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Quasi‐hidden Markov model and its applications in cluster
analysis of earthquake catalogs

Zhengxiao Wu1
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[1] We identify a broad class of models, quasi‐hidden Markov models (QHMMs), which
include hidden Markov models (HMMs) as special cases. Applying the QHMM
framework, this paper studies how an earthquake cluster propagates statistically. Two
QHMMs are used to describe two different propagating patterns. The “mother‐and‐kids”
model regards the first shock in an earthquake cluster as “mother” and the aftershocks
as “kids,” which occur in a neighborhood centered by the mother. In the “domino” model,
however, the next aftershock strikes in a neighborhood centered by the most recent
previous earthquake in the cluster, and therefore aftershocks act like dominoes. As the
likelihood of QHMMs can be efficiently computed via the forward algorithm, likelihood‐
based model selection criteria can be calculated to compare these two models. We
demonstrate this procedure using data from the central New Zealand region. For this data
set, the mother‐and‐kids model yields a higher likelihood as well as smaller AIC and
BIC. In other words, in the aforementioned area the next aftershock is more likely to occur
near the first shock than near the latest aftershock in the cluster. This provides an answer,
though not entirely satisfactorily, to the question “where will the next aftershock be?”.
The asymptotic consistency of the model selection procedure in the paper is duly
established, namely that, when the number of the observations goes to infinity, with
probability one the procedure picks out the model with the smaller deviation from the true
model (in terms of relative entropy rate).

Citation: Wu, Z. (2011), Quasi‐hidden Markov model and its applications in cluster analysis of earthquake catalogs,
J. Geophys. Res., 116, B12316, doi:10.1029/2011JB008447.

1. Introduction

1.1. Aftershocks

[2] The meaning of aftershock varies in seismological
literature. Conventionally, the earthquake with the largest
magnitude in an earthquake cluster is called the main shock,
those before it are called foreshocks, and those after it are
called aftershocks. Thus the foreshocks, the main shock, and
the aftershocks cannot be identified until after the cluster
ends. This is inconvenient for real‐time monitoring and pre-
diction. To avoid this complexity, many earthquake models
[Kagan and Knopoff, 1981; Rathbun, 1993; Ogata, 1998;
Zhuang et al., 2002] define aftershocks based solely on their
occurrence time, not factoring in the magnitudes. We adhere
to this practice. In this article the first earthquake in an
earthquake cluster is named first‐shock and the rest its
aftershocks.
[3] While earthquake prediction is generally very chal-

lenging, aftershock forecast is relatively tractable on account

of aftershocks being near the first shock in space and time.
(As a referee pointed out, this might be a statement too
optimistic. Our understanding of the aftershock sequence
evolution is still very poor.) In fact, all the earthquakes in a
cluster are close to each other as the name cluster implies. A
famous example is the successful prediction of the 7.3‐
magnitude earthquake in Haicheng, China, in 1975. Warnings
were sent out and evacuations ordered days before the earth-
quake hit the city. Thousands of lives were saved. The telltale
sign had been a series of small tremors that occurred before
the big one [Wang et al., 2006].

1.2. Cluster Models

[4] Branching models are widely employed for the study of
earthquake clusters. An example is the epidemic‐type after-
shock sequence (ETAS) model proposed byOgata [1998]. In
the last decade, intensive research on the ETAS model has
been conducted [Zhuang et al., 2002, 2004; Zhuang, 2006;
Ogata and Zhuang, 2006; Vere‐Jones and Zhuang, 2008;
Helmstetter and Sornette, 2002, 2003; Helmstetter, 2003].
The ETAS model is a branching process with immigrants,
with each existent earthquake (“ancestor”) producing off-
spring independently. The immigrants are earthquakes without
ancestors. They are interpreted as the background seismic
activity. The functional form of the intensity of the point
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processis often carefully selected so that it accommodates the
Gutenberg‐Richter frequency‐magnitude law (G‐R law) and
the empirical Omori law for aftershock sequences.
[5] Aside from earthquake clusters, there are a large num-

ber of earthquakes that strike without any foreshocks or
aftershocks. These are called single earthquakes. An analysis
of an earthquake catalog often begins with the separation
of the earthquakes into earthquake clusters and single earth-
quakes. Zhuang et al. [2002] proposed a stochastic decluster-
ing algorithm based on the ETAS model. The algorithm is
“stochastic” in that random numbers are generated in the
procedure and the resulting partition depends on the realiza-
tion of these random numbers. The algorithm therefore gives
a different partition each time it is run. However, a unique
declustering is often preferred in practice.
[6] An alternative to the branching models is the “mother‐

and‐kids” model suggested byWu [2009, 2010]. In the work
of Wu [2009, 2010], an earthquake catalog is modeled as a
superposition of two independent processes: single earth-
quakes and earthquake clusters. The single earthquake occur-
rences follow a time‐homogeneous Poisson process, while
clusters are defined by a time‐inhomogeneous Poisson pro-
cess so that they are randomly initiated and eventually die out.
The model is given thename “mother‐and‐kids” as the first‐
shock is considered the “mother” and the aftershocks the
“kids”. When the cluster is active, aftershocks occur in the
neighborhood of the mother where the neighboring area is
defined by a bivariate Gaussian distribution centered at the
mother’s location. Each occurrence of an aftershock has a
probability p of deactivating the cluster, or each kid’s birth
has a probability p of sterilizing the mother. It is assumed that
there is no more than one active cluster at a time. The model
does not include the magnitudes of the events.
[7] Wu [2010] carefully compares the mother‐and‐kids

model with the ETAS model [Zhuang et al., 2002, 2004]
and demonstrates that the mother‐and‐kids model outdoes
the ETAS model in several ways. In particular, it naturally
gives an algorithm that produces a unique declustering for
earthquake catalogs. Furthermore, quite interestingly, the
fact that the model does not include the magnitudes enables
the discovery of two significantly different G‐R laws for the
single earthquakes and earthquake clusters, respectively. Thus
one can conclude that the mechanisms that control the evo-
lution of single earthquakes and earthquake clusters are dif-
ferent [Knopoff, 2000].
[8] Several reasons motivated the mother‐and‐kids model.

