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ABSTRACT 
 

An accurate and sufficient vehicle trajectory dataset is the basis to many trajectory-based data 

mining tasks and applications. However, vehicle trajectories sampled by GPS devices are 

usually at a relatively low sampling rate and contain notable location errors. To address these 

two problems in GPS trajectory data, we propose WI-matching, the first vehicle trajectory 

calibration framework to take advantage of road networks topology and geometry information 

and trajectory historical information in large scale. WI-matching consists of a Weighting based 

map matching algorithm and a trajectory interpolation based matching algorithm. In our WI-

matching framework, we first integrate the vehicle GPS data with digital road networks data, to 

identify the roads where a vehicle traveled and the vehicle locations along the roads. Then our 

weighting-based map matching algorithm considers (1) the geometric and topological 

information of the road networks and (2) the spatiotemporal trajectory information to efficiently 

and effectively calibrate the GPS data points. Finally, our interpolation algorithm identifies paths 

between consecutive GPS points, and adds points with estimated vehicle status (location and 

time stamp) along the paths to construct sufficient vehicle trajectories. We have evaluated our 

algorithms on a large-scale real life data set in comparison with the state of the art. Our 

extensive and empirical results indicate that our WI-matching achieves a high accuracy as well 

as a high efficiency on real-world data which beats the state of the art. 

Index Terms—Calibration, vehicle trajectory, map matching 
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Abstract—An accurate and sufficient vehicle trajectory data
set is the basis to many trajectory-based data mining tasks
and applications. However, vehicle trajectories sampled by GPS
devices are usually at a relatively low sampling rate and contain
notable location errors. To address these two problems in GPS
trajectory data, we propose WI-matching, the first vehicle trajec-
tory calibration framework to take advantage of road networks
topology and geometry information and trajectory historical
information in large scale. WI-matching consists of a W eighting-
based map matching algorithm and a trajectory Interpolation-
based matching algorithm. In our WI-matching framework, we
first integrate the vehicle GPS data with digital road networks
data, to identify the roads where a vehicle traveled and the
vehicle locations along the roads. Then our weighting-based map
matching algorithm considers (1) the geometric and topological
information of the road networks and (2) the spatiotemporal
trajectory information to efficiently and effectively calibrate the
GPS data points. Finally, our interpolation algorithm identifies
paths between consecutive GPS points, and adds points with
estimated vehicle status (location and time stamp) along the paths
to construct sufficient vehicle trajectories. We have evaluated our
algorithms on a large-scale real life data set in comparison with
the state of the art. Our extensive and empirical results indicate
that our WI-matching achieves a high accuracy as well as a high
efficiency on real-world data which beats the state of the art.

Index Terms—Calibration, vehicle trajectory, map matching

I. INTRODUCTION

Traffic management applications such as route suggestion,
traffic monitoring and traffic flow analysis require an accurate
and sufficient vehicle trajectory data set [1], [2]. Due to privacy
and cost concerns, trajectory data sets are hard to obtain. So
far, GPS (Global Position System) devices, are the main source
for trajectory data sets.

Typically a vehicle GPS trajectory comprises a sequence of
sampled data points with location and time stamp information
[3]. However, the GPS system on vehicle (e.g., taxi) is
usually installed for civic applications. Due to the low cost of
these applications, such raw data usually contains insufficient
sample points due to the low sampling frequency as well as
lossy communication channel (especially in urban areas, the
high buildings seriously block GPS signal) . Moreover, the
locations reported in the GPS points are often off the actual
locations with an error range up to hundreds of meters [1].
As shown on the left of Figure 1, there are only nine GPS
points from a vehicle in an area of four square kilometers, and
the GPS points are around 150 meters off the road. In many
application scenarios, we desire an accurate and sufficient

Fig. 1. Vehicle GPS trajectory

trajectory calibrated from the nine GPS points as shown on
the right of Figure 1.

To address the sufficiency and accuracy challenge of GPS
data, we propose WI-matching, a novel and practical GPS
trajectory data calibration framework. Our main idea is to
utilize the road network map information together with the
spatiotemporal information in the GPS raw data points to
correct errors and to add more points through interpolation.
As illustrated in Figure 2, WI-matching consists of three
components - (1) GPS and map data preprocessing; (2) map
matching; and (3) interpolation. The pre-processing compo-
nent divides a digital map into cells and records the link (road)
information within each cell. The map matching algorithm
matches GPS points to the links. Finally the interpolation
algorithm estimates the status of the vehicle, i.e., timestamps
and positions, along the links where GPS reports are scarce.

