
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Dissertations and Theses Collection (Open
Access) Dissertations and Theses

2009

A Metaheuristic for the Pickup and Delivery Problem with Split-A Metaheuristic for the Pickup and Delivery Problem with Split-

Loads and its Extension Loads and its Extension

Dai YAO
Singapore Management University, dai.yao.2007@mom.smu.edu.sg

Follow this and additional works at: https://ink.library.smu.edu.sg/etd_coll

 Part of the Operations and Supply Chain Management Commons

Citation Citation
YAO, Dai. A Metaheuristic for the Pickup and Delivery Problem with Split-Loads and its Extension. (2009).
1-111.
Available at:Available at: https://ink.library.smu.edu.sg/etd_coll/1

This Master Thesis is brought to you for free and open access by the Dissertations and Theses at Institutional
Knowledge at Singapore Management University. It has been accepted for inclusion in Dissertations and Theses
Collection (Open Access) by an authorized administrator of Institutional Knowledge at Singapore Management
University. For more information, please email cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/etd_coll
https://ink.library.smu.edu.sg/etd_coll
https://ink.library.smu.edu.sg/etd
https://ink.library.smu.edu.sg/etd_coll?utm_source=ink.library.smu.edu.sg%2Fetd_coll%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1229?utm_source=ink.library.smu.edu.sg%2Fetd_coll%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

A Metaheuristic for the Pickup and Delivery

Problem with Split-Loads and its Extension

by

Dai YAO

Singapore Management University

2009

A Metaheuristic for the Pickup and Delivery

Problem with Split-Loads and its Extension

by

Dai YAO

Submitted in partial fullfillment

of the requirements for the Degree of

Master of Science in Operations Management

Singapore Management University

2009

This thesis entitled:

A Metaheuristic for the Pickup and Delivery Problem with

Split-Loads and its Extension

written by Dai YAO

has been approved by the Lee Kong Chian School of Business

Assoc. Prof. Brian Rodrigues

Practise Assoc. Prof. Moosa Sharafali

Assis. Prof. Lim Yun Fong

Date

The final copy of this thesis has been examined by the signatories, and we find
that both the content and the form meet acceptable presentation standards of

scholarly work in the above mentioned discipline.

A Metaheuristic for the Pickup and Delivery

Problem with Split-Loads and its Extension-

Abstract

by

Dai YAO

In this dissertation, we study improvements in the Pickup and Delivery

Problem that can be achieved by allowing multiple vehicle trips to serve a com-

mon load. We explore how costs can be reduced through the elimination of the

constraint that a load must be served by only one vehicle trip. Specifically, we

investigate the problem of routing vehicles to serve loads that have distinct origins

and destinations, with no constraint on the amount of a load that a vehicle may

serve at a time.

We develop a metaheuristic to solve large scale practical size problems in

this form and apply the metaheuristic to randomly generated data sets. The meta-

heuristic is based on a predetermined fixed number of restarts of annealing-like

procedure with tabu-lists to avoid cycling in the search process and the annealing-

like procedure is to guide the local search in three neighborhoods defined to solve

the problem. We test the algorithm on several sets of problem instances generated

with different transportation requests and over different load size ranges. The ex-

perimental results on these problem sets have shown that benefits are common

if split loads are adopted in designing practical sized transportation network for

different load size configurations, and the most benefit is achieved when all the

loads are just a little above half of the vehicle capacity and have small variations,

and this most benefit is around 33% for all the three 75-, 100-, and 125-request

problem sets, which overtakes the one reported in previous literature. In a more

general setting when some load sizes are greater than the vehicle capacity and

iii

have to be split, there are also certain cost reduction if split loads are applied. We

also generate numeral tests on different load size ranges and split the loads that

are greater than the vehicle capacity using different ”splitting” strategy, in term

of how much amount to split from the original load to form a new load, and find

that there seem to be no optimal ”splitting” strategy, which can assure the best

quality of solutions using the metaheuristic developed in the dissertation.

iv

Contents

Chapter

1 Introduction 1

1.1 Overview . 2

1.2 Dissertation Outline . 5

1.3 Description of the Pickup and Delivery Problem with Split-Loads 6

1.4 Literature Review . 8

1.4.1 Review of SDVRP & SDVRPTW 9

1.4.2 Review of PDPTW . 10

1.5 Contributions . 13

2 Properties of the Problem 14

2.1 Properties of the Problem . 14

3 Solving the Pickup and Delivery Problem with Split Loads 17

3.1 Constructing Initial Solution . 20

3.2 Neighborhood Structures . 20

3.2.1 Load Splitting Operator 21

3.2.2 Load Insertion Operator 22

3.2.3 Load Exchanging Operator 24

3.2.4 Load Rearranging Operator 25

3.3 Metaheuristics . 25

v

3.3.1 Create Split Loads . 27

3.3.2 Combine Routes . 28

3.3.3 Descent Local Search . 28

3.3.4 Intra-Route Load Exchange 29

3.3.5 Intra-Route Load Insertion 30

3.4 Conclusion . 31

4 Numerical Tests 32

4.1 Experimental Design . 33

4.2 Experimental Results . 35

4.2.1 Performance with Different Maximum Allowed Number of

Splits . 35

4.2.2 Performance on Smaller Load Size Ranges 36

4.2.3 Performance on Wider Load Size Ranges 40

4.3 Conclusion . 42

5 Extension to The Basic Problem 43

5.1 Experimental Design . 44

5.2 Experimental Results . 45

5.3 Conclusion . 47

6 Conclusions 48

Bibliography 49

Appendix

A Original Test Results 53

vi

A.1 For Different Maximum Allowed Numbers of Split Loads 53

A.2 For Smaller Load Size Ranges . 62

A.3 For Wider Load Size Ranges . 93

B Key Results in Nowak. et. al. 2008 110

vii

Acknowledgements

It was a great honor for me to be picked up as one of the first batch of

Master of Science in Operations Management students in Singapore Management

University. While working on my MSc degree here, I have received a great amount

of support and help from different people. My degree would be impossible without

these support and help. I would like to begin by thanking my independent study

supervisor and dissertation advisor, Dr. Brian Rodrigues. With other faculty

members, He opened the door for me to the Operations Management area, and he

constantly and well guided me through the whole process and always encouraged

me to challenge myself to even higher height.

I also would like to thank the OM faculty members at Singapore Manage-

ment University and people from elsewhere, who have been helping a lot in my

transformation from an Engineering mindset to an Operations Management mind-

set. In particular, I would like to thank Dr. Lim Yun Fong, Dr. Moosa Sharafari,

Dr. Wee Kwan Eng, Dr. Wu Zhengping, Dr. Onur, at SMU, and Dr. Mahmut

Palar from McMaster University in Canada, for conducting me whether compul-

sory basic courses or seminar courses. I would also like to thank Dr. Ding Qing

for guiding me how to find interesting research problems and how to do research,

and I am really grateful to Dr. Adam Zhu, Dr. Li Rong, Dr. Wang Siqun, Dr.

Pascale Crama and the people mentioned above for their kind and useful sugges-

tions regarding my current status and prospect ahead. I would like also to thank

viii

Dr. Moosa Sharafali and Dr. Lim Yun Fong to serve in my dissertation com-

mittee and provide many needed suggestions. Meanwhile, I would like to thank

Dr. Jeremy Goh from Finance department at SMU and Dr. Reddi Kotha from

Management department at SMU for providing great research opportunities so I

could also touch upon other research stuff in other disciplines in business man-

agement besides Operations Management, and helping me form the diversified

research mindset.

I also owe a great deal to all the friends who helped me out through this

process. They were always willing to take a break from their own work to help

me with any problem. And I am especially indebted to these friends who helped

me with my applications to the world famous business schools for a further Ph.D

study in my chosen discipline. There are so many people to mention here, and

I hope I am not leaving any one alone: Lee Yen Teik, Lin Leming and Chen

Fang from Lee Kong Chian School of Business at SMU, Benjamin EE & Luo Wei

from Fuqua School of Business at Duke University, Zhang Kaifu from INSEAD

Business School, Zhang Kaicheng from Kenan-Flagler School of Business at UNC

at Chapel Hill, Wu Xiaole from Olin School of Business at Washington University

at St. Louis, Li Jun from Wharton Business School at University of Pennsylvania.

And I also thank my previous school mates in Tsinghua Unviersity, such as Chen

Xingrong, He Zihao, Liu Xiaokang, Huang Yaming, Luo Ji and old friends such

as Guo Ruifeng, Zhang Yan, Lin Xiaotian, Qian Yanjiang, Zhang Xiaoqin for

their continues support and concern which helped me overcome the difficulty of

losing my laptop before certain key date and other difficulties during my working

towards my master degree.

Finally, I would like to thank my family. Without their continuous support

and care I would never have finished the journey. Thanks to Dad and Mom for

their regular cares and encouragement, and to my older sister and her husband

ix

for always encouraging me that I am clever enough to pursue any degree I am

interested.

Dedication

To the people whom I love and who love me.

xi

Tables

Table

4.1 Average CPU Time, No. of Splits and Cost Reduction for Problem

Sets with Split Loads on Smaller Load Size Ranges 39

4.2 Average CPU Time, No. of Splits and Cost Reduction for Problem

Sets with Split Loads on Wider Load Size Ranges 41

5.1 Average CPU Time and Cost Reduction for Problem Sets with Split

Loads on Different Split Policies 46

A.1 Original test results for 75-request problem sets with different max-

imum allowed numbers of splits 54

A.2 Original test results for 100-request problem sets with different

maximum allowed numbers of splits 56

A.3 Original test results for 125-request problem sets with different

maximum allowed numbers of splits 59

A.4 Original test results for 75-request problem sets on smaller load size

ranges . 62

A.5 Original test results for 100-request problem sets on smaller load

size ranges . 73

A.6 Original test results for 125-request problem sets on smaller load

size ranges . 83

xii

A.7 Original test results for 75-request problem sets on wider load size

ranges . 94

A.8 Original test results for 100-request problem sets on wider load size

ranges . 99

A.9 Original test results for 125-request problem sets on wider load size

ranges . 104

B.1 Average CPU Time, No. of Splits with Split Loads on Smaller Load

Size Ranges in NOWAK . 111

B.2 Average CPU Time, Cost Reduction with Split Loads on Wider

Load Size Ranges in NOWAK . 111

xiii

Figures

Figure

1.1 Example of benefit of split loads showing a) route plan without

split loads; and b) route plan with split loads. Initially constructed

as Figure 1 in [6]. 5

3.1 Load Split Operator . 22

3.2 Load Insertion Operator . 23

3.3 Load Exchanging Operator . 24

3.4 Load Rearranging Operator . 25

4.1 Average Percentage Cost Reduction with Split Loads for Different

Maximum Allowed Number of Splits for Load Range [0.51, 0.6] . . 36

4.2 Average Percentage Cost Reduction with Split Loads for Each Load

Range Tested for the 75-, 100-, and 125-Request Problem Sets . . 37

B.1 Numerical Test Results on Smaller Load Size Ranges in NOWAK 110

Chapter 1

Introduction

Transportation companies are always struggling to eliminate costs due to

endogenous and exogenous dynamics to gain a cutting edge over its market rivals.

From a transportation company’s perspective, the endogenous dynamics it con-

stantly faces are mainly related to its resource defaults like vehicles broken down,

unavailability of a driver simply because he is ill, etc., which are unpredictable and

hard to control. Transportation companies usually employ excess resources (more

vehicles and more drivers) to cope with such unhappy situations. The exogenous

dynamics, however, if handled properly, can be effectively avoided or hedged to a

certain extend, e.g. the fluctuations of oil prices can be hedged by strategically

buying oil options in financial markets, the gradually exposed demand informa-

tion between different locations the company is operating can be well handled by

adopting effective vehicle routing algorithms in a rolling-horizon fashion, which is

called online/real-time vehicle routing. These controllable dynamics are of interest

to both academic researchers and industry practitioners.

A transportation company usually has a fleet of vehicles to serve demands

and has operations in a complex network consisting of many sites, and these

demands may have or not associated constraints, e.g. service quantity regarding

the loads to be transported, completion time requirements. The transportation

company may have some constraints itself as well, such as time window constraints

2

at each of the sites, the maximum driving time for each of the drivers who operate

the fleet of vehicles, the maximum length of a route that can be managed, etc. A

vehicle routing algorithm usually takes some of the constraints into consideration

and try to effectively route a vehicle and select the loads to be placed on the

vehicle, whether through consolidating different loads together or split a load into

different pieces, to take advantage of the vehicle time and capacity, which has

been studied a lot in the Vehicle Routing Problem(VRP) literature and there

are many variants corresponding to different combinations of problem types and

constraints.

The dissertation focuses on improvements in vehicle routing that can be

gained by allowing multiple vehicles, or multiple visits by an identical vehicle, to

serve a common load, and each load is general, i.e. has no specific less than, greater

than, or equal to numerical relationship with vehicle capacity, which is normalized

to be 1, and we start off by studying a simplified version of the problem where

all the loads are capped at the vehicle capacity, i.e. less than or equal to the

vehicle capacity. We explore the benefit of using split loads in this setting and

then explore the role of split loads in more general setting. We also quantify the

benefit of employing split loads in the simplified problem setting and describe those

instances that lead to the most benefit. Subsequently, we extend the simplified

problem to the case when all the loads are general, and explore different splitting

strategies, in terms of the amount of load to split to form a new load, and find

that there seems to be no optimal splitting strategy that can always guarantee

the best quality of solutions using the metaheuristic developed in the dissertation.

1.1 Overview

Transportation companies nowadays are forced to operate very meticulously

because of the oil surge, tighter regulations on driving hours and conditions, and

3

higher payment and increasing shortages of driver sources. While the external

pressures are growing, competition within the transportation industry is also turn-

ing fierce, with the number of companies in the business is continuously increasing

[1]. However, despite various cost saving measures having been implemented at

the strategic level, such as entering in certain oil options contract to hedge the

fluctuation of oil price, renting vehicles/drivers to cope with determined routes

instead of using dedicated ones, building transportation alliance, etc., transporta-

tion companies continue to suffer from inefficiency. One of the major indicators

of the inefficiency is the common occurrence of excess capacity within a firm’s

fleet of vehicles. Frequent partial loads or empty backhauls reveal that many ve-

hicles often travel with significant amounts of available capacity. Each of these

occurrences represents a potential room to shrink costs.

An obvious solution to the excess capacity problem is to consolidate partial

(or full) loads to be transported on similar routes onto common vehicles. If a

supplier is providing parts for two manufacturers in the adjacency, using one ve-

hicle for both deliveries is clearly more efficient than dedicating separate vehicles.

Similarly, a vehicle returning on an empty backhaul may be used to transport a

load intended to travel close to its return site. This improvement in efficiency

can occur with the enhancement of communication between separate entities with

similar transportation needs. If two closely located manufacturers share informa-

tion regarding transportation needs, there is a possibility that they could afford

together the costs of those needs. These opportunities are currently being made

use of through a variety of avenues, including internet transportation exchanges

and the pooling of transportation resources within certain industries. However,

the occurrence of excess capacity continues, somewhat unabated. For a variety of

reasons, many relationships that could be exploited for mutual benefits are not.

The benefits of allowing for the pooling of loads with fleet sharing are easy

4

to see. However, a more subtle extension of this option is to allow not only any

vehicle to serve any load, but also multiple vehicles to service the same load. This

can be further extended to allow a vehicle to service the same load multiple times

on one route. Splitting a load such that the delivery of that load is completed in

pieces rather than all at once appears to initially generate an additional cost for

each trip that services a part of the load. However, there are numerous instances

in which load splitting results in a cost reduction. Several studies have shown

the benet of split deliveries for the Vehicle Routing Problem (VRP), in which a

vehicle operating out of a depot makes a series of deliveries on each route ([2],

[3], [4], [5]). Recent study on the Pickup and Delivery Problem (PDP), in which

each load has a specific origin and destination associated with it, has shown that

there is also huge benefit of using split loads for the problem [6]. And it has been

proven that the benefit of load splits for PDP is maximized when all the loads a

a little more than half of the vehicle capacity, and the authors quantify that the

maximum cost saving of using split load is half of the original cost when no split

load allowed. The authors also verify the conclusion by numerical examples and

a case study from a real business.

Figure 1.1 from [6] presents an example of the potential benefit. The load

sizes represent the portion of a truckload that is to be delivered. In this example,

all three loads share a common destination. Without split loads, the vehicle

must deliver each of the loads individually, as capacity constraints prohibit the

combination of any loads on the vehicle. With split loads, the vehicle may pick

up load A, split load B by picking up 0.4 truckloads, and deliver both to the

destination. It may then return for the other half of load B, pick up load C,

and deliver both to the destination. The benefit of using split loads is then the

elimination of two of the long paths between the origins and destination, with the

addition of two short trips between the origins.

5

Figure 1.1: Example of benefit of split loads showing a) route plan without split
loads; and b) route plan with split loads. Initially constructed as Figure 1 in [6].

The next section will introduce the outline of the dissertation and later we

will describe the pickup and delivery problem in details in this chapter.

1.2 Dissertation Outline

In the remainder of this chapter, we will present a general description of

the Pickup and Delivery Problem with Split Loads, as well as discuss the relevant

literature of the problem studied in the dissertation.

Chapter 2 is devoted to mathematical formulation and notation introduc-

tion. Section ?? cites from [6] a mathematical formulation of the Pickup and

Delivery Problem with Split Loads. Section 2.1 shows some structural properties

of the problem, some of which are from existing literatures.

Chapter 3 solves the Pickup and Delivery Problem with Split Loads and all

the loads are less than or equal to the vehicle capacity. Section 3.1 introduces

6

the way to construct an initial solution, Section 3.2 introduces four different local

search methods to explore different neighborhoods of a solution, and Section 3.3

presents the general metaheuristic structure. Section 3.4 concludes and closes the

chapter.

Chapter 4 presents numerical tests for the problem described in Chapter 3.

Section 4.1 describes the general experimental design, including how the desired

data is generated and the number of problem sets that are generated and tested.

Section 4.2 presents the experimental results which consist of three main exper-

iments, Section 4.2.1 presents the relationship between cost reduction and the

maximum allowed number of splits on a load, Section 4.2.2 presents the results

with loads generated over smaller load size ranges, and Section 4.2.3 presents the

results with loads generated over wider load size ranges. Section 4.3 concludes

and closes the chapter.

Chapter 5 uses numerical tests to study the Pickup and Delivery Problem

with Split Loads when some loads are greater than the vehicle capacity. Section

5.1 describes the general experimental design. Section 5.2 presents the major

experimental results, and Section 5.3 concludes and closes the chapter.

Chapter 6 concludes the dissertation and discuss future possible research

questions.

1.3 Description of the Pickup and Delivery Problem with Split-

Loads

The Pickup and Delivery Problem with Split Loads is originated in [6],

and it is motivated by the less-than-truckload(LTL) trucking industry and the

effect that the use of split loads could have on its operation. The LTL trucking

industry, in contrast to the truckload trucking industry, is the portion of the

industry that moves customer loads that do not fill an entire trailer. Traditionally,

7

these shipments weigh between 150 and 10,000 pounds [10]. In general, a load is

picked up at an origin and delivered to some destination on a vehicle route. These

pickups and deliveries may occur in any order, as long as vehicle capacity is not

violated and the origin of a load is visited prior its destination. The vehicle begins

and ends the day empty, at a depot.

