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Abstract: In this paper we propose a Bayesian method for estimating hyperbolic diffu-
sion models. The approach is based on the Markov Chain Monte Carlo (MCMC) method
after discretization via the Milstein scheme. Our simulation study shows that the hyper-
bolic diffusion exhibits many of the stylized facts about asset returns documented in the
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1 Introduction

In the theoretic finance literature many diffusion models have been used to describe

the movement of stock prices. As a nonlinear diffusion process, hyperbolic diffusions

proposed by Bibby and Sorensen (1997) have received some attention (see, e.g., Rydberg

(1999)). A variety of statistical properties possessed by hyperbolic diffusions are found

to be consistent with many well known stylized features of financial time series. For

example, the unconditional distribution of returns generated by hyperbolic diffusions

has fatter tails than the normal distribution.

Although the stationary distribution of the hyperbolic diffusion process is known

to be hyperbolic and hence has a closed-form expression, the transition density has no

closed-form solution. Due to the lack of knowledge of the transition density, econometric

estimation of the model using the likelihood approach is intractable. To circumvent

this difficulty Bibby and Sorensen (1997) proposed to estimate the hyperbolic diffusion

using the martingale estimation function method. However, although the estimator

based on the martingale estimation function is consistent and asymptotically normally

distributed, it is inefficient in general. Furthermore, the computation of the standard

errors is difficult and requires techniques such as parametric bootstrapping.

In this paper we propose to use the Markov Chain Monte Carlo (MCMC) method

to estimate the parameters of the hyperbolic diffusion after discretizing the diffusion

via the Milstein scheme. The MCMC method is based on Bayesian analysis and offers

a full likelihood-based inference. It provides a general mechanism to sample the para-

meter vector from its posterior distribution, enabling exact finite-sample inference via

Monte Carlo methods, and is thus highly efficient. Empirical illustrations reported by

Rydberg (1999) show that a member of the generalized hyperbolic diffusion can induce

long-memory features in the squared return.1 In this paper we report the ability of the

hyperbolic diffusion in reproducing other stylized facts found in the financial economet-

rics literature, in particular, the so-called Taylor effect.

1Rydberg (1999) considered the normal inverse Gaussian diffusion, which differs from the hyperbolic
diffusion in the form of the stationary density.
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This paper is organized as follows. Section 2 reviews the hyperbolic diffusion model

and its properties. We also discuss how the Milstein scheme can be used to discretize

the model. Section 3 describes the MCMC method. In Section 4 we fit the model to

three stock market indices over a decade of daily data. Statistical inference is made via

the posterior quantities. In Section 5 we illustrate the statistical properties of a sample

path generated by the hyperbolic diffusion. We find that many of the stylized facts for

stock returns in the empirical finance literature documented by Ryden, Teräsverta and

Asbrink (1998) are satisfied. Section 6 provides further comments and concludes.

2 The Model

Consider the following continuous-time parametric diffusion

dXt = µ(Xt, θ)dt+ σ(Xt, θ)dWt, (1)

whereXt is a state variable,Wt is a standard Brownian motion defined on the probability

space (Ω,@B, (@Bt )t≥0, P ), µ(·, ·) and σ(·, ·) are known functions, and θ is a vector of

unknown parameters.

Many empirical studies have shown that asset returns are not normally distributed.

Barndorff-Nielsen (1978) suggested using the hyperbolic distribution to describe uncon-

ditional asset returns. The density of the hyperbolic distribution is proportional to

1/b2(x), with

b(x) = exp
�
1

2

�
α
t
δ2 + (x− µ)2 − β(x− µ)

��
, (2)

where α,β, δ and µ are the parameters of the distribution satisfying α > |β| ≥ 0 and
δ > 0. It is noted that δ is the scale parameter, µ is the location parameter, β determines

the symmetry (the distribution is symmetrical about µ if β = 0) and α determines the

steepness of the distribution.