In the map matching component, we propose a novel
weighting-based map matching algorithm that takes into ac-
count (1) the geometric and topological information of the road
networks and (2) the spatiotemporal trajectory information.
Specifically, our weighting scheme considers the proximity
between the GPS sample points and the roads, the differences
between the vehicle heading and road heading, and informa-
tion about road connectivity and turns.

We have empirically evaluated our WI-matching framework
using a real-world GPS trajectory data set. The data set con-
tains one year’s GPS trajectories of over 5000 taxis in a major
city in China. Our results show that our framework achieves
a high efficiency as well as high accuracy in comparison with
two other state-of-the-art methods.

In a summary, the contributions of our work are as follows.
First, we are the first to utilize both geometric/ topological
information of the road networks and historical trajectories to
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Fig. 2. Vehicle trajectory calibration

devise a novel and practical trajectory calibration framework
in a large scale data scenario. Second, WI-matching can handle
large scale trajectory data and return us accurate and sufficient
processed trajectories. Third, we employ real life large scale
datasets to evaluate our methods and the state of the art,
which confirms the high and promising efficiency, accuracy
and scalability of our methods, and sheds lights into the future
vehicle trajectory related research.

The rest of this paper is organized as follows. In Section
II, we present some preliminary information of our work and
then introduce the related work. Our proposed map matching
algorithm is discussed in Section III and the interpolation
algorithm is presented in Section IV. Section V reports the
empirical experiment results and describes the evaluation in
terms of accuracy, efficiency and scalability. Last, we conclude
the paper and outline the future work.

II. PRELIMINARY AND RELATED WORK

In this section, we provide preliminary information of our
work and survey the related work. In our work, we study the
vehicle trajectory in digital map and road networks. Hence,
first, we introduce vehicle GPS trajectory; second, the digital
map and road networks are discussed; at last, a survey of
related work is provided.

A. Vehicle GPS trajectory

A GPS trajectory data set is collected from vehicles
equipped with GPS receivers. Each GPS receiver periodically
reports the vehicle’s current status information to a data center
via GPRS.

Definition 1: A vehicle GPS sample data point Pi is defined
as a vector including the vehicle ID, the time stamp when
the report was sent out, the vehicle’s location (longitude and
latitude), the instantaneous speed, and the heading of the
vehicle.

For example, a sample data point is [0793, 2007-02-18
00:04:27, 121.444800, 31.260500, 32, 157]. In this example,
the vehicle ID is 0793, the reporting time is 2007-02-18
00:04:27, the reported location of the vehicle is [121.444800,
31.260500], the reported vehicle speed is 32 kmph, and the
heading of the vehicle is 157 degrees from the north.

Definition 2: A vehicle GPS trajectory is defined as a
sequence of vehicle GPS sample data points in the ascending
order of timestamps.

B. Digital map and road networks

A digital map records the spatial road data (points, lines
and polygons) along with their associated labels and attributes
[4]. In a digital map, road networks are generally represented
in a planar model where each road is represented by a set
of arcs [5], [6]. A road network consists of nodes, shape
points, links and segments. Nodes represent dead-ends and
intersections. An arc between two nodes is called a link. Each
link is assumed to be piece-wise linear such that it can be
described by a sequence of finite number of points. The first
and last points in the sequence are referred to as nodes and the
rest as shape points. Shape points describe a link’s curvature
and divide the link into a set of straight lines. Each straight
line is a segment.

C. Related Work

In our work, we utilize the spatial information to calibrate
vehicle GPS trajectories. This aspect is related to map match-
ing. Map matching algorithms utilize positioning data and
spatial road networks data to identify the correct links on
which a vehicle is traveling and determine the location of the
vehicle on that link [7]–[9]. Since reliable digital road maps
are readily available and their accuracy is normally higher than
that of the positioning sensors, map matching can improve the
accuracy of positioning systems [10]–[13].

We discuss map matching algorithms by the following three
categories. The first category is geometric map matching,
which makes use of the geometric information of the spatial
road network data by considering only the shape of the road
links [14], [15]. It does not consider the connectivity between
links. In comparison, the second category, topological map-
matching, makes use of the geometry of the links as well as
the connectivity and contiguity of the links [7], [14]. The third
category of map matching algorithms utilize other techniques
such as Kalman Filter and fuzzy logic [4].