Consider a fleet of capacitated vehicles, all with the same capacity, that

travel on a road network with all distances known. Each vehicle accrues a travel

cost each time it travels a road segment or arc in the network, and this cost is

arc dependent. We assume that the costs associated with each arc are symmetric

and the triangular inequality is obeyed. The vehicles must service a set of loads

to be picked up from their respective origins and delivered to their destinations.

The problem objective is to determine a best policy for selecting the next site for

a vehicle to visit and, if the vehicle arrives at an origin, the amount of a load to

pick up, that minimizes the total cost of each vehicle trip.

Consider a single vehicle with some set of loads to be picked up and delivered.

The path of the vehicle is such that it leaves the depot empty and must first visit

an origin (a destination will not be visited as the vehicle is empty). Either the

entire load located at the origin, or some portion of the load, is picked up. The

vehicle will not visit an origin if it does not pick up a load at that location. If

there are many loads at the origin that are to be dropped at multiple destinations,

the vehicle may pick up several loads at the same time. Vehicle capacity must

not be violated in selecting any loads for pick up. After visiting the initial origin,

the vehicle may either visit another origin or travel to a destination. If another

origin is visited, an additional load(s) must be picked up, abiding by capacity

constraints. If a destination is visited, all loads on the vehicle destined for that

location are removed from the vehicle. If the vehicle is empty after visiting a

destination, it may either continue to another origin, or return to the depot. If

8

the vehicle is not empty, it may travel to an origin or another destination.

The decision made at each origin involves the selection of a load amount to

place on the vehicle. As indicated earlier, the size of the load picked up may be

the entire load, or some fractional portion of the load.

There are two conditions under which a load is considered to be split, which

are first defined in Nowak et. al. 2008 [6]:

(1) when the total load size to be delivered between a specific origin and

destination is less than or equal to vehicle capacity, a load is split if the

vehicle pick up any amount that is less than the full load size requiring

service.

(2) when the load size to be delivered is greater than vehicle capacity, a load

is split if the number of pickups used to service the load is greater than

the upper integer of the total load size divided by vehicle capacity. For

example, if a load is 3.3 truckloads and vehicle capacity is 1, at least four

trips will be required to fully service the load. If the load is picked up in

five or more increments, then it is considered to be split.

1.4 Literature Review

The PDP is the root of and most relevant to the work presented here,

however, due to the intrinsic relations between PDP and VRP, that VRP is a

special case of PDP that all the origins or destinations are a central depot, and as

split loads have been most extensively applied to the VRP, we also consider VRP

as a most relevant topic. Laporte (2007) provides a thorough review of the general

vehicle routing problem, Bräysy and Gendreau (2005a, 2005b) provide an excellent

review of the vehicle routing problem with time windows, and Savelsbergh and Sol

(1995) provides the thorough review of the earlier work on the general pickup and

9

delivery problem. We have mentioned already in Section 1.1 that the only work on

PDPSL existing in the literature is Nowak, Ergun and White (2008) [6], leaving

only SDVRP1 , SDVRPTW2 and PDPTW3 to review. We are going to review

these three topics sequentially in the following two sub-sections. In Section 1.4.1,

we review the pertinent literature of SDVRP and SDVRPTW while in Section

1.4.2, we review the related topics of PDPTW.

1.4.1 Review of SDVRP & SDVRPTW

In the SDVRP, the single visit assumption is relaxed and each customer

may be served by more than one vehicle. Compared with other variants of the

VRP, The SDVRP has received little attention in the past. It is first introduced

by Dror and Trudeau (1989). They define the SDVRP problem, derive some

important structural properties and propose a local search heuristic to show how

split deliveries could result in savings, both in the total distance traveled and the

number of vehicles utilized. As shown by Dror and Trudeau (1990), the VRPSD is

a relaxation of the classical vehicle routing problem, but it remains NP-hard. Dror,

Laporte, and Trudeau (1994) presents an integer programming formulation to the

problem and develops an exact constraint relaxation branch and bound algorithm

for the VRPSD. Frizzell and Giffin (1995) studies the problem with grid network

distances and time windows constraints. Their proposed heuristics are especially

tailored for the problems and this kind of network structure. Mullaseril, Dror

and Leung (1997) presents a heuristic, similar to the one proposed by Dror and

Trudeau (1989, 1990), for the split-delivery capacitated rural postman problem

with time windows on arcs, and the heuristic is applied to a real-life problem of

managing the trucks for distributing feed in a cattle ranch in Arizona. Sierksma

1 Vehicle routing problem with split deliveries
2 Vehicle routing problems with split deliveries and time windows
3 Pickup and delivery problems with time windows

10

and Tijssen (1998) also study some real application.

In some recent work, Belenguer, Martinez and Mota (2000) propose a lower

bound and computationally test this bound. Archetti, Savelsbergh, and Speranza

(2006) also give a tight bound on the cost reduction that can be obtained by

allowing split deliveries. Ho and Haugland (2004) present a tabu search heuristic

that takes time windows into consideration and applies four common move oper-

ators while simultaneously generating split loads. Archetti, Hertz, and Speranza

(2006) also employ a tabu search heuristic to solve the SDVRP. They use insertion

moves in local improvement, with the possibility of inserting a customer into a

route without removing the customer from another route. In Archetti, Speranza

and Savelsbergh (2008), they further the idea, and present a solution approach

that integrates tabu search heuristic with optimization by using an integer pro-

gram to explore promising parts of the search space identified by the tabu search

heuristic. This approach improves the solutions of their previously developed

heuristic (Archetti, Hertz, and Speranza 2006) in all but only one instance of a

large test set.

1.4.2 Review of PDPTW

Most existing works focus on the single vehicle pickup and delivery problem

with time windows (1-PDPTW) due to difficulty of PDPTW. Psarafits (1980,

1983) develop a dynamic programming algorithm with O(n23n) time complexity

which can solve problems with up to 10 requests. Sexton and Bodin (1985a, 1985b)

solve the 1-PDPTW by breaking it into a coordinating routing master problem

formulated as an integer program, and a scheduling subproblem for a fixed route,

which was formulated as linear program. By using a heuristic developed from

Bender’s decomposition, the routing master problem and the scheduling subpro-

gram were solved individually. Sexton and Choi (1986) used a similar approach

11

to minimize a linear combination of total vehicle operating time and total cus-

tomer penalty due to the violation of the time windows for the single vehicle

pickup and delivery problem with soft time windows. In another paper, Sexton

and Bodin (1983) present an insertion algorithm for the 1-PDPTW. Desrosiers et

al. (1986) use a forward dynamic programming for the single vehicle dial-a-ride

problem. They minimize the total travel costs considering both the time and dis-

tance dimension when solving the shortest path problem with time windows. The

efficiency of the algorithm is improved by eliminating states that are incompatible

with vehicle capacity, precedence and time window constraints. Van der Bruggen

et al.(1993) presented a two-phase heuristic method based on arc-exchange proce-

dures and an alternative algorithm based on simulated annealing. The approaches

produce near-optimal solutions on 38 real-life problems in less than 150 seconds

each. Healy and Roll (1995) propose a new local search extension called sacrific-

ing, yielding significant improvements without deterioration of the running time,

to resolve problems of size from 10 to 100 customers. Recently, Landrieu, Mati

and Binder (2001) present a tabu search heuristic uses local improvements. The

vertices are swapped or inserted within a route, while respecting precedence and

vehicle capacity constraints, to construct the neighborhood.

The multiple vehicle pickup and delivery problem with time windows has

received less attention. Dumas, Desrosiers and Soumis (1986) propose an optimal

algorithm which adopts a column generation scheme with a shortest path sub-

problem with capacity, time window, precedence and coupling constraints. The

algorithm can solve 1-PDPTW problems with up to 55 requests and multiple ve-

hicle PDPTW with smaller number of requests per vehicle. Nanry and Barnes

(2000) propose a reactive tabu search heuristic in which origin and destinations

may be either inserted from one route to another or swapped with an origin-

destination pair on another route to generate new solutions, with a third type of

12

move is to insert individual origins or destinations forward or backward within

a route to improve the solution quality or feasibility, as these two moves may

violate vehicle capacity constraints. Similarly, Toth and Vigo (1997) present a

parallel insertion heuristic to solve the handicapped persons transportation prob-

lem. Li and Lim (2001) develop a tabu embedded simulated annealing algorithm

which restarts a search procedure from the current best solution after several non-

improving search iterations. They also generate six new data sets consisting of

56 100-customer problem instances from Solomon (1987)’s benchmark instances

for the vehicle routing problem with time windows. The computational tests have

shown this algorithm can handle practical sized multiple vehicle PDPTW problem

instances with various distribution properties. Lim, Lim, and Rodrigues (2002)

apply squeaky wheel optimization and local search to the PDPTW. Bent and Hen-

tenryck (2006) develop a similar algorithm for the PDPTW, in which a simulated

annealing approach is used to decrease the number of routes and a large neigh-

borhood search is used to decrease total travel cost. Xu et al. (2003) consider a

PDPTW with several extra real-life constraints, including multiple time windows,

compatibility constraints, and maximum driving-time restrictions and propose

a column generation heuristic to solve the practical problem. Their algorithm

can solve problem instances with up to 500 requests. Ropke and Pisinger (2006)

develop an adaptive large neighborhood search heuristic to solve the PDPTW,

which combines a number of competing subheuristics that are used with a fre-

quency corresponding to their historic performance and is able to improve the

solutions greatly of more than 350 benchmark instances with up to 500 requests

from Li and Lim (2001).

13

1.5 Contributions

In this dissertation, we investigate the Pickup and Delivery Problem with

Split-Loads and develop a metaheuristic to solve the problem, which restarts from

the previous best solution after a predetermined number of non-improving search

iterations. We show by numerical tests that the most cost reduction is achieved

when all the load demands are only a little bit more than half of the vehicle

capacity and with small variations, and the most cost reduction is theoretically

approaching half of the original cost when split loads are not allowed, while in the

numerical tests, the cost reduction in most cases are far below the best result due

to realistic factors such as location proximities, demand variations, among others.

We also explore the extension to the basic PDPSL problem by generalizing

the load, meaning that the amount of each load can be either less than, or equal

to, or greater than the capacity of the vehicle to deliver the loads. The generality

of a load is commonly encountered in reality. And we find that in general there

are some benefits by applying split loads to the transportation network design

even when the loads are general and those loads that are greater than the vehicle

capacity have to be split, and we find there is no optimal splitting policy that can

always guarantee the best quality of solutions.

Chapter 2

Properties of the Problem

We have described the Pickup and Delivery Problem with Split Loads in

Chapter 1.1. In this chapter, we present some structural properties of the problem

that have been introduced in previous literatures; A non-linear formulation, and

the only formulation of the problem, can be found in [7].

2.1 Properties of the Problem

In this section, we present three properties of the problem. The first two

structural properties were found and introduced in [6], describing how much is the

benefit by the use of split loads in the pickup and delivery problem and the condi-

tions when the benefit is maximized, while the last one describes the complexity of

the Pickup and Delivery Problem with Split Loads, and is a natural extension to

the Split Delivery Vehicle Routing Problem (SDVRP) since, as mentioned before,

the Vehicle Routing Problem is a special case of the Pickup and Delivery Problem

where all the delivery locations are the depot.

THEOREM 1 (From Theorem 1 in [6]). Given the pickup and delivery loca-

tions of a set of k loads, a set of m vehicles of capacity Q, and a very small

value ϵ, let v(PDPSL) be the cost of the optimal PDPSL solution to deliver these

loads, and let v(PDP) be the cost of the optimal PDP solution. Then the ratio

v(PDP)/v(PDPSL) is maximized when the loads are all of size Q/2+ϵ, as k →∞.

15

Proof: Given a fixed number of loads and a set of origin and destination

locations, the largest reduction in cost through the use of split loads occurs when

the ratio of loads that must be delivered individually in a PDP solution relative to

a PDPSL solution is maximized. As this ratio increases, fewer loads may be placed

on the vehicle concurrently for delivery with the PDP solution relative to the

PDPSL solution. With less opportunity to delivery loads simultaneously, v(PDP)

increases relative to v(PDPSL). Therefore, the load size that maximizes the ratio

of loads that must be delivered individually in a PDP solution relative to a PDPSL

solution is also the load size that maximizes the ratio v(PDP)/v(PDPSL).

Consider any positive integer m ≥ 2 . If all load sizes are Q/m + ϵ, we can

combine m − 1 loads without splitting or m loads with splitting (after removing

each ϵ). Therefore, the ratio of the number of loads that must be delivered indi-

vidually between the PDP and PDPSL cases will be ⌈k/(m − 1)⌉/(⌈k/m⌉ + 1).

As m increases (i.e., as load sizes decrease) and k →∞, this ratio decreases.

When m = 2, the ratio of the number of loads that must be delivered

individually between the non-split and split cases become k/(⌈k/2⌉ + kϵ). This

ratio decreases with an increase in ϵ (especially when ϵ > Q/k, the ϵ portions of

the loads can no longer be combined onto one vehicle). Therefore, the ratio of

loads that can be delivered concurrently in a PDP solution relative to a PDPSL

solution is maximized when load sizes are equal to Q/2 + ϵ.

CONJECTURE 2 (From Conjecture 2 in [6]). Given any set of loads requiring

service, assume that v(PDPSL) is the cost of the optimal PDPSL solution to

deliver these loads and v(PDP) is the cost of the optimal PDP solution. Then,

v(PDP) ≤ 2v(PDPSL).

In the example in Section ch1overview, the maximum ratio of costs was

found to be two. Although a bound of two may be shown to exist for specific

simple cases of the PDPSL (e.g., when an optimal PDPSL routehas at most one

16

split load on the vehicle at any time), a general bound is more difficult to define.

In [6], they found no instance where all loads in an optimal PDP solution can be

delivered complete with a cost that is greater than double that of the PDPSL cost

and the property is raised as a conjecture. In out numerical testing, we also found

no instance that violate this property. However, we can not prove this property

for every instance of the problem either.

THEOREM 3. The PDPSL is NP-hard.

It is shown in [14] that the Skip Delivery Problem, in which each of the

vehicles has a maximum capacity of two skips, is NP-hard. This is a special case

of the general Split Delivery Vehicle Routing Problem. While the general Split

Delivery Vehicle Routing Problem is a special case of the Pickup and Delivery

Problem with Split Loads where all the delivery locations are the depot, so the

Pickup and Delivery Problem with Split Loads is also NP-hard.

Chapter 3

Solving the Pickup and Delivery Problem with Split Loads

Metaheuristics and local search are prevalently used nowadays in solving

difficult computational problems, especially in the family of Vehicle Routing Prob-

lems. As the VRP in its general form is a special case of the Pickup and Delivery

Problem in its general form, where all the delivery locations are the depot, meta-

heuristics and local search are also applicable to the PDP. When split loads are

permitted in the PDP, the solution space is enlarged rapidly since each of the

loads could be a candidate for one or multiple splits and each of the splits can be

of whatever quantity as long as it is less than the residual amount of the load.

Due to this reason, we cannot expect a perfect exact solution to the PDPSL to get

its optima when the number of loads are large (in small cases, dynamic program-

ming could be used to get an optimal solution, see [7], but even in this situation,

the task is time consuming), instead, we would rather develop efficient and ef-

fect metaheuristic and local search schemes so we are able to solve practical sized

problems.

In the dissertation, we propose a tabu-embedded simulated annealing-like

algorithm which restarts a search procedure from the current best solution after

several non-improvement search iterations. The idea of this hybrid metaheuristic

is from [11]. The difference of this algorithm with the traditional implementation

of the simulated annealing algorithms is that instead of performing the simulated

18

annealing procedure on the probabilistically accepted solution repeatedly until

the procedure terminates, this algorithm compels the simulated annealing proce-

dure to restart from the current best solution after several simulated annealing

iterations without any improvement, and the algorithm terminates after a pre-

determined number of restarts without improvement. Our algorithm is different

from theirs, too, in the first place, we are not using standard simulated anneal-

ing procedure to probabilistically accept a new solution because we have many

sub-processes in the procedure, while the creating-split-load and inserting-load

processes may increase or decrease cost, we are always seeking cost reduction in

other processes like combining-routes, exchanging-loads, rearranging-loads. So,

we adopt the probabilistically accepting policy in creating-split-load and use a

predetermined number of iterations, instead of a random number of iterations, to

control the simulated annealing procedure; in the second place, we are solving the

PDPSL problem and they were solving the Pickup and Delivery Problem with

Time Windows so we have not only the load-inserting, load-exchanging, load-

rearranging operators, but also load-splitting operator to create split loads.

In [6], a similar tabu search algorithm, with predetermined number of it-

erations and restarting scheme from the current best solution, was proposed to

solve the PDPSL as well, but their algorithm is more complicated than our. The

differences between their algorithm and ours lie in the following aspects: (1) they

have separate tabu lists for the first and second split on a load and the maximum

allowed splits on a load is 2 in their algorithm; while in ours, we first investigate

the effect of the number of load splits, i.e. compare the performance when differ-

ent number of load splits are applied, and conclude that the number of load splits

does not affect much the cost reduction (see our first numerical test in Chapter 4);

based on this conclusion, we use a simpler tabu structure for the split loads which

does not distinguish whether the split load is the first or the second or the third

19

split on a certain load, and we allow a maximum of 3 splits for the subsequent

numerical tests in Chapter 4; (2) in their algorithm, there are two levels of inner

loops and at the first level, the load splitting process is called to create a possible

split load, the first level of inner loop is controlled by a predetermined fix integer

and the iterator is keeping increasing; at the second level, combining route, load

exchanging and load inserting processes are called to optimize the current solution

generated by the load splitting process, and the second level of inner loop is con-

trolled by a predetermined fixed integer and the iterator is set to be 0 when the

current solution is optimized. While in our algorithm, the load splitting operator

is also put in the second inner loop and the second inner loop is controlled in the

same way, but we reset the iterator of the first inner loop to be 0 if the second

inner loop comes out with a better solution, thus resemble the way used in [11].

The chapter is organized in this way that in section 3.1, we introduce the

way how we create an inial solution to the problem; in section 3.2, we develop

a series of operators, i.e. load splitting operator, load insertion operator, load

exchanging operator, load rearranging operator, which enable us to explore the

neighborhood of a given solution, specifically, in section 3.2.1, we introduce how

we create a split load and the criteria to accept the split load; in section 3.2.2,

we introduce how a load can be inserted from a route to another route or a place

on a route to another place on the same route, and what will be performed on

the associated pickup and delivery locations; in section 3.2.3, we describe how a

pair of loads is exchanged, whether from two different routes or a same route, and

what will be performed on the associated pickup and delivery locations, naturally,

a load exchanging operator is a combination of two load insertion operator on

two different loads; in section 3.2.4, we describe how we rearrange the pickup and

delivery locations on a route to get a better solution.