One physical reason is that the ETAS model attempts to
establish a causal relationship between events by assigning
each aftershock a single, unique ancestor/trigger, which
Helmstetter and Sornette [2002, p. 10‐2] noted as an
“important defect” on grounds that events may well be trig-
gered by the combined loading and action of several previous
earthquakes (in other words, an aftershock could have several
triggers). By contrast, the mother‐and‐kids model abstracts
the cause of the aftershock occurrences as “the cluster is
active.” Hence the first‐shock is only a nominal mother, a
precursor, but not necessarily the physical trigger of the
aftershocks. Therefore the mother‐and‐kids model models
precedence which suffices for aftershock forecast and, in
doing so, bypasses the tricky problem of causality.
[9] Wu [2010] formulates the mother‐and‐kids model in

the framework of a hiddenMarkov model (HMM). However,

unlike a conventional HMM, the number of hidden states in
the mother‐and‐kids model increases with the number of
observations. In fact, the mother‐and‐kids model belongs to a
more general class of models, called quasi‐hidden Markov
models (QHMMs) [Wu, 2011].
[10] The goal of this paper is to introduce the QHMM

framework to seismology and to apply the framework to
investigate further details about how an earthquake cluster
propagates statistically. To that end, an alternative QHMM
(the “domino” model) is proposed. In the model, the next
aftershock strikes in a neighborhood centered by the most
recent event in the cluster; hence aftershocks behave like
dominoes. It mimics the branching model’s idea that each
existent earthquake can trigger offspring in its neighborhood.
And it also obeys the simple intuition behind the mother‐and‐
kids model: the earthquakes within a cluster are near one
another in space and time. So where will the next aftershock
be? Or more specifically, which fits the data better, the
mother‐and‐kids model or the domino model? This is a
model selection problem.
[11] The rest of the paper is organized as follows, Section 2

gives the QHMM formulation of the mother‐and‐kids model
and section 3 introduces the domino model. In section 4, we
examine an earthquake catalog of the central New Zealand
region and conduct data analysis by using the two QHMMs,
and the likelihood‐based model selection criteria indicate
that the mother‐and‐kids model fits this data set better than
the domino model. Section 5 discusses extensions and future
work. Appendix A describes the QHMMs and the associated
algorithms. Appendix B studies the asymptotics of the like-
lihood inferences for QHMMs which justifies the model
selection procedure in section 4.

2. Mother‐and‐Kids Model

2.1. Notations

[12] We use Ot and qt to denote the observation and the
hidden state at time t in a QHMM (see Appendix A for a
review of QHMM). The Ot and qt in the mother‐and‐kids
model are defined as follows. Suppose an earthquake catalog
contains T earthquake records. Earthquake t (1 ≤ t ≤ T) has the
record Ot = (xt, yt, tt), which are the longitude and latitude of
the epicenter and the origin time, respectively. The hidden
state is defined to be qt = (Jt, Ct, At), where Jt is the index of
the most recent mother quake up to t, i.e., Jt = max{k ≤ t:
earthquake k is a mother quake}. If there are no cluster
quakes and hence no mother quakes up to t, we let Jt = 0. Ct

and At are two indicator functions: Ct = 1 if earthquake t is a
cluster earthquake and Ct = 0 otherwise; At = 1 if the mother
earthquake Jt is fertile at time tt (the cluster is still active),
At = 0 otherwise.
[13] Five parameters are introduced in the model: g is the

space‐homogeneous intensity of the point process for single
earthquakes, l is the extra intensity when a cluster is active,
� is the intensity of the initiation of a new cluster, d is the
variance parameter of the bivariate Gaussian distribution,
p is the probability that the mother earthquake becomes
sterile after giving birth to one more kid. The mother earth-
quake is assumed to be born reproductive, which guarantees
that each cluster contains at least two earthquakes. The two
dimensional (longitude and latitude) region under study is
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denoted R, and its area is denoted jRj. Therefore a uniformly
distributed point in this region has the density 1(x,y)∈R/jRj.
2.2. Simulate the Model

[14] To further illustrate the meaning the parameters, we
outline how a synthetic catalogue can be simulated under the
mother‐and‐kids model. One can carry out the simulation by
generating the single earthquakes and the clustered earth-
quake separately and then merging the two sequences.
[15] Algorithm 1 is as follows:
[16] 1. Simulate the single earthquake sequence. Each

single earthquake’s location is independent and uniformly
distributed in the specified region. The time interval between
two consecutive single earthquakes is exponentially distrib-
uted with mean 1/g. (Recall that for a simple Poisson process
with intensity g, the waiting time is exponentially distributed
with mean 1/g.)
[17] 2. Simulate the clustered earthquake sequence.
[18] (i) Simulate the mother earthquake: the location of the

mother is uniformly distributed in the region, and the waiting
time before a mother earthquake strikes is exponential with
mean 1/�. The cluster is activated right after the mother
earthquake strikes.
[19] (ii) Simulate the next aftershock: the location of the

next aftershock follows a bivariate Gaussian distribution,
centered at its mother earthquake, with variance parameter d;
the waiting time before the next aftershock strikes is expo-
nential with mean 1/(� + l). The occurrence of this after-
shock has a probability p to deactivated the cluster. If the
cluster is deactivated, go to i, otherwise, repeat ii.
[20] 3. Combine the two sequences and sort the sequence

according to the occurrence time.