Kim et al. proposed an advanced map matching algorithm
with efficient use of digital road maps [16]. Fu et al. presented
a hybrid map matching algorithm based on fuzzy compre-
hensive judgment [17]. Geometric analysis and topology of
the road networks are considered in this algorithm. Yin et al.
[18] proposed a weight based map matching method, which



selects a most likely route for a vehicle. Their weighting is
based on arcs, and did not consider turns. Nanni et al. [19]
took an approach considering the k-optimal alternative paths
to reconstruct the trajectories from GPS raw data. Yuan et al.
[20] proposed an interactive-voting method to map matching
low-sampling-rate GPS traces, but they did not consider the
turns in road networks or heading directions.

In comparison to the previous work on map matching, we
utilize the knowledge from road networks and spatiotemporal
trajectory data to calibrate vehicle GPS trajectories [1], [2],
considering vehicle headings as well as road connectivity,
heading, and turns. As a result, our method achieves a high
accuracy as well as high efficiency.

III. WEIGHTING-BASED MAP MATCHING

In our WI-matching framework, map matching is done after
the pre-processing of digital maps and GPS points. The pre-
processing of a digital map is to divide it into rectangular
cells of a predefined size and to record the information about
the links within each cell. The pre-processing of GPS data
is to discard vehicles whose GPS reports are so scarce that
the time gap between two consecutive reports is longer than a
threshold. In our work, we set the threshold to be 20 minutes.
Time gaps in GPS reporting longer than this threshold are
usually associated with GPS equipment faults.

After pre-processing, the map matching component will
identify the link that each GPS point is on and determine the
location of the vehicle on the link. This process is done in three
steps for each GPS point: (1) Identifying the candidate region,
(2) Identifying candidate links, and (3) Weighing candidate
links. In the following, we discuss the three steps in order.

A. Identifying the candidate region

For each GPS point, it is inefficient to search the entire map
to identify possible links on which the point resides. Rather,
we only need to identify a small region in the map that covers
all possible links for the point. The size of the region depends
on the error range of the GPS data as well as that of the digital
map. In a city setting with dense tall buildings and viaducts,
the GPS location errors can be as large as 100 meters [2], [21].
As location errors in digital maps are within a much smaller
range than GPS location errors, we use 100 meters, twice the
GPS location error range, as the distance threshold to set the
candidate region conservatively.

Recall that in pre-processing, we already divide the digital
map into cells and record the information about links in each
cell. Here to identify the candidate region for a GPS point,
we only need to first find the cell that contains the GPS point
and then to cover the cells around the center cell within the
distance threshold. In the case the cell size is 100 meters, the
candidate region will be the nine cells around the GPS point,
as shown in Figure 3.

B. Identifying candidate links

After setting the candidate region of a GPS point, we next
identify the candidate links within the region. If there is no link

Candidate region

Fig. 3. Candidate region for a GPS point

within the region, we regard the vehicle is off known roads
and leave the GPS point unmatched with the map; otherwise,
we test each link with the region on the following two criteria:
(1) whether the distance between the link and the GPS point
is less than 100 meters, the distance threshold; (2) whether the
difference in the headings of the link and the vehicle is less
than 60◦, a heading difference threshold used in a previous
report [22].

1) Point-link distance: The point-link distance refers to
the distance from the GPS point to the link. A link consists
of several segments. The point-link distance is obtained by
calculating the distance from the GPS point to each segment
and then selecting the minimal one [14].

To calculate the distance between the segment and the GPS
point, we need to find the closest point on the segment. This
can be achieved by projecting the GPS point onto the segment.

Projecting the GPS point onto the segment gives us two
cases:

• if the projection point lies on the segment, the projection
point is the closest point on this segment.

• if the projection point lies outside the segment, we cal-
culate the distances from the GPS point to the segment’s
start point and end point, and pick the one with the shorter
distance as the closet point.