In developing the metaheuristics, we assume that the amount of each load is

20

less than the vehicle capacity and there is only 1 vehicle. We will briefly introduce

how to deal with the case when the amount of some loads is greater than the vehicle

capacity (i.e. loads have to be split) and show some numerical results, and we will

also briefly discuss the situation when multiple vehicles are available in Chapter

4.

3.1 Constructing Initial Solution

In constructing the initial solution, we do not consider splitting load but just

transport the load from the pickup location to the corresponding delivery location

as a whole. There are two prevalent ways to construct initial solutions to VRP

and PDP problems, one way is to create a route for each load and eliminate some

of the routes in the subsequent processes; the other is to insert the selected load

into the existing routes using the insertion heuristic in [12], and during the inser-

tion procedure, the selected load is inserted into the best suitable location in the

partially-constructed route that cause the minimal increment in travel cost. After

all the loads are inserted, an initial solution is obtained. There is no difference in

the 1 vehicle case and we follow the first way in the algorithm.

3.2 Neighborhood Structures

Load swap operators are commonly used in the literature to explore neigh-

borhood in local search procedures, as the solutions to these kinds of problems

are often naturally represented by some routes with sequences of customer nodes

which are visited by the vehicles to provide the desired service. We use three

load swap operators in performing local search within the algorithm, which are

very prevalent in previous researches, and they are load insertion operator, load

exchanging operator, and load rearranging operator. Furthermore, to explore the

even larger neighborhood space under the condition that a load can be transported

21

by many vehicles or many times by the same vehicle, thus only a portion of the

load might be delivered each time, we develop a load splitting operator which

moves a portion of a load on one route to another route, or to a different segment

on the same route, to fill up the excess capacity in that route segment. We use

three operators, load split operator, load insertion operator, and load exchange

operator, to generate neighborhood candidates for the metaheuristic procedure,

and we use the load rearranging operator to do post-optimization within the other

operators.

3.2.1 Load Splitting Operator

The load split operator moves a portion of a load on one route to a different

segment on the same route, or a segment on another route, to fill up the excess

capacity in this segment, subject to all the constraints imposed on PDPTWSL.

In generating the split load, a load is randomly selected and its size is compared

to all occurrences of excess capacity along the same route, or on another route. If

the size of the load is greater than one of these occurrences of excess capacity, the

load might be split, with the portion to be moved that has the same size as the

excess capacity at the location on the route it is moved to. That is, if a load of

size 0.8 loads is to be split and there are 0.5 loads of excess capacity elsewhere on

the same route or on another route, 0.5 loads will be moved to fill up that excess

capacity, and 0.3 loads will remains in the original position on the route.

Figure 3.1 depicts the split load creation, where the route segment 1 visits

P1, deliveries load 1 from P1 to D1, and has the excess capacity of 0.5 to be

filled in, thus load 2 could be split, with 0.5 loads to be delivered with load 1, and

the left 0.3 load to be delivered in the original route segment. The final sequence

of the locations P1, P2, D2, D1 may not be as arranged in the figure since load

rearranging operator may change this order.

22
Route Segment 2: 0.8 loads

Route Segment 1: 0.5 loads

P1

D1

P2
D2

Route Segment 2: 0.3 loads

Route Segment 1: 0.5+0.5 loads

P1

D1

P2
D2

Loads:

1 = 0.5

2 = 0.8

Figure 3.1: Load Split Operator

3.2.1.1 Criteria to Accept a Split

Creating a split load incurs an increase in the total travel cost and can never

reduce the cost. Following the method used in [7], we accept a split load if the

ratio of the incurred cost times 8 to the original cost of the route is less than a

randomly generated decimal number that is between 0 and 1, and if the ratio is

greater than 0.8, it is capped at 0.8. The parameter is set to get best possible

result after several tests.

3.2.2 Load Insertion Operator

The load insertion operator moves one load, consisting of a pickup location

and a delivery location, from one route to another route, or from one route segment

to another route segment within the a single route.

In Figure 3.2, P1 and D1 are originally two locations in route segment 1. The

load insertion operator first removes the two locations from the route where route

segment 1 resides, and then insert them to optimal positions in the route where

route segment 2 resides, subject to P1 being visited before D1. The final sequence

23

Load insertion Operator

Route Segment 1

Route Segment 2

: Pickup

: Delivery

P1 D1

P2 D2

Route Segment 1

Route Segment 2

P1 D1

P2 D2

Situation 1

Situation 2

Situation 1: if there are no other loads on the route that are to be delivered to D1,

remove D1 from the route;

Situation 2: if there are other loads on the route that are to be delivered to D1,

don't remove D1.

Figure 3.2: Load Insertion Operator

of the locations P1, P2, D2, D1 in route segment 2 may not be as arranged in

the figure since load rearranging operator may change the order. As split loads

are allowed, there are two cases that deserve attention regarding removing the

delivery location D1:

• If there are other loads, whether from the same load that is picked up at

P1 and is to be delivered to D1, or from another load that is picked up

somewhere else and is to be delivered to D1, on the route segment that

are to be delivered to D1, don’t remove D1;

• If there are no other loads on the route segment that are to be delivered

to D1, remove D1.

24

3.2.3 Load Exchanging Operator

The load exchanging operator exchanges one load, consisting of a pickup

location and a delivery location, with another load on another route, or in another

route segment within the same route.

Load exchange Operator

Route Segment 1

Route Segment 2

: Pickup

: Delivery

P1 D1

P2 D2

Route Segment 1

Route Segment 2

P1 D1

P2 D2

Situation 1

Situation 2

Situation 1

Situation 3

Situation 1: if there are no other loads on the route that RS1 belongs to which are to be delivered

to D1, or there are no other loads on the route that RS2 belongs to which are to be delivered to D2;

Situation 2: if there are other loads on the route that RS1 belogns to which are to be delivered to D1;

Situation 3: if there are other loads on the route that RS2 belongs to which are to be delivered to D2

Figure 3.3: Load Exchanging Operator

The load exchanging operator is actually a combination of two load insertion

operators. In Figure 3.3, P1 and D1 are originally two locations in route segment

1 and P2 and D2 are originally two locations in route segment 2. The load

exchanging operator first remove P1 and D1 from the route that route segment

1 resides (route 1), and P2 and D2 from the route that route segment 2 resides

(route 2), and insert P1 and D1 into route 1 optimally, insert P2 and D2 into

route 2 optimally. Based on the same consideration as that in the load insertion

operator, we need to be prudent when removing the delivery locations D1 and D2

from its respective original route.

25

3.2.4 Load Rearranging Operator

Within the same route, the load rearrange operator rearrange the pickup

and delivery locations of a load to the best positions that maximally reduce the

travel cost.

Load rearrange Operator

Route Segment

: Pickup

: Delivery

P1 D1

Route Segment
P1

D1

Figure 3.4: Load Rearranging Operator

In Figure 3.4, P1 and D1 are pickup and delivery locations of a load in a

route. The load rearranging operator first removes P1 and D1 from the route then

inserts them into the best positions within the same route.

3.3 Metaheuristics

A description of the general heuristic is presented here, followed by the

algorithmic subroutines used for split load creation and local improvement. The

variables used are as follows:

iter1 - counter for the number of iterations for first split load generated

iter2 - counter for the number of iterations for second split load generated

ITERMAIN1 - upper bound on the number of iterations for iter1

ITERMAIN2 - upper bound on the number of iterations for iter2

TEMPCOST - cost of the solution that is being updated

BASECOST - cost of a solution with no split loads created

26

WORKCOST - cost used for comparison to determine if improvements

were made after iter4 loop

The general heuristic operates as follows (when a cost is updated, the cor-

responding solution is updated as well):

Generate routes: Create an initial feasible solution and set this as the

basic solution, BASECOST. Set iter1 and iter2 equal to 0.

While (iter1 < ITERMAIN1)

{

Set WORKCOST equal to BASECOST ;

Set TEMPCOST equal to WORKCOST ;

While (iter2 < ITERMAIN2)

{

Create Split Loads. Update TEMPCOST .

Combine Routes. Update TEMPCOST .

Intra-Route Load Exchange. Update TEMPCOST .

Intra-Route Load Insertion. Update TEMPCOST .

Inter-Route Load Exchange. Update TEMPCOST .

Inter-Route Load Insertion. Update TEMPCOST .

If TEMPCOST < WORKCOST , set WORKCOST = TEMPCOST ,

and iter2 = 0.

Else increment iter2;

}

If WORKCOST < BASECOST , set BASECOST = WORKCOST ,

and iter1 = 0.

Else increment iter1;

}

27

3.3.1 Create Split Loads

The following additional lists and variables are used for the algorithm to

create split loads:

insertdone - the list of loads that have been previously inserted into a route

using the Load Insertion algorithm. This prevents cycling of loads that have just

been moved to a spot on a route from being split back to their original location.

tabusplitfail - the list of loads that were split, but violated the rule on the

number of split loads allowed on a route.

itersplit - current number of iterations for split load creation.

ITERINNERSPLIT - upper bound on the number of iterations to find a

split load before continuing with local improvements. After testing, this was set

at 10.

The algorithm operates as follows:

While (itersplit < ITERINNERSPLIT) {

Select a load to be split and set A equal to the size of the load.

Find excess capacity, B, on the same route or another route such that

B < A.

Split load such that B is moved to fill excess capacity, and A − B is left

in original location on route.

Reject if split load on insertdone or tabusplit or tabusplitfail.

Calculate cost of generating split load, SPLITCOST .

Accept split load if SPLITCOST ∗ 8/TEMPCOST < RANDNUM ,

where RANDNUM is a randomly generated decimal number between 0 and 1.

If split load creates violation of number of split loads, add to tabusplitfail,

and iterate itersplit.

If split load valid, add to tabusplit and update cost, such that TEMPCOST =

28

TEMPCOST + SPLITCOST . EXIT the procedure.

Increment itemsplit.

}

3.3.2 Combine Routes

The list combinefail is used for the algorithm that combines routes, tracking

those routes that have been previously tested and rejected based on a violation of

route length or number of split loads allowed on a route.

The algorithm operates as follows:

Generate all feasible route combinations and determine cost of each com-

bination, COMBCOST .

Reject if combination on combinefail.

Select combination with minimum COMBCOST if any COMBCOST

less than zero.

If combination creates violation of number of split loads add to combinefail.

Perform local search for routing improvement, swapping origins or desti-

nations located consecutively on new route.

If combination is valid, update cost such that TEMPCOST = TEMPCOST+

COMBCOST . Reset combinefail.

Continue until no route combination results in cost improvement.

3.3.3 Descent Local Search

As an extension of local search, descent local search (DLS) starts from an

initial solution. All the solutions in the neighborhoods are checked. The best

29

solution with the minimum objective cost will act as the initial solution for re-

peating this DLS procedure and the search is repeated until no improvement is

found. The DLS procedure operates as follows:

Input: A solution S; Output: A local optimal solution Sb

1). Sb ← S

2). Select the best solution S
′

b with minimum traveling cost within a defined

neighborhood of Sb.

3). IF S
′

b is better than Sb, THEN Sb ← S
′

b; GOTO Step 2.

4). ELSE RETURN Sb.

The Intra-Route Load Exchange, Intra-Route Load Insertion, Inter-Route

Load Exchange, Intra-Route Load Insertion procedures are actually Descent Local

Search procedures and are described in the sections below.

3.3.4 Intra-Route Load Exchange

The following additional lists are used for the algorithm that swaps loads

within a route:

swap1fail - list of those swaps that have been previously tested and rejected

based on a violation of route length or number of split loads allowed on a route.

swap1done - list of those swaps that have been successfully completed. This

list is maintained to prevent cycling with the load insertion heuristic.

The algorithm operates as follows:

Generate all feasible load swaps within a single route and determine cost

of each swap, SWAPCOST . and reject those that are on swap1fail,

swap1done or if swap violates vehicle capacity.

30

Select swap with minimum SWAPCOST , if any SWAPCOST less than

zero.

If swap creates violation of number of split loads add to swap1fail.

Perform local search for routing improvement, swapping origins or desti-

nations located consecutively on route.

If swap is valid, add to swapdone and update cost such that TEMPCOST =

TEMPCOST + SWAPCOST . Reset swap1fail.

Continue until no load swap results in cost improvement.

The Inter-Route Load Exchange procedure resembles the one described

here except the exchange is done between two routes.

3.3.5 Intra-Route Load Insertion

The following additional lists are used for the algorithm that inserts loads

from one segment of a route to another:

insert1fail - list of those insertions that have been previously tested and

rejected based on a violation of route length or number of split loads allowed on

a route.

insert1done - list of those insertions that have been successfully completed.

This list is maintained to prevent cycling when split loads are generated.

The algorithm operates as follows:

Generate all feasible load insertions within a single route and determine

cost of each insertion, INSERTCOST .

Reject if insertion on insert1done; insert1fail or tabusplit or if insertion

violates vehicle capacity constraints.

31

Select insertion with minimum INSERTCOST , if any INSERTCOST

less than zero.

If insertion creates violation of number of split loads, add to insert1fail.

Perform local search for routing improvement swapping origins or desti-

nations located consecutively on route.

If insertion is valid, add to insert1done and update cost such that TEMPCOST =

TEMPCOST + INSERT1COST . Reset insert1fail.

Continue until no insertion results in cost improvement.

The Inter-Route Load Insertion procedure resembles the one described

here except the insertion is done between two routes.

3.4 Conclusion

In this chapter, a metaheuristic for solving the PDPSL is presented, which

is a tabu-embedded simulated annealing like algorithm which restarts a search

procedure from the current best solution after several non-improvement search

iterations. This heuristic combines elements from several methods such as load

splitting, route combination, load insertions, load exchanging and load rearrang-

ing. The method for generating split loads and the criteria to accept the split

loads are described, along with the various algorithms used in the metaheuristic.

And the metaheuristic framework is also presented.

Chapter 4

Numerical Tests

In [6], the authors have claimed that some benefit can be found for almost

all the problems that are randomly generated, with certain instances displaying a

cost reduction of more than 30% with the use of split loads, and they have also

found from the average outcomes of the testing cases that the most benefit is

found when load sizes are just over one half of vehicle capacity.

In this section, we want to numerically test the new metaheuristic proposed

in the Chapter 3 with large-scale data. As there is no benchmark for the Pickup

and Delivery Problems, we follow [6]’s way and generate the set of problems. The

authors in [7] and [6] have used the heuristics that they developed to address the

following questions:

(1) What is the benefit of cost reduction if split loads are allowed?

(2) How much benefit is lost if routes are limited to carrying at most one split

load?

In addition, we want to address the following question:

(3) Is there huge difference due to the maximum allowed number of split loads

if that is not limited?

33

In Section 4.1 the design of the experiments used to evaluate split loads is

described, and in Section 4.2 the results of the experiment are presented. Conclu-

sions are drawn in the last section.

4.1 Experimental Design

We generated problem sets of three sizes, with 75, 100, or 125 transportation

requests, which are similar to those used in testing the SDVRP ([3], [4]). Each

transportation request contains the origin and destination location information,

and the amount of a truckload to be delivered. Coordinates for the pickup and

delivery locations were randomly generated with a uniform distribution over the

range [-40,40] for both X and Y coordinates, and the depot is fixed at (0,0) for

each data set. Testing with the depot moved to other locations did not alter the

results significantly.

Each problem size has five origin locations from where a load is picked up.

So the 75 request problem has 15 destination locations, the 100 request problem

has 20 destination locations, and the 125 request problem has 25 destination

locations. As is reported in [6], testing with a different number of origins found

no meaningful changes to the results, we also find the same results. Every origin-

destination combination has a load to be delivered between the two locations,

such that we generated exactly 75 requests, 100 requests and 125 requests for

these three problem sets respectively. Three configurations with different origin

and destination locations were generated for each problem size.

The load sizes were also randomly generated. In this chapter, the sizes were

all less than or equal to vehicle capacity. This was done in order to determine

the load sizes that can completely fit onto a vehicle and provide the most benefit

from split loads. The following chapter presents tests run with load sizes greater

than vehicle capacity. Without loss of generality, vehicle capacity was fixed at 1.

34

In order to provide insight into the problem, the load sizes were generated within

a variety of ranges. Two different range groupings were used to determine these

sizes. The first set of groupings contained loads generated within smaller ranges of

size. Eight ranges were used to bound the load sizes, with five different sets of load

sizes generated for each range. The ranges indicated the upper and lower bound

(inclusive of the bound) on the fraction of the vehicle capacity that the load can

occupy, and they were [0.11-0.2], [0.21-0.3], [0.31-0.4], [0.41-0.5], [0.51-0.6], [0.61-

0.7], [0.71-0.8], and [0.81-0.9]. In [6], load sizes below 0.1 or above 0.9 were not

used because they found splits of these loads rarely occur and any benefit was

negligible. We did not use these two load sizes either, because instead of finding

negligible cost reduction, we found that splitting load under both situations lead

to cost increase in most of the time. The load sizes were randomly generated over

each range with a uniform distribution. Each of the three location configurations

was matched with each of the five load sets within a load range, resulting in 15

different problems for each load range, and 120 problems overall.

The second set of groupings contained loads generated within wider ranges

of size. Four ranges were used to bound the load sizes, with five different sets

of load sizes for each range. The ranges were [0.1-0.6], [0.6-1.0], [0.3-0.6], and

[0.1-1.0]. The load sizes were randomly generated over each range with a uniform

distribution. Each of the three location configurations was matched with each of

the five load configurations, resulting in 15 different problems for each load range,

and 60 problems overall.

The heuristic was used to solve each problem under two scenarios, both with

and without split loads. The heuristic with split loads followed the procedure

described earlier in this chapter. The heuristic without split loads omitted the

split load generation step and iterated through the local improvement steps until

it stops.

35

In [7], it is shown that one split per route is not optimal for the PDPSL,

although it has been proven for the Split Delivery Vehicle Routing Problem [13],

we test additional scenarios where the number of splits on a load (not a route)

is varied from 2 to 6 to see whether the performance is greatly affect by this

alteration. For each number of maximum allowed splits, we generated two different

configurations of pickup and delivery locations with X, Y coordinates drawn from

a uniform distribution over the same range, and five different load configurations

with each load drawn from a uniform distribution over the load range [0.51, 0.6]

because the most benefit is found within this load range and the metaheuristic

is more stable given this load range configuration, thus ten different problems for

each number of allowed splits and 60 problems in all.

The metaheuristic was coded in C++ and all experiments were run on a 1.5

GHz Celeron M processor with 1 GB RAM under Windows XP Service Pack 3.

4.2 Experimental Results

We report the numerical test results on different maximum number of al-

lowed splits in Section 4.2.1, and we present results on problem sets with smaller

load ranges in Section 4.2.2, and finally results on problem sets with wider load

ranges are presented in Section 4.2.3.

4.2.1 Performance with Different Maximum Allowed Number of

Splits

Figure 4.1 presents the average percentage reduction in cost when split loads

are allowed for the 75-, 100-, and 125-request problem sets with loads generated

over the load range [0.51, 0.6], and the maximum allowed number of splits is from

2 to 6. The costs are based on the distance traveled by the vehicle.

