ1 � tið Þ �þ �þ �ð Þg

2�d

(2) Earthquake i + 1 is a cluster quake (offspring); it ster-
ilizes its mother, Ji+1 keeps the same value as Ji.

p Jiþ1 ¼ Ji;Ciþ1 ¼ 1;Aiþ1 ¼ 0jhið Þ ¼ p �þ �ð Þ
�þ �þ �

p xiþ1; yiþ1; tiþ1 jJiþ1 ¼ Ji;Ciþ1 ¼ 1;Aiþ1 ¼ 0; hið Þ

¼
expf� xiþ1 � xJið Þ2þ yiþ1 � yJið Þ2

2d
g �þ �þ �ð Þ expf� tiþ1 � tið Þ �þ �þ �ð Þg

2�d
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