We assume that the stock price St depends on the state variable Xt through the

process

St = exp(Xt + κt) (3)
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where κ is the (constant) drift rate. Following Bibby and Sorensen (1997) we consider

the following hyperbolic diffusion process to describe the movement of stock prices2

dSt = St

��
κ+

1

2
σ2b2(lnSt − κt)

�
dt+ σb(lnSt − κt)dWt

�
. (4)

Bibby and Sorensen (1997) obtained some interesting statistical properties of the process

St. For instance, they showed that the marginal distribution of lnSt is hyperbolic and

hence lnSt is approximately hyperbolically distributed after a sufficiently long time

period. Also, the distribution of increments over short intervals has fat tails while an

increment over a long interval follows a distribution that is close to being hyperbolic.

To derive the dynamic properties of stock returns, we apply Ito’s lemma to obtain

dXt = σ b(Xt)dWt, (5)

which represents a diffusion process with no drift. As dWt are uncorrelated over nonover-

lapping intervals, increments of the log-prices (i.e., the continuously compounded rates

of return) are serially uncorrelated. Similar to the stochastic volatility models, however,

the squared increments of the log-prices are generally serially correlated.

As argued in Bibby and Sorensen (1997), although the marginal distribution of the

hyperbolic diffusion process is hyperbolic, the transition density is unknown. Therefore,

the maximum likelihood method is difficult to implement. Bibby and Sorensen (1997)

suggested using the martingale estimation function approach (see Bibby and Sorensen

(1995)) to estimate the diffusion models. Their approach, however, requires knowledge of

the conditional expectation and conditional variance of the diffusion. These conditional

moments are usually known only for very simple models, such as when the drift term

is linear in the state variable. Hence, although Bibby and Sorensen (1997) showed that

their estimates are consistent and asymptotically normal, application of their method is

difficult in practice.

In this paper we use the MCMC method to estimate the hyperbolic diffusion after

discretizing the model via the Milstein scheme. In the next section we shall discuss

2Note that µ in equation (2) and σ in equation (4) are parameters of the diffusion. They should
not be confused with µ(·, ·) and σ(·, ·), which are known functions of the drift and diffusion terms,
respectively.
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the MCMC method. To conclude this section, we outline the Milstein scheme for the

discretization of the hyperbolic diffusion model. As shown by Elerian (1998), the Milstein

scheme provides an approximation with improved accuracy over the Euler scheme in

estimating the parameters of a nonlinear diffusion. It can also be used to approximate

transition densities of diffusion processes as in Pedersen (1995), Eraker (2001), and

Elerian, Chib and Shephard (2001).

The Milstein (1978) approach approximates a general diffusion process such as equa-

tion (1) by the following expansion

Xt+∆t = Xt + µ(Xt, θ)∆t+ σ(Xt, θ)∆Wt +
1

2
σ(Xt, θ)

∂σ(Xt, θ)

∂Xt

k
(∆Wt)

2 −∆t
l
, (6)

where ∆Wt = ε
√
∆t with ε ∼ N(0, 1). This equation can be rewritten as

Xt+∆t −Xt − µ(Xt, θ)∆t+ g(Xt, θ)∆t = σ(Xt, θ)
√
∆t ε+ g(Xt, θ)∆t ε

2, (7)

where g(Xt, θ) =
1
2
σ(Xt, θ)(∂σ(Xt, θ)/∂Xt). Let

a = σ(Xt, θ)
√
∆t, b = g(Xt, θ)∆t, (8)

then equation (7) can be represented by

Y = aε+ bε2 = b

%�
ε+

a

2b

�2
− a2

4b2

&
, (9)

where Y = Xt+∆t −Xt − µ(Xt, θ)∆t+ g(Xt, θ)∆t.
The normality assumption implies that

�
ε+ a

2b

�2
(denoted by, say, Z) follows a

noncentral χ2 distribution with 1 degree of freedom and noncentrality parameter λ =

a2/(4b2). Elerian (1998) showed that the density of Z is given by

f(z) =
1

2
exp

+
−λ+ z

2

,�
z

λ

�−1/4
I−1/2

�√
λz
�
, (10)

where

I−1/2(w) =

v
2

w

∞[
j=0

(w/2)2j

j!Γ(j + 1/2)
=

v
2

πw
cosh(w),

with cosh(w) = (1/2){exp(w) + exp(−w)} being the hyperbolic cosine function. Hence
the density of Y is

f∗(y) =
1

b
f

#
y

b
+
a2

4b2

$
. (11)
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Assuming constant priors for all the parameters, and given n observations of x =