The cost reductions seem to be consistent, with a maximum cost reduction of

36

Figure 4.1: Average Percentage Cost Reduction with Split Loads for Different
Maximum Allowed Number of Splits for Load Range [0.51, 0.6]

nearly 35% for the 100-request problems and when the maximum allowed number

of splits is 2, and a minimum cost reduction of nearly 32% for the 125-request

problems and when the maximum allowed number of splits is 3. There is also no

huge difference in cost reductions for each of the problem sets, which is consistent

with the result in [6], where they reported almost the same cost reductions (around

28%) for the 75-, 100-, and 125-request problem sets when the loads are within

the load range [0.51, 0.6]. Our algorithm seemed to be more effective in fostering

split loads within this load ranges so that greater cost reduction is possible. (See

also in the Appendix for a comparison of the average number of splits created by

the algorithm in [6] and by our algorithm.)

4.2.2 Performance on Smaller Load Size Ranges

Figure 4.2 presents the average percentage cost reduction when split loads

are allowed for the 75-, 100-, and 125-request problem sets with smaller load size

37

Figure 4.2: Average Percentage Cost Reduction with Split Loads for Each Load
Range Tested for the 75-, 100-, and 125-Request Problem Sets

ranges. Different from the results in [6], we found no benefits for the loads in

the range [0.11, 0.20], and found relatively greater cost reduction for the load

size ranges that are greater than [0.51, 0.6] (including [0.51, 0.6] as well). By

comparing the average number of split loads created by out algorithm and by the

the algorithm in [6], we found an huge increase in this number and it was due

to the reset scheme of the iterator in the inner loop in our algorithm, so that

exploring even larger solution space is possible.

Even though some cost reduction is found with the use of split loads for

almost every load range, more benefit is clearly found with certain load sizes. The

results for each problem set support a main theoretical result in [6] and also in

previous chapter. That is, the most significant cost benefit with split loads is

found when the load sizes are just above 1/2 of vehicle capacity. When splitting

is allowed reducation these load sizes, full truckloads are created through the

combination of 1/2 truckloads, with the remainder of the loads delivered on an

38

additional route. The cost benefit becomes almost negligible in the range [0.41,

0.5]. This is because loads are easily combined on a vehicle without any splitting

needed. Furthermore, the loads are large enough that when they are combined

on a vehicle, there is little room for a split load to be inserted. The benet slightly

increases in the range [0.31, 0.4], as loads can be combined on a vehicle with more

room for splits to be inserted. The benefit then continues to decline as load sizes

become smaller, with a greater likelihood that multiple loads can be combined on

a vehicle at the same time with no splitting required.

The results are slightly different for those load ranges greater than [0.51,

0.6]. The range [0.61, 0.7] has the second highest cost benefit as multiple loads

can not be combined on a vehicle at any time without split loads. However,

the benefit is lower than for the range [0.51, 0.6] because there is less capacity

available for a split load when a full load is already on a vehicle. Therefore, when

part of a load is placed on a vehicle with a full load, there are fewer options for

the remainder of the load due to its greater size. The decrease in benefit becomes

more dramatic as the load sizes increase, with a benefit of less than 20% for the

range [0.71, 0.8] and even less than 10% for the range [0.81, 0.9].

Table 4.1 presents the average CPU time, in seconds, required to find the

solutions reported and the average number of split loads of the solution. The

counter for the iterations is incremented each time the heuristic begins the split

load creation step, prior to beginning the load combination sub-algorithm (and

continuing on to the other local improvement sub-algorithms), and the time for

updating temporary data and outputting the results is omitted.

The CPU time increases quickly with problem size for every load range,

doubling with an increase of 25 requests in most situations. The increase in the

39

T
ab

le
4.

1:
A

ve
ra

ge
C

P
U

T
im

e,
N

o.
of

S
p
li
ts

an
d

C
os

t
R

ed
u
ct

io
n

fo
r

P
ro

b
le

m
S
et

s
w

it
h

S
p
li
t

L
oa

d
s

on
S
m

al
le

r
L
oa

d
S
iz

e
R

an
ge

s

P
ro

b
le

m
S
iz

e
75

10
0

12
5

L
oa

d
R

an
ge

C
P

U
T

im
e

S
p
li
ts

C
os

t
R

ed
u
ct

io
n

T
im

e
S
p
li
ts

C
os

t
R

ed
u
ct

io
n

T
im

e
S
p
li
ts

C
os

t
R

ed
u
ct

io
n

0.
11

-0
.2

0
4.

00
07

0
0

8.
79

1
0.

73
33

0.
00

29
7

13
.7

95
0

0
0.

21
-0

.3
0

3.
6

1.
86

67
0.

00
11

8
9.

38
26

3.
13

33
0.

00
65

5
24

.9
63

11
.0

66
7

0.
03

95
0.

31
-0

.4
0

6.
65

66
13

.0
66

7
0.

03
48

4
20

.2
57

23
.8

0.
05

90
1

40
.9

73
34

.4
67

0.
07

83
0.

41
-0

.5
0

4.
93

4
3.

6
0.

00
05

4
6.

50
4

1.
66

7
0.

00
32

4
14

.5
42

5.
06

67
0.

00
22

0.
51

-0
.6

0
22

.3
32

7
48

.0
66

7
0.

35
35

4
48

.5
46

61
.6

0.
33

61
9

10
6.

81
8

81
.5

33
0.

35
19

0.
61

-0
.7

0
18

.0
36

3
42

.9
3

0.
25

5
35

.9
23

58
.3

33
0.

25
31

2
59

.9
78

66
.8

67
0.

25
63

0.
71

-0
.8

0
32

.3
22

3
61

.4
67

0.
15

4
55

.9
23

69
.6

67
0.

12
77

14
1.

13
10

1.
73

33
0.

17
5

0.
81

-0
.9

0
19

.7
78

3
37

.7
33

0.
06

8
6.

88
2.

66
67

0.
00

19
5

26
.7

74
1

14
.7

33
3

0.
02

25

40

computational time is mainly attributed to the greater number of steps that must

be performed within each sub-algorithm to find an improvement. As problem size

increases, the number of combinations that can be tested for local improvement

is increased significantly and rapidly.

4.2.3 Performance on Wider Load Size Ranges

Table 4.2 presents the average percentage cost reduction when split loads are

allowed for the 75-, 100-, and 125-request problem sets with wider load size ranges.

Again, as with the smaller load size ranges, there is a cost benefit to the use of

split loads for every load size range. Although the benefit is not as remarkable

as for some of the smaller ranges, the average cost reduction for the 100-request

with loads in range [0.5, 1.0] was found to be more than 21%. Also, the results

regarding the most beneficial load sizes support those found with the smaller load

size ranges. The range [0.5, 1.0] finds the most benefit in every situation. Also, the

ranges [0.3, 0.7] and [0.1, 1.0] are comparable in terms of cost benefit, but slightly

lower than the range [0.5, 1.0]. This indicates that while the most benefit can

be found with loads greater than 1/2 vehicle capacity, benefit can also be found

when load sizes vary over the range of available capacity, while this load variation

can greatly deteriorate the benefit by the use of split loads. The range [0.1, 0.5]

finds the least benefit, as the smaller loads are less likely to be split. And for the

average CPU times on these wider load size ranges, they present the same pattern

as that in the smaller range tests that it increases quickly with problem size for

every load range, doubling with an increase of 25 requests in most situations.

41

T
ab

le
4.

2:
A

ve
ra

ge
C

P
U

T
im

e,
N

o.
of

S
p
li
ts

an
d

C
os

t
R

ed
u
ct

io
n

fo
r

P
ro

b
le

m
S
et

s
w

it
h

S
p
li
t

L
oa

d
s

on
W

id
er

L
oa

d
S
iz

e
R

an
ge

s

P
ro

b
le

m
S
iz

e
75

10
0

12
5

L
oa

d
R

an
ge

C
P

U
T

im
e

S
p
li
ts

C
os

t
R

ed
u
ct

io
n

T
im

e
S
p
li
ts

C
os

t
R

ed
u
ct

io
n

T
im

e
S
p
li
ts

C
os

t
R

ed
u
ct

io
n

0.
1-

1.
0

14
.7

36
18

.9
33

0.
05

41
24

.9
8

25
.4

0.
04

71
40

.0
05

26
.2

66
7

0.
04

17
0.

1-
0.

5
10

.6
18

10
.1

25
0.

03
67

15
.8

49
13

.2
0.

03
09

21
.4

56
11

.3
33

0.
03

09
0.

5-
1.

0
18

.9
13

40
.0

67
0.

18
59

48
.0

16
61

.5
33

0.
21

38
82

.4
66

80
0.

18
61

0.
3-

0.
7

12
.2

47
16

.6
0.

06
24

26
.6

81
28

.4
0.

06
94

28
.6

31
26

.4
0.

07
26

42

4.3 Conclusion

We tested the metaheuristics developed in the previous Chapter on ran-

domly generated data sets with load sizes falling in several ranges and quantified

the benefits of using split loads. We first investigated the relationship between the

maximum allowed number of splits on a load and the cost reduction by the use

of split loads, and found that the benefits from using the split loads vary within

a small range when the maximum number of allowed split loads increases from

2 to 6, and the trend is predicted to be consistent. By limiting the maximum

allowed splits on a load to be 3, we found that the most benefit to be with loads

just over half of the vehicle capacity for the smaller load ranges, and this most

benefit was around 35% cost reduction for all the three problem sets, which was

5% more cost reduction than that found in [6]. For the wider load ranges, the

most benefit is found with loads ranging from 0.5 to 1.0, and this most benefit was

around 20%, which was also a significant increase compared with the results re-

ported in [6]. One plausible explanation for this phenomena is that our algorithm

is tabu-embedded simulated annealing like metaheuristic, and both the inner and

outside loops are compelled to reset the iterator to be 0 if some improvement is

found, while their algorithm is a simple combination of many heuristics, so that

exploring even larger solution spaces is possible in our algorithm.

Chapter 5

Extension to The Basic Problem

In this Chapter, we consider the case where there are some (or all the)

loads that are greater than the vehicle capacity , through numerical tests. In this

situation, the loads that are greater than the vehicle capacity must be split. A

common method in the literature is to split the loads in a way that the vehicle

is engaged for each of the loads for multiple time, with the first few times filling

the whole vehicle capacity and the last time carrying the residual amount of the

load that is being transported, and then take these multiple times of transporting

a same load as transporting multiple different loads, and optimize the routes

(Common Split hereafter). As illustrated in Chapter 3 and Chapter 4, most

benefit through splitting loads is available when all the loads are just a little more

than half of the vehicle capacity. This conclusion prompts us to re-think about the

common way to split loads when some/all the loads are greater than the vehicle

capacity. If we split the loads that are greater than the vehicle capacity in a way

that not full vehicle capacity amount of load is continually transported until the

amount of load left is less than the vehicle capacity, but other quantity of the load

(less than the vehicle capacity, say, 0.85 of the vehicle capacity) is continually

transported until the amount of load left is less than this quantity, what is the

result? Obviously we are increasing the number of ”loads” to be carried compared

with the Common Split way, thus making the transportation network even more

44

complicated; however, the more complicated network may foster the aggregation

of loads in close proximity and increase the odds that more loads can be split and

re-combined together in a better way, thus reducing the cost back to its level in

the Common Split way, and maybe even less than that level.

We investigate this trade-off between splitting greater-than-vehicle-capacity

loads with different quantity and fostering the cost-reducing effect by the use of

splitting loads through numerical tests in this Chapter, and specifically, we have

two questions in mind to be investigated:

(1) Whether the Common Split way is the best?

(2) What is the difference if we split the loads with different quantities?

In Section 5.1, we report the experimental design for this extension to the

basic problem, and in Section 5.2, we tabulate main findings from the numerical

study, conclusion comes in the last section.

5.1 Experimental Design

We adopt the same configuration as that used in Chapter 4, except the

loads are randomly generated within different load size ranges. The third load

size range grouping contains three different load size ranges, namely, [1.0-2.0],

[0.5-1.5], [0.1-2.0]. So, each of the three location configurations is matched with

each of the five load sets within a load range, resulting in 15 different problem

instances for each load range and 45 instances overall.

For each problem instance, we adopt the Common Split way as well as five

less-than-vehicle-capacity split policies, which split the loads that are greater than

the vehicle capacity in different amount of load. For example, a 0.55-Split policy is

to split a load that is greater than the vehicle capacity in a way that 0.55 amount

45

of the load is transported each time the vehicle visits the origin of the load until

the residual amount is less than 0.55, so that the residual amount can be finally

transported. These five policies are 0.55-Split, 0.65-Split, 0.75-Split, 0.85-Split,

and 0.95-Split.

5.2 Experimental Results

Table 5.1 presents the average CPU time, in seconds, required to find the

solutions reported, using respective split policy, and cost reduction by using split

loads (compared to the case when split loads are not allowed). The counter for the

iterations is incremented each time the heuristic begins the split load creation step,

prior to beginning the load combination sub-algorithm (and continuing on to the

other local improvement sub-algorithms), and the time for updating temporary

data and outputting the results is omitted.

In general, the CPU time increases if the loads are split in less-than-vehicle-

capacity amount, instead of adopting the Common Split polity, sometimes, the

increment is very significant, reflecting the increased complexity of the transporta-

tion network; however, the performance seems to remain the same for all the three

load size ranges, and the cost reduction is neglectable, which means on the one

hand, although there is some benefit by the use of split loads when some of the

loads to be transported are greater than the vehicle capacity, this benefit is ne-

glectable in some sense and to achieve this benefit is time consuming; on the other

hand, there seems to be no optimal split policy that can always guarantee the best

quality of solutions.

46

T
ab

le
5.

1:
A

ve
ra

ge
C

P
U

T
im

e
an

d
C

os
t

R
ed

u
ct

io
n

fo
r

P
ro

b
le

m
S
et

s
w

it
h

S
p
li
t

L
oa

d
s

on
D

iff
er

en
t

S
p
li
t

P
ol

ic
ie

s

75
10

0
12

5
L
oa

d
R

an
ge

S
p
li
t

P
ol

ic
y

C
os

t
R

ed
u
ct

io
n

T
im

e
C

os
t

R
ed

u
ct

io
n

T
im

e
C

os
t

R
ed

u
ct

io
n

T
im

e
1

0
13

.8
00

98
33

3
0

31
.5

53
8

0
75

.0
03

25
0.

95
-0

.0
32

17
58

21
50

.4
96

-0
.0

25
40

39
12

16
3.

78
68

-0
.0

10
27

84
3

11
0.

52
85

1.
0-

2.
0

0.
85

-0
.0

32
04

76
2

31
.2

31
63

33
3

-0
.0

30
10

87
11

89
.8

80
35

0.
02

57
51

48
49

9.
01

95
0.

75
-0

.0
21

49
61

56
64

.2
51

41
66

7
-0

.0
48

64
99

08
89

.4
15

75
0.

00
99

92
35

33
3.

40
35

0.
65

-0
.0

17
44

91
81

92
.3

94
6

-0
.0

30
42

19
9

12
0.

62
15

5
0.

00
02

63
56

1
11

2.
42

45
0.

55
-0

.0
24

92
81

68
43

.2
19

3
-0

.0
30

22
00

33
15

1.
85

99
0.

00
97

79
74

3
20

5.
03

6
1

0.
01

60
52

36
9

20
.9

89
63

33
3

0.
01

67
05

02
46

.5
77

65
0.

01
85

23
85

41
6.

71
5

0.
95

0.
00

83
55

51
8

39
.4

84
36

66
7

0.
01

17
86

07
5

43
.0

37
8

0.
00

50
19

01
7

87
5.

66
48

33
3

0.
1-

2
0.

85
-0

.0
06

68
64

86
36

.9
77

93
33

3
-0

.0
06

18
53

66
46

.1
45

2
-0

.0
03

57
99

25
38

0.
42

15
5

0.
75

-0
.0

01
61

79
15

31
.2

48
0.

00
23

40
65

2
19

.9
89

65
0.

00
32

82
35

2
50

5.
99

48
33

3
0.

65
0.

01
41

43
80

6
35

.9
96

43
33

3
-0

.0
14

01
81

36
26

.1
04

3
-0

.0
08

87
57

88
21

8.
87

30
5

0.
55

-0
.0

11
32

29
8.

44
62

13
33

3
0.

00
91

95
25

33
.9

58
45

0.
00

65
45

79
1

56
1.

71
34

33
3

1
0.

00
48

13
11

1
10

.1
73

34
2

0.
02

75
81

38
2

50
.1

02
94

0.
01

60
36

64
4

79
.8

67
68

0.
95

0.
02

10
26

92
4

29
.0

54
02

0.
02

96
49

72
4

85
.8

09
86

-0
.0

21
39

91
14

14
1.

14
31

2
0.

5-
1.

5
0.

85
0.

02
35

60
45

5
21

.5
32

90
8

0.
02

45
11

66
6

97
.9

77
18

-0
.0

16
86

95
42

11
8.

99
01

2
0.

75
0.

01
26

55
12

6
14

.5
09

99
6

0.
00

66
58

79
8

55
.4

07
36

-0
.0

26
40

55
99

14
8.

24
64

0.
65

0.
00

09
34

57
9

23
.7

15
16

8
0.

02
08

20
98

7
55

.8
93

08
-0

.0
16

61
47

87
12

5.
88

77
2

0.
55

0.
01

17
43

38
1

30
.3

70
56

0.
03

72
74

71
7

79
.3

02
48

-0
.0

06
76

28
59

13
3.

66
82

4

47

5.3 Conclusion

In this section, we investigate through numerical study the extension to the

basic problem, where there is some possibility that the amount of some of the

loads is greater than the vehicle capacity. We find that in general there are some

benefits by applying split loads to the transportation network design even when

the loads are general and those loads that are greater than the vehicle capacity

have to be split, and we also find there is no optimal splitting policy that can

always guarantee the best quality of solutions.

Chapter 6

Conclusions

In this dissertation, we studied the use of split loads for the Pickup and De-

livery Problem, and proposed a metaheuristic with annealing like restart strategy

to guide the local search in three neighborhoods that were defined to solve the

problem, and the metaheuristic was based on a predetermined fixed number of

restarts annealing like procedure with tabu-lists to avoid cycling in the search pro-

cess. We tested the algorithm on several sets of problem instances generated with

different transportation requests and over different load size ranges. The experi-

mental results on these problem sets have shown that benefits are common if split

loads are adopted in designing practical sized transportation network for different

load size configurations, and the most benefit is seen when all the loads are just

a little above half of the vehicle capacity and have small variations. Besides the

basic problem, we also investigated an extension. We found that in general there

are some benefits by applying split loads to the transportation network design

even when the loads are general and those loads that are greater than the vehicle

capacity have to be split, and we also found there is no optimal splitting policy

that can always guarantee the best quality of solutions.