2.3. QHMM Formulation

[21] We give the precise QHMM formulation of the
mother‐and‐kids model in this section. Recall that to fully
determine the QHMM, it suffices to specify the conditional
distribution of P(Ot+1, qt+1jO1:t, qt), which satisfies

P Otþ1; qtþ1jO1:t; qtð Þ ¼ P Otþ1jO1:t; qtþ1; qtð ÞP qtþ1jO1:t; qtð Þ:

[22] The mother‐and‐kids model assumes that

P Otþ1jO1:t; qtþ1; qtð Þ ¼ P Otþ1jO1:t; qtþ1ð Þ

and

P qtþ1jO1:t; qtð Þ ¼ P qtþ1jqtð Þ:

[23] These conditional distributions are discussed below
in two cases and each case has several scenarios:
[24] 1. At = 0, i.e., no cluster is active at time tt. In this

case, the next earthquake t + 1 is either a single earthquake
(scenario a) or a mother earthquake which starts a new active
cluster (scenario b). As the new cluster is initiated with-
intensity � and the single earthquake occurs with intensity g, it
is straightforward that the next observation t + 1 is a single
quake with probability �

�þ� and is a mother quake with prob-
ability �

�þ�. The waiting time tt+1 − tt follows an exponential

distribution with parameter � + g. The location (xt+1, yt+1) is
uniformly distributed in R in both scenarios.
[25] (i) Earthquake t + 1 is a single earthquake, then there

is still no active cluster at time tt+1, and Jt+1 keeps the same
value as Jt. Hence

P qtþ1jqtð Þ ¼ P Jtþ1 ¼ Jt;Ctþ1 ¼ 0; Atþ1 ¼ 0jqtð Þ ¼ �

�þ �
;

and

P Otþ1jO1:t; qtþ1ð Þ ¼ P xtþ1; ytþ1; �tþ1jO1:t; Jtþ1 ¼ Jt;ð
Ctþ1 ¼ 0; Atþ1 ¼ 0Þ

¼ �þ �ð Þ exp � �tþ1� �tð Þ �þ �ð Þf g1 xtþ1 ;ytþ1ð Þ2R
Rj j :

[26] (ii) Earthquake t + 1 is a mother quake; it starts a new
active cluster; Jt+1 is equal to t + 1. Hence

P qtþ1jqtð Þ ¼ P Jtþ1 ¼ t þ 1;Ctþ1 ¼ 1; Atþ1 ¼ 1jqtð Þ ¼ �

�þ �
;

and

P Otþ1jO1:t; qtþ1ð Þ ¼P xtþ1; ytþ1; �tþ1jO1:t; Jtþ1 ¼ t þ 1;ð
Ctþ1 ¼ 1; Atþ1 ¼ 1Þ

¼ �þ �ð Þ exp � �tþ1 � �tð Þ �þ �ð Þf g1 xtþ1 ;ytþ1ð Þ2R
Rj j :

[27] 2. At = 1, i.e., there is one active cluster at time tt.
This case has three scenarios. An argument similar to the
one in the previous case applies. The presence of an active
cluster introduces an extra intensity l, hence the waiting time
tt+1 − tt follows an exponential distribution with parameter
l + � + g.
[28] (i) Earthquake t + 1 is a single quake; the cluster is still

active at time tt+1; Jt+1 keeps the same value as Jt. Hence

P qtþ1jqtð Þ ¼ P Jtþ1 ¼ Jt;Ctþ1 ¼ 0; Atþ1 ¼ 1jqtð Þ ¼ �

�þ �þ �
;

and

P Otþ1jO1:t; qtþ1ð Þ
¼ P xtþ1; ytþ1; �tþ1jO1:t; Jtþ1 ¼ Ji;Ctþ1 ¼ 0;Atþ1 ¼ 1ð Þ

¼ �þ �þ �ð Þ exp � �tþ1 � �tð Þ �þ �þ �ð Þf g1 xtþ1 ;ytþ1ð Þ2R
Rj j :

[29] (ii) Earthquake t + 1 is a cluster quake (kid); it does
not sterilize its mother (this occurs with probability 1‐p);
Jt+1 keeps the same value as Jt. In this and the next scenario,
the location (xt+1, yt+1) follows a bivariate Gaussian distri-
bution centered at its mother. Thus

P qtþ1jqtð Þ ¼ P Jtþ1 ¼ Jt;Ctþ1 ¼ 1; Atþ1 ¼ 1jqtð Þ ¼ 1� pð Þ �þ �ð Þ
�þ �þ �

;
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and

[30] (iii) Earthquake t + 1 is a cluster quake (kid); it
sterilizes its mother (this occurs with probability p); Jt+1
keeps the same value as Jt. Hence

P qtþ1jqtð Þ ¼ P Jtþ1 ¼ Jt;Ctþ1 ¼ 1;Atþ1 ¼ 0jqtð Þ ¼ p �þ �ð Þ
�þ �þ �

;

and

[31] It is the last two scenarios in case 2 that describe how
an earthquake cluster grows.
[32] Two characteristics set the mother‐and‐kids model

apart from a conventional HMM. First, the hidden state
space St is not fixed over time because Jt takes values in
{0, 1, 2,…,t}. In fact, there are roughly 4t possible combi-
nations of (Jt, Ct, At) in St.
[33] The second characteristic is more subtle: the gener-

ation distribution of Ot+1 = (xt+1, yt+1, tt+1) not only depends
on qt+1 = (Jt+1, Ct+1, At+1) but also it depends on tt and
possibly on (xJt,yJt). This violates the basic HMM assump-
tion that the generation distribution ofOt is solely decided by
qt. Hence the mother‐and‐kids model is a genuine QHMM
because tt and (xJt, yJt) are functions of qt+1 and O1:t.

3. Domino Model

3.1. Background

[34] Though various physical models and seismological
theories have been invented to try to explain the mechanism
that generates aftershock sequences [see, e.g., Harris, 2001,
and references therein], no consensus has been reached. This
leaves room for statistically exploring the possibilities of
how an earthquake cluster propagates.
[35] The domino model has the same setup as the mother‐

and‐kids model. An earthquake is either a single earthquake
or a member of an earthquake cluster. A time‐homogeneous
Poisson process governs the single earthquake’s occurrence,
while a time‐inhomogeneous Poisson process models the
earthquake clusters. When an earthquake cluster is alive, it
grows with extra intensity. Each occurrence of an aftershock
deactivates the cluster with a positive probability (a first‐
shock always activates the cluster though. This assumption
ensures each cluster has at least two events), hence the
cluster eventually dies out. The only part that differs from

the mother‐and‐kids model is the next aftershock occurs in
the neighborhood centered at the most recent earthquake in
the cluster instead of centered at the first shock.
[36] It is interesting to note that although the domino

model looks very similar to the mother‐and‐kids model, its
state space at time t is only about half size of the state space
of a mother‐and‐kids model. The detailed dynamics of the
domino model is described below.