Figure 4 shows an example of finding the distance between
a GPS point and a link. Point p is a GPS point. Link A has
three segments: A0A1, A1A2, A2A3. For segment A0A1, the
projection point lies outside of the segment and the closest
point on the segment to p is A1. So the point-segment distance
for A0A1 is the distance between p and A1, denoted as
dist(p, A1). For segment A1A2, the projection point q lies on
the segment, so the point-segment distance for A1A2 is the
distance between p and q, denoted as dist(p, q). For segment
A2A3, the projection point lies outside the segment and the
closest point on the segment is A2, so the point-segment
distance for A2A3 is the distance between p and A2, denoted
as dist(p, A2). Since dist(p, q) is the least one among the
three point-segment distances, it is taken as the distance from



Fig. 4. Calculating distance from point to segment

Fig. 5. Link heading

p to link A.
2) Similarity between vehicle and link headings: In addi-

tion to point-link distance, we further consider the similarity
between vehicle heading and link heading in identifying can-
didate links.

For a link that consists of multiple segments, the link
heading is the heading of the segment whose distance to the
GPS point is the shortest. The heading of a segment can be
calculated using its start point and end point. The difference
between link heading and vehicle heading is denoted as ∆α.
If ∆α is less than the heading diffrence threshold, the link
will be identified as a candidate link. As the error of reported
vehicle heading is high when the vehicle travels at a low
speed, we utilize this heading similarity criterion only when
the vehicle speed is higher than a speed threshold. We set the
speed threshold to 10.8 kmph as in the previous work [22].

Figure 5 shows an example of link heading. In this figure,
Link A’s heading is the heading of segment A0A1 and link
B’s heading the heading of segment B0B1. If the difference
in the headings of link A and the GPS point p is greater than
60◦, link A will not be a candidate link.

C. Weighing candidate links

After identifying a set of candidate links for each GPS point,
we weigh each link based on the following four factors (1)
proximity between the GPS point and the link, (2) similarity
between the vehicle heading and link heading, (3) link con-
nectivity, and (4) turns. The first two factors are also used in
identifying candidate links. The weighting schemes for these
two factors are developed based on geometric analysis whereas
those for link connectivity and turns are based on topological
analysis.

1) Weighting for proximity: The proximity criterion is
based on the distance from the GPS point to the link. The

Fig. 6. Determination of actual link for Pi

Fig. 7. Candidate routes from Pi−1 to Pi+1

smaller the distance from the GPS point to the link, the higher
the possibility that the link is the actual link. So the weight
for proximity WSD is defined as:

WSD = WD ∗ (1− 0.5 ∗ (di + di+1)

MAX DISTANCE ERROR
) (1)

where di is the distance from the current GPS point Pi to its
candidate link, di+1 is the distance from the subsequent GPS
point Pi+1 to its candidate link, WD is the weight coefficient
for proximity, and MAX DISTANCE ERROR is the
maximal value of location error, 100 meters.

2) Weighting for heading: The heading criterion is based
on the difference in heading between the vehicle and link.
The vehicle heading is highly correlated with the link heading.
Figure 8 shows an example of using heading information to
weigh candidate links. In Figure 8, points P1 to P9 are a
sequence of GPS points. The actual vehicle path is marked
in the figure. Both BD and BC are candidate links for point
P6. If the heading information is not taken into account, P6

will be matched onto link BC instead of BD, the actual link
traveled.

The weight for heading WSH is given by:

WSH = WH ∗ (1− 0.5 ∗ (anglei + anglei+1)

MAX ANGLE
) (2)

where,

• anglei, : the difference between vehicle heading and link
heading for the current GPS point Pi

• anglei+1, : the difference between vehicle heading and
link heading for the next GPS point Pi+1

• WH : the weight coefficient for heading
• MAX ANGLE: the maximal angle between the vehicle

heading and link heading, which is set to 60◦



Fig. 8. An example of using heading information

Fig. 9. An example of link connectivity

3) Weighting for link connectivity: Two links are directly
connected if and only if one’s start point is the end point of the
other. Figure 9 shows an example of using link connectivity
to weigh candidate links. In this figure, the sequence of GPS
points are Pi−1, Pi, and Pi+1. After Pi−1 is matched onto
link AB, we consider the candidate links of Pi, BC and DE.
Pi1

′
and Pi2

′
are the closest points from Pi on the two links

respectively. However, since Link DE is not connected to link
AB whereas BC is, it is less likely that Pi is on link DE than
on BC.