Bibliography

[1] Feitler, J. N., Corsi, T. M., and Grimm, C. M. 1997. Measuring firm strategic
change in the regulated and deregulated motor carrier industry: An 18 year
evaluation. Transportation Research: Part E, Logistics and Transportation
Review, 33, pp. 159-169.

[2] Dror, M., G. Laporte, P. Trudeau. 1994. Vehicle routing with split deliveries.
Discrete Appl. Math. 50, 239-254.

[3] Dror, M., P. Trudeau. 1989. Savings by split delivery routing. Transportation
Science 23, 141-145.

[4] Dror M, P. Trudeau. 1990. Split delivery routing. Naval Research Logistics
37(3), 383-402.

[5] Frizzell, P. W. and Giffin, J. W. 1992. The bounded split delivery vehicle rout-
ing problem with grid networks distances. Asia Pacific Journal of Operational
Research, Vol. 9, pp. 101-116.

[6] M. Nowak, Ö. Ergun, C. C. White 2008. Pickup and delivery with split loads.
Transportation Science 42(1), 32-43.

[7] M. Nowak 2005. The Pickup and Delivery Problem with Split Loads. Ph.D
Thesis. Industrial and Systems engineering, Georgia Institute of Technology.

[8] Yang, J., P. Jaillet, H. Mahmassani. 2004. Real-time multivehicle truckload
pickup and delivery problems. Transportation Science 38 135-148.

[9] Psaraftis, H. N. 1988. Dynamic vehicle routing problems. B. L. Golden, A. A.
Assad, eds. Vehicle Routing: Methods and Studies. Elsevier (North-Holland),
Amsterdam, 223-248.

[10] Bander, J. L., Sequential Decision Problems Arising in Commercial Vehicle
Operations. PhD thesis, University of Michigan, 1999.

[11] Li, H., A. Lim. 2001. A metaheuristic for the pickup and delivery problem
with time windows. A. K. Bansal, ed. 13th IEEE Internat. Conf. Tools with
Artificial Intelligence (ICTAI), Dallas, 160-170.

50

[12] M. M. Solomon. Algorithms for the vehicle routing and scheduling problems
with time window constraints. 1987. Operations Research 35, 254-264.

[13] Lee, C., White, C., Bozer, Y., and Epelman, M., A shortest path approach
to the multiple-vehicle routing problem with split pick-ups. to appear in
Transportation Research - Part B, 2005.

[14] C. Archetti, R. Mansini, M. G. Speranza. 2005. Complexity and Reducibility
of the Skip Delivery Problem. Transportation Science 39 182-187.

[15] Jeffrey W. Ohlmanm, Michael J. Fly, Barrett W. Thomas 2008. Route Design
for Lean Production Systems. Transportation Science. 42, 352-370.

[16] Belenguer, J. M., M. C. Martinez, E. Mota. 2000. A lower bound for the split
delivery vehicle routing problem. Operations Research 48, 801-810.

[17] Archetti, C., A. Hertz, M. G. Speranza. 2006. A tabu search algorithm for
the split delivery vehicle routing problem. Transportation Science 40, 64-73.

[18] Archetti, C., M. W. P. Savelsbergh, M. G. Speranza. 2006. Worst-case anal-
ysis for split delivery vehicle routing problems. Transportation Science 40,
226-234.

[19] Archetti, C., M. G. Speranza, M. W. P. Savelsbergh. 2008 An optimization-
based heuristic for the split delivery vehicle routing problem. Transportation
Science 42, 22-31.

[20] Caplice, C. and Sheffi, Y. 2005. Combinatorial auctions of truckload trans-
portation, in P. Cramton, Y. Shoham and R. Steinberg (eds), Combinatorial
Auctions, MIT Press, Cambridge, MA, pp. 539-572.

[21] Ledyard, J. O., Olson, M., Porter, D., Swanson, J. A. and Torma, D. P.
2002, The first use of a combined-value auction for transportation services,
Interfaces 32(5), 4-12.

[22] Elmaghraby, W. and Keskinocak, P.: 2003, Combinatorial auctions in pro-
curement, in C. Billington, T. Harrison, H. Lee and J. Neale (eds), The
Practice of Supply Chain Management, Kluwer Academic Publishers, pp. 245-
258.

[23] Song, J. and Regan, A. C. 2003. An auction based collaborative carrier net-
work. working paper (UCI-ITS-LI-WP-03-6), UC Irvine, Institute of Trans-
portation Studies.

[24] Song, J. and Regan, A. C. 2004. Combinatorial auctions for transportation
service procurement - the carrier perspective, Transportation Research Record
1833, 40-46.

51

[25] Song, J. and Regan, A. C. 2005. Approximation algorithms for the bid con-
struction problem in combinatorial auctions for the procurement of freight
transportation contracts, Transportation Research Part B: Methodological
39(10), 914-933.

[26] Mullaseril PA, Dror M, Leung J. 1997. Split-delivery routing heuristics in
livestock feed distribution. Journal of the Operational Research Society 48(2),
107-116.

[27] Frizzell, P. W., J. W. Giffin. 1995. The split delivery vehicle scheduling prob-
lem with time windows and grid network distance. Comput. Oper. Res. 22,
655-667.

[28] Sierksma, G., G. A. Tijssen. 1998. Routing helicopters for crew exchanges on
off-shore locations. Ann. Oper. Res. 76, 261-286.

[29] A. Lim., B. Rodregues, Z. Xu. 2008. Transportation procurement with
seasonally-varying shipper demand and volume guarantees. Operations
Research. 58, 758-771.

[30] G. Laporte. 2007. What you should know about the vehicle routing problem.
Naval Research Logistics 54, 881-819.

[31] O. Bräysy, M. Gendreau. 2005a. Vehicle Routing Problem with Time
Windows, Part I: Route Construction and Local Search Algorithms.
Transportation Science 39, 104-118.

[32] O. Bräysy, M. Gendreau. 2005b. Vehicle Routing Problem with Time Win-
dows, Part II: Metaheuristics. Transportation Science 39, 119-139.

[33] H. Psarafits. 1980. A dynamic programming solution to the single vehicle
many-to-many immediate request dial-a-ride problem. Transportation Science
14, 130-154.

[34] H. Psarafits. 1983. An exact algorithm for the single vehicle many-to-many
immediate request dial-a-ride problem. Transportation Science 17, 351-361.

[35] T. R. Sexton, D. B. Lawrence. 1983. The multiple-vehicle subscriber dial-a-
ride problem. Working paper MS/S83-009, College of Business and Manage-
ment, University of Maryland.

[36] T. R. Sexton, D. B. Lawrence. 1985a. Optimizing single vehicle many-to-many
dial-a-ride problem with desired delivery time: I Scheduling. Transportation
Science. 19, 378-410.

[37] T. R. Sexton, D. B. Lawrence. 1985b. Optimizing single vehicle many-
to-many dial-a-ride problem with desired delivery time: II Routing.
Transportation Science. 19, 411-435.

52

[38] L. J. J. Van der Bruggen, J. K. Lenstra, P. C. Schuur. 1993. Variable-depth
search for the single vehicle pickup and delivery problem with time windows.
Transportation Science 27, 298-311.

[39] Healy P., Moll R. 1995. A new extension of local search applied to the dial a
ride problem. European Journal of Operational Research 83, 83-104.

[40] Landrieu, A., Y. Mati, Z. Binder. 2001. A tabu search heuristic for the
single vehicle pickup and delivery problem with time windows. J. Intelligent
Manufacturing 12, 497-508.

[41] Y. Dumas, J. Desrosiers, F. Soumis. A dynamic programming solution of
the large scale single vehicle dial-a-ride problem with time windows. American
Journal of Mathematical and Management Science 16, 301-325.

[42] Nanry, W. P., J. W. Barnes. 2000. Solving the pickup and delivery problem
with time windows using reactive tabu search. Transportation Research Part
B 34, 107-121.

[43] Xu, H., Z.-L. Chen, S. Rajagopal, S. Arunapuram. 2003. Solving a practical
pickup and delivery problem. Transportation Science 37, 347C364.

[44] Lim, H., A. Lim, B. Rodrigues. 2002. Solving the pick up and delivery prob-
lem with time windows using ”squeaky wheel” optimization with local search.
Technical Report 2002, Paper 7-2002, Singapore Management University, Sin-
gapore.

[45] S. Ropke, D. Pisinger. 2006. An adaptive large neighborhood search heuris-
tic for the pickup and delivery problem with time windows. Transportation
Science 44, 455-472.

Appendix A

Original Test Results

In this Appendix, we present the original results for these numerical tests

in Chapter 4 and Chapter 5. Section A.1 presents the original results on different

maximum allowed numbers of split loads, Section A.2 reports the original results

on the smaller load size ranges, and Section A.3 reports the original results on the

wider load size ranges.

A.1 For Different Maximum Allowed Numbers of Split Loads

In this section, original results for all the numerical tests on the 75-, 100-,

and 125-request problem sets are presented. Each problem set consists of two

different configurations of pickup and delivery locations, and for each location

configuration, five different load configurations are generated and all the load

sizes are within the range [0.51, 0.6]. Table A.1 presents the original results

for the 75-request problem sets, Table A.2 presents the original results for the

100-request problem sets, and Table A.3 presents the original results for the 125-

request problem sets.

54

Table A.1: Original test results for 75-request problem

sets with different maximum allowed numbers of splits

Max Splits Allowed CPU Time Cost Splits Cost Reduction Percentage

0 1.7765 5536.45 0

2 12.7996 3502.03 30 2034.42 0.367459293

3 16.9956 3688.86 44 1847.59 0.333713842

4 19.0725 3654.03 43 1882.42 0.340004877

5 19.8257 3660.05 56 1876.4 0.338917537

6 16.6255 3620.81 48 1915.64 0.346005112

0 1.86588 5536.45 0

2 7.03537 3956.82 24 1579.63 0.285314597

3 15.5283 3610.26 51 1926.19 0.347910665

4 21.0385 3671.02 43 1865.43 0.336936123

5 7.80619 3735.12 26 1801.33 0.325358307

6 19.1726 3796.28 43 1740.17 0.314311517

0 1.76685 5536.45 0

2 8.30252 3922.7 28 1613.75 0.291477391

3 19.4366 3702.4 50 1834.05 0.331268231

4 6.83147 3893.73 23 1642.72 0.296709986

5 13.7884 3664.03 41 1872.42 0.338198665

6 29.6688 3605.32 53 1931.13 0.348802933

0 1.87707 5536.45 0

2 15.152 3795.14 41 1741.31 0.314517425

3 21.6318 3656.84 41 1879.61 0.339497331

4 42.3977 3540.49 52 1995.96 0.360512603

Continued on next page

55

Table A.1 – continued from previous page

Max Splits Allowed CPU Time Cost Splits Cost Reduction Percentage

5 5.66081 3903.4 27 1633.05 0.294963379

6 22.095 3765.45 56 1771 0.319880068

0 1.84769 5536.45 0

2 21.3867 3792.36 46 1744.09 0.315019552

3 17.4567 3689.09 39 1847.36 0.333672299

4 25.7982 3893.62 57 1642.83 0.296729854

5 39.4205 3539.06 52 1997.39 0.360770891

6 22.5993 3583.1 41 1953.35 0.352816335

0 1.7765 5536.45 0

2 12.7996 3502.03 30 2034.42 0.367459293

3 16.9956 3688.86 44 1847.59 0.333713842

4 19.0725 3654.03 43 1882.42 0.340004877

5 19.8257 3660.05 56 1876.4 0.338917537

6 16.6255 3620.81 48 1915.64 0.346005112

0 1.86588 5536.45 0

2 7.03537 3956.82 24 1579.63 0.285314597

3 15.5283 3610.26 51 1926.19 0.347910665

4 21.0385 3671.02 43 1865.43 0.336936123

5 7.80619 3735.12 26 1801.33 0.325358307

6 19.1726 3796.28 43 1740.17 0.314311517

0 1.76685 5536.45 0

2 8.30252 3922.7 28 1613.75 0.291477391

3 19.4366 3702.4 50 1834.05 0.331268231

Continued on next page

56

Table A.1 – continued from previous page

Max Splits Allowed CPU Time Cost Splits Cost Reduction Percentage

4 6.83147 3893.73 23 1642.72 0.296709986

5 13.7884 3664.03 41 1872.42 0.338198665

6 29.6688 3605.32 53 1931.13 0.348802933

0 1.87707 5536.45 0

2 15.152 3795.14 41 1741.31 0.314517425

3 21.6318 3656.84 41 1879.61 0.339497331

4 42.3977 3540.49 52 1995.96 0.360512603

5 5.66081 3903.4 27 1633.05 0.294963379

6 22.095 3765.45 56 1771 0.319880068

0 1.84769 5536.45 0

2 21.3867 3792.36 46 1744.09 0.315019552

3 17.4567 3689.09 39 1847.36 0.333672299

4 25.7982 3893.62 57 1642.83 0.296729854

5 39.4205 3539.06 52 1997.39 0.360770891

6 22.5993 3583.1 41 1953.35 0.352816335

Table A.2: Original test results for 100-request problem

sets with different maximum allowed numbers of splits

Max Splits Allowed CPU Time Cost Splits Cost Reduction Percentage

0 1.7765 5536.45 0

2 12.7996 3502.03 30 2034.42 0.367459293

3 16.9956 3688.86 44 1847.59 0.333713842

Continued on next page

57

Table A.2 – continued from previous page

Max Splits Allowed CPU Time Cost Splits Cost Reduction Percentage

4 19.0725 3654.03 43 1882.42 0.340004877

5 19.8257 3660.05 56 1876.4 0.338917537

6 16.6255 3620.81 48 1915.64 0.346005112

0 1.86588 5536.45 0

2 7.03537 3956.82 24 1579.63 0.285314597

3 15.5283 3610.26 51 1926.19 0.347910665

4 21.0385 3671.02 43 1865.43 0.336936123

5 7.80619 3735.12 26 1801.33 0.325358307

6 19.1726 3796.28 43 1740.17 0.314311517

0 1.76685 5536.45 0

2 8.30252 3922.7 28 1613.75 0.291477391

3 19.4366 3702.4 50 1834.05 0.331268231

4 6.83147 3893.73 23 1642.72 0.296709986

5 13.7884 3664.03 41 1872.42 0.338198665

6 29.6688 3605.32 53 1931.13 0.348802933

0 1.87707 5536.45 0

2 15.152 3795.14 41 1741.31 0.314517425

3 21.6318 3656.84 41 1879.61 0.339497331

4 42.3977 3540.49 52 1995.96 0.360512603

5 5.66081 3903.4 27 1633.05 0.294963379

6 22.095 3765.45 56 1771 0.319880068

0 1.84769 5536.45 0

2 21.3867 3792.36 46 1744.09 0.315019552

3 17.4567 3689.09 39 1847.36 0.333672299

Continued on next page

58

Table A.2 – continued from previous page

Max Splits Allowed CPU Time Cost Splits Cost Reduction Percentage

4 25.7982 3893.62 57 1642.83 0.296729854

5 39.4205 3539.06 52 1997.39 0.360770891

6 22.5993 3583.1 41 1953.35 0.352816335

0 2.53397 8821.61 0

2 31.5689 5933.83 52 2887.78 0.327352944

3 13.5988 6035.12 31 2786.49 0.315870912

4 15.4478 5994.64 37 2826.97 0.320459644

5 77.3609 5692.01 69 3129.6 0.354765173

6 51.4204 5575.2 58 3246.41 0.36800652

0 2.49856 8821.61 0

2 45.0785 5642.18 66 3179.43 0.360413802

3 6.82299 6757.88 17 2063.73 0.23394029

4 36.1735 6034.78 51 2786.83 0.315909454

5 37.2291 5851.78 53 2969.83 0.336653967

6 14.5761 6234.6 39 2587.01 0.29325826

0 2.76677 8821.61 0

2 48.77 5602.29 61 3219.32 0.364935652

3 33.2558 5741.32 50 3080.29 0.349175491

4 12.2885 6252.26 35 2569.35 0.291256358

5 13.6478 6265.36 30 2556.25 0.289771368

6 8.65227 6955.64 14 1865.97 0.211522613

0 2.81267 8821.61 0

2 22.6699 5934.64 44 2886.97 0.327261124

Continued on next page

59

Table A.2 – continued from previous page

Max Splits Allowed CPU Time Cost Splits Cost Reduction Percentage

3 25.8786 5904.87 53 2916.74 0.330635791

4 52.7174 5752.09 58 3069.52 0.347954625

5 18.4251 5852.56 51 2969.05 0.336565548

6 22.0169 5678.95 50 3142.66 0.356245629

0 2.50495 8821.61 0

2 51.3834 5750.49 50 3071.12 0.348135998

3 39.0612 5822.55 40 2999.06 0.339967421

4 138.955 5665.66 72 3155.95 0.357752156

5 20.7408 5874.57 42 2947.04 0.334070538

6 20.998 5906.02 38 2915.59 0.330505429

Table A.3: Original test results for 125-request problem

sets with different maximum allowed numbers of splits

Max Splits Allowed CPU Time Cost Splits Cost Reduction Percentage

0 4.8763 11548.5 0

2 36.5793 7713.83 44 3834.67 0.332049184

3 29.1905 8463.79 26 3084.71 0.267109148

4 76.3901 7401.97 77 4146.53 0.359053557

5 54.259 7567.5 71 3981 0.344720094

6 45.2287 7708.12 45 3840.38 0.33254362

0 5.81823 11548.5 0

2 63.5377 7128.08 60 4420.42 0.382770057

Continued on next page

60

Table A.3 – continued from previous page

Max Splits Allowed CPU Time Cost Splits Cost Reduction Percentage

3 52.0173 7652.32 50 3896.18 0.337375417

4 36.9435 7559.63 49 3988.87 0.345401567

5 140.353 7157.14 79 4391.36 0.380253713

6 43.6222 7563.59 51 3984.91 0.345058666

0 7.6352 11548.5 0

2 49.1231 7272.73 47 4275.77 0.370244621

3 93.6556 7010.76 69 4537.74 0.392928952

4 35.8491 7760.64 43 3787.86 0.327995844

5 125.307 7071.37 81 4477.13 0.387680651

6 220.463 6968.56 97 4579.94 0.396583106

0 6.59719 11548.5 0

2 39.9363 7943.13 35 3605.37 0.312193791

3 58.3043 7289.62 55 4258.88 0.368782093

4 65.3268 7202.4 70 4346.1 0.376334589

5 32.215 7961.89 40 3586.61 0.310569338

6 50.1217 7225.64 67 4322.86 0.374322206

0 5.29178 11548.5 0

2 52.3802 7325.78 63 4222.72 0.36565095

3 40.5436 8568.49 34 2980.01 0.258043036

4 83.8596 7139.21 73 4409.29 0.381806295

5 180.144 7193.03 90 4355.47 0.37714595

6 133.683 7279.14 78 4269.36 0.36968957

0 4.83736 10658.7 0

Continued on next page

61

Table A.3 – continued from previous page

Max Splits Allowed CPU Time Cost Splits Cost Reduction Percentage

2 74.6972 7148.42 71 3510.28 0.329334722

3 82.9283 7412.6 76 3246.1 0.304549335

4 51.5441 7309.46 62 3349.24 0.314225937

5 81.3539 7450.89 75 3207.81 0.300956965

6 133.769 7489.39 105 3169.31 0.297344892

0 4.47688 10658.7 0

2 135.756 7379.88 71 3278.82 0.307619128

3 132.648 7293.23 79 3365.47 0.315748637

4 196.911 7407.95 104 3250.75 0.304985599

5 137.023 7278.99 78 3379.71 0.317084635

6 85.3547 7489.83 69 3168.87 0.297303611

0 12.2387 10658.7 0

2 62.8174 7395.25 63 3263.45 0.306177114

3 71.4281 7449.13 68 3209.57 0.301122088

4 83.5735 7465.78 68 3192.92 0.299559984

5 92.8698 7493.14 66 3165.56 0.296993067

6 168.496 7260.8 87 3397.9 0.318791222

0 9.6049 10658.7 0

2 103.901 7193.29 76 3465.41 0.325125015

3 149.578 7161.18 89 3497.52 0.328137578

4 110.65 7178.61 65 3480.09 0.326502294

5 68.4235 7376.92 72 3281.78 0.307896835

6 93.3958 7303.86 77 3354.84 0.31475133

0 5.89349 10658.7 0

Continued on next page

62

Table A.3 – continued from previous page

Max Splits Allowed CPU Time Cost Splits Cost Reduction Percentage

2 121.792 7283.43 89 3375.27 0.316668074

3 79.9549 7358.17 61 3300.53 0.309655962

4 99.0114 7268.1 59 3390.6 0.318106336

5 202.19 7323.11 81 3335.59 0.312945294

6 239.14 7258.31 82 3400.39 0.319024834

A.2 For Smaller Load Size Ranges

In this section, original results for all the numerical tests on the 75-, 100-,

and 125-request problem sets are presented. Each problem set consists of two

different configurations of pickup and delivery locations, and for each location

configuration, five different load configurations are generated and all the load

sizes are within the ranges from [0.11, 0.2] to [0.81, 0.9]. The results are presented

in such a way that each result for the algorithm without split loads is presented

before its corresponding algorithm with split loads. Table A.4 presents the original

results for the 75-request problem sets, Table A.5 presents the original results for

the 100-request problem sets, and Table A.6 presents the original results for the

125-request problem sets.