3.2. Dynamics of the Domino Model

[37] Hidden state in the domino model is defined as qt′ =
(Jt′, Ct′, At′), where Jt′ is the index of the most recent earth-
quake in the most recent cluster up to t. Ct′ = 1 if earthquake t
is a cluster earthquake andCt′ = 0 otherwise;At′ = 1 if themost
recent cluster is active, At′ = 0 otherwise.
[38] There are five parameters in the model as well: g′ is

the intensity of the point process for single earthquakes, l′ is
the extra intensity when a cluster is active, �′ is the intensity
of the initiation of a new cluster, d′ is the variance parameter
of the bivariate Gaussian distribution, p′ is the probability
that an aftershock kills (deactivates) the cluster to which it
belongs.
[39] The conditional distribution of P(Ot+1, qt+1′ jO1:t, qt)

satisfies

P Otþ1; qtþ1′ jO1:t ; qt′ð Þ ¼ P Otþ1jO1:t; qtþ1′ð ÞP qtþ1′ jqt′ð Þ:

and is listed below in two cases:
[40] 1. At′ = 0, i.e., no cluster is active at time tt. In this

case, the next earthquake t + 1 is either a single quake
(scenario a) or a first shock which starts a new active cluster
(scenario b).
[41] (i) Earthquake t + 1 is a single quake, then there is

still no active cluster at time tt+1, and Jt+1′ keeps the same
value as Jt′. Hence

P qtþ1′ jqt′ð Þ ¼ P Jtþ1′ ¼ Jt′;Ctþ1′ ¼ 0;Atþ1′ ¼ 0jqt′ð Þ ¼ �′

�′þ �′
;

and

P Otþ1jO1:t; qtþ1′ð Þ
¼ P xtþ1; ytþ1; �tþ1jO1:t; Jtþ1′ ¼ Jt;Ctþ1′ ¼ 0;Atþ1′ ¼ 0ð Þ

¼ �′þ �′ð Þ exp � �tþ1 � �tð Þ �′þ �′ð Þf g1 xtþ1;ytþ1ð Þ2R
Rj j :

P Otþ1jO1:t; qtþ1ð Þ ¼ P xtþ1; ytþ1; �tþ1jO1:t; Jtþ1 ¼ Jt;Ctþ1 ¼ 1;Atþ1 ¼ 1ð Þ

¼
�þ �þ �ð Þ exp � �tþ1 � �tð Þ �þ �þ �ð Þf g exp � xtþ1�xJtð Þ2þ ytþ1�yJtð Þ2

2d

� �

2�d
:

P Otþ1jO1:t ; qtþ1ð Þ ¼ P xtþ1; ytþ1; �tþ1jO1:t; Jtþ1 ¼ Jt;Ctþ1 ¼ 1;Atþ1 ¼ 0ð Þ

¼
�þ �þ �ð Þ exp � �tþ1 � �tð Þ �þ �þ �ð Þf g exp � xtþ1�xJtð Þ2þ ytþ1�yJtð Þ2

2d

� �

2�d
:
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[42] (ii) Earthquake t + 1 is a first shock; it starts a new
active cluster; Jt+1′ is equal to t + 1. Hence

P qtþ1′ jqt′ð Þ ¼ P Jtþ1′ ¼ t þ 1;Ctþ1′ ¼ 1;Atþ1′ ¼ 1jqt′ð Þ ¼ �′

�′þ �′
;

and

P Otþ1jO1:t; qtþ1′ð Þ
¼ P xtþ1; ytþ1; �tþ1jO1:t; Jtþ1′ ¼ t þ 1;Ctþ1′ ¼ 1;Atþ1′ ¼ 1ð Þ

¼ �′þ �′ð Þ exp � �tþ1 � �tð Þ �′þ �′ð Þf g1 xtþ1;ytþ1ð Þ2R
Rj j :

[43] 2. At′ = 1, i.e., there is one active cluster at time tt.
This case has three scenarios.
[44] (i) Earthquake t + 1 is a single quake; the cluster is still

active at time tt+1; Jt+1′ keeps the same value as Jt′. Hence

P qtþ1′ jqt′ð Þ ¼ P Jtþ1′ ¼ Ji′;Ctþ1′ ¼ 0;Atþ1′ ¼ 1jqt′ð Þ ¼ �′

�′þ �′þ �′
;

and

P Otþ1jO1:t; qtþ1′ð Þ
¼ P xtþ1; ytþ1; �tþ1jO1:t; Jtþ1′ ¼ Jt ′;Ctþ1′ ¼ 0;Atþ1′ ¼ 1ð Þ

¼ �′þ �′þ �′ð Þ exp � �tþ1 � �tð Þ �′þ �′þ �′ð Þf g1 xtþ1 ;ytþ1ð Þ2R
Rj j :

[45] (ii) Earthquake t + 1 is a cluster quake (aftershock); it
does not kill the cluster; Jt+1′ takes value t + 1 as earth-
quake t + 1 becomes the most recent aftershock. Thus

P qtþ1′ jqt′ð Þ ¼ P Jtþ1′ ¼ t þ 1;Ctþ1′ ¼ 1;Atþ1′ ¼ 1jqt′ð Þ

¼ 1� p′ð Þ �′þ �′ð Þ
�′þ �′þ �′

;

and

[46] (iii) Earthquake t + 1 is a cluster quake (aftershock); it
kills the cluster to which it belongs; Jt+1′ becomes t + 1.
Hence

P qtþ1′ jqt′ð Þ ¼ P Jtþ1′ ¼ t þ 1;Ctþ1′ ¼ 1;Atþ1′ ¼ 0jqt′ð Þ¼ p′ �′þ �′ð Þ
�′þ �′þ �′

;

and

P Otþ1jO1:t; qtþ1′ð Þ
¼ P xtþ1; ytþ1; �tþ1jO1:t; Jtþ1′ ¼ Jt;Ctþ1′ ¼ 1;Atþ1′ ¼ 0ð Þ

¼
�′þ�′þ�′ð Þ exp � �tþ1��tð Þ �′þ�′þ�′ð Þf gexp � xtþ1�xJt ′ð Þ2þ yiþ1�yJt ′ð Þ2

2d′

� �

2�d′
:

[47] It is the last two scenarios that set the domino model
apart from the mother‐and‐kids model. Note that whenCt′ = 1,
earthquake t must be the most recent cluster earthquake up
to t, i.e., Jt′ = t. This fact implies that the size of the hidden
state space is about 2t at time t.