In our weighting for link connectivity, we consider both the
preceding and the subsequent GPS points of the current point:

WSLC = WLC ∗ (wi + wi+1)

2
(3)

where,
• WLC : the weight coefficient for lik connectivity
• wi, wi+1: variables that represent the link connectivity

between P − i, P(i− 1) and between Pi, P(i+ 1):
– wi = 1 if the current GPS point Pi and preceding

GPS point Pi−1 are matched onto the same link or
connected links

– wi = 0 if the current GPS point Pi and preceding
GPS point Pi−1 are matched onto unconnected links

– wi+1 = 1 if the current GPS point Pi and subsequent
GPS point Pi+1 are matched onto the same link or
connected links

– wi+1 = 0 if the current GPS point Pi and subsequent
GPS point Pi+1 are matched onto unconnected links

4) Weighting for turns: The weighting for turns is based on
the observation that paths in practice tend to be direct, rather
than full of roundabouts [3].

Fig. 10. An example using turn information

Figure 10 shows an example of using information about
turns in weighing candidate links. Pi−1, Pi, Pi+1 are three
consecutive GPS points. Pi−1 has been map matched onto
link AB. Pi has two candidate links BC and BD, and both
links are connected to link AB. Pi1

′
and Pi2

′
are the closest

points to Pi on the candidate links correspondingly. Further,
we consider the candidate link, BC, for Pi+1. There are two
possible routes from Pi−1 to Pi+1: (1) Pi−1

′
, B, Pi2

′
, B, Pi+1

′

and (2) Pi−1

′
, Pi1

′
, Pi+1

′
. Since the first route has two turns

whereas the second route has no turn, the second route has
a higher probability of being the actual route. Thus, link BC
should assigned a higher weight than BD by this criterion.

Formally, the weight for turns WST is given as follows:

WST = WT ∗ (1− 0.5 ∗ (ti + ti+1)

MAX TURNS
) (4)

where,

• WT : the weight coefficient for turns
• MAX TURNS: a predefined constant to adjust the

weight for turns
• ti, ti+1: variables that represent the turns between P − i,

P(i− 1) and between Pi, P(i+ 1):
– ti = 0 if Pi and Pi−1 are matched onto the same

link or connected links with turn angle less than 45◦

– ti = 1 if Pi and Pi−1 are matched onto connected
links with turn angle ranging from 45◦ to 135◦

– ti = 2 if Pi and Pi−1 are matched onto connected
links with turn angle greater than 135◦

– ti = Max Turns if Pi and Pi−1 are matched onto
unconnected links

– ti+1 = 0 if Pi and Pi+1 are matched onto the same
link or connected links with turn angle less than 45◦

– ti+1 = 1 if Pi and Pi+1 are matched onto connected
links with turn angle ranging from 45◦ to 135◦

– ti+1 = 2 if Pi and Pi+1 are matched onto connected
links with turn angle greater than 135◦

– ti+1 = Max Turns if Pi and Pi+1 are matched
onto unconnected links

5) Total weight: The total weight is obtained by summing
up the four individual weights:

TWS = WSD +WSH +WSLC +WST (5)



Fig. 11. An original GPS trajectory derived from GPS data

By selecting different values for the weighting coefficients
(i.e., WD, WH , WLC , WT ), the weight for each criterion
can be adjusted. In previous research, the weight coefficients
for the criteria were assumed to be equal [14] or determined
empirically [23]. In this work, the relative importance of each
criterion is determined empirically.

Figure 11 shows an original GPS trajectory derived from
GPS points. The vehicle heading always has a great similarity
with the link heading, and most GPS points are near to the
actual link (98.7% in our data sets). Therefore, heading and
proximity are assigned more importance than link connectivity
and turns.

6) Determination of actual link: The total weight is calcu-
lated for each candidate route from the preceding GPS point
Pi−1 to the following GPS point Pi+1. Since the preceding
GPS point has been map matched to its actual link, the number
of candidate routes is decided by the number of candidate
links for Pi and Pi+1. As the example shown in Figure 6,
both Pi and Pi+1 have two candidate links, so Pi has four
candidate routes (refer to Figure 7). Each of Pi’s candidate
links is contained by at least one route. For each link, we
only store the route that gives the highest score and the score
is taken as the weight of the link. The link that has the highest
score is selected to be the actual link and the closet point on
that link to Pi is taken as the vehicle’s location on that link.