Table A.4: Original test results for 75-request problem

sets on smaller load size ranges

Max Splits Allowed CPU Time Cost Splits Cost Reduction Percentage

0.11-0.20 4.15209 2133.91 0

Continued on next page

63

Table A.4 – continued from previous page

Load Range CPU Time Cost Splits Cost Reduction Percentage

4.55206 2133.91 0 0 0

4.14034 2133.91 0

4.48524 2133.91 0 0 0

5.3545 2133.91 0

4.24918 2133.91 0 0 0

4.31103 2133.91 0

5.29806 2133.91 0 0 0

3.67916 2133.91 0

4.00955 2133.91 0 0 0

0.11-0.20 3.15281 2228.21 0

3.17955 2228.21 0 0 0

3.05949 2229.79 0

3.08345 2229.79 0 0 0

3.53348 2229.79 0

3.82863 2229.79 0 0 0

2.9471 2228.21 0

3.51346 2228.21 0 0 0

3.19015 2228.21 0

3.72507 2228.21 0 0 0

0.11-0.20 5.48399 2414.09 0

3.79366 2414.09 0 0 0

3.6421 2414.09 0

3.11561 2414.09 0 0 0

2.9534 2414.09 0

Continued on next page

64

Table A.4 – continued from previous page

Load Range CPU Time Cost Splits Cost Reduction Percentage

4.3195 2414.09 0 0 0

4.89867 2414.09 0

5.16378 2414.09 0 0 0

3.37267 2415.94 0

3.69402 2415.94 0 0 0

0.21-0.30 3.89658 2073.35 0

7.3656 2080.47 6 -7.12 -0.003434056

2.81083 2135.36 0

4.88904 2115.78 3 19.58 0.009169414

2.69536 2197.11 0

3.1403 2197.11 0 0 0

2.62077 2187.88 0

4.73762 2190.77 4 -2.89 -0.001320913

4.05607 2094.19 0

8.30292 2088.24 6 5.95 0.002841194

0.21-0.30 2.93492 2234.61 0

5.07057 2234.61 0 0 0

3.73356 2201.35 0

4.80556 2201.67 1 -0.32 -0.000145365

6.43577 2151.73 0

6.7409 2128.17 3 23.56 0.010949329

2.9734 2195.71 0

8.93416 2180.6 1 15.11 0.006881601

3.81237 2154.49 0

Continued on next page

65

Table A.4 – continued from previous page

Load Range CPU Time Cost Splits Cost Reduction Percentage

4.771 2161.04 0 -6.55 -0.003040163

0.21-0.30 3.80447 2150.66 0

4.39929 2150.66 0 0 0

3.80713 2287.16 0

5.81653 2287.16 0 0 0

4.01085 2350.13 0

5.21375 2358.51 2 -8.38 -0.00356576

2.92921 2292.45 0

2.91691 2292.45 0 0 0

3.48458 2320.18 0

5.30374 2321.4 2 -1.22 -0.000525821

0.31-0.40 3.07184 3321.9 0

12.11 3176.67 19 145.23 0.043718956

1.81257 3273.95 0

7.24184 3128 20 145.95 0.044579178

2.20679 3265.97 0

9.85713 3028.42 22 237.55 0.0727349

2.95545 3125.17 0

4.52449 3096.03 6 29.14 0.009324293

2.25811 2650.46 0

3.89784 2603.97 4 46.49 0.017540351

0.31-0.40 2.066 2759.16 0

5.20949 2711.46 11 47.7 0.01728787

2.45024 2753.04 0

Continued on next page

66

Table A.4 – continued from previous page

Load Range CPU Time Cost Splits Cost Reduction Percentage

8.44833 2661.75 11 91.29 0.033159707

2.18601 2765.8 0

5.49288 2728.16 18 37.64 0.013609082

2.6233 2766.73 0

3.58556 2704.62 9 62.11 0.022448884

2.58534 2791.53 0

6.05404 2649.99 15 141.54 0.050703378

0.31-0.40 2.27785 2872.32 0

11.437 2803.81 14 68.51 0.023851799

2.86791 2902.24 0

5.63453 2784.87 6 117.37 0.040441176

2.5821 3002.47 0

4.32981 2860.71 11 141.76 0.04721446

2.34372 2993.41 0

4.64498 2845.07 12 148.34 0.049555524

1.85359 3014.74 0

7.381 2904.71 18 110.03 0.036497343

0.41-0.50 3.29863 3186.85 0

6.29048 3187.71 5 -0.86 -0.000269859

4.66281 3186.85 0

4.054 3188.08 3 -1.23 -0.000385961

4.13118 3186.85 0

6.61791 3190.32 6 -3.47 -0.001088849

4.79476 3186.85 0

Continued on next page

67

Table A.4 – continued from previous page

Load Range CPU Time Cost Splits Cost Reduction Percentage

3.61495 3195.59 2 -8.74 -0.00274252

2.43193 3186.85 0

5.0405 3189.24 2 -2.39 -0.000749957

0.41-0.50 3.11406 2783.3 0

5.45304 2785.76 4 -2.46 -0.000883843

3.04954 2783.3 0

7.89817 2761.33 11 21.97 0.007893508

2.60092 2783.3 0

3.20214 2783.94 2 -0.64 -0.000229943

2.15793 2783.3 0

3.73545 2783.3 3 0 0

5.25722 2783.3 0

2.15122 2783.3 0 0 0

0.41-0.50 3.32807 2899.19 0

5.63806 2901.81 1 -2.62 -0.000903701

3.90724 2899.19 0

4.76785 2906.11 2 -6.92 -0.002386874

3.3336 2899.19 0

5.4774 2903.64 3 -4.45 -0.001534911

3.25058 2899.19 0

5.40938 2881.16 8 18.03 0.006218978

3.72115 2899.19 0

4.66284 2884.36 2 14.83 0.005115222

0.51-0.60 2.17933 5536.45 0

Continued on next page

68

Table A.4 – continued from previous page

Load Range CPU Time Cost Splits Cost Reduction Percentage

25.5074 3636.4 43 1900.05 0.343189228

2.06045 5536.45 0

22.9893 3692.46 54 1843.99 0.333063606

1.50089 5536.45 0

26.3648 3561.98 53 1974.47 0.356631054

2.07851 5536.45 0

24.8857 3598.81 50 1937.64 0.349978777

2.12907 5536.45 0

15.9015 3549.04 45 1987.41 0.358968292

0.51-0.60 2.11356 5921.35 0

24.8001 3901.59 47 2019.76 0.341097892

2.21583 5921.35 0

22.8894 4050.87 46 1870.48 0.315887424

1.64355 5921.35 0

19.1874 3831.18 49 2090.17 0.352988761

2.33106 5921.35 0

13.7139 4105.76 37 1815.59 0.306617579

1.87999 5921.35 0

19.556 3991.45 47 1929.9 0.325922298

0.51-0.60 2.81699 7428.85 0

24.481 4698.51 49 2730.34 0.367531987

1.53665 7428.85 0

27.8866 4708.95 46 2719.9 0.366126655

1.96422 7428.85 0

Continued on next page

69

Table A.4 – continued from previous page

Load Range CPU Time Cost Splits Cost Reduction Percentage

21.3382 4506.01 40 2922.84 0.393444477

2.09788 7428.85 0

13.1528 4587.85 39 2841 0.382427967

1.4807 7428.85 0

32.3357 4382.77 76 3046.08 0.410033854

0.61-0.70 6.33792 6271.03 0

27.9643 4586.67 54 1684.36 0.268593835

1.27459 6271.03 0

15.7352 4771.45 52 1499.58 0.239128181

1.77857 6271.03 0

14.872 4853.52 37 1417.51 0.226041017

1.77754 6271.03 0

20.87 4892.23 55 1378.8 0.219868188

1.82821 6271.03 0

27.1986 4620.56 50 1650.47 0.26318962

0.61-0.70 1.85151 6272.79 0

18.7144 4477.45 43 1795.34 0.286210761

2.03199 6272.79 0

25.1776 4447 43 1825.79 0.29106506

1.78333 6272.79 0

13.8186 4346 34 1926.79 0.307166349

1.94591 6272.79 0

11.314 4474.64 33 1798.15 0.286658728

1.84326 6272.79 0

Continued on next page

70

Table A.4 – continued from previous page

Load Range CPU Time Cost Splits Cost Reduction Percentage

31.5149 4437.09 66 1835.7 0.2926449

0.61-0.70 2.03699 5949.5 0

17.1119 4601.87 27 1347.63 0.226511472

1.60622 5949.5 0

6.56571 4670.48 23 1279.02 0.21497941

1.8069 5949.5 0

11.1899 4610.25 36 1339.25 0.22510295

1.32058 5949.5 0

18.2968 4492.31 55 1457.19 0.244926464

1.60322 5949.5 0

10.2018 4564.87 36 1384.63 0.232730482

0.71-0.80 1.83836 6324.07 0

20.6817 5570.41 58 753.66 0.119173254

1.82592 6324.07 0

51.4876 5516.46 77 807.61 0.127704153

1.78696 6324.07 0

24.9245 5420.59 47 903.48 0.142863694

1.54203 6324.07 0

11.2503 5636.22 34 687.85 0.108766981

1.30655 6324.07 0

20.4239 5466.35 50 857.72 0.135627847

0.71-0.80 1.75172 6556.54 0

44.7682 5274.22 61 1282.32 0.195578766

1.77984 6556.54 0

Continued on next page

71

Table A.4 – continued from previous page

Load Range CPU Time Cost Splits Cost Reduction Percentage

38.3099 5456.9 74 1099.64 0.167716509

1.97899 6556.54 0

42.6104 5426.67 63 1129.87 0.172327173

1.18891 6556.54 0

34.2878 5406.09 70 1150.45 0.175466023

1.43087 6556.54 0

21.2008 5276.51 55 1280.03 0.195229496

0.71-0.80 1.39229 5723.74 0

49.9912 4933.31 83 790.43 0.138096769

1.75389 5723.74 0

21.9168 4789.88 56 933.86 0.163155559

2.19739 5723.74 0

36.9322 4661.62 61 1062.12 0.185563984

1.28479 5723.74 0

41.0971 4951.56 76 772.18 0.134908294

1.40266 5723.74 0

24.9523 4878.66 57 845.08 0.147644722

0.81-0.90 1.804 7068.23 0

18.5189 6614.13 38 454.1 0.064245221

1.51443 7068.23 0

34.7811 6413.49 74 654.74 0.092631394

1.46133 7068.23 0

16.3019 6535.34 29 532.89 0.075392283

1.78584 7068.23 0

Continued on next page

72

Table A.4 – continued from previous page

Load Range CPU Time Cost Splits Cost Reduction Percentage

21.5387 6627.12 37 441.11 0.06240742

1.777 7068.23 0

18.9118 6801.13 18 267.1 0.03778881

0.81-0.90 1.86941 5840.65 0

4.90311 5775.17 5 65.48 0.011211081

1.77536 5840.65 0

23.9797 5549.64 41 291.01 0.049824934

1.77138 5840.65 0

51.2465 5338.67 74 501.98 0.085945914

1.42795 5840.65 0

7.643 5635.96 18 204.69 0.035045757

1.60417 5840.65 0

17.8935 5532.62 52 308.03 0.052738993

0.81-0.90 1.90832 6845.15 0

18.2368 6153.41 46 691.74 0.101055492

1.78872 6845.15 0

9.05178 6322.93 15 522.22 0.076290512

1.51402 6845.15 0

13.4191 6247.8 18 597.35 0.087266167

1.7825 6845.15 0

23.232 6360.26 61 484.89 0.070837016

1.475 6845.15 0

17.0161 6039.88 40 805.27 0.117640957

73

Table A.5: Original test results for 100-request problem

sets on smaller load size ranges

Max Splits Allowed CPU Time Cost Splits Cost Reduction Percentage

0.11-0.20 7.91706 2823.53 0

9.65498 2823.53 0 0 0

9.60782 3013.96 0

12.3887 2936.62 6 77.34 0.025660593

7.85844 2920.42 0

10.1757 2921.47 3 -1.05 -0.000359537

8.84764 2874.34 0

8.23119 2874.34 0 0 0

8.19824 2823.53 0

9.54575 2823.53 0 0 0

0.11-0.20 7.45925 2709.4 0

7.81542 2709.4 0 0 0

7.71517 2687.35 0

11.626 2635.56 2 51.79 0.019271773

7.67984 2687.35 0

8.09835 2687.35 0 0 0

7.48232 2729.41 0

7.93534 2729.41 0 0 0

8.08102 2687.35 0

9.38615 2687.35 0 0 0

0.11-0.20 7.46708 2976.51 0

7.07918 2976.51 0 0 0

Continued on next page

74

Table A.5 – continued from previous page

Load Range CPU Time Cost Splits Cost Reduction Percentage

7.05706 2976.51 0

7.37709 2976.51 0 0 0

7.35949 2837.93 0

7.73571 2837.93 0 0 0

7.12643 2957.49 0

7.41148 2957.49 0 0 0

7.01206 2980.47 0

7.40459 2980.47 0 0 0

0.21-0.30 6.36053 3240 0

8.38402 3240 2 0 0

7.31884 3261.79 0

6.10888 3261.79 0 0 0

6.06748 3278.09 0

6.2995 3278.09 0 0 0

6.22527 3437.24 0

6.40888 3437.24 0 0 0

6.02133 3365.96 0

6.47486 3365.96 0 0 0

0.21-0.30 7.01513 3139.26 0

8.38592 3139.26 0 0 0

6.49789 3119.51 0

8.50009 3119.51 0 0 0

6.92011 3098.51 0

12.1882 3081.87 6 16.64 0.005370323

Continued on next page

75

Table A.5 – continued from previous page

Load Range CPU Time Cost Splits Cost Reduction Percentage

7.48605 3158.61 0

6.89625 3158.61 0 0 0

6.42072 3148.36 0

10.8187 3143.27 5 5.09 0.001616715

6.56822 3424.04 0

15.6523 3269 11 155.04 0.045279845

6.96224 3531.99 0

5.48544 3531.99 0 0 0

7.551 3318.3 0

13.9833 3154.89 9 163.41 0.049245095

6.30139 3404.13 0

18.9968 3415.05 14 -10.92 -0.003207868

6.19979 3395.96 0

6.15522 3395.96 0 0 0

0.31-0.40 5.20532 4569.48 0

26.5544 4156.66 33 412.82 0.090342884

6.16519 4581.07 0

13.0861 4344.87 27 236.2 0.051560007

6.03928 4331.06 0

13.2299 4206.71 14 124.35 0.028711216

4.63767 4606.72 0

18.1986 4256 25 350.72 0.076132259

5.49755 4451.09 0

30.4797 4075.96 32 375.13 0.084278233

Continued on next page

76

Table A.5 – continued from previous page

Load Range CPU Time Cost Splits Cost Reduction Percentage

0.31-0.40 5.74747 4954.02 0

21.0526 4643.69 29 310.33 0.062642056

4.66205 4732.31 0

29.6002 4504.03 25 228.28 0.048238598

4.72724 4768.67 0

21.8038 4538.52 29 230.15 0.048262933

4.69074 4783.21 0

16.2781 4454.7 25 328.51 0.06867982

4.71867 4943.7 0

13.5779 4691.48 20 252.22 0.051018468

0.31-0.40 5.44314 3749.7 0

18.548 3523.01 27 226.69 0.060455503

5.36519 3833.9 0

28.7352 3656.12 18 177.78 0.046370537

4.66191 3804.83 0

16.8499 3535.5 17 269.33 0.070786343

5.28622 3818.26 0

15.4509 3636.21 15 182.05 0.047678786

5.42989 3852.84 0

20.4073 3659.8 21 193.04 0.0501033

0.41-0.50 4.25788 4232.8 0

8.93895 4174.99 10 57.81 0.013657626

4.82532 4232.8 0

5.44601 4232.8 0 0 0

Continued on next page

77

Table A.5 – continued from previous page

Load Range CPU Time Cost Splits Cost Reduction Percentage

4.27833 4232.8 0

9.14315 4144.96 3 87.84 0.020752221

4.30264 4232.8 0

5.35756 4232.8 0 0 0

4.66742 4232.8 0

8.60842 4191.35 3 41.45 0.009792572

0.41-0.50 4.77271 4246.01 0

5.62759 4246.01 0 0 0

4.24639 4246.01 0

7.80065 4235.85 3 10.16 0.002392835

5.89386 4246.01 0

4.7703 4246.01 0 0 0

4.23586 4246.01 0

5.85848 4244.6 2 1.41 0.000332076

4.32889 4246.01 0

5.20196 4246.01 0 0 0

0.41-0.50 4.43501 4147.65 0

6.20033 4147.65 0 0 0

4.30738 4147.65 0

4.93616 4147.65 0 0 0

4.33689 4147.65 0

8.65357 4140.77 4 6.88 0.001658771

4.34865 4147.65 0

5.49731 4147.65 0 0 0

Continued on next page

78

Table A.5 – continued from previous page

Load Range CPU Time Cost Splits Cost Reduction Percentage

4.36219 4147.65 0

5.51674 4147.65 0 0 0

0.51-0.60 2.81691 7802.82 0

53.8795 5094.95 62 2707.87 0.347037353

4.45853 7802.82 0

44.1533 5281.59 59 2521.23 0.323117796

3.41686 7802.82 0

38.9525 5447.71 59 2355.11 0.301828057

2.81339 7802.82 0

37.5629 5136.29 57 2666.53 0.341739269

2.47636 7802.82 0

63.2693 5369.09 64 2433.73 0.311903901

0.51-0.60 2.74111 9209.16 0

34.4611 6326.94 64 2882.22 0.31297317

2.47483 9209.16 0

25.9144 6155.6 51 3053.56 0.331578559

2.8392 9209.16 0

44.9063 5989.89 55 3219.27 0.349572599

3.37952 9209.16 0

77.1017 6088.71 71 3120.45 0.338841979

2.42763 9209.16 0

51.3087 6142.21 81 3066.95 0.333032546

0.51-0.60 3.17896 8821.61 0