4. Earthquakes in Central New Zealand Region

4.1. Data and Declustering

[48] The data set contains the earthquakes that occurred in
the period January 1970 to August 1999, in the rectangular
area 38°–43°S and 171°–179°E (the central New Zealand
region), with magnitudes greater than 4.0 and depths less
than 40 km. They are available from the New Zealand local
catalog recorded by the Institute of Geology and Nuclear
Sciences (Figure 1), which can be obtained at http://www.
geonet.org.nz/. This data set is used by Zhuang et al. [2002]
to demonstrate their stochastic declustering procedure.
Figure 2 plots the occurrence time and the locations of these
earthquakes. Visually, it is hard to tell which of the two
models is better.
[49] Applying the forward algorithm and the BFGS pro-

cedure (see Appendix A), we find the MLEs of the two
QHMMs as follows: in the mother‐and‐kids model �̂ =
0.1086, �̂ = 2.0787, �̂ = 0.0104, d̂ = 0.0031, p̂ = 0.3181 and
in the domino model �̂′ = 0.1084, �̂′ = 2.2824, �̂′ = 0.0103,
d̂′ = 0.0037, p̂′ = 0.3214.
[50] We set these MLE as the model parameters and run

the forward‐backward algorithm. The conditional proba-
bilities of P(CtjO1:T) and P(Ct′jO1:T) are calculated for all
earthquakes t, 1 ≤ t ≤ T. Figure 3a and Figure 3b depict the
histograms of P(CtjO1:T) and P(Ct′jO1:T), respectively. It
can be seen that most counts are concentrated near prob-
ability 0 or 1, which indicates that both models can clas-
sify events with high statistical confidence. About 3.6% of
the events have probability of being in clusters ranging
from 0.1 to 0.9 under the domino mother (Figure 2b) and
the percentage reduces to 3.4% for the mother‐and‐kids
model (Figure 2a).

P Otþ1jO1:t; qtþ1′ð Þ ¼ P xtþ1; ytþ1; �tþ1jO1:t; Jtþ1′ ¼ Jt ;Ctþ1′ ¼ 1;Atþ1′ ¼ 1ð Þ

¼
�′þ �′þ �′ð Þ exp � �tþ1 � �tð Þ �′þ �′þ �′ð Þf g exp � xtþ1�xJt′ð Þ2þ ytþ1�yJt′ð Þ2

2d′

� �

2�d′
:

Figure 1. Epicentral locations in the central New Zealand
region.
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[51] For comparison, note that the stochastic declustering
procedure proposed by Zhuang et al. [2002] is based on the
aftershock probabilities calculated under the ETAS model.
Figure 5a in the work of Zhuang et al. [2002] shows a
histogram of those aftershock probabilities. Although that
histogram also has most counts near 0 and 1, there are
31.7% of the events having aftershock probability ranging
from 0.1 to 0.9. In this sense, the QHMM models give more
decisive declustering than ETAS. The possible reasons are
discussed by Wu [2010].

[52] Although a stochastic declustering is available in the
QHMM models, in practice a unique and deterministic
declustering is often preferred. We employ the Viterbi
algorithm and find the most likely cluster sequence for both
models. The results are plotted in Figure 4 and Figure 5 for
the mother‐and‐kids model and the domino model, respec-
tively. The declustering performances of the two models
are comparable. In the mother‐and‐kids model, there are
105 earthquake clusters consisting of 438 events and the
remaining 1132 events are identified as single earthquakes,

Figure 2. Occurrence time (day 1 is 1 January 1970) and epicentral locations in the central New Zealand
region.

Figure 3. Histograms of conditional probabilities to be in a cluster under (a) the mother‐and‐kids model
and (b) the domino model.
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while the domino model picks out 108 clusters that contain
441 cluster earthquakes and 1129 events are single earth-
quakes. Only 23 earthquakes (about 1.5% of the data) are
in different categories under these two declusterings. This
is not surprising since both models start from the intuition
that the earthquakes within a cluster are near one another.

4.2. G‐R Laws

[53] Recall the G‐R law for earthquake occurrence:

log10 NM ¼ a� bM

where NM is the number of earthquakes which are greater
than M in magnitude. The variations of the b values in
different kind of events are of central interest in statistical
seismology [Utsu, 1966; Smith, 1981; Knopoff et al., 1982;

Wyss and Wiemer, 2000]. For example, Smith [1981] observes
the statistically significant differences in b values between
foreshock and aftershock sequences; hence he proposes
b value as an earthquake precursor. However, Knopoff
et al. [1982] argues that the differences may be due to the
windowing algorithm used by Smith [1981].
[54] On the basis of the declusterings given by the Viterbi

algorithm, we examine the G‐R laws for the single earth-
quakes and cluster earthquakes under these two models.
[55] Figure 6 and Figure 7 plot log10NM against M for

single earthquakes and cluster earthquakes under the two
models, respectively. The maximum likelihood method is
used to estimate the b values of the G‐R laws [Shi and Bolt,
1981]. The results are summarized in Table 1. It shows that
under both models the G‐R law for the single earthquakes is

Figure 4. Results from applying Viterbi algorithm to the
data set under the mother‐and‐kids model. (a) Epicentral
locations of the most likely earthquake clusters. (b) Epicentral
locations of the most likely single earthquakes.

Figure 5. Results from applying Viterbi algorithm to the
data set under the domino model. (a) Epicentral locations
of the most likely earthquake clusters. (b) Epicentral loca-
tions of the most likely single earthquakes.
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statistically different from that for the cluster earthquakes. In
particular, the b values of the single earthquakes are sig-
nificantly bigger than the b values of the cluster earthquakes.
This phenomenon is also observed for earthquakes in the
central and western Honshu area of Japan [Wu, 2010]. Such
an observation brings into question the undifferentiated
treatment of background events with and without offspring
in ETAS models [Zhuang et al., 2002, 2004].
[56] As both models do not incorporate any information of

the earthquake magnitude, the resulting different G‐R laws
for single earthquakes and earthquake clusters can be
viewed as evidence of reasonable declustering. In fact, if the
models do not make sense at all, then one would expect that
the partitioned events resemble two random samples, in
which case no statistically significant difference would be
found for the two categories’ magnitudes.
[57] A full earthquake occurrence model should certainly

take into account the magnitudes. However, at the starting
stage of modeling when the distributions of magnitudes are
not well understood, not including the magnitudes can be an
advantage. Here the QHMM models discover two different
G‐R laws which cannot be seen by the ETAS model because

ETAS model a priori assumes that there is one magnitude
distribution for all earthquakes.