IV. INTERPOLATION METHOD

The GPS trajectory data set used in this work has relatively
long sampling intervals and the vehicle status during the
interval are unknown. After map matching, two consecutive
map-matched points may be on different links that are not even
connected. To address this problem, we propose an interpo-
lation method to determine the path between two consecutive
GPS points and to generate the trajectory between the two
points.

The interpolation process goes in two steps: path determi-
nation and trajectory interpolation. Path determination is to
identify the path taken by the vehicle between consecutive
map-matched GPS points. Trajectory interpolation is to gen-
erate the trajectory between consecutive map-matched points
based on the path.

(a) Pi−1
′

and Pi
′

on the same link

(b) Pi−1
′

and Pi
′

on connected links

(c) Pi−1
′

and Pi
′

on unconnected links

Fig. 12. Three cases in path identification

A. Assumptions of path choosing

In this work, we make the assumption that the paths tend
to be direct and drivers prefer the shortest path.

There are three cases to consider. Pi−1

′
and Pi

′
are two

consecutive map-matched points.
• If Pi−1

′
and Pi

′
are on the same link, then the vehicle

is assumed to move from Pi−1

′
to Pi

′
along this link.

• If Pi−1

′
and Pi

′
are on two connected links, the vehicle

is assumed to move along the two connected links from
Pi−1

′
to Pi

′
.

• If Pi−1

′
and Pi

′
are on unconnected links, the vehicle is

assumed to move first along the link containing Pi−1

′
,

then along the shortest path from the end point of the link
containing Pi−1

′
to the start point of the link containing

Pi

′
, and finally along the link containing Pi

′
.

Figure 12 shows examples of the three cases. In Figure
12(a), the vehicle moves from Pi−1

′
to Pi

′
by traveling along

the link AB. In Figure 12(b), the vehicle first travels from
Pi−1

′
to B along link AB and then from B to Pi

′
along

link BC. In Figure 12(c), the path between Pi−1

′
and Pi

′
is

comprised of three parts: (1) the path from Pi−1

′
to B along

link AB, (2) the shortest path from B (the end point of link
AB) to E (the start point of link EF), and (3) the path from E
to Pi

′
along link EF.

B. Path determination

The path determination process is to find the path between
consecutive GPS points. The path is described as a sequence
of points which include nodes and shape points and two
map-matched GPS points. Based on our assumption, if two



Algorithm 1 ADAPTED DIJKSTRA’S ALGORITHM

1: S := empty sequence
2: for each vertex v in G do
3: dist[v] := ∞
4: previous[v] := NULL
5: end for
6: dist[source] := 0
7: Q:= V
8: while Q is not empty && iter < total number of vehicles

do
9: iter :=iter+1

10: u := vertex in Q with smallest dist
11: if dist[u] = ∞ then
12: break
13: end if
14: if u = target then
15: break
16: end if
17: remove u from Q
18: for each neighbor v of u do
19: dist := dist[u]+dist between(u,v)
20: if dist < dist[v] then
21: dist[v] := dist
22: previous[v] := u
23: end if
24: end for
25: end while
26: u:= target
27: while previous[u] != NULL do
28: insert u at the beginning of S
29: u := previous[u]
30: end while

consecutive map-matched points are on the same link or
connected links, the path between them can be easily obtained
by recording the points (including nodes and shape points)
between them along the links. Otherwise, the shortest path
should be identified.

Given a weighted graph G = (V, E, w), |V|= n, |E| = e, the
shortest path between two vertices can be efficiently computed
by Dijkstra’s algorithm [24]. To utilize Dijkstra’s algorithm,
the road network should be transformed to a weighted graph
G = (V, E, w). This is achieved by replacing each link with
a straight line segment. In the weighted graph G, vertices
represent the nodes from the road network whereas edges
the links. The link length is taken as the weight associated
with the edge. A link can be completely characterized by
a sequence of points (endpoints and shape points), so the
length is calculated by summing up the distances between each
two consecutive points on the link. This is described by the
following equations:

link length =
n∑

i=1

dist(Ai−1, Ai) (6)

where (A0, A1,. . . ,An) is the sequence of points on the link,
and dist(Ai−1, Ai) is the surface distance in meters between
Ai−1 and Ai.