81.8202 5778.98 65 3042.63 0.344906429

Continued on next page

79

Table A.5 – continued from previous page

Load Range CPU Time Cost Splits Cost Reduction Percentage

3.16167 8821.61 0

43.2338 5891.49 68 2930.12 0.332152521

3.13341 8821.61 0

44.4612 5790.28 52 3031.33 0.343625483

3.15731 8821.61 0

46.2894 5614.37 57 3207.24 0.363566288

3.15057 8821.61 0

40.8827 5584.46 59 3237.15 0.366956825

0.61-0.70 2.81846 7568.68 0

38.5689 5511.81 63 2056.87 0.27176073

2.68082 7568.68 0

29.67 5535.1 53 2033.58 0.268683575

2.80299 7568.68 0

58.2312 5553.58 87 2015.1 0.266241934

2.65952 7568.68 0

29.6513 5586.33 55 1982.35 0.261914891

2.44573 7568.68 0

24.9088 5480.3 51 2088.38 0.275923939

0.61-0.70 2.86331 8039.39 0

24.6619 5879.41 57 2159.98 0.268674613

2.35295 8039.39 0

29.036 6016.37 57 2023.02 0.251638495

2.46276 8039.39 0

39.8341 6004.41 57 2034.98 0.25312617

Continued on next page

80

Table A.5 – continued from previous page

Load Range CPU Time Cost Splits Cost Reduction Percentage

3.08335 8039.39 0

37.0587 6088.72 64 1950.67 0.242639056

2.35729 8039.39 0

40.022 5983.67 69 2055.72 0.255705968

0.61-0.70 2.215 8151.18 0

26.8231 6291.12 45 1860.06 0.228195182

2.79903 8151.18 0

44.1451 6189.37 59 1961.81 0.240678037

2.91342 8151.18 0

44.1421 6200.49 58 1950.69 0.239313817

2.699 8151.18 0

36.8819 6264.5 45 1886.68 0.231460966

2.79924 8151.18 0

35.2157 6187.33 55 1963.85 0.240928307

0.71-0.80 2.69442 9100.05 0

63.168 7483.6 90 1616.45 0.177630892

2.73487 9100.05 0

43.0897 7886.13 66 1213.92 0.133397069

2.86044 9100.05 0

118.418 7424.52 100 1675.53 0.184123164

2.70266 9100.05 0

94.7218 7691.42 95 1408.63 0.154793655

2.22092 9100.05 0

42.7128 7567.35 68 1532.7 0.168427646

Continued on next page

81

Table A.5 – continued from previous page

Load Range CPU Time Cost Splits Cost Reduction Percentage

0.71-0.80 2.73072 6880.38 0

32.1867 6197.86 43 682.52 0.099198009

2.8492 6880.38 0

12.1214 6157.35 24 723.03 0.105085766

2.74468 6880.38 0

40.3629 6076.92 55 803.46 0.116775527

2.81278 6880.38 0

56.5071 6158.99 79 721.39 0.104847407

2.64398 6880.38 0

48.765 6119.83 74 760.55 0.110538953

0.71-0.80 2.74508 7172.14 0

77.0018 6428.14 91 744 0.103734729

3.03506 7172.14 0

46.3596 6410.57 69 761.57 0.106184486

3.01527 7172.14 0

88.7651 6350.54 73 821.6 0.114554373

4.73709 7172.14 0

42.9706 6331.44 63 840.7 0.117217455

2.65849 7172.14 0

31.6899 6323.87 55 848.27 0.118272928

0.81-0.90 2.9376 9115.64 0

14.3027 8947.73 9 167.91 0.01841999

2.59944 9115.64 0

3.43643 9115.67 0 -0.03 -3.29105E-06

Continued on next page

82

Table A.5 – continued from previous page

Load Range CPU Time Cost Splits Cost Reduction Percentage

2.30297 9115.64 0

2.92426 9115.72 0 -0.08 -8.77613E-06

2.3669 9115.64 0

4.38061 9115.79 2 -0.15 -1.64552E-05

3.10114 9115.64 0

6.2431 9115.93 1 -0.29 -3.18135E-05

0.81-0.90 3.13033 8922.72 0

7.89004 8922.85 3 -0.13 -1.45695E-05

2.98319 8922.72 0

5.63574 8922.9 1 -0.18 -2.01732E-05

2.86648 8922.72 0

4.1576 8923.53 0 -0.81 -9.07795E-05

2.95876 8922.72 0

5.88956 8923.1 2 -0.38 -4.25879E-05

3.10095 8922.72 0

3.53582 8924.35 0 -1.63 -0.00018268

0.81-0.90 3.01943 9023.99 0

6.04646 9014.28 3 9.71 0.001076021

2.97091 9023.99 0

14.048 9014.45 4 9.54 0.001057182

3.04131 9023.99 0

15.0786 8942.01 14 81.98 0.009084673

2.90841 9023.99 0

5.79935 9024 1 -0.01 -1.10816E-06

Continued on next page

83

Table A.5 – continued from previous page

Load Range CPU Time Cost Splits Cost Reduction Percentage

2.54512 9023.99 0

3.82855 9024.03 0 -0.04 -4.43263E-06

Table A.6: Original test results for 125-request problem

sets on smaller load size ranges

Max Splits Allowed CPU Time Cost Splits Cost Reduction Percentage

0.11-0.20 11.5194 3658.76 0

11.6973 3658.76 0 0 0

12.9578 3649.21 0

13.6388 3649.21 0 0 0

13.5165 3474.17 0

14.3191 3474.17 0 0 0

18.9712 3555.15 0

11.9128 3555.15 0 0 0

15.3818 3474.68 0

14.1136 3474.68 0 0 0

0.11-0.20 14.1413 2988.48 0

14.4894 2988.48 0 0 0

13.9378 3010.35 0

14.3469 3010.35 0 0 0

14.7281 2973.7 0

14.7072 2973.7 0 0 0

Continued on next page

84

Table A.6 – continued from previous page

Load Range CPU Time Cost Splits Cost Reduction Percentage

14.4697 2931.94 0

14.58 2931.94 0 0 0

14.0555 2911.77 0

14.7189 2911.77 0 0 0

0.11-0.20 12.999 2762.86 0

13.5534 2762.86 0 0 0

13.1911 2820.48 0

13.3878 2820.48 0 0 0

13.3771 2781.12 0

13.9639 2781.12 0 0 0

13.3207 2773.14 0

13.8228 2773.14 0 0 0

13.009 2825.83 0

13.6752 2825.83 0 0 0

0.21-0.30 11.8052 3731.9 0

19.9273 3664.2 3 67.7 0.018140893

14.4446 3823.26 0

27.2806 3767.47 4 55.79 0.014592259

10.853 3664.63 0

15.1138 3556.15 8 108.48 0.029601897

16.5103 3829.17 0

41.3336 3597.96 24 231.21 0.060381231

10.5504 3862.17 0

15.132 3759.35 3 102.82 0.026622339

Continued on next page

85

Table A.6 – continued from previous page

Load Range CPU Time Cost Splits Cost Reduction Percentage

0.21-0.30 10.2235 4333.07 0

37.9233 4110.84 27 222.23 0.051286963

10.549 4229.56 0

28.1934 3963.65 11 265.91 0.062869424

10.8706 4496.8 0

35.2476 4092.73 20 404.07 0.089857232

12.0225 4157.74 0

12.4225 4063.56 4 94.18 0.022651729

10.5047 4488.27 0

31.9145 4221.42 15 266.85 0.059454979

0.21-0.30 10.4955 4185.41 0

24.0372 3967.46 13 217.95 0.052073751

11.2249 4015.23 0

27.0322 3922.49 13 92.74 0.023097058

9.73235 3810.78 0

14.2711 3769.44 3 41.34 0.010848173

10.0047 4021.75 0

28.7667 3877.92 13 143.83 0.035763038

9.44704 4034.96 0

15.8471 3891.61 5 143.35 0.035526994

0.31-0.40 9.13985 5655.83 0

23.3983 5270.21 25 385.62 0.068180974

8.25984 5787.31 0

115.764 5323.16 46 464.15 0.080201337

Continued on next page

86

Table A.6 – continued from previous page

Load Range CPU Time Cost Splits Cost Reduction Percentage

8.7096 5733.78 0

32.4674 5337.88 32 395.9 0.069046946

11.7265 5644.48 0

42.0277 5268.97 41 375.51 0.066526943

9.45313 5811.19 0

24.5241 5311.76 36 499.43 0.08594281

0.31-0.40 7.94457 5492.03 0

30.5067 5098.74 37 393.29 0.071611044

11.0107 5232.91 0

19.4243 4913.97 22 318.94 0.060948879

9.34574 5762.94 0

47.0932 5139.62 44 623.32 0.108160071

9.01085 5596.07 0

37.5157 5187.12 24 408.95 0.073078071

8.01732 5504.15 0

47.529 4978.01 43 526.14 0.095589691

0.31-0.40 8.84592 5634.65 0

40.3198 5145.04 28 489.61 0.086892709

9.23927 5432.25 0

36.7584 5086.65 41 345.6 0.063620047

9.15476 5553.48 0

61.2035 5088.22 33 465.26 0.083778099

8.75961 5695.5 0

19.1105 5220.7 25 474.8 0.083364059

Continued on next page

87

Table A.6 – continued from previous page

Load Range CPU Time Cost Splits Cost Reduction Percentage

7.61246 5631.74 0

36.9547 5195.07 40 436.67 0.077537315

0.41-0.50 8.41458 5886.93 0

10.1997 5888.14 2 -1.21 -0.00020554

9.86417 5886.93 0

10.1588 5886.93 2 0 0

8.38073 5886.93 0

10.2295 5887.08 2 -0.15 -2.54802E-05

8.50815 5886.93 0

14.468 5888.15 4 -1.22 -0.000207239

8.54737 5886.93 0

11.6599 5886.93 2 0 0

0.41-0.50 9.70316 5886.93 0

23.9222 5845.13 16 41.8 0.007100475

9.11915 5886.93 0

30.4437 5857.52 13 29.41 0.004995813

13.9945 5886.93 0

9.36049 5887.35 2 -0.42 -7.13445E-05

10.4682 5886.93 0

11.021 5892.3 4 -5.37 -0.00091219

8.76495 5886.93 0

13.5778 5887.42 2 -0.49 -8.32352E-05

0.41-0.50 12.5909 5886.93 0

15.3659 5893.4 2 -6.47 -0.001099045

Continued on next page

88

Table A.6 – continued from previous page

Load Range CPU Time Cost Splits Cost Reduction Percentage

15.2322 5886.93 0

15.1249 5851.5 12 35.43 0.006018417

14.9093 5886.93 0

12.6903 5887.08 3 -0.15 -2.54802E-05

8.52536 5886.93 0

13.9365 5886.93 5 0 0

10.1344 5886.93 0

15.9705 5784.08 5 102.85 0.017470906

0.51-0.60 4.13398 11548.5 0

109.42 7124.39 79 4424.11 0.383089579

4.98657 11548.5 0

164.607 6827.91 103 4720.59 0.408762177

4.28788 11548.5 0

81.5478 6998.03 91 4550.47 0.394031259

4.28645 11548.5 0

145.449 7009.09 89 4539.41 0.393073559

4.09243 11548.5 0

115.532 6806.48 78 4742.02 0.410617829

0.51-0.60 4.20777 10658.7 0

147.649 7197.41 106 3461.29 0.324738477

3.71087 10658.7 0

77.4357 7307.08 85 3351.62 0.314449229

4.66583 10658.7 0

73.3299 7196.98 74 3461.72 0.324778819

Continued on next page

89

Table A.6 – continued from previous page

Load Range CPU Time Cost Splits Cost Reduction Percentage

6.53853 10658.7 0

96.7593 7267.31 86 3391.39 0.318180454

7.2392 10658.7 0

89.7834 7162.02 69 3496.68 0.328058769

0.51-0.60 4.11005 9490 0

86.3537 6384.47 65 3105.53 0.32724236

4.4027 9490 0

137.973 6266.02 67 3223.98 0.33972392

4.24167 9490 0

129.569 6108.33 85 3381.67 0.356340358

4.14164 9490 0

55.5845 6462.51 68 3027.49 0.319018967

4.67401 9490 0

91.2725 6296.81 78 3193.19 0.336479452

0.61-0.70 4.40314 11246 0

46.293 8259.42 60 2986.58 0.265568202

3.74975 11246 0

34.9571 8456 53 2790 0.248088209

3.60125 11246 0

133.655 8342.54 96 2903.46 0.25817713

3.66783 11246 0

58.3415 8404.39 70 2841.61 0.252677396

3.66323 11246 0

40.268 8447.05 66 2798.95 0.248884048

Continued on next page

90

Table A.6 – continued from previous page

Load Range CPU Time Cost Splits Cost Reduction Percentage

0.61-0.70 4.32314 10282.3 0

54.2896 7436.92 62 2845.38 0.276726024

4.58572 10282.3 0

60.3071 7390.82 60 2891.48 0.281209457

4.31195 10282.3 0

32.3328 7568.61 42 2713.69 0.263918579

4.46996 10282.3 0

57.4024 7496.03 63 2786.27 0.270977311

4.4361 10282.3 0

83.4196 7482.95 88 2799.35 0.272249399

0.61-0.70 4.47853 10264.4 0

59.807 7689.83 76 2574.57 0.250825182

4.85132 10264.4 0

74.1696 7758.34 69 2506.06 0.244150657

5.2955 10264.4 0

76.1706 7866.61 82 2397.79 0.233602549

4.9786 10264.4 0

37.8327 7790.56 52 2473.84 0.241011652

7.48034 10264.4 0

50.4148 7843.5 64 2420.9 0.23585402

0.71-0.80 4.33415 10463.1 0

127.995 8054.11 81 2408.99 0.230236737

5.31898 10463.1 0

149.961 8522.75 92 1940.35 0.185446952

Continued on next page

91

Table A.6 – continued from previous page

Load Range CPU Time Cost Splits Cost Reduction Percentage

6.71647 10463.1 0

195.14 8314.42 130 2148.68 0.205357877

4.43546 10463.1 0

144.176 8386.37 111 2076.73 0.19848133

4.82622 10463.1 0

99.1799 8347.43 80 2115.67 0.20220298

0.71-0.80 4.28131 9871.36 0

97.3193 8468.95 96 1402.41 0.14206857

4.64581 9871.36 0

122.539 8484.55 86 1386.81 0.140488241

5.30979 9871.36 0

143.342 8440.83 112 1430.53 0.144917215

4.9706 9871.36 0

91.2145 8536.45 89 1334.91 0.135230607

5.1132 9871.36 0

147.623 8344.61 94 1526.75 0.154664605

0.71-0.80 4.63181 11518.3 0

143.244 9411.24 113 2107.06 0.182931509

4.49809 11518.3 0

218.959 9513.3 125 2005 0.174070826

4.63181 11518.3 0

141.148 9413.03 113 2105.27 0.182776104

6.28745 11518.3 0

76.1562 9541.56 79 1976.74 0.171617339

Continued on next page

92

Table A.6 – continued from previous page

Load Range CPU Time Cost Splits Cost Reduction Percentage

4.49809 11518.3 0

218.959 9513.3 125 2005 0.174070826

0.81-0.90 5.22899 8315.09 0

44.5381 8257.55 24 57.54 0.006919949

4.49756 8315.09 0

20.7954 8260.32 9 54.77 0.00658682

4.52883 8315.09 0

15.985 8261.88 7 53.21 0.006399209

4.53313 8315.09 0

18.5878 8174.04 21 141.05 0.016963136

4.28281 8315.09 0

55.2116 8245.06 30 70.03 0.008422038

0.81-0.90 4.60223 9650.42 0

13.0948 9579.17 5 71.25 0.007383098

4.66781 9650.42 0

8.69813 9618.42 1 32 0.003315918

4.53251 9650.42 0

8.3024 9705.78 1 -55.36 -0.005736538

4.76206 9650.42 0

28.4312 9513.35 16 137.07 0.014203527

4.63863 9650.42 0

15.6478 9526.07 6 124.35 0.01288545

0.81-0.90 4.74953 9668.5 0

56.9582 8940.37 35 728.13 0.07530951

Continued on next page

93

Table A.6 – continued from previous page

Load Range CPU Time Cost Splits Cost Reduction Percentage

4.54897 9668.5 0

29.8857 9394.12 18 274.38 0.028378756

7.13987 9668.5 0

23.1868 9021.1 12 647.4 0.066959715

4.62078 9668.5 0

42.6591 9194.53 25 473.97 0.049022082

4.02151 9668.5 0

19.6304 9280.27 11 388.23 0.040154109

A.3 For Wider Load Size Ranges

In this section, original results for all the numerical tests on the 75-, 100-,

and 125-request problem sets are presented. Each problem set consists of two

different configurations of pickup and delivery locations, and for each location

configuration, five different load configurations are generated and all the load

sizes are within the four wider ranges, [0.1, 0.5], [0.5, 1.0], [0.3, 0.7], and [0.1, 1.0].

The results are presented in the same way as that is used for the numerical results

on the smaller ranges. Table A.7 presents the original results for the 75-request

problem sets, Table A.8 presents the original results for the 100-request problem

sets, and Table A.9 presents the original results for the 125-request problem sets.