{xt}, t = 1, ..., T , the posterior for θ (the vector of all parameters) is

π(θ|x) = log(c) +
T[
t=1

%
log

+
f

#
yt
b
+
a2

4b2

$,
− log(b)

&
, (12)

where yt = xt+∆t − xt − µ(xt, θ)∆t + g(xt, θ)∆t. Based on the above equation as the
approximate posterior, we shall see in the next section how the Metropolis-Hastings

algorithm can be adopted to sample the parameter vector θ.

3 Markov Chain Monte Carlo Simulation

Bayesian inference concerning a parameter vector θ conditional on data y is made via

the posterior density π(θ|x). By the Bayes theorem, the posterior takes the form

π(θ|x) = c L(x|θ)π(θ), (13)

where c is a normalizing constant, L(x|θ) is the likelihood of the data x conditional
upon θ and π(θ) is the prior density of θ. The Bayesian approach requires that statis-

tical inference be based on the posterior. Dealing with the posterior, however, is often

analytically intractable. Nonetheless, if we can sample the parameter vector from the

posterior, statistical inference about the parameter vector can be made using the usual

Monte Carlo approach. The MCMC method aims to provide a general mechanism to

sample the parameter vector from its posterior density. While simulating directly from

the posterior distribution is typically very difficult, the MCMC method sets up a Markov

chain so that its stationary distribution is the same as the posterior density. When the

Markov chain converges, the simulated values may be regarded as a sample obtained

from the posterior.

There are two broad categories of algorithms for implementing MCMC. Firstly, the

Gibbs sampling algorithm generates the observations in which each draw is obtained

by sampling sub-components of a random vector from a sequence of full conditional

distributions. Secondly, the Metropolis-Hastings algorithm generates each value of the

Markov chain from a proposal density, and the acceptance and rejection of the simulated
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value is according to the density at the candidate point relative to the density at the

current point. Robert and Casella (1999) presented detailed discussions on the use

of the Metropolis-Hastings algorithm and the Gibbs sampler. As the full conditional

density is often difficult to derive, the Metropolis-Hastings algorithm is generally adopted

in complex problems. In this paper we use the Metropolis-Hastings algorithm for its

simplicity. In what follows we briefly describe the procedure of the algorithm.

The Metropolis-Hastings algorithm is based on proposing a new point according to an

arbitrary proposal density (also called the candidate generating density). The acceptance

(or otherwise) of the proposed value is determined by a process with an acceptance

probability that depends on the current point, the new point and the proposal density

from which the new point is proposed. Suppose we wish to simulate from the posterior

π(θ|x). Let q(θ, θ�) be an arbitrary proposal density which describes the probability
of proposing θ� given current value θ. The proposal density should be chosen so that

simulation from it is straightforward. A sequence of draws from the Metropolis-Hastings

algorithm is obtained as follows.

Step 1: Let the current value be θ[i]. Generate a proposal, θ� from the proposal density

q(θ[i], θ�).

Step 2: Calculate the acceptance probability

T (θ[i], θ�) =

 min { π(θ |x)q(θ ,θ[i])
π(θ[i]|x)q(θ[i],θ ) , 1} if π(θ[i]|x)q(θ[i], θ�) > 0

1 if π(θ[i]|x)q(θ[i], θ�) = 0
(14)

Step 3: With probability T (θ[i], θ�) accept the proposal and set θ[i+1] = θ�. Otherwise,

reject the proposal and set θ[i+1] = θ[i].