4.3. Model Selection

[58] Which model fits the data better, the mother‐and‐kids
model or the domino model? The answer helps predict the
location of the next aftershock in an earthquake cluster.
[59] The forward algorithm gives log likelihoods log(L) =

−8087 for the mother‐and‐kids model and log(L′) = −8186
for the domino model, respectively. The mother‐and‐kids
model has a much greater likelihood since L′/L = exp(−99)
which is essentially 0. Hence the mother‐and‐kids model
fits the data set better according to the maximum likelihood
principle. In this sense, the next aftershock is “statistically
closer” to the first shock than to the most recent event in the
cluster. This provides a partial answer to the question
“where will the next aftershock be?”.
[60] As both models have five parameters, the same

conclusion can be drawn for other model selection criteria
such as Akaike information criterion (AIC) [Akaike, 1974]
and Bayesian information criterion (BIC) [Schwarz, 1978].
For example, according to a rule of thumb in the work of

Figure 6. G‐R law under the mother‐and‐kids model: (a) log10NM versus M for cluster earthquakes;
(b) log10NM versus M for single earthquakes.

Figure 7. G‐R law under the domino model: (a) log10NM versus M for cluster earthquakes; (b) log10NM

versus M for single earthquakes.
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Burnham and Anderson [2003], an AIC difference of 20 or
above between two models clearly indicates that one model
is superior to the other. We have an AIC difference of 198
for these two models.
[61] Another clue to the location of the next aftershock is

the MLE d̂ = 0.0031 and d̂′ = 0.0037. Recall that d and d′
are the variance parameters of bivariate Gaussian distribu-
tions, which can be considered a measure of distance. Since
d̂ < d̂′, it too corroborates the conclusion that the next
aftershock will be closer to the first‐shock than to the most
recent earthquake in the cluster.

5. Discussion

[62] HMMs have been applied successfully in areas as
diverse as speech recognition, gene finding, and financial
data analysis, but only recently have a few HMM applica-
tions appeared in the seismological literature [Granat and
Donnellan, 2002; Ebel et al., 2007]. The QHMM intro-
duced in this paper is a more flexible framework and it
shares the computational feasibility of the HMM. Large
amounts of data are available in seismology, and often the
mechanism behind the data needs to be understood. This
provides a perfect setting for QHMMs, as one can incor-
porate various geophysical hypotheses into QHMMs and
have them tested. This paper illustrates this idea.
[63] The mother‐and‐kids and domino models have rather

different structural assumptions to the ETAS model. The
background events or the immigrants in the ETAS model are
all potential “ancestors.” The models discussed in this paper
have two classes of immigrants. The first are infertile and do
not have offspring, whereas the second class are fertile and
have offspring. In the ETAS model each offspring then
becomes a mother, and it can also have offspring in exactly
the same way as its mother. This does not happen in the two
models discussed in this paper. Only the original immigrant
fertile “ancestor” events have children. Her offspring are
infertile.
[64] In the ETAS model, a mother theoretically never

becomes infertile. She just produces fewer offspring over
time according to a power law decay (Omori law). Even-
tually the likelihood is so low (but nonzero) that she is
effectively infertile. In the two models of this paper, the
mother can become abruptly infertile at the birth of each
child. Once infertile, she stays infertile, and so the after-
shock sequence stops.
[65] In the ETAS model, the location spatial density of an

offspring event is bound in some way (could be centered but
not necessarily) to the location of its mother event (not the
original ancestor). In the mother‐and‐kids model it is bound
to the location of the mother, who is like an ancestor in the
ETAS model, in that she is an immigrant into the system.

The mother in the ETAS case could be a number of gen-
erations from the original immigrant event. In the domino
model, the birth location of a child is bound to the location
of its sibling born immediately before it. It is as though the
mother is moving around, so the best predicted location of
the next child is somewhere close to where she had the last
child.
[66] The two models used in this paper can be generalized

in many ways. For instance, by letting the hidden state
include more indicator functions, the assumption of no more
than one active cluster at a time can be relaxed. In the two
models we assume for simplicity that while the mother is
fertile, her fertility rate is constant. This assumption can be
generalized so that the fertility rate decays over time as it
does under the ETAS model. Also although exponential
distribution are commonly used to model the interval time
between earthquakes, the usage of other alternative dis-
tributions is straightforward in the QHMM framework.
Another extension is to build the magnitude of earthquakes
into the models.
[67] Actually, the ETAS model can be considered a sub-

model of a QHMM. The reason is that a QHMM framework
can introduce multiple point processes into the model,
whereas ETAS has only one. Take the ETAS model in the
work of Zhuang et al. [2002], for example. It is a branching
process with immigrants, and the subprocess composed of
immigrants without offspring is independent of the rest of
the events. Now, if this subprocess is allowed to have a
different intensity from that of other immigrants, then we
have two independent processes for the observations and a
QHMM can be built. In the event that the parameters in the
corresponding intensity functions coincide, it is reduced to
the original ETAS model. However, we need to note that the
generality of the QHMM does not come for free. It is often
more difficult to set up and program a QHMM, and the
computational complexity of the associated algorithms can
be high.
[68] Cluster models (or seismicity‐based models) such as

ETAS are often used for seismic hazard assessments in re-
gions (such as Japan) where earthquakes are relatively deep
and the fault structure is not clearly identified. But for re-
gions like Southern California where the fault structure is
well known, fault‐based models are more suitable [see
Holliday et al., 2008, and references therein]. The fault
information can also be incorporated into a QHMM. Future
work is to be done in this direction.
[69] The scheme of employing QHMMs to make statisti-

cal inferences on cluster growing patterns can also be
applied in other areas. For instance, an important question in
epidemiology is how an infectious disease spreads. With a
related dataset, different infection hypotheses can be com-
pared statistically.