94

Table A.7: Original test results for 75-request problem

sets on wider load size ranges

Max Splits Allowed CPU Time Cost Splits Cost Reduction Percentage

0.1-1.0 2.75865 4751.39 0

16.704 4537.05 24 214.34 0.04511101

3.36853 4553.54 0

25.3221 4249.28 25 304.26 0.066818344

2.69974 4742.87 0

12.7788 4549.58 11 193.29 0.040753805

3.37557 4566.26 0

12.5548 4225.51 17 340.75 0.074623434

3.05322 4804.71 0

6.17126 4664.39 19 140.32 0.029204676

0.1-1.0 2.83704 3525.66 0

15.3155 3275.41 22 250.25 0.070979618

3.1355 3845.13 0

18.0298 3560.58 34 284.55 0.0740027

2.91609 3680.53 0

11.4277 3506.46 18 174.07 0.047294819

3.73953 3941.44 0

16.6182 3639.99 20 301.45 0.076482199

2.95557 4094.03 0

28.4981 3813.56 27 280.47 0.06850707

0.1-1.0 3.32851 4009.17 0

14.5271 3776.36 27 232.81 0.058069376

Continued on next page

95

Table A.7 – continued from previous page

Load Range CPU Time Cost Splits Cost Reduction Percentage

2.64635 3884.35 0

10.055 3670.14 7 214.21 0.055146936

2.71854 3628.69 0

12.5323 3489.1 6 139.59 0.038468428

2.34473 4068.13 0

12.0734 3930.98 23 137.15 0.033713279

2.19114 3532.07 0

8.42546 3417.45 4 114.62 0.032451225

0.1-0.5 4.12528 2607.52 0

18.3602 2503.69 23 103.83 0.039819445

3.65717 2330.39 0

9.30145 2244.54 14 85.85 0.036839327

3.67384 2487.63 0

5.15046 2403.67 1 83.96 0.033751

3.11183 2296.19 0

8.45993 2216.08 7 80.11 0.034888228

3.3959 2434.26 0

11.98 2284.46 13 149.8 0.061538209

0.1-0.5 3.88923 2023.8 0

8.52402 1878.64 6 145.16 0.071726455

3.63539 2087.5 0

9.11162 1998.83 9 88.67 0.042476647

3.94578 2309.71 0

6.89754 2248.86 10 60.85 0.026345299

Continued on next page

96

Table A.7 – continued from previous page

Load Range CPU Time Cost Splits Cost Reduction Percentage

3.62708 2205.9 0

13.3603 2155.18 13 50.72 0.022992883

3.06561 2179.79 0

11.1812 2093.6 11 86.19 0.039540506

0.1-0.5 3.62604 2968.86 0

7.45393 2803.11 10 165.75 0.05582951

3.19942 2708.72 0

21.1528 2628.72 16 80 0.029534245

3.16347 2771.91 0

9.45313 2688.04 5 83.87 0.030257115

3.85306 2721.03 0

5.77618 2667.52 4 53.51 0.019665347

3.15505 2699.74 0

7.15152 2658.76 5 40.98 0.015179239

0.5-1.0 1.78099 5990.97 0

18.296 4867.55 58 1123.42 0.187518883

1.78961 5990.97 0

18.3622 4987.6 46 1003.37 0.167480391

1.75861 5990.97 0

27.766 4694.1 53 1296.87 0.216470789

3.76663 5990.97 0

14.4754 5035.71 40 955.26 0.159449972

1.27104 5990.97 0

23.9787 4750.88 43 1240.09 0.206993191

Continued on next page

97

Table A.7 – continued from previous page

Load Range CPU Time Cost Splits Cost Reduction Percentage

0.5-1.0 1.81851 5669.89 0

9.28808 4411.46 35 1258.43 0.221949632

1.48902 5669.89 0

19.6705 4549.47 42 1120.42 0.197608772

1.21743 5669.89 0

21.6279 4395.4 51 1274.49 0.224782139

1.20378 5669.89 0

15.6266 4556.28 44 1113.61 0.19640769

1.19623 5669.89 0

17.4843 4470.88 55 1199.01 0.211469711

0.5-1.0 1.79156 6005 0

23.5494 5250.48 49 754.52 0.125648626

1.70297 6005 0

15.0586 4819.84 42 1185.16 0.197362198

1.71843 6005 0

21.8864 5153.08 34 851.92 0.141868443

1.69714 6005 0

25.9092 5007.91 38 997.09 0.166043297

1.73032 6005 0

10.7109 5002.93 31 1002.07 0.166872606

0.3-0.7 3.45476 4562.15 0

7.63138 4397.28 12 164.87 0.036138663

3.19056 4847.74 0

7.93268 4635.16 9 212.58 0.043851362

Continued on next page

98

Table A.7 – continued from previous page

Load Range CPU Time Cost Splits Cost Reduction Percentage

2.63746 5109.86 0

9.24333 4768.12 21 341.74 0.066878545

3.34636 4894.01 0

10.9911 4713.3 13 180.71 0.03692473

3.15354 5307.2 0

7.88207 4869.78 10 437.42 0.082420109

0.3-0.7 3.13687 3338.73 0

10.5178 3155.98 16 182.75 0.054736382

2.57324 3365.91 0

9.47829 3221.9 9 144.01 0.042784864

2.61575 3714.36 0

18.5792 3391.95 22 322.41 0.086800956

3.21634 3474.05 0

6.16903 3297.9 8 176.15 0.050704509

2.54868 3459.06 0

5.33081 3300.78 10 158.28 0.045758096

0.3-0.7 2.66829 4205.82 0

18.2292 3874.66 27 331.16 0.07873851

2.57158 4003.93 0

12.7177 3830.88 18 173.05 0.043220036

3.28888 3994.74 0

29.8936 3578.33 31 416.41 0.104239575

2.27273 4099.86 0

18.298 3677.18 31 422.68 0.103096203

Continued on next page

99

Table A.7 – continued from previous page

Load Range CPU Time Cost Splits Cost Reduction Percentage

2.51742 3913.34 0

10.8199 3680.72 12 232.62 0.059442829

Table A.8: Original test results for 100-request problem

sets on wider load size ranges

Max Splits Allowed CPU Time Cost Splits Cost Reduction Percentage

0.1-1.0 5.78299 5537.34 0

13.6476 5351.4 19 185.94 0.0335793

4.56195 5297.57 0

19.8833 5075.17 19 222.4 0.041981512

5.54443 5434.27 0

17.3692 5268.67 16 165.6 0.030473274

5.41659 5055.69 0

19.9833 4846.08 20 209.61 0.041460216

4.70454 4872.96 0

19.0373 4611.34 24 261.62 0.053688107

0.1-1.0 7.04941 4399.93 0

18.4946 4234.88 26 165.05 0.03751196

4.63024 4148.92 0

28.5872 3907.65 19 241.27 0.058152483

6.50215 4098.89 0

51.5415 3812.53 36 286.36 0.069862817

Continued on next page

100

Table A.8 – continued from previous page

Load Range CPU Time Cost Splits Cost Reduction Percentage

5.21569 4078.5 0

17.645 3919.95 29 158.55 0.038874586

3.94731 4163.83 0

15.1336 3977.28 14 186.55 0.044802502

0.1-1.0 4.34498 5463.23 0

48.3169 5137.59 40 325.64 0.059605764

5.73414 5163.3 0

19.4235 4943.18 22 220.12 0.04263165

5.51699 5100.3 0

23.0248 4772.15 30 328.15 0.064339353

4.28441 5215.2 0

31.837 4942.6 34 272.6 0.052270287

5.40177 4944.16 0

30.7674 4757.86 33 186.3 0.037680819

0.1-0.5 7.4327 4177.54 0

18.093 4066.95 17 110.59 0.026472517

6.14238 4103.84 0

15.944 3832.41 14 271.43 0.066140493

6.25431 4152.18 0

19.3563 4044.75 18 107.43 0.025873156

8.13818 4027.39 0

17.2017 3858.17 15 169.22 0.042017287

6.10473 4344.33 0

19.434 4227.29 18 117.04 0.026940863

Continued on next page

101

Table A.8 – continued from previous page

Load Range CPU Time Cost Splits Cost Reduction Percentage

0.1-0.5 6.29321 3782.33 0

16.107 3691.22 10 91.11 0.024088327

5.70091 3808.15 0

17.2477 3733.44 17 74.71 0.01961845

5.71788 3923.97 0

18.8472 3831.43 15 92.54 0.023583259

5.51993 3639.71 0

13.3181 3550.39 7 89.32 0.024540417

5.58723 3523.72 0

16.1119 3423.45 14 100.27 0.028455723

0.1-0.5 5.566 3850.18 0

14.0752 3744.75 10 105.43 0.027383135

6.74644 3676.19 0

13.4217 3593.81 10 82.38 0.02240907

5.4873 3619.4 0

14.6123 3494.73 15 124.67 0.034444936

5.78755 3669.26 0

12.1456 3486.25 6 183.01 0.049876542

5.6357 3665.15 0

11.817 3586.78 12 78.37 0.021382481

0.5-1.0 3.13883 9821.55 0

26.1056 7605.49 52 2216.06 0.22563241

3.0381 9821.55 0

37.1122 7717.18 52 2104.37 0.214260478

Continued on next page

102

Table A.8 – continued from previous page

Load Range CPU Time Cost Splits Cost Reduction Percentage

4.04695 9821.55 0

91.2051 7575.89 78 2245.66 0.228646191

2.84844 9821.55 0

63.0915 7484.42 63 2337.13 0.237959385

3.96498 9821.55 0

43.9444 7440.87 67 2380.68 0.242393512

0.5-1.0 2.85217 9791.94 0

28.5427 7853.19 49 1938.75 0.197994473

2.39632 9791.94 0

45.3911 7411.06 65 2380.88 0.243146915

2.75811 9791.94 0

42.273 7618.66 68 2173.28 0.221945804

2.47108 9791.94 0

16.0452 7874.68 47 1917.26 0.195799811

2.61554 9791.94 0

45.9507 7429.11 66 2362.83 0.241303562

0.5-1.0 3.72153 7709.54 0

120.377 6252.83 90 1456.71 0.188949016

2.88466 7709.54 0

31.5058 6245.32 56 1464.22 0.189923134

3.0891 7709.54 0

64.5364 6219.31 76 1490.23 0.193296876

4.47849 7709.54 0

28.5762 6242.26 46 1467.28 0.190320045

Continued on next page

103

Table A.8 – continued from previous page

Load Range CPU Time Cost Splits Cost Reduction Percentage

2.22226 7709.54 0

35.5826 6199.53 48 1510.01 0.195862529

0.3-0.7 5.02758 4141.27 0

13.2748 3937.39 18 203.88 0.049231274

4.8383 4240.55 0

13.6746 3934.68 15 305.87 0.072129794

7.78203 4158.28 0

26.361 3887.51 22 270.77 0.065115865

4.25255 4152.63 0

36.911 3900.91 38 251.72 0.060617007

6.02539 3971.94 0

12.496 3811.95 11 159.99 0.040280065

0.3-0.7 7.4366 5578.62 0

31.9365 5132.63 40 445.99 0.079946295

6.95518 5313.61 0

17.625 5027.64 27 285.97 0.053818402

5.32398 5503.5 0

17.1034 5200.16 25 303.34 0.055117652

6.89982 5426.17 0

18.5622 5026.38 28 399.79 0.073678119

6.61519 4958.6 0

24.2826 4789.42 26 169.18 0.034118501

0.3-0.7 5.61286 6395.99 0

34.6965 5755.39 40 640.6 0.100156504

Continued on next page

104

Table A.8 – continued from previous page

Load Range CPU Time Cost Splits Cost Reduction Percentage

5.88763 5856.24 0

29.8269 5379.84 28 476.4 0.081349125

6.28159 6135.63 0

44.3583 5505.31 36 630.32 0.102731097

9.31084 6097.16 0

58.2476 5538.61 52 558.55 0.091608224

7.35799 6044.45 0

20.8535 5556.4 20 488.05 0.080743492

Table A.9: Original test results for 125-request problem

sets on wider load size ranges

Max Splits Allowed CPU Time Cost Splits Cost Reduction Percentage

0.1-1.0 9.51468 7321.32 0

68.0916 6944.37 33 376.95 0.051486617

10.2223 6678.78 0

33.91 6397.35 22 281.43 0.042137935

11.747 6730.25 0

37.9265 6555.52 26 174.73 0.025961888

11.3672 6870.68 0

79.6477 6580.91 38 289.77 0.042174865

12.9814 7108.04 0

20.8363 6875.58 14 232.46 0.032703811

Continued on next page

105

Table A.9 – continued from previous page

Load Range CPU Time Cost Splits Cost Reduction Percentage

0.1-1.0 9.42585 7662.46 0

43.5878 7300.98 28 361.48 0.04717545

10.7186 7413.73 0

14.3509 6998.27 12 415.46 0.056039268

9.45163 7336.87 0

28.5348 7040.56 28 296.31 0.040386432

10.2695 7118.99 0

50.3736 6669.13 31 449.86 0.063191548

9.75323 6668.12 0

30.2647 6322.62 13 345.5 0.051813705

0.1-1.0 10.4039 6610.73 0

30.3418 6397.77 22 212.96 0.032214294

8.48573 7072.84 0

32.9545 6873.09 24 199.75 0.028241838

8.48573 7072.84 0

32.9545 6873.09 24 199.75 0.028241838

9.27977 7165.33 0

41.7361 6885.07 36 280.26 0.039113342

8.11325 7276.77 0

54.5706 6953.33 43 323.44 0.044448292

0.1-0.5 13.8052 3753.35 0

20.9997 3659.49 9 93.86 0.025006994

13.0689 4036.71 0

32.7937 3919.27 16 117.44 0.029092999

Continued on next page

106

Table A.9 – continued from previous page

Load Range CPU Time Cost Splits Cost Reduction Percentage

13.1047 3753.09 0

25.8798 3603.6 20 149.49 0.039831179

13.0157 3825.75 0

29.2107 3674.67 27 151.08 0.039490296

10.5982 3932.9 0

25.6809 3831.08 20 101.82 0.025889293

0.1-0.5 12.2386 3740.91 0

27.7522 3563.18 13 177.73 0.04750983

9.44012 3725.01 0

17.0327 3664.37 5 60.64 0.016279151

10.5081 3787.3 0

15.2203 3686.95 5 100.35 0.026496449

10.4666 3819.55 0

23.8767 3700.33 13 119.22 0.031213101

11.9842 3731.36 0

12.6629 3647.53 3 83.83 0.022466339

0.1-0.5 10.596 3730.12 0

15.0881 3561.34 4 168.78 0.045247874

10.6654 3665.02 0

13.9178 3588.07 3 76.95 0.020995793

10.3152 3928.67 0

15.053 3850.48 10 78.19 0.01990241

11.9851 3690.39 0

26.6269 3541.82 13 148.57 0.040258618

Continued on next page

107

Table A.9 – continued from previous page

Load Range CPU Time Cost Splits Cost Reduction Percentage

10.8122 3723.94 0

20.0504 3599.16 9 124.78 0.033507522

0.5-1.0 3.73637 9217.02 0

65.5488 7567.42 70 1649.6 0.178973247

4.67497 9217.02 0

94.1849 7623.11 100 1593.91 0.172931164

4.54023 9217.02 0

109.23 7615.48 70 1601.54 0.173758981

5.57636 9217.02 0

52.7201 7428.69 81 1788.33 0.19402475

4.94004 9217.02 0

72.0719 7641.99 65 1575.03 0.17088278

0.5-1.0 3.63596 8657.13 0

152.751 6985.13 97 1672 0.1931356

4.09211 8657.13 0

92.2896 7017.42 89 1639.71 0.189405727

3.72622 8657.13 0

102.235 6912.27 102 1744.86 0.201551784

3.60229 8657.13 0

82.024 6919.05 86 1738.08 0.200768615

3.73926 8657.13 0

42.9393 6780.31 69 1876.82 0.216794711

0.5-1.0 4.10829 8879.17 0

68.6495 7273.94 72 1605.23 0.180786042

Continued on next page

108

Table A.9 – continued from previous page

Load Range CPU Time Cost Splits Cost Reduction Percentage

4.06951 8879.17 0

40.8004 7262.02 59 1617.15 0.18212851

3.65268 8879.17 0

84.7895 7351.4 70 1527.77 0.172062254

3.8466 8879.17 0

91.4477 7277.59 96 1601.58 0.180374967

4.35992 8879.17 0

85.3072 7243.19 74 1635.98 0.184249203

0.3-0.7 8.65174 6817.94 0

20.935 6364.36 31 453.58 0.066527426

7.54979 6564.06 0

27.4304 6167.17 20 396.89 0.060464103

8.10458 6589.06 0

27.9438 5987.98 23 601.08 0.091223938

9.47348 6718.09 0

20.046 6297.4 18 420.69 0.062620477

8.53615 6814.26 0

25.9914 6433.79 27 380.47 0.055834383

0.3-0.7 8.89768 6723.87 0

24.4032 6066.01 38 657.86 0.097839488

11.384 6576.9 0

36.2563 6066.5 28 510.4 0.077604951

8.85976 6568.97 0

27.863 6136.29 24 432.68 0.065867252

Continued on next page

109

Table A.9 – continued from previous page

Load Range CPU Time Cost Splits Cost Reduction Percentage

8.46466 6591.99 0

35.3784 6077.45 29 514.54 0.078055337

10.7166 6475.39 0

16.4842 5973.36 17 502.03 0.077528921

0.3-0.7 7.14452 6822.04 0

28.1075 6272.07 35 549.97 0.080616648

10.2081 6435.15 0

17.5244 5999.64 15 435.51 0.067676744

11.0794 6933.05 0

25.5554 6460.16 31 472.89 0.068208076

7.01046 6757.38 0

80.7439 6291.55 39 465.83 0.068936481

8.35574 6859.01 0

14.7995 6382.15 21 476.86 0.069523153

Appendix B

Key Results in Nowak. et. al. 2008

In this Appendix, we attach the key results in Nowak. et. al. 2008 [6]

(NOWAK hereafter) for a reference and comparison with our results as reported

in the main body of this dissertation and in Appendix A.

Figure B.1: Numerical Test Results on Smaller Load Size Ranges in NOWAK

111

Table B.1: Average CPU Time, No. of Splits with Split Loads on Smaller Load
Size Ranges in NOWAK

Problem Size
75 100 125

Load Range Time Splits Time Splits Time Splits
0.11-0.20 10.2 0.3 24.8 0.7 67.2 1.3
0.21-0.30 10.5 1.3 20.8 2 53.8 2.1
0.31-0.40 15.1 8.1 28.2 10.6 56.3 14.5
0.41-0.50 6.6 0 13.6 0.4 23.6 1.3
0.51-0.60 25.5 28.4 56.2 39.3 95.9 47.1
0.61-0.70 18.3 21.7 38.8 28.9 68.7 36.7
0.71-0.80 5.8 7 10.9 7.3 16.6 7.7
0.81-0.90 4.9 0 8.8 0 13.7 0

Table B.2: Average CPU Time, Cost Reduction with Split Loads on Wider Load
Size Ranges in NOWAK

Problem Size
75 100 125

Load Range Time Cost Reduction Time Cost Reduction Time Cost Reduction
0.1-1.0 7.6 4.1 15.8 3.6 25.6 3.6
0.1-0.5 9.4 3.4 19.3 3.5 34.1 2.6
0.5-1.0 11.2 10.2 27.7 9.9 48.7 10.8
0.3-0.7 11.1 6.1 24.9 5.8 41.8 5.3

	A Metaheuristic for the Pickup and Delivery Problem with Split-Loads and its Extension
	Citation

	tmp.1283909044.pdf.0A6Fi