Step 4: Repeat the previous steps to obtain a sequence {θ[0], θ[1], θ[2], · · ·}, where θ[0] de-
notes the initial value for θ. Discard the burn-in values (up to θ[D] say) obtained whilst

the algorithm converges. Then the remaining values, {θ[D+1], θ[D+2], · · ·} are a corre-
lated sequence simulated from π(θ|x), and have the same stationary posterior density
as π(θ|x).
Two important points should be noted. First, the calculation of T (θ[i], θ�) does not

require knowledge of the normalizing constant for the posterior function. Second, if the
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proposal density is symmetric, that is, q(x, y) = q(y, x), then the acceptance probability

reduces to π(θ�|x)/π(θ[i]|x). This is the reason why the standard normal density and the
uniform density on the interval [−0.5, 0.5] are often used as proposal densities.
The MCMC strategy has proved to be extremely useful in many statistical applica-

tions, and has many advantages compared to traditional independent sampling meth-

ods. For example, MCMC methods can be applied without knowing the normalizing

constant of the posterior density. This point is very important in the Bayesian context,

where the normalizing constant of the posterior density is almost never known. Geweke

(1999) provided a survey of the fundamental principles of subjective Bayesian inference

in econometrics and the implementation of these principles using posterior simulation

methods, emphasizing the importance of simulation methods and describing the imple-

mentation of MCMC simulation for Bayesian inference. Due to the effective simulation

methods, Bayesian inference is easier to implement than asymptotic classical inference

for complex nonlinear models with latent variables and in dynamic models that are

nearly nonstationary and nonidentified. The MCMC strategy has also been widely used

in econometrics, such as the Bayesian analysis of stochastic volatility models by Jacquier,

Polson and Rossi (1994), the likelihood inference on stochastic volatility models in Kim,

Shephard and Chib (1998), Bayesian inference for GARCH models in Vrontos, Della-

portas and Politis (2000), the likelihood inference for diffusions in connection with the

Euler approximation by Elerian, Chib and Shephard (2001) and the recent survey by

Chib (2001), among many others.

4 Empirical Applications

In this section we apply the Metropolis-Hastings algorithm to the discretized diffusion

processes and present empirical results based on some real data sets.. The data series

considered are the MSCI World Index, the MSCI Europe Index and the NYSE Index.

The series consist of daily observations from January 1, 1990 to December 31, 2000.

In our empirical study the joint prior for the parameter vector θ is assumed to
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be a constant. According to the Metropolis-Hastings rule, the normalizing constant

in the posterior, as well as the constant prior, does not affect acceptance probability.

In the implementation of the Metropolis-Hastings algorithm, the proposal density is

the uniform density on [−0.5, 0.5], and then the parameter vector θ is updated in the
following way:

θ� = θ + τε, (15)

where θ� is the proposal for θ, ε is a vector of uniform random numbers on [−0.5, 0.5], and
τ is a tuning parameter which is chosen so that the acceptance rate is between 20% and

30%. In addition, τ might be either a scalar- or vector-constant. Generally speaking, if

the parameters are of weak correlation and their values are of the same scale, τ can be

a scalar constant. Otherwise, τ should be a constant vector, so that each parameter is

assigned a specific tuning parameter.

In the implementation of the MCMC algorithm, the sampled path, denoted by {θ[i] :
i = 1, 2, · · · , N}, forms a Markov chain whose stationary density is the posterior π(θ|x),
and the output is summarized in terms of the ergodic averages in the form of:

fN =
1

N

N[
i=1

f(θ[i]), (16)

where f(·) is a real-valued function to be estimated. Roberts (1996) pointed out that
most of the Markov chains produced in MCMC converge geometrically to the station-

ary distribution π(θ|x), and one of the most important consequences of the geometric
convergence is that it follows the central limit theorem of ergodic averages, i.e.,

√
N
�
fN −Eπ[f(θ)]

�
D→ N(0,σ2f), (17)

where Eπ[·] denotes the expectation operator under π(θ|x), and the convergence is in
distribution. To assess the accuracy of the ergodic average as an estimate of Eπ[f(θ)],

it is essential to estimate σ2f . One of the most commonly used methods is to estimate

σ2f using the batch means, which is discussed extensively in Geyer (1992) and Roberts

(1996).
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To estimate σ2f using the batch means, the MCMC algorithm is run for N = m× n
iterations, where n is sufficiently large so that

yk =
1

n

kn[
i=(k−1)n+1

f(θ[i]), (18)

for k = 1, 2, · · · ,m, are approximately independently distributed as N(Eπ[f(θ)],σ
2
f/n).