Appendix A: Quasi‐Hidden Markov Model

A1. Hidden Markov Model

[70] In a basic HMM [Rabiner , 1989; Granat and
Donnellan, 2002], at time t, t = 1, 2, …, T, one observes Ot

while the actual state qt is hidden. The hidden state qt takes
values in a finite discrete state space {S1, S2, …, SN} and the

Table 1. Maximum Likelihood Estimates of b Values for Cluster
Earthquakes and Single Earthquakes Under Mother‐and‐Kids
Model and Under the Domino Model

b̂ (95% C.I.)

Mother‐and‐Kids Model Domino Model

Earthquakes clusters 1.023 ([0.930, 1.121]) 1.023 ([0.930, 1.121])
Single earthquakes 1.589 ([1.498, 1.683]) 1.591 ([1.500, 1.686])
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sequence q1, q2,… forms a first order homogeneous Markov
chain with transition probability aij = P(qt+1 = Sj|qt = Si). The
observation Ot is independent of everything else conditional
on the hidden state qt, andOt follows a distribution bj(·) when
the actual state qt is at Sj.
[71] Several algorithms facilitate the statistical inferences

on a HMM. The forward algorithm [Baum et al., 1970]
computes the likelihood function P(O1:T) (O1:T denotes
(O1, O2, …, OT) for short) of the model. Combining with
a backward procedure, it leads to the forward‐backward
algorithm, which calculates the probability of being in state Si
at time t given the observation sequence, i.e., P(qt = SijO1:T).
The Viterbi algorithm [Viterbi, 1967] finds the most likely
hidden state sequence (path). And the parameters of the
model can be estimated by the maximum likelihood principle
via the EM algorithm [Dempster et al., 1977].
[72] Allowing the Markov chain formed by the hidden

state sequence q1, q2, … to be nonhomogeneous, Hughes
and Guttorp [1994] proposes an extension of the basic
HMM, namely the Nonhomogeneous Hidden MarkovModel
(NHMM). The forward‐backward algorithm, the Viterbi
algorithm and the EM algorithm can be similarly applied to
NHMM [Diebolt et al., 1994; Hughes et al., 1999].

A2. Definition of QHMM

[73] Likewise, we let Ot and qt denote the observation and
the hidden state at time t, respectively. However, the hidden
state qt is allowed to take values in a time‐varying finite dis-
crete space St = {S1,S2,…,SNt

}. The observations {Ot} and the
hidden states {qt} are said to form a QHMM if the condi-
tional probability distributions satisfy P(Ot+1, qt+1jO1:t, q1:t) =
P(Ot+1, qt+1jO1:t, qt). Note that the assumptions of HMM and
NHMM imply P(Ot+1, qt+1jO1:t, q1:t) = P(Ot+1, qt+1jqt), hence
HMM and NHMM are special cases of the QHMMs.
[74] Next we describe the foward‐backward algorithm and

the Viterbi algorithm associated with a QHMM, adopting
the notations in the work of Rabiner [1989]. The detailed
derivation of the algorithms can be found in the work of Wu
[2011].

A3. Forward‐Backward Algorithm

[75] We define the forward variables at(i) as

�t ið Þ ¼ P O1:t ; qt ¼ Sið Þ; 1 � i � Nt

Then it is not hard to see that

�tþ1ðiÞ ¼
XNt

j¼1

PðOtþ1; qtþ1¼ SijO1:t; qt¼ SjÞ�tðjÞ; 1 � i � Ntþ1:

ðA1Þ

Hence one can compute at(i) inductively after setting
a1(i) = p(O1, q1 = Si), 1 ≤ i ≤ N1, where p(·,·) is the
initial distribution of (O1, q1). The forward variables can
be used in the computation of the likelihood of the model:
P(O1:T) = ∑i=1

NT aT (i).
[76] In a similar manner, the backward variables bt(i) are

defined as

�t ið Þ ¼ P Otþ1:T jO1:t ; qt ¼ Sið Þ; 1 � i � Nt:

Note that the recursive relationship

�t ið Þ ¼
XNtþ1

j¼1

P Otþ1; qtþ1 ¼ SjjO1:t; qt ¼ Si
� �

�tþ1 jð Þ; 1 � i � St

ðA2Þ

holds. Hence setting bT(i) = 1, 1 ≤ i ≤ ST, the remaining bt(i)
can be computed backward in time inductively.
[77] Combining the forward procedure and the back-

ward procedure, the probability of the hidden state is Si at
time t conditional on the observations is given by

P qt ¼ SijO1:Tð Þ ¼ �t ið Þ�t ið ÞPNt
j¼1 �t jð Þ�t jð Þ :

A4. Viterbi Algorithm

[78] The Viterbi algorithm uses dynamic programming
to find the most likely hidden state sequence, namely,
argmaxq1,q2,…,qT P(q1,q2,…,qTjO1:T). We define the quan-
tity dt (i) = maxq1,...,qt‐1 P(O1:t, q1,…,qt−1, qt = Si) and
observe that

	tþ1 ið Þ ¼ max
j

P Otþ1; qtþ1 ¼ SijO1:t; qt ¼ Sj
� �

	t jð Þ� �
: ðA3Þ

We also define yt+1(i) = arg maxj [P(Ot+1, qt+1 = SijO1:t,
qt = Sj) dt( j)] to keep track the index that maximizes (A3).
Let qT* = Sargmaxj dT ( j) and qt* = Syt+1 (qt+1* ) for t = T − 1, T − 2,
…, 1, then one can show that {q1*, q2*, …, qT*} is the
most likely hidden state sequence, i.e., P(q1*,q2*,…,qT*jO1:T) =
maxq1,q2,…,qT P(q1,q2,…,qTjO1:T).

A5. Search for MLE

[79] The EM algorithm typically does not apply to a
QHMM. However, since the forward algorithm computes the
likelihood function of a QHMM efficiently, most standard
optimization procedures are applicable to find the maximum
likelihood estimators (MLE) of the parameters. For instance,
we use the Broyden‐Fletcher‐Goldfarb‐Shanno (BFGS)
method [Nocedal andWright, 2006] in the numerical study in
section 4.