Then we adapt Dijkstra’s algorithm to find the shortest path
between the source and the target. The source is the end
point of the link that contains the preceding map-matched
GPS point and the target is the start point of the link that
contains the current map-matched GPS point. The original
Dijkstra’s algorithm finds the shortest distance from the source
to all other nodes. Since we are only interested in the shortest
path between source and target, the search can be terminated
if the shortest path to the target has been identified. By
identifying all the nodes and shape points along the path,
we can transform the path returned by Algorithm 1 (Adapted
Dijkstra’s Algorithm) to the path in the road network.

C. Trajectory interpolation

Given any two consecutive map-matched points Pi−1

′
and

Pi

′
with time stamps ti−1 and ti, the GPS trajectory between

them is generated by estimating the vehicle location at time
t ∈ [ti−1, ti]. To estimate the vehicle location at time t, we
should know the distance the vehicle travels from Pi−1

′
to Pt.

However, this information is not available from the GPS data
set. So we make the assumption that the vehicle travels at a
constant speed from Pi−1

′
to Pi

′
. Then the distance can be

calculated by (speed * traveling time). Based on the distance
from Pi−1

′
to Pt, the vehicle location at time t on the path can

be determined. The distance calculation process and location
determination process are as follows.

1) Distance calculation: To get the distance from Pi−1

′
to

Pt, we calculate the vehicle speed between Pi−1

′
and Pi

′
.

Since the vehicle travels at a constant speed from Pi−1

′
to

Pi

′
, the speed can be calculated by:

speed =
length of path

ti − ti−1
(7)

where:

• ti−1, ti: the time stamps of Pi−1

′
and Pi

′

• length of path: the distance that the vehicle travels from
Pi−1

′
to Pi

′
, which is given by:

length of path =
n∑

i=1

dist(Ai−1, Ai) (8)

where (A0, A1,. . . ,An) is the sequence of points on the path,
and dist(Ai−1, Ai) is the surface distance in meters between
Ai−1 and Ai.

Given any time t ∈ [ti−1, ti], the distance the vehicle travels
from Pi−1

′
to Pt is given by speed ∗ (t− ti−1).

2) Location determination: After calculating the distance
the vehicle travels from Pi−1

′
to Pt, we need to determine

the location of Pt on the path. This involves two steps: (1)
identification of the segment on which the vehicle travels at
time t, and (2) determination of the vehicle location on that
segment.



Fig. 13. Path between Pi−1
′

and Pi
′

The path from Pi−1

′
to Pi

′
is described as a sequence of

points (A0, A1, . . . , An) as shown in Figure 13. dist(ti−1, t)
denotes the distance the vehicle travels from ti−1 to t.

If dist(ti−1, t) ≤ dist(A0, A1), then Pt is on segment
(A0, A1). Otherwise, find the segment Aj−1Aj which satisfies
that

(1)
∑j−1

i=1 dist(Ai−1, Ai) < dist(ti−1, t), and
(2)

∑j−1
i=1 dist(Ai−1, Ai) ≥ dist(ti−1, t).

This segment is the one on which the vehicle travels at time
t.

After identifying the segment Aj−1Aj which contains Pt,
we need to determine the location of Pt on that segment.

The distance from Pt to Aj−1 is given by

dist(Aj−1, Pt) = dist(ti−1, ti)−
j−1∑
i=1

Ai−1Ai (9)

Coordinates of Pt (xt, yt) can be obtained from the endpoints
of the segment as follows:

xt = α ∗ (xj − xj−1) + xj−1 (10)

yt = α ∗ (yj − yj−1) + yj−1 (11)

where:
α =

dist(Aj−1, Pt)

dist(Aj−1, Aj)
(12)

With the vehicle location estimated, we generate a complete
GPS trajectory between consecutive map-matched points.

V. EMPIRICAL EXPERIMENTS

In this section, we report the empirical experiments we
conducted to evaluate our method. We evaluate both efficiency
and accuracy, and compare our method with two other state-
of-the-art methods.

A. Experiment setup

Experiment data sets: The test data set is originated from
Shanghai City Traffic Bureau, containing 5631 taxis’ GPS
sampling reports, and the time length is a year. We also
obtained 5000 taxis’ actual trajectories as the ground truth.
In the city, there are 22,413 intersections connecting 33,290
road segments. The data scale we investigated is more than
200 GB.

Experiment environment: The experiments are run on a
PC having an Intel Dual-Core CPU at 1.8 GHz and 4 GB main
memory. The operating system is Linux Fedora.