Therefore σ2f can be estimated by

σ̂2f =
n

m− 1
m[
k=1

(yk − fN)2, (19)

where fN is defined in equation (16). Thus, the standard error of fN can be estimated

by
t
σ̂2f/N , which is called the batch-mean standard error or the Monte Carlo standard

error, and is commonly used for checking the mixing performance.

In addition to the batch-mean standard error, one may also compute the standard

deviation σ̃f directly based on the sampled paths using the formula

σ̃f =

+
1

N − 1
N[
i=1

k
f(θ[i])− fN

l2,1/2
. (20)

Kim, Shephard and Chib (1998) indicated that the mixing performance of the sampled

paths can be measured using the simulation inefficiency factor (SIF), also called the

integrated autocorrelation time by Sokal (1996), which is estimated as the variance of

the sample mean divided by the variance of the sample mean from a hypothetical sampler

that draws independent random observations from the posterior distribution. Meyer and

Yu (2000) showed that SIF is given by

SIF =
σ̂2f
σ̃2f
. (21)

We apply the Metropolis-Hastings algorithm to the MSCI World Index, the MSCI

Europe Index and the NYSE Index. The burn-in period is taken as D = 10, 000 itera-

tions and the number of total recorded iterations after the burn-in period is N = 50, 000.

The sampled paths for the parameters of the MSCI World Index are plotted in Figures

1.1 to 1.6, which show that the sampled paths are reasonably well mixed. Based on the

sampled path for each data set, we calculate the ergodic average (or mean) and standard
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deviations. The MC standard errors are obtained using the batch-mean approach de-

scribed in equations (16) through (19) with f(x) = x. The number of batches is m = 50,

and there are n = 1000 points in each batch. Table 1 summarizes the ergodic averages,

standard deviations, 95% Bayes confidence intervals, Monte Carlo standard errors, and

the simulation inefficiency factors for each data set. The Bayes confidence interval can

be used to test the significance of a parameter. For example, for the World Index, all the

parameters are significantly different from zero. Although our MCMC algorithm is not

very efficient judged by the simulation inefficiency factors, the inefficiency is tolerable in

view of the number of runs we generated.

Table 1. Empirical Results

data para. mean 95% confidence interval s.d. MC s.e. SIF

MSCI κ —0.07950 (—0.12554, —0.03552) 0.02263 0.00083 67.41
World α 1.53933 (1.26136, 1.85925) 0.14764 0.00442 44.30

δ2 0.02636 (0.00037, 0.12875) 0.03635 0.00153 87.95
µ 6.48224 (6.30377, 6.66300) 0.09125 0.00292 52.16
β 0.35768 (0.06210, 0.58873) 0.13177 0.00382 41.24
σ2 0.00741 (0.00513, 0.00953) 0.00109 0.00004 62.65

MSCI κ —0.01422 (—0.06831, 0.03407) 0.02553 0.00100 76.17
Europe α 1.54634 (0.99561, 2.12376) 0.27217 0.01247 102.84

δ2 0.05139 (0.00068, 0.24200) 0.06502 0.00350 146.10
µ 6.29925 (6.06792, 6.54124) 0.12231 0.00391 51.06
β 0.27821 (—0.23627, 0.73844) 0.24608 0.01044 89.79
σ2 0.01006 (0.00584, 0.01371) 0.00199 0.00010 134.66

NYSE κ —0.03117 (—0.07709, 0.01361) 0.02332 0.00094 81.94
α 1.65771 (1.33921, 2.04863) 0.17835 0.00744 86.90
δ2 0.01999 (0.00024, 0.11207) 0.03067 0.00152 119.81
µ 5.73078 (5.54249, 5.92304) 0.09845 0.00370 72.31
β 0.23127 (—0.11584, 0.48954) 0.15436 0.00511 54.95
σ2 0.00766 (0.00522, 0.01003) 0.00118 0.00005 87.56

Note: MC s.e. refers to the Monte Carlo standard error computed through the
batch-mean approach. SIF refers to the simulation inefficiency factor and is given
in equation (21).