Appendix B: Asymptotics of the Model Selection

[80] Likelihood‐based model selection criteria such as
AIC and BIC are known to be effective for independent,
identically distributed (i.i.d.) observations. They are often
justified by their asymptotic properties. It is natural to ask
what if the observations are from a HMM or a QHMM. A
series of papers by Baum and Petrie [1966], Leroux [1992],
Bickel et al. [1998, 2002], Jensen and Petersen, [1999], and
Douc and Matias [2001] study the asymptotics of the like-
lihood inferences for HMMs. The general conclusion is:
“HMM likelihoods and their derivatives behave like i.i.d
ones” (title of Bickel et al. [2002]). Here we show that it is
also true for the two QHMM introduced in this paper:
mother‐and‐kids model and the domino model.
[81] Let (W, B, P) be a probability space and suppose that

{X1, X2, …} are i.i.d. with each Xi taking values in a stan-
dard Borel space. Clearly, the marginal distribution P1 for
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X1 determines the joint distribution Pn for (X1, X2, …, Xn),
i.e. Pn = P1 × P1 × … × P1. Assume that P1 is absolutely
continuous with respect to a sigma‐finite measure M1 and
f ¼ dP1

dM1
. Let LT(X1, …, Xn) denote the likelihood function

under the true model, then by the strong law of large
numbers,

1

n
log LT X1;X2; . . . ;Xnð Þ ¼ 1

n
log

Yn
i¼1

f Xið Þ ¼ 1

n

Xn
i¼1

log f Xið Þ

! E log f X1ð Þ;P � a:s::

Suppose that one specifies a family of parametric density
functions {g
 : 
 ∈ Q} to approximate the marginal
distribution density f. Let L
(X1, …, Xn) denote the like-
lihood function under such a model, then

1

n
log L
 X1;X2; :::;Xnð Þ¼ 1

n

Xn
i¼1

log g
 Xið Þ ! E log g
 X1ð Þ;P � a:s::

Jensen’s inequality implies that E log f (X1) − E log g
(X1) is
nonnegative for any 
. In fact, let dQ1


 = g
dM1, E log f (X1)−
E log g
(X1) can be recognized as the Kullback‐Leibler
divergence between P1 and Q1


 [Kullback and Leibler, 1951].
Therefore maximum likelihood estimation is asymptotically
equivalent to finding the model closest to the true model
based on their Kullback‐Leibler divergence. This is the
starting point of the classical arguments on the consistency
and asymptotic normality of MLE.
[82] The observations O1, O2, … in section 3 are cer-

tainly not i.i.d., but an analogous result holds if O1, O2, …
are assumed to be stationary and ergodic. Recall that Oi =
(xi, yi, ti) takes values in O = R × [0,∞), where R is the two‐
dimensional region under study. A convenient reference
measure is the Lesbesgue measure, which is used to
describe the mother‐and‐kids model and the domino model
in section 2. Assume that the true model admitsdensities
p0(o1, …, on) relative to the Lebesgue measure on O × O ×
… × O. Then the generalized Shannon‐McMillan‐Breiman
theorem [Barron, 1985; Algoet and Cover, 1988] asserts
that

1

n
log p0 O1;O2; . . . ;Onð Þ ¼ 1

n
log

Yn
i¼1

p0 OijOi�1; . . . ;O1ð Þ

¼ 1

n

Xn
i¼1

log p0 OijOi�1; . . . ;O1ð Þ

! H0;P � a:s:

where H0 = limn→∞E{log p0(OnjOn−1, …, O1)} is the rel-
ative entropy rate of the process {Oi}.
[83] While the true model will never be known, the

mother‐and‐kids model and the domino model serve as two
possible approximations. Let pm


(o1,…,on) denote the
density (i.e., the likelihood) of the mother‐and‐kids model,
and pd
′ (o1,…,on) denote the density of the domino model,
where 
 and 
′ are the parameter vectors. Then one can
correspondingly have

1

n
log pm


O1;O2; . . . ;Onð Þ ¼ 1

n

Xn
i¼1

log pm

OijOi�1; . . . ;O1ð Þ

! Hm

;P � a:s:; ðB1Þ

where Hm

= limn→∞ E{log pm


(OnjOn−1,…,O1)}, and

1

n
log pd
′ O1;O2; :::;Onð Þ ¼ 1

n

Xn
i¼1

log pd
′ OijOi�1; :::;O1ð Þ

! Hd
′ ;P � a:s:; ðB2Þ

where Hd
′ = limn→∞ E{log pd
′ (OnjOn−1,…,O1)}.
[84] Likewise, Jensen’s inequality implies that H0 − Hm


(or H0 − Hd
′) are nonnegative for any 
 (or 
′). This dif-
ference between the relative entropy rates quantifies how far
the proposed model deviates from the truemodel.
[85] It is reasonable to assume the parameter space Q is

compact, as one can select a very small d > 0 (for example, d
can be the smallest positive number a computer can store)
and let the parameters g, l, �, d be in the range of [d, 1/d]
and p ∈ [d, 1 − d].
[86] The theorem states
[87] If O1, O2, … is stationary and ergodic, and the

parameter space Q is compact as above, then sup
 Hm

>

sup
′ Hd
′ implies that

1 sup
pm
 O1;O2 ;:::;Onð Þ>sup
′pd
′ O1 ;O2;...;Onð Þf g ! 1;P � a:s:

and similarly, sup
 Hm

< sup
′ Hdq′ implies that

1 sup
pm
 O1;O2 ;...;Onð Þ<sup
′pd
′ O1 ;O2;...;Onð Þf g ! 1;P � a:s:

The proof of this theorem follows the standard argument in
the work ofWald [1949], with (4) and (5) taking the place of
the strong law of large numbers. The conditions in the work
of Wald [1949, p. 596] can be verified in our setting easily.
This proposition formulates the strong consistency of the
model selection procedure used in this paper: as the number
of observations goes to infinity, the procedure picks out the
model that is closer to the true model with probability one.
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