Baseline method: We select two most recent methods,
ST-Matching and VIMM, as the baseline method [3], [20],
because the two methods are much more efficient and accurate
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Fig. 14. Accuracy evaluation

than the current other methods, such as Incremental algorithm
and AFD-based global algorithm [5], [14]. We take the same
parameter setting as these two [3], [20] for a fair comparison.

B. Accuracy evaluation

The accuracy of the methods is measured by two criteria as
follows.

Accuracy by quantity is denoted as Aq , and calculated by
the following equation.

Aq =
#matched road segments

#all road segments of a trajectory
(13)

Accuracy by length is denoted as Al, and calculated by the
following equation.

Al =

∑
the length of matched road segments

Length of a trajectory
(14)

In Figure 14, we report the accuracy evaluation. In the
figure, x-axis is the number of trajectories, and y-axis is
the accuracy, which is measured by Eq. (13) and Eq. (14)
respectively. In Figure 14(a), we report the accuracy evalua-
tion by quantity. Our method is much better than both ST-
matching and VIMM, especially with the increase in number
of trajectories. The reason for this result is that in our method,
we consider the road heading, and turn information. In Figure
14(b), we report the accuracy evaluation by length, and our
method is also better than both ST-matching and VIMM,
especially with the increase in number of trajectories. In Figure
15, we report the standard deviation of the above accuracy
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evaluation results. In the figure, x-axis is the number of
trajectories, and y-axis is the standard deviation of accuracy.
Note that in the two figures, the standard deviation is between
2 and 5, which indicates that the data points tend to be very
close to the mean, and the results in Figure 14 are reliable.

C. Efficiency evaluation

The efficiency evaluation is measured by the time cost to
calibrate a set of vehicle GPS records. First, we evaluate the
efficiency of map-matching, second, we evaluate the efficiency
of interpolation, and last, the total time cost is reported.

In Figure 16, we report the time cost in map-matching. In
the figure, x-axis is the number of input trajectories, and y-
axis is the time cost in seconds. Our method (WI-matching)
performs much faster than both ST-matching and VIMM,
especially when the data set scales up.
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For the interpolation, there is no such a process in ST-
matching and VIMM, hence, we report the time cost of WI-
matching in Figure 17. Note that the interpolation costs a
linear-increasing time along with the number of trajectory
scaling up. The time cost of interpolation is relative small
comparing with the time cost in map-matching, while the
interpolation benefits us a much more sufficient and accurate
trajectory.

In Figure 18, we report the efficiency evaluation. In the
figure, x-axis is the number of input trajectories, and y-axis is
the time cost in seconds. Our method, WI-matching, is much
faster than both ST-matching and VIMM, especially when the
data set is large.

D. Large scale calibrated data set

In Figure 19, we illustrate a set of map-matched GPS points
and their interpolated trajectory. Note that after the calibration,
the low-sampling-rate, erroneous data is not only mapped on
actual roads, but is also amended with sufficient data points to
become a complete trajectory. Base on the calibrated trajectory
data, we can analyze the vehicles’ location information, e.g.,
the distribution of taxis in the city. Figure 20 shows the
calibrated trajectories for the entire data set of 5361 taxis.
Base on our work in [1], [2], we can find that the calibrated
trajectory data can help us give insightful research on taxi’s
behaviors.



(a) Map-matched GPS data points

(b) Interpolated GPS trajectory

Fig. 19. Trajectory calibration results

Fig. 20. Calibrated trajectory data set

VI. CONCLUSION AND FUTURE WORK

Utilizing the geometric and topological information of the
road networks and taking advantage of the impacts of the
historical information on the vehicle trajectories, we propose
a novel weighting-based map matching algorithm and an in-
terpolation algorithm to calibrate the erroneous low-sampling-
rate GPS trajectory data sets in this paper. The map matching
algorithm matches GPS sampling points to the actual roads and
the interpolation algorithm fills the gaps between consecutive
map-matched points and generates a sufficient trajectory. Real
world large scale data sets are utilized in our empirical
experiments and the results confirm the great accuracy and
efficiency of our solution.

In the future work, we are studying alternative weighting
schemes as well as making the weighting schemes automati-
cally adapt to the data set. At the same time, we will try to
utilize the geometric and topological information of the road
networks to tackle more vehicle mobile data related issues.
Another interesting direction is that how much impact will the

historical information make to the vehicle related applications
and research.
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