It is noted that the estimates of α, namely, the steepness parameter, are quite similar

across the three indices. While the Europe index and the NYSE index are symmetrical

10



(the sampled posterior β is not significantly different from zero), the World index is

asymmetric. For the scale and volatility parameters (i.e., δ and σ, respectively), the

values are similar between the World and the NYSE indices, but different for the Europe

index.

5 Hyperbolic Diffusions and Some Stylized Facts of

Stock Returns

Several “stylized facts” regarding the return of stocks have been well documented in the

financial econometrics literature. Let rt denote the return of a stock. Ryden, Teräsverta

and Asbrink (1998) summarized the following properties of rt found in many empirical

studies:

1. rt are not autocorrelated, except possibly at lag one.

2. The autocorrelation functions of |rt| and r2t decay slowly, and corr(|rt|, |rt−k|) >
corr(r2t , r

2
t−k). The decay is much slower than the exponential rate of the autocor-

relation function of a stationary ARMA process rt.

3. corr(|rt|, |rt−k|) > corr(|rt|θ, |rt−k|θ), θ 9= 1. The autocorrelations of powers of ab-
solute return are highest at power one. This is called the Taylor effect.

Rydberg (1999) reported simulation results of the normal inverse Gaussian diffusion

in which the autocorrelation function of r2t declines very slowly, thus satisfying partly

property 2 above. In this section we examine in more detail whether the hyperbolic

diffusion would give rise to the statistical properties described above.

Using the fitted values of the hyperbolic diffusion based on the MSCI World Index,

we generate a path of daily price series with 2000 observations and plot it in Figure 2.

A time interval of 15 minutes is used (i.e., we use ∆t = 1/7000 year, assuming 7 hours

of trading per day and 250 trading days per year). The data are generated using the

Milstein scheme. The hourly returns and the daily returns are plotted in Figures 3 and

4. Figure 4 is typical of many return series, exhibiting clustering of volatility.
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Figure 5 presents the autocorrelation function of the hourly, daily and weekly return

series up to 100 lags. It shows that returns are uncorrelated over the different intervals.

The autocorrelation functions of the absolute return and the squared return are plotted

in Figure 6. It can be seen that the autocorrelation functions decline very slowly. Figure

7 provides further results on the autocorrelations of |rt|θ for θ = 1.2, 1.5 and 1.8. From
Figures 6 and 7, we can see that the sample path exhibits property 3 of the stylized facts

above.

In sum, the hyperbolic diffusion appears to satisfy the temporal stylized properties

as summarized by Ryden, Teräsverta and Asbrink (1998).

6 Discussions and Conclusions

To understand why a hyperbolic diffusion generates the ARCH and long memory prop-

erties, we apply the Euler approximation to the diffusion model for the log-price (i.e.,

equation (5)) and obtain

Yt ≈ σ exp

1
2

α
yxxwδ2 + (

∞[
i=1

Yt−i − µ)2 − β(
∞[
i=1

Yt−i − µ)

 et, (22)

where Yt = lnSt+�t − lnSt denotes the return and et ∼ iidN(0,7t). Equivalently this
equation can be re-written as

Yt ≈ σ exp
�
1

2
ht

�
et

ht = α

yxxwδ2 + (
∞[
i=1

Yt−i − µ)2 − β(
∞[
i=1

Yt−i − µ).

Comparing the above specification with the well-known ARCH(∞) model (Engle (1982)),

Yt = σtet

σ2t = α0 +
∞[
i=1

αiY
2
t−i,

it can be seen that the hyperbolic diffusion model can be regarded as a special case of

the following nonlinear ARCH(∞) model

Yt = σ exp
�
1

2
ht

�
et

ht = f(Yt−1, Yt−2, · · ·).
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Not surprisingly, the hyperbolic diffusion model generates the ARCH effect. Further-

more, the nonlinear relationship between ht and Yt−i seems to have caused the long-

memory properties in the absolute return as well as the squared return. Our simulation

study has shown that the hyperbolic diffusion is able to exhibit many of the stylized facts

about asset returns documented in the financial econometrics literature. The MCMC

method provides a useful tool to analyze hyperbolic diffusions. Empirical quantities

of the posterior distributions can be calculated from the MCMC method for statistical

inference.
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